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1 Introduction

When one thinks about products in the mathematical sense, graph theory might not be the
first subject that comes to mind. One might instead imagine products in the algebraic sense, or
Cartesian products in set theory. Products of graphs are not too dissimilar to the latter of those
two. In this thesis, we will not just discuss these products of graphs, but a conjecture to do with
this concept as well.

In 1966, Stephen T. Hedetniemi conceived a conjecture as a part of his PhD thesis [8]. He
pursued his PhD studies at the University of Michigan and in the spring of 1961 he followed a
course on graph theory, taught by Prof. Frank Harary. Harary was a pioneer when it came to
modern graph theory. He incited much curiosity in the students he taught by introducing them
to conjectures and open problems within the field.

Hedetniemi was one of the many students who was fascinated by these. Later on in his
studies, Hedetniemi showed Prof. Harary a simplified version of a lengthy proof of a theorem on
homomorphisms of graphs. Harary was impressed by his work and subsequently invited him to
work on a PhD thesis with him on the subject of graph theory.

It was during the making of this thesis that he realized that very little was known about
homomorphisms of graphs at the time, which made him ponder on the topic of homomorphisms
of products of graphs, also known as categorical products or tensor products of graphs. Following
a few observations by Hedetniemi on this topic, he made the following conjecture:

Conjecture 1.0.1 (Hedetniemi’s conjecture [7]). For graphs G and H,
X(G x H) = min{x(G), x(H)}.

Where G x H denotes the product of G and H. Hedetniemi did not think much of it at
the time, but it turned out that this conjecture was quite difficult to either prove or disprove.
Though steady progress was made on the conjecture over the years, it ended up taking over half
a century before a general refutation was written.

However, the article showing the refutation is short but nonetheless very complex. The proof
only consists of three main steps to the conclusion, but it leaves a lot of the reasoning and
smaller thinking steps to the reader, making it a difficult paper to grasp for those not properly
familiarized with the topic of products of graphs. That is why the main goal of my thesis is to
add to this article by providing the needed definitions and going over these in-depth, supplying
additional lemmas, and giving some examples when needed.

In this thesis, we will first go over some standard definitions in Section 2.1 and explain
products of graphs in Section 2.2, so that we have a better understanding of what Hedetniemi’s
conjecture entails when we discuss it again in Section 2.3. Then in Section 3, some specific types
and variants of graphs for which Hedetniemi’s conjecture has already been proven or disproven
will be discussed, i.e. the conjecture in the case of Kneser graphs, fractional coloring, and
directed graphs, and we will go over the proof detailing that the conjecture is either true or
false depending on the case. In Section 4 we discuss the refutation of Hedetniemi’s conjecture
in greater detail, starting by explaining the concept of exponential graphs in Section 4.1, and
then we walk through the article disproving Hedetniemi’s conjecture in Section 4.2, with many
additions and examples to make it easier to follow. Finally, in Section 5, we will go over the
progress that has been made on the conjecture aside from variants of graphs and the general
refutation. This includes showing that the conjecture is true if the minimal chromatic number
of G and H is 4. We will also show that the conjecture is asymptotically true, and discuss how



the minimal chromatic number for two graphs G and H that produce a counterexample has
decreased over the years, all the way down to proving that the chromatic number of the product
of graphs G and H with a chromatic number of 5 or higher, can indeed be 4. There will be some
results we do not fully prove in this thesis due to their length or complexity, one in our section
on fractional coloring and one in proving that the conjecture is true in the case of the minimum
chromatic number between G and H being 4 or less. Lastly, the section on showing that the
conjecture is generally not true if the minimum chromatic number is 5 will not be discussed in
much detail but merely summarized due to the sheer complexity of the proof.



2 Preliminaries

In this section, a brief overview of some standard definitions within graph theory will be given,
along with an introduction to products of graphs, how we denote them, and a few examples. We
end this section by discussing Hedetniemi’s conjecture and why it seems plausible at first glance.

2.1 Definitions

We start off with some likely familiar yet still crucial definitions about graph theory which we
will need for the rest of this paper. Most definitions are cited or adapted from [I6]. This book
has a lot of additional examples for those definitions, so a read-through is recommended if any
concepts explained in this section are still unclear.

Definition 2.1.1. A graph is an ordered pair G = (V, E), mainly denoted as simply G. Tt
consists of a set of vertices V' and a set of edges E. Vertices are single elements which we
typically write using the letters v or u, and edges are pairs of vertices. These are shown in
figures as a line between the vertices. For example, if there is an edge connecting vy and vy, we
say that they are adjacent, and that {vg,v1} € E(G).

Definition 2.1.2. A graph H is a subgraph of a graph G if each of its vertices belongs to V(G)
and each of its edges belongs to E(G). We say it is an induced subgraph if the subgraph contains
all edges in V(G) with both endpoints in V(H). We denote H a subgraph of G with H C G
and H an induced subgraph of G with H C G

This definition, specifically for induced subgraphs, is important for one of our proofs in the
section about Kneser graphs.

Example 2.1.3. The following is an example showing the distinction between these definitions.

Figure 1: From left to right, a graph G, a subgraph of GG, an induced subgraph of G.

We will also go over the definition of complete graphs and cliques.

Definition 2.1.4. The complete graph on n vertices, denoted by K,, is a graph with an edge
between every possible pair of different vertices (so excluding self loops).

Definition 2.1.5. We say a graph G has a k-clique if it has a subset on k vertices such that there
is an edge between every possible pair of those k vertices. In other words, if K} is a subgraph of
G. We use the term cligue number of G as the largest k such that G has a k-clique.



As the conjecture we discuss in this paper has to do with graph coloring, we will also go over
the definitions of a k-colorable graph and the chromatic number of a graph.

Definition 2.1.6. We define a k-coloring of a graph G as the assignment of a color from the set
{1,...,k} to every vertex in V(G). We say a coloring is proper if the graph G is colored such
that no two adjacent vertices {x,y} € E(G) share the same color. Conversely, we say a coloring
is mot proper if this is not the case.

Specifying whether a coloring of a graph G is proper or not will not be important until Section
4, so every coloring up until that point is proper unless stated otherwise.

Definition 2.1.7. We say that a graph G is k-colorable if we can properly color the graph with
k colors. Sometimes we will use a function ¥ : V(G) — {1,...,k} to describe the assigning of
colors to every vertex in a graph G.

Definition 2.1.8. The chromatic number of a graph G is equal to k if k is the least integer such
that our graph is k-colorable. We denote this by x(G) = k.

This means that if a graph is k-colorable, this gives us an upper bound for the chromatic
number of said graph.

Definition 2.1.9. A cycle of length n, denoted by C,, is a graph with n vertices where we can
number each vertex in a certain way (v1,va,...,v,) such that v; is only adjacent to v;41 and
vi—1, and {v1,v,} € E(G).

Example 2.1.10. Below is an example of a proper graph coloring.

Figure 2: Coloring of the graph Cj, the cycle graph with 5 vertices.

Proposition 2.1.11. If H is a subgraph of G, and x(H) =k, then x(G) > k

Proof. Assume that x(G) < k. Then, since H is a subgraph of G, this means that we must be
able to color H with fewer than k colors. But since x(H) = k, H is not k — 1-colorable. Thus
we have x(G) > k by contradiction. O



Proposition 2.1.12. Any graph with x(G) = 3 contains a cycle of odd length.

Proof. Assume a graph G to contain no odd cycles, so it contains either no cycles or only cycles
of even length. Then we can color the graph as follows: take a random vertex v € V(G), and
assign it the color red. Then, assign all the vertices that are directly adjacent to it the color
blue. Then assign the adjacent vertices of all the now blue vertices the color red. Repeat this
process until the graph is fully colored. This gives us a proper 2-coloring of G, since we know
that, for any vertex v € V(G), all its neighbors (adjacent vertices) are not adjacent amongst
each other. If there was such a vertex with two adjacent neighbors, this would give us a cycle of
odd length. O

2.2 Products of graphs

The other crucial part of the conjecture is the concept of products of graphs and how they are
constructed. In this section, we will explain what they are and give a few examples in order to
clearly illustrate them.

Definition 2.2.1. The product of two graphs G and H, which we will write as G x H, has the
set of vertices {(v,u) | v € V(G),u € V(H)}, where

{(vo,up), (v1,u1)} € E(G x H) <= {vg,v1} € E(G) and {ug,u1} € E(H).

In other words, the vertices of the product G x H are all pairs, where the first element of the
pair is a vertex selected from G, and the second is one selected from H. Two vertices in G x H
are connected via an edge if and only if the first elements in both pairs, so the vertices belonging
to G, also have an edge between them in G, and the vertices taken from H also have an edge in
H. This definition is best illustrated at the hand of a few examples.

Example 2.2.2. Our first example is the product of G = K5 and H = K5, shown on the right.
Note that the vertices of the product K5 x K5 are labeled as pairs, where the first vertex in the
pair is taken from G, and the second is taken from H.

0 0 (0,0) (0,1)
® ®

1 1 (0) (1,1)
® ® ¢

Figure 3: Ko x Ky

Example 2.2.3. Our second example is the product of G = K5 and H = K3.

Since the vertices in tensor products are all the possible pairs of vertices, we can observe that
[V(GxH)| = |V(G)|-|V(H)|. We also know that |E(Gx H)| = 2-|E(G)|-|E(H)|. This is because,
given any two edges {vg,v1} € E(G) and {ug,u1} € E(H), we have that {(vo, up), (v1,u1)} is an



0 0 (0,0) 0,1) (0,2)

N

Figure 4: Ky x K3

edge in G x H. However, then we also have that {(v1,uo), (vo,u1)} is an edge in G x H. So for
every edge in G paired with an edge from H, we get 2 unique edges in G x H, thus giving us
2-|E(G)|- |E(H)| edges.

The examples we have looked at so far have been relatively small in size. Now we will look
at a slightly larger example to show how quickly products of graphs can ”blow up”.

Example 2.2.4. The product of the following two graphs (visible on the next page) has been
computed in Python, as it is too large to do so by hand.

