RADBOUD UNIVERSITEIT NIJMEGEN

A=k
9 E
- (@)
1, &
Mine €

FACULTEIT DER NATUURWETENSCHAPPEN, WISKUNDE EN INFORMATICA

WISKUNDIG VERSLAG
MODELLENPRACTICUM 2014

Namen: Baukje Debets
Elena Fuentes Bongenaar

Giselle Loeffen

Jeroen Pijnenburg

Daan van Rozendaal

André Schemaitat

Studie: Bachelor Wiskunde
Begeleider: Dr. W. Bosma
Opdrachtgever: Drs. G. Haan

Topicus Zorg

1 juli 2014

Inhoudsopgave

1

2

Voorwoord

Definities
Probleembeschrijving
Minimum Cost Flow
Min Cost Max Flow
Kortste route

Oplossing

10

16

22

23

1 Voorwoord

In dit verslag zullen we een probleemstelling oplossen, die het bedrijf topicus
heeft aangedragen. Dat bedrijf maakt webapplicaties. Het team Plus, onderdeel
van Topicus Zorg, waarvan wij deze opdracht hebben gekregen werkt aan het
elektronisch patiéntendossier. De testers uit het team simuleren de gebruikers

en bekijken de eventuele fouten die in het programma kunnen optreden.

Voor elke applicatie kan een schema worden gemaakt waarin duidelijk wordt
op welke manieren door de applicatie heen kan worden gelopen. Wiskundig kan
je een schema als een gerichte graaf zien. Aan de hand van zo’n graaf willen de
testers zekere paden doorlopen om de applicatie zo efficiént mogelijk te testen.
Onze opdracht is om een tooltje te maken dat zulke testpaden genereert, op

basis van bepaalde eisen.

In dit verslag zullen we de opdracht wiskundig beschrijven en algoritmes ge-
ven, die we in onze tool gebruiken. Bovendien zullen we bewijzen dat deze

algoritmes werken.

2 Definities

2.1. Het probleem, zoals in het voorwoord aangeduid, kan wiskundig door mid-
del van grafentheorie worden beschreven. Voordat we het probleem wiskundig

kunnen formuleren, hebben we eerst een aantal definities nodig.

2.2. In dit verslag nemen we aan dat 0 € N. Als f : A — B een functie is en
A’ C A, dan noteren wij met f | A’ de beperking van f tot A’.

2.3 Definitie. Een gerichte graaf G = (V| E) bestaat uit een eindige verza-
meling punten V en kanten F C V' x V. Bij deze graaf maken we functies

in:V%N:v}—)Z(w”)EEl,

out: V> Nivw 3 hepl

Deze functies worden de in- resp. uit-graad genoemt.

Een punt s € V heet bron als in(s) = 0. Een punt ¢t € V heet put als
out(t) = 0.

Als e = (v,w) € E, dan noteren wij met e~! := (w,v) de omgekeerde kant.
Deze hoeft natuurlijk niet noodzakelijk in E bevat te zijn. Zie 2.13 voor meer
details.

2.4 Definitie. Gegeven een gerichte graaf G = (V, E) maken we hierbij de
zogenaamde lijngraaf L(G) = (E, E’). De punten van L(G) zijn dus de kanten
van G. De kanten van L(G) maken wij als volgt: Voor kanten e; = (vy,w;) en

ez = (v2,wz) € E definiéren wij
(61,62) € FE <~ w1 = V2.

Dat betekent dus dat een kant (e1, ez) € E’ precies dan als het eindpunt van e;

gelijk is aan het beginpunt van es.

2.5 Definitie. Zij G = (V, E) een gerichte graaf. Een vy — v, pad is een
r + 1-tupel

P = (’UO,’Ul,Ug,"' aUT‘)a

zodat (v;,vi41) € E voor 0 <4 < r. In het bijzonder is een vy — v, pad P een
cykel als vy = v,.. Per conventie zullen we alleen over paden en cykels praten
als deze minstens een kant bevatten. Verder noteren wij de lengte van het pad
met {(P) :=r. De lengte ¢(P) geeft dus het aantal kanten in P aan.

2.6 Definitie. Als G = (V, E) een gerichte graaf is, dan noemen we een collectie
F van paden een kantenoverdekking als iedere kant e € E in minstens een
pad P € F voorkomt.

2.7 Definitie. Een netwerk bestaat uit een gerichte graaf

G = (VU{s,t},E).

De punten s en t zijn de unieke bron resp. put. Verder nemen we aan dat
s,t ¢ V. De punten in V heten intermediaire punten. Op de graaf maken

we functies

d,l: E— N,
u:E— NU{oo}
Met d bedoelen we de kosten van de kanten. De capaciteiten van de kanten

hebben ondergrens I(e) en bovengrens u(e). Een netwerk noteren wij als
N = (G, d, 1, u).

Verder eisen we voor ons netwerk dat G samenhangend is , oftwel: Voor

ieder intermediair punt v € V bestaat een s — v pad en een v — t pad.

2.8 Definitie. Een pre-stroom f op een graaf G = (V,E) is een functie
f+E—N.

2.9 Definitie. Zij N = (G,d,l,u) een netwerk. Laat fy :=[. Dan noemen we
fo de basis pre-stroom op G. Als we in de tekst f, gebruiken, wordt altijd de
basis pre-stroom op de onderliggende graaf bedoeld.

2.10 Definitie. Zij N = (G,d, [, u) een netwerk. Voor een pre-stroom f op G
env €V U{s,t} definiéren wij
B(f)v) = Z f(U,’U))— Z f(w,v).
(v,w)EE (w,v)EE
Het is duidelijk dat 8 een R-lineaire functie in de eerste componente is.

Merk op: We sommeren altijd over de kantenverzameling F, waarop f gedefi-

nieerd is.

2.11 Definitie. Stel N = (G, d, [, u) is een netwerk. Dan kunnen we een partitie
{S, B, D} van V maken door

veS = B(fo,v) <0,
veEB — B(fo,v) =0,
veD = B(fo,v) > 0.

2.12 Definitie. Zij N = (G,d,l,u) een netwerk en f een pre-stroom op G.
Dan noemen wij f een stroom, als

Vee E:le) < f(e) < ule),

Yo eV :p(f,v)=0.

