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VOORWOORD

In deze scriptie wordt gekeken naar de ‘planairheid” van een graaf. In de inleid-
ing staan een aantal basisbegrippen uit de grafentheorie als voorkennis genoemd.
Daarna wordt in het hoofdstuk 'Planaire grafen” meer inzicht gegeven in wat een
planaire graaf is en hoe die zich gedraagt. Belangrijk daarin is de laatste stelling die
een 'dan en slechts dan als’- relatie geeft tussen het planair zijn en de subgrafen van
een graaf.

Na deze hoofdstukken worden in het hoofdstuk "Snijgetal” en 'Dikte” twee begrip-
pen besproken die juist kijken naar hoe 'niet-planair” een graaf is. de vraag is: wat
kunnen we nog zeggen over een graaf die niet planair is?.

Als laatste bespreek ik de RIPS: de Rechtlijnige Ingebedde Planaire Subgraaf. In
het bijzonder bekijk ik de RIPSen van volledige grafen (zie figuur 1) en bespreek ik
waarom de Kg hierin bijzonder is.

Tijdens mijn scriptie heb ik ontelbaar veel contacturen gehad met mijn begelei-
der Wieb Bosma. Hij gaf me de ruimte om van onderwerp te veranderen als ik iets
tegen kwam wat ik wilde onderzoeken en liet me daar zelf induiken. Ook gaf hij
me richting als ik even niet meer wist welke kant ik op moest. Door hem heb ik een
scriptie kunnen maken die me gedurende het hele proces echt geboeid heeft.

Hier wil ik hem graag voor bedanken.

K K, Kq Ky
Ks Ks K7 Ks

FIGUUR 1: De volledige grafen K tot en met Ky
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Hoofdstuk 1

Inleiding

Deze scriptie zou eigenlijk over maan/aarde grafen gaan. Als je een landkaart wilt
kleuren zonder buurlanden dezelfde kleur te geven, kan dit met vier kleuren. Maar
wat nu als we de maan koloniseren en die kolonién dezelfde kleur willen geven als
de landen waar ze een kolonie van zijn? Als we ook in de maankaart geen buur-
landen met gelijke kleuren willen, wordt het aantal kleuren dat je nodig hebt groter.
Toen ik me over dit onderwerp ging inlezen, kwam ik de volgende maan/aarde
graaf tegen:

FIGUUR 1.1: Maan/aarde graaf

Het werd aan de lezer overgelaten om de originele landkaart en de kolonién-
kaart te vinden. Omdat het plaatje helemaal aan het begin van het artikel stond, kon
ik mij niet voorstellen dat dit lastig was. Niets was minder waar. De Kz had ik in
redelijk korte tijd verdeeld in twee planaire grafen, maar de overige 20 lijnen waren
lastiger te plaatsen. Daardoor ontstond mijn eerste vraag: Hoe zie je of een graaf in
twee planaire grafen onder te verdelen is? Uit deze vraag is de rest van mijn scriptie
ontstaan.

Ik zal eerst een aantal definities geven. We beginnen bij het begin: een graaf.

Definitie 1.1 (Graaf). Een graaf G is een paar, bestaande uit een eindige (niet-lege)
verzameling punten V' en een verzameling (richtingloze) lijnen £ C {{u,v}|u,v €
V,u # v}.

Notatie: G = (V, E) of G = (V(G), E(Q))

Uit definitie 1.1 volgt dat er niet meerdere lijnen tussen twee punten kunnen
bestaan. Daarnaast kan er geen lijn bestaan tussen een punt en zichzelf. In andere
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woorden: er zijn geen lussen. Een graaf bestaat dus uit punten en lijnen. Het aantal
liinen dat aan een punt vast zit, kunnen we beschrijven met de graad:

Definitie 1.2 (Maximale) graad). Elk punt in een graaf G heeft een graad. Dit is het
aantal lijnen waar dat punt deel van uitmaakt. De maximale graad van een graaf is
het maximum van de graden van alle punten.

Elke lijn loopt tussen twee punten. In een punt is de graad het aantal lijnen waar
dat punt deel van uitmaakt, maar elke lijn heeft twee eindpunten. Hierdoor wordt
de som van alle graden in een graaf precies 2 - |E(G)|.

Als we naar een hele graaf kunnen kijken, willen we ook naar een gedeelte van die
graaf kijken.

Definitie 1.3 (Subgraaf). Een subgraaf G’ van G is een graaf (V', E’) zodanig dat
V' CVenE CENV' xV')

Van subgrafen gaan we naar meerdere grafen tegelijkertijd. Sommige grafen
lijken zo op elkaar, dat we ze een familie noemen. Een voorbeeld van een familie
grafen zijn de volledige grafen.

Definitie 1.4 (Volledige graaf). Een volledige graaf (op n punten) is een graaf G met
V| =nenE = {uv|u,v € V,u # v}. In andere woorden: alle punten zijn met elkaar
verbonden.

Notatie: De volledige graaf op n punten noteren we als K,

Merk op: als K, nu n punten en m lijnen heeft, geldt dat m = w
De volgende definities horen bij elkaar. Ze geven een idee over hoe de structuur van
onze graaf is.

Definitie 1.5 (Wandeling /Circuit/Cykel). In een graaf G is een wandeling van punt a
naar punt b een rij, door lijnen verbonden, punten waarvan a het eerste en b het laat-
ste punt is. Een circuit is een wandeling waarin het beginpunt gelijk is aan het eind-
punt (a = b). Een cykel is een circuit waarin geen enkel punt twee keer voorkomt,
behalve het begin/eindpunt.

Definitie 1.6 (Samenhangend). Een graaf G is samenhangend als tussen elke twee
punten een wandeling bestaat.

Definitie 1.7 (Bos/Boom). Een graaf G heet een bos als het geen circuits heeft. Een
boom is een samenhangend bos.

Vanuit hier gaan we door naar onze eerste stelling. Dit is een korte stelling met
een makkelijk bewijs, maar toch zal hij later goed van pas komen bij een moeilijker
bewijs.

Stelling 1.8 (Boom). Voor een boom G met n punten en m lijnen geldt n = m + 1

Bewijs. Dit bewijzen we met behulp van inductie naar n.

n = 1: Als G bestaat uit een punt, kunnen daar geen lijnen uit lopen, dus m = 0.

n — n+ 1: Stel G is een boom met n punten en m’ lijnen. Als hier een punt aan
toe wordt gevoegd, kan deze slechts aan 1 ander punt verbonden worden, omdat er
anders een cykel ontstaat. Dat betekent dat er het aantal lijnen m = m’ + 1 wordt.
Vanwege de inductie hypothese geldtn = m’+1dusn+1=m'+1+1=m+ 1.
Met inductie volgt dat voor alle G een boom geldt dat n = m + 1. O
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Planaire grafen

Grafen zijn handig om een probleem wiskundig te benaderen. Zo is er bijvoorbeeld
het vier-kleurenprobleem, waar ik in de inleiding al wat over verteld heb. Stel je wilt
een landkaart zo kleuren dat buurlanden nooit dezelfde kleur hebben. Dit probleem
kun je benaderen door elk land te representeren als punt en elke twee punten te
verbinden waarvan de landen aan elkaar grenzen. Als je er even over nadenkt, kun
je inzien dat deze lijnen elkaar nooit hoeven te snijden.

Definitie 2.1 (Planaire graaf/representatie). Een graaf G heet planair als het mogelijk
is deze graaf in het platte vlak te tekenen zonder dat er lijnen snijden. Zo'n tekening
heet een planaire representatie.

In het algemeen heet de tekening van een graaf G een representatie van G.