Figure 5: First graph with 6 vertices and 10 Figure 6: Second graph with 7 vertices and
edges 12 edges

From this example, we can already see how difficult of a problem Hedetniemi’s conjecture
is. The product of two graphs grows large quite easily, and this leaves us with only a few
graphs that we could compute manually within reason. This means that if we wanted to find a
counterexample, we would already have to be looking at graphs that bring forth a rather large
product.



Figure 7: The product of the two graphs, with 42 vertices and 240 edges



2.3 Hedetniemi’s conjecture

Now that we have gone over all the necessary background to understand Hedetniemi’s conjecture,
we will explore it in more detail. As a reminder, Hedetniemi’s conjecture states, for graphs G
and H,

X(G x H) = min{x(G), x(H)}.

In other words, the chromatic number of the product of two graphs is equal to the least of
the chromatic numbers of the two graphs separately. At first hand, this statement seems rather
plausible. In fact, this equality is true for all the examples we have looked at so far, including
As we will see later, the conjecture is actually true for any pair of graphs that both
have chromatic numbers less than or equal to 4. At the hand of the following lemma, we will see
that if we wanted to disprove the conjecture, we could only do so in one direction.

Lemma 2.3.1. For two graphs G and H, we know that x(G x H) < min{x(G), x(H)}.

Proof. Assume that min{x(G), x(H)} = x(G) without loss of generality. Then, we know that
X(G x H) < x(G) because we can lift the optimal coloring ¥ of G to our coloring of G x H.
Namely, we can color every vertex of G x H by (g,h) — ¥(g). In this way, we group every vertex
of the product into sets with other vertices that contain the same g from V(G). Since G has

no self-loops, we know there are no edges within these sets. Thus, this is a proper coloring of
G x H. Then we know that x(G x H) < x(G) = min{x(G), x(H)}. O

Example 2.3.2. The following is an example of such a lifted coloring with two graphs we have

seen earlier.

Figure 8: Two proper colorings of Ky x K3 lifted from the colorings of Ko and K3 respectively.

So if we wanted to prove that Hedetniemi’s conjecture is false, we would have to construct a
specific case such that for certain G and H, x(G x H) < min{x(G), x(H)}.

Before we discuss how the conjecture turned out to be false in general, we cover some spe-
cific cases of graphs or graph colorings for which the conjecture is either true, or for which a
counterexample exists.



3 (Non-standard) colorings of (non-standard) graphs

As Hedetniemi had formulated his conjecture back in 1966, a lot of progress had been made
on the subject of tensor products of graphs and their chromatic numbers even before a general
refutation had been found. Before we discuss Hedetniemi’s conjecture in its entirety, we will look
at some of the efforts which have been made prior to the release of the general refutation. These
are specific types of graphs or graph colorings in which the conjecture has been proven to be true
or false. These types include Kneser, fractional colorings of graphs, and directed graphs.

3.1 Kneser graphs

In this section, we will be looking at Kneser graphs. These are a specific type of graph whose
vertices are the unique subsets of cardinality n of a set of cardinality m, and its edges are
determined by whether or not two of these subsets are disjoint. The definition is as follows.

Definition 3.1.1. For n,m € N such that m > 2n, the Kneser graph K] is the graph whose
vertices are the n-subsets of {0,1,...,m — 1}, where two vertices are adjacent if and only if they
are disjoint.

For Kneser graphs, we use the condition that m > 2n, since if this weren’t the case, we would
have a graph without any edges. These cases are trivial and uninteresting to us, so we only look
at Kneser graphs with m > 2n.

Example 3.1.2. A well-known example is the Petersen graph, which is the Kneser graph K3.

{1.2}

Figure 9: The Petersen graph. The vertices are all the 2-subsets of {1,2,3,4,5}. There is an edge
between two vertices if and only if the subsets that these vertices represent are disjoint.

Now that we have our definition, we can rewrite Hedetniemi’s conjecture in a fashion tailored
to Kneser graphs. In this section, we aim to prove that

XK > Koi) = min{x (K770), x (K )} (3.1)
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for all m;, mj,n;,n; € N with m; > 2n;, m; > 2n;. The proof of this equality is adapted
from [I5]. Our strategy is to prove some useful properties about the chromatic numbers of
products of graphs when one of the two graphs is an induced subgraph of the other, and to utilize
a certain homomorphism between Kneser graphs. We start by looking at a general property of
tensor products of graphs.

Definition 3.1.3. A homomorphism ¢ : V(G) — V(H) is a function from G to H that preserves
edges. If there exist homomorphisms ® : V(G) — V(H) and ¥ : V(H) — V(G), we say that G
and H are homomorphically equivalent.

In other words, ¢ is a homomorphism from G to H if, given that {vg,v1} is an edge in G,
then {¢(vg), ¢(v1)} must also be an edge in H. Notice that if there is a homomorphism from G
to H, then x(G) < x(H). Thus, if G and H are homomorphically equivalent, x(G) = x(H). We
use this in our proof of the following lemma.

Lemma 3.1.4. If H is an induced subgraph of G, then x(G x H) = x(H).

Proof. Note that since H is an induced subgraph of G, this means that G x H and H are
homomorphically equivalent. Namely, ® : V(G x H) — V(H) is given by ®(n,m) = m, for
verticesn € G and m € H. For ¥ : V(H) — V(G x H), we say that H has vertices {1,2,...,i},
and we call the vertices of G that form H, {j + 1,74+ 2,...,j + ¢} (i.e 1 in H is equivalent to
j+1in G, 2 is equivalent to j 4 2, and so on). Then we define ¥(m) = (m + j, m). This shows
that G x H and H are homomorphically equivalent, and thus x(G x H) = x(H). O

Regarding homomorphisms of Kneser graphs, we will utilize the following result later in our
proof.

Theorem 3.1.5 (Stahl [I2]). For m,n € N such that n > 1 and m > 2n, there is a homomor-
phism from K" to K™%

Proof. In the proof, every vertex v is denoted as {vi,va,...,v,} where every v; is a unique
integer from [m] = {1,...,m}, and where v; < v;y;. Then, we say that a vertex is k-regular if
there exists a k such that vy = k and vg11 > k + 1. Since the convention is set that v; < v;41
for all 1 <1i < n, if a vertex v = {v1,v2,...,v,} is k-regular, there can only be one such k. If a
vertex is not regular for any k, we say it is irregular. An example of an irregular vertex would
be {2,3,5}. We define the mapping 7 from K to K™ ? as follows:

’I](’U) :{’Ug—l,v3—1,...,vk—1,1}k+1 —2,...,’Un—2}
if the vertex v is k-regular, and
nw) ={ve — 2,03 —2,...,v, — 2}

if the vertex v is irregular. Now we have to prove that this is indeed a homomorphism via case
distinction, mainly that if v and u are adjacent vertices in K, then n(u) and 7n(v) must also be
adjacent in K™ 2. Tn other words,

wUdv=0 = n(u)Un(v) =0.

Note that any regular vertex must contain the integer 1, so two vertices u,v cannot both be
regular and adjacent. This reduces the proof to two cases.

Case 1. Assume both u and v are irregular. Then n(u) = {us —2,us — 2,...,u, — 2} and
n(v) = {va —2,v3 — 2,...,v, — 2}. Then, if n(u) Un(v) = () were not true, this would mean we
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could find ¢ and j such that u; —2 = v; —2, or u; = v;. This contradicts the adjacency of v and v.

Case 2. Assume u to be k-regular, and v to be irregular.

Son(u) = {us—1,us—1,...,up—1, upyr1—2,...,u,—2} and n(v) = {va—2,v3—2,...,v, —2}.
If n(u) Un(v) # 0, then for some j > 1, v; — 2 € n(u). As before, if v; — 2 = u; — 2 for some
i > k, we get a contradiction. So we assume that v; —2 = u; — 1 for some 2 < ¢ < k. This means
that v; =a;, +1 =1+ 1 < k+ 1. But, since u is k-regular it follows that {1,...,k} C u. Since
uUwv = (), we get that vy > k + 1 for all v5 € v. Combining this with our earlier conclusion that
v; < k+1, we get that v; = k4 1, thus v; must be the smallest element of v, so j = 1. But this
contradicts j > 1.

We make a small addition to this proof to clear up the definition for 1. Namely, in the
case of the arithmetic vertex v = {1,2,...,n} which has no proper image under this definition
yet. Technically, this vertex would be considered irregular, and the function 7 would send the
arithmetic vertex to {0,1,...,n — 2}. But {0} is not in the image of . Thus we define

n({1,2,...,n}) ={ve —Lus —1,...,0, — 1}.

This is somewhat implied but not explicitly stated in the article, which is why we make this
addition. Since we have made this addition, we now also have to prove for the arithmetic vertex
v, that if v and another vertex u are adjacent in K", that they are also adjacent under n. We
start by observing that any vertex adjacent to v must be irregular, as it must be a subset of
{n+1,n+2,...,m}. For irregular vertices, we skip the first element of the vertex and subtract
2 from all the others. Thus, n(u) must be a subset of {n,n + 1,...,m — 2} for any u adjacent
to v. However, n(v) = {1,2,...,n — 1} by our expanded definition of 1. We can easily see that
{1,2,...,n =1} {n,n+1,...,m—2} =0, so n(v) and n(u) must be adjacent.

Altogether, this shows that 7 is a homomorphism. O

Another thing to mention about the proof, is that in the article [I2], m > 2n is stated as
the condition rather than m > 2n. However, the case for this theorem when m = 2n is trivial,
as this gives a Kneser graph where every vertex has only one edge, so every vertex is paired
with a unique vertex. (i.e in the graph K§, {1,2,3} is solely adjacent to {4,5,6}). This case is
thus rather trivial, though the construction of 7 in the proof works for this case as well. So this
theorem works in the case m = 2n, too.

We now look at the chromatic number of Kneser graphs.

Theorem 3.1.6 (Kneser’s Combinatorial Theorem). The chromatic number of the Kneser graph
K" ism —2n + 2.

