
Radboud Universiteit Nijmegen

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Wiskundig Verslag
Modellenpracticum 2014

Namen:

Studie:

Begeleider:

Opdrachtgever:

Baukje Debets

Elena Fuentes Bongenaar

Giselle Loeffen

Jeroen Pijnenburg

Daan van Rozendaal

André Schemaitat

Bachelor Wiskunde

Dr. W. Bosma

Drs. G. Haan

Topicus Zorg

1 juli 2014



Inhoudsopgave

1 Voorwoord 3

2 Definities 4

3 Probleembeschrijving 7

4 Minimum Cost Flow 10

5 Min Cost Max Flow 16

6 Kortste route 22

7 Oplossing 23



1 Voorwoord

In dit verslag zullen we een probleemstelling oplossen, die het bedrijf topicus

heeft aangedragen. Dat bedrijf maakt webapplicaties. Het team Plus, onderdeel

van Topicus Zorg, waarvan wij deze opdracht hebben gekregen werkt aan het

elektronisch patiëntendossier. De testers uit het team simuleren de gebruikers

en bekijken de eventuele fouten die in het programma kunnen optreden.

Voor elke applicatie kan een schema worden gemaakt waarin duidelijk wordt

op welke manieren door de applicatie heen kan worden gelopen. Wiskundig kan

je een schema als een gerichte graaf zien. Aan de hand van zo’n graaf willen de

testers zekere paden doorlopen om de applicatie zo efficiënt mogelijk te testen.

Onze opdracht is om een tooltje te maken dat zulke testpaden genereert, op

basis van bepaalde eisen.

In dit verslag zullen we de opdracht wiskundig beschrijven en algoritmes ge-

ven, die we in onze tool gebruiken. Bovendien zullen we bewijzen dat deze

algoritmes werken.



2 Definities

2.1. Het probleem, zoals in het voorwoord aangeduid, kan wiskundig door mid-

del van grafentheorie worden beschreven. Voordat we het probleem wiskundig

kunnen formuleren, hebben we eerst een aantal definities nodig.

2.2. In dit verslag nemen we aan dat 0 ∈ N. Als f : A → B een functie is en

A′ ⊂ A, dan noteren wij met f � A′ de beperking van f tot A′.

2.3 Definitie. Een gerichte graaf G = (V,E) bestaat uit een eindige verza-

meling punten V en kanten E ⊂ V × V . Bij deze graaf maken we functies

in : V → N : v 7→
∑

(w,v)∈E 1,

out : V → N : v 7→
∑

(v,w)∈E 1.

Deze functies worden de in- resp. uit-graad genoemt.

Een punt s ∈ V heet bron als in(s) = 0. Een punt t ∈ V heet put als

out(t) = 0.

Als e = (v, w) ∈ E, dan noteren wij met e−1 := (w, v) de omgekeerde kant.

Deze hoeft natuurlijk niet noodzakelijk in E bevat te zijn. Zie 2.13 voor meer

details.

2.4 Definitie. Gegeven een gerichte graaf G = (V,E) maken we hierbij de

zogenaamde lijngraaf L(G) = (E,E′). De punten van L(G) zijn dus de kanten

van G. De kanten van L(G) maken wij als volgt: Voor kanten e1 = (v1, w1) en

e2 = (v2, w2) ∈ E definiëren wij

(e1, e2) ∈ E′ ⇐⇒ w1 = v2.

Dat betekent dus dat een kant (e1, e2) ∈ E′ precies dan als het eindpunt van e1

gelijk is aan het beginpunt van e2.

2.5 Definitie. Zij G = (V,E) een gerichte graaf. Een v0 − vr pad is een

r + 1-tupel

P = (v0, v1, v2, · · · , vr),

zodat (vi, vi+1) ∈ E voor 0 ≤ i < r. In het bijzonder is een v0 − vr pad P een

cykel als v0 = vr. Per conventie zullen we alleen over paden en cykels praten

als deze minstens een kant bevatten. Verder noteren wij de lengte van het pad

met `(P ) := r. De lengte `(P ) geeft dus het aantal kanten in P aan.

2.6 Definitie. Als G = (V,E) een gerichte graaf is, dan noemen we een collectie

F van paden een kantenoverdekking als iedere kant e ∈ E in minstens een

pad P ∈ F voorkomt.

2.7 Definitie. Een netwerk bestaat uit een gerichte graaf

G = (V ∪ {s, t}, E).



De punten s en t zijn de unieke bron resp. put. Verder nemen we aan dat

s, t /∈ V . De punten in V heten intermediaire punten. Op de graaf maken

we functies
d, l : E → N,
u : E → N ∪ {∞}

Met d bedoelen we de kosten van de kanten. De capaciteiten van de kanten

hebben ondergrens l(e) en bovengrens u(e). Een netwerk noteren wij als

N = (G, d, l, u).

Verder eisen we voor ons netwerk dat G samenhangend is , oftwel: Voor

ieder intermediair punt v ∈ V bestaat een s− v pad en een v − t pad.

2.8 Definitie. Een pre-stroom f op een graaf G = (V,E) is een functie

f : E → N.

2.9 Definitie. Zij N = (G, d, l, u) een netwerk. Laat f0 := l. Dan noemen we

f0 de basis pre-stroom op G. Als we in de tekst f0 gebruiken, wordt altijd de

basis pre-stroom op de onderliggende graaf bedoeld.

2.10 Definitie. Zij N = (G, d, l, u) een netwerk. Voor een pre-stroom f op G

en v ∈ V ∪ {s, t} definiëren wij

β(f, v) :=
∑

(v,w)∈E

f(v, w)−
∑

(w,v)∈E

f(w, v).

Het is duidelijk dat β een R-lineaire functie in de eerste componente is.

Merk op: We sommeren altijd over de kantenverzameling E, waarop f gedefi-

nieerd is.

2.11 Definitie. Stel N = (G, d, l, u) is een netwerk. Dan kunnen we een partitie

{S,B,D} van V maken door

v ∈ S ⇐⇒ β(f0, v) < 0,

v ∈ B ⇐⇒ β(f0, v) = 0,

v ∈ D ⇐⇒ β(f0, v) > 0.

2.12 Definitie. Zij N = (G, d, l, u) een netwerk en f een pre-stroom op G.

Dan noemen wij f een stroom, als[
∀e ∈ E : l(e) ≤ f(e) ≤ u(e),

∀v ∈ V : β(f, v) = 0.

De kosten van een stroom definiëren wij door

cost(f) :=
∑
e∈E

d(e) · f(e).

De waarde van een stroom geven we aan door

val(f) :=
∑

(s,v)∈E

f(s, v) = β(f, s).



2.13. We maken de volgende aannamen voor een netwerk: Gegeven N =

(G, d, l, u) en punten u, v ∈ V is het niet zo, dat (u, v) ∈ E en (v, u) ∈ E.

