From a reprogrammable chip to
a hard problem

Els Hoekstra
s4556852
Supervisor Radboud University: Wieb Bosma
Supervisor Nedap: Wouter Kuijper

Bachelor thesis Mathematics
Radboud University
The Netherlands
April 26, 2019

Contents

[1__Components of an FPGA|
................................

2~ Naming of the FPGA wiring|
2.1 Mamwiring|

|§ 2 EOCEll w1r1ng|

4 Independent path problem|
5 NP Hardness!

5.1 Introduction to complexity|

B2 Construction]. . . -« v oot
5.3 Endofproof|.

o N B~ &

10
15

17
17
17
18

20

Preface

For my bachelor thesis, I wanted to do an internship at a company, because I wanted
to see what it’s like to work in one place for an extended period of time. Seeing how I
would like to do my master thesis at the Radboud University, I decided that my bache-
lor thesis was a good opportunity to do said company internship.

Last year, during my board year, I visited many companies and I got a chance to find
out which one suited me. Nedap unexpectedly turned out to be the one I was looking
for, and I immediately felt at home there, primarily thanks to the good aubiance. I
asked Loes van Hove, a mathematics alumnus of the Radboud University, whether it
would be possible for me to write my thesis at Nedap, and so it started.

Nedap gave me two contacts within the company, Albert Dercksen and Wouter Kuijper.
Wouter helped me come up with some topics and was my supervisor at Nedap during
the project. Wieb Bosma was my supervisor at the Radboud University. I want to
thank both of them a lot for the help they gave me during this thesis and for always
being there when I needed them.

My thesis has two parts. The first three chapters describe a reprogrammable chip. This
is the first chip that has an open source layout. The original assignment was:

For this project we are looking to develop an alternative, low-level hardware design
language that does not abstract away all the details concerning placement of our de-
sign, within the available three dimensional mesh. The challenge will be to still try and
keep such a (visual) language as simple, intuitive and compositional as possible.

To this end, it was important to know what a reprogrammable chip is, exactly, and what
it looks like, so that there might be a way to run a program of my own in such a way
that it reprograms the chip, and still satisfies the assignment.

Eventually, I went down a different road. A problem that piqued my interest crossed
my path. I rewrote the problem in a more abstract form to see if we could say anything
about it this way. The latter is discussed in the last two chapters.

1 Components of an FPGA

I will explain what an FPGA is in this section. FPGA is shorthand for Field Pro-
grammable Gate Array and this is a programmable chip. Here I only discuss an ICE40-
FPGA, because there is a lot of research available for this chip. The research is on the
firestorm documentation [1]]. It is the first chip where we know the wiring.

Programmable
Logic Block (PLB)

Shared Block-Leval Controls

/ ¢ Clock
= H Enablo
/ 219 Foout: 1 o
b H SnlIHusat—_D_”
§" ' 0 HE Logic Cell
% /J%Lng\c
. I | e)
= = 0 D Q
-1 =]
& 4 £ 1 i EN
o o -
o) 2 ‘ o LuT4 > 8A
o (4]
8
g N
@ .
\J {chl
& ‘ Four-input Flip-fiop with
Y ¥ i Look-Up Table optional enable and
Non-volatila Phasa-Locked Cany Logic 7 o™l (LUT4) sat o resel controls
Configuration Memaory Loop
INVEM) A-Input Look-up

Tabla (LUT4) Flip-flop with Enabla = Statically defined by configuration program
and Rosal Controls D Iy ¥ 91 prog

Figure 1: FPGA, illustration retrieved from

1.1 Logic Cell

In one Programmable Logic Block (PLB)/Logic Tile are eight Logic Cells (LC) as is
shown in Figure 1. The right part is the Logic Cell in detail. A few important compo-
nents are briefly explained below.

LUT4

LUTH4 is short for Four-input Look-Up Table. This is a function we can program our-
selves. It is possible to load the output-values in the look-up table. An example is the
table below that belongs to the function (I0AI1) Vv (I2AI3). The input values I0, I1, 12
and I3 are visible in Figure 1.

—
o
—
—_
—
[\
—
(98

output

(e}

[[| i [| | = | = O O O O OO OO

ol K=l il Bl e el B R Bl el i Ren) Bl Reol Bl e
ol Bl Bl B el vl Rel Rl Bl Hew) el Rl Bl Rew] B

— = =] = OO OO = = == OO
— = O O = = O O = = O O = = OO

So there are 2(24> =216 functions we can make with a LUT4.

DFF

A DFF (short for D Flip Flop) can be used as a register. The Flip Flop allows fetching
and setting one bit. Only once every clock signal, the DFF can change the bit. In Figure
1 the DFF is shown. The following symbols are used:

- D: Input
- EN: Enable, If Enable = 1, then Q<D, else output is not changed.

- b: Clock-signal

SR: Set/Reset, this can reset the DFF by changing Q<0 at every moment in
time.

Carry Logic

The Carry Logic is responsible for more efficiency in the Logic Block. The Carry
Logic can transfer one bit to the next Logic Cell through FCOUT. When adding two
integers, the Carry Logic can transfer the carry.

From now on we consider one Logic Cell as a black box with input and output val-
ues. The internal structure is not relevant for our purposes. We will now zoom out to
the level of one Programmable Logic Block/Logic Tile, instead of one Logic Cell. In
Figure 2, you can see one tile with all the eight Logic Cells in it with the basic inputs
and outputs.

JRARE0AN

Figure 2: 1 tile, 8 Logic Cells

1.2 Main wires

Now we describe the wiring in the chip. For that we will zoom out even more to see
the whole chip. There are three kinds of wiring that span four or more logic tiles.
Global

There are eight wires in the global network. These wires span the whole FPGA. In
Figure 3, we see 9 tiles, one wire black highlighted in every tile and the seven other
wires, only visible in one tile.

Figure 3: Global network, 9 tiles, 1 black global wire, 7 purple global wires

Span-4

The span-4 wires span four tiles. A horizontal wire that starts at one tile connects tiles
with maximal horizontal distance of four. A vertical wire that starts at one tile connects
tiles with maximal vertical distance of four. There are 48 4 12 horizontal wires trough
one tile and 48 + 12 + 48 vertical wires. Below, you see how the wires are connected
in one tile. In Chapters two and three, I will explain this in detail.