This was a conjecture by Kneser, and it has later been proven by Lovasz using graph theory.
In fact, the original conjecture was formulated not at all like a graph theory problem. Kneser
originally posed it as such: if you divide the n-subsets of a (2n + k)-set into k + 1 classes, then
two disjoint sets must end up in the same class. We refer to Lovasz’s article for the proof of this
theorem [9]. We formulate another lemma before combining some of our results thus far.

Lemma 3.1.7. Letn,r € N and my; < mo < ... < m, be positive integers such that m; > 2n, for
alli € [r]. Then, (K]"') is an induced subgraph of the graph K" x K> x ... x K" =[], K.

Proof. Define ¢ : K" — [[, K by ¢(A) = (A, A4,..., A) for all sets A € V(K"). Since this
map is an injective homomorphism, K" is indeed an induced subgraph of [], K)*. O

12



Using Kneser’s Combinatorial Theorem, Lemma and Lemma we can deduce the
following.

Corollary 3.1.8. Let n,7 € N and my, mo,...,m, be positive integers such that m; > 2n, for
all i € [r]. Then,

HK"“ = X(EG < K2 <o K) = ming {(KG") } = ming {m;} — 2n + 2.

Now the next step is to prove a similar result but for products with differing n;’s as well,
which the following lemma will assist us in.

Lemma 3.1.9. Let r € N and let my, ma,...,my,N1,N3,...,N- be positive integers such that
m; > 2n; for alli € {1,...,7r}. Assume that ny < ny < ... < n,, with n. > 1. Then, there

exists a graph homomorphism @ : [, KtAnemm) = LK.

Proof. By Theorem 3.1.5, we know that for each i € [r], there is a graph homomorphism ¢; :

Kt2ne—ni) — K. This means that there is a graph homomorphism & : [T, Kt

II; K3 as well. 0
This then allows us to prove our last theorem, which will directly imply that [3.] is true.

Theorem 3.1.10. Letr € N and let my, ma, ..., mp, N1, Na,...,n, be positive integers such that
my; > 2n; for alli € [r]. Then,

w( [T ) = mine (T2}

Proof. We can assume that n; < ns < ... < n, without loss of generality, and we can assume
that n, > 1. Then we can see from Lemma 3.1.9 that there is a graph homomorphism & :
IL K;ﬁﬁz(n"*ni) — [1, K", which implies that x(IT, K') > x(I]; Ky +2(n’7m)). Then, by
Corollary 3.1.8 we have that

X(H KZ?’"*'Q("T_"")) = ming{m; + 2(n, —n;) — 2n, + 2} = ming{m; — 2n; + 2} = min; {x(K,")},

thus giving us x([[; K") = min{x(K}"*)}. O
Using this theorem, we can show that the conjecture is true in the case of Kneser graphs
Corollary 3.1.11. Hedetniemi’s conjecture in the case of Kneser graphs 1s true.

Proof. Take r = 2 with the previous theorem. O

3.2 Fractional coloring number

Fractional colorings of graphs are a specific type of graph coloring where we assign more than one
color to every vertex. There are multiple, equivalent ways to define and give the most optimal
fractional coloring of a graph, but the definitions we use here are derived from [4]. We begin
this section by going over these definitions, and then giving some examples of fractional coloring.
Finally we will discuss some lemmas and then a part of the proof that

Xf (G x H) =min{x;(G), xs(H)}

13



holds for all graphs G and H, where x¢(G) denotes the fractional coloring number of the
graph G. The full proof of this is given in [I9], but due to the complexity of the proof we will
not discuss it in its entirety in this section.

We use Z(G) to denote all the independent sets of G, where independent sets are sets con-
sisting of vertices of a graph, where all the vertices in an indepent set do not share any edges
amongst themselves. We also use Z(G, x) to denote all the independent sets that contain the
vertex .

Definition 3.2.1. A fractional coloring of a graph G is a nonnegative real-valued function f on
Z(G) such that for any vertex x of G,

> S =1.

SEL(G,z)

Definition 3.2.2. We say that the weight of a fractional coloring is the sum of all its values
f(S) for S € Z(G), and the fractional chromatic number x;(G) of the graph G is the minimum
possible weight of a fractional coloring.

In other words, a fractional coloring function f can assign values to every independent set of
G. But, for any vertex z € V(G), the sum of all these values over all the independent sets that
contain x cannot exceed 1. The weight is simply the total sum of all the values assigned to every
independent set of G.

Example 3.2.3. Below is an example showing the independent sets for a single vertex of the
graph C5. These include the vertex itself (shown with red) and two other sets both consisting of
another additional vertex (shown with blue and green). If we assign the independent sets that
consist of a single vertex (such as the red one) a value of 0, and the others consisting of two
vertices (such as the blue and green ones) a value of %, we get that a total weight of frach2,
since there are 5 such independent sets with 2 vertices total.

Figure 10: The graph C5 with ovals outlining the independent sets for one vertex of the graph.

Proposition 3.2.4. For any graph G,

x5 (G) < x(G).

14



Proof. Say that x(G) = k. Then the color classes of this coloring of G form k pairwise disjoint
independent sets Vq,---, Vi with Ule Vi = V(G). Then the function f such that f(V;) =1
and f(S) = 0 for all other independent sets is a valid fractional coloring. For this particular
fractional coloring, we have that the sum of the total weights is equal to k. Since we do not
know if this is the minimum possible weight, we know that k& > x(G). And thus we have
xf(G) < x(G) = k. O

Example 3.2.5. We now show an example of what a fractional coloring looks like. In this case,
the graph Cs, the most optimal way to assign values to every independent set is by giving % to
each independent set of 2 vertices, and 0 to every singleton set and the empty set. Since every
vertex is part of 2 such independent sets, so note that there are thus 5 such independent sets
total, so x7(Cs) = 5.

(1.2}

ene——@0s

Figure 11: The optimal fractional coloring of C5. Image sourced from [I].

Definition 3.2.6. A fractional clique of a graph G is a nonnegative real-valued function f on
V(G) such that, for any independent set S in G,

> fla) <t

zeS

This is to say that for fractional cliques we assign a real number to every vertex in G, as
opposed to fractional colorings, where we assign a real number to every independent set. Then,
for fractional cliques, the sum of all the vertices in any given independent set is not allowed to
exceed 1. We refer to the sum of all the values given to every vertex as the weight yet again. We
denote the maximum weight of a fractional clique of G by w;(G), and the regular clique number
of G by w(G), which is the largest clique in G. For this definition, we have a similar lemma to
that of the fractional coloring number.

Lemma 3.2.7. For any graph G,
w(G) < wr(G).
Proof. Suppose that w(G) = k, so G contains a k-clique. We assign a value of 1 to all the vertices

within this k-clique, and 0 to all the others. Since there are no independent sets amongst the
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vertices within the k-clique aside from the vertices on their own, we do indeed have that sum of
the values for every independent set is at most 1, namely when one of the vertices of the k-clique
is included. This means that wy(G) = k, since there are k vertices with a value of 1. Thus we
have w(G) < ws(G). U

We will now go over the outline of the proof.

Proposition 3.2.8. For graphs any G and H,

X7 (G x H) <min{x(G), xs(H)}.

Proof. Assume without loss of generality that x(G) < x¢(H). Given a fractional coloring f of
the graph G, we can construct a fractional coloring f’ of G x H by setting f'(I x V(H)) = f(I)
for all independent sets I of G, and setting f'(U) = 0 for all the other independent sets of G x H.
Note that I x V(H) for all independent sets I does indeed cover all the vertices of G x H. Since
/' then meets all the requirements, we have that f’ is a fractional coloring of G x H with the
same weight as f. Therefore we get our desired result. O

Example 3.2.9. We show an example of such a coloring f’ based on a fractional coloring f, in
this case that of the graph Kj.

Figure 12: Fractional coloring of Ko x K3 (right) based on the fractional coloring of K3 (left).

Thus, all we would now need to do to prove Hedetniemi’s conjecture is true in the case of
fractional colorings, is to show that

X (G x H) = min{x;(G), x;(H)}

for any graphs G and H. The fractional chromatic number and the fractional clique number
can be seen as two linear programming problems which are dual to each other. Thus, by the
duality of linear programming we know that for any graph G, x(G) = ws(G) [E]. Thus, to prove
Hedetniemi’s conjecture, it would suffice to prove that

wr(G x H) > min(ws(GQ),ws(H)).

In order to prove this, we look at the mapping ¢, ;. For a maximum fractional clique g of G
and a maximum fractional clique h of H, @4, is defined as ¢4 n((x,y)) = g(x)h(y). Then, the
mapping
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Pg,h
max (7 (G), w0y (D)) 3.2)

is a candidate for being a fractional clique of G x H. If it is indeed a fractional clique, then

its total weight would be equal to

u.)f(G)wf(H)
max{wy(G),ws(H)}

= min{ws(G),ws(H)},

and then we would have that w¢(G x H) > min(ws(G),ws(H)). Thus we aim to prove that
the aforementioned mapping [3.2] is indeed a fractional clique of G x H.
The following definition is utilized in the proof.

Definition 3.2.10. We define the neighborhood of a vertex x in a graph G by
Ng(z) = {2’ € G | {z,2'} € G}.
We define the closed neighborhood of a vertex x in a graph G by
Nglz] = {2’ € G | {z,2'} € G} U {z}.

Lemma 3.2.11. For f a maximal fractional clique of the graph G, and X an independent set
of G, we have that

f(Na[X])
fX) = wr(G)

where f(X) =3 ,ex [(2).

