Storingen voorkomen met slimme algoritmen

Modellenpracticum, Radboud Universiteit Nijmegen

Opdrachtgever:
Sander Rieken (Alliander N.V.)

Begeleider:
Wieb Bosma (Radboud Universiteit Nijmegen)

Inhoudsopgave

ding

2 SCG

(I Analyse SCG datal
B_De datal

4 Opvallende kenmerken|

(I Cluster-Algoritmes|

[Een cluster-algoritme algemeen

[6 Poisson-algoritme]

|7 Pinta-algoritme]

I8 DBSCAN-algoritme]

[9__Ensemble-modell

[LO Vergelijking|

[[IT__Tot slotl
11 Conclusie]
T T o todl |

IV Appendix

|A Monte Carlo-algoritme|

Uitgevoerd door:
Fons van der Plas
Matthijs Neutelings
Sebastiaan van Krieken
Dennis Geelhoed

Rick Koenders

17
19
23

31

36
36

36

38

38

1 Inleiding

Voor het vak Modellenpracticum uit de Bachelor Wiskunde van de Radboud Universiteit is het de be-
doeling om in een groepje van circa 5 studenten een praktische opdracht uit te voeren. De studenten
kunnen hierbij kiezen welke opdracht ze willen doen. De opdrachten worden op hun beurt weer aange-
boden door bedrijven. Dit verslag gaat over de opdracht Storingen voorkomen door slimme algoritmen
van het bedrijf Alliander. Deze opdracht werd uitgevoerd door de studenten Fons van der Plas, Matthijs
Neutelings, Sebastiaan van Krieken, Dennis Geelhoed en Rick Koenders.

Het bedrijf Alliander bestaat uit een aantal bedrijfsonderdelen, waaronder Liander. Liander beheert
in grote delen van Nederland, waaronder de provincies Gelderland en Noord-Holland, het elektriciteitsnet.
In de opdracht vroeg Alliander om zwakke punten in de elektriciteitskabels op te sporen. Op deze manier
kan men de kabels al repareren voordat er een storing heeft plaatsgevonden.

1.1 Middenspanningsnetwerk

Het Nederlandse elektriciteitsnet is opgedeeld in drie sectoren: het hoogspanningsnet, het middenspan-
ningsnet en het laagspanningsnet. Het hoogspanningsnet verbindt de grote elektriciteitscentrales met
elkaar over zeer lange afstanden. Er staat en spanning van 220kV of 380kV over kabels in dit netwerk. Het
laagspanningsnet wordt direct gebruikt door huishoudens. 230 Volt is de spanning over dit netwerk. Het
middenspanningsnetwerk (vaak 10kV, 15kV of 20kV) zorgt voor de overbrugging van het hoogspannings-
net (in Nederland 110kV, 150kV, 220kV of 380kV) naar het laagspanningsnet (230V). Alliander beheert
in delen van Nederland het middenspanningsnetwerk en het laagspanningsnetwerk. Hogespanningskabel
zijn vaak bovengronds, maar middenspanningskabels liggen in Europa meestal onder de grond. (In de
VS zijn ze bovengronds, dit zijn de iconische houten masten.) De middenspanningskabels onder de grond
leggen meestal een afstand af van minder dan 10km. Ze bestaan niet uit één stuk, maar uit verschillende
onderdelen die aan elkaar vastzitten met zogenoemde moffen.

Deze moffen blijken zwakke punten van de kabels te zijn. Vaak is een storing te wijten aan een
defect van één van de moffen. Aangezien de kabels zich doorgaans ondergronds bevinden en omdat
het middenspanningsnet soms flink verouderd is, weet Alliander niet altijd waar de moffen zich precies
bevinden. De klassieke manier om een fout op te sporen is om halverwege de draad een teststroom aan
te sluiten, en het effect te meten. Door dit te herhalen kom je steeds dichter bij de locatie van de fout.
Dit kost echter veel tijd en geld, de kabels liggen immers ondergronds.

Een middenspanningskabel bestaat doorgaans uit vier delen, die geisoleerd van elkaar moeten zijn:
de aarddraad, en de drie fasen van wisselspanning. Een fout kan een verbreking van een van de vier
verbindingen zijn, maar is doorgaans juist een kortsluiting: een van de fasen komt in (elektrisch) contact
met de aarddraad, of met een andere fase. Dit gebeurt wanneer het isolatiemateriaal tussen de geleiders
niet zijn taak doet, omdat het is gescheurd, gesmolten, geplet, als test doorgeknipt, of iets dergelijks.
In dit geval slaan de zekeringen van de draad over, en is de draad onbruikbaar tot de fout is opgelost.
Moderne zekeringen worden kort na een fout automatisch een aantal keer gereset, en als de fout dan weg
is (dit heet een dovende fout) is de kabel weer in gebruik.

Vaak wordt een fout voorafgegaan door ontladingen: vonkjes binnen de draad, bijvoorbeeld tussen
de twee fasen, op plekken in de kabel waar het isolatiemateriaal aan het degraderen is.

2 SCG

Om zwakke plekken in de kabel op te sporen heeft het bedrijf DNV GL de zogenoemde Smart Cable
Guard (SCG) ontwikkeldﬂ De SCG detecteert ontladingen (vonken) die in de kabel optreden en slaat
de locatie, de ladingsgrootte en het tijdstip van de ontlading op in een bestand. De ontladingen worden
in het Engels ook wel Partial Discharges (PD’s) genoemd. Er treden per toeval altijd wel een paar PD’s
op in een willekeurig stuk van de kabel. Als er meer PD’s dan normaal optreden in een bepaald stuk
van de kabel is er iets met dat stukje kabel aan de hand. Op die manier kan de netbeheerder zien waar
ze de kabel moet vervangen.

De data-analyse wordt gedaan door het externe bedrijf DNV GL, die de SCG ook ontwikkelt. Dit bedrijf
stuurde waarschuwingen naar Alliander als er te veel ontladingen in een stukje kabel plaatsvonden. Deze
analyse is gedeeltelijk geautomatiseerd: zeer sterke veranderingen in PD-gedrag worden automatisch
herkend, en (in dit geval) Alliander ontvangt hier dan direct bericht van. Toch wordt alle data ook

IDe echte geschiedenis van de ontwikkeling is minder beknopt.

handmatig doorgenomen (waarschijnlijk met behulp van dezelfde visualisaties als in dit verslag), en
kleinere pieken in PD-gedrag worden aan het einde van de maand naar Alliander gestuurd. Dit zijn
dan plekken in de kabel waar ze ‘op moeten letten’, en misschien vervangen woordat een fout heeft
plaatsgevonden. Handig!

Deel 1
Analyse SCG data

3 De data

Figuur 1: PD-dichtheid in een segment van circuit 2063. Op het vlak zijn locatie (links naar rechts) en
tijd (in het papier) te zien, tegenover PD-aantallen per bakje (hoogte).

Per circuit (kabel) hebben wij twee of drie bestanden met data: één met de gemeten gedeeltelijke
ontladingen, één met algemene eigenschappen van het circuit, en indien relevant één met *warnings’. Dit
zijn .csv-bestanden (tabellen, comma separated values (hoewel ze niet kommagescheiden maar puntkom-
magescheiden zijn)). Deze bestanden zijn (na enige verwerking door onze opdrachtgever) de bestanden
die Alliander aan het einde van de maand van DNV GL krijgt. Het ziet er echter naar uit dat Alliander
een overeenkomst gaat sluiten om deze data direct te krijgen, en dan zal de analyse van dit verslag dus
extra relevant worden.

3.1 Kabeleigenschappen.csv

In het bestand met algemene data staan de locaties van de middenspanningsruimtes en van bekende
moffen voor dit circuit. Bij de moffen staat ook wat voor type mof dit is. Ook staat de lengte van de
kabel in dit bestand.

Niet alle moffen staan in dit bestand, en de moftypes kloppen ook niet allemaal. De reden voor deze
discrepantie is dat de kabels ouders zijn dan de huidige ambities van Alliander om data te verzamelen,
en de kabels soms een levendig verleden hebben gehad. Niet alle reparaties zijn goed geregistreerd. Zie
Figuur [2| voor een voorbeeldbestand.

Component type;Length (m);Cumulative length (m)
RMU; ;0.0

Termination (unknown);;0.0

Cable (PILC, 3 cores, belted);18.21;18.21
Joint (0il);;18.21

Cable (PILC, 3 cores, belted);329.9;348.11
Joint (unknown);;348.11

Cable (PILC, 3 cores, belted);25.42;373.53

Figuur 2: Een cableconfig bestand

3.2 Gedeeltelijke-ontladingen.csv

Het tweede bestand is dat van de gemeten PD’s. Hij bestaat uit drie kolommen: de tijd, de locatie en
de grootte van de ontlading. Voor elke minuut dat er gemeten is heeft het bestand minstens één regel,
ook als er geen PD heeft plaatsgevonden. Op sommige minuten vinden meerdere PD’s plaats, dan heeft
elke PD zijn eigen regel. Dit bestand is het meest relevant voor ons algoritme.

2016-08-04 13:29:00;;
2016-08-04 13:30:00;;
2016-08-04 13:31:00;;
2016-08-04 13:32:00;;
2016-08-04 13:33:00;1310.25107883513;2737.0
2016-08-04 13:34:00;;
2016-08-04 13:35:00;;
2016-08-04 13:36:00;;
2016-08-04 13:37:00;;
2016-08-04 13:38:00;;
2016-08-04 13:39:00;;
2016-08-04 13:40:00;1305.80955400445;7097.0
2016-08-04 13:41:00;;
2016-08-04 13:42:00;;
2016-08-04 13:43:00;;
2016-08-04 13:44:00;;

Figuur 3: Een bestand met gedeeltelijke ontladingen (PD’s)

3.3 Warnings-van-DNV-GL.csv

Het derde bestand bevat de 'warnings’ die DNG VL naar Alliander heeft doorgestuurd. Deze waarschu-
wingen stuurt DNV GL naar Alliander als uit de metingen blijkt dat er op een locatie van de kabel een
grote kans is dat er iets niet goed gaat of niet goed dreigt te gaan. Elk warningsbestand heeft een locatie,
een grootte (1,2,3 of Noise) en een starttijd en eindtijd.

Location in meters (m);SCG warning level (1 to 3 or Noise);Start Date/time (UTC);End
818;3;2016-08-11 14:55:18;2016-08-31 23:59:00
818;N;2016-08-11 14:55:18;2017-02-28 00:00:00
1309;1;2017-01-26 15:13:37;2017-02-07 09:14:41
1309;N;2016-12-11 21:14:22;2017-01-26 15:13:37
1313;3;2016-09-26 12:39:46;2016-11-28 20:45:44

Figuur 4: Een warnings-bestand

De data-analyse is uitgevoerd met Python 3.7, met name gebruikmakend van pandas, numpy,

Date/time (U

matplotlib, printipigeon, jupyter en scikit-learn. We hebben GitHub gebruikt voor wersion
control, hiermee hebben we samen aan het project gewerkt. E] Het project is openbaaﬁ (exclusief data),
en is online beschikbaar op:

https://github.com/fonsp/SCG-analyse

Deze repository bevat onder andere een importeerbare, algemene module. Dit betekent dat het
door iedereen gemakkelijk gebruikt kan worden, net als populaire modules zoals numpy of printipigeon.
De module bestaat uit een aantal submodules, en alle klassedefinities en algemene functies hierin zijn
uitgebreid en duidelijk gedocumenteerd. Dat wil zeggen: wanneer iemand de ingebouwde hulp-
functies van Python oproept op iets van de module, komt de werking en beschrijving van parameters in
beeld.

