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Abstract

Every planar graph without 4-cycles and 5-cycles is 3-colorable. This is
Steinberg’s conjecture, proposed in 1976 by Richard Steinberg. It is listed as
an unsolved problem in T.R. Jensen and B. Toft’s Graph Coloring Problems
(1995). This article provides a collection of references and research journals
that analyze this open problem in Graph Theory. Comments on its history,
related results and literature are given. This project is part of the course
Graph Theory, given by Wieb Bosma at Radboud University Nijmegen.

1 Introduction

Graph Coloring is a way of coloring the vertices of a graph such that no two
adjacent vertices share the same color; this is called a vertex coloring. The
most famous long-standing mathematical coloring problem is the Four Color
Theorem, conjectured in 1852 by Francis Guthrie. Its the first problem to be
resolved using a computer program.

Theorem 1.1. (Four Color Theorem) The regions of any simple planar map
can be colored with only four colors, in such a way that any two adjacent
regions have different colors. [5]

Regarding planar graphs, intuitively the number 4 in Thereom 1.1 seems well-
chosen. Whereas the complete graph K5 is nonplanar, K4 is planar but not
3-colorable. This is also true for any wheel whose center point has odd degree.
Further, any cycles of odd length are not 2-colorable. Thus the remaining
problem for coloring planar graphs is: Which planar graphs can be 3-colored?

Determining which planar graphs are 3-colorable leads to the search for
suitable properties. The smallest number of colors needed to color a graph
G is called its chromatic number, often denoted by X (G). Brooks’ theorem
(1941) states a relationship between the maximum degree ∆ of a graph and
its chromatic number.
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Theorem 1.2. For any connected (undirected) graph G with maximum
degree ∆, the chromatic number of G is at most ∆ unless G is a clique or
an odd cycle, in which case the chromatic number is ∆ + 1. [1]

Remark A clique in a graph is a subset of its vertices such that every two
vertices in the subset are connected by an edge.

A direct result by Theorem 1.2 implies that every connected graph G where
every vertex is adjacent to at most 3 vertices is 3-colorable, unless G is K4.
Further properties for 3-colorable graphs follow by Grötzsch (1959) and
Grünbaum (1963).

Theorem 1.3. Every triangle-free planar graph can be colored with only
three colors. [2]

Theorem 1.4. Any planar graph with fewer than 4 triangles is 3-colorable.
[3]

Remark An example for a graph which has four triangles but is not 3-
colorable is given by Aksionov and Melnikov (1980). [6]

Another approach to determine 3-colorable graphs implies the question
whether planar graphs without 4-cycles can be 3-colored. For example, K4

contains a cycle of length 4 and is not 3-colorable. Unfortunately, not every
planar graph without 4-cycles is 3-colorable.

Figure 1: A planar graph without 4-cycles that cannot be 3 -colored.

Example 1.5. In Figure 1 the graphs which have been inserted between
the verices u and v and between the vertices v and w simulate the edges uv
and vw. That is, if one 3-colors this subgraph, the vertices marked u and v
will receive the same color.

2



The next question is whether a graph without 4-cycles and 5-cycles is 3-
colorable. This is Steinberg’s Conjecture, proposed by Richard Steinberg
(1976) and listed as an unsolved problem in Jensen and Toft’s Graph Coloring
Problems (1995) [7]. The graph in Figure 1 is used generally to illustrate
Steinberg’s Conjecture.

2 From Steinberg to Borodin

In the past twenty years Steinberg-type graphs have been studied in several
papers. Borodin and Raspaud’s A sufficient condition for planar graphs
to be 3-colorable (2003) proposes a conjecture which implies Steinberg’s
Conjecture. The following articles and theorems show the progress towards
Borodin and Raspaud.

The famous Hungarian mathematician Paul Erdös (1991) [8] suggests to
determine the smallest value of k (if it exists) such that a planar graph
without any cycles of length 4, 5, . . . , k can be 3-colored. This extension of
Steinberg’s Conjecture is constrained by Abbott and Zhou (1991).

Theorem 2.1. Every planar graph without cycles of length 4, 5, . . . , 11 is
3-colorable. [9]

Further limits on the cycle length k are given by Sanders and Zhao (1995),
respectively Salavatipour (2002).

Theorem 2.2. A planar graph without i-circuits, 4 ≤ i ≤ 9, is 3-colorable.
[10]

Theorem 2.3. Any planar graph without cycles of size 4 ≤ k ≤ 8 is 3-
colorable. [11]

Remark Proofs of Theorem 2.2 and Theorem 2.3 make use of the term
faces. For every plane graph G, the set R2\G is open; its regions are called
the faces of G. Thus, standard methods of surface topology are included in
these proofs.

The Russian mathematician Borodin contributes several articles on Stein-
berg’s Conjecture. In 1996, he first proved that k = 10 is suitable [12] and
independently of Sanders and Zhao improves this result to k = 9 [13]. His
proof is based on the following proposition.

Proposition 2.4. Let G be a planar graph with minimum degree 3 such that
no two triangles have an edge in common. Then,

1. there are two adjacent vertices with degree sum at most 9.
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2. there is a face of size between 4 and 9 or a 10-face incident with ten
3-vertices. [13]

Xu (2006) strengthens Proposition 2.4 from distance less than 4 to distance
less than 3. [16]

Corollary 2.5. It follows that every planar graph without cycles between 4
and 9 is 3-colorable. [13]

Morover Borodin and Raspaud (2003) prove that planar graphs without
3-cycles at distance less than 4 and without 5-cycles are 3-colorable. Their
corporation turns out in the Strong Bordeaux Conjecture that implies Stein-
berg’s Conjecture.