Een kant tussen twee punten kan dus of niet bestaan of alleen in een van de

twee richtingen. Dit is nodig om een wel gedefiniëerde kostenfunctie in definitie

2.14 te verkrijgen.

Deze aanname kunnen we z.b.d.a. maken: Stel (v, w) en (w, v) zijn kanten in

G. Dan voegen we een punt u aan V toe en vervangen de kant (v, w) door (v, u)

en (u,w), zoals hieronder te zien. We laten dan d(v, u) = d(v, w), d(u,w) =

0, l(v, u) = l(v, w) = l(u,w) en u(v, u) = u(v, w) = u(u,w).

v w

(d, l, u)

uv w
(d, l, u) (0, l, u)

Figuur 1: Kanten in twee richtingen.

2.14 Definitie. Zij N = (G, d, l, u) een netwerk. Stel f is een stroom op

N . Dan kunnen we de residuële graaf Gf = (V ∪ {s, t}, Ef ) maken en een

residueel netwerk Nf = (Gf ,∆, lf , uf ). We maken Gf als volgt:

(v, w) ∈ Ef ⇐⇒

[
(v, w) ∈ E en u(v, w)− f(v, w) > 0 of

(w, v) ∈ E en f(w, v) > 0.

Voor het eerste geval leggen we vast dat uf (v, w) := u(v, w) − f(v, w). In het

tweede geval laten we uf (v, w) := f(w, v). Verder laat lf = 0 op Ef . Voor de

kosten ∆ van kanten in Gf definiëren we

∆(v, w) :=

d(v, w) als (v, w) ∈ E,

−d(w, v) als (w, v) ∈ E.

Merk op dat ∆ van d afhangt. In de tekst is het altijd duidelijk wat de gebruikte

kostenfunctie d is, om ∆ te berekenen.

2.15 Definitie. Zij N een netwerk en f een stroom op N . Stel dat∑
(s,v)∈E

u(s, v) <∞.

Als f een stroom op G is, dan noemen we f maximaal, als de waarde val(f)

maximaal is. Voor iedere stroom f ′ op N geldt dus dat val(f ′) ≤ val(f). We

merken ook op dat we alleen over maximale stromen spreken, als het netwerk



inderdaad aan de voorwaarde voldoet, dat de som der bovengrensen in s eindig

is. Dit is nodig om de existentie van zulke stromen op N te garanderen, waarop

we hier niet verder hoeven in te gaan.

2.16 Definitie. Stel f is een stroom op een netwerk N . Laat F de collectie

van alle stromen op N zijn. Dan heet f extreem als f

cost(f) = min{cost(f ′) : f ′ ∈ F en val(f ′) = val(f)}.

Dus f heet extreem als hij onder alle stromen met dezelfde waarde minimale

kosten heeft.

2.17 Definitie. Zij N een netwerk. Een Min Cost Max Flow is een maxi-

male, extreme stroom.

2.18 Definitie. Zij N een netwerk. Een Min Cost Flow is een stroom die

onder alle stromen op N minimale kosten heeft. Voor iedere stroom f ′ op N

geldt dus cost(f) ≤ cost(f ′).

3 Probleembeschrijving

3.1. Nu we alle nodige definities kennen, zullen we ons probleem wiskundig

correct beschrijven.

We beginnen met een gerichte en samenhangende graaf G = (V,E), waarbij

een graaf samenhangend heet als tussen ieder tweetal punten v, w ∈ V een

niet noodzakelijk gericht pad bestaat. Oftewel er zijn kanten e1, e2, · · · , en ∈ E
zodat

(eγ11 , · · · , eγnn )

een v − w pad is, voor zekere γi ∈ {−1, 1}. We nemen aan dat G één unieke

bron s heeft. Verder nemen we aan dat er minstens een put is.

Het probleem is nu een kantenoverdekking, bestaande uit s − t paden, te

vinden zodat iedere combinatie van opeenvolgende kanten in G in minstens een

pad uit deze collectie voorkomt. We noemen zo een collectie bruikbaar, als deze

de volgende eigenschappen heeft:

(u, v), (v, w) ∈ E ⇒

 Er is een P = (v0, · · · , vr) ∈ C en

een 0 ≤ i ≤ r − 2 met (u, v, w) = (vi, vi+1, vi+2),

waar v0 = s, vr = t met out(t) = 0.

We gaan ons probleem aan de hand van een voorbeeld uitleggen. Bekijk de

onderstaande graaf:



s

a

b c d

Een bruikbare collectie C is bijvoorbeeld gegeven door de paden

P1 = (s, b),

P2 = (s, d),

P3 = (s, a, b),

P4 = (s, a, d),

P5 = (s, a, c, b),

P6 = (s, a, c, d).

Het doel is nu een collectie C0 te vinden met

∑
P∈C0

`(P ) = min

{∑
P∈C

`(P ) : C is bruikbaar

}
.

We zoeken dus een bruikbare collectie C0 zodat het totale aantal kanten mini-

maal is. We vertalen dit probleem naar de lijngraaf L(G).

Stel we hebben een combinatie van twee opeenvolgende kanten e1, e2. Per

definitie van L(G) is dan (e1, e2) een kant in L(G). Het onderstaande voorbeeld

laat zien hoe je uit de graaf aan de linkerkant zijn lijngraaf kunt maken:

s

a

b c d

s, a

s, b s, d

a, c

c, dc, ba, b a, d

We zien dus dat iedere combinatie van opeenvolgende kanten in G door één

kant in L(G) gerepresenteerd wordt. Losse punten corresponderen met kanten

van de bron naar een put. Omdat we later met netwerken willen werken, zorgen

we ervoor dat we een unieke bron s′ en put t′ krijgen. Voeg dus s′ en t′ aan V

toe. Verder voegen we de gestippelde lijnen als kanten aan E toe:



s

a

b c d

s′

s, a

s, b s, d

a, c

c, dc, ba, b a, d

t′

Deze aangepaste lijngraaf noteren we door G′ = (V ∪ {s′, t′}, E′). Als we

een kantenoverdekking, waarvan het totale aantal punten minimaal is, van G′

door s′ − t′ paden hebben gevonden zijn we klaar. Uit deze kantenoverdekking

kunnen we dan de gezochte bruikbare collectie C0 maken.

We zullen in stelling 7.2 zien dat zich het vinden van zo een kantenoverdekking

tot het vinden van een stroom (op G′) met minimale kosten reduceert, waarbij

we eisen dat de stroom op iedere kant minstens 1 is. De procedure die we willen

volgen laat zich dus als volgt beschrijven:

3.2. 1. Maak L(G). Voeg een unieke bron s′, put t′ en bijbehorende kanten,

zoals net beschreven, toe. Noteer de resulterende graaf met G′ = (V ′ ∪
{s′, t′}, E′).