De repository bevat ook zogenaamde notebooks: deze documenten zijn een mengelmoes van tekst, code
en haar output. Hierin worden alle algoritmes, vergelijkingen en verdere analyses gedaan en beschreven.
De belangrijkste module is|/notebooks/Voorbeeld clusterizer submodules.ipynbl hierin wordt de
volledige module voorgedaan en uitgelegd. Dit verslag dient ook niet als technische beschrijving van
de implementatie van de algoritmes: dit zit al in de module zelf.

4 Opvallende kenmerken

De metingen van de circuits verschillen onderling aanzienlijk. Bij sommige circuits is de hoeveelheid
PD’s veel hoger, ook in gebieden waar niks aan de hand lijkt te zijn. Ook zijn er grote verschillen in
ladingen. Vaak zie je wel dat de verdeling van de ladingen twee pieken heeft. Dit is te zien in figuur
Een van onze theorieén hierover is dat het ruis zijn eigen verdeling heeft en de PD’s waar daadwerkelijk
iets gebeurt ook hun eigen verdeling hebben.

Circuit 3301: dichtheidsfunctie charges

0.0007 A

0.0006 A

0.0005 A

0.0004 A

0.0003 A

Relative number of PDs

0.0002 A

0.0001 A

0 10000 20000 30000 40000
Charge (picocoulomb)

0.0000 -

Figuur 5: Er is een combinatie van twee verdelingen te zien.

2Het leek ons daarom ook niet nodig om een tweede ‘logboek’ bij te houden. De volledige geschiedenis, met beschrij-
vingen, is te vinden op https://github.com/fonsp/SCG-analyse/commits/master.
3We hebben geen precieze open source-licentie met onze begeleider overlegd.

https://github.com/fonsp/SCG-analyse
https://github.com/fonsp/SCG-analyse/blob/master/notebooks/Voorbeeld%20clusterizer%20submodules.ipynb
https://github.com/fonsp/SCG-analyse/commits/master

Als je heel erg inzoomt op de locaties van de PD’s dan zie je dat de locaties in verticale banden lijken
te liggen. Dit is in figuur [f] te zien. Helaas zijn die banden niet helemaal recht, je ziet namelijk alsnog
kleine fluctuaties in locatie. Wij hebben een theorie dat de locaties gediscretiseerd zijn en dus eigenlijk
wel precies op een verticale lijn liggen, maar dat de leverancier van de data, DNVGL, ze opzettelijk
‘jittert’. Het onhandige aan deze verticale banden is dat als je bijvoorbeeld een histogram van de locaties
wil maken, het zou kunnen dat er in de ene bin precies twee van zulke banden zitten en in de ander drie.
Helaas is de afstand tussen de banden niet helemaal consistent en verschilt het ook per circuit.

Circuit 2063
NN
T T R A e
NN
01-11 - ' S
01-09 B RN
. : T T
01-07 1
01-05 A
T T T T T T T
570 580 590 600 610 620 630

Location (m)
circuit.png

Figuur 6: Een ingezoomde scatter plot. De banden van PD’s zijn hier duidelijk zichtbaar.

Een ander opvallend fenomeen is dat van de spiegelclusters. Bij een aantal van de circuits zie je
duidelijk twee PD-clusters die op verschillende locaties zitten, maar precies dezelfde vorm lijken te
hebben. Het zou interessant zijn om uit te zoeken waar dit precies door veroorzaakt wordt. De gangbare
theorie is dat het komt doordat sommige moffen in de kabel signalen kunnen reflecteren. Dit heeft
invloed op de tijd tussen het moment dat de linkerkant van de SCG het ontvangt en dat de rechterkant
het ontvangt. Dit resulteert in een verkeerde locatie.

Bij sommige PD-metingen zie je dat het gedrag van de PD’s en de ladingen opeens heel sterk veran-
dert. Het lijkt dan alsof de SCG op een nieuw circuit is geplaatst of dat de gevoeligheid is aangepast.

Helemaal links en helemaal rechts in het circuit is altijd een buitensporig hoge dichtheid van PD’s.
Hier moet rekening mee worden gehouden als men naar verdachte locaties zoekt.

2018-11 +

2018-09

2018-07 A

2018-05 A

Date

2018-03

2018-01 +

2017-11 A

e : Te A ey S 3

2017-09 A

0 500 1000 1500 2000
Location (m)

Figuur 7: Bij deze scatter plot zijn aantal van deze kenmerken duidelijk te zien: De twee clusters rond
het begin van 2018 hebben allebei een spiegelcluster ernaast. Vanaf augustus 2018 gedraagt de scatter
plot zich opeens heel anders. Aan de zijkanten zitten zwarte stroken van PD’s.

Deel 11
Cluster-Algoritmes

5 Een cluster-algoritme algemeen

Het vinden van verdachte locaties in een ondergrondse elektriciteitskabel is van groot belang, omdat
hierdoor foutieve moffen op tijd kunnen worden gevonden en mogelijke calamiteiten verholpen kunnen
worden. Onze opdracht luidt om een algoritme te ontwikkelen dat automatisch verdachte locaties vindt.
Om verdachte locaties te vinden zoeken wij naar clusters. De precieze definitie van een cluster ligt
niet vast en verschilt per algoritme, maar het komt neer op een gebied in de locatie-tijd grafiek met
buitensporig veel PD’s waarbij soms ook naar de ladingen wordt gekeken. Zo’n cluster is niet per
definitie een reden om actie te ondernemen, maar het geeft aan dat daar mogelijk een mof ligt die kapot
dreigt te gaan. Dan kan vervolgens een expert handmatig inschatten of het iets is om je zorgen over te
maken.

5.1 Voorwaarden cluster-algoritme

In principe zijn wij helemaal vrijgelaten in onze implementaties van een algoritme dat clusters zoekt en
zelfs in de precieze definitie van een cluster. Echter hebben wij gestreefd om te voldoen aan een aantal
zelfopgelegde voorwaarden.

Snelheid: Vanzelfsprekend geldt, hoe sneller de algoritmes hoe beter. Hoewel langer ook zou
volstaan, was ons streven om per circuit minder dan een seconde bezig te zijn.

Parameters: Elk van onze algoritmes is afhankelijk van parameters. Het aantal parameters per
algoritme proberen we zo klein mogelijk te houden. Ook heeft elk algoritme een
aantal standaardparameters waarvoor het algoritme goed werkt. Deze hebben we
door met verschillende circuits te experimenteren handmatig bepaald.

Onafhankelijkheid: We willen dat de parameters zo veel mogelijk onathankelijk zijn van het circuit. Een
voorbeeld hiervan is vergelijken met de gemiddelde dichtheid van PD’s in plaats van
met een absoluut aantal. Een ander voorbeeld is bakjes maken van een bepaalde
lengte in plaats van een percentage van de totale lengte van de kabel.

Output: Omdat we uiteindelijk de verschillende algoritmes willen kunnen combineren, heb-
ben we besloten dat de output van de algoritmes van een bepaald type object moet
zijn. Dit object is geimplementeerd als Python-klasse in onze module en wordt
later in het verslag verder toegelicht. Onze clusters zijn altijd gebieden in de vorm
van een rechthoek. Een voordeel hiervan is dat het het combineren van de verschil-
lende algoritmes makkelijker maakt. Het uiteindelijke doel van verdachte clusters
is om kapotte moffen op te sporen. Dus dan geeft een rechthoek een veel handigere
indicatie van de locatie dan een of andere vreemde vorm.

5.2 beoordeling cluster-algoritme

Aanvankelijk dachten wij dat wij de warningbestanden handig konden gebruiken om de nauwkeurigheid
van de algoritmes te bepalen. Helaas werkt dit niet goed, omdat bij veel gebieden die op het oog
overduidelijk clusters zijn, geen warning is geweest. Ook is de warning altijd verschoven in de tijd,
namelijk een stuk later dan het cluster daadwerkelijk begon. En ook van het cableconfig bestand hebben
wij niet veel gebruik kunnen maken. De clusters liggen weliswaar rond moffen, maar helaas zijn er meestal
te veel moffen op het circuit en zelfs dan is er nog een groot aantal onbekende moffen. Uiteindelijk hebben
we dus alleen met onze eigen ogen kunnen bepalen hoe goed de algoritmes werken.

Date

6 Poisson-algoritme

Het eerste algoritme dat we hebben ontwikkeld is zo simpel mogelijk begonnen, en is steeds een beetje
aangepast om aan alle eisen van te voldoen. Het algoritme bestaat nu uit twee delen: eerst worden
ééndimensionale locatieclusters gevonden (alleen begin- en eindlocatie op de lijn) en vervolgens wordt dit
verfijnd tot tweedimensionale clusters (een begin- en eindlocatie, en een begin- en eindtijd).

We zullen het volledige algoritme uitleggen aan de hand van twee voorbeeldcircuits, en daarbij de
tussenresultaten laten zien. De gekozen voorbeeldcircuits zijn 2063 en 3010. Deze zijn gekozen omdat
2063 een een aantal duidelijk zichtbare clusters bevat (die ook door DNV GL als warnings zijn aangege-
ven) van verschillende sterktes, en 3010 bevat geen clusters. In 2063 is de hoeveelheid PD-ruis ook niet
constant, en hier moet het algoritme goed mee om kunnen gaan.

Deel 1: locatieclusters

Omdat clusters gedurende hun levensduur op dezelfde locatie zitten, is een logische eerste stap om
enkel de locaties van PD’s te analyseren, en zo te zoeken naar lijnsegmenten met abnormaal hoog PD-
gedrag. Dit is misschien ook wel de belangrijkste eigenschap van het cluster voor verdere analyse, en
voor reparatiewerk.

Deel 1A: Discretisatie

Als eerste worden de PD-locaties gediscretiseerd: de lijn wordt opgedeeld in bakjes van constante breedte.
Voor een lijn van lengte L komt dit overeen met de opsplitsing

[0,L] = [0,d) U[d,2d)U--- U [Nd, (N + 1)d),

met N = |L/d] het aantal bakjes.
Als PD C {(z,t,c) € [0,L] x [0,T] x R>¢} de verzamling PD’s is, dan is de functie

(s Z Lia,i1)a) (1)
(z,t,c)ePD

een discretisatie van de PD-locaties. Het is ook mogelijk om niet het aantal PD’s per bakje tellen,
maar de totale ontladingsgrootte van de PD’s in een bakje. Zo'n gewogen discretisatie is de functie

(e Z ¢ g iv1)a)(t).
(z,t,c)ePD

Met een van de parameters wordt bepaald of de ladingen wel of niet worden meegeteld (standaard:
niet). Het resultaat van de discretisatie is gegeven in Men ziet in de linkerfiguur de clusters al duidelijk
terug. In de rechterfiguur zijn uitschieters minder klein ten opzichte van de hoeveelheid PD-ruis (let op
de schaal van de verticale as), en houden minder lang aan.

1500 4

1000 4

Number of PDs

500 4

2004

Number of PDs
= =
o w
o o

o
=}

0

0

2019-01
2018-114
2018-09 4
2018-07 4
2018-05
2018-03 4
2018-01 4
2017-114
2017-09 4

2017-07

2019-02
2019-01
2018-12
2
& 2018-11 1
2018-10
2018-09

2018-08

0 500 1000 1500 2000 0 1000 2000 3000 4000
Location (m) Location (m)

Number of PDs

Figuur 8: Eéndimensionale discretisatie (boven) van aantallen PD’s in het circuit (onder).

Deel 1B: Model nominaal PD-gedrag

Gebaseerd op eerder onderzoek maken we de aanname dat ten minste 80% van de lijn nominaal PD-
gedrag vertoont, i.e. geen clusters bevat.