[T

a. sp4-vertical b. sp4-horizontal

Figure 4: Span 4 wires

a. spl12-vertical b. sp12-horizontal

Figure 5: Span 12 wires

Span-12

The Span-12 wiring is conceptually similar to the Span-4 wiring, except with twelve
tiles instead of four. There are 24 + 2 wires through one tile. In Figure]is a picture of
the wiring.

1.3 Local wires

The other wires are discussed here.

Logic cell, LUT4-output

The Logic Cell, discussed in Section [I.T} has one output wire on the right side. This
wire connects all the neighboring cells. In Figure[]is an image for clarification. Output
wires for the sixth Logic Cells are visible in Figure 6b. One wire is red, so we can
follow that wire easily.

lili

nooondos
monoodnn)

0A0RALHDO

popngon

nognodog)

[
i
ognoden ED]EUQDJ
[
i
H

ponnodon

nopnonon

TH T

a. 1 tile . .
b. 9 tiles, one red wire

il

c. the 6th Logic Cell enlarged

Figure 6: Output LUT4

Other wiring around the Logic Cell

The three wires on the top right of a Logic Cell are for the clock, enable and the set/reset
inputs of the Logic Cell, respectively. This is visible in Figure[7/and Figure[T] For every
tile, the wire for the clock is shared per tile. The same for the enable and the set/reset
wires input. See Figure[7for clarification. If we want to reset one Logic Cell, we reset
every Logic Cell in the same tile.

On the top left of a Logic Cell are two output-wires. These two wires can connect
with the middle two input wires of the logic cell above. For convenience, these two
output wires are connected with the input wires.

Figure 7: Logic Cell, other wiring

Local network

When we zoom in to see one Logic Tile, we can see 32 local wires, not connecting
with other tiles. That is the local network and these wires make it possible to connect
different parts of the circuit. There is no Figure, because it only concerns one tile. In
Chapter 3 we will discuss which connections can be made.

Global to local wiring

There are four wires that can make a connection from a global wire to a local one. Just
like the local network, these wires stay in one tile.

2 Naming of the FPGA wiring

The naming of the wiring has to be clear. In the firestorm documentation [1] this is
not always the case, because one wire has different names in different places. We will
translate the name to one unique name for clarification. This will be done by a function
and its inverse image. We will start with a few definitions.

The space with the naming for the wiring in the firestorm documentation is called
Documentation Name. NOTATION: Dy. Every name for a part of the wire is an ele-
ment of Dy.

The space with the naming for the wiring where every wire is called uniquely is called
Unique Name. NOTATION: Uy Every name for a wire is an element of Uy

The function will be:
f :]DN — UN

We will define the function and the different names step by step, where the Documen-
tation Name is fixed. For defining the function f, another function comes in handy:

Definition 2.0.1. Let X be a set and A C X a subset. Then the indicator function is

14:A4—{0,1}

1 ifxeA
|_>
0 ifx¢A
There are 32 x 32 tiles and you can place them in the positive x, y-plane. The tile name
will be the x, y-coordinate of the left bottom corner. See Figure [§]for an example.

Figure 8: Tile (5,6) colored

2.1 Main wiring

See Section[I.2] to see what the wires are.

10

Span-4, vertical wiring
There are three sorts of naming Span-4 vertical wiring in Dy. That is:
i) (p,q) sp4_v_b_{0,..47} for wiring on the bottom side of tile (p,q).
ii) (p,q) sp4-v_t_{36,...47} for wiring on the top side of tile (p,q).
iil) (p,q) sp4r_v_b_{0,...47} for wiring on the right side of tile (p,q).
There is one sort of naming Span-4 vertical wiring in Uy. That is:

i) sp4_p_gv_{0,...,11} with p and g variables, (p,q) is the tile where the wire
starts. The wire continues on tiles (p’,¢') with p—1<p' <p,g—4<q <gq
and (p',q') # (p—1,4—4).

Let O ={i € Z | iis odd} be a subset of the integers Z consisting of odd numbers.
Then the function f will be:

£ ((p,q) sp4vb k) =spd_p_(q+ j)v-(I+ (1) -Lo(j))
f((p.q) spAvr k) =spd_p(g+4)v(I+(-1))
f((p,q) spArvbk)=spAd(p+1)(qg+ j)v-(I+(=1)" - 1o(j))

k
with j = LZJ en/l=k mod]l2

Then the inverse set of the function f regarding the Span-4 vertical wires is:

f (sp4-p-gv-i) = {(p.q— j) sp4vb_(i+12j+(=1)"-1o(j) ,
(p.q—4) spdvr_(i+36+(—1)),
(p—1,q—j) spArvb_(i+12j+(—1)"-1o(j)) |j € {0,1,2,3}}

Example 2.1.1. As an example the name sp4_17_17_v_0 € Uy is equivalent to the
following names in Dy

F Y (spa_17_17v.0) = {(17,17) sp4_v_b_0,
17,16) sp4_v_b_13,

() 16,17) sp4_rv_b_.0,
(17,16)

(17,15) sp4_v_b_24,
(17,14)

(17,13)

(

(16,16) spd_r_v_b_13,

(16,15) sp4_r_v_b_24,
17,14) sp4_v_b_37, (16,14) sp4_rv_b_37,
17,13) sp4_vt 37}

See Figure 18 in Appendix for a clarifying picture.

11

Proof. Let’s prove that f (f~'(sp4_p-q_v_i)) = sp4_p_q-v_i:

{£((p.g—J) spAvb(i+12j+(=1)"-1o())))
F((p.g—4)spdvi_ (l+36+(—1)i)),

F((p=1,qg—=j) spdrvb (i+12j+(=1)"-10(j)))|j € {0,1,2,3}}

f(f N(spd-pgv.i)) =

= {spa-p-g—j+J)v-(1+(=1)' - Lo(})).
spd_p_(g—4+4)v_ (i-i— (—1)'+ (—1)”“”’) ,
sp-(p =1+ 1)l = j+)v- (14 (= 1) To(]))

e V+12j+(1_21)1.]10(j)J =it (=D 1o()j)}

we know this:

I Flzﬁ(l)"-no(j)J _ {121+i+(1>"-110<j>J _ {HH(l)'ﬂno(nJ iy

12 12 12

because i € {0,...,11},50 0 < i+ (—1)"-1p(j) < 12. And we know

[+ (1) To(j) = i+ (=1) - To(j) + (=1)" - To (/)
=i (=) 4 (=)0 1(5)