2. Op G′ maken we kosten d. Iedere kant krijgt kosten 1, behalve de kanten

met als eindpunt t′. Deze krijgen kosten 0. Verder willen we iedere kant

minstens een keer doorlopen, zodat l(e) := 1 voor iedere kant. We mogen

alle kanten echter wel zo vaak doorlopen als we maar willen, zodat u(e) :=

+∞ voor iedere kant.

3. Vind een kantenoverdekking F0 van G′ door s′ − t′ paden zodat∑
P∈F0

cost(P )

minimaal is, waarbij cost(P ) =
∑r−1
i=0 d(vi, vi+1) als P = (v0, ..., vr).

4. Herstel uit F0 een bruikbare collectie C0 voor G.

3.3. Het wiskundig probleem ligt in punt 3. De vraag is dus hoe we zo een

kantenoverdekking F0 kunnen vinden, zodat de totale kosten van alle paden in

F0 minimaal zijn. In het volgende geven we eerst een aantal algoritmes, die ons

uiteindelijk in staat stellen deze collectie te vinden.



4 Minimum Cost Flow

4.1. In het volgende bekijken we een netwerk N = (G, d, l, u). Het doel is om

een stroom op N te vinden die minimale kosten heeft. Hiervoor gebruiken een

efficiente methode die het idee van balanceren gebruikt, zie [1].

4.2 Definitie. Zij N = (G, d, l, u) een netwerk. We breiden G = (V ∪{s, t}, E)

uit. We maken we een nieuw netwerk N∗, door een kant (t, s) aan E toe te

voegen, met l(e) = 0 = d(e) en u(e) = +∞. De nieuwe graaf noteren we met

G∗.

4.3 Definitie. Zij N = (G, d, l, u) een netwerk. Maak N∗ zoals in definitie 4.2.

Voeg nu punten s′, t′ aan V ∪ {s, t} toe. We voegen verder de volgende kanten

toe:
(s′, v) voor v ∈ S ∪ {t} met u(s′, v) := −β(f0, v),

(v, t′) voor v ∈ D ∪ {s} met u(v, t′) := β(f0, v).

Merk op dat f0 de basis pre-stroom op G is. Voor iedere toegevoegde kant

e laten we d(e) := 0. De kosten van kanten in G∗ veranderen wij niet. De

ondergrens l(e) zetten we gelijk aan 0, voor alle kanten. De resulterende graaf

noteren wij met G
∗
, en we noemen hem de balancerende graaf.

4.4 Voorbeeld. We bekijken even hoe definitie 4.3 werkt.

Een tripel (a, b, c) boven een kant e in een gerichte graaf noteert (d(e), l(e), u(e)).

We beginnen met deze graaf. Voor iedere kant geldt l(e) = 1 = d(e) en

u(e) =∞.

s

a

b

c d t

(1,
1,∞

)

(1,
1,∞

)(1, 1,∞
)

(1, 1,∞)(1
,
1
,∞

)

(1, 1,∞)

(1, 1,∞)(1, 1,∞)

Maak nu G∗. Voeg dus een kant (t, s) toe met l(t, s) = d(t, s) = 0 en u(t, s) =∞.

s

a

b

c d t

(1,
1,∞

)

(1,
1,∞

)(1, 1,∞
)

(1, 1,∞)(1
,
1
,∞

)

(1, 1,∞)

(1, 1,∞)(1, 1,∞)

(0, 0,∞)

Maak de balancerende graaf G
∗
:



s

a

b

c d t t′s′

(1,
0,
∞)

(1,
0,∞

)(1, 0,∞
)

(1, 0,∞)(1
,
0
,∞

)

(1, 0,∞)(1, 0,∞)(1, 0,∞)

(0, 0,∞)

(0, 0, 1)

(0, 0, 2)

(0, 0, 1)

(0, 0, 2)

(1, 0,∞)

4.5 Definitie. Zij N = (G, d, l, u) een netwerk, en fb een pre-stroom op N .

Dan noemen we fb balancerend, oftwel een balancerende pre-stroom, als

∀v ∈ V : β(fb, v) = −β(f0, v),

waarbij f0 de basis pre-stroom op G is. Verder moet fb voldoen aan

∀e ∈ E : fb(e) ≤ u(e)− l(e).

4.6 Lemma. Zij N een netwerk. Dan is f een stroom op G dan en slechts

dan als f = f0 + fb, waar f0 de basis pre-stroom is en fb een balancerende

pre-stroom.

Bewijs. Stel fb is een pre-stroom en laat v een intermediair punt zijn. Met

f = f0 + fb geldt

β(f, v) = β(f0, v) + β(fb, v) = β(f0, v)− β(f0, v) = 0.

Met 0 ≤ fb(e) ≤ u(e)− l(e) = u(e)− f0(e) geldt dus l(e) ≤ f(e) ≤ u(e). Dus is

f een stroom.

Andersom laat f een stroom zijn en definieer fb(e) := f(e)−f0(e). Dan geldt

β(fb, v) = β(f, v)− β(f0, v) = −β(f0, v).

Bovendien geldt 0 ≤ fb(e) ≤ u(e)− l(e). Dus is fb balancerend. �

4.7 Gevolg. Zij N = (G, d, l, u) een netwerk. Als fb een balancerende pre-

stroom op G is, met minimale kosten, dan is f = f0 + fb een Min Cost Flow op

G.



4.8 Lemma. Zij N een netwerk. Dan bestaat er een balancerende pre-stroom

f∗b op G∗ dan en slechts dan als er een balancerende pre-stroom fb op G bestaat.

In dat geval geldt cost(fb) = cost(f∗b ).

Bewijs. Stel f∗b is een balancerende pre-stroom op G∗. Laat f∗0 de basis pre-

stroom op G∗ zijn. Merk op dat l(t, s) = 0 = f∗(t, s). Dus

β(f0, t) = β(f∗0 , t) en β(f0, s) = β(f∗0 , s). (4.1)

Laat fb := f∗b � G. Met formule (4.1) zien we dat fb een balancerende pre-stroom

op G is.

Stel nu dat er een balancerende pre-stroom fb op G bestaat. We maken nu

f∗b op G∗ als volgt. Voor e ∈ E laten we f∗b (e) := fb(e) en verder

f∗b (t, s) := β(f0, s) + β(fb, s).

Merk op dat f0 de basis pre-stroom op G is. Er geldt β(fb, v) = β(f∗b , v) voor

alle intermediaire punten v. In 4.6 hebben we laten zien dat f := f0 + fb een

stroom op G is. Hieruit volgt β(f, s) = −β(f, t). Oftewel:

β(f0, s) + β(fb, s) = −(β(f0, t) + β(fb, t)).

Dat geeft

β(f∗b , t) = β(fb, t) + f∗b (t, s)

= β(fb, t) + β(f0, s) + β(fb, s)

= −β(f0, t).

Vanwege formule (4.1) geldt dus dat β(f∗b , t) = −β(f∗0 , t). Net zo geldt

β(f∗b , s) = β(fb, s)− f∗b (t, s)

= β(fb, s)− β(f0, s)− β(fb, s)

= −β(f0, s) = −β(f∗0 , s).