In Deel 1A hebben we per lijnsegment (bakje) het aantal PD’s in dat bakje geteld. Als we het 80%-
kwantiel van deze bakjes bepalen, noem dit M,, dan zegt onze aanname: alle lijnsegmenten waarop het
aantal onder M, ligt, bevat geen cluster, en vertoont nominaal PD-gedrag (PD-ruis). We modelleren
PD-ruis als een Poissonprocesﬂ en deze bakjesinhouden dus als realisaties van dezelfde Poisson-verdeelde
stochast:

Xyuis ~ Poisson(A)

oftewel, voor k € Z>:

1750 4

1500 4

12504

1000

7501

500

12

10

Number of PDs
o

W

Pl X =k|=—e"
[=5
200
175 4
150
& 125
g
bt
o
3 100
€
5
=z 754
50
1 25
E T ™ T o0
0 500 1000 1500 2000 0 1000 2000 3000 4000

Figuur 9: Lijnsegmenten met PD-dichtheid onder het 80%-kwantiel zijn ingekleurd. Deze segmenten
worden gebruikt om nominaal PD-gedrag te modelleren.

17.51

15.01

12.51

10.01

Number of PDs

7.51

5.0

2.5

0.0 -

500

4Hoewel de fysische oorsprong van de PD-ruis ons niet precies duidelijk is, is het geen vreemde aanname dat de willekeu-
rige vonken op onafhankelijke locaties en tijdstippen plaatsvinden. De frequentie van PD-gedrag is niet tijdsonafhankelijk
(zoals te zien in circuit 2063), maar lijkt wel constant te zijn gedurende korte periodes (waarschijnlijk tussen firmware-
updates in). Omdat we, tijdens de eendimensionale discretisering, de tijdstippen weglaten, komt dit neer op het sommeren
van Poisson-verdeelde stochasten, wat weer een Poisson-verdeelde stochast oplevert.

10

PDs inside bin

12

10

Figuur 10: Dezelfde figuur als hierboven, met alleen de lijnsegmenten onder het 80%-kwantiel. De
verticale as is herschaald.

17.5
15.0
12.5
C
£
()
© 10.0
wn
N £
N
N wn
/,/\ E 7.5
5.0
—== Poisson ML 2.5 —== Poisson ML
—=—=- Poisson naive —=—=- Poisson naive
— 80% 0.0 — 80%
10 20 30 40 50 60 70 80 0 20 40 60 80 100
Number of bins Number of bins

Figuur 11: Histogram van PD-dichtheden (staathoogtes in vorige figuur). Beide Poisson-fits zijn weer-
gegeven.

Gegeven de verdeling van PD-dichtheid, onder het 80%-kwantiel M, (zie Figuur willen we een
Poissonverdeling (i.e. de parameter \) schatten die deze verdeling modelleert. De meest voor de hand
liggende schatter is de Maximum-Likelihood-schatter. (In het geval van de Poisson-verdeling is dit
simpelweg het gemiddelde.) De Poisson-verdeling volgens de ML-geschatte parameter is gegeven in
Figuur [T}

Hoewel dit bij circuit 2063 een goede fit geeft, werkt deze methode niet in het algemeen. In circuit 3010,
waar geen clusters in zitten, heeft de selectie van lijnsegmenten onder het 80%-kwantiel ervoor gezorgd
dat de verdeling getrunceerd is. In het ergste geval (wanneer er geen clusters zijn, zoals in 3010), is
precies de 20% hoogste waarden afgekapt. Dit motiveert de tweede schatter voor A:

We bepalen de parameter X zodat het 80%-kwantiel van Poisson(\) precies op M, ligt.

Deze naiive schatter zal altijd iets hoger zijn dan de ML-schatter, omdat het de juiste schatter is wanneer
er geen clusters zijn. Wanneer er wel clusters zijn, dan is een kleiner gedeelte van de ruis afgekapt, en zal
de naive schatter dus A te hoog schatten. Toch is voor deze schatter gekozen, omdat de naive verdeling
de PD-dichtheid nooit onderschat.

Nu we een model voor PD-ruis hebben gevonden, kunnen we per lijnsegment bepalen wat de kans is dat
de PD-dichtheid zo hoog is, als er geen cluster zou zijn. (Dit is dus een hypothesetoets: de nulhypothese
is dat het lijnsegment geen cluster bevat, en dat de PD’s afkomstig zijn van ruis.) We kunnen dan
lijnsegmenten verwerpen met een significantie (standaard 95%). Deze lijnsegmenten zijn gegeven in
Figuur Dit is natuurlijk een deelverzameling van de lijnsegmenten die boven het 80%-kwantiel liggen
(omdat de significantie groter is dan 80%).

11

Date

Date

. — 200 . —
Highly suspicious Highly suspicious
1500 4
§ é 150 4
o <
5 1000 ; 100 4
Qo Qo
€ €
E £
Z 500 Z 504
0 0-
2019-01 A
2019-02 4
2018-11 A
2018-09 - 2019-01 4
2018-07 A 2018-12 4
2018-05 A %
2018-03 1 & 2018-11
2018-01 2018-10 1
2017111 . 2018001 &
2017-09 1 R IR P
2017-07 L | . . . 2018081 : : . ;
0 500 1000 1500 2000 0 1000 2000 3000 4000
Location (m) Location (m)
Figuur 12: Lijnsegmenten waarop PD-dichtheid volgens de Poisson-verdeling buiten het 95%-kwantiel
ligt.
Ten slotte worden alle aangrenzende, zeer verdachte hokjes samengenomen tot een locatiecluster, door-
middel van een groepeeralgoritme. Twee locatieclusters die maximaal 2 hokjes uit elkaar liggen, worden
als één locatiecluster beschouwd. Er geldt ook beperking dat een locatiecluster minimaal 3 verdachte
hokjes moet bevatten, zoniet wordt het locatiecluster genegeerd. De precieze implementatie van dit
algoritme is in de module te lezen: clusterizer.algoritms.group_boolean_series.
Circuit 2063 Circuit 3010
0 g e B .. 2019-02 4
2018-119 3 8¢ s
%] g
2018001 [y . 2019-01
201807 oo '
e 2018-12 1
2018-05 " 9
: 8 2018-11 1
2018031
2018-01 A 2018-101
k9
2017-11 A
2018-09 4
3 . - P L eatee 8 P]
2017-09 ; e ce t 1
Found by Poisson 1D 2018-08
0 500 1000 1500 2000 0 1000 2000 3000 4000
Location (m) Location (m)

Figuur 13: De bovenstaande lijnsegmenten worden gegroepeerd tot locatieclusters, door korte sprongen
op te vullen, en te kleine gebieden te laten vervallen.

In circuit 2063 zijn alle gewenste locatieclusters gevonden. In Deel 2 zullen deze locatieclusters worden
verfijnd tot tweedimensionale locatie-tijdclusters. In circuit 3010 worden geen locatieclusters gevonden,
zoals gehoopt, en het algoritme is na Deel 1 al klaar.

Deel 2: locatie-tijdclusters

Als resultaat van Deel 1 hebben we een verzameling locatie-clusters. Dat wil zeggen, de begin- en eindlo-
catie van verdachte gebieden is gevonden. We willen dit verfijnen tot een verzameling tweedimensionale
clusters: voor elk locatie-cluster zoeken we de begin- en eindtijd.

Ter vergelijking zijn dezelfde figuren gegeven, toegepast op een circuit met en zonder clusters. In het
geval zonder clusters worden er in Deel 1 helemaal geen clusters gevonden, en wordt Deel 2 dus niet
uitgevoerd. Om toch te kunnen zien hoe Deel 2 werkt zonder de aanwezigheid van clusters, zijn de
figuren ook gegeven voor het circuit zonder clusters. Hierbij is kunstmatig een locatiecluster toegevoegd,

12

Number of PDs

voordat Deel 2 is toegepast. Het resultaat is dat de verhouding van PD-dichtheid binnen en buiten het
‘cluster’ gedurende het volledige meetinterval rond 1 zit, en nooit de ondergrens (10) overschrijdt.

Een mogelijke aanpak is om begin- en eindtijden te zoeken met precies dezelfde methode als in Deel 1:
we maken een histogram van PD-tijdstippen, en gaan dan op zoek naar pieken. Deze methode is echter
problematisch om een aantal redenen:

e De aanname dat er 80% van de tijd niets aan de hand is, lijkt niet te kloppen. Vaak duren clusters
juist erg lang. Sterker nog, het komt voor dat een cluster tijdens de volledige meting aanwezig is.
In een tijd-histogram zou er dan geen opvallend gebied zijn.

e Het PD-gedrag varieert sterk gedurende de tijd. In tegenstelling tot Deel 1 is het dus niet logisch om
een statistisch model te fitten voor de PD-frequentie (aantal PD’s per seconde) op een willekeurig
tijdstip.

Gelukkig weten we al op welke lijnstukken de clusters zitten, en ook waar géén clusters zitten! Dit moti-
veert de aanpak van dit algoritme: Het meetinterval wordt opgedeeld in weken. Voor elk cluster worden
deze intervallen vervolgens afgegaan, en in elk interval wordt de PD-dichtheid binnen het locatiecluster
vergeleken met de dichtheid op lijnsegmenten waarin geen clusters zitten, de zogenaamde nusters.

Als de PD-dichtheid binnen dit interval, binnen het locatiecluster, niet relatief hoog is, dan ligt deze
verhouding naar verwachting rond 1. Als de PD-dictheid wel hoog is (omdat een gedeelte van een
cluster in het interval ligt), dan is deze verhouding veel groter. Door een ondergrens te kiezen voor deze
verhouding, vinden we precies alle intervallen terug waarop een cluster ligt, en deze intervallen vormen
uiteindelijk de tweedimensionale clusters door aangrenzende intervallen samen te voegen.

Deel 2A: Nusters

Met hetzelfde groepeeralgoritme als in Deel 1 kunnen lijnsegmenten worden gevonden waarop de PD-
dichtheid onder het 80%-kwantiel ligt. (Let op, in Deel 1 zijn niet de overige 20% van de lijnsegmenten tot
clusters vervormd, maar slechts het kleine gedeelte ervan dat significant afwijkt van de Poisson-verdeling!)
Dit zijn lijnsegmenten waarop per aanname geen clusters liggen. We noemen zo’'n lijnsegment daarom
een 'nuster’ (not a cluster).

Circuit 2063 Circuit 3010

1750 4

1500 4

12501

1000

750 A

500

2504

Number of PDs
= = = = N
~ o N w ~ o
w o wv o w o
L L ! L

[
o
s

N
«

N Y | L | o

0 500 1000 1500 2000 0 1000 2000 3000 4000
Location (m) Location (m)

Figuur 14: Lijnsegmenten waarop het aantal PD’s onder het 80%-kwantiel ligt.

5In sommige circuits komt een cluster op dezelfde locatie enkele keren terug. In het algemeen kan één locatiecluster dus
meerdere clusters bevatten, en hier moet rekening mee worden gehouden.

13

Circuit 2063 Circuit 3010

1750 4 nuster 1 2001 nuster 1
nuster 2
nuster 3 1754
1500 4 nuster 4
nuster 5 150 4
12501
& & 125
a a
S 1000 s
] @ 100 4
Qo Q
g 750 g
=z =4 75 4
500 504
250 254
o , . S o
0 500 1000 1500 2000 0 1000 2000 3000 4000
Location (m) Location (m)
Figuur 15: De bovenstaande lijnsegmenten worden gegroepeerd tot nusters.
Deel 2B: Tijdsverloop
Elk eendimensionaal cluster wordt nu verfijnd tot een verzameling tweedimensionale cluster. Als voor-
beeld kiezen we een van de eerder gevonden clusters uit.
Circuit 2063 Circuit 3010
e 5 - 2019-02 A
2018114 o8 s T 58 @
PP SOV «r
AN "
2018-09 - . '3\' ¢ 2019-01 4
2018-07 A : i
2018-12 4
o 2018-05 °
a 8 2018-111
2018-03 4
2018-01 A N 2018-10 4
3
2017-11 A B
. .) 2018-09 4 ¥ i))
2017-09 favourite cluster | - * o B 3¢ ._' : ‘..; . 3 | ; favourite cluster
nuster 2018-08 4 nuster
0 500 1000 1500 2000 0 1000 2000 3000 4000
Location (m) Location (m)

Figuur 16: We kiezen een locatiecluster uit. Voor circuit 3010 is een kunstmatig locatiecluster toegevoegd,
ter illustratie van de verdere analyse.