We weten dat de volledige grafen K tot en met K4 planair zijn. Dit kunnen we
ook tekenen:

L] L ESSE—

K. K,

1 2 3 4

FIGUUR 2.1: Representaties van K1t/ mK,

Een graaf kan echter volledig gedefinieerd worden door zijn punten en lijnen,
zonder daadwerkelijk een representatie te maken. Als een graaf planair getekend is,
kunnen we dat meteen zien. Maar wat als je geen planaire tekening hebt? Hoe weet
je dan of een graaf planair is? Bij grote grafen is het lastig om meteen in te zien of
deze planair is of niet. Stellingen kunnen dan meer inzicht bieden over wanneer een
graaf planair is, zonder dat je een representatie nodig hebt.

Definitie 2.2 (Gebied). Als een graaf planair is, heeft hij een planaire representatie.
Een gebied is dan een aaneengesloten deel van het vlak dat ingesloten wordt door
een verzameling lijnen in deze representatie. In het bijzonder heet het gebied dat
volledig buiten de graaf ligt, het oneindige gebied.

Merk op dat een gebied alleen gedefinieerd is voor planaire representaties van
grafen. Als een graaf niet planair is, kun je ook niet spreken over zijn gebieden.
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Stelling 2.3 (Eulerstelling). Laat G een samenhangende, planaire graaf zijn met n
punten, m lijnen en r gebieden (inclusief het oneindige gebied). Dan geldt:

n—m+r=2. (2.1)

Bewijs. [12] Dit bewijzen we met behulp van inductie naar m.

m = 0: Dan geldt G = K, want de graaf moet samenhangend zijn. Dat betekent dat
n=lenr=1,dusn—-m+r=1-0+1=2.

m — 1 — m: Neem aan dat de hypothese geldt voor alle grafen met maximaal m — 1
liijnen (waarin m > 1). Laat G een graaf met n punten, m lijnen en r gebieden zijn.
We gaan bewijzen datn — m +r = 2.

Stel G is een boom. Dan bevat G maar een gebied en n = m + 1 (zie stelling 1.8). Dus
geldtern —m+r = (m+1) —m + 1 = 2. Dus voor een boom met m lijnen geldt
de hypothese. Als G geen boom is, bevat hij een lijn e in de rand van een eindig
gebied. Dan is G \ {e} een samenhangende graaf met n punten, m — 1 lijnenen r — 1
gebieden. Vanwege de inductiehypothese geldt hiervoorn — (m — 1) + (r — 1) = 2,
dusn—m+r =2+1-1 = 2. Dus ook als G een graaf met m lijnen is en geen
boom, geldt de hypothese. Nu volgt: Voor alle m € N: als G een samenhangende,
planaire graaf met n punten, m lijnen en r gebieden (inclusief het oneindige gebied).
Dan geldt n —m +r = 2. O

Hieruit is meteen de volgende stelling af te leiden:

Gevolg 2.4. Laat G een planaire graaf zijn met n > 3 punten en m lijnen. Dan geldt:
m<3n-—26 (2.2)

Bewijs. [12] Neem aan dat G planair en samenhangend is. De enige samenhangende
planaire graaf met n > 3 en m < 2 is de graaf met drie punten en twee lijnen daar-
tussen. Hiervoor geldt ongelijkheid 2.2. Stelnu datm > 3. G is planair dus er bestaat
een representatie met r gebieden, noem deze Ry t/m R,. Definieer m; als het aantal
lijnen op de grens van R; voor elke 1 <14 < r. Een gebied wordt door minimaal drie
r
lijnen ingesloten, dus geldt: > m; > 3r. Elke lijn is de grens van maximaal twee
i=1
s s
gebieden, dus geldt: ) m; < 2m. Hieruit volgt: 3r < )" m; < 2m dus 3r < 2m.
i=1 i=1

Met stelling 2.3 volgt: 6 = 3n — 3m + 3r < 3n — 3m + 2m = 3n — m. Hiermee is de
stelling bewezen voor samenhangende grafen.

Als G planair en niet-samenhangend is, kunnen er lijnen aan toegevoegd worden
totdat de graaf wel samenhangend is. Het nieuwe aantal lijnen heet m' en er geldt
m’ > m. Voor de nieuwe graaf geldt m < m’ < 3n — 6 dus geldt ook voor onsamen-
hangende grafen m < 3n — 6. O

Nu weten we dat als een graaf niet voldoet aan m < 3n — 6, kan hij niet planair
zijn. Daarvoor hoeven van G alleen |V| en | E| bekend te zijn. Merk op dat we hier-
mee nog niet kunnen vaststellen dat G planair is, als we weten dat de ongelijkheid
2.2 geldt! Planaire grafen zijn prettig om mee te werken omdat ze overzichtelijk zijn.
Maar een graaf is niet altijd planair.
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Stelling 2.5 (K5). K5 is niet planair

Bewijs. [1] Stel dat K5 planair is. Dan geldtn —m +r = 2. Inde Ksisn = 5en
m = 10, dus moet gelden » = 2 — 5 + 10 = 7. Elk gebied is begrenst door minimaal

drie lijnen en elke lijn begrensd maximaal twee gebieden, dus er zijn minstens 2"

2
lijnen nodig om die gebieden in te sluiten. 377 = 10, dus er zijn minstens 11 lijnen
nodig, maar K5 heeft er maar 10. Dit is een tegenspraak, dus K5 voldoet niet aan de

Euler stelling en is niet planair. O
Een familie verwant aan de volledige grafen zijn de volledige bipartiete grafen.

Definitie 2.6 ((Volledige) bipartiete graaf). Een volledige bipartiete graaf op n + m pun-
ten (voor n,m > 1) is een graaf met V. = U U W zodanig dat U = {u1,...,un},
W ={w,...,up}en E = {uwju € Uyjw e W}.

In andere woorden: alle punten van U zijn met alle punten van W verbonden, maar
binnen deze verzamelingen zijn er geen punten met elkaar verbonden. Een biparti-
ete graaf op u + v punten is een deelgraaf van de volledige bipartiete graaf op u + v
punten.

Notatie: De volledige bipartiete graaf op n + m punten noteren we als K, ,,.

Lemma 2.7. Alle cykels in een bipartiete graaf bevatten een even aantal lijnen.

Bewijs. [13] Stel G = (U U W, E) C K, is een bipartiete graaf die een oneven
cykel C' met lengte k bevat. Dan is C te schrijven als C' = (vy,..., v, v1) met de
punten vy, ..,vy € U U W. Neem aan (zonder verlies van algemeenheid) dat v; € U.
Vervolgens geldt voor alle 1 <i < k:

(2.3)

o € Uals 7 oneven
1 € Wals i even

Omdat C oneven is geldt dat zowel v; als vy, in U zit. Dus er zijn twee punten uit U
met elkaar verbonden. Dit is in tegenspraak met het feit dat G = U U W bipartiet is
en punten in U niet onderling verbonden kunnen zijn. Dus zijn er in een bipartiete
graaf enkel even cykels. O

Voor bipartiete grafen kunnen we nu gevolg 2.4 aanscherpen:

Gevolg 2.8 (van stelling 2.3 voor bipartiete grafen). Laat G een planaire bipartiete
graaf met n > 3 punten en m lijnen. Dan geldt:

m< 2n—4 (2.4)

Bewijs. [4] Stel G is een bipartiete planaire graaf met n punten, m lijnen en r ge-
bieden. We weten dat de som van de graden van alle punten precies 2m is. Elk
gebied wordt ingesloten door minimaal drie lijnen, maar we hebben geen oneven
cykels in een bipartiete graaf, dus wordt elk gebied ingesloten door minimaal vier
lijnen en elke lijn grenst aan maximaal twee gebieden. Daaruit volgt dat voor de
som van de graden minimaal 4r moet zijn, dus 2m > 4r, of m > 2r. Met stelling 2.3
geldt 2r = 4 — 2n + 2m. Als we daarin de vorige ongelijkheid invullen, krijgen we
m > 4 — 2n + 2m, oftewel 2n — 4 > m. O
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FIGUUR 2.2: K11 t/m K3 3

Hierboven is te zien dat K ; en K> o planair zijn. K3 3 is niet planair getekend.
In onderstaande stelling wordt bewezen dat dit niet kan.