Dus is f∗b een balancerende pre-stroom op G∗.

Omdat d(t, s) = 0 zien we dus dat in elk geval geldt cost(fb) = cost(f∗b ). �

4.9 Gevolg. Zij N een netwerk. Dan is er een balancerende pre-stroom met

minimale kosten op G dan en slechts dan als er een balancerende pre-stroom

met minimale kosten op G∗ is.

4.10 Definitie. Zij N een netwerk en F een pre-stroom op de balancerende

graaf G
∗
. Definieer F heeft eigenschap (α) als:

v ∈ S ∪ {t} ⇒ F (s′, v) = u(s′, v),

v ∈ D ∪ {s} ⇒ F (v, t′) = u(v, t′).

Merk op: Als F eigenschap (α) heeft, geldt automatisch dat F de hele capaciteit

in de put s′ gebruikt. Als F een stroom is, moet hij in dat geval dus vanzelf

maximaal zijn.



4.11 Lemma. Zij N een netwerk. Zij F een stroom op G
∗
. Stel dat F aan

eigenschap (α) voldoet. Dan is f∗b := F � G∗ een balancerende pre-stroom op

G∗ met kosten cost(f∗b ) = cost(F ).

Bewijs. (I) Stel v ∈ S ∪ {t}. Dan geldt 0 = β(F, v) = β(f∗b , v)− F (s′, v) dus

−β(f∗0 , v) = −β(f0, v) = u(s′, v) = F (s′, v) = β(f∗b , v).

(II) Stel v ∈ D ∪ {s}. Dan geldt 0 = β(F, v) = β(f∗b , v) + F (v, t′) dus

−β(f∗0 , v) = −β(f0, v) = −u(v, t′) = −F (v, t′) = β(f∗b , v).

(III) Stel v ∈ B. Dan geldt −β(f∗0 , v) = −β(f0, v) = 0 = β(F, v) = β(f∗b , v).

Dus: f∗b is een balancerende pre-stroom op G∗. Dat cost(F ) = cost(f∗b ) volgt

omdat de toegevoegde kanten kosten 0 hebben. �

4.12 Lemma. Stel dat op G∗ een balancerende pre-stroom f∗b bestaat. Dan

kunnen we een stroom F op G
∗

maken die aan eigenschap (α) voldoet. Voor

deze stroom geldt cost(F ) = cost(f∗b ).

Bewijs. We maken F op G
∗

door F (e) = f∗b (e) op G∗. Verder laten we F (e)

gelijk zijn aan u(e), voor alle overige kanten in G
∗
. We maken F dus zodat hij

aan eigenschap (α) voldoet. Dat F een stroom is zien we nu makkelijk:

(I) Stel v ∈ S ∪ {t}. Dan geldt β(F, v) = β(f∗b , v) − F (s′, v) = β(f∗b , v) −
u(s′, v) = β(f∗b , v)− (−β(f0, v)) = β(f∗b , v) + β(f0, v) = 0.

(II) Stel v ∈ D ∪ {s}. Dan geldt β(F, v) = β(f∗b , v) + F (v, t′) = β(f∗b , v) +

β(f0, v) = 0.

(III) Stel v ∈ B. Dan geldt β(F, v) = β(f∗b , v) = −β(f∗0 , v) = β(f0, v) = 0.

�

4.13 Gevolg. Zij N een netwerk. Dan bestaat op G
∗

een stroom F die aan

eigenschap (α) voldoet dan en slechts dan als op G∗ een balancerende pre-stroom

f∗b bestaat. In dit geval geldt cost(f∗b ) = cost(F ).

4.14 Stelling. Zij N een netwerk. Zij F een Min Cost Max Flow op G
∗
. Als

F aan eigenschap (α) voldoet, is f∗b := F � G∗ een balancerende pre-stroom op

G∗ met minimale kosten. Als F niet aan eigenschap (α) voldoet, dan bestaat

op G geen stroom.

Bewijs. Stel dat F aan eigenschap (α) voldoet. In gevolg 4.13 hebben we be-

wezen, dat f∗b een pre-stroom is met cost(F ) = cost(f∗b ). Stel f∗b is niet een

balancerende pre-stroom met minimale kosten. Dan bestaat er een balance-

rende pre-stroom g∗b op G∗ met cost(g∗b ) < cost(f∗b ). Met lemma 4.12 maken we

een stroom F ′ op G
∗

met eigenschap (α) zodat cost(F ′) = cost(g∗b ). Nu geldt

cost(F ′) = cost(g∗b ) < cost(f∗b ) = cost(F ). Dat is een tegenspraak omdat nu F ′

een maximale stroom is die minder kosten dan F heeft.



Dus: f∗b is een balancerende pre-stroom met minimale kosten.

Stel nu dat F niet aan eigenschap (α) voldoet, maar wél dat er een stroom

f op G bestaat. Met fb := f − f0 is f∗b (zie lemma 4.8 hoe je f∗b maakt)

een balancerende pre-stroom op G∗. Dus, vanwege lemma 4.12, bestaat er een

stroom F ′ op G
∗

die aan eigenschap (α) voldoet (en dus maximaal is), zodat F

niet maximaal is. Tegenspraak. �

4.15. We vatten samen: Als op G stromen bestaan en F een Min Cost Max

Flow op G
∗

is, dan is f∗b := F � G∗ een balancerende pre-stroom met minimale

kosten. Met gevolg 4.9 is dan fb := f∗b � G een balancerende pre-stroom op G

(met minimale kosten), zodat vanwege gevolg 4.7 geldt dat f := f0 + fb een

stroom op G is, met minimale kosten.

Onze voorbereidingen leiden tot het volgende algoritme:

Algoritme 1 (Minimum Cost Flow)

Input: Netwerk N = (G, d, l, u) waar G = (V ∪ {s, t}, E).

Output: Een Min Cost Flow op N .

(1) Gegeven G maak de aangepaste graaf G∗.

(2) Gegeven G∗ maak de balancerende graaf G
∗
.

(3) Zoek een maximale stroom F met minimale kosten op G
∗
. Gebruik

hiervoor algoritme 3 (zie p. 22).

Als F niet aan eigenschap (α) voldoet, dan stop. Op G bestaat dan

geen stroom. Anders ga naar stap (4).

(4) Laat f∗b := F � G∗ en fb := f∗b � G.

(5) Laat f := f0 + fb, waar f0 de basis pre-stroom op G is.

4.16. We bekijken nu nog waarom in onze situatie altijd een oplossing bestaat.

We moeten dus volgens lemma 4.14 alleen bewijzen dat op G stromen bestaan:

4.17 Definitie. Gegeven een netwerk N en een pad P in G noteren wij

1P : E → {0, 1} : e 7→

1 als e in P voorkomt,

0 anders.

Dit kunnen we analoog voor cykels definiëren.