We delen het meetinterval op in deelintervallen van constante duur (dit is standaard 7 dagen). We maken
nu twee discretisaties: per interval tellen we het aantal PD’s binnen het cluster, en het aantal PD’s dat
in één van de nusters ligt. Dit tweede aantal geeft schatting voor de verwachtte PD-dichtheid dat wordt
veroorzaakt door ruis.

De belangrijke observatie is hier dat PD-gedrag niet afhankelijk is van locatie, maar in veel gevallen wel
van de tijd. Door PD-dichtheid te meten op andere locaties, maar wel binnen hetzelfde tijdsinterval,
krijgen we dus een goede schatting voor de verwachtte PD-dichtheid. We nemen namelijk aan dat dit
niet locatie-afhankelijk is.

Het resultaat van deze twee discretisaties is gegeven in Figuur In de eerste figuur is het cluster
duidelijk zichtbaar, en de begin- en eindtijden van de piek komen overeen met Figuur De tweede
figuur toont aan dat nominaal PD-gedrag sterk afhankelijk is van de meettijd. (Anders zou de grafiek
redelijk constant zijn.) Ook is te zien dat de hoeveelheid achtergrondruis in de eerste grafiek (binnen het
cluster) hiermee overeenkomt. Zo is er in beide figuren in juli 2018 een piek te zien.

Wanneer we de verhouding tussen deze twee reeksen berekenen (Figuur , is het cluster duidelijk te
identificeren[% Zoals verwacht, schommelt deze verhouding voor en na het cluster rond de 1. Eventuele

61n feite wordt niet de directe verhouding berekend, maar de verhouding tussen de PD-dichtheden (aantal PD’s per
meter, per dag). Dit is locatieinvariant!

14

afwijkingen gebeuren natuurlijk, en worden versterkt wanneer de PD-dichtheid binnen de nusters laag
is. (Er wordt dan gedeeld door een laag getal.) Dit is het geval bij de uitschieter aan het begin van de

meetreeks.

Time histogram of PDs inside favourite cluster

250 A

200 A

150 A

100 A

50 4

il B

2017-09 2017-11 2018-01 2018-03 2018-05 2018-07 2018-09 2018-11
Time histogram of PDs inside nusters

160

140 4

120 A

1004

80

60

40 A

204

2017-09 2017-11 2018-01 2018-03 2018-05 2018-07 2018-09 2018-11

Ratio between two previous histograms

80

60

40

20

—— normalized ratio
—— nominal
—— threshold

A J

N\

201‘7-09 201‘7—11 201‘8-01 201;3—03 201‘8-05 201;3-07 201é-09 201;3-11

Time histogram of PDs inside favourite cluster

12

10

0-
2018-08

2018-09

2018-10 2018-11 2018-12 2019-01
Time histogram of PDs inside nusters

2019-02

700 -

600 -

500 -

400 1

3001

200 -

100 1

0-
2018-08

2018-09 2018-10 2018-11 2018-12 2019-01 2019-02

Ratio between two previous histograms

10
8-
61 —— normalized ratio
—— nominal
4 —— threshold
2 /
/\/\v
ol AV
2018-08 2018-09 2018-10 2018-11 2018-12 2019-01 2019-02

Figuur 17: Voor het gekozen locatiecluster (boven) en alle nusters (midden) is het aantal PD’s per
tijdsinterval geteld. De genormaliseerde verhouding tussen deze twee (onder) verklapt de begin- en

eindtijd van alle clusters in het locatiecluster.

Door een ondergrens te kiezen voor deze verhouding (standaard 10) kunnen we de intervallen selecteren
waar het cluster in ligt. Met hetzelfde groepeeralgoritme als gebruikt in Deel 1 worden de gevonden
intervallen samengevoegd tot clusters. (Standaardparameters: minimaal 2 intervallen, maximaal 1 over-
geslagen interval.) In het gekozen voorbeeldcluster wordt op deze manier maar één cluster gevonden, te
zien in Figuur [I8] Op dezelfde manier worden alle locatieclusters verfijnd, en het resultaat is gegeven in

Figuur [I9

15

Circuit 2063

2018-114

2018-09

2018-07 4

2018-05 4

Date

2018-03 4

2018-01

2017-114

2017-09 4

Found by Poisson 1D - *

B Found by Poisson 2D

0 500

1000
Location (m)

1500

2000

Date

Circuit 3010

2019-02 1

2019-011

2018-121

2018-111

2018-101

2018-09 1

2018-08 q

Found by Poisson 1D

1000 2000 3000 4000
Location (m)

Figuur 18: We groeperen de tijdsintervallen waarbij de dichtheid-verhouding groter is dan de ondergrens.
Dit verfijnt het locatiecluster tot locatie-tijdcluster.

Circuit 2063

2018-114

2018-09

2018-07 4

2018-05 4

Date

2018-03 4

2018-01

2017-114

2017-09 4

Found by Poisson 1D -
B Found by Poisson 2D

0 500

6.1 Runtime

1000
Location (m)

1500

2000

Date

Circuit 3010

2019-02 1

2019-011

2018-121

2018-111

2018-101

2018-09 1

2018-08 q

1000 2000 3000 4000
Location (m)

Figuur 19: Het eindresultaat: de verfijnde, tweedimensionale clusters.

Na verschillende optimalisaties is het Poisson-algoritme is erg snel: de runtime is bij de meeste circuits
minder dan 10ms. (Dit is gemiddeld 100 maal sneller dan het inladen van de circuit-datal) Een volledige
vergelijking van runtimes wordt later in dit verslag gegeven. Een aantal redenen waarom dit algoritme

7o snel is:

e Er wordt geen 2D-discretisatie uitgevoerd. Er is een 1D-discretisatie om locatieclusters te vinden,

en dan per cluster en nuster weer een 1D-discretisatie.

e Wanneer het circuit geen clusters bevat, wordt Deel 2 nooit uitgevoerd, wat weer een tijdsbesparing
oplevert. Hierdoor is het een snelle manier om te testen of een circuit nominaal is, wat bij

de meeste circuits het geval is.

e Gebruikmakend van de constante bakjesgrootte bij discretisatie, hebben we een eigen discretisatie-
algoritme kunnen maken dat gemiddeld 3 maal sneller is dan numpy.histogram.

e Dankzij verdere optimalisaties zijn alle stappen behalve de discretisatie slechts 10% van de totale

runtime.

16

7 Pinta-algoritme

Het Pinta algoritme vindt de clusters met behulp van het verschil in verdeling van de PD’s in de ruis en
in de clusters zelf. Het algoritme is gebaseerd op eigen observaties van de verdeling van de datasets en
is bedoeld om relatief snel te werken.

7.1 Definities

We beginnen met de dataset in twee dimensies discretiseren. Zij
X = {(t,x) | er is een partial discharge op tijdsstip ¢ en locatie 2} C R?

de dataset. Zij m,m : R?> — R de projectieafbeeldingen. Noem Tax = max{mi(X)}, Tmin =
min{7m (X)}, Lmax = max{ma(X)} en Ly = max{m(X)}. Dan definiéren we

T= Tmax - Tmin
als het tijdsinterval van de dataset en
L= Lmax - Lmin

als de lengte van de dataset. Gegeven een tijdsinterval van lengte 0 < I < T en een plaatsinterval van
lengte 0 < Iy, < L en zij Ny = L%J en Nj = L%J Dan kan weet men dat

X C U Ip; x I

i€{0,1,2,...,Nz}
j€{0,1,2,..,NL}

met
Iri = [Tin + i % lp, Tonin + (1 + 1) % 7], I = [Linin + J % lp, Limin + (5 + 1) % 1z]

Notatie: We geven de doos I1; x I,; ook wel aan als doos D;;. Dan is het aantal partial discharges in
een "hokje"gegeven door:

P = #(X N Dij)

Het Pinta algoritme zoekt naar alle paren ¢ en j waarvoor F;; ‘abnormaal‘ hoog is. We zeggen dan dat
de doos D;; tot een cluster behoort. We leggen een equivalentierelatie op op de dozen:

Dij ~ Dy <= P;; = Py
Dit is inderdaad een equivalentierelatie, zoals men gemakkelijk nagaat. We doen de volgende aanname:
e Als doos D;; niet tot een cluster behoort, dan is de kans zeer groot dat geldt: #[D;;] > 1.
Dit valt te motiveren: het willekeurig optreden van een partial discharge als gevolg van ruis is een

zeldzame gebeurtenis. Het is dus niet onredelijk te veronderstellen dat de F;; Poisson verdeeld zijn, als
geldt dat er niets aan de hand is met de kabel. Er geldt:

P(Pij = k) = e
met
A =E(P;)

Uit analyse van de data blijkt dat A klein is. De kans dat men een doosje vindt met slechts een paar
partial discharges is dus zeer groot. Gezien de data wordt opgedeeld in erg veel hokjes moet dus wel
gelden dat #[D;;] > 1 voor de meeste hokjes met ruis. Merk hierbij op dat het om de meeste hokjes met
ruis gaat. Het algoritme houdt maar in beperkte mate rekening met hokjes die per toeval de eigenschap
hebben dat #[D;;] = 1.

17

7.2 Algoritme

De eerste stap van het algoritme is het discretiseren van de data volgens bovenstaande methode. Daarna
kijkt het algoritme naar de grootte van de equivalentieklassen [D;;]. Hoe groter de equivalentieklasse,
hoe zekerder het algoritme is dat de bijbehorende dozen tot ruis behoren. Aan de andere kant, als
#[D;;] = 1, dan zit het doosje hoogstwaarschijnlijk in een cluster. Hoe meer partial discharges er in
dat doosje zitten, hoe zekerder we er van zijn dat het doosje ook echt tot een cluster behoort. Om dit
preciezer te maken sorteert het algoritme de doosjes op aantal PD’s. De gesorteerde dozen geven we
aan met Dy, waarbij een paar (i.j) dus correspondeert met een rangnummer k. We definiéren P op de
volgende wijze:

P = #(X N Dk)

Dan geldt dus dat P, < P, < Py < ... < Png.n,. Voor elk rangnummer k definiéert het algoritme de
volgende score Sy:
Sk = Pk —Cx*xk

waarbij C' een door de gebruiker gekozen gevoeligheidsconstante is. We bekijken het verschil in Sy tussen
twee opeenvolgende rangnummers:

Sk = Sp—1 =Py — Pr—1) - C

We zien dat als P, = P,_1, dan is S > Si_1. S daalt dus als er veel dozen zijn met hetzelfde aantal
PD’s. Als het verschil P, — Py_1 groot is, stijgt S. Als de equivalentieklasse [Dy] dan niet te groot is,
zal S daarna dus ook niet ver meer dalen. Het blijkt dat het minimum van S een goede maat geeft voor
de grens tussen clusters en ruis. De dozen na het minimum zullen de eigenschap hebben dat niet veel
andere dozen hetzelfde aantal PD’s hebben, en bovendien dat het verschil tussen P, en Py_; groot is.
De dozen voor het mimimum hebben de eigenschap dat er veel andere dozen zijn met hetzelfde aantal
PD’s, anders zou de grafiek niet dalend zijn. Het algoritme markeert de dozen Dy met k > argmin(.S)
als clusters. Vervolgens markeert het dozen die naast elkaar liggen, en beide tot een cluster behoren, als
één cluster.