Stelling 2.9 (K33). K3 3 is niet planair.

Bewijs. Stel dat K33 planair is. Het aantal punten n = 6 en het aantal lijnen m = 9.
Met gevolg 2.8 moet gelden m < 2n — 4. Dit is een tegenspraak. Dus K33 voldoet
niet aan gevolg 2.8 en is niet planair. O

Met behulp van de stellingen 2.5 en 2.9 kunnen we een belangrijke stelling voor
de grafentheorie begrijpen: de stelling van Kuratowski (2.11). Hiervoor hebben we
eerst een definitie nodig.

Definitie 2.10 (Homeomorf). Twee grafen zijn homeomorf als beiden verkregen kun-
nen worden uit dezelfde graaf door een onderverdeling van de lijnen.

Wel homeomorf aan K5 Niet homeomorf aan K5

FIGUUR 2.3: Twee grafen, wel en niet homeomorf aan K5

In figuur 2.3 zijn twee grafen te zien die beiden lijken op K5. Hierin is het
eerste figuur wél homeomorf aan K5 omdat de lijnen enkel gesplitst worden door
de toegevoegde punten. Het tweede figuur is echter niet homeomorf aan K5 omdat
er een snijpunt veranderd is in een gewoon punt. Hierdoor zijn de eigenschappen
van de graaf veranderd. Deze graaf is bijvoorbeeld wel planair, in tegenstelling tot
de Kj5 zelf (de planaire representatie voor deze graaf word aan de lezer overgelaten).
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Stelling 2.11 (Kuratowski). Een graaf G is planair < G bevat geen subgrafen die
homeomorf zijn aan K5 of K33

Het bewijs van deze stelling is lastig om te schetsen, omdat het redelijk lang
is en verschillende gevalsonderscheidingen bevat. Voor het bewijs refereer ik naar
Planaire en toroidale grafen van G. Hebbink.[6]

Maar wat kunnen we nog met een graaf die niet planair is? We kunnen ons afvragen
hoe niet-planair de graaf is. Dit kan door middel van het snijgetal en de dikte van een
graaf. Beide worden toegelicht in de volgende hoofdstukken.






Hoofdstuk 3

Snijgetal v(G)

Een manier om te kijken hoe niet-planair een graaf is, is door te kijken hoeveel snij-
punten er in de graaf voor komen. Een planaire graaf heeft geen snijpunten, dus
elke snijding maakt de graaf meer niet-planair.

Definitie 3.1 (Snijgetal). Het snijgetal van een graaf G is het kleinste getal £ zodanig
dat G in het platte vlak kan worden getekend met £ snijpunten van lijnen.
Notatie: v(Q)

Bedenk hierbij dat het aantal snijpunten niet gelijk hoeft te zijn aan het aantal lij-
nen dat je weg moet halen voordat de graaf planair is. Het kan zijn dat er meerdere
snijpunten zijn in een graaf die door één lijn veroorzaakt worden (zie de K33 in
figuur 2.2). In dit voorbeeld kunnen we echter K3 3 ook met maar één snijpunt teke-
nen.

FIGUUR 3.1: K3 3 met 3 en met 1 snijding

Beide bovenstaande figuren zijn K3 3; V en E zijn bij beide hetzelfde. Maar het
aantal snijpunten is niet gelijk. Hoe kun je dan weten dat je het minimale aantal
snijpunten hebt? Vanuit Eulers stelling (stelling 2.3) kunnen we relatief eenvoudig
een ondergrens voor het snijgetal van een willekeurige graaf afleiden.
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Stelling 3.2 (Ondergrens v(G)). [10] Zij G = (V, E) graaf met |V| =n > 3 en |E| =
m. Dan geldt:
v(G) >m—3-n+6. (3.1)

Bewijs. Als G planair is, dus v(G) = 0, met minimaal drie punten geldt gevolg 2.4:
m < 3n — 6 oftewel m — 3n + 6 < 0. v(G) = 0 dus hieruit volgt m — 3n + 6 < v(G).

Stel G is niet planair, dus v(G) > 0. Nu kun je een voor een lijnen weghalen die
snijden met een andere lijn, totdat de nieuwe graaf G’ planair is. Dus elke lijn die
je weg haalt, zorgt voor minimaal een snijpunt. Je haalt dus evenveel of meer snij-
punten weg dan dat je lijnen verwijdert. G’ is planair dus v(G’) = 0. Stel het aantal
lijnen wat je weggehaald hebt is a. Dan is het aantal lijnen van G’ gelijk aan m — a
en v(G) > a+ v(G'). G is planair dus geldt v(G') > (m — a) — 3 - n + 6, oftewel
v(G') +a > m — 3 -n+ 6. De vorige twee ongelijkheden samen geven: v(G) >
a+v(G’) > m — 3-n+ 6. Dus ook voor niet planaire grafen geldt de stelling. O

Een bovengrens is echter minder relevant. We kunnen in een graaf een represen-
tatie maken met zoveel mogelijk lijnen die elkaar snijden, maar daar wordt die graaf
niet overzichtelijker van. Je kunt als bovengrens het aantal snijpunten nemen dat je
krijgt als elke lijn van de graaf met elke andere lijn snijdt. Dan krijg je voor een graaf
G met m lijnen de bovengrens v(G) < W Lijnen kunnen echter ook nog meer-
maals met elkaar snijden als de lijnen niet recht getekend worden. In dat geval kan
het snijgetal van elke graaf willekeurig groot worden. Over volledige (bipartiete)
grafen waarbijj lijnen elkaar niet meermaals snijden kunnen we echter meer zeggen,

omdat deze structuur overzichtelijker is.

Definitie 3.3 (Verantwoordelijkheid). De verantwoordelijkheid van een punt is het to-
taal aantal snijpunten van alle lijnen waar het punt in bevat is.

Merk op dat elk snijpunt veroorzaakt wordt door twee lijnen die beide twee eind-
punten bevatten. Hieruit volgt dat in een graaf G de som van alle verantwoordeli-
jkheden 4 - v(G) is.

Lemma 3.4 (Unieke representatie K). Elke representatie van K met 3 snijpunten is
isomorf met figuur 3.2.

FIGUUR 3.2: K met 3 snijpunten

Bewijs. De graaf is te verdelen in drie K, grafen die met de twee andere volledige
grafen een lijn gemeenschappelijk hebben. Binnen elk van die drie deelgrafen ligt
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een snijpunt. Door deze vorm ontstaan er ook twee 3-cykels, een in het midden en
een om het geheel heen. Een snijpunt wordt altijd veroorzaakt door vier punten (zie
boven). In andere woorden: er zijn vier punten verantwoordelijk voor een snijpunt.
Elk punt in de graaf heeft graad vijf, en elk punt ligt alleen in de buitenste of de
binnenste 3-cykel. Daardoor moet elk punt onderdeel zijn van twee K4 deelgrafen
en verantwoordelijk zijn voor twee snijpunten. Hierdoor is figuur 3.2 uniek op iso-
morfismes na. ]

Stelling 3.5 (Bovengrens v(kK},)). [10]

o(Kn) < 71501

Voor n < 10 is dit een gelijkheid.

| (3.2)

-

Opmerking. Ik zal de gelijkheid bewijzen voor K; tot en met Kg, omdat die in mijn
scriptie terug komen. Voor het volledige bewijs verwijs ik naar Crossing numbers of
graphs van R. Guy [5].