4.18 Lemma. Zij N = (G, d, l, u) een netwerk. We nemen aan l(e) = 1 voor

e ∈ E en u(e) = +∞. Dan bestaat er een stroom op G.



Bewijs. Per definitie van een netwerk bestaat voor elk intermediair punt v ∈ V
een s− v pad Pv en een v − t pad P v. Nu is

F :=
∑
v∈V

 ∑
(w,v)∈E

1Pw−v−Pv


een stroom op G met F (e) ≥ 1 voor iedere e ∈ E. Hierbij noteren we met

Pw − v − P v het s− t pad dat van s naar w naar v naar t loopt. �

4.19 Gevolg. We kunnen in lemma 4.18 ook aannemen dat l(e) > 0, voor

iedere e ∈ E.

Bewijs. Zij N zo’n netwerk. Laat η := maxe∈E l(e) en zij f een stroom zoals in

lemma 4.18, dus f(e) ≥ 1, voor alle e ∈ E. Dan is nu ηf een stroom op N . Ten

eerste geldt voor iedere v ∈ V dat

β(ηf, v) = ηβ(f, v) = 0,

en ten tweede natuurlijk ook dat ηf(e) ≥ η ≥ l(e), voor iedere e ∈ E. �

4.20 Voorbeeld. We bekijken het netwerk uit voorbeeld 4.4. Daar hebben we

al stappen (1) en (2) van algoritme 1 uitgevoerd. Nu zoeken we nog een maxi-

male stroom F met minimale kosten op G
∗
. Deze is door rode letters aangege-

ven.

s

a

b

c d t t′s′

(1,
0,
∞)

(1,
0,∞

)(1, 0,∞
)

(1, 0,∞)(1
,
0
,∞

)

(1, 0,∞)(1, 0,∞)(1, 0,∞)

(0, 0,∞)

(0, 0, 1)

(0, 0, 2)

(0, 0, 1)

(0, 0, 2)

(1, 0,∞)

2/2

2/2

3/∞

1/1

1/∞

1/∞

1/∞

1/1

Als we F tot G beperken, dan krijgen we fb. Hierbij tellen we de basis pre-

stroom f0 op. De resulterende Min Cost Flow is in de onderstaande graaf te

zien:



s

a

b

c d t

1 + 1

1 + 11

1

1

1 + 1

11

4.21. In de volgende sectie bekijken we hoe we een Min Cost Max Flow kunnen

vinden, zoals in stap 3. van algoritme 1 nodig is.

5 Min Cost Max Flow

5.1. In deze sectie zullen we zien hoe we op een netwerk een maximale stroom

met minimale kosten kunnen vinden. Voordat we het algoritme bekijken hebben

we eerst een aantal definities en lemma’s nodig.

5.2 Definitie. Zij N een netwerk met onderliggende graaf G = (V ∪ {s, t}, E).

Een circulatie op N is een functie f : V ∪ {s, t} → N met

∀e ∈ E : l(e) ≤ f(e) ≤ u(e),

∀v ∈ V ∪ {s, t} : β(f, v) = 0.

Het verschil met een stroom is, dat voor een circulatie ook in de punten s en t

de ingaande stroom gelijk is aan de uitgaande.

5.3 Definitie. We noemen een cykel C = (v0, ..., vr = v0) een negatieve cykel

als cost(C) =
∑r−1
i=0 d(vi, vi+1) < 0, dus als de totale kosten van alle kanten in

C strikt negatief zijn.

5.4 Lemma. Zij N een netwerk en f een circulatie daarop. Dan is f te

schrijven als som van stromen op eindig veel cykels in G. Oftewel: Er zijn

C1, C2, · · · , Cr cykels in G en δ1, δ2, · · · , δr > 0 zodat

f =

r∑
i=1

fi,

waar fi = δi1Ci .

Bewijs. We nemen aan dat f een positieve stroom is. Anders valt er niets te

doen. Ons bewijs volgt door middel van een algoritme:

(I) Laat f0 := f .

(II) Gegeven een circulatie fi voer de volgende subroutine uit:

(1) Zoek punten v
(i)
0 , v

(i)
1 ∈ V met (v

(i)
0 , v

(i)
1 ) ∈ E en fi(v

(i)
0 , v

(i)
1 ) > 0.

(2) Gegeven v
(i)
k zoek v

(i)
k+1 met (v

(i)
k , v

(i)
k+1) ∈ E en fi(v

(i)
k , v

(i)
k+1) > 0.



(3) Als v
(i)
k+1 ∈ {v

(i)
1 , · · · , v(i)k } dan stop en ga naar (III). Anders ga naar

stap (2).

(III) Zij Ci = (v
(i)
1 , · · · , v(i)ni ) de resulterende cykel uit (II), waar fi(v

(i)
k , v

(i)
k+1) >

0 voor iedere 1 ≤ k < ni. Laat

δi := min{f(e
(i)
k , e

(i)
k+1)} : 1 ≤ k < ni},

waar e
(i)
k = (v

(i)
k , v

(i)
k+1). Dit geeft een stroom ci op G, namelijk

ci(e) = δi1Ci(e) (e ∈ E).

(IV) Laat fi+1 := fi − ci. Als fi+1 de nul-stroom is, dan stop. Anders ga naar

(II).

Opmerkingen: Het algoritme in stap (II) werkt vanwege het behoud van

stroom in een circulatie, en het feit dat G eindig is. Verder is fi in iedere stap

een circulatie, omdat het verschil van twee circulaties een circulatie is.

De procedure stopt na maximaal #E stappen, omdat wij in iedere stap de

stroom op minstens een kant gelijk aan 0 maken. Deze kant kan in de volgende

stap dus niet meer in een cykel voorkomen. We vinden dus cykel C1, C2, · · · , Cr
en δ1, · · · , δr met r ≤ #E zodat

f =

r∑
i=1

δi1Ci
=

r∑
i=1

ci,

waarbij alle δi positief zijn. �

5.5 Lemma. Zij N = (G, d, l, u) een netwerk. Stel f en f◦ zijn stromen op N .

Als f en f◦ dezelfde waarde hebben dan is f∗ een circulatie op Gf◦ . Hierbij is

f∗(e) :=


max(0, f(e)− f◦(e)) als e ∈ E,

max(0, f◦(e−1)− f(e−1)) als e−1 ∈ E,

0 anders.