18

8 DBSCAN-algoritme

Een van de eerste dingen die we hebben gedaan na ons eerste gesprek met Sander, was onderzoek doen
naar bestaande cluster-algoritmes op het internet. De meeste algoritmes vielen gelijk af, omdat deze als
parameter het aantal te vinden clusters hebben, terwijl we dat van tevoren niet weten. Eén algoritme
trok echter gelijk onze aandacht, omdat het aan de volgende cruciale eigenschappen voldoet:

e het aantal te vinden clusters is geen parameter
e het algoritme kan clusters van verschillende vormen vinden
e ruis wordt gemakkelijk gedetecteerd

De naam van dit algoritme is DBSCAN, wat staat voor 'Density-Based Spacial Clustering of Applications
with Noise’. Voordat de stappen waarin het algoritme te werk gaat worden uitgelegd, eerst 2 definities:

e epsilon-omgeving van een datapunt x: een klein gebiedje rondom het datapunt x. In het algemeen
is dit een cirkel met straal epsilon, en middelpunt x. Hierbij zijn epsilon en de vorm van het gebied
parameters van DBSCAN

e kernpunt: een datapunt x heet een kernpunt als er in de epsilon-omgeving van x minstens y punten
liggen. Hierbij is y een parameter van DBSCAN

Het algoritme gaat volgens de volgende stappen te werk:

1. Kies een willekeurig datapunt dat nog niet eerder gekozen is. Kijk of er in de epsilon-omgeving van
dat punt minimaal y punten liggen. Als dit niet het geval is, label het punt dan als ruis (het punt
later nog een randpunt van een cluster worden), en herhaal stap 1. In het andere geval, begin een
nieuw cluster en label het punt als kernpunt van dit cluster, en ga naar stap 2

2. Voeg alle datapunten uit de epsilon-omgeving van het kernpunt toe aan het cluster. Als een punt
eerder was gelabeld als ruis, label het dan nu als randpunt. Check voor al deze punten of het
kernpunten zijn en zo ja, label ze als kernpunt

3. Voor ieder nieuw kernpunt, herhaal stap 2
4. Herhaal stap 2 en 3 totdat ieder punt uit het cluster een label heeft

5. Het cluster is nu af. Ga weer terug naar stap 1, of stop als alle datapunten zijn gelabeld als
kernpunt, randpunt of ruis.

8.1 Eerste versie van het algoritme

Ons eerste idee was om de stappen zoals ze hierboven vermeld staan, te vertalen naar code. Dit was
echter lastig, onder andere omdat je in Python niet zomaar labels aan punten toe kan kennen. Om het
simpel te houden, begonnen we met een versie die alleen de locatie van de ontladingen beschouwde.
Deze versie deed ongeveer 10 minuten over het scannen van één circuit, en dat is zo langzaam dat we
de resultaten van het algoritme verder niet meer hebben onderzocht. Op dit punt hadden we besloten
dat DBSCAN waarschijnlijk te lastig was om te implementeren.

In ons gesprek bij Alliander had Sander ook scikit-learn genoemd, een Python module voor machine
learning. (Pedregosa et al| (2011)) Een paar weken na de DBSCAN mislukking zijn we begonnen
met onderzoek naar scikit. Deze module bleek ook een DBSCAN algoritme te bevatten. Om bekend
te worden met scikit, leek het ons een goed idee om te kijken of we het DBSCAN algoritme konden
implementeren op onze data. Hoewel we dit vooral hadden gedaan om wat meer over scikit te leren, bleek
het nieuwe algoritme verassend goed te werken. Niet alleen was het veel sneller dan onze eerste poging
(nu ongeveer 10 seconden per circuit), ook was het nu eenvoudig om van één- naar tweedimensionale
clustering te gaan. Ook bleken er parameters te bestaan waarop het algoritme op onze gelimiteerde
hoeveelheid circuits resultaten gaf waar wij tevreden mee konden zijn. Dit deed ons besluiten om bij
ons tweede bezoek aan Alliander dit algoritme te laten zien aan Sander.

Bij het gesprek met Sander bleek dat hij ook al onderzoek had gedaan naar DBSCAN, wat ons het
gevoel gaf dat we op het goede spoor zaten. We lieten de plaatjes zien die ons algoritme gegenereerd had,

19

en Sander zij dat het fijn zou zijn als we dit algoritme in de module zouden plaatsen die we uiteindelijk
aan Alliander leveren. Ook had hij nog de suggestie gegeven dat als we eerst de data discretiseren,
het algoritme waarschijnlijk sneller is. Het idee hierachter is dat je punten die dicht bij elkaar liggen
samenvoegt tot één punt met een gewicht dat correspondeert met het aantal samengevoegde punten.
Vervolgens pas je een gewogen DBSCAN toe op deze nieuwe verzameling punten, en omdat dit er
minder zijn zou dit sneller moeten gaan.

8.2 Optimalisatie

In de weken na ons tweede gesprek bij Alliander zijn we bezig geweest met optimalisatie van het DBSCAN-
algoritme. De belangrijkste stap was hierbij het discretiseren van onze data voordat de DBSCAN hierop
wordt toegepast. We hebben ervoor gekozen om de data te discretiseren door er een histogram van te
maken. Ieder bakje krijgt dan een gewicht gelijk aan het aantal datapunten in dat bakje, en vervolgens
worden de bakjes omgezet tot punten die in de DBSCAN gaan. Dit wordt gedaan door een rooster van
punten over de bakjes heen te leggen, waarbij ieder bakje precies één roosterpunt bevat. We kwamen er
al snel achter dat het algoritme niet meer nauwkeurig is als we te weinig bakjes gebruikten. We kregen
pas weer goede resultaten als het aantal bakjes ongeveer net zo groot was als het aantal datapunten.
Omdat hier natuurlijk geen tijdswinst mee geboekt wordt, moesten we iets anders verzinnen. Toen we
beter naar het histogram gingen kijken, merkten we op dat meer dan 90 procent van de bakjes leeg
was als we een groot aantal bakjes namen. Door eerst deze bakjes, die als datapunt met gewicht nul
in de DBSCAN gingen, weg te gooien, boekten we een aanzienlijke tijdswinst: het algoritme duurde nu
gemiddeld nog maar één seconde per circuit.

Circuit 2063
2018-05 -

2018-04 T A AR T T
2018-03 '-“':-:xi#. TN - TTEFOE T -

[]
£2018-02 A
o

M- FEEER 4
B
L
c

2018-01 - 1

2017-12 A

2017-11
200 300 400 500 600 700 800

Location (m)
Figuur 20: histogram maken van de data

De resultaten van de DBSCAN zijn niet direct bruikbaar. Voor ieder rechthoekje in het histogram wordt
aangegeven of het in een cluster zit en zo ja, in welk cluster. Zo zijn de clusters dus een verzameling kleine
rechthoekjes. Wij hebben echter de keuze gemaakt on onze clusters te definiéren als één rechthoek, omdat
dit overzichtelijker is. Om geen informatie te verliezen, wordt de ’bounding box’ van de rechthoekjes
genomen. Dit is de kleinste rechthoek die alle kleine rechthoekjes omvat.

20

Circuit 2063
2018-05 -

2018-04 AT TR T :

2018-03 14| “':'3-'

2018-02 1 [} LR

5
13 §
|

Date

2018-01

2017-12 A

2017-11
200 300 400 500 600 700 800

Location (m)

Figuur 21: resultaten van DBSCAN

Circuit 2063
2018-05 : —

2018-04 -

2018-03 A

2018-02 A

Date

2018-01 +

2017-12 4

2017-11 T T T T T
200 300 400 500 600 700 800

Location (m)

Figuur 22: de ’bounding box’

Ondanks dat er op deze manier geen informatie wordt weggegooid, is deze methode niet perfect. Als
er bijvoorbeeld een kabel moet worden gerepareerd, dan is de bounding box groter dan je zou willen.
Om het cluster kleiner te maken en daarbij het informatieverlies te minimaliseren, hebben we de ’shave’
parameter bedacht. Als deze niet op 0 staat, zoekt het algoritme naar alle datapunten in de bounding

21

box. Daarna haalt het aan iedere kant van de rechthoek een percentage van de punten weg, afhankelijk
van de grootte van de shave parameter. met de shave parameter op één procent worden de clusters al

beduidend kleiner, zonder dat er veel informatie verloren gaat.

2018-05

Circuit 2063

2018-04 |-
201803 [- "%
]
£ 2018-02 1
(@]

2018-01 A

2017-12 4

2017-11
200

300

400

500

600

700

800

8.3

Location (m)

Figuur 23: de bounding box en het bijgeschaafde cluster

Parameters

Het DBSCAN algoritme gebruikt de volgende parameters:

epsilon: de grootte van de epsilon-omgeving die bij de DBSCAN gebruikt wordt. De standaard
waarde is 3. Een grotere epsilon zorgt ervoor dat er meer datapunten onderdeel zijn van een cluster,
en clusters die dicht bij elkaar liggen worden aan elkaar vast gemaakt

minpts: het aantal punten in de epsilon-omgeving van een punt om aangemerkt te worden als
kernpunt. De standaardwaarde is 125. Als minpts groter is, zijn er minder datapunten onderdeel
van een cluster. Dit is de parameter waarmee gevoeligheid het makkelijkst kan worden ingesteld
binlengthx: de lengte van de bakjes van het histogram in de x-richting, in meters. De standaard-
waarde is 2. Een grotere binlengthx zorgt voor bredere clusters

binlengthy: de lengte van de bakjes van het histogram in de y-richting, in weken. De standaard-
waarde is 1. Een grotere binlengthy zorgt voor langere clusters

shave: het percentage van punten dat aan iedere kant (onder, boven, links, rechts) weg wordt
gehaald van de oversized clusters. De standaardwaarde is 0.01. Een grotere shave zorgt voor
kleinere clusters

22

9 Ensemble-model

We willen de algoritmes combineren in een ensemble-model. Dit model moet op basis van de output van
de andere algoritmes een nieuwe output geven. Tot nu toe zagen we dat clusters bestaan uit rechthoeken.
De output van de andere algoritmes is hier ook op gebaseerd. Om de verschillende algoritmes te kunnen
combineren, moeten we twee dingen doen. Namelijk:

1. Rechthoeken combineren
2. De combinatie betekenis geven
3. Clusters aangeven

Tot nu toe hebben we steeds gezegd dat een cluster een rechthoek is in de tijd en afstand. Maar door
de verschillende manieren waarop we rechthoeken kunnen combineren zal dit niet meer genoeg blijken.
Hiervoor hebben we dus een nieuwe definitie van een cluster nodig.

9.1 Combineren van rechthoeken

Om rechthoeken te combineren voeren we een nieuwe klasse in: Rectangle. Deze staat in rec-
tangle.py. Een Rectangle heeft in beginsel twee eigenschappen: location_range en time_range.
location_range is een tuple van een beginlocatie en eindlocatie. Tussen deze twee locaties ligt dan (als
de algoritmes goed werken) ongewoon veel partial discharges. time_range is precies hetzelfde, maar dan
in de tijd. De Python klasse stelt ons ook in staat om nieuwe functies te definiéren, zoals __str__, wat
een mooie textrepresentatie van een Rectangle geeft, en get_partial_discharges, wat van een input
circuit zegt welke partial discharges binnen de Rectangle liggen.