De kosten van een stroom definiéren wij door
cost(f) := Z d(e) - f(e).
ecE
De waarde van een stroom geven we aan door

val(f) = Z f(s,v) =B(f,s).

(s,v)EE

2.13. We maken de volgende aannamen voor een netwerk: Gegeven N =
(G,d,l,u) en punten u,v € V is het niet zo, dat (u,v) € F en (v,u) € E.

Een kant tussen twee punten kan dus of niet bestaan of alleen in een van de
twee richtingen. Dit is nodig om een wel gedefiniéerde kostenfunctie in definitie
2.14 te verkrijgen.

Deze aanname kunnen we z.b.d.a. maken: Stel (v,w) en (w,v) zijn kanten in
G. Dan voegen we een punt u aan V toe en vervangen de kant (v, w) door (v, u)
en (u,w), zoals hieronder te zien. We laten dan d(v,u) = d(v,w), d(u,w) =

0, l(v,u) = l(v,w) = l(u,w) en u(v,u) = u(v,w) = u(u,w).

(d; 1, u)

(d,l,u)

(0,1, u)

(w)
N

Figuur 1: Kanten in twee richtingen.

2.14 Definitie. Zij N = (G,d,l,u) een netwerk. Stel f is een stroom op
N. Dan kunnen we de residuéle graaf Gy = (V U {s,t}, Ey) maken en een
residueel netwerk N; = (G, A,l;,us). We maken G als volgt:

(v,w) € E en u(v,w) — f(v,w) >0 of

(v,w) € By < (w,v) € Een f(w,v) > 0.

Voor het eerste geval leggen we vast dat uy(v,w) := u(v,w) — f(v,w). In het
tweede geval laten we us(v, w) := f(w,v). Verder laat [y = 0 op E;. Voor de

kosten A van kanten in Gy definiéren we

d(v,w) als (v,w) € E,

Alvw) = —d(w,v) als (w,v) € E.

Merk op dat A van d afhangt. In de tekst is het altijd duidelijk wat de gebruikte

kostenfunctie d is, om A te berekenen.

2.15 Definitie. Zij N een netwerk en f een stroom op N. Stel dat
Z u(s,v) < oo.
(s,v)EE

Als f een stroom op G is, dan noemen we f maximaal, als de waarde val(f)
maximaal is. Voor iedere stroom f’ op N geldt dus dat val(f’) < val(f). We

merken ook op dat we alleen over maximale stromen spreken, als het netwerk

inderdaad aan de voorwaarde voldoet, dat de som der bovengrensen in s eindig
is. Dit is nodig om de existentie van zulke stromen op N te garanderen, waarop

we hier niet verder hoeven in te gaan.

2.16 Definitie. Stel f is een stroom op een netwerk N. Laat F de collectie

van alle stromen op N zijn. Dan heet f extreem als f
cost(f) = min{cost(f’) : f' € F en val(f’) = val(f)}.

Dus f heet extreem als hij onder alle stromen met dezelfde waarde minimale
kosten heeft.

2.17 Definitie. Zij N een netwerk. Een Min Cost Max Flow is een maxi-

male, extreme stroom.

2.18 Definitie. Zij N een netwerk. Een Min Cost Flow is een stroom die
onder alle stromen op N minimale kosten heeft. Voor iedere stroom f’ op N
geldt dus cost(f) < cost(f’).

3 Probleembeschrijving

3.1. Nu we alle nodige definities kennen, zullen we ons probleem wiskundig
correct beschrijven.

We beginnen met een gerichte en samenhangende graaf G = (V, E), waarbij
een graaf samenhangend heet als tussen ieder tweetal punten v,w € V een
niet noodzakelijk gericht pad bestaat. Oftewel er zijn kanten ey, ez, -+ ,e, €

zodat

(6’1‘{17"' ,62")

een v — w pad is, voor zekere v; € {—1,1}. We nemen aan dat G één unieke
bron s heeft. Verder nemen we aan dat er minstens een put is.

Het probleem is nu een kantenoverdekking, bestaande uit s — ¢t paden, te
vinden zodat iedere combinatie van opeenvolgende kanten in G in minstens een
pad uit deze collectie voorkomt. We noemen zo een collectie bruikbaar, als deze
de volgende eigenschappen heeft:

Eriseen P = (vg, -+ ,v,) € C en
(u,v), (v,w) € E= | een 0<i <7 —2met (u,v,w) = (v;,Vit1, Vit2),

waar vg = 8, v, =t met out(t) = 0.

We gaan ons probleem aan de hand van een voorbeeld uitleggen. Bekijk de

onderstaande graaf:

Het doel is nu een collectie Cy te vinden met

> 4(P) =min { > 4P):Cis bruikbaar} .

PeCy pPeC

We zoeken dus een bruikbare collectie Cy zodat het totale aantal kanten mini-
maal is. We vertalen dit probleem naar de lijngraaf L(G).

Stel we hebben een combinatie van twee opeenvolgende kanten ej,es. Per
definitie van L(G) is dan (e1, e2) een kant in L(G). Het onderstaande voorbeeld
laat zien hoe je uit de graaf aan de linkerkant zijn lijngraaf kunt maken:

o ()
Q @
e‘@‘@@@@@

We zien dus dat iedere combinatie van opeenvolgende kanten in G door één
kant in L(G) gerepresenteerd wordt. Losse punten corresponderen met kanten
van de bron naar een put. Omdat we later met netwerken willen werken, zorgen
we ervoor dat we een unieke bron s’ en put ¢’ krijgen. Voeg dus s’ en ¢’ aan V

toe. Verder voegen we de gestippelde lijnen als kanten aan F toe:

Deze aangepaste lijngraaf noteren we door G' = (V U {s',t'}, E’). Als we
een kantenoverdekking, waarvan het totale aantal punten minimaal is, van G’
door s’ — ¢ paden hebben gevonden zijn we klaar. Uit deze kantenoverdekking
kunnen we dan de gezochte bruikbare collectie Cy maken.