Proof. We let G' = G — Ng[X]. For any Y an independent set of G’, we know that X UY
is an independent set of G. Thus we have that f(X)+ f(Y) <1 = f(Y) <1 - f(X).
Suppose f(X) = 1, then we have that f(Y) <0, so f(y) = 0 for all y € G’. This means that
f(Ng[X]) = w¢(G) and this lemma is true. Now suppose that f(X) < 1. Let f: V(G'") — [0,1]
be defined by f'(z) = f(z)/(1 — f/(X)). Then for Y an independent set of G’, we have that
f/(Y)=f(Y)/(1—- f(X)) <1. Thus, f’is a fractional clique of G’. Recall that w;(G) denotes
the maximum weight of a fractional clique of G, so then we get that f'(G') < ws(G') < ws(G)
since G’ C G. This implies f(V(G")) = >, ce f(x) = f/(V(G)(1 = f(X)) Sws(G)(1 — f(X)).
We know that f(V(G’)) + f(Ng[X]) = ws(G), so inserting the inequality for f'(V(G’)) yields

(1= f(X))ws(G) + f(Na[X]) = ws(G)

f(Ng[X])
- f(X)+ T Q) >1
f(Ng[X])
This proves the lemma in both cases. O

In the article [19] this lemma is then used to prove the following lemma.

Lemma 3.2.12. Assume G and H are graphs, g is a mazimum fractional clique of G and h is a
mazimum fractional clique of H. Let @q 5 : G x H — [0, 1] be defined as ¢qn((2,v)) = g(x)h(y).
Then for any independent set U of G x H, we have ¢4 ,(U) < max{ws(G),ws(H)}.
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This would then in turn prove that is indeed a fractional clique of G x H with total weight
min{w;(G),w;(H)}. This then implies that

wp (G x H) = min{uwy (G),ws(H))

and thus we would get the equality, proving Hedetniemi’s conjecture is true in the case of frac-
tional colorings. For brevity’s sake, the proof for this lemma is omitted from this thesis, but can
be found in [I9]. All definitions utilized in the proof have already been discussed in this section,
so a read-through is recommended if you are interested in this topic.

3.3 Directed graphs

Directed graphs are a specific kind of graph where edges are typically depicted as pointed arrows,
indicating that the edges are not unordered pairs such as in regular graphs. For example, in a
regular graph, the edges {v1,v2} and {v2,v;} refer to the same edge. This is not the case for
directed graphs, where all edges are ordered pairs, i.e going from vy to vs or vice versa.. Asis to
be expected, this affects the product of directed graphs as well. In this section we will go over
some definitions specific to directed graphs, and prove that Hedetniemi’s conjecture is false for
these graphs. The definitions and proof are adapted from [10].

Definition 3.3.1. A digraph (directed graph) D is a pair D = (V, A), where V = V(D) is the
set of vertices, and A = A(D) is the set of arcs, edges with an initial and a terminal point. A(D)
is a set of ordered pairs of vertices.

One can view regular graphs G(V, E) as symmetric digraphs, i.e digraphs where, if (v1,v2) €
A(D), then automatically also (ve,v1) € A(D). Conversely, a digraph is called antisymmetric
if it is not symmetric. In this section we aim to prove that

X(Di x Dj) # min{x(D;), x(D;)} (3-3)

in general for directed graphs. Note that we define the chromatic number of a digraph x(D)
as the chromatic number of its symmetric modification, constructed by adding a reversed edge
for every pair of vertices which only have an edge going one way. We denote the symmetric
modification of a digraph D by D. We will also make the distinction between regular edges and
arcs by using {v1,v2} to indicate an edge, and (vy,vy) for arcs to avoid confusion.

As an aside, we briefly define arc-colorings on digraphs. We will not utilize this definition for
our proof, but on the topic of colorings of directed graphs, it is interesting enough to mention.

Definition 3.3.2. We say two arcs are consecutive if the start point of one arc is the end point
of the other.

Definition 3.3.3. An arc-coloring is a coloring of all arcs in a digraph such that no two con-
secutive arcs have the same color. The least number of colors it takes to do this is called the
arc-chromatic number ¢(D).

While not necessarily relevant for the remainder of this section, [6] discusses this type of
coloring more in-depth and also presents an interesting link between ¢(D) and x(D) for a digraph
D, namely that if ¢(D) < n, then x(D) < 2™.

We now go back to discussing products of directed graphs. For these graphs, our initial
definition of products of graphs still holds.
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(0,0 0,1 (0,0) (0.1)
)

170 1,1 (170 1.1
.,(\) .( ) (1°0) (1,1)

Figure 13: On the left are two directed graphs and their product, on the right are the symmetric
modifications of the same two graphs and their product. Note the importance of the direction
of the arcs in the former case.

Example 3.3.4. We show this point with an example of what a product of two digraphs might
look like.

We can see that for the product of two digraphs, an edge ((vo, ug), (v1,u1)) only exists if the
arcs (vo,v1) and (ug,u1) exist in the first and second graph, respectively. If the first graph only
had the arc (v1,vp), the edge ((vo,uo), (v1,u1)) would not exist in the product.

Before we show that there does indeed exist such a counterexample to Hedetniemi’s conjecture
in the case of digraphs, we will first show when this is not the case.

Theorem 3.3.5. The product of two 3-chromatic digraphs is 3-chromatic.

Proof. Note that any 3-chromatic digraph has an antisymmetric cycle of odd length (as proven
in Thus we aim to prove that the product of any two antisymmetric cycles C,, and C,
(with p, ¢ odd and C,, C, constructed such that C),, and C; are cycles) is not 2-colorable.

We first show that the number of vertices with degree 2 in C, x C, is odd. By the degree
of a vertex v of a digraph we refer to the sum of the outdegree (arcs that have v as its initial
point) and the indegree (arcs that have v as its terminal point) of a vertex. We know for C, and
C, that the number of vertices with outdegree 2 and indegree 2 are equal. Thus, in the product
Cp x Cy, the number of vertices with degree 4 and degree 0 are equal as well, and thus even.
This is because a vertex (u,v) in the product C), x C;, has degree 4 if u, v are either both vertices
with indegree 2, or outdegree 2 in C, and C, respectively, and it has degree 0 if u has outdegree
2 and v has indegree 2, or vice versa. In all other cases, u, v has degree 2. Note that since ¢ and
p are both odd, the number of vertices in the product is odd. Since the number of vertices with
degree 4 or 0 is even, the remainder, so the number of vertices with degree 2, must be odd.

Assume that we can color Cp, x C,; with only 2 colors, 0 and 1. We use n(%, k) to denote the
number of vertices with degree ¢ colored by k. Then the number of arcs of the product is equal
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to
2n(2,0) +4n(4,0) = 2n(2,1) + 4n(4,1)
since every arc contributes a value of 1 to each of the two colors. We can reduce this to
n(2,0) +2n(4,0) = n(2,1) + 2n(4,1)

which shows us that n(2,0) + n(2,1) must be even. However, this contradicts the fact that the
number of vertices in C, x C; with degree 2 is odd. Thus, C}, x Cj is not 2-colorable. O

This theorem proves to us the existence of a lower bound for the conjecture. We next show
that Hedetniemi’s conjecture does indeed fail when we increase the chromatic number for the
two initial digraphs at the hand of a counterexample.

Theorem 3.3.6. Hedetniemi’s conjecture is false for digraphs with chromatic number > 3.

Proof. We define two graphs D, and D}. D, = ({1,2,--- ,r}, {(;,7/)1 <i<j <r}) withr > 3,
so a digraph where every vertex only has arcs in the direction of vertices with a greater value than
its own. Dy is derived from D, with the only difference between the two being that the arc (1,r)
is reversed in D}. It can then be checked that x (D, x D) = r—1, while x(D,) = x(D}) =r. O

r

Example 3.3.7. See the figure below for an example of this construction.

This proves thus showing that Hedetniemi’s conjecture is false in the case of directed
graphs.
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Figure 14: Counterexample of Hedetniemi’s conjecture for digraphs in the case of r = 4 with
respect to the construction in [3.3.6]
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4 General refutation of Hedetniemi’s conjecture

Now that we have looked at some cases in which the conjecture is either true or false, we move on
to discuss the general case of Hedetniemi’s conjecture. The question of whether this conjecture is
true remained unanswered for quite a long time, and several strategies for tackling the problem
had been thought of over the years [I8], including Hajés’ construction and exponential graphs.
But in 2019, a paper was released [I1], titled ”Counterexamples to Hedetniemi’s Conjecture”
disproving this conjecture using the latter of the two mentioned strategies, along with strong
products and results from other branches of graph theory, including fractional coloring among a
few others. Said paper in which this refutation is given is rather brief and densely packed with
definitions that can be quite complex for those who are not yet intimately familiar with this
topic in graph theory. Thus, in this section the paper will be expanded on and every step will
be handled with more attention to detail to make the proof more graspable.

4.1 Exponential graphs

As the counterexample uses a lot of complicated concepts and definitions, we will start by
going over the most important and recurrent ones in his paper. Namely, exponential graphs.
Many parts behind the paper’s method to disprove Hedetniemi’s conjecture require the use of
exponential graphs, as these types of graphs are utilized to ultimately build up to a construction
of a product of two graphs that serves as a ” counterexample” to the conjecture. This is why it is
important that we take the necessary care to ensure this definition is properly discussed. In this
section, we will discuss exponential graphs, what a suited coloring is on an exponential graph,
and some basic results both to help us better understand exponential graphs and the strategy
behind the refutation.

Definition 4.1.1. For a (finite) graph G, we call £.(G) the exponential graph of G with respect
to ¢ colors. This means that every vertex of £.(G) is a different map V(G) — {1,---,c}.
We say there is an edge between two mappings ¢ and ¢ if and only if ¢(z) # ¥(y) for every

{z,y} € E(G).

In other words, the exponential graph of G with respect to c¢ colors is a graph where every
vertex is a differently c-colored version of G itself. Every vertex in the exponential graph is a
unique way to color GG, and every possible c-coloring of G is a vertex in £.(G) as well. Note that
in this case we also include colorings which are not proper, meaning for a vertex in £.(G) (or a
coloring of @), we allow two adjacent vertices in that mapping to share the same color.

Proposition 4.1.2. If |[V(G)| = n, then |V(E.(G))| = ™.

Proof. This can be seen by counting all the possible options for maps from V(G) to {1,--- ,c}.
For every vertex in G, we get ¢ colors to assign to it, and we have n vertices in G, so this gives
us ¢" different maps. O

One can also deduce from this why it is called an exponential graph.
Example 4.1.3. Below is an example of a graph and the vertices in its exponential graph.

