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Preface

It probably won’t surprise anyone who knows me that I love all kinds of puzzles, from basic
numerical puzzles up to complex problems that require some programming to figure them
out. Therefore, when I was looking for a subject for my master thesis I knew exactly who to
turn to, as Wieb Bosma had often supplied me with interesting puzzles during his courses.
He told me about the subject of word-representable graphs, which he had heard of recently
as Hans Zantema had given a presentation about this topic and his contributions, see [I], as
part of a seminar at the Radboud University in Nijmegen.

Shortly thereafter I was presented with a series of questions from Hans about word-
representable graphs, in the hope that they would intrigue me. One popped out almost
immediately: Is the representation number of the n-cube equal to n? In my naivety, my
initial reaction was that this could not be very hard to prove, and fortunately, I was wrong.

After a great start, resulting in the final subject of this thesis and an article, [4], (a
collaboration of Hans Zantema and me), I had to change focus to some other problems.
This led to me exploring several ways of creating representations for graphs and eventually
resulted in a general way of representing bipartite graphs.

It would be an understatement when I say that I enjoyed doing this research, as I truly
wish that I could spend more time on it. Brainstorming with Hans and Wieb led to a constant
stream of new ideas, possibilities and generalisations, and they were a great inspiration to
me during the process. Their positive attitude and contagious curiosity helped me push the
boundaries of my capabilities and stay curious myself.

I would also like to take this opportunity to thank Lieke-Rosa Koetsier and Paulien
Schets, who were there to help me find out why something did or did not work, often
accompanied by a nice cup of tea or hot chocolate.

Lastly I would like to thank Sergey Kitaev and William Trotter for providing me with

the information I needed to expand my research.

I hope you enjoy reading,
Bas Broere
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1 Introduction

Suppose we have a graph G = (V| E). A word w over the alphabet V' is said to represent G
if and only if for every edge {z,y} € F the letters x, y alternate in w. This means that when
we only look at the letters x and y in w, we find the pattern zyxy ... or yzyx ... of even or
odd length. The graph G is called word-representable if and only if such a word exists.

A lot of research has been done on the subject of word-representable graphs and ways to
construct their representants. This thesis lists some of this research and some new results in
representing graphs, and is structured as follows. Sections [2] and [3| focus on preliminaries in
the fields of graph theory and word-representable graphs, where we will also introduce the
new concept of occurrence-based functions. This will be followed by Chapter [ in which
we will take a closer look at existing constructions using the new terminology. Furthermore
we will discuss a new result on representing bipartite graphs. The focus of Chapter [5]is the
representation of the Cartesian product of two graphs. We will finish by stating some open
problems that result from this research.

Many of the results of Chapter |5| also appeared in [4], but we will make a further gener-
alisation. Note that because of this, many definitions, lemmas and theorems in this thesis
are formulated in the same way as in [4].



2 Graph theory

In this chapter we will discuss basic definitions and theorems in the field of graph theory.
Most of these definitions and results originate from [2]. We will give examples where neces-
sary.

We start with the basic definition of a graph, after which we will talk about operations
and inclusions. Lastly we will discuss directed graphs.

2.1 Terminology

Definition 2.1. A graph G = (V, E) is defined by the two sets V' of nodes and E of edges,
where F consists of unordered pairs of different nodes.

Remark 2.2. This definition does not allow multiple edges between two nodes or an edge
from a node to itself.

Example 2.3. Let G = ({1,2,3,4,5},{{1,2},{1,3},{1,4},{2,3}}) be a graph. A graph
can be graphically represented in an intuitive way. We do this by drawing points for nodes,
labelling them with the symbols in V', and drawing a line for all edges between two points x
and y if and only if {z,y} € E. Figure 1| represents G.
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Figure 1: Graphical representation of

G = ({1,2,3,4,5}, {{1,2},{1,3}, {1, 4}, {2, 3}}).

We see that different nodes may have different numbers of edges connected to it.

Definition 2.4. The neighbourhood of a node x in the graph G = (V, E) is the set N(z) =
{y € V|{z,y} € E}. The degree of a node is the number of elements, #N(z), of its
neighbourhood. For a given x € V' all edges in the set {{z,y} |y € N(z)} are incident to x.

Node 5 in the graph of Example has degree zero, node 4 has degree one, nodes 2 and
3 have degree two, node 1 has degree three and N(1) = {2,3,4}.

There are a lot of different families of graphs. One example, which we will see multiple
times throughout this thesis, is the family of complete graphs.

Definition 2.5. A graph G = (V| F) is a complete graph if for all z,y € V it holds that
{z,y} € E. A complete graph is denoted by K,,, where n = #V.
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Another example is formed by the cycle graphs, which can be drawn in a circular fashion.

Definition 2.6. A graph G = (V, E) is a cycle graph if V- = {x1,29,...,x,} for some n,
and E = {{z1, 2o}, {2, 23}, ..., {xn_1, 20}, {x1, 20} }

Some families of graphs allow us to say something more generic about properties a large
collection of graphs can have. For example, for certain families of graphs we can say some-
thing about the chromatic number of the graphs in that family.

Definition 2.7. A graph G = (V, E) is k-colourable if and only if every node can be given
one out of k colours such that = and y have a different colour if {z,y} € E. The smallest k
such that a graph G is k-colourable is called the chromatic number of the graph.

The decision problem if for a £ > 3, a graph is k-colourable is an NP-complete problem
[8]. However, we are able to say something about the chromatic number of graphs that
belong to certain families of graphs. For instance, planar graphs, graphs that can be drawn
in R? without any two edges crossing, are all 4-colourable [I7]. Another example of this is
the family of bipartite graphs, all members of which are 2-colourable in an obvious way.

Definition 2.8. A graph G = (V, F) is a bipartite graph if the set of nodes can be split into
two disjoint subsets, the parts, of nodes V= A U B such that there are no edges between
nodes in A and no edges between nodes in B.

A bipartite graph G = (V, E) is a complete bipartite graph if {z,y} € F for all z € A
and y € B. A bipartite graph with #A = n and #B = m is denoted by K, ,,.

Example 2.9. The graph in Figure [2| is bipartite. This graph is 2-colourable, as shown in
Figure 2| with the colours red and blue.

Figure 2: A bipartite graph.

Remark 2.10. The family of bipartite graphs is not only a subset of the 2-colourable graphs,
they are in fact equal.

Lastly we will look at walks and paths.

Definition 2.11. A walk in a graph G = (V, E) is a series of nodes z1, zs, ..., x, such that
{.Z'i,.l’lurl} € Eforall 1 S 1< n.

Definition 2.12. A path between two different nodes x and y in a graph G is a walk
Z1,%2,...,T, such that 1 = z, z,, = y and for all 4, j z; # z;.
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Definition 2.13. A graph G = (V| E) is connected if there is a path between every pair of
nodes z,y € V.

Example 2.14. The nodes 4,1,2,1,3 form a walk in the graph of Figure[I] This is not a
path, as node 1 occurs multiple times. The nodes 3,2, 1,4 do form a path. This graph is not
connected, as there is no path between node 5 and any other node.

2.2 Operations and inclusions

There are many ways to obtain a graph from other graphs. For instance, we can add
or remove edges and nodes, see Section A lesser known operation is constructing a
subdivision of a graph.

Definition 2.15. A graph H = (Vy, Ey) is a subdivision of a graph G = (Vg, Eg) if Vg C Vi
and {z,y} € Eg if and only if there is a set {x1,z2,...,2,} C Vg such that x; =z, x, =y,
{z;,x;11} € Ey forall 1 <i<nandz; & Vg for all 1 <i < n.

Example 2.16. Figure|3|shows a graph and a subdivision of that graph. We see that we can

look at a subdivision of a graph as adding extra nodes on already existing edges, effectively
splitting them in multiple pieces.

2 1 2 6 5 1
7 8

3 4 3 4

(a) Original graph. (b) Subdivision.

Figure 3: Example of a subdivision.

Remark 2.17. Example [2.16] shows that a subdivision of a graph has the same general
structure as the original graph. There are also certain properties that are preserved when
constructing a subdivision, for example it is trivial to see that a subdivision of a planar
graph is again planar.

Another graph operation is taking the Cartesian product of two graphs, which will be
the main subject of Chapter [f

Definition 2.18. The Cartesian product of two graphs G = (V, Eg) and H = (Viy, Ey) is
defined as GO H = (VGDH; EGDH); where VGEIH = VG X VH and

Econ ={{(x,2), (y,v)} |z =y and {2',¢y'} € Ey, or 2’ = ¢ and {x,y} € Eg}.
Example 2.19. We are going to construct the Cartesian product of G = ({1, 2}, {{1,2}}),
with itself, see Figure fal To make matters more clear, we will denote the second graph as
G' = ({1,2'},{{V",2'}}). Using the definition we find Voo = {(1,1'), (1,2),(2,1),(2,2)}
and Ecoe = {{(1,1), (1,29}, 12,1, (2,29}, {(1, 1), (2, 1)}, {(1,2)), (2,2)}}, see Figure
4Dl



1 (1,2) (1,1)

®

5 (2,2) (2,1)

(a) G = ({12}, {{1,2}}). (b) GOG.

Figure 4: Example of the Cartesian product of two graphs.

Remark 2.20. Often we do not name the nodes (x,y) explicitly, but just assign numbers
to them.

The Cartesian product of a graph is interesting because it is easy to find copies of the
original graphs in the product. The nodes in the Cartesian product have names (x, y) where
x is anode in GG and y is a node in H. When we restrict the graph to all nodes (x,y) for a
fixed y, we find a copy of G and when we do the same for a fixed x, we find a copy of H.
This is illustrated in Figure [5

Figure 5: Cartesian product of two graphs, G and H.

We see that the graphs G and H are in a way included in, or are a subgraph of, G H.

Definition 2.21. A graph H = (Vy, Ey) is a subgraph of a graph G = (Vg, E¢) if Vg C Vg
and EH - Eg.

This means that a subgraph is obtained by removing zero or more edges and zero or more
nodes from G. The only thing we need to think about is that when we remove a node, we
also remove all the edges indicent to that node. When we restrict ourselves to exclusively
remove nodes and their incident edges, we come to the following definition.

Definition 2.22. A subgraph H = (Vi, Ey) of G = (Vi, E¢) is an induced subgraph if for
all x,y € Vi it holds that {z,y} € Ey if and only if {z,y} € Eq.

We see that the graphs G and H are induced subgraphs of G H. We illustrate these
definitions further in Example



Definition 2.23. If a family of graphs is closed under taking induced subgraphs, the family
is called a hereditary family.

Example 2.24. The families of planar graphs and bipartite graphs are examples of heredi-
tary families of graphs.

The following gives a more complex form of the inclusion of a graph in another graph.

Definition 2.25. An edge contraction of an edge {z,y} in a graph G = (V, E) results in
the graph G' = (V', E') where V' =V \ {y} and E' = {{z,2'} |2’ € N(y)} U E'\ {{z,y}}.

Definition 2.26. A minor of the graph G is any graph H that can be obtained from G by
contracting edges, removing edges and removing nodes and their incident edges.