We zullen in stelling 7.2 zien dat zich het vinden van zo een kantenoverdekking
tot het vinden van een stroom (op G’) met minimale kosten reduceert, waarbij
we eisen dat de stroom op iedere kant minstens 1 is. De procedure die we willen
volgen laat zich dus als volgt beschrijven:

3.2. 1. Maak L(G). Voeg een unieke bron s’, put ¢’ en bijbehorende kanten,

zoals net beschreven, toe. Noteer de resulterende graaf met G' = (V' U
{s',t'}, E).

2. Op G’ maken we kosten d. Iedere kant krijgt kosten 1, behalve de kanten
met als eindpunt ¢'. Deze krijgen kosten 0. Verder willen we iedere kant
minstens een keer doorlopen, zodat I(e) := 1 voor iedere kant. We mogen
alle kanten echter wel zo vaak doorlopen als we maar willen, zodat u(e) :=

+o00 voor iedere kant.

3. Vind een kantenoverdekking Fy van G’ door s’ — ¢’ paden zodat

Z cost(P)

PcFo

minimaal is, waarbij cost(P) = Z:;Ol d(vi,vi41) als P = (v, ..., Vp).

4. Herstel uit Fy een bruikbare collectie Cy voor G.

3.3. Het wiskundig probleem ligt in punt 3. De vraag is dus hoe we zo een
kantenoverdekking Fy kunnen vinden, zodat de totale kosten van alle paden in
Fo minimaal zijn. In het volgende geven we eerst een aantal algoritmes, die ons
uiteindelijk in staat stellen deze collectie te vinden.

4 Minimum Cost Flow

4.1. In het volgende bekijken we een netwerk N = (G,d,l,u). Het doel is om
een stroom op N te vinden die minimale kosten heeft. Hiervoor gebruiken een
efficiente methode die het idee van balanceren gebruikt, zie [1].

4.2 Definitie. Zij N = (G,d,l,u) een netwerk. We breiden G = (VU {s,t}, E)
uit. We maken we een nieuw netwerk N*, door een kant (¢,s) aan E toe te

voegen, met [(e) = 0 = d(e) en u(e) = +oo. De nieuwe graaf noteren we met
G*.

4.3 Definitie. Zij N = (G, d, 1, u) een netwerk. Maak N* zoals in definitie 4.2.
Voeg nu punten s',t’ aan V U {s,t} toe. We voegen verder de volgende kanten

toe:
(s',v) voor v € SU{t} met u(s’,v) := —5(fo,v),
(v,t") voor v € DU {s} met u(v,t’") := 8(fo,v).

Merk op dat fy de basis pre-stroom op G is. Voor iedere toegevoegde kant
e laten we d(e) := 0. De kosten van kanten in G* veranderen wij niet. De
ondergrens [(e) zetten we gelijk aan 0, voor alle kanten. De resulterende graaf

. —-*
noteren wij met GG , en we noemen hem de balancerende graaf.

4.4 Voorbeeld. We bekijken even hoe definitie 4.3 werkt.
Een tripel (a, b, ¢) boven een kant e in een gerichte graaf noteert (d(e), (e), u(e)).
We beginnen met deze graaf. Voor iedere kant geldt I(e) = 1 = d(e) en

u(e) = oo.

(1,1,00)

(1,1,00) /d\ (1,1,00)
\Z/

Maak de balancerende graaf [ex

4.5 Definitie. Zij N = (G,d,l,u) een netwerk, en f;, een pre-stroom op N.

Dan noemen we f;, balancerend, oftwel een balancerende pre-stroom, als

Yo e Vi B(fo,v) = =B(fo,v),

waarbij fo de basis pre-stroom op G is. Verder moet f; voldoen aan
Ve e E: fi(e) <ule) —I(e).

4.6 Lemma. Zij N een netwerk. Dan is f een stroom op G dan en slechts
dan als f = fo + fp, waar fo de basis pre-stroom is en f, een balancerende

pre-stroom.

Bewijs. Stel f; is een pre-stroom en laat v een intermediair punt zijn. Met
= fo+ fo geldt

ﬁ<f7’l)) :5(f0,1}) +6(fb7v) :B(f()’v) —6(f07’l)) = 0.

Met 0 < fy(e) < ule) —l(e) = ule) — fole) geldt dus l(e) < f(e) < u(e). Dus is
f een stroom.

Andersom laat f een stroom zijn en definieer f,(e) := f(e) — fo(e). Dan geldt

ﬁ(fbav) = ﬂ(f7v) - B(f()?v) = _B(f(hv)'
Bovendien geldt 0 < fy(e) < wu(e) —I(e). Dus is f, balancerend. [|

4.7 Gevolg. Zij N = (G,d,l,u) een netwerk. Als f;, een balancerende pre-
stroom op G is, met minimale kosten, dan is f = fo + f, een Min Cost Flow op

G.

4.8 Lemma. Zij N een netwerk. Dan bestaat er een balancerende pre-stroom
Iy op G* dan en slechts dan als er een balancerende pre-stroom fy, op G bestaat.
In dat geval geldt cost(fy) = cost(fy).

Bewijs. Stel f; is een balancerende pre-stroom op G*. Laat fj de basis pre-
stroom op G* zijn. Merk op dat I(¢,s) = 0= f*(¢,s). Dus
B(f07t)zﬁ<fgat) €n B(f07s):6(f0*7s> (41)

Laat fi, := f; | G. Met formule (4.1) zien we dat f, een balancerende pre-stroom
op G is.

Stel nu dat er een balancerende pre-stroom f, op G bestaat. We maken nu
fif op G* als volgt. Voor e € E laten we f;(e) := fy(e) en verder

fl;k(tﬂg) = ﬁ(anS) +B(fb75)

Merk op dat fy de basis pre-stroom op G is. Er geldt 8(fy,v) = B(f;,v) voor
alle intermediaire punten v. In 4.6 hebben we laten zien dat f := fy + f een
stroom op G is. Hieruit volgt (f,s) = —B(f,t). Oftewel:

/8(f075) +B(fbas) = _(5(f07t) +ﬂ(fb7t))

Dat geeft

Bf5:t) = B(fo,t) + fi (. s)
= B(fo. 1) + B(fo,5) + B(fs, 5)
= —B(fo,1).
Vanwege formule (4.1) geldt dus dat 3(f;,t) = —B(fg,t). Net zo geldt

B(f5.s) = B(fo.s) — fi (t,s)
:B(fb7s)_6(foas)_ﬁ(fbas)
= —B(fo,s) = =B(f5, 3)-

Dus is f; een balancerende pre-stroom op G*.
Omdat d(¢,s) = 0 zien we dus dat in elk geval geldt cost(f,) = cost(f;). W

4.9 Gevolg. Zij N een netwerk. Dan is er een balancerende pre-stroom met
minimale kosten op G dan en slechts dan als er een balancerende pre-stroom

met minimale kosten op G* is.