From this point onward, we will use ¢ to denote a (possibly not proper) coloring of G (i.e. a
mapping V(G) — {1,---,c}). This means that every ¢ is a vertex of £.(G). We use Im(yp) to
denote the set of the colors assigned to all the vertices in G by the mapping ¢. For example, if
G has 3 vertices, and ¢ assigns them the colors 1, 2, and 1 respectively, then Im(yp) = {1,2}.

Additionally, we use ¥ to denote a c-coloring of £.(G) (i.e. a mapping E.(G) — {1,--- ,¢}).
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Figure 15: On the left is the graph Ko, and on the right are all the vertices of the graph £»(K>)
are shown as black dots with their respective mappings of Ky above.

Definition 4.1.4. We say a coloring ¥ of £.(G) is suited if, for every color i, i is assigned to
the constant mapping (%" which sends every vertex of G to i.

Example 4.1.5. We show an example of a proper and suited coloring to illustrate this definition.

X
[ ]
1 2 2 1
1 2 1 2
(1,1) (2,2) (2,1) (1,2)
L — ] ] L
Y
[ ]

Figure 16: A proper suited coloring of £.(K3) with ¢ = 2. On the left is K5, and on the right is
the graph &.(K>). As it is a suited coloring, the constant mappings (1,1) and (2,2) are given the
colors 1 (blue) and 2 (red), respectively.

Note that every vertex in &.(K3) represents a different mapping of colors onto Ky, and is
labeled accordingly. For example, the label (1,1) indicates that both vertices of K5 are assigned
the color 1 on this vertex of £.(K32). (2,1) and (1,2) are assigned the color 1, but assigning them
the color 2 would have also given us a proper suited coloring, or assigning 1 to either and 2
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to the other. There is an edge between (1)) and ¢(>?) as they do not share any colors, so
eI (x) # 22 (y) for all edges {x,y} € Ko, where o1V is the constant mapping {v — 1}
and ¢(>?) is the constant mapping {v — 2}. However, for p(?) and p>1) we have that
1 =2 (z) = o2V (y) = 1, thus we cannot have an edge between @2 and ¢(1). Note that
there cannot be any other edges besides {4,0(1’1), g0(2’2)} for the same reason.

We will now prove the following lemma on suited colorings of £.(G).

Lemma 4.1.6. If U is a proper and suited c-coloring of E.(G), then for all p € E.(G), we have
U(p) € Im(p).

Proof. Recall that there is an edge between two mappings ¢ and ¢ if and only if ¢(x) # ¥(y) for
every {z,y} € FE(G). This means that an arbitrary mapping ¢ will always share an edge with
the constant mapping {v — j} for any j not in Im(yp). Since ¥ is a proper coloring, this means
that ¢ can not be colored with any j not in its image. Thus, ¥(p) € Im(ip). O

This lemma was the first of the three main building blocks of the refutation. Now that we
went over the definitions of exponential graphs, proper colorings, and given some examples, we
will discuss the rest of the proof.

4.2 Refutation of Hedetniemi’s conjecture
In this section, we will go over the remainder of the steps of the proof in depth.

Definition 4.2.1. Take a graph G and a coloring ¥ of £.(G). For any color b € [c] and any
vertex u € V(G), we define I(u,b) as the set of all ¢ € U=1(b) such that p(u) = b. We denote a
mapping which is part of the set I(u,b) by 1, at times.

In other words, I(u,b) is the set of all ¢ that are assigned the color b under ¥, but are also
assigned the color b in the vertex u € V(G), so p(u) = b.

Example 4.2.2. In Figure o1 and ¢(12) are both elements of I(z,1), as both of these
mappings have the color 1 (blue) under the mapping ¥, but are also blue in the vertex z in their
own respective colorings of G. Further we have that ¢V € I(y, 1), 92 € I(x,2),I(y,2), and
e € I(y,1) as well.

We now prove a simple result about the sets I(u,b).

Lemma 4.2.3. For every vertex ¢ € E.(G), there exists a vertex u € V(G) and a color b € []
such that ¢ € I(u,b).

Proof. This follows from Since every vertex in E.(G) gets assigned a color b € [¢], this
implies that b € Im(y). Meaning, there is at least one u € G such that ¢(u) = b. O

We discuss another definition before proving the second step in this refutation. By a color
class b we refer to the set of elements (in our case mappings ¢) that are colored with the color b.

Definition 4.2.4. We say that a color class b is v-robust if for every ¢ € W=1(b), there is a
w € N[v] such that p(w) = b, where N[v] is the closed neighborhood of the vertex v. So w is
either v itself or any vertex directly adjacent to v.

Now we have all the necessary definitions and lemmas to prove the following theorem.

Theorem 4.2.5. Take a graph G with |V (G)| = n, and a suited, proper c-coloring ¥ of E.(G).
Then, there is a vertex v € V(G) such that there are > ¢ — V/n3c"=1 color classes W~1(b) that
are v-robust.
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Figure 17: A small example of what v-robustness might look like. Here, the color class b (blue)
is v-robust, so every mapping of G which gets assigned the color b under ¥, must have a vertex
w in the closed neighborhood of v. (These are just a few samples of mappings of a graph G and
is not a comprehensive example.)

Proof. We use the classes I(u,b) in this proof. Recall that we have that every ¢ € £.(G) belongs
to at least one of the classes I(u,b) according to for some u € V(G) and some b € [¢].

Suppose that I(u,b) contains more than n%¢"~2 elements. We call I(u,b) a large class when
this is the case. Take an arbitrary mapping ¢, € ¥~1(b), meaning a mapping ¢;, that is assigned
the color b under the mapping ¥. Now we assume that every element 1, of the set I(u,b)
admits a vertex u' # u, with 1 (u') € Im(¢p). Note that we would then have at most n — 1
ways to pick u', and n ways to pick what the color 1, (') is, because the image of ¢, can only
contain n different elements at most. The other remaining vertices not equal to u’ or u would
contribute at most a factor of ¢"~2 to the amount of mappings 1/, meeting these requirements,
as there are n — 2 vertices left and these can be any of ¢ colors.

Then, since we know that (n — 1) -n < n?, we can say that there are at most n? ways to pick
v’ and 1. Thus we have less than n?c"~2 elements of I(u,b) that meet these requirements.
However, I(u,b) is assumed to be a large class with over n?c"~2 elements, so there must be at
least one 9!, € I(u,b) such that u is the only vector such that ¢/ ,(u) = b, and also Im(¢) N
Im(¢!,) = b, as in both cases there would otherwise be a u’ # u such that ¢/, (u’) € Im(pp).

Keep in mind that every 1, € I(u,b) is also assigned the color b by ¥. This means that, if
I(u,b) is a large class, all 1, are not allowed to be adjacent to any other ¢, € ¥=1(b). Having
these two mappings be adjacent would contradict ¥ being a proper coloring, as they would be
adjacent and share a color. Since we know that ¢/, (u) = b by definition, this means that for
every , there must be at least one w € N(u) such that ¢,(w) = b, as this would not allow ¢,
and ¢/, to be adjacent according to our definition on adjacency in exponential graphs. Thus,
by Definition we have that a color class b is u-robust if I(u,b) is large.

Then, if we have a vertex v € V(@) such that I(v,b) is large for at least ¢ — V/n3¢n—1
color classes, we are done. If this is not the case, we could define more than n3¢”~!' mappings
¢ :V(G) — {1,---,c} for which the value of ¢ on any vertex w does not equal the colors b for
which I(w,b) is large, so ¢ is not part of any large class. Note that there are nc classes I(u,b)
total, n for each vertex u we can choose, and ¢ for each color b we can choose. This means that
all the non-large classes in total only cover n3¢"~! mappings at most, since a large class has to
have n?c"~2 elements at least. Since we can define more than n3c”~! mappings ¢, this means
that one of these mappings ¢ must be a part of a large class, giving us a contradiction. Thus,

such a vertex v € v(G) must exist. O

Definition 4.2.6. For graphs G and H, the strong product G X H is the graph with vertices
V(G)x V(H) like the tensor product, but with an edge between (vo, ug) and (v, u1) iff {vg,v1} €
E(G) or (vo = v1) and {ug,u1} € E(H).
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The only difference between the strong product of two graphs and the tensor product of two
graphs being that only one of the two edges has to be present in G or H for there to be an edge
in GX H, rather than both. We include an example of this to show what this difference looks
like in practice.

Example 4.2.7. Below is an example of a strong product between two graphs.

0 0 (0,0) (1,0)
°® °®

1 1 (071) (1,1)
® ® [ 4

Figure 18: Strong product Ky X Ko

We will use the strong product to construct a counterexample for the conjecture. Mainly, we
will use the product G X K, for a sufficiently large g. We already know that

X(GREK,) x E(GRE,)) <c

as the mapping (u, ) — ¢(u) is a proper c-coloring of any graph of the form G x &.(G). Addi-
tionally, the paper [3] proves the existence of graphs with arbitrarily large girth and fractional
coloring number, which we will use to prove that x(G K K,) > c¢. Namely it states that for all
r € N there exists a constant ¢ such that for n sufficiently large there exists an r-chromatic graph
with n vertices which has a girth > ¢ log n (result from (6) in the paper), which also applies to
fractional coloring. Then all that is left is to show that x(£.(G W K,)) > ¢ for g large enough.
This is would then be a counterexample to Hedetniemi’s conjecture.
We will now move on to prove that x(€.(G K K,,)) > c¢ for sufficiently large g.

Lemma 4.2.8. Let G be a graph with finite girth > 6, and a vertez v € G as in Theorem[{.2.5]
For an integer ¢ and ¢ = [3.1q], there is a clique M in the proper suited c-coloring of E.(GR K,)
of size ¢ — q.

Proof. Firstly, we find a vertex v as in [f.2.5] We define the vertices of the clique M =
{ttg+1,---, e} as follows for ¢ € {1,...,qt and t € {g+1,...,c},

(1.1) we(g,i) =i for all g € V(QG) satistying dist(v, g) € {0, 2},

(1.2) w(g,i) = g+ for all g € V(G) satisfying dist(v, g) = 1,

(1.3) pe(g,i) =t for all g € v(G) satistying dist(v, g) > 3.