=i
because if j is odd, then i is odd if and only if i + (—1)’ is even. Now we know:

F(f N (sp4_p-gv.i)) = {sp4_p-gv.i,
sp4-p-q-vi,
sp4_p_q-v_i}

= spd_pqv_i

Now we need to prove that (p,q) sp4.v_b k€ £~ f((p,q)sp4.v_b k) :

£ ayspav b k) = (spAopog+)y (14 (=1 10())))

k
with j = LZJ 0=k mod12

12

{<p,q+j — /) spdv b (14 (=1) - Lo (j) + 12j+ (= 1)V Tl 1)),

-/

(poq-+—4) sphvt (14 (=1)! -Lo(j) +36 + (~1) 1 Hol)
(p—1,g+j—J') sphrvb (I+(=1) - To(j)+12j+ (=1)!FD ol 14(7))

k
J: \‘HJ ,l:k mod 12,j/6{0a1?273}}

When you take j' = j = | & |, then (p,q+j— j') = (p.q) and

[+ (=) Lo (f) + 12j+ (=)D Lol g 4(j)
= 14 12j+ (= 1)+ (- D0l 1))
= 1+12j
—(k mod12)+12| K
— W o 12
—k
So (p,q) sp4vb ke f' f((p,q) sp4vbk).

The proof for (p,q) sp4vt k€ f~' f((p,q) sp4.vt_k) and
(p,q) spd_rvb ke f~f((p,q) sp4.v_b_k) is analogous. O
Span-4, horizontal wiring
There are two sorts of naming Span-4 horizontal wiring in Dy. That is:
i) (p,q) sp4-h_r_{0,..47} for wiring on the right side of tile (p,q).
i) (p,q) sp4-h_1.{36,...47} for wiring on the left side of tile (p,q).
There is one sort of naming Span-4 horizontal wiring in Uy. That is:

i) spd_p_g-h_{0,...,11} with (p,q) the tile where the wire starts. The wire contin-
ues on tiles (p',¢') with p < p' < p+4and ¢ =gq.

The function f regarding the Span-4 horizontal wires will be:
F((p.q) spA-hrk) = spA-(p —)g-h-(I1+(=1) - Lo(j))
I ((p,q) spAhd k) = spA-(p—4)g-h(I+(=1)))

k
with j = LzJ en/=k mod 12

13

The inverse f~! will be.

S sp4pghi) = {(p+J,q) spAhr_(i+12j+(=1)"-10(j)),
(p+4.q) sp4-hi_(i+36+(—1)")]j € {0,1,2,3}}

Span-12 wiring

There are four sorts of naming Span-12 wiring in Dy. That is:

i) (p,q) sp12_v_b_{0,...23} for vertical wiring on the bottom side of tile (p,q).
ii) (p,q) sp12_v_t_{22,23} for vertical wiring on the top side of tile (p,q).
iii) (p,q) sp12-h_r_{0,...23} for horizontal wiring on the right side of tile (p,q).
iv) (p,q) sp12-h_1.{22,23} for horizontal wiring on the left side of tile (p,q).

There are two sorts of naming Span-12 wiring in Uy. That is:

i) spd_p_gv_{0,1} with (p,q) the tile where the vertical wire starts. The wire
continues on tiles (p’,¢’) with p’ =pand ¢— 12 < ¢’ <gq.

ii) sp4_p_g-h_{0,1} with (p,q) the tile where the horizontal wire starts. The wire
continues on tiles (p/,¢') with p < p' < p+12andqg—12<4' <q.

The function f regarding the Span-12 wires will be:

f((p,q) sp12.v b k) =sp12_p_(q+ j)v-(I+ (—1)' - 1o(})):
£ ((p,q) sp12-v1k) = sp12_p_(g+12) v_(I+ (—1)");
f((pq) sp12-hrk) =sp12-(p— j)-g-h(1+ (=1) - 1o ()));
f((p,q) sp12v1 k) =sp12.(p—12) g h(1+(—1));

k
with j = LZJ en/=k mod?2.

The inverse f~! will be:

S p12-p-gv-i) = {(p.g—j) sp12vb_(i+2j+(=1)" - Lo(j)),

(p.q—12) spl2vt_(i+22+(—1)")]j € {0,..., 11} };
(p+4:q) sp12-hr_(i+2j+(=1)"-10(j)),
(p+12,q) sp12_hl_(i+22+(—1)") |j € {0,..., 11} }.

SN (sp12-pg-hi) = {

14

Global

The name for global wiring will be glb_netwk{0,...,7}. This is the same in de docu-
mentation as for the unique name

f (glb_netwki) = glb_netwki.

2.2 Local wiring
Logic Cell output wire

There are different sorts of naming the Logic Cell output wire in Dy. There is one sort
of naming the Logic Cell output wire in Uy:

i) lutff_p_qg_i/out with (p,q) the tile where the output wire of the ith Logic Cell
starts. The wire continius on tiles (p’,¢') with p—1<p' <p+landg—1<
qd <g+1.

The function f regarding the Logic Cell output wire will be:

S ((p,q) lutff_i/out) = lutff_p_q_i
S ((p,q) neigh_op_tnr_i) = lutff_(p+1)_(g+ 1)
f((p,q) neigh_op_rgti) =lutff_(p+1)_g_i
F((p,q) neigh_op_bnr_i) = lutff_(p+1)_(¢— 1)
f((p,q) neigh_op_top_i) = lutff_p_(g+1)_i
f((p,q) neigh_op_bot_i) =lutff_p_(qg—1)_i
7 ((p,q) neigh_op_tnl_i) = lutff_(p—1)_(¢+ 1)
S ((p,q) neigh_op_Ifti) =lutff_(p — 1)_g_i
S ((p,q) neigh_op_bnl_i) =lutff (p—1)_(¢— 1.