4.10 Definitie. Zij N een netwerk en I’ een pre-stroom op de balancerende
graaf G . Definieer F heeft eigenschap (@) als:

veSuU{t} = F(s',v) =u(s,v),
ve DU{s} = F(v,t") = u(v,).
Merk op: Als F eigenschap («) heeft, geldt automatisch dat F' de hele capaciteit

in de put s’ gebruikt. Als I een stroom is, moet hij in dat geval dus vanzelf

maximaal zijn.

4.11 Lemma. Zij N een netwerk. Zij F' een stroom op G". Stel dat F aan
eigenschap (o) voldoet. Dan is ff = F | G* een balancerende pre-stroom op
G* met kosten cost(f;) = cost(F).

Bewijs. (I) Stel v € SU{t}. Dan geldt 0 = B(F,v) = B(f,v) — F(s',v) dus
_ﬂ(fgav) = _6(f07v) = U,(S/,U) = F(Slav) = B(flj7v)

(II) Stel v € DU {s}. Dan geldt 0 = B(F,v) = B(ff,v) + F(v,t') dus
75(.](-8"1}) = */B(f()??}) = *U(’U’t/) = 7F(,U’tl) = 5(.}6;71))

(IL1) Stel v € B. Dan geldt —3(f3,v) = —B(fo,v) = 0 = B(F,v) = B(f{, v).
Dus: fy is een balancerende pre-stroom op G*. Dat cost(F') = cost(f;) volgt
omdat de toegevoegde kanten kosten 0 hebben.]

4.12 Lemma. Stel dat op G* een balancerende pre-stroom f; bestaat. Dan
kunnen we een stroom F op G maken die aan eigenschap (a) woldoet. Voor
deze stroom geldt cost(F') = cost(fy).

Bewijs. We maken F op G door F(e) = fi(e) op G*. Verder laten we F(e)
gelijk zijn aan u(e), voor alle overige kanten in G". We maken F dus zodat hij

aan eigenschap («) voldoet. Dat F' een stroom is zien we nu makkelijk:

(I) Stel v € SU{t}. Dan geldt B(F,v) = B(f;,v) — F(s',v) = B(f,v) —
u(s',v) = B(fyv) = (=B(fo.v)) = B(fy,v) + B(fo,v) = 0.

(IT) Stel v € D U {s}. Dan geldt S(F,v) = B(f;,v) + F(v,t') = B(f;,v) +
B(fo,v) =0.

(IIT) Stel v € B. Dan geldt 3(F,v) = B(f;,v) = =B(f5,v) = B(fo,v) = 0.
]

4.13 Gevolg. Zij N een netwerk. Dan bestaat op G een stroom F die aan
eigenschap («) voldoet dan en slechts dan als op G* een balancerende pre-stroom
fi bestaat. In dit geval geldt cost(f;) = cost(F).

4.14 Stelling. Zij N een netwerk. Zij F' een Min Cost Max Flow op G". Als
F aan eigenschap (o) voldoet, is fi := F | G* een balancerende pre-stroom op
G* met minimale kosten. Als F niet aan eigenschap («) voldoet, dan bestaat

op G geen stroom.

Bewijs. Stel dat F' aan eigenschap («) voldoet. In gevolg 4.13 hebben we be-
wezen, dat f; een pre-stroom is met cost(F') = cost(f;). Stel f; is niet een
balancerende pre-stroom met minimale kosten. Dan bestaat er een balance-
rende pre-stroom g; op G* met cost(g;) < cost(f;). Met lemma 4.12 maken we
een stroom F’ op G met eigenschap (a) zodat cost(F') = cost(g;). Nu geldt
cost(F") = cost(g;) < cost(f;) = cost(F'). Dat is een tegenspraak omdat nu F’
een maximale stroom is die minder kosten dan F' heeft.

Dus: f; is een balancerende pre-stroom met minimale kosten.

Stel nu dat F' niet aan eigenschap (a) voldoet, maar wél dat er een stroom
f op G bestaat. Met f, := f — fo is ff (zie lemma 4.8 hoe je f; maakt)
een balancerende pre-stroom op G*. Dus, vanwege lemma 4.12, bestaat er een
stroom F’ op G die aan eigenschap (a) voldoet (en dus maximaal is), zodat F

niet maximaal is. Tegenspraak. |

4.15. We vatten samen: Als op G stromen bestaan en F' een Min Cost Max
Flow op G is, dan is f; := F' | G* een balancerende pre-stroom met minimale
kosten. Met gevolg 4.9 is dan f;, := f; [G een balancerende pre-stroom op G
(met minimale kosten), zodat vanwege gevolg 4.7 geldt dat f := fo + f» een
stroom op G is, met minimale kosten.

Onze voorbereidingen leiden tot het volgende algoritme:

Algoritme 1 (Minimum Cost Flow)
Input: Netwerk N = (G, d,l,u) waar G = (V U {s,t}, E).
Output: Een Min Cost Flow op N.

(1) Gegeven G maak de aangepaste graaf G*.
(2) Gegeven G* maak de balancerende graaf G .

(3) Zoek een maximale stroom F met minimale kosten op G". Gebruik
hiervoor algoritme 3 (zie p. 22).
Als F niet aan eigenschap («) voldoet, dan stop. Op G bestaat dan

geen stroom. Anders ga naar stap (4).
(4) Laat ff :=F [G* en fy := f; | G.

(5) Laat f:= fo+ fp, waar fy de basis pre-stroom op G is.

4.16. We bekijken nu nog waarom in onze situatie altijd een oplossing bestaat.
We moeten dus volgens lemma 4.14 alleen bewijzen dat op G stromen bestaan:

4.17 Definitie. Gegeven een netwerk N en een pad P in G noteren wij

1 als e in P voorkomt,
1p: E—{0,1}:e—
0 anders.