We illustrate this in the figure on the next page.
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Figure 19: Two simplified elements of the clique M, but where every vertex represents (v, )
for a single v € V(G), and for all i € [¢]. The bottom red vertex is (v, ) for v the vertex as in
So all the red vertices represent (1.1), the green vertices represent (1.2), and the blue and
purple vertices represent (1.3).

Notice that all p(g,i) with dist(v,g) < 2 get assigned colors independent of ¢, so they are
the same for every ¢t. Due to the assumption of girth on G, we know that we cannot have two
adjacent vertices that both have a distance of 1 or 2 from v, as this would give us a girth of 5
or less. Knowing this, we can see that two vertices both from (1.1) or both from (1.2) cannot
be both adjacent in (G K K,;) and have the same color. Additionally, since ¢ € {1,...,q} and
g+i€{g+1,...2q} are distinct, there does not exist a pair of vertices as defined in (1.1) and
(1.2) such that they are both adjacent in G X K, and share the same color.

(1.3) assigns a different color for every ¢, so no two elements p, pp of M will have use the
same color for their vertices in (1.3). Additionally, vertices in (1.3) could only be adjacent to
other vertices in (1.3), which we have just covered, or vertices in (1.1) due to the distance. Since
1 €{l,....,qt and t € {¢g+1,...,c} are disjoint sets, vertices from (1.1) and (1.3) can never
share a color.

This means that for ¢ # ¢/, and all adjacent pairs of vertices (g,1), (h,j) € GXR K, (where we
do not necessarily require that g # h or ¢ # j), we have that p(g,i) # pe (h,j). Following the
definition of adjacency in exponential graphs, this proves that M = {g41,..., e} is a clique in
E(GRK,). O

This lemma will then allow us to show that we will have x(&.(G K K,;)) > ¢ with ¢ = [3.1¢]
for a sufficiently large q.

Theorem 4.2.9. Let G be a finite graph with finite girth > 6. Then, for sufficiently large q, one
has x(E.(G KR K;)) > ¢ with ¢ = [3.1¢].

Proof. Assume that £.(G X K,) has a proper suited c-coloring ¥. Additionally, we define the
graph I'¢ by adding a self-loop to every vertex of G. The restriction of ¥ to mappings that are
constant on the cliques {¢g} x K, C GX K, is a proper coloring A : £.(T'g) — {1,...,c}, and
we find a vertex v as in Theorem with respect to the coloring A. The reason we define
such a graph I'¢ and this mapping is because the clique M we have defined earlier also consists
of proper colorings £.(I'¢) — {1,...,c}. The second mapping we will construct will also be a
proper coloring of £.(T'¢) to {1,...,c}, and we also later use the mapping A to find a v-robust
color class to suit our needs.
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By Lemma we know that the clique M on £.(GK K,;) with respect to the vertex v has
c—q > 2.1q colors. We use the same notation as in said lemma for all the vertices u; of this clique.
Then, by the pigeonhole principle, we can find a 7 € {¢+1,...,c} such that ¥(u,) ¢ {1,...,2q}.
Since Im(u,) C {1,...,2¢}U{r}, and because of Lemma[{.1.6] we know that 7 = W(y,). Further,
there are only o(gq) color classes that are not v-robust with respect to A in the terminology of
Theorem This means that we can find a v-robust class o ¢ {1,...,2¢} U {7}.

With all of this in mind, we can define a mapping v : G R K, — {1,..., ¢} which is constant
on the cliques {¢} x K, C GX K, by, for all i,

(g, i) = 7 for all g € V(G) in the closed neighborhood N[v]
P =V forallw € V(G) satistying dist(v, g) > 2

We illustrate this in the figure below as well.

sigma =/={1,...2q,tau}

Figure 20: An element of the clique M (left) and the mapping v (right), where every vertex
represents the mapping for a single v € V(G), and for all i € [q].

Then, this mapping is adjacent to p,, since Im(u,) = {1,...,2¢}U{r} and o ¢ {1,--- ,2q}U
{7}, and the vertices of v that are assigned a value of 7 can only ever be adjacent to vertices of
1 that get assigned a value within {1,...,2q}. Since o is v-robust with respect to A, we cannot
have that ¥(v) = o by Theorem since there is no w € N[v] such that v(w,i) = o by
construction of v. Since the only other color in the image of v is 7, this would imply by Lemma
[4.1.6] that W(v) = 7. However, this would mean that W(v) = ¥(u,) = 7, which is a contradiction
given they are adjacent. Thus, no such proper suited c-coloring of £.(G X K;) can exist, and we
conclude that x(&.(G K K,)) > c. O

By the aforementioned paper [3], we can find a graph G that satisfies x(G) > 3.1. If we set
¢ = [3.1q] and choose ¢ sufficiently large, we will get x(G K K;) > ¢ * x7(G) > ¢. Then, we
have both x((GR K,) x £.(GR K,)) = ¢ as we had shown earlier, and x(E.(GKR K,)) > ¢ as we
have just proven in Theorem Thus, we have found a two graphs G X K, and &.(G K K|)
such that min{(GX K,),E.(GR K,)} > ¢, but x((GR K,) x £(GK K,)) = c¢. This means that
Hedetniemi’s conjecture is false in general.

Though this does disprove Hedetniemi’s conjecture at the hand of a counterexample, it would
be quite a challenge to illustrate this at the hand of an actual example, even using a computer.
This is because the construction of this proof shows us that the conjecture fails for some ¢ about
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p33P and with about A vertices, with p < 839.9 Thus this result shows us that it fails for
some ¢ about 3% and for graphs with about (3%5)3" vertices [20].
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5 Progress on the conjecture

Though the conjecture was proven false in general in 2019 as we saw in the last section, there
were still aspects of it that were in need of closure. Namely, for what n = min{x(G), x(H)} is
the conjecture true and false? In this section we will show that the chromatic number of the
product of two 4-chromatic graphs is always 4, that the conjecture is asymptotically false, and
lastly we will show that the conjecture can be false if min{x(G), x(H)} = 5.

5.1 Chromatic number at most 4

One can see that the conjecture is trivially true in the case of 1 and 2-chromatic graphs. In
this section, we will look at 3 and 4-chromatic graphs which are less trivial, and show that the
conjecture is true in those cases, i.e if min{x(G),x(H)} = 3 or 4. We do this at the hand of
exponential graphs. Definitions, lemmas and theorems are adapted from [2].

The outline of the proof is as follows. We first want to prove an equivalency between two
statements:

Conjecture 5.1.1. Let n € N. For graphs G and H, x(G) > n and x(H) > n implies that
x(G x H) > n.

Note that this is Hedetniemi’s conjecture but rephrased, as we know that x(G x H) <
min{x(G), x(H)}.

Conjecture 5.1.2. Let n € N. x(G) > n implies that x(E,(G)) = n.

If these two statements are equivalent for the same n, then to prove Hedetniemi’s conjecture
to be true for 4-chromatic graphs, all we would have to do is show that Conjecture holds
for n = 3.

Proposition 5.1.3. Conjecture and Conjecture[5.1.9 are equivalent for any n € N.

Proof. Assume Conjecture[5.1.1]to not be true for a certain n. That is to say, we can find graphs
G, H that are (n 4 1)-chromatic but x(G x H) = n. for f : G x H — {1,--- ,n} a proper
n-coloring, then we define for each vertex v € H the mapping f, of G by f,(z) = f(z,v), z € G.
Then the mapping a : H — &,(G) which sends each v € H to f, is an edge-preserving map.
Thus we get that n+1 = x(H) < x(«(H)). Thus we have that x(&,(G)) > n, which contradicts
Conjecture [5.1.2]

Conversely, we now assume Conjecture to be false. Namely, we assume x(G) =n+1
and x(&,(G)) > n. Then, G x &,(G) would be a counterexample to Conjecture as we can
obtain a proper n-coloring by the mapping (u, ) — ¢(u), v € G and ¢ € &,(G). This proves
the equivalency. O

From this equivalency we can also immediately prove the conjecture to be true in the case of
n=3:

Corollary 5.1.4. Hedetniemi’s conjecture is true forn = 2, i.e. for min{x(G),x(H)} = 3.

Proof. If x(G) > 3 and G is connected, then &(G) contains exactly one edge, namely the one
between the constant mappings. Thus x(£2(G)) = 2. By equivalency of Conjecture and
Conjecture 5.1.2] we have that Hedetniemi’s conjecture is true for n = 2. O

Now we only need to prove Hedetniemi’s conjecture in the case of n = 3. To do this, we
first must go over a few lemmas on to 3-colorings of cycles of odd length, and their relation to
exponential graphs.
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Definition 5.1.5. Let ¢ € &5(C,,). We say a vertex v; € Cy, is fized if its neighbors have different
colors assigned to them, so if ¢(v;11) # @(vi—1). We say that ¢ has odd parity, or is simply an
odd coloring if it has an odd number of fixed vertices. Even parity is defined analogously.

The reason for the term fized is that if a vertex v; is fixed under a mapping ¢, then any
mapping adjacent to ¢ also assigns the same color to v;.

Lemma 5.1.6. Let ¢ € E3(C,,). Then the number of triples of consecutive vertices vi_1,v;, Vi+1
which get three different colors by ¢ has the same parity as p. If there are an odd number of
such triples then ¢ has odd parity and vice versa.

Proof. We partition C}, into monochromatic intervals of consecutive vertices. Then every interval
{vi, -+ ,vi4x} for k > 1 will contribute two to the number of fixed vertices, since the only fixed
vertices in this interval are v; and v;4,. An interval with only a single vertex, {v;}, can only
contribute at most one if and only if v;1; and v;—; have different colors. This would make
V;—1, Vi, Vi+1 & triplet, and thus the number of triplets determines whether ¢ has odd or even
parity. O

Lemma 5.1.7. A proper coloring of an odd (resp. even) cycle with at most three colours is odd
(resp. even).