The inverse f~! will be:

“utff_p_g_i)

{(p q) lutff_i/out, (p — 1,q — 1)neigh_op_tnr_i, (p — 1,g)neigh_op_rgt_i,
(p—1,q+ 1)neigh_op_bnr_i, (p,q — 1)neigh_op_top_i, (p,q + 1)neigh_op_bot_i,
(p+1,q— 1)neigh_op_tnl_i, (p+ 1,q)neigh_op_Ift_i, (p+ 1,q + 1)neigh_op_bnl_i }

Example 2.2.1. As an example the name lutff_17_17_5 € Uy is equivalent to the fol-
lowing names in Dy

' (lutff_17_17_5) = {(17,17)lutff_S/out, (16, 16)neigh_op_tnr_5,
(16, 17)neigh_op_rgt_5, (16, 18)neigh_op_bnr_5,
(17,16)neigh_op_top_5, (17, 18)neigh_op_bot_5,
(18,16)neigh_op_tnl_5, (18, 17)neigh_op_Ift_5,
(18,18)neigh_op_bnl_5}

15

Rest of the wiring

The rest of the wiring is mainly simple, so we only give the function itself and not the
inverse.

f((p,q) carry_in_mux = carry_in_-mux_p_g
A wire we did not draw.

F((p,q) carry_in = lutff_p_(¢g— 1)_7/cout
F((p,q) lutff_i/cout) = lutff_p_g_i/cout
on the top left, the right output wire of the ith Logic Cell, see Figure 7. And i € {0,..,7}

f((p,q) lutff_i/in_j = lutff_p_q_i/in_j
the right jth input wire of the ith Logic Cell, see Figures 1, 2 and 6¢. And i € {0,..,7},

j€{0,..,3}

f((p,q) lutff_i/lout = lutff_p_qg_i/lout
on the top left, the left output wire of the ith Logic Cell, see Figures 7. And i € {0,..,6}

F((p,q) lutff_global /cen = lutff_p_qg_global /cen
on the top right, the middle output wire on every Logic Cell, see Figures 1 and 7

f((p,q) lutff_global /clk = lutff_p_g_global /clk
on the top right, the right output wire on every Logic Cell, see Figures 1 and 7

F((p,q) lutff_global /s_r = lutff_p_q_global /s_r
on the top right, the left output wire on every Logic Cell, see Figures 1 and 7

f((p,q) glb2local i = glb2local _p_q_i
Wires we did not draw that make connections from global to local wires possible. And
i€{0,..,3}

f((p,q) local_gi_j = local_p_q.-gi-j
Wires we did not draw that make connections between different kinds of wires possi-
ble. And i € {0,..,3},j € {0,...,7}

16

3 Routing

Some wires can connect with other wires. In this chapter we discuss which connections
are possible. Connections will always be from a Source net to a Destination net.

3.1 Global

All possible connections regarding global wires or global2local wires are:

Source net

Destination net

glb_netwk{0,1,2,3,4,5,6,7}
glb_netwk{1,3,5,7}
glb_netwk{0,1,2,3,4,5,6,7}
glb_netwk{0,2,4,6}

glb2local_p_q_i with i € {0, ...,

3}

1111

—

glb2local_p_g_{0,1,2,3}
lutff_p_q/global/cen
lutff_p_g_global /clk
lutff_p_g_global/s_r

local_p_q_g0_(i+4)

This table tells us that global2local wires exists only for connecting a global network

wire to a local wire.

3.2 Local Cell wires

Logic Cell output wire

First I give you the output wire of a Logic Cell. Again it is a table from the Source net

to the Destination net.

Source net

Destination net

lutff_p_q_i/out with i € {0, ...
lutff_p_qg_i/out with i € {0,...
lutff_p_g_i/out with i € {0, ...
lutff_p_q_i/out with i € {0, ...

lutff_p_g_i/out with i € {0, ...
lutff_p_qg_i/out with i € {0,...
lutff_p_g_i/out with i € {0, ...
lutff_p_g_i/out with i € {0,...

lutff_p_g_i/out with i € {0, ...

lutff_p_g_i/out with i € {0, ...
lutff_p_g_i/out with i € {0, ...
lutff_p_g_i/out with i € {0, ...
lutff_p_qg_i/out with i € {0,...
lutff_p_q_i/out with i € {0, ...

11117

I 1111

11111

local_(p—1)_(¢+1)-g{0,1}_i

local_(p)_-(¢g—1)_g{0,1}
local_(p)_(g+1)-g{0,1}-i
local_(p+1)_(¢q)-g{0,1}-i
local_(p—1)_-(¢g—1)-g{2,3}-i
local (p—1)(q)-g{2,3}
local_(p+1)-(¢—1)-g{2,3}-i
local_(p+1)_(¢+1)-g{2,3}.i

local(p)-(¢q)-£{0,1,2,3}.i

(p,q) sp4v-b{2(i+8k)} with k € {0,1,2}
(p,q) sp4_rv_b{2(i+8k)+1} with k € {0,1,2}
(p,q) sp4_h_r{2(i+8k)} with k € {0,1,2}
(p.q)
(p.q)

sp12_v_b{2(i+8k)} with k € {0,1}. If i > 4, then k =0
spl12_h_r{2(i+8k) — 8} with k € {0,1}. If i < 3, then k = 1

i

)

17

Logic Cell input wires

Every connection regarding lutff_p_¢_{0,1,2,3,4,5,6,7}/in_{0,..,3} is in the table
below. In the table we have the Destination net on the left and the Source net on the
right. The reason is clarity. Connections on the FPGA will be from the Source net to
the Destination net.

Destination net Source net

lutff_p_g_k/in_i i local_p_g_gm_(2n+ L+ itnis oneven) With m € {0,..,3}
with k € {0,..,7} and i € {0,..,3} and n € {0, ..,4} if i = 3, then (m,n) ¢ {(0,0),(0,1)}
lutff_p_g_0/in_3 +— carry_in.mux_p_q

lutff_p_g_kfin3 withk € {1,..,7} <+ lutff_p_g_(k— 1)/cout

lutff_p_g_k/in2 with k € {1,..,7} <~ lutff_p_q_(k—1)/lout

Logic Cell, rest of the wiring

All possible connections with lutff_p_g_{0,...7} /cout, lutff_p_g_{0, ...6} /lout, carry_in_mux,
lutff_p_g/global/cen, lutff_p_g/global/clk and lutff_p_qg/global/s_r are shown in the ta-
ble below.