Bewijs. We bewijzen eerst dat f∗ een circulatie op Gf◦ = (V,Ef◦) is. Laat u



een willekeurig punt in Gf◦ zijn. Dan geldt∑
(v,u)∈Ef◦

f∗(v, u)−
∑

(u,v)∈Ef◦

f∗(u, v)

=
∑

(v,u)∈Ef◦∩E

max(0, f(v, u)− f◦(v, u)) +
∑

(v,u)∈Ef◦ ,

(u,v)∈E

max(0, f◦(u, v)− f(u, v))

−
∑

(u,v)∈Ef◦∩E

max(0, f(u, v)− f◦(u, v)) −
∑

(u,v)∈Ef◦ ,

(v,u)∈E

max(0, f◦(v, u)− f(v, u))

=
∑

f(v,u)>f◦(v,u)

f(v, u)− f◦(v, u) +
∑

f◦(u,v)>f(u,v)

f◦(u, v)− f(u, v)

−
∑

f◦(u,v)<f(u,v)

f(u, v)− f◦(u, v) −
∑

f◦(v,u)>f(v,u)

f◦(v, u)− f(v, u)

=
∑

(v,u)∈E

f(v, u)−
∑

(u,v)∈E

f(u, v) +
∑

(u,v)∈E

f◦(u, v)−
∑

(v,u)∈E

f◦(v, u)

= 0 + 0 = 0.

Nu bewijzen we nog dat f∗ ook aan de capaciteitsvoorwaarden op Gf◦ voldoet.

Noem de capaciteiten op Gf◦ nu uf◦ . We moeten alleen de gevallen bekijken

waar f∗(u, v) > 0. Stel f∗(u, v) = f(u, v) − f◦(u, v). Dan (u, v) ∈ E. Met

uf◦(u, v) = u(u, v)− f◦(u, v) vinden we

f∗(u, v) = f(u, v)− f◦(u, v) = f(u, v)− (u(u, v)− uf◦(u, v))

= (f(u, v)− u(u, v)) + uf◦(u, v)

≤ uf◦(u, v).

De laatste regel volgt omdat f(u, v)− u(u, v) ≤ 0. Net zo het andere geval: Als

f∗(u, v) = f◦(v, u)− f(v, u), dan (v, u) ∈ E. Er geldt uf◦(u, v) = f◦(v, u). Dus

f∗(u, v) = f◦(v, u)− f(v, u) = uf◦(u, v)− f(v, u) ≤ uf◦(u, v).

De laatste regel volgt omdat f(v, u) ≥ 0. �

5.6. Merk op: Als (u, v) ∈ E en f(u, v) > f◦(u, v), dan geldt f∗(u, v) =

f(u, v)− f◦(u, v). Dus f◦(u, v) + f∗(u, v) = f(u, v). Net zo: Als (v, u) ∈ E en

f◦(v, u) > f(v, u) dan f∗(u, v) = f◦(v, u) − f(v, u) zodat f(v, u) = f◦(v, u) −
f∗(u, v).

5.7 Gevolg. Laat f en f◦ stromen op een netwerk N zijn, met val(f) = val(f◦).

Dan zijn er cykels C1, C2, · · · , CN in Gf◦ en λ1, · · · , λN > 0 zodat het verschil

van f en f◦ te schrijven is als stroom op eindig veel cykels in Gf◦ . Bovendien

geldt

cost(f) = cost(f◦) +

N∑
i=1

cost(λi1Ci).



Bewijs. Maak f∗ zoals in lemma 5.4. Dan weten we dat f∗ een circulatie op

Gf◦ is. Met lemma 5.4 kunnen we f∗ dus schrijven als

f∗ =

N∑
i=1

λi1Ci ,

waarbij de Ci cykels in Gf◦ zijn. Dan geldt (zie 5.6) voor (u, v) ∈ Ef◦ het

volgende:

(u, v) ∈ E ⇒ f(u, v) = f◦(u, v) +
∑
λi1Ci

(u, v)

(v, u) ∈ E ⇒ f(v, u) = f◦(v, u)−
∑
λi1Ci

(u, v).

Laat ∆ de kosten op Gf◦ zijn en d de kosten op G. Als (u, v) ∈ Ef◦ en

(u, v) ∈ E dan ∆(u, v) = d(u, v) en als (v, u) ∈ E dan ∆(u, v) = −d(v, u). Voor

(u, v) ∈ Ef◦ geldt dus

cost(f) =
∑

(u,v)∈E∩Ef◦

∆(u, v)f(u, v)−
∑

(u,v)∈Ef◦ ,

(v,u)∈E

∆(u, v)f(v, u)

=
∑

(u,v)∈E∩Ef◦

(
d(u, v)f◦(u, v) + d(u, v)

∑
λi1Ci

(u, v)
)

+
∑

(u,v)∈Ef◦ ,

(v,u)∈E

(
d(v, u)f◦(v, u) + d(v, u)

∑
λi1Ci

(v, u)
)

= cost(f◦) + cost
(∑

λi1Ci

)
= cost(f◦) +

∑
cost(λi1Ci

).

�

5.8 Definitie. Zij N een netwerk, met onderliggende graaf G. Een potentiaal

op G is een functie

π : V ∪ {s, t} → R.

5.9 Definitie. Gegeven een potentiaal π en een kostenfunctie ∆ op een residuële

graaf noteren we de gereduceerde kosten met

∆π(u, v) := π(u)− π(v) + ∆(u, v) ((u, v) ∈ E).

5.10 Lemma. Gegeven een netwerk N = (G, d, l, u) en een stroom f erop zijn

de volgende uitspraken equivalent:

(i) f is extreem.

(ii) Gf bevat geen gerichte negatieve cykels.

(iii) Er bestaat een potentiaal π zodat

∀(u, v) ∈ Ef : ∆π(u, v) ≥ 0.



Bewijs. (i)⇒ (ii) Stel Gf bevat een negatieve cykel C. Als e ∈ C dan verhoog

f(e) met 1 en verlaag f(e) met 1 als e−1 ∈ G. Noem de resulterende stroom

f ′ en merk op dat f ′ ook aan de capaciteitsvoorwaarden op G voldoet. Verder

geldt

cost(f ′) = cost(f) +
∑

e∈C,e∈G
d(e)−

∑
e∈C,e−1∈G

d(e)

= cost(f) +
∑
e∈C

∆(e)

= cost(f) + cost(C) < cost(f).

Merk op dat cost(C) < 0, omdat de kosten van C in Gf worden berekend. Dus

is f niet extreem. Tegenspraak.

(ii) ⇒ (i) Stel Gf bevat geen negatieve cykels. Laat f̂ een stroom op G

zijn met val(f̂) = val(f). We nemen verder aan dat f̂ extreem is. Dus zeker

cost(f̂) ≤ cost(f). Met gevolg 5.7 zien we dat

f̂ = f +
∑

λiCi,

waarbij iedere Ci een cykel in Gf is. Per aanname krijgen we dus

cost(f̂) = cost(f) +
∑

cost(λiCi) ≥ cost(f),

omdat alle cykels in Gf niet-negatieve kosten hebben. Dus cost(f) = cost(f̂),

zodat f extreem is.

(ii)⇒ (iii) Noteer met π(u) de kosten van het kortste s−u pad in Gf . Omdat

Gf geen negatieve cykels bevat geldt dan

∀(u, v) ∈ Ef : ∆π(u, v) = π(u)− π(v) + ∆(u, v) ≥ 0,

omdat π(v) ≤ π(u) + ∆(u, v) per constructie van π.