Bewijs. [5] K tot en met K zijn planair, dus v(K;) = v(K3) = v(K3) = v(K4) =0
(zie figuur 2.1). Een representatie van een graaf geeft een bovengrens, maar aangezien
het snijgetal nooit negatief kan zijn, moeten de snijgetallen gelijk zijn aan 0. In figuur
5.2 zijn de K5,K¢ en K7 getekend met respectievelijk 1, 3 en 9 snijpunten. Dit is gelijk
aan 1 [2] - [2572] - [%52] - | %52 ] en geeft een bovengrens voor de snijgetallen. Nu
rest nog te bewijzen dat het snijgetal niet kleiner is.

Voor K3 is dit duidelijk. We hebben al bewezen dat deze graaf niet planair is, wat
betekent dat v(K5) > 0. Dus moet gelden v(K5) = 1.

Voor het snijgetal van K gebruiken we Eulers stelling (stelling 2.3) n — m +r = 2.
Van een representatie van K met ¢ snijpunten kun je een nieuwe planaire graaf G’
maken door van alle snijpunten echte punten te maken. Nu geldt G’ heeft 6 + ¢ pun-
ten en 15 + 2c lijnen, dat laatste omdat K zelf 15 lijnen heeft en elk snijpunt 2 lijnen
in tweeén splitst. Met de Euler formule geldt nu dat (6 + ¢) — (15 + 2¢) + r = 2 dus
r = 2—6+15—c+2c = 11+c gebieden. Elk gebied wordt door minimaal drie lijnen in-
gesloten en elke lijn grenst aan maximaal twee gebieden, dus 3-(11+c¢) < 2-(15+2c).
Hieruit volgt 33 + 3¢ < 30 + 4c oftewel 3 < ¢. Dus v(Kg) > 3 en daaruit volgt met
figuur 5.2 dat v(Ks) = 3.

Stel K7 heeft ¢ snijpunten. Omdat de totale Verantwoordelijkheid van de graaf 4c s,
bestaat er een punt met verantwoordelijkheid minimaal ( 1. Als dit punt wegge-
haald wordt (en daarmee alle lijnen die eraan verbonden 21]n) blijft precies de Ks
over, omdat er zes punten over blijven die allemaal met elkaar verbonden zijn. Om-
dat er uit de graaf nu minstens [ 1] snijpunten verdwijnen, heeft de nieuwe tekening
hoogstens ¢ — [4] = ¢ — [4¢] = | 2] snijpunten. Om dit in te zien moeten we de
volgende dingen nagaan:

Te  _4e 3¢ als4C€N

2] = 7

7 7] {L3’7CJ+1 als 4 ¢ N (3.3)
3¢ 3¢ alsieN
)T 7
L7J { L3—7CJ+1 als?’—?chN (3.4)

Ga na dat 4—70 e N« 3—76 € N omdat 3 en 4 geen delers van 7 zijn (7 is priem) en
daardoor deze situatie alleen voorkomt als ¢ een veelvoud van 7 is. Dus (3.3) = (3.4)
en bovenstaande gelijkheid klopt. We weten al dat de K met drie snijpunten te
maken is. We gaan kijken wat er gebeurt als we aan een representatie van K¢ met
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drie snijpunten een punt toevoegen en die met elk ander punt verbinden (zodat we
weer een K7 krijgen). Omdat elke representatie van K¢ met 3 snijpunten isomorf is
met figuur 3.2, volstaat het om alleen aan deze representatie een punt toe te voegen
(zie lemma 3.4). figuur 3.2 bestaat uit slechts drie echt verschillende gebieden: zie
figuur 3.3.

FIGUUR 3.3: K¢ met 3 gebieden

Hieruit volgt volgens Guy dat er slechts vijf niet-isomorfe representaties zijn van
K7 met een minimaal aantal snijpunten: zie figuur 3.4. In elk van deze figuren zijn
er negen snijpunten. Hieruit volgt dat v(K7) = 9. Merk op dat in figuur 2, 3 en 4
een punt is toegevoegd in gebied 1 en in figuur 1 en 5 is een punt toegevoegd in
gebied 2. Hoe Guy heeft gecontroleerd dat dit de enige isomorfismen zijn van K7
met negen snijpunten staat niet in het artikel uitgelegd.



Hoofdstuk 3. Snijgetal v(G) 13

4 5

FIGUUR 3.4: De 5 niet isomorfe representaties van K

Een representatie van Kg met ¢ snijpunten bevat een punt met verantwoordelijk-
heid minstens [4]. Als je dit punt (en daarmee ook de lijnen die daaraan vast zitten)
verwijdert, houd je een representatie van K7 over met | § | > 9, oftewel ¢ > 18 (net als
bij het bewijs van K§). Hieruit volgt samen met figuur 5.2 dat v(Kg) = 18. Hiermee
is voor K tot en met Kg de gelijkheid uit de stelling bewezen. O

Stelling 3.6 (Ondergrens v(K3,)). [10] Als n > 5 geldt:

1

K)> —
v(Kn) 2 155

n-(n—1)-(n—2)-(n—23) (3.5)
Bewijs. [9] Laat D een representatie van kK, zijn met het kleinste snijgetal v(X,). We
mogen aannemen dat lijnen die aan hetzelfde punt grenzen niet snijden, omdat an-
ders deze lijnen omgedraaid kunnen worden en het snijgetal kleiner wordt, maar
we hadden al het kleinste snijgetal. Bekijk alle deelgrafen van K, waarin er een
punt is weggehaald (en daarmee alle aangrenzende lijnen). Dat zijn n deelgrafen.
Elke snijding bestaat uit twee lijnen die elk aan twee punten grenzen, daarom komt
elke snijding precies n — 4 keer voor in de deelgrafen. Elke deelgraaf is een repre-
sentatie van K,,_; omdat ze elk n — 1 punten hebben die allemaal verbonden zijn.
Daarom moeten alle subgrafen minstens v(/,_1) snijpunten hebben. Hieruit volgt
dat (n — 4) - v(K,) > n-v(K,—1). We weten al dat v(K5) = 1, dus kunnen we uit
de ongelijkheid recursief concluderen dat v(K,) > 5 -...- 5. In deze breuken
vallen alleen de eerste vier tellers en de laatste vier noemers niet tegen elkaar weg,
waardoor je overhoudt: v(K,) > n-(n—1)-(n—2)-(n—3)-%- 13- 3. Conclusie:
voor K, metn > 5 geldt v(K,) >n-(n—1) - (n—2)-(n—3) - 135. O
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Stelling 3.7 (Bovengrens v(K, ,,)). [10]

o(Knm) < 511757

m—1

|15 J (3.6)

Bewijs. [14] Stel m is even, neem k zodanig dat m = 2k. Plaats deze 2k punten op de

z-as van een assenstelsel met als y-coordinaten: —k, —k—1,...—2,—-1,1,2, ..k — 1, k.
Stel m is oneven, neem dan k£ zodanig dat m = 2k + 1. Plaats deze punten ook op
de z-as van een assenstelsel met als y-coordinaten: —k, —k —1,... — 2, —1,1,2, ..k —