Source net Destination net
lutff_p_g_i/cout with i € {0,..,6} lutff_p_g_(i+1)/in3
lutff_p_g_7/cout carry_in_mux_p_(q+ 1)
carry_in_.mux_p_q lutff_p_g_0/in_3
lutff_p_g_i/lout with i € {0,..,6} lutff_p_g_(i+1)/in_2

11117

Destination net Source net

lutff_p_qg/global/cen glb_netwk{1,3,5,7}

lutff_p_g/global/cen local_p_q_g(i —2k)_i withi € {2,3} and k € {0, 1}
lutff_p_g/global/clk glb_netwk{1,2,3,4,5,6,7}

lutff_p_q/global/clk local_p_g_g(i+2k)_i withi € {0,1} and k € {0,1}
lutff_p_g_global /s_r glb_netwk{0,2,4,6}

lutff_p_q/global/s_r local_p_g_g(i —2(k+1))-i with i € {4,5} and k € {0, 1}

TrTTTT?

3.3 Local wiring

In the following table are the connections of the local wires which are not yet discussed.
That are the connections between the local network and the Span-4 and Span-12 wires.

18

Destination net

Source net

local_p_g_g{0,1}_i with i € {0,...,7}
local_p_q_g{0,1}_i with i € {0,...,7}
local_p_g_g{0,1}_i with i € {0, ...,

local_p_qg_g{2,3}.i with i € {0,...,7}
local_p_g_g{2,3}_i with i € {0, ...,
local_p_g_g{2,3}.i with i € {0,...,7}

local_p_g_g0_i with i € {0,...,7}
local_p_g_g0_i with i € {0,...,3}

local_p_g_gk_i with k € {1,2,3} and i € {0,...,7}

TTT 117

T

(p,q) sp4v_b{i,8+i,16+i}
(p,q) sp4-hr{i,8+i,16+i}
(p,q) sp12-hr{i,8 +i,16+i}

(p,q) spAv_b{28+i,32+i,40+i}
(p.q) spA_h_r{28+i,32+i,40 +i}
(p,q) sp12v_b{i,8+i,16+i}

(p,q) spd-rv_b(24—1i)
(P, q) sp4-rvb(35—i)
(p,q) sp4-rv_b{8k+i,24+8k+i}

19

4 Independent path problem

A lot of connections have to be made in an FPGA. From different switches through
multiple Logic Cells to the led lights. And we want to know the fastest route. A
connection between two wires slows down the route. It is like there is a traffic light
between the two different wires. Just like driving a car, the shortest route is not always
the fastest. To conquer this problem, we need to make a mathematical model. A model
that can handle simple examples and a model we can make more complex. We will use
graph theory. The definitions are in line with [2]].

Definition 4.0.1. A graph G is an ordered pair (V,E) with V a finite set and E C (V)
with VB € E #B = 2. The elements in V are called the points of G or the vertices of G.
The elements of E are called the edges of G.

Definition 4.0.2. A directed graph G is an ordered pair (V,E) with V a finite set and
E CV xV withif (v,w) € E, then v # w. The elements in V are called the points of G
or the vertices of G. The elements of E are called the arrows of G.

Below is an example of a directed graph.

V ={a,b,c,d,e, f,g,h,i,j} and
E = {(a’d)7(b7d)7(b7e)’(c’f)’(d’c)7(d’e)7(d7g)7(e’h)’(f’l)’(h7g)7(h7j)7(l’j)}

PN

Figure 9: Directed graph

When we translate this back to an FPGA, the elements of V are the wires in an FPGA
and an element of E is a connection from a source wire to a destination wire. We want
to know the fastest route from wire a to wire b. This corresponds to finding the shortest
path from point a to point b in the model.

Definition 4.0.3. A directed path in a directed graph G = (V, E) is a sequence of points
(ap,ai,...,ax) with (ai—1,a;) € E Vi€ {l,..,k} and aj # a; Vi# j. The length of this
path is k. The starting point is agy and ay, is the end point.

20

Still we are not satisfied. Alongside a path from a to b, we want to find a path from
point ¢ to d. And to translate this back correctly, we want independence between the
power in the path from a to b and the power running from path ¢ to d. We make the
following definition:

Definition 4.0.4. Let G = (V,E) be a graph and @ = (ao,...,ax), B = (bo,..,b;) be
paths in G. Then o and B are vertex-disjoint if a; # b; Vi€ {0,....k},j € {0,...,1}.
The length of paths a and b combined is k+ /.

Definition 4.0.5. Let G = (V,E) be a graph and o, ..., 0, be paths in G with length /;
for path o;. This set of paths are vertex-disjoint if o; and «; are vertex-disjoint for all
i # j. The lengthis Y} | I;.

Now we can formulate our problem correctly.
Short vertex disjoint paths-problem Let G = (V, E) be a graph and ay,,a, be start-

ing points and by, ..., b, be end points. What are the shortest vertex-disjoint paths from
beginpoints a; to endpoints b;?

There are multiple efficient algorithms to find a solution with one path. Unfortunately
we can not extend that algorithm to find two or more vertex independent paths. The
example below will clarify this.

Example 4.0.6. Take the graph in Figure[0]and assume we want to find a path o from
a to j that is independent to a path 8 from b to g. First we find the shortest path from
a to j and then we try to find 8. Finding a path from b to g that is independent from «
is not possible. Second we find the shortest path from b to g and then we try to find .
This too will fail. But there do exist independent paths o and f3, see Figure

9

frgle Ih

Figure 10: Shortest paths

It seems like, we need to find the paths & and 8 at the same time. And we think it is
not as simple as this looks. For that we have Chapter [5]

21

5 NP Hardness

We want to know if there exists an algorithm that will find a solution to the short vertex
disjoint path-problem discussed in Chapter] with the condition that the algorithm will
still be fast when the graph becomes bigger. One way to prove this algorithm exists is
to find the algorithm. The algorithm discussed in Chapter [failed. That could be bad
luck or an indication that there is no fast algorithm. To prove there is no fast algorithm,
we need to introduce some definitions first. The definitions and are in line with [3]]

5.1 Introduction to complexity

The definition of an elementary step we will leave vague, because we need the defi-
nition of Turing machines for this. A computer is an example of a Turing machine.
And we do not want to go that far for the definitions. In most cases adding one bit is
an example of an elementary step. Elementary steps do not depend on the size of the
input variables. Hopefully the feeling of an elementary step will become clear after an
example.