Proof. We prove this lemma via induction on the length of the cycle. A proper coloring of C's has
three fixed vertices. A proper coloring of C; has no fixed vertices if two colors are used, and two
fixed vertices if three colors are used. Take f a proper coloring of C), for n > 5. The statement
is true if every vertex of C), is fixed, so assume that there is a vertex v; which is not fixed, and
we let f(v;) = 2 and f(vi41) = f(vi—1) = 1. If we were to remove v; and "merge” the vertices
vi+1 and v;_1, we would get a (n — 2)-cycle which still has f as a proper coloring. Note that the
number of fixed vertices decreases by two if f(v;y2) = f(vi—2) = 3, since that would mean that
v;4+1 and v;_1 were fixed vertices. In any other case the number does not change. Therefore the
parity of f is the same as the parity of the resulting coloring of C),_s, proving the lemma. [

Lemma 5.1.8. Let p; and w2 be connected by an edge in E3(Cy). Then, f1 and fo have the
same parity.

Proof. We can construct every pair of mappings ¢1, po in E3(C,) by looking at the product
C,, x K5. The graph C,, x K5 consists of solely a cycle of length 2n if n is odd, and two cycles
of length n if n is even. Figure [21] visualizes this. Denote by aq, as the vertices of Ko. We define
a proper coloring ¢ of this product by ¢(v;,a;) = ¢;(v;) for i =1,--- ,n, j = 1,2. Note that by
the construction of ¢, that this defines p; and @9 such that they would be adjacent in E3(C,,).
We now show that they have the same parity. Due to their adjacency in the exponential graph,
a vertex v; is fixed by 7 if and only if v; is fixed by @2, as we have remarked earlier in this
section. This tells us that the sum of the number of vertices fixed by ¢; and ¢ is equal to the
number fixed by . By Lemma [5.1.7] this must be even since ¢ is proper. We conclude that ¢4
and o must have the same parity. O

From this lemma we can conclude that all vertices in a connected subset of £3(C),) have the
same parity.
For the proof of the following proposition, we refer to the article [2].

Proposition 5.1.9. Let C,, with vertices vy, - -+ , v, and C,, with vertices uy,--- , U, be two odd
cycles. Then for any proper 3-coloring f of Cp x Cp,, the parity of the induced colorings f,, is
different from the parity of fu;.
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(1,1) (3,2) (

2.1)
(2,2) (2,1) 12@32 22@(42
(3.1 (1.2) \(41 \11

Figure 21: C3 x K5 and Cy x Ko, respectively, where {1, 2}, {2,3}, and so forth are edges in C,,.
C3 x K> has a single cycle of length 6, and Cy x K3 has two cycles of length 4.

We will now prove the main result that £(G) is 3-chromatic for all 4-chromatic graphs G at
the hand of a few additional propositions and theorems. To do this, we consider the restriction
of mappings ¢ € E3(G) to odd cycles of G.

It is likely that a coloring ¢ € &5(G) restricted to each odd cycle of G such that it has odd
parity does not exist. But in the case that it does, the following proposition serves to prove that
it is then an isolated vertex of &3(G).

Proposition 5.1.10. Let G be a 4-chromatic graph. Suppose there is a mapping ¢ € E3(G)
whose restriction to each odd cycle of G has odd parity. Then, ¢ is an isolated vertex of E3(G).

Proof. We assume that {p, ¢} is an edge of E5(G). We define:
X ={z € V(G) | 3y € V(G) such that {z,y} € E(G),¢o(z) = ¢(y)}.

We claim that the induced subgraph G(X) of G has chromatic number at least 3. Trivially,
X(G(X)) > 2 since G(X) has at least two vertices which share an edge. Suppose X is 2-
chromatic and separate it into its two respective color classes, X = X; U X5. We then get a
proper f of G defined by

o) = o) forveV(G)— Xy
fo)= {w(v) for v e Xy

which is a 3-coloring since ¢, are 3-colorings. This contradicts G being 4-chromatic. Thus X
cannot be 2-chromatic, so x(G(X)) > 3 and G contains an odd cycle which we denote by C.
Thus by Lemma|5.1.6{and by ¢ having odd parity, there exists at least one consecutive triplet of
vertices v1,v2,v3 on C with {p(v1), p(va), (vs)} = {1,2,3}. Without loss of generality assume
©(v;) = i, then since vy is adjacent to both vy and v3 and by adjacency of ¢ and 1, we require
that @(v1) # ¥(v2) # p(vs). So, ¥(v2) = 2. By the definition of X, there is a vertex u € G
adjacent to ve such that p(u) = p(ve) = 2. Therefore p(u) = ¥ (ve) = 2, which contradicts their
adjacency since we require p(z) # ¢ (y) for all edges {z,y} € £3(G). Thus ¢ cannot have any
adjacent vertices. O

Theorem 5.1.11. Let C,, be an odd cycle. Then each component of E5(Cy,) with even parity is
at most 3-chromatic.
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Proof. Let T be an even-parity component of £5(C,,) and assume that H is a connected subgraph
of T which is 4-chromatic. We define a 3-coloring ¢ of the graph C,, x H by ¢(v,h) = h(v).
Then ¢ is a proper coloring of C,, x H and for each h € H, the induced coloring ¢y, is simply the
coloring h itself. Thus, by Proposition [5.1.9} each induced coloring ¢, v € C,, has odd parity
on every odd cycle of H, since every coloring ¢; must have even parity. Additionally, two such
colorings ¢,, ¢, are adjacent in £3(H) whenever v, v’ are adjacent in C,, due to ¢ being a proper
coloring. This contradicts Proposition [5.1.10] O

Now we have proven everything we need to show that the conjecture is true in the case n = 4.
Theorem 5.1.12. &5(G) is 3-chromatic for all 4-chromatic graphs G.

Proof. Let H be a 4-chromatic connected subgraph of £5(G), and hy € H. From [5.1.10] we know
that there must exist an odd cycle C' in G such that the restriction of hy to C' has even parity.
Define a mapping « : H — &3(C) by mapping each coloring h € H to its restriction on C. It
is clear that « is edge-preserving. Therefore o maps H into a component T of £5(C) with even
parity. Therefore x(H) < x(T), in contradiction to Theorem since T is a component with
even parity with a chromatic number higher than 3. Thus, a 4-chromatic subgraph of £3(G)
cannot exist. O

This proves that Conjecture is true for n = 3, namely that x(G) > 3 implies that
x(€3(G)) = 3. This in turn proves that Conjecture [5.1.1]is true for n = 3, so if
min{x(G), x(H)} =4, then x(G x H) = 4.
5.2 Hedetniemi’s conjecture is asymptotically false

In section 4, we thoroughly discussed the refutation of Hedetniemi’s conjecture by showing that,
for ¢ sufficiently large, x(E.(GR K,)) > ¢+ 1 for ¢ = [3.1¢], in turn proving that x((GX K,,) x
E(GRK,)) = ¢ while min{x(GRK,), x(E.(GRK,))} > ¢+ 1. In this section we are interested
in this "gap” in value between x(G x H) and min{x(G), x(H)}. We can phrase this in terms of
the Poljak-Rédl function.

Definition 5.2.1. The Poljak-R6dl function is a function f : N — N defined as follows:

f(n) = min{x(G x H) [ min{x(G), x(H)} = n}.

In some pieces of literature this function is also often defined as

f(n) = min{x (G x H) | x(G), x(H) = n}

or

f(n) = min{x(G x H) | x(G) = x(H) = n}.

However, note that these ultimately all mean the same thing. For its similarity to Hedet-
niemi’s conjecture, we use Definition [5.2.1

In terms of this function, in section 4 we essentially proved that f(n) < n—1. In this section,
we want to analyze what happens with f(n) as n approaches infinity. Namely, we want to prove
the following in this section:

Proposition 5.2.2. lim,_,.(n — f(n)) = oc.
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To do this, we again look at exponential graphs along with strong products, similar to the
proof in section 4.

In fact, the proof uses a small subgraph of £.(G K K,;), and thus it is possible that this
construction already provides examples such that show lim,,_,~ f(n)/n = 0. At the same time,
we know that x (G K,) > ¢, and the fractional version of Hedetniemi’s conjecture is true, this
would imply that x(E.(G X K,)) = c¢. Thus we might assume x(E.(G X Ky))/c to be bounded,
and we would have to prove lim,_,« f(n)/n = 0 via a different construction.

We will now prove Proposition [5.2.2

Proof. Choose a positive integer d. We will prove that for n sufficiently large, we have f(n+d) <
n. Let G4 be a graph with girth at least 6 and x;(Gq) > 8d. Then by Theorem we have
that x(E.(GaXK,)) > ¢+ 1 while x(Gq K K,) > 2cd. Now we consider the graph E.q(Gq X K,).
Fori=0,1,---,d—1, we let Q; be the subgraph of £.4(G4 X K) induced by the functions with
the image in {ic+ 1,ic+2,--- ,ic+ ¢}, so

Qi ={p €&a(GyRK,) | Imyp € {ic+ 1,ic+2,--- ,ic+c}}.

Note that each Q; is isomorphic to &.(Gq¢ ¥ K,;) and hence at least ¢ 4+ 1 colors are needed to
color each @);. For each i # j, each function in @); is adjacent to each function in @}, since their
images are disjoint. Hence, x(Eqc(Ga W Ky)) > d(c+1). As x((Ga R K) x E4e(Ga R Ky)) = dc
and x(Gq W K,) > 2¢d > cd + d, it follows that f(dc + d) < de.

This tells us that for every d there are infinitely many values of n in the form of dc 4+ d such
that n — f(n) > d. Now we only have to show that the gap between f(n) and n does not close
going from one value of ¢ to the next. Note that ¢ = [3.1¢], where ¢ is any value above a fixed
threshold, and [3.1(¢+1)] — [3.1¢] < 4. Thus we only need to examine the values n = dc+d+i
where 7 < 4d, and we can suppose that ¢ > 5. The graph E.q44;(Gq W Ky) has £.4(Gq K K,) as
a subgraph, namely all the mappings with image {1,--- ,ed}. For j =ecd+ 1,ed+2,-- ;cd + i
the constant mappings ¢; with image {j} are all adjacent to each other, and each is adjacent to
all the mappings in £.4(Gq¢ X K,;). Hence

X(Eeari(Gg K Kq) > x(Ea(Ga X Kq) 41> cd+d+i.