We hebben een aantal methoden bedacht om Rectangles te combineren. Namelijk: & (__and__), |
(__or__) en + (__add__), maar uitgesproken als: plus). De werking van deze methoden valt het best
te begrijpen door te kijken naar plaatjes van de resultaten.

Circuit 2063
2018-03 -
: ¢ . 5§ o § & IO D
2018-02 1
. o 8 - Lo : ; v ' ‘ . . .
: FEE I B H
2 N g i Lo
© ; : : !
e . !
2018-01 A <
480 490 500 510 520 530 540 550 560

Location (m)

Figuur 24: Rechthoeken van Poisson en DBSCAN

In [24] zien we de rechthoeken van Poisson (Rood) en DBSCAN (Blauw) die gevonden worden voor een
bepaald cluster. Zoals te zien is, overlappen ze, maar hebben ze ook beide een gedeelte wat niet overlapt
met de andere rechthoek. We kunnen op deze rechthoeken nu onze combinatiemethoden loslaten om te
laten zien wat ze doen.

23

Circuit 2063

2018-03

2018-02

Date

2018-01 A

480 490 500 510 520 530 540 550 560
Location (m)

Figuur 25: Resultaat van &

In [25] zien we wat er gebeurt nadat we & toepassen op de rechthoeken. Alleen de plekken waar de
rechthoeken overlappen blijft nog over. Strikt gesproken: Voor de linkergrens in de locatie-dimensie
nemen we het maximum van de twee linkergrenzen van de rechthoeken, terwijl we voor de rechtergrens
het minimum nemen van de rechtergrenzen van de rechthoeken. Hetzelfde doen we in de tijd met begin-
en eindtijd.

In zien we wat er gebeurt nadat we | toepassen op de rechthoeken. Als resultaat krijgen we de
zogenaamde bounding box van de rechthoeken waarmee we begonnen. Deze rechthoek is dus altijd
groter dan het resultaat van de &, en ook dan de input-rechthoeken. Voor de linkergrens nemen we dit
keer het minimum, terwijl we voor de rechtergrens het maximum nemen.

In zien we wat er gebeurt nadat we + toepassen op de rechthoeken. In het midden zien we de
overlap, met daaromheen de kleinere rechthoeken die nergens mee overlappen. Het resultaat is een soort
Venn diagram van rechthoeken. De rechthoekjes die niet overlappen zijn ook opgesplitst in kleinere
rechthoeken, terwijl ze gewoon bij elkaar horen. Dit is gedaan om zodat ze een rechthoekige vorm
houden. Er zijn nog rechthoekjes die we samen zouden kunnen voegen (bijvoorbeeld de twee meest
linkse rechthoeken), omdat ze een gemeenschappelijke location_range of time_range en in de andere
dimensie elkaar raken, maar we hebben ervoor gekozen om dit niet te doen, omdat het niet veel toevoegt
aan het eindresultaat. Het zou wel een goede manier zijn om het aantal rechthoeken te minimaliseren.
Iets anders wat opvalt is dat het resultaat bestaat uit meerdere rechthoeken. Bij de & en de | is het
resultaat steeds maar 1 nieuwe rechthoek. In het geval van de + kunnen er maximaal 9 rechthoeken
ontstaan. In wordt besproken hoe dit probleem wordt opgelost.

De + is van de 3 methoden het moeilijkst om te berekenen. Bij & en | hoeven we alleen maar minima
en maxima van de grenzen te nemen als nieuwe grenzen. Bij + hangt het resultaat echter sterk af van
de manier waarop de rechthoeken overlappen. Is er een compleet bevat in de ander? Of is er een kleine
overlap in één van de hoeken? Of misschien snijdt de ene rechthoek de andere rechthoek doormidden.
Om dit probleem op te lossen introduceren we een hulpfunctie: - (__sub__, maar uitgesproken als: min).
In [28] en [29] zien we respectievelijk de resultaten van DBSCAN - Poisson en Poisson - DBSCAN. - is
dus niet commutatief zoals de andere methoden om rechthoeken te combineren. De + maken is nu
makkelijk: Neem de twee mogelijke versies van -, en voeg daar de overlap (&) aan toe. Maar nu is het
probleem verschoven: We moeten de - implementeren. Stel we hebben rechthoeken A en B en we willen
A - B berekenen. Een eerste observatie die ons helpt is dat we bij niet rekening hoeven te houden met
heel B. De delen van B die niet overlappen met A, hebben namelijk geen effect op het resultaat. Dus:

24

Circuit 2063

2018-03
. . . P o 2 8 2§ B8 o 8
2018-02 {
. : ot [N - S T S °
- : A
o : L - ;o
o ¢ : v
a) : g
| SRR
S I g
2018-01 -
480 490 500 510 520 530 540 550 560
Location (m)
Figuur 26: Resultaat van |
Circuit 2063
2018-03 -
Q & . e 2R oy e 8
201802 4 ibpiEiiEEy
. - Pt O B O B £]
5 § U § t o ;
g NI B S SR
= ¢ il qG
[a) : , !
N I i
2018-01 -
480 490 500 510 520 530 540 550 560

Location (m)

Figuur 27: Resultaat van +

A - B berekenen is equivalent aan A - (A & B) berekenen. Nu is wanneer de meerdere manieren waarop
A - (A & B) kunnen overlappen om de hoek kunnen kijken: In een hoek, aan een zijde, van boven
naar onder, van links naar rechts, of alleen in het midden. Deze verschillende manieren zijn allemaal
echter een speciaal geval van de laatste manier: (A & B) is compleet bevat in A. We kunnen dus de
9 rechthoeken berekenen die voor dit ene geval nodig zijn (hiervoor gebruiken we weer de minima en

25

Circuit 2063

2018-03
: ® . A R
201802 o cilaiiiniiiy
. .o SRR S B S ¢ 9
L R B i
2 : : P Do
© . E ¢ .
) : !
' ' I
L P!
2018-01 ot :
480 490 500 510 520 530 540 550 560
Location (m)
Figuur 28: Resultaat van -, optie 1
Circuit 2063
2018-03 -
. N
2018-02 A B B N R
A O O A ; B
. . H t 1 1 '
bt v : I P
© : : T v
[a) ! P , !
i - N A
. B ? . s *
2018-01 - e :
480 490 500 510 520 530 540 550 560

Location (m)

Figuur 29: Resultaat van -, optie 2

maxima van de grenzen), en vervolgens kunnen we kijken in welk geval we zitten. Het handige is: Als
de overlap ergens een zijde raakt, dan is de rechthoek die we berekend hebben aan die kant van het
midden leeg. Neem bijvoorbeeld het geval dat (A & B) in de rechterbovenhoek van A zit. (A & B)
raakt dan de rechts A. De rechthoeken aan de rechterkant van het midden hebben als locatie-dimensie
allemaal als linkergrens de rechtergrens van (A & B) en als rechtergrens de rechtergrens van A. In dit

26

geval komen deze overeen, dus de resulterende rechthoeken zijn leeg. Op analoge wijze geldt dit ook
voor de rechthoeken boven het midden. We houden dus nog vier rechthoeken over: De overlap (A & B),
een stukje links van de overlap, een stukje onder de overlap, en de hoek links-onder. De rest is allemaal
leeg. Bij de - zijn we niet geinteresseerd in de overlap, dus als resultaat hebben we nu de 3 overgebleven
rechthoeken die niet leeg zijn. Als A en B op een andere manier overlappen, dan geldt op analoge wijze
dat we ook alleen maar geinteresseerd zijn in de niet-lege rechthoeken, met uitzondering van de overlap.

Deze bovenstaande functies zijn in Python allemaal geimplementeerd met operator overloading. Je kunt
dus om de overlap tussen rechthoeken A en B te berekenen in Python gewoon overlap = A & B typen,
en de + kun je toepassen met plussed = A + B.

Rectangle heeft ook nog een handige hulpfunctie disjunct. Deze geeft aan wanneer rechthoeken disjunct
zijn; wanneer ze niet overlappen. A.disjunct(B) is daarom equivalent aan (A & B) is None, waarbij
None het staat voor een lege rechthoek.

9.2 Betekenis van de combinatie

Nu we de operatoren &, | en + op rechthoeken hebben gedefiniéerd, moeten we er een betekenis aan
toekennen. Hiervoor hebben we 3 mogelijkheden bedacht:

1. Een gewicht, waarbij hoger beter is
2. Een kans, bijvoorbeeld op basis van Bayesiaanse statistiek
3. Een lijst met de algoritmes waardoor de rechthoeken gevonden zijn

Uiteindelijk hebben we ervoor gekozen om de laatste optie te implementeren. De andere twee vielen af.
Dit was omdat:

Gewicht) Dit is misschien de meest voor de hand liggende manier om rechthoeken betekenis te geven.
Als het door één algoritme gevonden is, geef het gewicht 1; bij twee algoritmes geef je het gewicht 2,
enzovoort. Echter is een lijst van algoritmes beter: Het geeft meer informatie. Een lijst met algoritmes
kun je namelijk altijd omzetten naar een gewicht door de lengte van de lijst op te vragen. Andersom
kun je een gewicht niet omzetten naar een lijst met algoritmes (tenzij je het gewicht op een manier
berekent waardoor het de facto een lijst algoritmes wordt). Een gewicht toekennen viel dus af omdat
een lijst met algoritmes altijd beter is.

Kans) Een kans is in feite ook een soort gewicht, maar het geeft net iets meer informatie. Het probleem
met deze manier van combineren is dat de onderliggende algoritmes ook een kans moeten bedenken
voor hun clusters. In het geval van het Poisson algoritme lukt dat, maar bijvoorbeeld DBSCAN heeft
geen manier om de kans dat een cluster correct is weer te geven. Hierdoor zou je iets artifici€els
moeten bedenken om dit soort algoritmes toch een kans toe te kennen, maar dit zal waarschijnlijk nooit
een goede schatting worden. Een kans viel dus af omdat het onpraktisch en bijna niet te implementeren is.

Uiteindelijk hebben we er dus voor gekozen om een lijst van algoritmes bij te houden bij elk cluster. Ieder
algoritme heeft hiervoor een nieuwe, optionele parameter name gekregen, die de naam van het algoritme
aangeeft. Teder algoritme heeft hiervoor een standaardwaarde (Poisson 1D, Poisson 2D, DBSCAN; Pinta).
De klasse Rectangle heeft hiervoor een nieuw attribuut found_by, wat aangeeft door welke algoritmes
het gevonden is. found_by is een gewoonlijk een set van strings, waarbij iedere string de naam van
een algoritme is. Tijdens het berekenen van de & en | worden die sets bij elkaar opgeteld. Bij de +
krijgt de overlap beide de som de found_bys als eigen found_by, terwijl alle losse rechthoekjes hun eigen
found_by behouden.

Indien een nieuwe algoritme wordt ontwikkeld, moet deze dus ook een eigen name meegeven aan alle
rechthoeken die worden gevonden. Indien een een algortime wordt gemaakt door de standaardparameters
van een oud algoritme aan te passen, kun je dit voor de duidelijkheid ook aangeven met een andere name.
Bijvoorbeeld:

lambda circuit: clusterize_pinta(circuit,
sensitivity=100,
name="Pinta high sensitivity")

is hoe je een Pinta algoritme kunt maken met een hogere senstivity. De clusters die gevonden worden
door dit algoritme zullen dan ook als found_by de set {"Pinta high sensitivity"} hebben. Als dit
cluster overlap heeft met een ander cluster dat gevonden is door de normale pinta, wordt de found_by:

27

{"Pinta", "Pinta high sensitivity"}. Hierdoor kun je dus aan de found_by zien dat het gevonden
is door twee verschillende versies van het Pinta algoritme. Als de name parameter niet wordt aangepast,
dan zou de combinatie de found_by: {"Pinta"} hebben en kun je dus onterecht denken dat het door
maar één algoritme gevonden is. Denk er dus altijd aan om een goede name parameter mee te geven,
zodat de output van de combinatie van clusters zinvol is.