Dit kunnen we analoog voor cykels definiéren.

4.18 Lemma. Zij N = (G,d,l,u) een netwerk. We nemen aan l(e) = 1 voor

e € E en u(e) = 4o00. Dan bestaat er een stroom op G.

Bewijs. Per definitie van een netwerk bestaat voor elk intermediair punt v € V'

een s —v pad P, en een v —t pad P". Nu is

F = Z Z]le—v—P“

veV \ (w,w)EE

een stroom op G met F(e) > 1 voor iedere e € E. Hierbij noteren we met

P, — v — P" het s —t pad dat van s naar w naar v naar t loopt. |

4.19 Gevolg. We kunnen in lemma 4.18 ook aannemen dat I(e) > 0, voor
iedere e € E.

Bewijs. Zij N zo'n netwerk. Laat 1 := max.cgl(e) en zij f een stroom zoals in
lemma 4.18, dus f(e) > 1, voor alle e € E. Dan is nu nf een stroom op N. Ten

eerste geldt voor iedere v € V' dat

Bnf,v) =nB(f,v) =0,
en ten tweede natuurlijk ook dat nf(e) > n > I(e), voor iedere e € E. [|

4.20 Voorbeeld. We bekijken het netwerk uit voorbeeld 4.4. Daar hebben we
al stappen (1) en (2) van algoritme 1 uitgevoerd. Nu zoeken we nog een maxi-

male stroom F' met minimale kosten op G". Deze is door rode letters aangege-

ven.
Als we F tot G beperken, dan krijgen we f;,. Hierbij tellen we de basis pre-
stroom fy op. De resulterende Min Cost Flow is in de onderstaande graaf te

zien:

4.21. In de volgende sectie bekijken we hoe we een Min Cost Max Flow kunnen

vinden, zoals in stap 3. van algoritme 1 nodig is.

5 Min Cost Max Flow

5.1. In deze sectie zullen we zien hoe we op een netwerk een maximale stroom
met minimale kosten kunnen vinden. Voordat we het algoritme bekijken hebben

we eerst een aantal definities en lemma’s nodig.

5.2 Definitie. Zij N een netwerk met onderliggende graaf G = (V U {s,t}, E).
Een circulatie op N is een functie f : V U {s,t} — N met

Ve e E:l(e) < f(e) <ule),
Yo e VU{s,t}:B(f,v)=0.

Het verschil met een stroom is, dat voor een circulatie ook in de punten s en ¢

de ingaande stroom gelijk is aan de uitgaande.

5.3 Definitie. We noemen een cykel C' = (vo, ..., v, = 1) een negatieve cykel
als cost(C) = E::_é d(vi,vi11) < 0, dus als de totale kosten van alle kanten in
C strikt negatief zijn.

5.4 Lemma. Zij N een netwerk en f een circulatie daarop. Dan is f te
schrijven als som van stromen op eindig veel cykels in G. Oftewel: Er zijn
C1,Co, -+ ,C, cykels in G en 61,02, ,0, > 0 zodat

f = Zfl:
i=1
waar f; = 6;1¢,.

Bewijs. We nemen aan dat f een positieve stroom is. Anders valt er niets te

doen. Ons bewijs volgt door middel van een algoritme:
(I) Laat fo:= f.
(IT) Gegeven een circulatie f; voer de volgende subroutine uit:
(1) Zoek punten Uéi),vii) € V met (véi), vy)) € Een fi(v(()i),vgi)) > 0.

(2) Gegeven vl(f) zoek v,(c?_l met (v,(f),vl(ﬁrl) € Een fi(vl(f),v,(c?_l) > 0.

(3) Als v,;)rl € {’U%i)7 e ,vl(f)} dan stop en ga naar (III). Anders ga naar
stap (2).

(III) Zij C; = (Ul) ... o)) de resulterende cykel uit (IT), waar fl(vk), v,(CJ)rl) >
0 voor iedere 1 < k < n;. Laat

3 —mm{f(ek a€k+1)} 1<k<n;},

waar e,(C) (v,(C), UIE-)H) Dit geeft een stroom ¢; op G, namelijk

ci(e) = 6;1¢,(e) (e € E).

(IV) Laat fiy1 := fi —¢;. Als fiy1 de nul-stroom is, dan stop. Anders ga naar

(IT).

Opmerkingen: Het algoritme in stap (II) werkt vanwege het behoud van
stroom in een circulatie, en het feit dat G eindig is. Verder is f; in iedere stap
een circulatie, omdat het verschil van twee circulaties een circulatie is.

De procedure stopt na maximaal #F stappen, omdat wij in iedere stap de

stroom op minstens een kant gelijk aan 0 maken. Deze kant kan in de volgende

stap dus niet meer in een cykel voorkomen. We vinden dus cykel Cy,Co, - - - , C,
en 61, ,0, met r < #FE zodat
T T
F=) 6le, =)«
i=1 i=1
waarbij alle §; positief zijn. |

5.5 Lemma. Zij N = (G, d,l,u) een netwerk. Stel f en f° zijn stromen op N.
Als f en f° dezelfde waarde hebben dan is f* een circulatie op Gyo. Hierbij is

max(0, f(e) — f°(e)) alse € E,
() := { max(0, fo(e™t) — f(e71)) alse”! € E,
0 anders.

Bewijs. We bewijzen eerst dat f* een circulatie op Gyo = (V, Eyo) is. Laat u

een willekeurig punt in G o zijn. Dan geldt

Z fr(w,u) — Z f(u,v)

(v,u)€E o (u,v)EE o
= Z HlaX(O7 f(’U, U) - fo(v7 u)) + Z HlaX(O, .fo(u7 U) - f(ua U))
(vyu)€EEsoNE (v,u)€Eyo,

(u,v)EE

- Z max(ov f(uv U) - fo ('l_l,, U)) - Z maX(O» fo(v’ U) - f(va u))

(u,v)EE 0 NE (u,v)EEyo0,
(v,u)EE

= Z f(U,U)—fO(’U,U,) + Z fo(u,v)—f(u,v)
fou)>fe(v,u) fo(u,v)>f(u,v)

- Z f(u,v)—fo(u,v) - Z fo(v,u)—f(v,u)
fo(u,v)<f(u,v) fo(vu)>f(vu)

= > fww- Y fuw) + >) - Y P
(v,u)€EE (u,v)EE (u,v)EE (v,u)eEE

=04+0=0.