(iii) ⇒ (ii) Laat π zo een potentiaal zijn met ∆π ≥ 0 op Ef . Laat C =

(p1, p2, · · · , pn = p1) een gerichte cykel in Gf zijn. Per aanname geldt

∆k := ∆(pk, pk+1) ≥ π(pk+1)− π(pk).

Sommeren over k levert

cost(C) =

n−1∑
k=1

∆k ≥
n−1∑
k=1

π(pk+1)− π(pk)

=

n−2∑
k=1

π(pk+1) + π(pn)− π(p1)︸ ︷︷ ︸
=0

−
n−1∑
k=2

π(pk)

=

n−1∑
k=2

π(pk)−
n−1∑
k=2

π(pk) = 0.

Dus cost(C) ≥ 0. �



5.11. We zijn nu in staat een algoritme te formuleren, dat een Min Cost Max

Flow oplevert. Na de beschrijving van het algoritme zullen we met behulp van

onze voorbereidingen bewijzen, dat het algoritme inderdaad werkt.

Algoritme 2 (Min Cost Max Flow)

Input: Netwerk N = (G, d, l, u) waar G = (V ∪ {s, t}, E) en∑
(s,u)∈E u(s, u) <∞.

Output: Een Min Cost Max Flow op N .

(1) Initialiseer π0 = 0 en f0 = 0.

(2) Gegeven fk en πk maak Gfk .

(3) Bereken ∆πk

. Nu bereken de functie σk op Efk waar σk(u) de kosten

van het kortste s − t pad in Gfk aangeeft, t.o.v. de kosten ∆πk

.

Gebruik hiervoor algoritme 3 (zie p. 22).

(4) Als Gfk geen s− t pad meer bevat dan stop. Dat gebeurt als σk(t) =

+∞. Anders ga naar de volgende stap.

(5) Maak nu fk+1 door de stroom langs een kortste pad (volgens σk) te

verhogen. Deze vinden we ook met algoritme 3.

(6) We maken een nieuw potentiaal πk+1 door

πk+1 = πk + σk.

(7) Ga naar (2).

5.12 Stelling. In iedere stap k in algoritme 2 geldt dat fk extreem is.

Bewijs. Volgens lemma 5.10 zijn we klaar als voor iedere k geldt dat ∆πk ≥ 0

op Gfk . We bewijzen dit met volledige inductie. Voor k = 0 valt er niets te

bewijzen. Dan geldt namelijk ∆0 = d, waarbij d de kosten op G zijn. Neem aan

het geldt voor k > 0, Bekijk:

∆πk+1

(u, v) = πk+1(u)− πk+1(v) + ∆(u, v)

= πk(u)− πk(v) + ∆(u, v) + σk(u)− σk(v).

Dan is ∆πk+1

(u, v) ≥ 0, precies als σk(v)− σk(u) ≤ ∆πk

(u, v). Met ons lemma

5.10 weten we dat Gfk geen negatieve cykels bevat zodat σk bestaat en per

constructie geldt :

σk(v)− σk(u) ≤ ∆πk

(u, v).

We zijn dus klaar. �



5.13. Merk op dat stelling 5.12 ons nu vertelt dat in iedere stap fk extreem

is zodat we iedere keer stap (3) kunnen uitvoeren. Immers: Gfk heeft geen

negatieve cykels. Dit stelt ons in staat om σk te berekenen. Het gevolg is dus:

5.14 Gevolg. Algoritme 2 stopt na eindig veel stappen. De resulterende stroom

f is maximaal en extreem, dus f is een Min Cost Max Flow.

Bewijs. In 5.13 hebben we uitgelegd waarom het algoritme in stap (3) altijd de

functie σk kan berekenen. Dus kan het algoritme in stap (3) niet vast lopen.

Omdat de stroom iedere keer echt groter wordt, moet het algoritme op een

gegeven moment stoppen. (Hiervoor zorgt de aanname dat
∑

(s,u)∈E u(s, u) <

∞). Dat de resulterende stroom maximaal is volgt uit het algoritme van Ford en

Fulkerson: Als we iedere keer de stroom langs een s− t pad verhogen, totdat dit

niet meer kan, krijgen we een maximale stroom. Het bewijs van dit algoritme

is een elementair resultaat in de grafentheorie. �

5.15. We zullen nu nog bekijken hoe we de functie σk in stap (3) kunnen

berekenen. Hiervoor gebruiken we het algoritme van Dijkstra.

6 Kortste route

6.1. We zullen in deze sectie naar het algoritme van Dijkstra kijken. Dit al-

goritme stelt ons in staat een kortste s − t pad in een netwerk N te vinden,

zolang N geen negatieve cykels bevat. We merken verder nog op dat we de

uitdrukkingen kortste pad en goedkoopste pad als equivalent beschouwen.

Algoritme 3 (Kortste route)

Input: Netwerk N = (G, d, l, u) waar G = (V ∪ {s, t}, E).

Output: Een functie σ : V ∪ {s, t} → R ∪ {∞} waar

σ(v) = min{cost(P ) : P is een s− v pad}.

En een functie pr : V ∪ {t} → V ∪ {s, t}.

(1) Laat σ(s) := 0 en σ(v) = +∞ voor v ∈ V ∪ {t}.

(2) Laat S := {s}.

(3) Als S = ∅, ga dan naar stap (6). Anders zoek een v∗ ∈ S met

σ(v∗) = min
v∈S

σ(v).

(4) Pas nu σ als volgt aan:

σ(v) := min(σ(v), σ(v∗) + d(v∗, v)) ((v∗, v) ∈ E).



Als deze procedure de waarde van σ in een punt v strikt kleiner maakt,

dan voeg v aan S toe en definieer pr(v) := v∗.

(5) Laat nu S := S \ {v∗} en ga naar stap (3).

(6) Als σ(t) = ∞, dan bestaat er geen s − t pad. Anders maken we nu

een kortste pad P : Laat w0 := t.

(7) Gegeven wk laat wk+1 := pr(wk). Herhaal deze stap, totdat wk+1 = s.

(8) Laat P := (wn = s, wn−1, · · · , w0 = t).

6.2. Het is duidelijk dat het algoritme vast loopt, als G een negatieve cykel

bevat. Het algoritme stopt dus alleen als G geen negatieve cykels bevat. Voor

een algemene implementatie moeten we hiermee rekening houden en checken dat

zoiets niet kan gebeuren. Voor ons doel hoeft dat niet, omdat we het algoritme

alleen op netwerken zullen toepassen, die geen negatieve cykels bevatten.

6.3 Stelling. Zij N = (G, d, l, u) een netwerk, zodat G geen negatieve cykels

bevat. Dan stopt algoritme 3 na eindig veel stappen. Verder is het zo gevonden

pad P een s− t pad met minimale kosten.

6.4. Dat het algoritme van Dijkstra werkt is een algemeen bekend resultaat,

zodat we dit hier niet hoeven te bewijzen.