Example 2.27. Figure [ shows a graph, an induced subgraph and a minor of that graph.

5 4 4° *6(5)

(a) Original graph. (b) An induced subgraph (¢) A minor obtained by
with nodes 1, 2, 3 and 4. removing node 1, the edge
{3,4} and contracting the

edge {5,6}.

Figure 6: Example of an induced subgraph and a minor.

The inclusion of one graph in another graph can tell us something about certain properties
of (a family of) graphs. The following theorems are examples of this.

Theorem 2.28. (Wagner’s theorem, [2]) A finite graph is a planar graph if and only if it
does not contain the graphs K5 or K33 as a minor.

Theorem 2.29. (Kuratowski’s theorem, [2]) A finite graph is a planar graph if and only if
it does not contain a subdivision of K5 or K33 as subgraph.

2.3 Directed graphs
We start by stating the definition of a directed graph and some basic properties.

Definition 2.30. A directed graph D = (W, A) is defined by the two sets W of nodes and
A of arrows, where A consists of ordered pairs of different nodes (z,y), indicating there is
an arrow from x to y, which is often denoted as x — y.
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Remark 2.31. This definition does allow for multiple arrows between two nodes. Even
though this is allowed, we will focus on directed graphs where only a single or no arrow
between two nodes is allowed.

Analogous to undirected graphs, we can also speak about walks and paths in directed
graphs.

Definition 2.32. A directed walk in a directed graph D = (W, A) is a series of nodes
x1,To, ..., T, such that (z;, z;11) € Aforall 1 <i < n.

Definition 2.33. A directed path between two different nodes x and y in a directed graph
D = (W, A) is a directed walk x1, 29, ..., x, such that z1 = =, x, = y and for all i, j x; # ;.
When there is a directed path from a node x to y, this is often denoted by x ~» .

Remark 2.34. By defining directed paths this way, we do not allow for paths between a
node and itself. This becomes important in the next definition.

Definition 2.35. A directed graph D = (W, A) is acyclic if for all z,y € W, when there is
a directed path from x to y, there is no directed path from y to x.

Remark 2.36. It is easy to see that if a directed graph is acyclic, then every walk between
two different nodes is a path.

Example 2.37. Figure [7b|shows a directed graph. We see that there are two directed paths
from 2 to 4 (2,3,4 and 2,4), while there is no directed path from 2 to 1.

3 2 3 2
4 gl 4 1
(a) An undirected graph. (b) A directed graph.

Figure 7: Example a graph and a directed graph.

Directed graphs are a useful way of visualising processes. The graph in Figure [7b| can be
interpreted as the path a product has to go through in a factory. Every product starts at
unpacking (1) and proceeds to sorting (2). If the product needs cleaning it has to go to (3)
and after that it can go to distribution (4). This way of looking at a directed graphs adds
meaning to the direction of the arrows of the graph.

We will now look at a way to turn an undirected graph into a directed graph. This is
done by assigning a direction to every edge in an undirected graph, essentially turning every
edge in an arrow.



Definition 2.38. An orientation O of an undirected graph G = (V, E) is a map that results
in a directed graph Gp by mapping each edge {x,y} to either (z,y) or (y,z). We call G the
underlying undirected graph of Go.

Example 2.39. An example of an orientation of the graph in Figure [7a] is the graph in
Figure [7h]
There are two kinds of orientations we will take a closer look at.

Definition 2.40. ([7]) A directed graph D = (W, A) is called transitive if the following
property holds: If (z,y) € A and (y,2) € A, then (z,z) € A. An orientation O of a graph
G is transitive if G is transitive.

Definition 2.41. ([7]) A directed graph D = (W, A) is called semi-transitive if the following
properties hold:

e D acyclic;
e For every directed path x1,xs,...x, in D one of the following two possibilities holds:
= (z1,20) € 4;
— (z1,2,) € Aand (z;,2;) € Aforall 1 <i<j<n.
An orientation O of a graph G is semi-transitive if Gp is semi-transitive.

It is easy to see that every transitive orientation is semi-transitive. The following example
illustrates that the converse is not true.

Example 2.42. The orientation O of the graph G shown in Figure is not transitive,
as (1,2),(2,3) € A, but (1,3) ¢ A, where Go = (W, A). The orientation is, however,
semi-transitive, which we will now show.

It is easy to see that G is acyclic. For paths consisting of only two nodes the second
property holds automatically since G is acyclic. We will now look at all the directed paths
that consist of at least three nodes:

e (1,2,34): (1,4) & A so the property holds;
e (1,24): Again (1,4) ¢ A, so the property holds;
e (2,3,4): (2,4) € A, so the property holds.
So we conclude that the orientation in Figure [7h|is semi-transitive.

Remark 2.43. We say that a graph G admits a (semi-)transitive orientation if there exists
a (semi-)transitive orientation O of G.

Example 2.44. As we have seen in Example [2.42] the graph in Figure admits a semi-
transitive orientation. The orientation shown in Figure [7D] is not transitive, but the graph
does admit a transitive orientation, see Figure

There are families of graphs of which it is known that every member admits a transitive
orientation, for example the bipartite graphs. The same can be said for semi-transitive
orientations, but this set of graphs is much larger.

10
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4 1

Figure 8: A transitive orientation of the graph in Figure .
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3 Word-representations

In this chapter we will talk about words and graphs. We will focus mainly on terminology
and basic results, but we will also introduce the new concept of occurrence-based functions.
Most of the definitions, lemmas and theorems in Sections and are based on [12].

As a convention, symbols like x and y will denote letters, while symbols like w and v
denote words. Furthermore let € be the empty word. When we write two or more words or
letters after each other, like wv or xzy, we mean the concatenation of these letters or words.
When we speak about an alphabet, we mean a finite set of symbols, for example {a, b, ¢, d, e}
or {1,2,3,4}.

3.1 Terminology

We start with some definitions regarding words.

Definition 3.1. For a word w over an alphabet A, two letters  and y are said to alternate
in w if between every two x’s in w a y occurs and between every two y’s in w an x occurs.

Stated otherwise: removing all letters but x and y from w results in a word xyxy... or
yxyx ... of even or odd length.

Definition 3.2. A word w over an alphabet A is called k-uniform if every x € A occurs
exactly k times in w. A 1-uniform word over A is called a permutation of A.

Definition 3.3. If w is a word over an alphabet A, and B C A, then the word wp is defined
as the word obtained by removing all letters in A \ B from w.

Remark 3.4. Two letters x and y alternate in a k-uniform word w if and only if wy, , is
either (zy)* or (yx)k.

Definition 3.5. The initial permutation, p(w), of a word w is obtained by removing all but
the first occurrence of each letter in w.

Definition 3.6. A word v is a rotation of the word w = x1x9 ... x, if there is an ¢ such that
V=TiTjy1..-TpTy...Tj-1.

Example 3.7. In the word w = 12341432 the letters 1 and 2 alternate, as wy; 2y = 1212, but
the letters 3 and 4 do not, as wyz 4y = 3443. The word w is 2-uniform as every letter occurs
two times. Also, the initial permutation of this word is p(w) = 1234 and v = 35253212 is a
rotation of w.

We want to use a word over the alphabet V' to represent a graph G = (V, E). We will
only talk about representing undirected graphs and we will use directed graphs in the process
of representing undirected graphs.
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Definition 3.8. A graph G = (V| E) is word-representable if there is a word w over the
alphabet V' such that:

e {z,y} € F if and only if x and y alternate in w;
e Forallz € V1w, #e

The word w is said to represent, or be a representant of G, and the graph that is represented
by a word w is denoted by G(w).

Remark 3.9. A word represents a unique graph, while a graph can have multiple words
representing it. Also, a graph need not be word-representable.

Example 3.10. The graph in Figure |9a has the word w = 431423124132 as a representant.
The graph in Figure 0bis the graph that is represented by w = 1342132412.

3 4 3 4

(a) Graph represented by the word (b) G(w) where w = 1342132412.
w = 431423124132.

Figure 9: Examples of graph representations.

When a word needs to be manipulated in some way, it is often easier to have uniform
words to work with.

Definition 3.11. A graph G is called k-representable if there is a k-uniform word w that
represents (G. The smallest k& such that G is k-representable is called the representation
number of G. By definition, non-word-representable graphs have representation number oco.

Example 3.12. The complete graphs are the only 1-representable graphs. For every n the
graph K, can be represented by a permutation of the set {1,2,...,n}, and in particular by
the word w = 123...n. See Figure [10| for an illustration of K.

As we will see in Section certain graphs are word-representable as a concatenation
of permutations. First we will define this formally and look at an example.

Definition 3.13. A graph G = (V| E) is permutationally representable if there is a word
w = p1ps . . . px such that w represents G and for every i, the word p; is a permutation of V.
The word w is called a permutation-representant, or k-permutation-representant. The small-
est number of permutations needed to represent G is called the permutation-representation
number.

13
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Figure 10: K7, represented by w = 1234567.

Remark 3.14. A permutation-representant is always a uniform word.

Example 3.15. The graph in Figure is also represented by the word w' = 31421324,
which is a concatenation of the two permutations 3142 and 1324, so it is 2-permutation-
representable.

3.2 Basic results

Now we discuss some basic results regarding word-representable graphs.

The first thing we note is that if w is a word that represents a graph G, then also the reverse
of w represents G. If w is k-uniform for some k we can say even more.

Theorem 3.16. Let w be a k-uniform word that represents a graph GG. Then any rotation
of w represents G.

Proof. We need to prove that x and y alternate in w if and only if they alternate in every
rotated version of w. It suffices to prove this for a rotation over one position to the left, i.e.
T1To ... Xy — ToTs...x;x1. Denote this rotated version by w'.

Assume x and y alternate in w, so without loss of generality wy,,; = (zy)*. There are
two possibilities; either w starts with x or not.

If w starts with z, then w' ends in z, and thus wy, , = y(zy)* 'z, so x and y alternate
in w'.

If w does not start with z, then wi, \ = wiyy = (zy)*, so x and y alternate in w'.

Similarly, we see that if they alternate in w’, they alternate in w. O

As noted before, we will mostly talk about uniform words for graphs, because they are
easy to work with. The following lemma is an important result that we need to make sure
we can always speak of uniform representants.

Lemma 3.17. ([12]) Let w be a non-uniform word representing G. Then there exists a
uniform word v that represents G.

In Section [3.3| we will introduce notation that makes it easier to prove this, which we will
do later on. The following theorems are a direct consequence of this lemma.

14



Theorem 3.18. A graph G is representable if and only if it is k-representable for some
kE>1.

Theorem 3.19. Every k-representable graph is also (k + 1)-representable.

3.3 Occurrence-based functions

The focus of this section is to define an intuitive way of describing operations on words. We
will use the notion in upcoming chapters to reformulate some already existing constructions
of words for graphs and devise new constructions.

The way that we will do this is by defining occurrence-based functions. The notion of
occurrence-based functions was developed together with Hans Zantema in order to formalise
notations in [4].

Definition 3.20. Let V' and V' be (possibly different) alphabets, and let Ny = {1,...,k}.
The labelling function of finite words over V' is defined by H : V* — (V x Ni)*, where the
ith occurrence of each letter x is mapped to the pair (z,), and k satisfies the property that
every symbol occurs at most k times in w. Now H(w) is called the labelled version of w.