Nu bewijzen we nog dat f* ook aan de capaciteitsvoorwaarden op G ¢o voldoet.
Noem de capaciteiten op G o nu uso. We moeten alleen de gevallen bekijken
waar f*(u,v) > 0. Stel f*(u,v) = f(u,v) — f°(u,v). Dan (u,v) € E. Met

ugo(u,v) = u(u,v) — f°(u,v) vinden we

f*(U,v) = f(u’v) - fo(u7v) = f(u’v) - (u(u,v) - UfO(u,U))
= (f(u,v) = u(u,v)) + uyse (u,v)
< ugo(u,v).

De laatste regel volgt omdat f(u,v) —u(u,v) < 0. Net zo het andere geval: Als
f(u,v) = fo(v,u) — f(v,u), dan (v,u) € E. Er geldt uso(u,v) = f°(v,u). Dus

I, 0) = £2(0,0) = F(v,u) = wpe(u,v) — F(v,u) < upo(u,0).

De laatste regel volgt omdat f(v,u) >0 |

5.6. Merk op: Als (u,v) € E en f(u,v) > f°(u,v), dan geldt f*(u,v) =
fu,v) — f°(u,v). Dus f°(u,v) + f*(u,v) = f(u,v). Net zo: Als (v,u) € E en
fe(v,u) > f(v,u) dan f*(u,v) = f°(v,u) — f(v,u) zodat f(v,u) = f°(v,u) —
[(u,0).

5.7 Gevolg. Laat f en f° stromen op een netwerk N zijn, met val(f) = val(f°).
Dan zijn er cykels C1,C5, -+ ,Cn in Gygo en Ag,- -+, Ay > 0 zodat het verschil
van f en f° te schrijven is als stroom op eindig veel cykels in G yo. Bovendien

geldt
N

cost(f) = cost(f°) + Zcost()\i]lci).

i=1

Bewijs. Maak f* zoals in lemma 5.4. Dan weten we dat f* een circulatie op

G o is. Met lemma 5.4 kunnen we f* dus schrijven als

N
f* = Z)‘i]]-Cm
=1

waarbij de C; cykels in Gyo zijn. Dan geldt (zie 5.6) voor (u,v) € Ejo het
volgende:

(u,v) €L = f(u,v)zfo(u,v)—i—z/\i]lci(u,v)
(v,u)e B = f(v,u) = f°(v,u) — > Nl (u,v).

Laat A de kosten op Gyo zijn en d de kosten op G. Als (u,v) € Eyfo en
(u,v) € E dan A(u,v) = d(u,v) en als (v,u) € E dan A(u,v) = —d(v,u). Voor
(u,v) € Efo geldt dus

cost(f) = Z A(u,v) f(u,v) — Z Au,v) f(v,u)

(u,v)EENE o (u,v)EE o0,
(v,u)eE

- Z (d(u7 v) f°(u,v) + d(u,v) Z Aile, (u, U))

(u,v)EENE o

+ ¥ (d(v,) £ (0,u) + d(v,u) 3 Al (v, u))

(u,v)EE o0,
(v,u)eE

= cost(f°) + cost (Z)\i]lCi) = cost(f°) + Zcost()\i]lci).
]

5.8 Definitie. Zij N een netwerk, met onderliggende graaf G. Een potentiaal
op G is een functie
m:VU{st} >R

5.9 Definitie. Gegeven een potentiaal m en een kostenfunctie A op een residuéle
graaf noteren we de gereduceerde kosten met

A™(u,v) :=7(u) — 7(v) + Au, v) ((u,v) € E).

5.10 Lemma. Gegeven een netwerk N = (G, d,l,u) en een stroom [erop zijn

de volgende uitspraken equivalent:
(i) f is extreem.
(i1) Gy bevat geen gerichte negatieve cykels.

(i4i) Er bestaat een potentiaal m zodat

V(u,v) € Ef : A™(u,v) > 0.

Bewijs. (i) = (ii) Stel Gy bevat een negatieve cykel C. Als e € C dan verhoog
f(e) met 1 en verlaag f(e) met 1 als e=! € G. Noem de resulterende stroom
f’ en merk op dat f’ ook aan de capaciteitsvoorwaarden op G voldoet. Verder
geldt

cost(f") = cost(f) + Z d(e) — Z d(e)

ecC,eeG ecCie 1@
= cost(f) + Z Ale)

ecC
= cost(f) + cost(C) < cost(f).

Merk op dat cost(C) < 0, omdat de kosten van C in Gy worden berekend. Dus
is f niet extreem. Tegenspraak.

(i) = (i) Stel Gy bevat geen negatieve cykels. Laat f een stroom op G
zijn met val(f) = val(f). We nemen verder aan dat f extreem is. Dus zeker

cost(f) < cost(f). Met gevolg 5.7 zien we dat
F=Fr+> NG,
waarbij iedere C; een cykel in G is. Per aanname krijgen we dus

cost(f) = cost(f) + Zcost()\iC,-) > cost(f),

omdat alle cykels in Gy niet-negatieve kosten hebben. Dus cost(f) = cost(f),
zodat f extreem is.

(#7) = (4i7) Noteer met 7(u) de kosten van het kortste s—u pad in Gy. Omdat
G ¢ geen negatieve cykels bevat geldt dan

V(u,v) € Ef : A™(u,v) = 7m(u) —7(v) + A(u,v) >0,

omdat 7(v) < 7w(u) + A(u,v) per constructie van 7.
(#49) = (i3) Laat 7 zo een potentiaal zijn met A™ > 0 op E;. Laat C' =
(p1,p2,- -+ ,pn = p1) een gerichte cykel in Gy zijn. Per aanname geldt

Ag = A(pr, Pe+1) 2 T(Pr+1) — T (D)

Sommeren over k levert

n—1 n—1
cost(C) = Ay > m(pr+1) — m(pk)
k=1 k=1
n—2 n—1
= W(Pk+1)+7T(Pn)*W(Pl)*zﬂ(z?k)
P —_— =
n—1

=3 o) = S) = 0.
k=2

Dus cost(C) > 0. |

5.11. We zijn nu in staat een algoritme te formuleren, dat een Min Cost Max
Flow oplevert. Na de beschrijving van het algoritme zullen we met behulp van

onze voorbereidingen bewijzen, dat het algoritme inderdaad werkt.