Definition 5.1.1. The Time complexity of an algorithm is a function. The input size
of the function is the number of bits to write down the input of the algorithm. The
outcome of the fuction is the maximal number of elementary steps it takes to complete
the algorithm.

Example 5.1.2. Let’s make an algorithm that will check if an n times n sudoku S has
filled the rows correctly.
() for(r=1Lr<=mnr++){

2) for(i=1;i<=n;i++){

3) number = 0;

) for (¢ = 1; number == 1; ¢+ +){
Q) if (S[r][c] == i{

6) number = 1; }

7) ifi==n&& c==n){
8) return false; }

) }

(10) }

an }

(12) return true;

We check every row and every number if it is somewhere in the row. Line (5) checks if
the number i is the same as in the sudoku on row r and column c. Steps (3), (5) to (8)
and (12) have elementary step 1.

- In (4) we see that the algorithm computes maximal n times steps (5) to (9). This
comes down to 4n elementary steps.

- In (2) we see that the algorithm computes maximal n times steps (3) to (9). This
comes down to n - 4n elementary steps.

22

- In (1) we see that the algorithm computes maximal n times steps (2) to (9). This
comes down to 1 - 4n” elementary steps.

The maximal total of elementary steps is: 4n> + 1. The time complexity is at order 7.

Definition 5.1.3. A problem is in Polynomial time/the class P if there exists an algo-
rithm to solve the problem with Time complexity a polynomial.

Definition 5.1.4. A problem A is in Non deterministic polynomial time/the class NP if
the decision problem B to check if a given certificate/input is a solution to the problem
A is in the class P.

Definition 5.1.5. A decision problem of kind A reduces to a decision problem of kind
B, NOTATION: A <p B if there exists a polynomial time algorithm f that can translate
any problem of kind A to a problem of kind B: a is the input for a problem of kind A
is translated to b = f(a), input value to a problem of kind B. The algorithm must have
the following property: a is true iff b is true. We say B is at least as hard as A.

Problem B in the previous defnition is at least as hard as problem A, because when we
have an algorithm to solve problem B, we also have an algorithm to solve problem A:
First translate A to B through algorithm f and follow the algorithm for solving B.

There are problems which are believed to be hard to solve:

Definition 5.1.6. A problem A is NP-Hard if the problem is at least as hard as any
problem in NP.

To prove that a problem is NP-hard the following theorem will help:
Theorem 5.1.7. [3]] If A is NP-hard and A <p B then B is NP-hard.

Proof. Let A be NP-hard with the property that A <p B. Thus there exist an algorithm
S with polynomial time complexity and with the property that a-input value for prob-
lem A is true iff f(a)-input value for problem B is true.

Let C be a given decision problem. Because A is NP-hard, there exist an algorithm
g with polynomial time complexity and with the property c-input value for problem C
is true iff g(c)-input value for problem A is true.

This means there exist an algorithm & with polynomial time complexity and with the
property c-input value for problem C is true iff h(c)-input value for problem B is true.
Namely first follow algorithm g and then algorithm f. Then A(c) = f(g(c)). And this
has the desired property.

B is at least as hard as any problem in NP. This means that B is NP-hard. O

Definition 5.1.8. A problem A is NP-complete if the problem is NP-hard and in the
class of NP.

23

We will formulate the short vertex disjoint paths-problem a little bit differently.

Vertex disjoint paths-problem Let G = (V,E) be a graph and ay,,a, be starting
points and by, ..., b, be end points. Do vertex-disjoint paths from starting points a; to
end points b; exist?

We want to prove that this problem is NP-complete. For that we need to prove that the
vertex disjoint paths-problem is in NP and is NP-hard.

Proposition 5.1.9. The vertex disjoint paths-problem is in the class of NP.

Proof. Let G = (V,E) be a directed graph and ay, ..,a, be begin points and by, .., b, the
end points. When we have the paths from g; to b; for i = 1, ..., n, then we need to check
two things for verifying a solution:

1. Is a given path (q;, ..., b;) a path in the graph G = (V,E)?
Let (cy,...,cx) be a given path. We need to check if V1 <i<k—1 (c¢;,cit1) €E.

2. Are the paths disjoint?
For every path (a;,...,b;), make this as a set: S; = {c : the path (a;, ..., b;) runs
trough vertex c}. And make S = {J,_; ,,S;. Check for i =1,...,n and for all
elements ¢ € S; if ¢ € S. If that is true, remove that element from S, so: § = S\{c}.
If it is not true, then the paths are not vertex disjoint.

Both steps have time complexity a polynomial, so the vertex disjoint paths problem is
in the class of NP. O

We need more information before we can prove that the vertex disjoint paths problem
is NP-Hard. We need to find a problem A we know is NP-Hard. And we need a con-
struction/algorithm as in Definition [5.1] where B is the vertex disjoint paths-problem.
We know that the following decision problem is NP-Hard:

3 colorability problem[4] Let G = (V, E) be a graph. Is it possible to color the vertices
with three colors such that if (v;,v;) € E, the color of v; is not the same as the color of
v j?

We will make a construction that will help reducing the 3 colorability problem to the
vertex disjoint path problem.

5.2 Construction

Let G = (V,E) be a graph. We want to look if graph G is 3-colorable with the colours
‘yellow’, ‘red’ and ‘blue’. To do so, we will construct a new graph G’ = (V' E’). This
we will do in two parts, with the following example:

24

Figure 11: Example graph G

For Part one, we will make #V directed subgraphs, one for every vertex v; € V. One
subgraph will contain ’copies’ of a point v; € V. We will generate a ‘copy’ for ev-
ery edge in E with point v;, consisting of three ‘color points’, representing the three
colors. Vertex v, € V of example in Figure 11 has two edges with that point, namely
{vi,v2},{v2,v4} € E. Then the outcome is in Figure 12. The color points are c; i,
C21,ry €21y, C2.4.by C2.4.r, C24.y

In Part two, we will make one graph out of the subgraphs generated in part one. We
will connect the color points with new points, such that it can help us reducing the
3-colorability problem to the simple vertex disjoint paths-problem. For every e € E we
will add 5 points and 12 arrows.