An occurrence-based function is the composition (ho H) of a homomorphism A : (V' x Ni)* —
(V")* and the labelling function H. As a shorthand we will write h(w) instead of h(H (w)).

Example 3.21. Recall from Definition that the initial permutation of a word w was
defined as removing all but the first occurrence of every letter from w. This is equivalent to
applying the following occurrence-based function:

z ifi=1
¢ otherwise.

hz,i) = {

So h(512356324215621) = 512364 = p(512356324215621).

The occurrence-based function used in Example [3.21] gives rise to the following generali-
sation of the initial permutation.

Definition 3.22. For a k-uniform word w and a set A C Ny = {1,...,k}, the occurrence
based function p, is defined, for every symbol x, by pa(z,i) = x foralli € A, and pa(x,i) =€
for all i ¢ A. In the case that A = {i}, for some 7, we call pgy = p; the ith permutation of
w.

It allows for the following useful lemma by Hans Zantema, a generalisation of previously
developed lemmas.

Lemma 3.23. ([4]) Let w be a k-uniform word representing a graph G. For some m > 1
let Ay,..., A, be non-empty subsets of Ny, = {1,...,k} such that for all j =1,...,k—1
there exists an i € {1,...,m} for which {j,7+1} C A;. Then the (>, #A;)-uniform word
w' = pa, (w)pa,(w) - - - pa,, (w) also represents the graph G.

15



Proof. We prove that any two symbols x and y alternate in w if and only if they alternate
in w'.

First assume they alternate in w, then wy, ,y is either (zy)* or (yz)*. Without loss of
generality assume wy, ,y(zy)*. Then pa,(w) () = (xy)#4 for all i = 1,...,m, so Wiy =
(zy)Xi=1 #4i by which 2 and y alternate in w’.

Conversely, assume z and y alternate in w’. Then either pa, (W), = (zy)#4 for all
i=1,...,m,o0r pa,(0)(zy = (yzx)#4 foralli = 1,...,m. Without loss of generality assume
the first. Let {j,7 + 1} C A;, then from pa, (w)(z, = (zy)#* we conclude that

e the jth z in w is left from the jth y in w;
e the jth y in w is left from the (j + 1)th x in w;
e the (j+ 1)th x in w is left from the (5 + 1)th y in w.

As it is assumed for all j = 1,...,k — 1 there is such an A;, we obtain this property for all
7=1,...,k—1, from which we conclude that x and y alternate in w. O

Corollary 3.24. Let w be a k-uniform word representing a graph G. The word pa(w)w
also represents G for all A C N.

From now on, wherever possible, we will use occurrence-based functions in constructions.
We will start by proving Lemma [3.17]

Lemma. ([12]) Let w be a non-uniform word representing G. Then there exists a uniform
word v that represents G.

Proof. We will construct the word v as follows:
1. Initialise w’ as w;
2. Find the maximum integer k such that there is a letter z in w’ that occurs k times;

3. Define B as the set of all letters that occur fewer than & times in w';

/

4. Replace w' by p;(w')pw;
5. If w' is uniform, v = w’, otherwise go back to step 3.

As the word we consider is finite and it is clear that we add only letters that occur fewer
than k times, this construction terminates and thus the resulting word is k-uniform where k
is the number found in step 2.

We need to prove that v represents (G, so x and y alternate in v if and only they alternate
in w.

Assume z and y alternate in v. As w’ is initialised as w we observe that w’ has w as
suffix. This directly implies that  and y must alternate in w.

Now assume x and y alternate in w and they occur an equal number of times in w. If
Wiz = (wy)" for some t, then p(w)(y,; = zy and in every iteration of the construction
P(W) {2y = zy or p(w'){zyy = €. From this we conclude that wy, . = (zy)* for some s and
thus z and y alternate in v.
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Now assume z and y alternate in w and, without loss of generality, x occurs more often
than y. Note that if x occurs ¢ times, then y occurs ¢t — 1 times and wy, ,; = (zy)'z by the
assumption that z,y alternate. The letter y must be added to once more than z. In the
first iterations we again see that p(w’) (.} = xy. After a certain point, x occurs k times, but
now y occurs k — 1 times, so this results in p(w')p = y, followed by making the final word

Remark 3.25. Using Lemma [3.17] we find a word v that is k-uniform where £ is the maxi-
mum found in step 2 in the proof. This is not necessarily the smallest uniform possible, as
there are no requirements for w to be small.
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4 Constructing representations

In this chapter we will take a look at different constructions of words for graphs. We will start
by discussing induced subgraphs and minors, as this will help in determining whether or not a
graph is word-representable. After this, we discuss some non-word-representable graphs and
take a look at general ways to represent graphs that are word-representable, including a new
result on representing bipartite graphs. Lastly, we will look at some existing constructions
for words-representations and reformulate them using occurrence-based functions.

4.1 Induced subgraphs and minors

In Section we defined (induced) subgraphs and minors of a graph. One of the first
questions we might ask ourselves is if there is an equivalent to Theorem or for
word-representable graphs. To find the answer to this question we first need to look at the
involved operations.

It is easy to see that if we remove a node z, together with all its incident edges, from a graph
G that is word-representable, we obtain a new word-representable graph.

Theorem 4.1. Let G = (Vg, Eg) be a graph represented by the word w and let H =
(Vu, Er) be an induced subgraph of G. Then w’ = wy,, represents H.

Proof. The word w’" only consists of letters in Vy by definition.

Now we need to prove that {z,y} € Ey if and only if z and y alternate in w'. Let
x,y € Vy. As H is an induced subgraph of G, we know that Ey C Eg, so {z,y} € Ey if
and only if {z,y} € Eg. Note that wy,,) = wi, ,, so z and y alternate in w if and only if
they alternate in w’. O

This theorem leads to the following.

Corollary 4.2. ([12]) The family of word-representable graphs is hereditary; thus, if G is
a graph and H is a non-word-representable induced subgraph of G, then G is not word-
representable.

Remark 4.3. Theorem requires H to be an induced subgraph. If this theorem were
true for general subgraphs, then every graph would be word-representable, because every
complete graph is word-representable and every graph is a subgraph of a complete graph.

There is no similar result of Theorem for removing a single edge, so it is worthwhile
to take a look at cases where removing an edge keeps the graph representable. For instance,
it is easy to see that when we remove or add an edge in a bipartite graph, we obtain another
bipartite graph, which is word-representable, see Section [4.4]
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Theorem 4.4. Let G = (V, E) be a graph, {z,y} € F and w a representant of G that
contains x and y at least twice. If w has one of the following forms, then G’ = (V, E\{{z,y}})
can be represented by w’:

e W = wixYyws, then w' = wiyrws;
e w = xvy, then w' = yvx.
The proof of this theorem is very basic and is omitted here.

Remark 4.5. The cases mentioned in Theorem [1.4] are relatively easy, but are also the most
general cases known at this point in time.

Remark 4.6. In the same way as in Theorem [4.4] we can state something about adding an
edge to a graph, but this theorem would have a more elaborate case distinction.

It follows from Remark that there are cases where removing or adding an edge does
not keep the graph representable. From this follows that there does not exist an equivalent
of Theorem or for word-representable graphs.

There is one operation in the construction of a minor we have not discusses yet, and
that is performing an edge-contraction. It could be that the ability to remove single edges is
the only thing that prevents us from stating an equivalent to Theorem Unfortunately,
performing an edge-contraction also does not preserve word-representability in general, as
we will illustrate now.

We will show this with the use of k-subdivisions, which are subdivisions in which every
edge is split into at least k parts by adding at least £ — 1 nodes on each edge.

Definition 4.7. ([13]) A graph H = (Vi, Ex) is a k-subdivision of a graph G = (Vg, Eg)
if Vo C Vi, and {z,y} € Eg if and only if there is a set {x1,x9,...,2,} € Ep such that
r1=z, 2, =y, {x;,xi1} € Egforall 1 <i<n, k+2<nandx; & Vg forall 1 <i<n.

Remark 4.8. It is easy to see that a k-subdivision of a graph is also an [-subdivision for all
[ <k.

Example 4.9. Figure [11| shows a graph and a 2-subdivision of that graph. Note that the
edge (2, 3) is split into three pieces, but the edge (1,2) is only split in two pieces.

. 12 8
11 13
10
4 1 4 1
9 6
3 2 3 8 71 2
(a) A graph G. (b) A 2-subdivision of G.

Figure 11: A graph G and a 2-subdivision.
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The following theorem does not state anything about edge-contractions, but a direct
corollary of it does.

Theorem 4.10. ([I3]) For every graph G a 3-subdivision of G is 3-word-representable.

The proof of this theorem, as formulated in [13], is omitted here.

It is an immediate consequence of this theorem that applying an edge-contraction in a
word-representable graph can either give a word-representable or a non-word-representable
graph.

The idea behind this is the following. Assume we have a 4-subdivision H of a non-word-
representable graph G. Contracting edges in H to obtain a 3-subdivision (that is not a
4-subdivision) of G results in a word-representable graph, as it still is a 3-subdivision of G.
When we continue contracting edges to obtain GG again, we get a non-word-representable
graph.

Remark 4.11. Theorem [4.10]is a very powerful theorem, because when we want to make
a word-representation for a non-word-representable graph we can agree on representing a
3-subdivision of the graph instead. This will, in most cases, result in a large word. This is
because every edge in the original graph gives us two more nodes and it usually holds that
the more nodes there are, the larger the word will be.

4.2 Non-word-representable graphs

As stated before, not every graph is word-representable, but no non-word-representable
graphs have been discussed yet. We will do this now, starting with the smallest (by number
of nodes) non-word-representable graph.

Definition 4.12. ([2]) The wheel-graph with n + 1 nodes, or the n-wheel, W,, is the graph

with V = {xy,z9,...,2,,y} and E = {{x1, 2}, {22, 23}, .., {@n_1, 20}, {21, 0} JU{{xs, y} |
1<i<n}.

Example 4.13. In Figure [12] the 4-, 5- and 6-wheels are shown.

3 4 4 5
(a) The 4-wheel. (b) The 5-wheel. (c) The 6-wheel.

Figure 12: Examples of wheel-graphs.
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In general the following holds.
Theorem 4.14. ([13]) The wheel-graph W, is non-word-representable for every n > 2.

We will show that the 5-wheel is non-word-representable in Theorem [4.40, In the same
way one can prove that this theorem holds for all n > 2.

There are many more non-word-representable graphs. For instance, from [12] we know
that there are 25 non-isomorphic non-word-representable graphs on 7 nodes, of which 15
contain the 5-wheel as an induced subgraph. There is, at this moment, no definitive answer
to the question of whether there is a finite set of forbidden induced subgraphd] Note that
this would not result in an equivalent of Theorem [2.29] as this theorem states such a result
for ordinary subgraphs.

Recently, there have been some results regarding representability of graphs via pattern-
avoiding words, see [9, (15, [5], but these will not be discussed in this thesis.