Algoritme 2 (Min Cost Max Flow)
Input: Netwerk N = (G,d,l,u) waar G = (V U {s,t},E) en

Z(S’u)eE u(s,u) < oco.
Output: Een Min Cost Max Flow op N.

(1) Initialiseer 7 =0 en f° = 0.

k

(2) Gegeven f* en 7 maak G px.

(3) Bereken A™ . Nu bereken de functie o* op Ex waar o (u) de kosten
van het kortste s —t pad in G aangeeft, t.0.v. de kosten AT
Gebruik hiervoor algoritme 3 (zie p. 22).

(4) Als G« geen s —t pad meer bevat dan stop. Dat gebeurt als o*(t) =

+00. Anders ga naar de volgende stap.

(5) Maak nu f**! door de stroom langs een kortste pad (volgens o*) te

verhogen. Deze vinden we ook met algoritme 3.

(6) We maken een nieuw potentiaal 7*! door
ottt = 7k 4 ok

(7) Ga naar (2).

5.12 Stelling. In iedere stap k in algoritme 2 geldt dat f* extreem is.

Bewijs. Volgens lemma 5.10 zijn we klaar als voor iedere k geldt dat AT >0
op Gyr. We bewijzen dit met volledige inductie. Voor k& = 0 valt er niets te
bewijzen. Dan geldt namelijk A? = d, waarbij d de kosten op G zijn. Neem aan
het geldt voor k£ > 0, Bekijk:

k+1

AT (u,v) = 7 (w) — 78 () + A(u,v)
= 7F(u) — 78 (v) + Au,v) + ¥ (u) — o*(v).
Dan is A“Hl(u,v) > 0, precies als o (v) — 0¥ (u) < AT (u,v). Met ons lemma

5.10 weten we dat G » geen negatieve cykels bevat zodat o¥ bestaat en per

constructie geldt :
ot (v) —oF(u) < AT (u,v).

We zijn dus klaar. []

5.13. Merk op dat stelling 5.12 ons nu vertelt dat in iedere stap f* extreem
is zodat we iedere keer stap (3) kunnen uitvoeren. Immers: G v heeft geen

negatieve cykels. Dit stelt ons in staat om o te berekenen. Het gevolg is dus:

5.14 Gevolg. Algoritme 2 stopt na eindig veel stappen. De resulterende stroom

f is maximaal en extreem, dus f is een Min Cost Max Flow.

Bewijs. In 5.13 hebben we uitgelegd waarom het algoritme in stap (3) altijd de
functie o* kan berekenen. Dus kan het algoritme in stap (3) niet vast lopen.
Omdat de stroom iedere keer echt groter wordt, moet het algoritme op een
gegeven moment stoppen. (Hiervoor zorgt de aanname dat Z(s,u)EE u(s,u) <
o0). Dat de resulterende stroom maximaal is volgt uit het algoritme van Ford en
Fulkerson: Als we iedere keer de stroom langs een s —t pad verhogen, totdat dit
niet meer kan, krijgen we een maximale stroom. Het bewijs van dit algoritme

is een elementair resultaat in de grafentheorie. |

5.15. We zullen nu nog bekijken hoe we de functie o in stap (3) kunnen

berekenen. Hiervoor gebruiken we het algoritme van Dijkstra.

6 Kortste route

6.1. We zullen in deze sectie naar het algoritme van Dijkstra kijken. Dit al-
goritme stelt ons in staat een kortste s — ¢ pad in een netwerk N te vinden,
zolang N geen negatieve cykels bevat. We merken verder nog op dat we de

uitdrukkingen kortste pad en goedkoopste pad als equivalent beschouwen.

Algoritme 3 (Kortste route)
Input: Netwerk N = (G, d,l,u) waar G = (V U {s,t}, E).
Output: Een functie o : V U {s,t} = RU {oo} waar

o(v) = min{cost(P) : P is een s — v pad}.
En een functie pr: VU {t} = V U {s,t}.
(1) Laat o(s) :==0 en o(v) = +o00 voor v € V U {t}.
(2) Laat S := {s}.
(3) Als S =0, ga dan naar stap (6). Anders zoek een v* € S met

o(v*) = Ivnelg a(v).

(4) Pas nu o als volgt aan:

o(v) := min(o(v), o (V") + d(v*,v)) ((v*,v) € E).

Als deze procedure de waarde van o in een punt v strikt kleiner maakt,

dan voeg v aan S toe en definieer pr(v) := v*.
(5) Laat nu S := S\ {v*} en ga naar stap (3).

(6) Als o(t) = 0o, dan bestaat er geen s — t pad. Anders maken we nu
een kortste pad P: Laat wqg :=t.

(7) Gegeven wy, laat w11 := pr(wg). Herhaal deze stap, totdat wg1 = s.

(8) Laat P := (w, = 8,Wy_1, - ,wp = 1).

6.2. Het is duidelijk dat het algoritme vast loopt, als G een negatieve cykel
bevat. Het algoritme stopt dus alleen als G geen negatieve cykels bevat. Voor
een algemene implementatie moeten we hiermee rekening houden en checken dat
zoiets niet kan gebeuren. Voor ons doel hoeft dat niet, omdat we het algoritme

alleen op netwerken zullen toepassen, die geen negatieve cykels bevatten.

6.3 Stelling. Zij N = (G,d,l,u) een netwerk, zodat G geen negatieve cykels
bevat. Dan stopt algoritme 3 na eindig veel stappen. Verder is het zo gevonden

pad P een s —t pad met minimale kosten.

6.4. Dat het algoritme van Dijkstra werkt is een algemeen bekend resultaat,

zodat we dit hier niet hoeven te bewijzen.

7 Oplossing

7.1. We hebben nu de nodige hulpmiddelen om het probleem, zoals in 3.2

beschreven, op te lossen. We formuleren dit als stelling:

7.2 Stelling. Zij N = (G,d,l,u) gegeven. Laat l(e) > 0 en u(e) = oo voor
e € E. Dan bestaan er stromen op G met minimale kosten. Stel f is zo een
stroom op G. Door middel van f kunnen we dan een kantenoverdekking Fo,

bestaande wit s — t paden, vinden zodat
Z cost(P)

minimaal is. Dit lost punt 3. in onze probleembeschrijving 3.2 op.