9.3 Clusters aangeven

In het stukje over rechthoeken combineren zagen we al dat er 3 manieren zijn om dat te doen: &, | en
+. Bij & en | ontstaan er na de combinatie van 2 rechthoeken steeds 1 nieuwe rechthoek. Bij + is dit
niet het geval: in het ergste geval kunnen er 9 verschillende rechthoeken ontstaan. Deze 9 rechthoeken
horen echter nog wel steeds allemaal bij elkaar: ze vormen samen één cluster. We introduceren hierom
een nieuwe definitie van wat een cluster is: een verzameling rechthoeken. In Python is dit geimplenteerd
als de klasse Cluster, die als attribuut een set van Rectangle objecten bevat. In het eenvoudigste
geval bevat een Cluster object dus een set, met daarin één Rectangle. Verder is er de aanname dat alle
Rectangles in het Cluster onderling disjunct zijn.

9.3.1 cluster.py

De Cluster klasse implementeert zelf ook de operatoren &, | en +. Als deze operatoren op twee Clusters
worden aangeroepen, dan worden alle Rectangles in de twee Clusters met elkaar gecombineerd met
dezelfde operator. De manier om Clusters met bijvoorbeeld de + te combineren is dus:

added_cluster = poisson_cluster + dbscan_cluster + pinta_cluster

De implementatie van & is vrij eenvoudig. Om de clusters ¢ en d te combineren, loop je eerst over alle
Rectangles in ¢, en dan over alle Rectangles in d, en pas je de & operator toe op de Rectangles. Dit kan
makkelijk, omdat de overlap tussen twee rechthoeken altijd kleiner is dan de rechthoeken waarmee je
begint, en we aannemen dat alle Rectangles binnen een Cluster disjunct zijn. Een bijkomend voordeel
hiervan is dat de & erg snel is. Een test op een representatief circuit geeft een runtime van ongeveer 500
microseconden.

Bij | en + is het iets ingewikkelder. Om te beginnen met |: Bij het berekenen van de | tussen twee
Rectangles is het resultaat groter. Hierdoor kan het dus voorkomen dat je een Rectangle al bekeken
hebt, maar nadat je twee andere Rectangles combineerd, kan het grotere resultaat (de bounding box)
plotseling toch overlap hebben met het eerste Rectangle. Hierdoor moeten alle Rectangles nog een keer
geinspecteerd worden. Bij de implementatie is er nog een complicerende factor: Je mag een object
niet aanpassen terwijl je met een for loop over zijn elementen loopt. Hierdoor wordt de implementatie
gecompliceerd met breaks en for-else statements. Het idee achter de implementatie is als volgt:

Je begint met twee Clusters (sets van Rectangles): result en helper. Het uiteindelijke doel is dat
result het eindresultaat bevat, en helper kan daar bij helpen. We beginnen een loop over de elementen
in helper. Bij iedere loop halen we een Rectangle, genaamd helpercur, uit helper. We weten dat
we klaar zijn als helper leeg is. Nu gaan we voor iedere Rectangle in result kijken of ze overlappen
met helpercur. Indien niet, dan is helpercur een losstaande Rectangle en kan deze dus toegevoegd
worden aan result. Als er echter een Rectangle in result is de wel overlapt met helpercur, dan
berekenen we de | van de twee en verwijderen we de oorspronkelijke rectangle uit result. Dit resultaat
is groter dan de twee originele Rectangles, dus kan het overlappen met Rectangles uit result. Hierom
voegen we de nieuwe Rectangle toe aan helper en beginnen we het algoritme opnieuw.

Dit algoritme geeft het gewenste resultaat. Het enige probleem dat we nu hebben is de vraag: Stopt
dit algoritme ook? We gaan namelijk door tot helper leeg is, maar in het geval dat twee Rectangles
overlappen, voegen we het resultaat juist toe aan helper. Het antwoord op de vraag is gelukkig: Ja,
het stopt altijd. Dit kunnen we bewijzen met inductie:

Noem het aantal Rectangles in result n en het aantal Rectangles in helper m.

We beginnen met inductie naar m. Als m gelijk is aan 0, dan zijn we klaar: Het algoritme stopt omdat
helper leeg is.

In de inductiestap mogen we aannemen dat het algoritme stopt als er m-1 Rectangles in helper zitten,
en moeten we bewijzen dat het ook stopt als we beginnen met m Rectangles in helper. Kijk nu wat
er gebeurt in het algoritme: We halen een Rectangle uit helper, deze heeft hierdoor nog maar m-1
Rectangles.

Als de Rectangle geen overlap heeft met een Rectangle uit result, dan voegen we hem toe aan result.

28

Hierdoor heeft result nu n+1 Rectangles en heeft helper m-1 Rectangles. Per inductie stopt het
algoritme altijd.

Als de Rectangle wel overlap heeft met een Rectangle uit result, dan verwijderen we de Rectangle uit
result en voegen we het resultaat van een | toe aan helper. Hierdoor heeft result n-1 Rectangles en
heeft helper weer m Rectangles. We kunnen daarom geen gebruik maken van de inductiehypothese.
Maak nu de volgende observatie: Het is onmogelijk dat er oneindig lang overlap gevonden wordt een
Rectangle uit result. Iedere keer dat er een overlappende Rectangle gevonden wordt, wordt het aantal
Rectangles in result namelijk 1 minder. Dat aantal is eindig, dus na een eindig aantal stappen zijn er
0 Rectangles in result over. Op dat moment is het onmogelijk dat er nog een Rectangle in result
is de overlap heeft met een Rectangle uit helper. Het aantal Rectangles verandert daardoor van 0 in
result en m in helper naar 1 in result en m-1 in helper. Vanwege de inductiehypothese weten we
nu dat het algoritme stopt.

Als je deze twee resultaten samenvoegt kom je tot de conclusie dat per inductie het algoritme altijd
stopt. We hoeven ons dus geen zorgen te maken over oneindige loopjes als resultaat van het aanpassen
van de Clusters waarover we loopen.

Een nadeel is wel dat het algoritme langzamer wordt door het opnieuw moeten loopen over Rectangles
die al bekeken zijn. Hierdoor is de | minder snel dan de &+ met een runtime van ongeveer 2 mil-
liseconden op hetzelfde circuit waar de & ongeveer 500 microseconden over deed. Dat is dus 4 keer langer.

Als laatste hebben we de +. Deze heeft een vergelijkbaar probleem met de |: Als twee Rectangles
overlappen, dan kan het resultaat van de + nog steeds overlap hebben met een andere Rectangle, waarvan
sommige kunnen overlappen met result en andere kunnen overlappen met helper. Hierom gebruiken
we eenzelfde opzet als voor de |. Het enige verschil is dat er nu meerdere Rectangles zijn als resultaat
van de + op twee Rectangles. Dit mag de pret niet drukken, want het algoritme werkt nog steeds en
met een vergelijkbaar argument als hierboven kunnen we ook bewijzen dat het altijd stopt. Een nadeel
is wel dat de groei van het aantal Rectangles zorgt voor een langzamere runtime. + doet over hetzelfde
circuit als we hiervoor gebruikten 28 milliseconden, wat significant langzamer is dan & en |. Als we meer
algoritmes toepassen en dus vaker de + toepassen, wordt deze nog langzamer. Ons advies is om het
gebruik van + te beperken tot het combineren van 2 algoritmes. + heeft wel een voordeel ten opzichte
van & en |: Er gaat geen informatie verloren. Bij & kijk je alleen naar de overlap, dus de informatie
waar de algoritmes niet overlappen gaat verloren. Bij | kijk je naar de bounding box, waardoor de exacte
vorm van de onderliggende clusters verloren gaat. + heeft deze problemen niet, aangezien het een strikte
combinatie van de onderliggende clusters is.

Dat was alles over &, | en +. De Cluster klasse implementeert ook nog een paar handige andere functies
die gebruikt kunnen worden:

e str__en __repr__: Geven een mooie manier om Clusters om te zetten naar text.

e __bool__: Geeft aan of een Cluster leeg is. bool(cluster) geeft False als het cluster leeg is (dus
als het geen Rectangles bevat), en True als het cluster niet leeg is. Analoog aan het gedrag van
__bool__ op andere Python objecten zoals sets en lists.

e __len__: Geeft het aantal Rectangles in een Cluster aan. Analoog aan het gedrag van __len__
op andere Python objecten zoals sets en lists.

e __iter__: Verandert een Cluster in een iterable. Hierdoor kun je het gebruiken bij alle dingen
in Python die een iterable nodig hebben, zoals for loops. Je kunt dus for r in my_cluster
gebruiken om over de Rectangles in een cluster te loopen.

e __hash__: Geeft een hash van een Cluster. Dit is een integer die geassoci€éerd wordt met een
Cluster. Dit wordt waarschijnlijk nooit aangeroepen door de gebruiker, maar het is toch handig,
omdat het een Cluster "hashable"maakt. Hierdoor kan het gebruikt worden als key in dictionaries
(wat eigenlijk een hash table is) en sets.

e get_partial_discharges: Functie met als input een circuit en als output alle partial discharges
in dat circuit die in het Cluster liggen.

e most_confident: Functie die de Rectangles in het Cluster geeft met het hoogste aantal found_by.
Als je twee Clusters hebt gecombineerd met de +, kun je op deze manier de overlap vinden. (Het
resultaat lijkt op het resultaat van de &)

29

e get_bounding_rectangle: Functie die de bounding box van alle Rectangles in Cluster aangeeft.
Als je twee Clusters hebt gecombineerd met de +, kun je op deze manier het resultaat reduceren
naar 1 Rectangle. (Het resultaat lijkt op het resultaat van de |)

e location_range: Eigenschap van een Cluster. Geeft de begin- en eindlocatie van de bounding box
van alle Rectangles in het Cluster. Als het Cluster maar 1 Rectangle bevat, kun je op deze manier
makkelijk de location_range van die Rectangle opvragen. (Anders zou je dat moeten doen met
list(cluster.rectangles)[0].location_range. De nieuwe optie cluster.location_range
is dus een stuk eenvoudiger en leesbaarder)

e time_range: Eigenschap van een Cluster. De tijd-versie van location_range.

e found_by: Eigenschap van een Cluster. De found_by-versie van location_range.