4.3 Generic constructions

In Section we talked about two kinds of orientations of graphs. In this section we will
use these orientations to obtain representations for the graphs that admit them.

4.3.1 Transitive orientations

In this section we will use transitive orientations to obtain representations for certain graphs.
This requires some additional terminology about orders and posets, which will be given here.
We start by repeating the definition of a transitive orientation.

Definition. ([7]) A directed graph D = (W, A) is called transitive if the following property
holds: If (z,y) € A and (y,z) € A, then (z,z) € A. An orientation O of a graph G is
transitive if G is transitive.

Graphs that admit a transitive orientation, like bipartite graphs, are called comparability
graphs. This family of graphs is important in the field of word-representable graphs, as it is
equal to the family of permutationally representable graphs, see Definition Before we
prove this, we need some background in order theory.

Most of the following definitions originate from [16].

Remark 4.15. Given a set S and a binary relation B C S x S we will write 2By instead of
(x,y) € B.

Definition 4.16. A strict partially ordered set, or strict poset, is a pair (S, <), where S is a
set and < € S x S is a binary relation (the partial order) over the set S that satisfies the
following;:

e For all x € S,x £ z (irreflexivity);

o If r <y and y < z then x < z (transitivity);

IThis is a set of graphs that may not be contained as induced subgraph.
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o If v <y then y £ = (anti-symmetric).

Definition 4.17. A strict totally or linearly ordered set is a pair (S, <), where S is a set
and < C S x S is a binary relation (the total or linear order), over the set S that satisfies
the following:

e Forallz € S,x £ z;

o If x <yandy < zthen x < z;

o If x <y then z £ y;

e For all z,y € S with x # y either z < y or y < .

In other words, a total order is a partial order in which every two elements are comparable. A
finite linearly ordered set can be denoted by (x1, xs, ..., z,) where x; < z;41 forall 1 <i < n.

Definition 4.18. A linear extension of a partial order (S, <) is a total order (5, <) such
that < C <’ and (S, <’) is a total order.

Remark 4.19. Every finite poset has a linear extension, see [16].

Example 4.20. Let S = {1,2,3} and = {(1,2),(1,3)}. We see that (5, <) is a poset, but
it is not a totally ordered set, as 2 and 3 are not comparable. If we add (2,3) to <, we get
a totally ordered set (S, < U{(2,3)}), which is a linear extension of (S, <).

Definition 4.21. The dimension of a poset (S, <) is the smallest number of linear orders
<y, <g,...,<, of §such that <= N, <;. The set R = {<y, <y,...,<,} is called a realizer
of the poset.

Example 4.22. The poset in Example has dimension 2, as it is not a totally ordered
set, and the two linear orders < U{(2,3)} and < U{(3,2)} have < as intersection.

Now we make a connection between comparability graphs and posets.

Lemma 4.23. Let G be a comparability graph and O a transitive orientation admitted by
G. The the pair Go = (W, A) is a strict poset.

Proof. 1t is trivial that A CW x W.

Now let x,y,2’ € W. We know that (z,x) ¢ A, as there are no arrows from a node
to itself. If (x,y) € A and (y,2’) € A we know that, because the orientation is transitive,
(x,2") € A. Lastly if (z,y) € A we know (y,z) € A, as two nodes can only have one arrow
between them. This proves the properties stated in Definition , so (W, A) is a strict
poset. ]

We are now going to prove the following theorem.

Theorem 4.24. ([I4]) A graph is permutationally representable if and only if it is a com-
parability graph.
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Proof. For the forward direction, assume a graph G is permutationally represented by the
t-uniform word w. For all the permutations p;(w) we can make a linear order <; by assuming
that if x occurs before y in p;(w), then z <; y.

It is easy to see that x <; y for all ¢ or y <; x for all 7 if and only if  and y alternate in
w. Also if x <; y and y <; o’ for all i, then x <; 2’ for all 7. If we now define an orientation
O of G as x — y if and only if x <; y for all 7, we obtain a transitive orientation that is
admitted by G, thus G is a comparability graph.

For the converse, assume we have a comparability graph G and a transitive orientation
O such that Gp = (W, A). Lemma says that (W, A) is a strict poset. Assume R =
{<1,<a,...,<;} is a realizer of the poset (W, A), and for every 1 < i < ¢ define the word
Wi = Tj1Ti2---Tin where #W =n, and Tij <i Tjj+1 for all 1 < j <mn. Note that these
words w; are unique, as each <; is linear, which makes every two elements comparable.
By the definition of a realizer, we know that x < y if and only if z <; y for all . This
means that x and y alternate in w = w; ... w; if and only if x < y, and this holds if and
only if (z,y) € A. So the word w represents G and, as every w; is a permutation, G is
permutationally representable. O

We see that if we find the smallest permutation-representation of a graph, we have found
a realizer of the poset associated with it. So if follows that the permutation-representation
number of a comparability graph is equal to the dimension of the poset associated with it.

Remark 4.25. The permutation-representation number of a graph is not necessarily the
same as the ordinary representation number. It is a easy to see that the permutation-
representation number is at least as large as the representation number, but it can be larger,
as we will show in the next example.

Example 4.26. We will take a look at the 3-cube, @3, see Figure [13]

Figure 13: The 3-cube, ()3, 3-represented by
w = 567158372648123514736284, with a transitive orientation.

In Theorem we will show that ()3 can be 3-represented by the word noted in Figure [13]

As @3 admits a transitive orientation, see Figure [I3] we can use Theorem to con-
struct a permutation-representation for (J3. The problem we would now face is finding a
minimal realizer for the poset, as we want our word to be as small as possible. As this is
a complex problem, see Remark [£.27, we assume we already have a realizer of this poset:

R ={(4,6,7,8,1,2,3,5),(1,4,6,2,7,3,5,8), (1,4,7,3,6,2,5,8),(1,6,7,5,4,2,3,8) }.
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Using Theorem [£.24] the following word represents the graph
w = 46781235146273581473625816754238. For this graph it is provable by, for example,
an exhaustive search that the permutation-representation number is not smaller than 4. This
makes the permutation-representation number of this graph 4.

Remark 4.27. Theorem reduces the problem of finding a permutation-representation
of a graph to finding the dimension of the poset. Determining whether or not for a given
k > 3 a poset has dimension at most k is an NP-complete problem, see [I8]. In Section
4.4 we will talk about a general construction for permutation-representations of bipartite
graphs, which allows us to find the mentioned 4-permutation-representation of ().

4.3.2 Semi-transitive orientations

In this section we will focus on graphs that admit a semi-transitive orientation. Most of
the theorems, lemmas and definitions in this section originate from [7], but with a different
notation for orientations.

Semi-transitive orientations are at the core of word-representable graphs. We start again
by repeating the definition.

Definition. A directed graph D = (W, A) is called semi-transitive if the following properties
hold:

e D acyclic;
e For every directed path xy,xs,...x, in D one of the following two possibilities holds:

B (mlaxn) ¢Aa
— (z1,2,) € Aand (2;,2;) € Aforall 1 <i<j<n.

An orientation O of a graph G is semi-transitive if Gp is semi-transitive.

To make the upcoming lemmas easier to prove, we will first rephrase the notion a of
semi-transitive orientation. For this we will use the following definitions and lemma.

Definition 4.28. A semi-cycle is an acyclic directed graph D = (W, A) with #W > 2 with
W ={xy,29,...,2,}, and A = {(z1, x2), (x2,23), ..., (Tn_1,2n), (x1,2,)}.

We observe that a semi-cycle can be obtained by reversing the orientation of one edge in
a cyclically oriented cycle-graph.

Definition 4.29. A directed graph D = (W, A) is a shortcut if the following properties hold:
o HW >4,
e D is acyclic;
e There are nodes z,y € W such that there is no arrow between x and y;

e There is a subgraph H = (Wy, Ag) of D such that H is a semi-cycle and Wy = W.
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A directed graph D contains a shortcut if there is a subgraph of D that is a shortcut.

Lemma 4.30. An orientation O of an undirected graph G is semi-transitive if and only if
G is acyclic and does not contain any shortcuts.

Proof. Assume we have a semi-transitive orientation O of a graph G. By definition, Gp =
(W, A) is acyclic.

Now assume G contains a shortcut with nodes x1, zo, ..., x, where n > 4. So without
loss of generality we may assume there is a directed path zi,x»,...,2z, and there is an
arrow from (z1,z,) € A. As O is semi-transitive and (z1,x,) € A, we know that for all
1 <i < j <n we have (z;,z;) € A, which cannot be the case when this is a shortcut. So
G is acyclic and does not contain any shortcuts.

Assume G is acyclic and does not contain any shortcuts. Also assume there is a directed
path x1,zo,..., 2, in Go. If (x1,2,) € A, we are done, so assume (x1,z,) € A. In this case
the nodes x4, ..., z, form a semi-cycle. As Gp does not contain any shortcuts, we know that
for every 1 <i < j < n it holds that (z;,z;) € A or (z;,z;) € A. As Gp is acyclic, we know
that (z;,z;) € A, proving that O is semi-transitive. ]

We will now formulate one of the most important results regarding word-representable
graphs. As it turns out, the family of word-representable graphs is equal to the family of
graphs that admit a semi-transitive orientation. We will not prove this, but we will use the
constructions in the proof to compare later results to. First we need some more terminology.

Definition 4.31. For a directed graph D = (W, A), a permutation 7 of W is called a topsort
if for all z,y € W, when there is a directed path from x to y, then x is to the left of y in 7.

Definition 4.32. For a directed graph D = (W, A), a word w covers a set N C A® of
non-edges of D if:

e w is k-uniform for some k;
e p(w) is a topsort of D;

e D is a subgraph of D(w);
e N C D(w)°.

Definition 4.33. For a directed graph D = (W, A) and z € W we distinguish five sets of
nodes:

o I(x)={yeW|(y z) e A}

) ={y e Wy~ z}\ I(v);

A(z)
O(z) ={y e W|(z,y) € A};
B(z)
R()

r)={ye W]z~ y}\Ox);

z) =W\ ({z}Ul(z)UO(z)UA(x) U B(x)).
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With these definitions we can state one of the main results of [7].

Lemma 4.34. Let G = (V, E) be a graph that admits a semi-transitive orientation O and
let z € V. Then the non-edges incident to z can be covered by a 2-uniform word.

Remark 4.35. This lemma does not give us a construction immediately, but the proof given
in [7] does. We can state this as follows: The non-edges incident to z can be covered by the
2-uniform word w, = AI RAxz O I x B RO B, where A, I, B,O and R are topsorts of
the sets A(z), I(x), B(x),O(z) and R(z) of Go respectively.

The proof of the following theorem relies extensively on Lemma Note that a clique
of a graph G is a subgraph of G that is complete.

Theorem 4.36. A graph G is word-representable if and only if it admits a semi-transitive
orientation. Moreover, each non-complete word-representable graph is 2(n — k)-word-
representable where x is the size of the maximum clique in G.

Remark 4.37. For the construction of a word-representant for such a graph, we need to
consult the proof of this theorem. The construction can be stated as follows: For every
node x that is not part of the maximum clique of GG, determine w, using Lemma [4.34]
Concatenating these w, for all such x, we obtain a word that 2(n — k)-represents G.