& &

E)z LD »&8Cz,10
d2,1)ib il »@Ca1,r
V2,1,start bz'l’r »aC21y
d2ay
Eéf b »o1C2,4,b
a2.4)b o »81Co,4,r
St b
V2,4,start —H 240 »0C2,4,y
dody
Y X
—
(@9
Figure 12: Part one of example with i =2
Algorithm for Part one:

Input: Undirected graph G = (V,E), withV =vy,...,v,and E C {{v;,v;}|1 <i<j<n}

Output: n directed graphs, one for every v; € V, G; = (V;, E;)

25

Step 0. Forevery i € {1,2,...,n} let V; = {ay,ac,,bs,i,be i} and put E; = 0
Step 1. For every pair {i, j} such that {v;,v;} € E:

1. Add 8 points v; j start; @ijys i jr/bs Biojrs Bijbs Cijys Cijrs Cijp OV
ii. Add7arrows (vi jsar; @ jr/b)s (Vijstarts@ijy)s (@i jr/bbijr), (@i jrsbijb)s
(ai,j,yaci,j,y)a (bi,j,raci,j,r)a (bi,j,baci,j,b) to E;

Step 2. For i € {1,2,...,n}: let J; C {1,2,...,n} such that j € J; <= {v;,v;} €E or
(vj,vi) € E. Write J; = {jl,jz,...,jk} with 1 < ji < jp<.<jr<nandk
depends on i. Add the following arrows to E;

L (asir @iy y) (@ s @igy) oo (@i s Gy) (G oy @)

asis i jy r/b)s (i jy /s i jo,r /)55 (@i /3G /) (@i iy Gei)
bs,i,b ,11,) (b i,j1,rs 712,) (bivjkflvr’biljk'rr)’(bivjk‘r7besi)
- (bsisbijy p)s By b3 Bijo) s ooy (Bi iy 3 Di o) (Bijy s Besi)

End of algorithm for Part one.

.

iii.

—~ T~

In Figure 13, we have graph G’ = (V' E’) for graph G = (V,E) as in Figure 11. This is
after part two.

Algorithm for Part two:

Input: Undirected graph G = (V,E) withV =vy,...,v,and E C {{v;,v;}|1 <i< j<n}.
Forevery i € {1,2,...,n} a directed graph G; = (V;, E;) as we have after part one.

Output: Directed graph G' = (V' E’)
Step 0. Let V! =U<;<, Vo and E' = U<, En
Step 1. For every pair (i, j) such that (v;,v;) € E:

i. Add five points d; j;, di jr, dijy, Vije, VjietoV'.

ii. Add twelve arrows (c;jp,dijp), (Cjipsdijn); (Cijr dijr), (Cjirdijr),

(Cirjiysdinjiy)s (Chiysijy)s (dijpsVije)s (dijirsViije)s (dijiysVisjie)s (dijosViie),
(dijrsViie), (dijysVjie) to E'.

End of algorithm for Part two.

26

V.

V.,

V. < =k

ololo oo plo oo

Figure 13: Graph G’ for example graph G
27

5.3 End of proof

Lemma 5.3.1. The algorithm of the construction discussed in Subsection is in
polynomial time.

Proof. Let G = (V,E) with #V = n. Adding an element to a set is one elementary step.
The complexity of the algorithm for part one:

Step 0. Foreveryi€ {1,2,...,n} ithas 5 elementary steps. This brings a total of 5n steps.

Step 1. For every element in £, we add 16 points to a set vertices and we add 14 elements
to a set arrows. This is (164 14) - #E. The worst case scenario is when G =
(V,E) is a complete graph. Then #E = @ This leads to a total of at most
15n(n— 1) elementary steps.

Step 2. Vertex i € {1,2,...,n} has k connections. For every step i. to iv. we have k ele-
mentary steps. In the worst case, when G is a complete graph, k =n — 1. For
every vertex 4(n — 1) is the maximal number of elementary steps. The total is
4n(n—1).

The complexity of the algorithm for part two:
Step 0. We skip this one, because by doing part one, we already have V'’ and E’.

Step 1. For every element in E, we add 5 points to V' and twelve arrows to E’. This is

17 -#E. In the worst case, we need M elementary steps.

In the worst case scenario, part one has 5n + 15n(n — 1) +4n(n — 1) = 191> — 14n
elementary steps and part two has M Only the highest power matters and a
constant before that is irrelevant, so the time complexity is n*>. The algorithm is in

polynomial time. O

Lemma 5.3.2. Let G= (V,E) a graph and G’ = (V' E’) the directed graph constructed
by the algorithm. If for all {i, j} € E exist vertex disjoint paths from v; j ; to v; j ., for
all i € V from ay; to a.; and for all i € V from by to b, ;, then for every {v;,v;} € E
one of the following is true:

The path from v; j s to v; j . is:
i (Vijiss @ijrjbs Bijirs Cijors @mingi,jymax{i,j}rs Vije): The ‘red” path.
ii. (Vi,j,s, aj jr/bs bi.j,ba Cijb dmin{i.,j},max{i,j}.,b V,',j,e): The ‘blue’ path.
iii. (Vijs @ijys Cijys dmin{i,j}.max{i,j}y» Vije):1 The ‘yellow’ path.

Proof. We want to make a path a,; to a.;. From starting point a,; there are two pos-
sibilities for the next vertex in the path, namely a; and a; ,/,. From the second
vertex, the path is fixed. Otherwise the path will never meet the endpoint a, ;. So the
two possibilities for the paths are:

1. (ag, Qily, s Qik—1ys Gifky, de,i)

28

2. (as,is Ai1,r/bs -+ Qik—1,r/bs Rik,r/bs Qci)
We want to make a path by to b, ;. Analogous arguments will lead to the two possibil-
ities:

3. (bs,i, bit by Pik—15 Dikps be,i)

4. (bsi, bityrs-es bik—1,r, bikr bei)

When we make a vertex disjoint path from v; ; ; to v; j ., it depends on the paths from
as.i 1o d,; and from by ; to b ;.

i. If we choose the possibilities 1. and 2., then the path will be the red path: From
vi,j,s the path can only go to a; ; /5, because the vertex a;,j, is part of another
path. From a; ; ,/, the path can only go to b; j,r, because the vertex b; j, is part
of another path and when adding vertex a; j; 1, to the path, the path will never
meet the endpoint v; ; .. The rest is fixed.

ii. If we choose the possibilities 1. and 3., then the path will be the blue path. The
arguments are analogous.

iii. If we choose the possibilities 2. and (3. or 4.), then the path will be the yellow
path. The arguments are analogous.