1,k,k + 1. (Merk op dat dit gelijk is aan het geval dat m even is, behalve dat er
1 punt rechts op de z-as extra is geplaatst). Nu hoeven we alleen de snijpunten te
tellen. Dit heb ik bekeken per kwart van de grafiek. Dit kostte het nodige rekenwerk.
Uiteindelijk geldt, ongeacht of n en m even of oneven zijn, dat het aantal snijpunten
per kwart maximaal § - 2] - [21] - | 2] - | 251 ] is. Dat vier keer bij elkaar opgeteld
geeft precies bovengrens 3.6. O

FIGUUR 3.5: Voorbeeld constructie: K3 4

Opmerking. Voor min(n,m) > 6 is de gelijkheid van bovenstaande vergelijking een
open probleem wat het Zarankiewicz’s vermoeden heet. Zarankiewicz leverde wel
een bewijs voor het vermoeden, maar die bevatte een fout. Hij gaf echter wel een
correcte constructie voor een representatie voor K, ,, met precies |5 | - {"T_lj 1] -
| -1 | snijpunten, wat resulteert in de bovengrens.
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3.1 Rechtlijnig snijgetal v(G)

Definitie 3.8 (Rechtlijnig/ Geometrisch snijgetal ©(G)). Het rechtlijnige snijgetal van
een graaf G is het snijgetal van die graaf, als de graaf enkel rechte lijnen bevat.
Notatie: v(G)

Opmerking. Het bewijs van stelling 3.7 wordt gegeven door een constructie. Omdat
deze constructie rechtlijnig is, volgt dat deze bovengrens ook voor de het rechtlijnige
snijgetal geldt!

Stelling 3.9 (Rechtlijnig snijgetal v(G)). Neem k > 4 vast. Dan geldt:
Voor alle m > k bestaat er een graaf G met v(G) = kenv(G) > m (3.7)

Met andere woorden: Het rechtlijnige snijgetal 7(G) kan willekeurig groot worden
in vergelijking met het snijgetal v(G).

Opmerking. Van dit bewijs zal ik een schets geven, voor het volledige bewijs verwijs
ik naar het artikel in Journal of Graph Theory van Bienstock et al [3].

Bewijs. [3] Laat m > 4. We zullen eerst een graaf G,, construeren zodanig dat
v(Gp) = 4 en v(Gy) > m. Om G, te maken nemen we eerst de graaf J twee
keer en verbinden de bovenste punten en de onderste punten met elkaar. Op die
manier krijgen we graaf K.

J K

FIGUUR 3.6: Graaf ] en Graaf K

Merk op dat K twee disjuncte 8-cykels Cs bevat met een lijn ertussen zodat er
vier 5-cykels C5 ontstaan. Deze figuren zijn hieronder blauw gekleurd, de rest rood.

FIGUUR 3.7: De gekleurde Graaf K
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Uit dit figuur gaan we G,,, maken. Elke blauwe lijn e = {u, v} wordt vervangen
door een verzameling P(e) van m paarsgewijs disjuncte paden van lengte 2 waarvan
u en v de uitersten zijn. Voor e # ¢’ geldt dat P(e) disjunct is met P(e’).

FIGUUR 3.8: Voorbeeld: graaf G

De nieuwe blauwe subgraaf van K noemen we K . In het originele bewijs wordt
opgemerkt dat er maar twee manieren om deze Kp te tekenen. Vervolgens wordt
bewezen dat v(G,,) > m in een lemma met behulp van tegenspraak. Het is duidelijk
dat in deze representatie vier snijpunten zitten, dus v(G,,) < 4. We willen bewijzen
dat v(G,,) = 4. Graaf K bestaat uit twee keer graaf J (zie figuur 3.6). In het artikel
wordtbewezen dat v(J) > 2. Hieruit volgtdat v(K) > 4 en datresulteertin v(G,,) =
4.

We hebben nu bewezen dat geldt: Voor alle m > 4 bestaat er een graaf G, met
v(Gy,) = 4env(Gy,) > m. Hieruit volgt direct de uitspraak 3.7 als aan graaf G, k.14
precies k — 4 disjuncte kopieén van de K5 worden toegevoegd. O

Stelling 3.10 (v(G) = 0 < v(G) = 0). [5] Voor G een graaf geldt:
1(G)=0<v(G)=0 (3.8)

Deze stelling is (in essentie) gelijk aan stelling 4.6 en daarmee zijn bewijs 0ok,

dus dat zal ik hier nog niet uitwerken. Uit de stelling volgt dat als een graaf planair
is, deze ook een planaire representatie heeft met rechte lijnen.
We hebben nu gekeken naar een aantal eigenschappen van het snijgetal. Als er een of
twee snijpunten zijn, is dit nog wel te overzien. Als het er echter meer worden, wordt
een graaf onoverzichtelijk. We zouden dus graag een manier vinden om ook die
grafen te bekijken. Een manier om dat te doen, is om de lijnen van een graaf onder
te verdelen in verschillende subgrafen, waarvan de vereniging weer de originele
graaf is. Als we ze dan toch gaan verdelen, kunnen we dat net zo goed doen zodat
de subgrafen allemaal planair zijn. Dit doen we met behulp van het begrip dikte,
wat in het volgende hoofdstuk aan bod komt.
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Hoofdstuk 4

Dikte 0(G)

Definitie 4.1 (Dikte 6(G)). De dikte van een graaf G is het minimaal aantal planaire
subgrafen wat er nodig is zodat de vereniging van die grafen G vormt. (In het bij-
zonder is de dikte van een planaire graaf 1).

Notatie: 0(G)

Het bepalen van de dikte van een willekeurige graaf is een probleem dat we nu
nog niet door een computer uit kunnen laten rekenen binnen afzienbare tijd. Niet
zo raar, aangezien het controleren of een graaf planair is ook nog niet kan binnen
afzienbare tijd. We kunnen wel kijken naar bepaalde groepen grafen, die gelijke vor-
men hebben. Zo kunnen we ook zien dat de grootte van de graaf, het aantal punten
en lijnen, niet ook de dikte hoeft te bepalen. In onderstaande paragraaf bespreken
we de Catlin grafen. Dit zijn grafen die heel groot kunnen worden, maar waarvan
de dikte altijd 2 blijft.

4.1 Catlin’s grafen C, K]

Definitie 4.2 (Catlin’s graaf). Zij C,, de cyclische graaf met n > 4 punten en K, de
volledige graaf op » > 3 punten. De constructie van de bijbehorende Catlin’s graaf
gaat als volgt:

1. Neem C,, de cykel op n punten. Noem deze punten punt 1 t/m n. Dan is punt
i dus verbonden met punt (¢ — 1) en (7 + 1) mod n.

2. Vervang vervolgens elk punt door K. Noem de r punten die punt : vervangen
punt 1 t/m 4,. Deze punten zijn allemaal onderling verbonden, maar ze zijn
ook allemaal verbonden met alle punten die eerst ¢ — 1 en 7 4 1 waren.

In andere woorden: punt i, is verbonden met alle punten uit:

[ ] {Zl,,’tr}\lm
e {(i1—1)1,...,(i—1),}, (z — 1) mod n.
o {(i+1)1,...,(¢+ 1)}, (@ + 1) mod n.