Remark 4.38. The use of the maximum clique in Theorem [4.36]is not needed but makes the
word we find shorter. This works because no node in the maximum clique has any non-edges
that are not already covered by a node outside of the maximum clique. Stated differently,
adding w, for some x in the maximum clique does not cover any non-edges that would not
be covered otherwise.

Also, this construction gives us a uniform word representing the graph, but not necessarily
the shortest one, which we will show in the next example. In general this construction will
give a k-uniform word where £ is much larger than the representation number.

Example 4.39. We will use the 3-cube and its semi-transitive orientation from Figure [13]
We start by identifying the maximum clique in ()5. This can be any two connected nodes, as
the maximum clique has size two. We will use {7,8} as the nodes that form the maximum

clique.
For every node in W\ {7,8} we will construct a word as in Remark see Table [1]

x| I |A| O | B| T Wy

1| € | €235 € | 4678 | 4678123514678235
21146 | € | € | e | 7358 | 1467358214627358
3| 147 | e | € | € | 6258 | 1476258314736258
41 € | € | 238 ] € | 1675 | 1675423841675238
D167 | e | € | e | 4238 | 1674238516754238
6| € | € |258| € | 1473 | 1473625861473258

Table 1: Topsorts of the different neighbour sets for all
nodes not in the maximum clique of Q)s.
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Concatenating all these words gives the following 12-uniform word:
w = 46781235146782351467358214627358147625831473625816754238416752381674238
5167542381473625861473258. We already saw in Example 4.26| that this graph is 4-
permutation-representable, thus this construction does not give the shortest word.

Now we know the main criterion for a graph to be word-representable, we can prove that
the 5-wheel from Example is not word-representable by showing it does not admit a
semi-transitive orientation.

We will do this by looking at all possible ways of orienting edges in the graph to obtain
a semi-transitive orientation. For example, Figure shows the only ways to complete a
partially orientated graph without creating a shortcut or cycle, which are very important in

the following proof.
A A

Figure 14: The only possibilities in completing the orientation of a 3- and 4-cycle.

Theorem 4.40. The 5-wheel does not admit a semi-transitive orientation.

Proof. We start by noting that we cannot orient all the edges incident to node 6 outwards
or inwards at the same time without necessarily creating a shortcut when orienting the
remainder of the edges. This implies that there is at least one outgoing arrow and one
incoming arrow which, without loss of generality, gives us graph A of Figure

From Figure we know that the only way to semi-transitively complete the triangle
1,2,6 is shown in graph B of Figure [14]

At this point we have to choose an edge we will orient. As there are no restrictions on
which edge to choose, we choose the edge {2, 3}, giving us two possibilities, see graphs C'1
and C2. Graph C'1 can only be completed as graph D1, as not to have a shortcut on nodes
1, 2, 3 and 6. Graph C2 can only be completed as graph D2, as not to have a cycle on nodes
2, 3 and 6.

The remainder of the steps are shown in Figure[I6] Graphs that have blue nodes indicate
a shortcut and thus the end of that search-branch. Every change in letter indicates an extra
oriented edge and an extra number indicates a choice for an edge to orient.

This shows that the 5-wheel does not admit a semi-transitive orientation. O]
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2 2
1 1
3 3
5 5
b b
I12.1.1 12.1.2

Figure 16: Figures illustrating the proof of Theorem m
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4.4 Bipartite graphs

In this section we will look at the construction of a permutation-representation for bipartite
graphs. This appears to be a new result that gives a permutation-representation and an
upper bound on the permutation-representation number of a bipartite graph. To be able to
do this for every bipartite graph we use the following lemmas.

Lemma 4.41. Let G = (V,E) and H = (V', E’) be graphs with V. NV’ = () that can
be permutationally represented by w = pips...pr and w' = q1qs ... q respectively, where
2 < k <. Then the union of G and H can be permutationally represented by

U = P141P2q2 - - - Pk—19k—19kPkk+1Pk - - - Qi Pk-
Proof. 1t suffices to prove the following:

e v is a concatenation of permutations of V U V”;
e vy represents G
e vy, represents H;

e For all z € V and y € V' it holds that they do not alternate in v.

As for every i the words p; and ¢; are permutations of V' and V' respectively, for each i
and j the words p;q; and ¢;p; are permutations of V' U V', which makes v a concatenation of
permutations of VU V",

We see that vy = pipa...pp...Px = WPk ...pr. By Lemma with 4; = N, and
Ay = ... = A = {k} it follows that vy represents G.

Also we see that vy = q1qo ... q = w’, which represents H.

Let z € V and y € V'. We see that v(,,y = (zy)"(yz)* Ask <land k > 2 it
follows that [ — k+ 1 > 0 and thus z and y do not alternate in v. O]

Lemma 4.42. Let G = (V, E) be a non-directed graph that can be k-represented by w,
with 2 < k, and let y € V. Now let G’ = (V', E’) be the graph with V' = V U {y'} and
EF' =FEU{{y,z}|x € N(y)}. Then G’ can be k-represented by f(w), where

x ifz#y
flz,i)=< ¢y ifi=landaz=y
yy' otherwise.

The proof of this lemma omitted here, as it should be straightforward.

Definition 4.43. Given a graph G = (V, E) and a node z € V we define the word w,
as the word obtained by concatenating all letters in N(z) such that y appears left of ¢/ if
#N(y) < #N(y') and ties may be broken in any way.

Proposition 4.44. Let G = (V, E) be a connected bipartite graph with parts V= AU B
where no two nodes have the same neighbourhood and let A = {ay,as,...,a,}. Then G has
an n-permutation-representant given by

w= f(g(aras...a,))f(g(asas...ana)) ... f(g(anay ...a,—1)), where

i ={

x ifi=1

¢ otherwise g(z,i) = wyz.
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Proof. 1t suffices to prove the following;:
e w is a concatenation of n permutations of A U B;
e 1,y € A do not alternate in w;
e 1.y € B do not alternate in w;
e r € Aand y € B alternate in w if and only if {x,y} € E.

As G is connected, every b € B is in N(a) for some a € A. This implies that g(a; . ..a;_1)
contains every x € AUB for all i and thus, by definition of f, f(g(a;...a;_1)) is a permutation
of AU B for every . This shows that w is a concatenation of n permutations.

Let a;,a; € A and assume without loss of generality that i < j. We see that in
f(g9(aiaitr ... a;—1)), a; appears left of a;, while in f(g(ait1ai42...a;)) it appears right of
a;. This implies that a; and a; do not alternate in w.

Let x,y € B with N(z) # (N(x)NN(y)) # N(y). This means there is an a; € N(z)\N(y)
and an a; € N(y) \ N(z). We see that in f(g(a;...a;_1)), = appears left of y, while in
f(g(a;...aj_1)) it appears right of y. This implies that = and y do not alternate in w.

Let z,y € B with N(y) C N(x). As N(y) # N(x), there is an a; € N(z) \ N(y). We
see that in f(g(a;...a;_1)), = appears left of y. Also we know that N(y) # (), and for every
a; € N(y) we see that y appears left of x in f(g(a;...a;—1)) as #N(y) < #N(z). This
implies that z and y do not alternate in w.

Let a € A, b € B and {a,b} € E, ie. b € N(a). We see that, by construction, b will
appear at least one time to the left of @ in g(a;...a;_1) for all i. As a occurs exactly once in
this word, by construction we have for all ¢ that b appears left of a in f(g(a;...a;—1)). This
implies that a and b alternate in w.

Let a; € A, b € B and {a;,b} € E, i.e. b ¢ N(a;). We see that a is the last letter of
the word f(g(a;s1...a;)) and thus b appears left of a. As b & N(a;), we see that b does not
appear left of a; in g(a; ...a;_1) and thus appears right of a; in f(g(a;...a;—1)). This implies
that a; and b do not alternate in w. O

Theorem 4.45. The permutation-representation number of any bipartite graph G = (V, E)
with parts V' = AU B is at most min{#{N(a) |a € A}, #{N(b)|b € B}}.

Proof. By Lemmal[4.41] we may assume G to be connected, as the permutation-representation
number of the union of two bipartite graphs is at most the maximum of the two individual
parts.

From Lemma [4.42] it follows that in order to permutationally represent every connected
bipartite graph, it suffices to be able to construct a permutation-representation for bipar-
tite graphs where no two nodes have the same neighbourhood. Let G' = (V', E’) be an
induced subgraph of G such that for all z,y € V' we have N(x) # N(y) and {N(z)|z €
Vi = {N(z)|xz € V'}. We can now apply Proposition to find a min{#{N(a)|a €
A}, #{N(b) | b € B}}-permutation-representation for G'. With Lemma [4.42) we can now add
the nodes in V'\ V' to G’ to obtain a min{#{N(a) |a € A}, #{N(b) | b € B} }-permutation-
representation for G. O
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Remark 4.46. At this point in time it is not clear whether or not this is a completely new
result, as it could be equivalent to known results in the field of order theory. We will discuss
some open questions that arise from this in Chapter [6

Example 4.47. We will take a look at the bipartite graph G in Figure We see that
nodes 6, 8 and 9 have the same neighbourhoods, so for now we will ignore nodes 8 and 9
and focus on the reduced version of G in Figure [[7b] To make the shortest representation
we will choose A = {5,6,7} and B = {1,2,3,4}.

Following Proposition we find the following:

e n =3 and aasa3 = 567,

o wy =12, wg = 42, w; = 31;

o g(ajasas) = 125426317, g(asasa,) = 426317125 and g(asaias) = 317125426;

o f(g(ajazas)) = 1254637, f(g(asasay)) = 4263175 and f(g(azaias)) = 3172546,

were we have broken ties by ordering by increasing numeric value.

So the word w = 125463742631753172546 represents the graph in Figure [I7b] Now, us-
ing Lemma [4.42, we can add nodes 8 and 9 to obtain a representation for the graph in Figure
1172l which results in v = 125489637426983175317254698 as 3-permutation-representation.

PR T

) A bipartite graph G. ) Reduced version of G.

Figure 17: A bipartite graph and its reduced version.

Remark 4.48. In Example [£.47] we chose A and B such that we would obtain a smaller
word. We could have chosen A and B the other way around, but this would have given
us the 4-permutation-representation v = 5716234562734173645126457123, instead of a 3-
permutation-representation. As Proposition results in a #{N(a) |a € A}-permutation
representation, choosing A different can change the length of the found representation.

4.5 Existing constructions

In this section we will look at some existing constructions of words for graphs. Most of
the constructions used in this section originate from [I2], but have been rephrased using
occurrence-based functions where possible. For each of these constructions we will give the
construction and an example, but not a proof.

Note that there are many more constructions known, for example see [6], but not all can
be incorporated here.
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4.5.1 Trees

The trees are a basic family of graphs. With the following construction it is possible to
represent trees, and with that forests (set of independent trees), but we will focus on trees.

Definition 4.49. A graph G = (V, E) is a tree if and only if for every two nodes = and y
there is exactly one path from z to y.