Because for every v; € V, the choice for path ag; to a.; and b,; to b,; are the same.
This concludes the proof. O

Proposition 5.3.3. The vertex disjoint paths-problem is NP-Hard.

Proof. We know that the 3 colorability problem is NP-Hard. Let G = (V,E) a graph.
Construct a graph G’ = (V',E’). We know from Lemma that the construction is
in polynomial time, so we only need to prove this:
Graph G = (V,E) is 3-colorable <= there exist vertex disjoint paths in G’
from v; j s to v j. V{vi,v;} €E
from as; to a,; Vv, €V
from by ; to be; Vv €V

=:
Assume graph G = (V,E) is 3-colorable and that a proper 3-coloring is given with the
colors red, blue and yellow, then we know the paths:

i. If v; has color ‘red’, make the following paths:
(Vi7j,sa Qi jr/b bi7j,r, Cijrs dmin{i,j},max{i,j},rv Vi,j,e) V] with {Viij} ek

(Ag,iy ity ooy Qik—1ys diky, Ge,i)
(bs,is Bij by --es Dik—1> bigps be,i)

As you can see these paths are vertex disjoint.

29

ii. If v; has color ‘blue’, make the following paths:
(Vijuss @i jr/bs Dijbs Cijbs dminijh.max{i,j}br Viee) VJ With {vi,w;} € E

(as,ia Ailyy--s Aik—1y, Qiky, ae,i)
(bs,is Distry oo Bik—1rs Dijyrs bei)

As you can see these paths are vertex disjoint.

iii. If v; has color ‘yellow’, make the following paths:
(Vijiss @ijiys Bijiys Cijiys dmingi,jymax{i j}.ys Vije) Vi with {vi,w;} € E

(as.,u Ai1r/bs -+ Aik—1,r/b> Dik,r/b> ae,i)
(bs,is bitps-es Dik—1ps bigps be,i)

As you can see these paths are vertex disjoint.

Now the only way that the paths are not vertex disjoint is when diin{;, j}.max{i,j}.colour ¢
is in the two paths from v; j ; to v; j . and v; ; s to vj ;.. That means that {v;,v;} € V and
the color ¢ for v; is the same as for v}, but graph G is properly 3-colored. Contradiction!
<~

Assume graph G’ has the vertex disjoint paths. Lemma says that for every v; € V
there exists a path of one color. Give the color of that path to the vertex v;. When
{vi,vj} € E are colored with the same color c, then both paths v; j; to v; j . and v;;
to v; i has the vertex duin{; j}.max{ij},c in the path, this is in contradiction with that the
paths being disjoint, so this is a well-defined coloring for the graph G. O

Theorem 5.3.4. The vertex disjoint paths-problem is NP-complete

Proof. From Proposition we see that the vertex disjoint paths-problem is NP-
Hard. And from Proposition[5.1.9]we know that the vertex disjoint paths-problem is in
the class of NP. O

30

References

[1] Wolf, C. & Lasser, M., Project IceStorm (2015)
Retrieved from: http://www.clifford.at/icestorm/

[2] Schrijver, A., Grafen: Kleuren en Routeren
Retrieved from: https://homepages.cwi.nl/ lex/files/graphs1_3.pdf

[3] Zantema, H., Lecture notes for the course Complexity IBC028 (March 28, 2019)
Retrieved from: https://www.win.tue.nl/ hzantema/cpln.pdf

[4] Mouatadid, L., Introduction to Complexity Theory: 3-Colouring is NP-complete
(summer 2014)
Retrieved from: http://cs.bme.hu/thalg/3sat-to-3col.pdf

31

Appendix 1

5555522;"i;iiiiiiiiiiiiiiiiiiiIIiiI||||||||||F§§§éééééiiiiiiiiiiiiiiiiiiiiiiill]\H |||

LB \\\\\

\\\\\\\\\\\\\

RRRRRA
Z%%%%%%
%%%%%%%

%%%%%%%
%%%%%%%
TERNNNN

a. 49 tiles

/_
//////
!

Figure 15: sp4-horizontal
33

b. 1 wire

a. 49 tiles

e e

b. 1 wire

Figure 17: sp4-horizontal

35

sp4_v_18_20_{1,0,3,2,5,4,7,6,9,8,11,10}

sp4_v_18_18_{1,0,3,2,5,4,7,6,9,8,11,10}

sp4_v_18_19_{0,..,11}

4_v_18_17_{0,...,11}

sp

.

TEr T A v

v_17_17_{0,

S|

.{1,0,3,2,5,4,7,6,9,8,11,10}

4_v_17_20,

Sp

{1,0,3,2,5,4,7,6,9,8,11,10}

v_17_18_{

pa_)

o m
T ow
o ~N
< I
s s
8 9
-nl -nl
22
a0
I !
< =4
o -3
g &

sp4_r_v_b{0,...,11}

| spd_v_t_{36,...,47}

111 1l
(SR (1111111111111

T I T
e JIET TIRNETIY TR

T
LTI

Figure 18: sp4-vertical, naming

36

$p4_v_b_{0,...11}| spa_v_b{12,....23} sp4_v_b_(24,...,35)|s v_b{36,...,47}

uuuuuuuu
AN

.

o

o
SENNEEEERRS

||||||||||||
EEEE SRR TR

||||||||||||

$TTETITETLEE| o aeryyes

uuuuuuuu
AN
:\

uuuuu

BENS

LA

=<l ol =l <) =l =l =) <) <) <)

©
||||||||

RESRRES
||||||||
B

JAmaa'l

L
AL

A
\\\\\\\\\\\\\\

\\\\\\\\\\\\\

AR

\

i

nnnnnnnnnn

111111111111

T

{TT" 0} 4~

<
<
(-5

i
!

M

\

W

A

A

\

A

A\

A

I

A

AN

//’//

[[1]
{L€"9€

L]
YTy vd

U

N

\

Figure 19: sp4-horizont

37

al, naming

	Components of an FPGA
	Logic Cell
	Main wires
	Local wires

	Naming of the FPGA wiring
	Main wiring
	Local wiring

	Routing
	Global
	Local Cell wires
	Local wiring

	Independent path problem
	NP Hardness
	Introduction to complexity
	Construction
	End of proof