For ¢ < d(c—1), we also have x(G¢®R K,) > ed+d+1, so that f(cd+d+1i) < cd+1i. Altogether,
the inequality f(n 4+ d) < n is established for all but finitely many values of n. Thus we can
conclude that lim, . n — f(n) = co. O

5.3 Product of 5-chromatic graphs can be 4

In section 4 we saw that, at the hand of that construction, the conjecture would fail for some c
around 3°°, which is rather large and makes it near impossible for us to illustrate in the form of
a counterexample. However, the year after the refutation, it was proven that the conjecture also
fails with min{x(G), x(H)} = 126 [20]. Shortly thereafter this number was lowered down to 14
in [13]. In early 2023 a proof was published showing that conjecture can also fail if at least one
of the two graphs has a chromatic number of 5 [14]. Earlier in this section we discussed the proof
on the conjecture always being true in the case of a chromatic number of 4 or less, so this does in
fact answer the last remaining question to do with the general case of Hedetniemi’s conjecture.
In this section we will go over the outline of this proof, but we omit quite a lot details due to
the complexity and length of the proof.

The proof uses a definition which we can use to construct a statement similar to saying
that Hedetniemi’s conjecture is true for a certain n = min{x(G), x(H)}, namely the following
definition.
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Definition 5.3.1. We say a graph K is multiplicative if it satisfies the following property: if
G x H admits a homomorphism to K, then either G or H admits a homomorphism to K.

A proper n-coloring of a graph G is a homomorphism from G to K,,, the complete graph on
n vertices. The homomorphism is simply given by sending every vertex of G to the i-th vertex
of K, where i is the color assigned to said vertex. Thus, if K, is multiplicative for a certain
n € N, this is equivalent to saying G x H is n-colorable = G or H is n-colorable. Hedetniemi’s
conjecture is thus equivalent to saying that K, is multiplicative for every n € N. In section 5.1,
we showed that K7, Ko, and K3 are multiplicative. The article we will discuss in this section
[14] proves that K4 is non-multiplicative, so if x(G x H) = 4, it does not necessarily imply that
min{x(G), x(H)} = 4. Note that in section 5.1 we did prove the opposite implication, namely
that min{x(G),x(H)} =4 = x(G x H) =4.

The article even gives a counterexample showing K, is non-multiplicative, with
min{x(G), x(H)} > 5 while x(G x H) = 4. We will go over the construction of such G and H,
namely for G = £,(213(K3)), and H a subgraph of G. We show a depiction of H on the next
page, and discuss the construction of the graph Q;3(K3).

Definition 5.3.2. The family of graphs Q,,(K,,), named the universal graphs for wide colorings,
is defined as follows.

We write m as a power of 2, i.e m = 2F for some k € N, and we let v > 2k and w = 2v+1. Then
the vertices of Q,,(K,,) are (v + 1)-tuples (X, X1,...,X,) such that |Xo| =1 and X4,..., X,
are nonempty subsets of V(K,,) which satisfy the following two requirements:

X,NX;py=0fori=0,...,v—1,

XZ‘ CXiJ’_Q fori:O,...,v72.

Then we say there is an edge between two vertices (Xo, X1,...,X,) and (Yp, Y1,...,Y,) if the
following two requirements are met:

X, CYyand Y; C X4 fori=0,...,v—1,

X;NY;=0foralli=0,...,v.

So for our graph G we use m =8, v = 6 and w = 13. We use the following theorem to show
that the chromatic number of G is 8.

Theorem 5.3.3 ([5l,[I7]). For m > 2 and an odd w, x(Qy(Kpm)) = m.

Recall that we have G = Q43(Ks) and H = £4(Q13(K3g)). Since we can color G x H properly
with 4 colors with the coloring (u, ¢) — ¢(u), all that remains to prove is that x(€4(13(Ks)) > 5.
To do this, the articles utilizes the following definition, where S is a subset of V(K ), and a, b
are two distinct vertices of K,,, and i € {0, ...,v}. We define the function ai’i e V(E(Qw(Kp))):

a

s {a if SN X; £ 0
5

b otherwise

and forl R, T two disjoint subsets of V(K,,,) and a, b, ¢ three distinct vertices of K,,. Then the
function 70T € V(€,(Qw(K,n))) is defined by:

a,b,c

a IfRNX; 75 0
T;,ﬁ,CT: b ifRNX;=0and TNX; #0
¢ otherwise
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{dc} | {ad}

{cd} {ac} {da}

{cb} {cb}
! {dc} {bec} ¢ {cd} {bd}

{ac} {ad}

{ba} | {bd} {db} [ {ba} | {bc} {cb}

Figure 22: A subgraph of £4(Q13(K3s)). The depicted graph is 5-chromatic, and if the full graph
is multiplied with the 8-chromatic graph Q;3(Ks) itself, gives a 4-chromatic product. A copy
of K, is present in the graph, given by {a,b,c,d}. Vertices are labeled with a, b, ¢, and d to
indicate which of the vertices of the K4 they are not adjacent to. Not all edges are shown for
clarity. Figure from the article [I4].

Then, in terms of these functions, the top line in figure [22] is the sequence

0,{1,2,3,4} _1,{1,2},{3,4} _2,{1,2} _3,{1},{2} _4{1 5{1} _6,{1}
g T > Ope Ta,d,b ,Uc,i }’ Ope 2 Tqp -

a,b » leyd,a ’
In the article there are 4 different lemmas that altogether prove that 02:;5172’374} is indeed
adjacent to Tiji’z}’{3’4}, and that 701’6;{2’2}’{3’4} is indeed adjacent to Jg’c{m}, and so forth. The

last of these 4 lemmas also allows us to show that 03,;1} is adjacent to 02’31}, the vertex right

below it in the figure. For now we only discuss the first and the last of these lemmas as we need
these to construct a set of vertices on Q13(Kg) that show that the chromatic number of this
graph is at least 5.

Lemma 5.3.4. For S a subset of V(K,,), a,b, ¢ distinct vertices of K,,, and alli € {0,...,v—1},
we have that U;’i and aij‘ll’s are adjacent to each other.
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Proof. We let X = (Xo,Xl, X)) and Y = (Y, Y3,...,Y,) be adjacent vertices in Q,, (Kpp).

We want to prove that oY (X) # oS (Y). By our definition, J;"Z( )€ {a b} and o255 (V) €

{c,a}. If O’a b( )=1b then the functions will not be equal. If we have o Lz = a, then we must

have that SN X; # 0. Since X and Y are adjacent in Q,,(K,,), we must have that X; C Y.
This means that ;1 also shares an element with S, and S NY;y 1 # () as well, meaning that
ol = c. So in both cases, ob S( ) # oS (Y). O

4.{1} .

This lemma shows us that ocl 6 {1}.

s {1}

is adjacent to ab’{l}, and that o} ’{ Vs adjacent to o,
The next lemma we prove is similar to the one above, but it will allow is to prove that o,

is adjacent to 06 A1) , the vertex right below it in the figure. Most importantly, this lemma Wlll
also allow us to pomt out a segment in our graph H = £4(Q13(Ks)) that is 5-chromatic.

Lemma 5.3.5. Let x be a single vertex of V(K,,), and let a,b, ¢ be three distinct vertices of K.
Fori€{0,...,v}, oF {x} and oq ’{ Y are adjacent.

Proof. We let X = (Xg, X1,...,X,) and Y = (Y, Y3,...,Y,) be adjacent vertices in Q,, (Kp,).

If o ’{I} = b then o ’%E} # 04 ’{I} since Ua’{c “} i either a or c. If o, ’{I} = a, then since S = {z},
we must have that © € X; since {x} N X; is nonempty. Since for two adjacent vertices X and Y
in Q, (Km) we require that X; NY; = for all ¢ € {0,--- ,v}, we must conclude that z ¢ Y; and

that o {Cx} = c. Thus, in both cases, we get that O’Z {x} #+ crz {x}. O

This lemma does indeed show us that o, ’{ Vis adjacent to o ;{1 Y since a,b, d are three distinct
vertices of K. It also assists in our constructlon of a counterexample. The next lemma serves
to prove that one of the vertices in our construction must be assigned a specific color.

Lemma 5.3.6 ([14]). Leti = 0,1, ,k — 1 and recall that 2 = m. There exists a set S C

V(K of size 287'=1 and distinct vertices a,b of K, such that the color of 021 S is a.

We can use this lemma to construct our counterexample. Namely, we now know that in our

graph &,(13(K3g)), there exists a vertex « € Kg and two distinct vertices a, b in K, such that
the color of UQk 24} is a. We let ¢, d be the other two distinct vertices in K4 that are not a or

b. By Lemma [5 - we have that the sequence

2k, {z} o2k—1 {x} 2k—2,{m} 2k—1,{z} _2k{x}
Ub,c ’ c a a,b ’ Ud,a ’ Ob,d .
2k,{z} .

2k—1,{x} 2k71 {z} 2k—2,{x}

is such that o is adjacent to oc,q , " is adjacent to o ab and so forth.
The central vertex agkb 212} has the color a, and since Uclfl L) and 02]C ! {‘T} are adjacent, they
must have the color ¢ and d respectively. This must mean that 02k {x} and 0% =} must both

have the color b due to their adjacency as well. However, by Lemma we know that O'2k Az}

and o, ’{ b are adjacent, so they cannot have the same color. This gives us a contradiction, and
thus X(g4(913(K8)) Z 5.

This disproves Hedetniemi’s conjecture in general in the case of x(G x H) = 4, namely if
G = Q13(Ks) which has a chromatic number of 8 as we have seen at the hand of Theorem m
and H = &4(G) which, as we have just proven, has a chromatic number of at least 5.
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