Construction 4.50. The following algorithm gives a 2-representation w for a tree G =
(V,E):

1 w=11, C =0,
2. While C' # V do the following:

21 A={x € V\ C|w contains z};
22 B={{a,y} € Flac A,ycV\(AUC)}
2.3 For all {a,y} € B replace w by w = h,,(w), where

. yry ifa=xandi=2
oy (,1) = { x  otherwise;

2.4 Replace C'=C U A.

Example 4.51. We will represent the tree in Figure [18|

Figure 18: A tree.

We can do steps 1, 2.1 and 2.2 all at once. This gives w = 11, A = {1},

B = {{1,2},{1,3},{1,4},{1,8}} and C = (. So in 2.3 and 2.4 we get:
) = 1212;

[ J h12

1212) = 123132;

(w
13(
14(123132) = 12341432,
(

hy 5(12341432) = 1234818432;
C = {1}.
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Since C' # V we have to go on and get A = {2,3,4,8}, B = {{4,5},{8,6},{8,7}}. After
2.4 this gives w = hg7(hg¢(has(w))) = 1234816787654532 and C' = {1, 2, 3,4, 8}.

After this we still need to go on, but we have already processed all edges so we will see
that B = () in this step and it results in C' = V. The word w = 1234816787654532 represents
the graph.

Remark 4.52. As a tree does not contain any cycles, the maximum clique we can find in a
tree has size two. This means that Theorem [4.36] gives a 2(n — 2)-representation for a tree
with n nodes, while we find a 2-representation for every tree with Construction [4.50]

4.5.2 Cycles

Recall the definition of a cycle graph.

Definition. A graph G = (V, E) is a cycle graph if V.= {x1,xs,...,2,} for some n, and
E = {{l‘17 LEQ}, {LUQ, 1’3}, SR {xn—17 xn}7 {xly xn}}

In the construction of a word for cycles we will use Construction [4.50}

Remark 4.53. The graphs C; and C5 are the complete graphs on 1 and 2 nodes respectively,
and thus can be easily 1-represented. In the upcoming construction we will only look at the
more interesting cases of C,, with n > 3.

Construction 4.54. The following construction gives a 2-representation w for the cycle
graphs C,, = (V, F) with n > 2:

1. Apply Construction to the tree obtained by removing the edge {1,n} from the
graph, and obtain the word w’;

2. Now the word w = h(w’) represents the graph C,,, where
zn ifr=1,i=1

hz,i)=q € ifr=ni=2
x  otherwise.

Example 4.55. We will construct a representant for the 6-cycle, shown in Figure [19} Step
1 gives us the word w’ = 121324354656 with Construction 4.50, The word
w = h(w') = 162132435465 now is a 2-representant for Cs.

Figure 19: The 6-cycle Cg.
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Remark 4.56. For the graph Cj5, which is equivalent to the complete graph with 3 nodes, we
find a 2-representation while this graph can be easily 1-represented. As C), is not equivalent
to a complete graph for n > 3, is it not 1-representable. We have found a 2-representation,
so this must be optimal.

Theorem m gives a 2(n — 2)-representation for cycle graphs because, as was the case
with trees, the largest clique in a cycle has size 2.

4.5.3 Ladders

The construction of words for the ladder graphs will be used to create words for prisms later
on.

Definition 4.57. ([13]) For n > 2 the ladder graph L, is the graph that has
V={12,....n,1",2 ... )0} and E={{i,i + 1} |1 <i <n}U
H e+ 1) 1 <i<n}U{{i,i}|1<i<n}.

Construction 4.58. ([13]) The following construction gives a 3-representation w for the
ladder graphs L,, = (V, E) for n > 2:

1. Start with w = 121'12'21'2'11'22', 3-representing Ls;
2. Now for all 3 < j < n replace w = hj(w), where
jizj ifr=j—landi=1
hj(z,i) =< jzjj’ ifx=(j—1) andi=2
x else
which results in a 3-representation for L,.

Example 4.59. We will now construct a representant for the 4-ladder shown in Figure [20]

1 2 3 4

iy 2’ 3 4

Figure 20: The 4-ladder L.

We start with w = 121'12/21'2/11'22". In step 2 we get
e w = hz(w) = 133'231'12'21'3'2'33'11'22’;
o w=hy(w)=144'343'231'12'21'4'3'44'2'33'11'22',

where the bold subwords are the substituted parts.
The word w = 144'343/23112/'21'4'3/44'2/33/1122" is a 3-representant of L.

Remark 4.60. The ladder L, has 2n nodes, so Theorem [4.36| gives a 4(n— 1)-representation
for L, as the largest cycle has size 2.
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4.5.4 Prisms

For now we will use the following construction to represent prisms. In Chapter |5 we will
develop a new way of representing them.

Definition 4.61. ([2]) For n > 3 the n-prism, Pr,, is the graph with
V={12...,n,1,...;0n' b and E = {{i,j} |1 <i<mnj=i+1}U{{i,7}|1 <i<n,
j=i+ UL} 1 <i <n}u{{Ln} {V.n'}}.

This definition is the same as saying that the sets {1,2,...,n} and {1’,2/,... n'} form
cycles and there are the additional edges {7,7'} for 1 <i < n.

Construction 4.62. The following construction gives a 3-representation w for the prisms
Pr, = (V,E):

1. Apply Construction to the ladder obtained by removing the edges {1,n} and
{1",n'} from the graph, and obtain the word w’;

2. Now the word w = h(w') represents the graph Pr,, where

n ifz=1,i=1
1 ife=ni=1

hz,i) =< n' ifz=1i=2
1 ifex=ni=2
xr otherwise.

Example 4.63. We will now make a representant for the 4-prism, shown in Figure

3’
Figure 21: The 4-prism Pry.
Step 1 gives us the word w' = 144'343/231'12/21'4'3/44'2'33/1122', as shown in Example

[1.59] The word w = h(w') = w = 414'343'231'12'24'1/3'44'2/33/11'22' now is a 3-representant
for Prs, where the bold subwords are again the substituted parts.

Remark 4.64. The 4-prism is equivalent to the 3-cube, ()3, of which we have already seen
a different 3-representation.

Remark 4.65. The prism Pr, contains 2n nodes and the largest clique has size 3 if n = 3,
and size 2 in all other cases. This means that Theorem |4.36[ gives a 6-representation for the
3-prism and a 4(n — 1)-representation for all other prisms.
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5 Cartesian product

In Section we talked about some operations on graphs and how these affect the repre-
sentability of the graph. In this chapter we will focus on a more complex operation, the
Cartesian product of two graphs, and prove some new results.

As part of this research, a small Java-tool was developed to perform the upcoming con-
structions easily and produce I¥TEX-code for the graphical representations of the resulting
graphs. This tool is available on request by sending an e-mail to the author.

As we have seen before, if a non-word-representable graph H is an induced subgraph of
a graph G, then G is also non-word-representable. This implies that the Cartesian product
of a non-word-representable graph with another graph will be non-word-representable. As
it turns out, the following theorem holds.

Theorem 5.1. ([12]) The Cartesian product G [0 H is word-representable if and only if both
G and H are word-representable.

Remark 5.2. Although this theorem shows us that G H is word-representable, it does
not give a construction of a word that represents this graph, as it is based on finding a
semi-transitive orientation for the result.

To find a word-representation, one could use Theorem to construct a word from this
semi-transitive orientation, but as we mentioned before, this likely results in a non-optimal
word.

The remainder of this chapter will be focused on finding more optimal words for repre-
senting G H for special cases of H. It is structured in the same order as the results were
developed, getting more general along the way.

5.1 Cartesian product with K,

The first special case we will take a look at is the Cartesian product of a graph G with the
complete graph on 2 nodes, Ks.

5.1.1 Representation

When looking at the Cartesian product of a graph GG and K, with n > 1, the resulting graph
consists of n copies of GG, in which moreover any two nodes corresponding to the same node
in G are connected by an edge, as was illustrated in Figure [ Also, remember that the
complete graph on n nodes is represented by the 1-uniform word w = 12...n.

The complete graph K, consists of two nodes that are connected by a single edge. The
nodes of GO K, where G = (V, E) are denoted by z1, z for all z € V. Two nodes z;, y; are
connected by an edge in G K5 if and only if

e i=jand (z,y) € E, or

e i # jand z =y.
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We write Vi = {x1 |x € V} and Vo = {xo| x € V'}, so V; U V4 is the set of nodes of G K.

Now we will state the main result of this section. We will not prove this, because it is a
special case of Theorem [5.14] which we will prove in the next section.

Theorem 5.3. Let G be a k-representable graph for £ > 1 and let w be a k-representant
of G. Then the graph GO K, is (k 4 1)-representable with representant w’ = f(w)g(w) for
the occurrence based functions f, g defined by

zy  ifi=1

. T ifi=1 . o
f(z,i) = { : : g(x,i) =< muay ifi=2
roxy ifl <i<k, . 9 <<k

Remark 5.4. This theorem gives a word consisting of letters in V; U V5. If necessary, one
can rename the nodes of the resulting graph to make this construction repeatable.

Example 5.5. We will look at the Cartesian product of the graph G from Figure 224
represented by the word w = 3142132545, and K.

2

5

(a) The graph G. (b) GOK,.

Figure 22: Example of Cartesian product with K.

When we follow the construction of Theorem [5.3] we find:
[ f(w) = 311141211211323122215142415251;
o g(w) = 321242221112313221225241425152.

When we concatenate these words and rename every letter x; to x + (i — 1) - 5, we get the
word w' = 3142618372594(10)58697163827(10)495(10), which represents the Cartesian

product displayed in Figure 22b]
Theorem [5.3] also implies the following.

Corollary 5.6. Let GG be a graph with representation number k£ > 2, then the graph G [J K,
has representation number k or k + 1.

Remark 5.7. Theorem [5.3| and Corollary give rise to a couple of questions, such as:
When is this construction optimal? We formulated some of these questions in Chapter [6]
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5.1.2 Cubes and prisms

Theorem is a result of an attempt to prove that the k-cube, )i, has representation
number k. To prove that a graph has representation number £, one needs to prove that
there is a k-representation, and that there is no [-representation with [ < k. The first part of
proving this for the )y is a direct consequence of Theorem while the other part remains
as an open question.

Figure 23: The graph )4 as Cartesian product of ()3 and K.

The observation that led to this construction is that ) is the Cartesian product of Qx_1
and K, see Figure 23] Together this led to the following theorem.

Theorem 5.8. For every k > 1, ) is k-representable.

Proof. The proof is done by induction on k. For k = 1 we observe that (), is the same graph
as K, which can be 1-represented by the word w = 12. For £ = 2 we observe that ()5 is
the same graph as a 4-cycle, which can be 2-represented by the word w = 31421324, see
Construction [£.54]

For the induction step, we use that the Cartesian product Q_; Ky forms a k-cube
and we assume to have a (k — 1)-uniform representant of Q1. Now using Theorem we
construct a k-uniform representant for the k-cube from the (k£ — 1)-uniform representant of

the (k — 1)-cube. O

Remark 5.9. As the maximum clique in Qj is of size 2 and @} has 2* nodes, Theorem
results in a 2(2% — 2) = (28! — 4)-uniform word for Qj, while Theorem [5.3| results in a
k-uniform word. For ()3 this is already a factor 4 shorter.