7.3. Om stelling 7.2 te bewijzen, hebben we weer een algoritme nodig. Deze laat
ons uit een Min Cost Flow zo’n kantenoverdekking Fy construeren. Hierna moe-
ten we alleen nog stap 4. in 3.2 beschrijven, ofwel hoe we uit Fy een bruikbare

collectie Cy maken.

Algoritme 4

Input: Netwerk N = (G,d,l,u) met I(e) > 0 en u(e) = oo waar G =
(VU{s,t}, E). Verder is f een stroop op G.

Output: Een kantenoverdekking F van s —t paden in G.

(1)
(2)

3)

Zij h : E — N gegeven door h := f.

Kies een kant (s,v) met h(s,v) > 0 en definieer P := (s,v), en

h(s,v) := h(s,v) — 1. Als zo’n kant niet bestaat, ga naar stap (4).

Zij v het laatste punt in P. Als v =t dan voeg P aan F toe en ga
naar stap (2). Anders kies een kant (v, w) met h(v,w) > 0, en voeg
w toe aan P. Definieer h(v,w) := h(v,w) — 1. Herhaal deze stap.

De waarde van de stroom h is gelijk aan 0, dus h is een circulatie.
Als h(e) = 0, voor alle e € E, dan stop met het algoritme. Zo niet
kies een (vg,v1) € E met h(vg,v1) > 0 en I(u,v9) € E : h(u,v9) = 0.
Definieer dan h(vg,v1) := h(vg,v1) — 1 en C := (vg,v1).

Gegeven v, € C, met k maximaal, kies een kant (vg,vgi1)
met h(vg,vg+1) > 0, laat C = (vg,v1, -+ ,vp+1) en definieer
h(vg, vg+1) := h(vk,vp+1) — 1. Ga naar stap (6) als vg11 = vg. Her-
haal deze stap.

De kant (u,v) uit stap (5) zit in een pad P = (s, ...,u, v, ...,t) € F.
Vervang dan P door P = (s,...,u,C,...,t) en ga terug naar stap (4).

Bewijs van stelling 7.2. De existentie van een Min Cost Flow op G wordt in

lemma 4.18 bewezen. We bewijzen hier, hoe we uit een Min Cost Flow f op G

een kantenoverdekking F van s —t paden kunnen maken, ofwel dat algoritme 4

werkt.

e In stap (2) is h een stroom, en door behoud van stroom, kunnen stap (3)

en (5) altijd uitgevoerd worden.

e Bij stap (6): De kant (u,vg) zit in een pad P € F, omdat h(u,vp) = 0 en
oorspronkelijk was h(u,vg) = f(u,v9) > I(u,v9) > 0. Er is dus minstens
een pad P € F die de kant (u,vg) bevat.

e Instap (4) kunnen we inderdaad een kant (vg, v1) met h(vg, v1) > 0 vinden,

zodat er een kant (u, vg) is met h(u, vg) = 0. Als dat niet waar zou zijn, dan

kunnen we nagaan dat h geen circulatie is: Stel dat iedere kant (v,w) € E

met h(v,w) > 0 de volgende eigenschap heeft:
(W',v) € FE = h(v',v) > 0.

Pak nu een willekeurige (v, w) € E met h(v,w) > 0. Dan is er een s — v
pad P = (s,po,p1,-* " ,Pn,v). Per aanname geldt h(p,,v) > 0. Dus ook
h(pn—1,pn) > 0. Ga zo door. Dan zien we h(s,pg) > 0 zodat h geen

circulatie is.

Conclusie: Er moet minstens een kant (v,w) € E zijn met h(v,w) > 0

zodat er een kant (v,v’) € E is met h(v,v’) = 0.

e Uit een stroom kunnen we dus een collectie paden afleiden, en uit zo’n

collectie s — t paden kunnen we een stroom f maken door
f(u,v) = #{P € F: (u,v) € P}.

In dat geval geldt

Z cost(P) = Z Z d(u,v)

PeF PeF (u,v)eP
= Y d(u,v) #{P € Fi(u,v) € P}
(u,v)EE
= Z d(e) - f(e) = cost(f).
ecE

Als we dat nu op een Min Cost Flow toepassen, hebben we een collectie F van

5 —t paden met minimale kosten gevonden. |

7.4. We moeten nu nog kijken hoe we punt 4. in de probleembeschrijving 3.2
oplossen. Stel we passen stelling 7.2 op de graaf G’, zoals in punt 1. van 3.2
toe. Dit geeft een kantenoverdekking Fy van s’ — t' paden met minimale totale
kosten. Uit Fy kunnen we Cy construeren door voor P = (s',e1,--- ,e,,t') € Fy
met e; = (v;, w;) het pad P = (v1,va, -+, v, wy) aan Cy toe te voegen. Uit Cy
kunnen we op unieke wijze weer Fy construeren. Dan geldt), cost(P) =
> pec, U(P), zodat Cy inderdaad een bruikbare collectie met minimaal totaal
aantal kanten is. Hiermee is het probleem dus opgelost. We vatten samen wat
we nu hebben gedaan:

We hebben een vertaling van de originele graaf naar de lijngraaf gemaakt.
Voor deze vinden we een Min Cost Flow, waaruit we dan zo’n minimale kanten-
overdekking Fy vinden. Hieruit kunnen we dan een minimale bruikbare collectie
Co voor de originele graaf maken. Per constructie is Cy dan een collectie paden,
zodat iedere combinatie van opeenvolgende kanten in een zeker pad P € Cy
voorkomt, en zodanig dat de totale lengte

> Up)
PeCy

minimaal is.

Referenties

[1] A. V. Aho and D. Lee, Efficient Algorithms for Constructing Testing Sets,
Covering Paths, and Minimum-flows, AT & T Bell Laboratoties, 1991

[2] Jack Edmonds, Theoretical Improvements in Algorithmic Efficiency for Net-
work Flow Problems, Journal of the Association for Computing Machinery,
Vol. 19, No. 2, April 1972, p. 248-264