Notatie: Cy,[K,]
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C4[K3) is dus een 4-cykel waarvan elk punt is vervangen door K3:

FIGUUR 4.1: C4[K3]

Catlin’s grafen zijn te verdelen in twee planaire deelgrafen. De algemene con-
structie is te vinden in Thickness Two Graphs Part One - Boutin, Gethner, Sulanke. De
planaire subgrafen van C4[K3] zien er als volgt uit:

43
13 42
21 -
43 32 23

FIGUUR 4.2: Planaire subgrafen van Cy4[K3] : G41 en Gao

Merk op dat de meeste 3-cykels in (1 zitten. Drie van de vier K3 grafen zijn
in elkaar geplaatst, met punt 4, 2 als het midden. Deze graaf is de kleinste Catlin’s
graaf. Voor C,,[K,| ziet G, eruit als G4 met n — 1 K3 grafen in elkaar geplaatst.

G2 is minder overzichtelijk, maar uit de constructie volgt dat ook deze graaf planair
blijft.
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4.2 Rechtlijnige dikte 0(G)

Definitie 4.3 (Rechtlijnige/Geometrische dikte 0(G)). De rechtlijnige dikte van een
graaf G is de dikte van G op voorwaarde dat de planaire subgrafen enkel rechte

lijnen bevatten.
Notatie: §(Q)

Definitie 4.4 (Equivalente representatie). Zij G een graaf met representaties P en P'.
Deze zijn equivalent als geldt:

Een verzameling zijdes sluit een gebied in representatie P in < Een verzameling
zijdes sluit een gebied in representatie P’ in.

Ik wil graag bewijzen dat voor elke willekeurige graaf G geldt dat als de graaf
planair is, hij ook met rechte lijnen planair getekend kan worden. Het is echter
lastig om iets te bewijzen voor een willekeurige graaf. Om dat te omzeilen kun-
nen we eerst extra voorwaarden aannemen voor een graaf, de stelling bewijzen en
daarna laten zien dat die voorwaarden eigenlijk geen restrictie op de graaf hebben
gelegd. Een veelgebruikte voorwaarde voor een graaf is dat hij 2-samenhangend is.
Dat betekent dat de graaf niet alleen samenhangend is, maar ook nog samenhangend
is als je een punt weghaalt. Elke onsamenhangende graaf bestaat uit samenhangende
deelgrafen en als we door een lijn weg te halen een graaf onsamenhangend kun-
nen maken, kunnen deze twee deelgrafen die ontstaan zonder extra snijpunten te
veroorzaken om elkaar bewegen. In onderstaand bewijs nemen we een net andere
voorwaarde aan: dat elk gebied een cykel moet zijn. Om dit aan te mogen nemen,
moeten we eerst bewijzen dat dit equivalent is aan de eerste aanname.

Lemma 4.5 (2-samenhangend <> cykels). Neem aan dat G planair is. Dan geldt:
G is 2-samenhangend < de grens van elk gebied in G is een cykel.

Ik zal hieronder een schets geven van het bewijs. Hierin gebruik ik dat als een
graaf samenhangend is, er tussen elk paar punten uit de graaf twee disjuncte paden
te vinden zijn (Graph theory with applications van ] A Bondy en U S R Murty [7]).

Bewijs. 2-samenhangend <« de grens van elk gebied is een cykel: Neem aan dat in
G = (V,E) de grens van elk gebied een cykel is. Stel nu dat er een punt p bestaat
in G' zodanig dat als dit weggehaald wordt, G' onsamenhangend is. Dit punt is deel
van minstens een cykel, omdat p anders op de grens van een gebied ligt dat geen
cykel is. Maar een cykel is zelf altijd 2-samenhangend, dus dit is een tegenspraak.
Dus G is 2-samenhangend.

2-samenhangend = de grens van elk gebied is een cykel: Neem aan dat de graaf G
planair en 2-samenhangend is, dan heeft hij een representatie D die ook planair en
2-samenhangend is. Bekijk een willekeurig gebied f in deze representatie. Noem de
punten die aan f grenzen pi,...,p,. Bekijk dan de deelgraaf H C G die enkel de
punten p1,...,p, bevat en alle lijnen uit E die f insluiten. Deze heeft een planaire
representatie Dy door representatie D te nemen en daar alle punten en lijnen uit te
halen die niet in H zitten. Stel dat Dy niet 2-samenhangend is:

1) Stel dat Dy onsamenhangend is. Dat bestaat Dy uit minstens twee componen-
ten. Bekijk punt p; uit een component en punt p; uit een ander component. D is
2-samenhangend, dus in D loopt er een pad tussen p; en p;. Nu zijn er 2 opties:

1. Het pad valt volledig binnen het gebied f, dan wordt f gescheiden door dat
pad en zijn er eigenlijk twee gebieden. Dit is een tegenspraak.
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2. Het pad loopt buiten f om, wat betekend dat er een lijn in het pad zit dat een
lijn uit de grens van f snijdt. Maar D is een planaire representatie, dus ook dit
is een tegenspraak.

Dus Dy kan niet onsamenhangend zijn.

2) Stel dat Dy 1-samenhangend is. Dan zijn er twee punten, p, en p,, in Dy die
wel verbonden zijn door een pad, maar niet door twee disjuncte paden. D is 2-
samenhangend, dus er is een pad tussen p, en p, weggevallen in Dy;. Omdat Dy
1-samenhangend is en er geen 2 disjuncte paden tussen p, en p, lopen, is er een punt
p- in het pad tussen p, en p, zodanig dat als je het weg haalt, D onsamenhangend
wordt. Maar nu zitten we in dezelfde situatie als optie 1). Dus Dy kan niet maar
1-samenhangend zijn.

Dus Dy is zelf ook minimaal 2-samenhangend. Hieruit volgt dat vanuit elk punt
pe naar elk ander punt p;, in H twee disjuncte paden te vinden zijn, die enkel door
p1, ..., pn lopen. Bekijk twee punten p,, en p;, daar lopen 2 disjuncte paden tussen
die samen een cykel vormen die f insluit. Stel dat er nog een punt p, met1 <r <n
is die niet in deze cykel zit. Dat punt moet in het gebied f liggen, anders grenst het
niet aan f. Neem een punt p,; op de cykel. Als er in beide pad al eerder een punt uit
de cykel voorkomt, nemen we dat als punt p,. Dp is 2-samenhangend, dus er zijn
twee disjuncte paden tussen p, en p, . Dan zijn er 2 opties:

1. p, is van alle punten uit de cykel alleen met p, direct verbonden door een pad.
In dat geval is Dy 1-samenhangend, dus dit is een tegenspraak.

2. p, is met nog een punt p; uit de cykel verbonden door een pad wat niet door
ps gaat. In dat geval loopt er een pad tussen alle drie de punten p,, p, en p; en
het gebied wat daartussen ligt is gescheiden van f. Maar dit gebied hoort bij
gebied f, dus dit is een tegenspraak.

Dus alle punten py, ..., p, liggen in een cykel die f insluit en f is hiermee begrensd
door een cykel. f was een willekeurig gebied uit G, dus de grens van elk gebied in
G wordt ingesloten door een cykel. O

Stelling 4.6 (3(G) = 1 < 0(G) = 1). Zij gegeven een planaire representatie P
van een graaf G waarin de grens van elk gebied een cykel is (in het bijzonder het
oneindige gebied) met een gebied f.

Dan is er een equivalente planaire representatie P’ waarin elke zijde recht is en
waarin het gebied f een convexe veelhoek is.

Bewijs. [2] Het bewijs gaat met inductie naar k, waarin k het aantal eindige gebieden
in de representatie P is.