Example 5.10. Table [2| gives an overview of uniform words for several cubes.

Theorem [5.3| also implies some results about prisms, as they are the Cartesian product
of a cycle graph and K.

Corollary 5.11. All prisms are have representation number 3.

From Construction we know that all cycle-graphs are 2-representable. As a prism is
the Cartesian product of a cycle-graph and K5, Theorem implies that every prism is 3-
representable. It was first proven in [IT] that prisms are not 2-representable which, together
with this result, implies that the representation number of prisms must be 3.
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k | k-uniform word

1112

2 | 31421324

3 | 314251736284758615372648

4 | 31425917(11)36(10)28(12)4(15)7(13)5(16)8(14)691(13)5(11)3
(15)7(10)2(14)6(12)4(16)8(11)9(12)(10)(13)19(15)3(11)(14)
2(10)(16)4(12)7(15)5(13)8(16)6(14)

5 | 314259(17)17(11)(19)36(10)(18)28(12)(20)4(15)(23)7(13)(21)
5(16)(24)8(14)(22)6(25)9(17)1(29)(13)(21)5(27)(11)(19)3(31)
(15)(23)7(26)(10)(18)2(30)(14)(22)6(28)(12)(20)4(32)(16)(24)
8(27)(11)(25)9(28)(12)(26)(10)(29)(13)(17)1(25)9(31)(15)(19)
3(27)(11)(30)(14)(18)2(26)(10)(32)(16)(20)4(28)(12)(23)7(31)
(15)(21)5(29)(13)(24)8(32)(16)(22)6(30)(14)(19)(17)(20)(18)
(21)(25)1(17)(23)(27)3(19)(22)(26)2(18)(24)(28)4(20)(31)7(23)
(29)5(21)(32)8(24)(30)6(22)9(25)(13)(29)(11)(27)(15)(31)(10)
(26)(14)(30)(12)(28)(16)(32)

Table 2: k-uniform words for cubes Q.

Example 5.12. Let us make a word for the Cartesian product K3 K5, see Figure [24] We
know that K3 can be 2-represented by the word 123123. So K3 K5 can be represented by
the 3-uniform word w' = 123415263456142536, where all the nodes z; were renamed to x
and all nodes x5 were renamed to = + 3. Figure shows this graph and we see that this

graph forms a 3-prism, Prj.

Figure 24: The 3-prism Prs.

We can use this result to formulate and prove the following corollary.

Corollary 5.13. The Cartesian product K, [] K, has representation number n for n €

{1,2}, and representation number 3 for all n > 2.

Proof. K1 K5 is equal to K5, having representation number 1.

K> K5 is the 4-cycle, which is known to have representation number 2, see Remark

[4.561

K30 K, is equal to the 3-prism, for which we have shown in Corollary that the

representation number is 3.

If n > 3 then K, [JK, contains the 3-prism as induced subgraph and thus cannot be
2-represented. Theorem gives a 3-representation, because K, has a 2-representation

12---nl12---n, so the representation number is 3.
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5.2 Cartesian product with K,

The ideas used in Theorem can be applied to formulate and prove the following general-
isation.

The nodes of G K, are denoted by x1, xs, ...z, for x running over the nodes of G; two
nodes x;, y; are connected by an edge in G J K, if and only if

e i =jand (z,y) is an edge in G, or
e i #jand x =y.
Write V; for the set of nodes z;, so ViUV, U---UYV, is the set of nodesE| of GUK,,.

Theorem 5.14. Let G be a k-representable graph for £ > 1 and let w be a k-representant
of G. Then the graph GOK,, is (k + (n — 1))-representable with representant w’ =
fo(w) fo_1(w) - -+ fi(w) for the occurrence based functions f; defined by

fl(xvz)_{ TpTp—1 ... .21 fl<i<k

and
x; ifi=1
fj(I,i) = Lj—1.--X1Tp - .. T5 ifi=2
€ iHf2<i<k

forj=2,...,n.

Proof. For every z the word fi(w) contains k copies of z; and k — 1 copies of z; for i > 2,
and the words f;(w) contain 2 copies of z; and 1 copy of z; for i # j. So for every i, z;
occurs either k4 (n—1) timesifi =1, or (k—1)+2+ (n—2) =k+ (n—1) times if ¢ # 1.
So w' is (k + (n — 1))-uniform.

We have to prove that z;,y; alternate in w’ for z; # y; if and only if (z;, y;) is an edge in
GUK,, fori,j =1,2,... n, more precisely:

o if z # y and i = j then x;,y; alternate in w’ if and only if z, y alternate in w,
e if z =y and i # j then w;,y; do alternate in w’, and
o if 2 # y and i # j then x;,y; do not alternate in w’.

We do this by considering all cases separately. As the function f; has a different form when
7 =1, we will often make a case distinction based on this.

Let x # y and i = j = 1. Observe that fi(w)y, = wy and fi(w)y, = pe(wy) for all [ > 1,
in which w; is a copy of w where every symbol is indexed by 1. Now z1,y; alternate in w’
if and only if they alternate in wi, = f,(w)v, fa—1(W)vy - .. fi(w)y, = (p2(w1))"'wy, and by
Lemma [3.23 for A; = 4y = ... = A, = {2} and A, = N, with N, = {1,... k}, this
holds if and only if x,y alternate in w, which we had to prove.

2Note that we could have taken the set of nodes as the disjoint union of n times V, but doing so would
force us to talk about pairs of letters, which could be confusing as the labelling function, defined in Definition
@, uses the same notation.
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Let x # y and = j > 2. Observe that fi(w)v, = pn,\y(ws) and fi(w)y, = pp 2y (w;)
for all [ > 1, in which w; is a copy of w in where Symbol is indexed by i. Now z; and
y; alternate in w’ if and only if they alternate in wy, = fo(w)y, faci(w)v, ... fi(w)y, =
(P23 (W) 'pwn iy (wi), and by Lemma (3.23] E Jfor Ay = Ay = ... = A,_1 = {1,2} and
A, = N\ {1} this holds if and only if x and y alternate in w, Which we had to prove.

Let z =y, i=1and ¢ < j. Then z;,z; alternate in w’ since
Wigy iy = (@520)" 7 (j0125) (21205) 72 (21 (2520)7 1) = (aja0) 07,

Let # = y and without loss of generality 1 # i < j. Then x;, ; alternate in w’ since
Wiy, oy = (@520)" 7 (i) (i)~ @) (@) 72 (2jw) 1 = (2g) 0D,

Now, let z # y and i < j.

If wiyy = (zy)* and @ = 1, then fi(w)(a, ) starts by z121, so x1,y; do not alternate in
w'.

If wi,,y = (zy)* and @ > 1, then fi(W){ay,) = TiTiy;, 50 x4, y; do not alternate in w’.

If wizyy = (y2)* then fj(w)(z,y,1 = Y;y;2i, S0 2;,y; do not alternate in w'.

In the remaining case x,y do not alternate in w, so wy,, contains either xx or yy. If
it is zx, or it is yy and wy,,; does not start in yy, then fi(w)ys, ;) contains zyz; for all
J > Tland fi(w)(ey,y = Tivey; for all 1 # i < j. Otherwise wy,,y starts in yy, but then
f]( W){a,4;) = Yj¥;Ti for all 1 # i < j. In all cases we conclude that z;,y; do not alternate in
w’, concluding the proof. O

Remark 5.15. This theorem does not always give the most optimal word possible. For
instance, when we make a word for K> 0 K3 using Theorem [5.14 we will find a 2+ (3—1) = 4
representation for the 3-prism, while K3 K5 gives a 2 4+ (2 — 1) = 3 representation for the
same graph, as we saw in Example [5.12]

In Chapter [6] we will formulate some questions regarding optimality.

Remark 5.16. We must note that Theorem does allow the use of some decomposi-
tion, i.e. a word for the graph KsUK3L0K4[1K; could be obtained by applying this con-
struction successively. Again, this does not guaranteed to obtain the shortest word pos-
sible, but the word can be kept shorter by choosing the order in the construction. For
example ((K;OK3)OK,)OK, results in a ((2 4 2) +3) + 1 = 8-uniform word, while
(K, OK,)OKs)O Ky results in a ((2 + 3) + 2) 4+ 6 = 13-uniform word.

Example 5.17. We will now construct a word for the product G K3 with G the graph
in Figure 22a] represented by the word w = 3142132545. The result of this product is the
graph shown in Figure [25] Following the construction in Theorem [5.14] we find:

(] fl (U}) = 3111412113121133323123222151434241535251;
o fg(’u)) B 32 242221 13123133322 2322524 43425 5352,
L4 fg(w) == 3313432312121332313322212352424143525153.

Now, renaming every z; to x + (i — 1) - 5 and concatenating these words we get:
w' = (13)(11)(14)(12)66(11)83(13)72(12)(10)94(14)(10)5(15)86971(11)63(13)82(12)7(10) . ..
4(14)95(15)(10)3142(11)61(13)83(12)725(14)94(15)(10)5.
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Figure 25: Cartesian product of G in Figure and K3.

5.3 Cartesian product with a permutationally representable graph

Until now we have focused on the Cartesian product with a complete graph, in which we use
the fact that the complete graph can be permutationally represented by one permutation. We
will now generalise Theorem to form a word for the Cartesian product of a graph G =
(Vi, Eg) with any permutationally representable graph H = (Vi, E), so a comparability
graph.

As before, the nodes of GO H are denoted by x1, 29, ... 24y, for all z € Vi G and the
nodes of H renamed to 1 up to #Vy; two nodes z;, y; are connected by an edge in GU H
if and only if

e i =jand (z,y) is an edge in G, or
e r =y and (7,)) is an edge in H.
Again we write V; for the set of nodes z;, so ViU Vo U - - UVyy, is the set of nodes of GO H.

Theorem 5.18. Let G = (Vg, Eg) be a k-representable graph for £ > 1 and let w be
a k-representant of G. Also, let H = (Vy, Ey) be l-permutationally represented by v =
p1D2 - - - Py, consisting of | permutations p; of the letters {1,2,...,n}. Then the graph GO H
is [ - (k + (n — 1))-representable with representant

w = g1 (v)ga (V') ... qi(v), where v/ = f,(w)fn_1(w)...fi(w), and the occurrence based
functions f;, g; defined by

Tnlp1...07 HH1<i<k’

fi(@, 1) :{

z; ifi=1
filwi)=q xj1... 012 ...0; ifi=2
€ Hf2<i<k

for j =2,...,n and

gj (xiv t) = Tp;(3)
for all ¢ and j = 1,...,l, where p;(i) is the ith character of the jth permutation of the word
v.
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Proof. For every x the word f;(w) contains k copies of z; and k — 1 copies of z; for i > 2,
and the words f;(w) contain 2 copies of ; and 1 copy of z; for i # j. So for every i, z; occurs
either k+ (n—1) timesifi=1, or (k—1)+2+ (n—2)=k+ (n— 1) times if i # 1. So ¢
is (k4 (n — 1))-uniform. As each p; is a permutation and contains every letter exactly once,
applying g; on a uniform word keeps the word uniform. So v’ is [ - (k + (n — 1))-uniform.