7 Oplossing

7.1. We hebben nu de nodige hulpmiddelen om het probleem, zoals in 3.2

beschreven, op te lossen. We formuleren dit als stelling:

7.2 Stelling. Zij N = (G, d, l, u) gegeven. Laat l(e) > 0 en u(e) = ∞ voor

e ∈ E. Dan bestaan er stromen op G met minimale kosten. Stel f is zo een

stroom op G. Door middel van f kunnen we dan een kantenoverdekking F0,

bestaande uit s− t paden, vinden zodat∑
P∈F

cost(P )

minimaal is. Dit lost punt 3. in onze probleembeschrijving 3.2 op.

7.3. Om stelling 7.2 te bewijzen, hebben we weer een algoritme nodig. Deze laat

ons uit een Min Cost Flow zo’n kantenoverdekking F0 construeren. Hierna moe-

ten we alleen nog stap 4. in 3.2 beschrijven, ofwel hoe we uit F0 een bruikbare

collectie C0 maken.



Algoritme 4

Input: Netwerk N = (G, d, l, u) met l(e) > 0 en u(e) = ∞ waar G =

(V ∪ {s, t}, E). Verder is f een stroop op G.

Output: Een kantenoverdekking F van s− t paden in G.

(1) Zij h : E → N gegeven door h := f .

(2) Kies een kant (s, v) met h(s, v) > 0 en definieer P := (s, v), en

h(s, v) := h(s, v)− 1. Als zo’n kant niet bestaat, ga naar stap (4).

(3) Zij v het laatste punt in P . Als v = t dan voeg P aan F toe en ga

naar stap (2). Anders kies een kant (v, w) met h(v, w) > 0, en voeg

w toe aan P . Definieer h(v, w) := h(v, w)− 1. Herhaal deze stap.

(4) De waarde van de stroom h is gelijk aan 0, dus h is een circulatie.

Als h(e) = 0, voor alle e ∈ E, dan stop met het algoritme. Zo niet

kies een (v0, v1) ∈ E met h(v0, v1) > 0 en ∃(u, v0) ∈ E : h(u, v0) = 0.

Definieer dan h(v0, v1) := h(v0, v1)− 1 en C := (v0, v1).

(5) Gegeven vk ∈ C, met k maximaal, kies een kant (vk, vk+1)

met h(vk, vk+1) > 0, laat C := (v0, v1, · · · , vk+1) en definieer

h(vk, vk+1) := h(vk, vk+1) − 1. Ga naar stap (6) als vk+1 = v0. Her-

haal deze stap.

(6) De kant (u, v0) uit stap (5) zit in een pad P = (s, ..., u, v0, ..., t) ∈ F .

Vervang dan P door P = (s, ..., u, C, ..., t) en ga terug naar stap (4).

Bewijs van stelling 7.2. De existentie van een Min Cost Flow op G wordt in

lemma 4.18 bewezen. We bewijzen hier, hoe we uit een Min Cost Flow f op G

een kantenoverdekking F van s− t paden kunnen maken, ofwel dat algoritme 4

werkt.

• In stap (2) is h een stroom, en door behoud van stroom, kunnen stap (3)

en (5) altijd uitgevoerd worden.

• Bij stap (6): De kant (u, v0) zit in een pad P ∈ F , omdat h(u, v0) = 0 en

oorspronkelijk was h(u, v0) = f(u, v0) ≥ l(u, v0) > 0. Er is dus minstens

een pad P ∈ F die de kant (u, v0) bevat.

• In stap (4) kunnen we inderdaad een kant (v0, v1) met h(v0, v1) > 0 vinden,

zodat er een kant (u, v0) is met h(u, v0) = 0. Als dat niet waar zou zijn, dan

kunnen we nagaan dat h geen circulatie is: Stel dat iedere kant (v, w) ∈ E



met h(v, w) > 0 de volgende eigenschap heeft:

(v′, v) ∈ E ⇒ h(v′, v) > 0.

Pak nu een willekeurige (v, w) ∈ E met h(v, w) > 0. Dan is er een s − v
pad P = (s, p0, p1, · · · , pn, v). Per aanname geldt h(pn, v) > 0. Dus ook

h(pn−1, pn) > 0. Ga zo door. Dan zien we h(s, p0) > 0 zodat h geen

circulatie is.

Conclusie: Er moet minstens een kant (v, w) ∈ E zijn met h(v, w) > 0

zodat er een kant (v, v′) ∈ E is met h(v, v′) = 0.

• Uit een stroom kunnen we dus een collectie paden afleiden, en uit zo’n

collectie s− t paden kunnen we een stroom f maken door

f(u, v) = #{P ∈ F : (u, v) ∈ P}.

In dat geval geldt∑
P∈F

cost(P ) =
∑
P∈F

∑
(u,v)∈P

d(u, v)

=
∑

(u,v)∈E

d(u, v) ·#{P ∈ F ; (u, v) ∈ P}

=
∑
e∈E

d(e) · f(e) = cost(f).

Als we dat nu op een Min Cost Flow toepassen, hebben we een collectie F van

s− t paden met minimale kosten gevonden. �

7.4. We moeten nu nog kijken hoe we punt 4. in de probleembeschrijving 3.2

oplossen. Stel we passen stelling 7.2 op de graaf G′, zoals in punt 1. van 3.2

toe. Dit geeft een kantenoverdekking F0 van s′ − t′ paden met minimale totale

kosten. Uit F0 kunnen we C0 construeren door voor P = (s′, e1, · · · , en, t′) ∈ F0

met ei = (vi, wi) het pad P = (v1, v2, · · · , vn, wn) aan C0 toe te voegen. Uit C0
kunnen we op unieke wijze weer F0 construeren. Dan geldt

∑
P∈F cost(P ) =∑

P∈C0 `(P ), zodat C0 inderdaad een bruikbare collectie met minimaal totaal

aantal kanten is. Hiermee is het probleem dus opgelost. We vatten samen wat

we nu hebben gedaan:

We hebben een vertaling van de originele graaf naar de lijngraaf gemaakt.

Voor deze vinden we een Min Cost Flow, waaruit we dan zo’n minimale kanten-

overdekking F0 vinden. Hieruit kunnen we dan een minimale bruikbare collectie

C0 voor de originele graaf maken. Per constructie is C0 dan een collectie paden,

zodat iedere combinatie van opeenvolgende kanten in een zeker pad P ∈ C0
voorkomt, en zodanig dat de totale lengte∑

P∈C0

`(P )

minimaal is.



Referenties

[1] A. V. Aho and D. Lee, Efficient Algorithms for Constructing Testing Sets,

Covering Paths, and Minimum-flows, AT & T Bell Laboratoties, 1991

[2] Jack Edmonds, Theoretical Improvements in Algorithmic Efficiency for Net-

work Flow Problems, Journal of the Association for Computing Machinery,

Vol. 19, No. 2, April 1972, p. 248-264