Inductie Hypothese: Voor alle k € N is er voor P een equivalente P’ met rechte lijnen.
k = 1: Er is maar een eindig gebied (f). Dus dit gebied kun je altijd tot een convexe
veelhoek vormen.
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FIGUUR 4.3: Willekeurig gebied — Convex gebied

k > 1 — k + 1: Neem aan: voor elke representatie P met k gebieden van elke
graaf G is er een equivalente representatie P’. Bekijk een representatie Py van G
met k£ + 1 gebieden, een daarvan heet f. Stel elke lijn die f insluit, sluit ook het
oneindige gebied in.

FIGUUR 4.4: Elke lijn die f insluit, sluit ook het oneindige gebied in

Dan is de grens die het oneindige gebied insluit geen cykel. Dus er is minstens
één lijn die f insluit, maar ook een ander eindig gebied, zeg f’.

(Z

FIGUUR 4.5: Er is minstens één lijn die f insluit, maar ook een ander
eindig gebied, zeg f’

In het gedeelte waar f U f’ is, kunnen we f en f’ opnieuw tekenen zodanig dat
derand fU f"\ (f N f’) een (lege) veelhoek is, dit wordt de nieuwe f.
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N

\

FIGUUR 4.6: f en f’ vormen samen een gebied ingesloten door een
cykel

Nu is deze graaf een representatie met k gebieden waarvan een gebied f, dus
met de inductie hypothese kunnen we een rechtlijnige representatie P’ vinden met
f een convex gebied. Omdat f convex is, kunnen de lijnen die weggehaald zijn,
rechtlijnig en planair ingevoegd worden in de nieuwe representatie.

N
/
[
|
/// \ \

\

/ //)
_/

o

FIGUUR 4.7: De rechtlijnige planaire representatie

Conclusie: Voor alle £ € N is er voor P een equivalente P’ met rechte lijnen,
hiermee is de stelling bewezen. O

Uit de stelling 4.6 volgt samen met lemma 4.5 dat voor elke willekeurige graaf G
geldt: 0(G) =1 < 0(G) = 1.

4.3 Ingebedde dikte 6(G)

Definitie 4.7 (Punt-identificatie). Laten GG; en G'3 grafen zijn, met v € Gy enw € Go.
Deze twee punten kun je met elkaar identificeren.

Definitie 4.8 (Inbedding). Zij G = (V, E) een graaf. De inbedding van graaf G is een
tekening van de graaf op een oppervlak zodanig dat de lijnen niet snijden. In het
bijzonder kunnen planaire grafen ingebed worden in het platte vlak.

Zij G en G grafen waarvan alle punten met elkaar zijn geidentificeerd (zie definitie
4.7). Dan hebben deze grafen dezelfde inbedding als de tekeningen van de grafen
zodanig op elkaar passen dat punten die met elkaar zijn geidentificeerd, op elkaar
liggen.

Definitie 4.9 (Ingebedde dikte 6(G@)). De ingebedde dikte van graaf G is de dikte van
G voorwaarde dat de planaire subgrafen allemaal dezelfde inbedding hebben.
Notatie: 0(QG)
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Voor stelling 4.12 hebben we wat topologie nodig. Dit is net iets anders dan
kijken naar de dikte van een graaf.

Definitie 4.10 (f : G — R?). Laat G een graaf zijn. Dan kunnen we f : G — R?
definiéren als een continue functie van de graaf G = (V, E) naar een inbedding op
R2.

Lemma 4.11 (Inbedding punten G;). Laat G een graaf met planaire subgrafen
Gi1,...,G, enbekik f; : G; — R2 voor 1 < i < r. Dan is er een homeomorfisme
h : R? — R? zodanig dat voor g; = h o f; geldt:
gil\/(ci)m\/(cj) = gj\V(Gi)mij)' (4.1)
In andere woorden: als de planaire subgrafen G, ..., G, van G een inbedding
hebben in R?, dan is het mogelijk R? zo te vervormen dat gelijke punten op elkaar

liggen. Het bewijs van dit lemma wordt geleverd in Thickness and Coarseness of
Graphs door P. Kainen [8].

Stelling 4.12 (6(G) = 6(G)). [10] Gegeven een graaf G met dikte #(G). Dan bestaat
er een tekening van G, en er bestaan subgrafen Gy, . . ., Gy(q) waarvan de vereniging
gelijk is aan G, zodanig dat de tekening van G begrensd op G; een planaire inbed-
ding van G, is, voor 1 < i < #(G). In andere woorden: §(G) = 0(@).

Bewijs. [8] (G) < 6(G) is vanzelfsprekend. Als er een representatie van G is met
0(G) planaire subgrafen met gelijke inbedding die samen G vormen, zijn dit in het
planaire subgrafen, dus zijn er 0(G) planaire subgrafen waarvan de vereniging G is,
dus 0(G) < 0(G).

0(G) > H(G) Bekijk G met §(G) = 6 planaire subgrafen die samen G vormen.
Noem ze G, ...,Gy. Als E(G}) N E(G}) # 0 voor 1 <i < j < 6, haal alle dubbele
lijnen dan weg uit G;. De nieuwe grafen zonder dubbele lijnen noem ik G, . . ., Gy.
De vereniging hiervan is nog steeds G, omdat elke lijn nog steeds in een van de
subgrafen zit. Bekijk f; : G; — R?, de inbedding van elke subgraaf in R%. Met
lemma 4.11 krijgen we g; : G; — R? voor 1 < i < §. Omdat E(G;) N E(G;) = 0 geldt
voor 1 < i < j < @ kunnen we g : G — R? definiéren zdd gla, = gi voor 1 < i <
0. Hiermee kunnen we 6 subgrafen maken van G, allemaal met gelijke inbedding
zodanig dat de vereniging GG vormt. Deze representaties van de subgrafen zijn nog
steeds planair. Hieruit volgt dat 6 = 6(G) > 6(G). O
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Hoofdstuk 5

RIPS (Rechtlijnige Ingebedde Planaire Subgrafen)

In de vorige hoofdstukken hebben we het over de dikte van grafen gehad. Hierbij
keken we naar planaire subgrafen waarvan de vereniging weer de originele graaf
vormt. In het bijzonder hadden we de voorwaarde gesteld dat de grafen rechtlijnig
(0(@)) of met gelijke inbedding (6(G)) moesten zijn. In dit hoofstuk bekijken we de
combinatie hiervan:

Definitie 5.1 (Rechtlijnige ingebedde dikte 6(G)). De rechtlijnige ingebedde dikte van
G is precies het minimale aantal planaire subgrafen van G’ waarvan de vereniging
weer G vormt, op voorwaarde dat deze subgrafen rechtlijnig zijn én allemaal gelijke
inbedding hebben.

Notatie: §(G)

Vanuit deze defenitie is het logisch om te kijken naar rechtlijnige ingebedde
planaire subgrafen van een graaf G-

Definitie 5.2 (RIPS). Een RIPS G’ van graaf G is een rechtlijnige ingebedde planaire
subgraaf van G.

Dit fenomeen is niet terug te vinden in de literatuur. Daarom is het handig eerst
een idee te krijgen van hoe RIPSen zich gedragen. Dit heb ik gedaan aan de hand van
de volledige grafen K,,. De K; tot en met de K, zijn planair dus het makkelijkst te
herleiden. Uit stelling 4.6 volgt dat, omdat ze een planaire representatie hebben, ze
ook een rechtlijnige representatie hebben. Omdat ze planair zijn, hebben we maar
1 planaire subgraaf nodig en hoeven we niet te kijken naar de inbedding van de
punten. Conclusie: Voor n € {1,2,3,4} geldt §(K,,) = 6(K,). Onderstaand figuur is
gelijk aan figuur 2.1, maar zal ik hier voor de volledigheid nog een keer toevoegen.