We have to prove that x;, y; alternate in w’ for z; # y; if and only if (z;, y;) is an edge in
GUOH, for 1,57 =1,2,...,n, more precisely:

o if  # y and i = j then x;,y; alternate in w’ if and only if z, y alternate in w,
e if x =y and i # j then x;,y; alternate in w’ if and only if 7, j alternate in v, and
o if z # y and i # j then x;,y; do not alternate in w’.

We do this by considering all cases separately. As the function f; has a different form when
7 =1, we will often make a case distinction based on this.

Let © # y and i = j. The function g does not change the letters, it only changes the
index of the letters. So x and y alternate in w’ if and only if they do in v’, which we will
NOW prove.

Let i = j = 1. Observe that fi(w)y, = wy and f;(w)y, = pa(wy) for all ¢ > 1, in which
w; is a copy of w where every symbol is indexed by 1. Now z; and y; alternate in v if and
only if they alternate in v{, = fo(w)v; fa—1(w)y; ... fi(w)y, = (p2(w1))" 'wy, and by Lemma
for Ay = Ay =... = A,_1 = {2} and A,, = Ny, with Ny = {1,...,k}, this holds if and
only if x and y alternate in w, which we had to prove.

Let i = j > 2. Observe that fi(w)y, = pn\py(ws) and fi(w)y, = ppgy(w;) for all I > 1,
in which w; is a copy of w where every symbol is indexed by i. Now x;,y; alternate in v’ if
and only if they alternate in v{, = fn(w)v, fue1(W)v, - - - fr(w)v, = (P12y (W) P13 (wi),
and by Lemma [3.23|for A; = Ay = ... = A, = {1,2} and A, = N, \ {1} this holds if and
only if x,y alternate in w, which we had to prove.

Let x = y and ¢ # j. In this case we first prove that x;, x; alternate in v’ for all ¢ and
j and then use the functions g, to prove that z; and z; alternate in w’ if and only if ¢, j
alternate in v.

Let x = y and without loss of generality ¢ = 1 and ¢ < j. Then z; and z; alternate in v/
since
Uiy sy = (@501)" 7 (@) (2125772 (@ (220) 1) = (a5a0) 070,

Let z = y and without loss of generality 1 # ¢ < j. Then x;, z; alternate in v’ since
Visay = (@52) " (wjasy) (i )T~ g jg) (20) 72 () 1 = () O,

The functions g; only change the order in which x; and z; occur in the resulting word.
Also note that if z; and z; alternate in v, then for all s the letters z; and z; alternate in
gs(v'), and
9s(V') {zs,2;3 = wiwy . .. if and only if (ps)i ;) = 7j. We see that if 4, j alternate in v, then the
order of x; and xz; is changed in the same way in each g;, and thus x;,z; alternate in w'.
Now if 4, 5 do not alternate in v, then there must be an s and ¢ such that (ps){%mj} = 2,7,
and (p¢){e;z;3 = 2%, and thus go(v') (e, 0,3 = 22y ... and g(V') (g, 0,3 = 255 .. and x5, x;
do not alternate in w’.

Now, let z # y and, without loss of generality, i < j.
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Ifwiyyy = (zy)F and i = 1, then fi(w)qy, 4,3 starts by z121, 0 Zp,(1), Yp,(j) do not alternate
in v for all ¢.

If wy,y = (zy)* and ¢ > 1, then Ji(W) {a;4;) = TiTiYj, SO Tp, (i), Yp,(j) do not alternate in
v for all ¢.

If wizyy = (y)F then f;(w){e,4,} = Yj¥YiTi, SO Tp,(i)s Ypi(;) do not alternate in v’ for all ¢.

In the remaining case z and y do not alternate in w, so wy,,y contains either zx or yy.
If it is 2, or it is yy and wy,,y does not start in yy, then fi(w)ys, ) contains zix; for
all j > 1 and fi(w)(s, 4,y = @ewey; for all 1 # 7 < j. Otherwise wy,,, starts in yy, but
then f;(w)(az, ;3 = yjy;x: for all 1 # ¢ < j. In all cases we conclude that x,,(, yp,(;) do not
alternate in v’ for all ¢, concluding the proof. n

Remark 5.19. It is a known fact that G H is a comparability graph if and only if both
G and H are bipartite, see[3]. In the case where both G and H are bipartite Theorem
does not yield a permutation-representation for G H.

Remark 5.20. In Remark we noted that the permutation-representation number of a
graph can be lower than the actual representation number. Theorem|5.18uses a permutation-
representation of H, so it might seem logical that, in the case where the permutation-
representation number of H is lower than its representation number, this construction is not
ideal. We will discuss this question, and some others regarding optimality in Chapter [6]

Example 5.21. We will once again use the graph in Figure as G. Figure shows the
graph we will use for H, which can be permutationally represented by v = 123132.

3
(a) The graph H. (b) GOH.

Figure 26: Example of Cartesian product with a permutationally representable graph.

Using Theorem [5.18| we get the following:
o w = 3142132545, k = 2;

e v=123132, 1 =2, n=3, p, = 123, p, = 132;
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1(w) = 311141211315113353931232921 51454941 535251
’LU) 3 242221 13123133322 2322524 43425 5352
w) = 33134323151113323133222123535494143595153
fa(w) fo(w) fr(w)

@\;H&ﬁ&h

w

o gl(f (U})) = 311 412113121 33323123222151434241535251
g2(f1(w)) = 31114121151311393331222321 5149434152535
gl(fg('ZU)) 32 242221 13123133322 2322524143425 5352
gg(fg(UJ)) == 331343231 12 33132332 2223534 42435 5253
91(f3(w)) = 331343231211 133231332521 2353494143595, 53
gz(fg(U))) = 32 24222131 1233313223212252434 42535 52.

Combining these words and renaming z; to x + (i — 1) - 5 gives the word:
w' = 8697(11)16(13)38(12)27(10)(14)49(15)5(10)(13)(11)(14)(12)16(11)38(13)27. . .
(12)(15)49(14)5(10)(15)31426(11)18(13)37(12)259(14)4(10)(15)5(13)(11)(14)(12) ...

61(11)83(13)72(12)(15)94(14)(10)5(15)86971(11)63(13)82(12)7(10)4(14)95(15)(10) . ..

3142(11)61(13)83(12)725(14)94(15)(10)5, and the graph is shown in Figure
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6 Open problems

The focus of this chapter is to discuss some open problems that arise from the new found
results in Sections [4.4] and Chapter [5

6.1 Bipartite graphs

As mentioned in Section [4.4], at this point in time it is not clear if this result is new. The
permutation-representation number of a comparability graph is the same as the dimension
of the poset, see Definition [4.21]

There are many results on the dimension of posets, see for instance [10], but none have
been found that give a lower upper bound for the specific setting discussed here. We can say
that the discussed construction often gives the smallest possible permutation-representation.
As we have seen in Example [£.26], the cube ()3 has permutation-representation number 4,
which also results from Theorem [4.450 However, we have not been able to find a bipartite
graph that has a lower permutation-representation number than found with Theorem [4.45]
This gives rise to the following question.

Question 6.1. Is the bound on the representation in Proposition [4.44] sharp?
Other questions that are related to this are, for example, the following.
Question 6.2. Is the permutation-representation number of the k-cube equal to 2¥~1?
Question 6.3. Is the permutation-representation number of the cycle graph C), equal to 57
Linking this result to the dimension of posets, the following question arises.

Question 6.4. What are the requirements for a poset to have its comparability graph be
permutationally-representable using Proposition and what are the known implications
of those requirements on the dimension of this poset?

It is not clear right now if this family of posets intersects with any known families of
posets. It might be interesting for future research to look deeper into the connection between
posets with bipartite comparability graphs and their word-representations.

6.2 Cartesian products

As we have seen in Remark [5.15] the construction of Theorem [5.14] and with that Theorem
5.3, is not always optimal. However, we did find an optimal representation using Theorem
in Corollary [5.13] The next example will illustrate that, even if the graph we are
concerned with is built up as the Cartesian product of several complete graphs, we do not
obtain the shortest word possible.

Example 6.5. We will look at the Cartesian product (K30 Ky) [0 K5, see Figure , where
K30 K5 is the 3-prism we saw in Example [5.12]
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Figure 27: Cartesian product of Pr3 and K5, 3-represented by
w = 183(10)75(12)9(11)4(10)6(12)285(11)17324165(10)94(12)3682(11)79.

Following Theorem we obtain a 4-uniform word, however, this graph can also be
3-represented by the WOl"dE| given in the caption. We also know that this graph contains
the 3-prism as induced subgraph, therefore it is not 2-representable, so the representation
number is 3.

We know from Corollary that if G' has representation number %, then G K, has
representation number k£ or k + 1. Therefore we can ask the following question.

Question 6.6. Give a characterisation for the graphs G with representation number £ such
that G K also has representation number k.

We also noted in Theorem [5.8 that the k-cube is k-representable. It is known that when
k < 4, the k-cube has representation number k, but we do not know if this holds for larger

k.
Question 6.7. Is there a k such that the k-cube is [-representable with [ < k7

Following this and Question [6.2] we took a look at the relation between the permutation-
representation number and the representation number of a comparability graph. We know
that the permutation-representation number will be greater than or equal to the represen-
tation number, but as we have seen before in Example they are not necessarily equal.
However, we suspect that there is a characterisation of graphs for which these two are equal.

Question 6.8. Characterise the graphs for which the representation number equals the
permutation-representation number.

Furthermore, as noted in Remark [5.19] we know that the resulting graph GO H from
Theorem [5.18]is permutationally representable if and only if G and H are both bipartite. As
the Cartesian product of two bipartite graphs is bipartite itself, it would help gaining insight
in the problem of finding (permutation-)representations by looking at the words obtained
from both Theorem [.18 and Theorem [4.45] to find some structure.

Now when we focus on the main question we have regarding Theorems and [5.18]
we can formulate it as follows.

Question 6.9. Specify necessary and sufficient conditions on G and H such that the con-
struction in Theorem [5.18| results in the shortest word for the resulting Cartesian product.

3This word was obtained by using a tool by Hans Zantema, which can be downloaded from
http://www.win.tue.nl/ hzantema/reprnr.html.
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In the light of Remarks and there is a possibility that the answer to this question
is related to the decomposition of a graph as Cartesian product of other graphs. We might
expect a certain notion of minimal representing graphs, of which a large number of graphs
can be constructed via Cartesian products and constructions as in Chapter [l Possibly good
candidates to start with are graphs with low representation number, such as the complete
graphs and cycle graphs.

Chapter [5| shows two progressive steps in generalising an algorithm to accommodate a
wider variety of graphs. As we know from Theorem for all G and H that are word-
representable, G'[J H is word-representable, but we have not been able to find an algorithm
that works for arbitrary H. It is not clear if Theorem [5.18| can be generalised or that this
needs to be done in another way. From this the following question arises.

Question 6.10. Can Theorem be generalised to produce a word for the Cartesian
product GJ H with G and H arbitrary word-representable graphs?
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