Conjecture 2.1. Strong Bordeaux Conjecture
Every planar graph without 5-cycles and without adjacent triangles is 3-
colourable. [14]

The term Adjacent triangles denotes two triangles which have at least one
vertex in common.

Remark In this conjecture, none of the two assumptions can be dropped
because there exist planar 4-chromatic graphs without 5-cycles, as well as
planar 4- chromatic graphs without intersecting triangles. [14]

Figure 2: 4-chromatic graphs

In corporation Borodin, Glebov, Raspaud and Salavatipour (2005) strengthen
the Bordeaux Conjecture. First, they improve Theorem [11] to k = 7. They
denote such graphs by G7.

Theorem 2.6. Any planar graph without cycles of length from 4 to 7 are
3-colorable. [15]

By use of Theorem 2.6 and the fact that every planar graph without triangles
adjacent to cycles of length from 3 to 9 is 3-colourable Borodin et al. propose
the following conjecture.

Conjecture 2.2. Strengthened Bordeaux Conjecture
Every planar graph without 3-cycles adjacent to cycles of length 3 or 5 is
3-colourable. [15]
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An alternative to Conjectures 2.1 and 2.2 by Chen and Wang (2007) proves
that every planar graph without 4, 6, 8-cycles is 3-colorable [18].
There are many other articles with conditions on 3-colorability of planar
graphs: Bu et al. (2009) without 4, 7, 9-cycles [24] or Borodin et al. (2009)
without 5- and 7-cycles without adjacent triangles [25]. Others are [19], [20],
[21], [22] or [23].

The most recent approach on the 3-coloring problem is given in Steinberg’s
Conjecture and near-colorings by Chang et al. (2011). Here, Steinberg’s
conjecture is approached through near colorings.

Definition 2.1. A graph G = (V,E) is said to be (i, j, k)-colorable if its
vertex set can be partitioned into three sets V1, V2, V3 such that the graphs
GV1 , GV2 , GV3 induced by the sets V1, V2, V3 have maximum degree at most
i, j, k respectively.

Under this terminology, Steinberg’s Conjecture says that every Steinberg-
type graph is (0, 0, 0)-colorable. A result of Xu (2007) implies that every
Steinberg-type graph is (1, 1, 1)-colorable [17]. Chang et al. prove the
following.

Theorem 2.7. Every Steinberg-type graph is (2, 1, 0)-colorable and (4, 0, 0)-
colorable. [26]

More illustrations are provided by recent presentation from Raspaud (2013)
http://www.math.uiuc.edu/~lidicky/seminar/2013-raspaud.pdf.

3 Colorability or Choosability

The problem of deciding whether a planar graph is 3-colorable is NP-complete.
[4] Some sufficient conditions for planar graphs to be 3-colorable were stated
in Section 2, in particular Steinberg’s Conjecture. Further, the conjecture
has been generalized to list coloring. This provides a different point of view
to analyze 3-coloring.

Definition 3.1. A list coloring of the graph G is an assignment of colors to
V (G) such that each vertex v receives a color from a prescribed list L(v) of
colors and adjacent vertices receive distinct colors. L(G) = (L(v)|v ∈ V (G))
is called a color list of G. The graph G is called k-choosable if G admits a
list coloring for all color lists L with k colors in each list.

Example 3.1. A graph G is 3-choosable if, for every assignment of sets
with 3 elements to the vertices, there is a proper coloring where the vertex v
is coloring using a color in its set. Hence 3-choosability implies 3-colorability;
just let every set be {1, 2, 3}.
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The corresponding conjecture with list coloring states that every planar
graph without 4- and 5-cycles is 3-choosable. Unfortunately Voigt (2007)
shows in Figure 3 that there is no direct translation from 3-colorability to
3-choosability. There exist planar graphs without 4- and 5-cycles which are
not 3-choosable.

Figure 3: Voigt’s counterexample [31]

Earlier studies on list coloring are done by Zhang and Wu (2004, 2005). They
find connections from 3-choosability to 3-colorability.

Theorem 3.2. Any planar graph without 4-, 5-,7- and 9-cycles is 3-choosable.
[27]

Theorem 3.3. Any planar graph without 4-, 5-,6- and 9-cycles is 3-choosable.
[28]

Remark Theorem 3.2 and 3.3 emphasize that 3-colorability cannot be just
so easily replaced by 3-choosability in Steinberg’s Conjecture without further
restrictions.

Another connection is given in Lam et al. (2005). This theorem differs from
Steinberg’s Conjecture and excludes 3-cycles instead of 4-cycles.

Theorem 3.4. Any planar graph without 3-, 5- and 6-cycles is 3-choosable.
[29]

The closest attempt to combine colorability and choosability is done by
Montassier, Raspaud and Wang (2006). It provides three proven statements.

6



Theorem 3.5. 1. A graph with no 4-, or 5-cycles, and no triangles at a
distance of less than 4, is 3-choosable.

2. A graph with no 4-, 5-, or 6-cycles, and no triangles at a distance of
less than 3, is 3-choosable.

3. There is a graph without 4- or 5-cycles and without intersecting triangles,
which is not 3-choosable.

[30]

4 Summary

Steinberg’s Conjecture has been studied for the past 35 years. There is
neither a rejection of its statement nor a fully accepted proof. The proof by
Cahit (2007) using spiral colorings is not accepted[32].
The steps from Steinberg’s via Bordeaux till the route to 3-choosability shows
nicely how thorough a ”simple statement” can be analyzed, but still cannot
fully be proven.
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