K

1 2 3 4

FIGUUR 5.1: De RIPSen van K t/mK,

Vervolgens kijken we naar de K5 tot en met de Kg, waarvan we weten dat
0(K,) = 2. De eerste drie van deze grafen waren met behulp van de constructie
van de Catlin’s grafen relatief makkelijk te herleiden. In deze constructie worden er
3-cykels in elkaar geplaatst en de overige punten in het midden van de middelste
cykel. Dit werkte voor de K, de K¢ en de K7 ook zo en leverde zelfs een represen-
tatie op met voor elke graaf het minste aantal snijpunten v(K,).
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FIGUUR 5.2: De RIPSen van K5, Kg en K;

Omdat in het algemeen geldt A(K,,) > 6(K,), volgt met deze representaties dat
ook voor n € {5,6,7} geldt: (K,,) = 0(K,).

Vanaf Ky wordt het echter lastiger. We weten dat 0(Kg) = 2 (K is de kleinste
volledige graaf met 0(K,,) = 3 [11]), maar het is lastig RIPSen te vinden waarvan de
vereniging weer de Kg vormt. Er geldt al: 6(Kg) = A(Kg) = 0(G) = 2. Hieronder
staan twee representaties van planaire subgrafen die respectievelijk rechtlijnig en
met gelijke inbedding zijn.

FIGUUR 5.4: 6(G) = 2
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De vraag is nu: Bestaan er G en G rechtlijnige grafen met gelijke inbedding
zodanig dat de vereniging precies Ky is? Of anders geformuleerd: geldt §(Kg) =
0(K3)? Hiervoor gaan we een representatie proberen te vinden van de Kg met 2
RIPSen. In de volgende paragraaf staat mijn constructie hiervoor beschreven.

5.1 Constructie RIPSen Ky

We beginnen onze zoektocht naar de RIPSen van de Ky op dezelfde manier als bij de
K tot en met de K7, door middel van 3-cykels. We kunnen twee 3-cykels in elkaar
plaatsen met in het midden de twee overige punten.

FIGUUR 5.5: Constructie Kg: 1

Vervolgens gaan we de lijnen kleuren. Hiervoor nemen we drie kleuren: groen
voor de eerste RIPS, paars voor de tweede en rood voor de lijnen die we in geen van
beide RIPSen kunnen plaatsen. In deze kleuring mogen lijnen die elkaar snijden niet
dezelfde kleur krijgen. Doordat deze graaf rechtlijnig is, zijn de subgrafen dat ook.
Door de lijnen in één graaf te houden tijdens het kleuren, weten we zeker dat de
inbedding gelijk blijft. In deze eerste representatie houden we drie lijnen over die in
geen van beide RIPSen te plaatsen zijn. Dit is de eerste verdeling van de K3 in drie
RIPSen.

zeven
-

FIGUUR 5.6: Constructie Kg: 2
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Vervolgens gaan we de "probleem gebieden" bekijken. Hiervoor kijken we naar
"cykels" van snijpunten. Dit zijn andere cykels dan die we hiervoor hebben gezien,
omdat die cykels alleen gevormd worden door gehele lijnen tussen punten. Deze
"cykels" van enkel snijpunten zullen we snijpunt-cykels noemen, om verwarring te
voorkomen. Bij een snijpunt-cykel kunnen we iets zeggen over de kleuring. Een
oneven snijpunt-cykel is namelijk niet te kleuren met twee kleuren. Als we een
lijn paars kleuren, moet de volgende groen worden omdat die snijdt met de eerste
liin. Zo geldt dat ook voor de andere lijnen in de snijpunt-cykel. Echter, omdat
de snijpunt-cykel oneven is, komen we voor de laatste lijn een kleur tekort. Merk
op: zodra een van de punten in de snijpunt-cykel een normaal punt is, gaat dit niet
meer op. We kunnen dan met een lijn grenzend aan het normale punt beginnen met
kleuren. De laatste lijn krijgt dan dezelfde kleur, maar dat maakt niet uit omdat deze
lijnen elkaar niet snijden. Met dit inzicht kunnen we alle oneven snijpunt-cykels van
alleen snijpunten rood gaan kleuren en alle snijpunt-cykels die even zijn of waar een
gewoon punt in ligt, groen. Daar komt onderstaand plaatje uit:

FIGUUR 5.7: Constructie Kg: 3

We zien hier dat er vier oneven snijpunt-cykels zijn. Vanaf hier wordt de con-
structie wat rommeliger. We moeten met de punten gaan schuiven en kijken wat
minder oneven snijpunt-cykels oplevert. Uiteindelijk zitten er in de volgende repre-
sentatie nog maar twee oneven snijpunt-cykels en wel zo dat ze naast elkaar liggen.

FIGUUR 5.8: Constructie Kyg: 4
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In deze representatie is het kleuren van de graaf ineens veel overzichtelijker. Met
deze twee snijpunt-cykels weten we dat er minstens een lijn in mijn graaf rood gek-
leurd moet worden. Door de lijn tussen deze snijpunt-cykels rood te kleuren, is de
rest heel makkelijk in twee kleuren te kleuren.

FIGUUR 5.9: Constructie Kg: 5

Dit is een representatie van de Ky die op een lijn na onder te verdelen is in
twee RIPSen. Voor de volledigheid zijn ze in volgend plaatje ook nog los van elkaar
getekent.

FIGUUR 5.10: De 3 RIPSen van Ky

Deze RIPSen zijn het bewijs dat §(K,,) < 3. Hiermee is de vraag (§(K3) = 0(Kz)?)
echter nog niet beantwoord.
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Hoofdstuk 6

Conclusie

We hebben nu gekeken naar planaire grafen, waarvan de dikte §(G) = 1 en het snij-
getal v(G) = 0. We hebben ook gekeken naar Catlin’s grafen, volledige (bipartiete)
grafen en in het bijzonder de K tot en met de K3. We weten dat een graaf G planair
is & G bevat geen subgrafen die homeomorf zijn aan K5 of K33. We kunnen met
behulp van boven- en ondergrenzen een inschatting maken van hoe groot het snij-
getal van een graaf is. We hebben bewezen dat als een graaf planair is, hij ook een
rechtlijnige representatie heeft. We hebben plaatjes gezien waaruit volgt dat voor de
K tot en met de K7 geldt dat §(K,,) = (K,) en tot slot: 2 = §(Kg) < A(Kg) < 3.
Maar wat weten we nog niet?

Open vragen:

e §(K3g) = 0(Ks) = 2? Hiervoor moeten we nog een lijn in een van de twee andere
subgrafen krijgen. Het is aannemelijk omdat §(Kg) = 0(Ks) = 0(Ks) = 2 en
omdat 0(K,) = A(K,) voor n € N. Echter als toch geldt §(Kg) # 0(Kg), wat is
hier de reden van? We weten dat §(Ky) = 3, dus het is niet onwaarschijnlijk dat
met twee extra voorwaarden de dikte van Ky een hoger wordt. Hoe kunnen we

dit bewijzen? Wat hebben we hier nog voor nodig?

e Hoe zit het met de RIPSen van K, ,,,? Deze vraag ligt erg dicht bij de vraag over de
RIPSen van de K,. Toch verdient deze familie het om hiernaar te kijken. Vooral
omdat de bipartiete grafen vanaf de K33 al niet meer planair zijn. Hebben we
hier ook grafen waarvan de dikte niet per se gelijk hoeft te zijn aan de rechtlijnige
ingebedde dike?

Met deze vragen wil ik mijn scriptie graag afsluiten. Ik hoop wat meer inzicht in de
planairheid van de volledige grafen en grafen in het algemeen gegeven te hebben.
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