9.3.2 ensemble.py

Uiteindelijk was het de bedoeling om de resultaten van algoritmes te combineren. De algoritmes vinden
echter niet één Cluster per circuit, maar kunnen er meerdere vinden. Hiervoor is het ClusterEnsemble
bedacht. Dit is een verzameling Cluster objecten, die samen een compleet beeld geven van wat de
algoritmes als output geven bij een circuit. De algoritmes geven dus als output een ClusterEnsemble
object, met daarin (indien er iets aan de hand is) meerdere Cluster objecten, elk met 1 Rectangle object.
Er kunnen ook meerdere Rectangles in ieder Cluster in het ClusterEnsemble zitten. Deze gelaagde
structuur geeft dan aan welke Rectangle objecten bij elkaar horen: ze zitten samen in een Cluster.
ClusterEnsemble zelf implementeerd ook veel van de algoritmes van Cluster. De &, | en + zijn compleet
analoog, maar dan een stap hoger. De output van twee algoritmes kun je dus makkelijk combineren dus
&, | of 4+ aan te roepen op de resultaten. Bijvoorbeeld:

pinta_ensemble = clusterize_pinta(circuit)
poisson_ensemble = clusterize_poisson(circuit)
combined_ensemble = pinta_ensemble + poisson_ensemble

Ook __str__, __repr__,__bool__,__len__, _iter__,__hash__enget_partial_discharges wer-
ken hetzelfde als bij de Cluster klasse.

most_confident werkt niet helemaal hetzelfde als bij Cluster. most_confident op een ClusterEnsem-
ble geeft namelijk de most_confident per Cluster als output. Dit maakt most_confident verschillend
van de &:

Als er twee algoritmes zijn, waarbij er 1 Cluster is met overlap en 1 zonder in de eerste, dan geeft & als
output alleen de overlap. Het losstaande Cluster wordt dus genegeerd. Als je de + toepast, dan wordt
het Cluster wel onthouden, en na een most_confident is bij het Cluster met overlap alleen nog de
overlap over, terwijl het losstaande Cluster in zijn geheel bij de output hoort. Ieder afzonderlijk Cluster
in het ClusterEnsemble heeft een andere grens voor hoe groot len(rectangle.found_by) moet zijn.
In het voorbeeld hierboven is dat bij de overlap 2, terwijl het bij het losstaande Cluster slechts 1 is. De
& vindt alleen het de Rectangle met len(rectangle. found_by) gelijk aan 2.

30

10 Vergelijking

Over het algemeen zijn de algoritmes veel sneller dan we hadden verwacht. Ons streven van 1 seconde per
circuit wordt meestal ruim gehaald. Alleen bij circuits met uitzonderlijk veel PD’s doet bijvoorbeeld de
DBSCAN er iets langer dan een seconde over. Dit is natuurlijk helemaal afhankelijk van de parameters
die gekozen zijn, zoals de grootte van de bakjes bij het discretiseren. De resultaten van de algoritmes
komen voor een groot deel overeen, maar verschillen ook wel aanzienlijk. Soms worden clusters niet
door alle algoritmes gevonden, omdat sommige algoritmes gevoeliger zijn. Dit is geen ramp, want in
het ensemblemodel geeft het juist een indicatie van hoe waarschijnlijk het is dat daar daadwerkelijk iets

gevaarlijks aan de hand is.
Hieronder volgen de resultaten van een aantal willekeurige circuits (en onze favoriet 2063).

Poisson DBSCAN Pinta

Circuit 2063

(gemiddeld circuit) 7.86 ms 338 ms 27.1 ms
Cireuit 3010 51ms 329ms 22.8 ms
(circuit zonder clusters)

Circuit 2145

(een circuit met veel PD’s) 7.6 ms 2240 ms 95.8 ms
Circuit 2793 16.2 ms 1190 ms 53.6 ms
Circuit 2964 12.7 ms 1060 ms 34.9 ms
Circuit 3598 6.04 ms 261 ms 11.8 ms
Circuit 1615 6.44 ms 189 ms 11.7 ms
Circuit 2000 7.0l ms 495 ms 16.5 ms

Tabel 1: Enkele tijdsduren voor het uitvoeren van de algoritmes.

Circuit 2063

2019-01 A

2018-11 A

2018-09 A

2018-07 A

2018-05 A

Date

2018-03 A

2018-01 A

2017-11 4

2017-09 A

"8, . . L} . ° <*
LY D) . “t
i . e
Ly 3 I..' .
% e .

R <X . o % . L2
PR 3 ? X

Found by Poisson 2D

Found by Poisson 2D; DBSCAN
Found by DBSCAN

Found by Poisson 2D; DBSCAN; Pinta
Found by Poisson 2D; Pinta

Found by Pinta

500

1000

1500 2000

Location (m)

Figuur 30: De clusters gevonden door de verschillende algoritmes.

31

Date

Date

Circuit 3010

2019-02 A

2019-01 +

2018-12 4

2018-11 A

2018-10 A

2018-09 A

2018-08

Found by Pinta

1000 2000 3000
Location (m)

Circuit 2145

4000

2019-05 A

2019-03 ~

2019-01 A

2018-11 4

2018-09 +

2018-07 A

2018-05

2018-03

2018-01 +

2017-11 A

2017-09 A

Found by Poisson 2D; DBSCAN

Found by Poisson 2D

Found by Poisson 2D; Pinta <
Found by Poisson 2D; DBSCAN; Pinta

500 1000 1500 2000 2500
Location (m)

32

3000

3500

Date

Date

Circuit 2793

2019-04 A

2019-03 ~
2019-02 +

2019-01 +
2018-12 A
2018-11 A
2018-10 A
2018-09
2018-08 A
2018-07
2018-06 A

2018-05 A

Found by Pinta

Found by DBSCAN; Pinta
Found by DBSCAN o
Found by Poisson 2D; DBSCAN; Pinta -
Found by Poisson 2D; Pinta

0 500 1000 1500 2000 2500 3000 3500

Location (m)

Circuit 2964

2019-04 4

2019-03 ~

2019-02 A

2019-01 +

2018-12 A

2018-11 A

2018-10 A

2018-09 A

Found by DBSCAN
Found by Poisson 2D
Found by Poisson 2D; DBSCAN
Found by Poisson 2D; DBSCAN; Pinta
Found by Poisson 2D; Pinta

0 500 1000 1500 2000 2500

Location (m)

33

Date

Date

Circuit 3598

2019-05 1 Found by DBSCAN
Found by Poisson 2D; DBSCAN
Found by Poisson 2D; Pinta
2019-04 Found by Poisson 2D
Found by Poisson 2D; DBSCAN; Pinta '“.. ;
Found by Pinta 3
Found by DBSCAN; Pinta :
2019-034 b
2019-02 o o .
2019-01 -
0 200 400 600 800 1000 1200 1400
Location (m)
Circuit 1615
Found by Poisson 2D
2017-04 A Found by Poisson 2D; Pinta
Found by Pinta
2017-03 Found by DBSCAN
i Found by DBSCAN; Pinta ®
2017-02 A Ty - L
. .; :» [N 3 3 . . ’
2017-01 1 o - t
x /. . °
2016-12 - e
R ¢ ‘¢ e . o -
2016-11 A . . ? : =
-' T T I3 e 0 s -0 ® ocrc00.0 @ o 0.0 o
. Q-P—v—v!w— ;&"‘ SRR Bo' e O .~|:.. ‘e .‘:0
2016-10
2016-09 A
2016-08 -

1500 2000 2500 3000

Location (m)

500 1000

34

Date

Circuit 2000

2018-04 A

2018-03 A

2018-02

2018-01 A

2017-12 A

2017-11 4

2017-10 A

2017-09 +

2017-08 A

2017-07 A

Found by DBSCAN

Found by Poisson 2D

Found by Poisson 2D; DBSCAN
Found by Poisson 2D; DBSCAN;
Found by DBSCAN; Pinta

; Pinta - o0

1000
Location (m)

35

1500

2000

Deel 111
Tot slot

11 Conclusie

11.1 Het resultaat

Wij zijn trots op ons resultaat. Onze eerste opdracht, het maken van een cluster-algoritme, hadden we
binnen de eerste weken volbracht. In de tijd die over is hebben we niet alleen nog twee fundamenteel
nieuwe algoritmes geimplementeerd, maar ook een systeem ontwikkelend om de resultaten van de algo-
ritmes zinvol te combineren. Het systeem is algemeen genoeg voor alle voorziende doeleinden, en biedt
ook de mogelijkheid om hetzelfde algoritme meerdere keren toe te passen met verschillende parameters
(dit heet een embedded method in de numerieke wiskunde).

De algoritmes, samen met het ensemblemodel, vormen de kern van ons resultaat. We vinden het belang-
rijk dat onze algoritmes ook echt bruikbaar zijn voor Alliander. Daarom hebben we veel tijd geinvesteerd
in het verwerken van de algoritmes tot een goed gedocumenteerde Python-module die we leveren aan
Alliander, zodat zij met één regel code aan de slag kunnen.

Ten slotte zijn we veel bezig geweest met het optimaliseren van de algoritmes. Het Poisson- en Pinta-
algoritme zijn zo ver geoptimaliseerd dat de bottleneck nu het discretiseren is. Gebruikmakend van de
constante discretisatieafstand hebben dit zelfs 3 keer tot 10 keer sneller kunnen doen dan de standaard-
methode van numpy. Ter illustratie van het resultaat: het 2D-clusteren met het Poisson-algoritme (de
snelste van de drie) is gemiddeld 90 keer sneller dan inladen van de .csv-bestanden van hetzelfde
circuit, en gemiddeld 3 keer sneller dan het inladen (SSD naar RAM) van een voorverwerkt (gepickled)
circuit.

De snelheid van de algoritmes is niet alleen prettig, maar het biedt ook nieuwe mogelijkheden. In
het bijzonder is het toepassen en combineren van meerdere algoritmes met verschillende parameters nu
rendabel, waardoor gevonden clusters een zekerheidsgraad krijgen. Ook denken wij dat autonoom real-
time clusteren hiermee mogelijk is, zonder nauwkeurigheid te moeten inleveren om de gewenste snelheid
te behalen. Het is daarmee een verbetering op het bestaande algoritme van DNV GL.

11.2 De samenwerking

De samenwerking verliep goed. Natuurlijk was er sprake van verschil in programmeerniveau, maar dege-
nen met veel ervaring hebben de rest veel geleerd en goed geholpen. De begeleiding vanuit de Radboud
Universiteit en Alliander was op maat, en over het algemeen werden onze vragen helder beantwoord.

12 Ideeén voor de toekomst

Er zijn een aantal onderwerpen die ons interessant of nuttig leken om in de toekomst uit te pluizen. Naar
sommige hiervan hebben we al wat gekeken en naar sommige nog helemaal niet.

12.1 Realtime clusterizen

Op dit moment zoeken onze algoritmes naar clusters in data van enkele maanden of zelfs jaren. Het
uiteindelijke doel is natuurlijk om, meteen als er iets mis dreigt te gaan in de kabel, een warning te
kunnen geven. De volgende stap zou dus zijn om live de verdachte gebieden te kunnen vinden.

In principe werken alle algoritmes al realtime. Als je ze bijvoorbeeld toepast op de 6 maanden meest
recente data, zal het ook clusters vinden die aan het eind van de dataset voorkomen, en dit is dan dus
realtime herkenning van huidige clusters. We hebben dit niet verder onderzocht (je zou historische data
natuurlijk kunnen afkappen om realtime data te simuleren). Verder is de runtime van de algoritmes z6
laag dat dit ongetwijfeld realtime toepasbaar is. (Zo is Poisson, op een moving window van 6 maanden,
in theorie 100 keer per seconde toe te passen op de nieuwste data.)

12.2 Banden

Zoals eerder gezegd, blijkt dat als je heel erg inzoomt, de PD’s in verticale banden liggen. Binnen deze
banden fluctueert de locatie van de PD’s alsnog enigszins. Ten eerste zou het interessant zijn om erachter

36

te komen waarom dit zo is. Ons vermoeden is dat de SCG de locaties eigenlijk discreet meet, maar dat
DNV GL ze opzettelijk een beetje jittert. En ten tweede zou het handig zijn als deze banden automatisch
kunnen worden bepaald. Dan zou bijvoorbeeld voorkomen kunnen worden dat bij het maken van een
histogram sommige bakjes twee banden bezitten en sommige drie. Of je zou de banden verder kunnen
jitteren zodat de PD’s weer wat organischer verspreid zijn.

12.3 Dubbele clusters

In sommige circuits zie je dat veel clusters een soort kopie hebben op een net iets andere locatie. Voorheen
werd gedacht dat dit komt doordat sommige moffen in de kabel signalen gedeeltelijk reflecteren, waardoor
de SCG dezelfde PD’s op verschillende locaties meet. Omdat de mof een constante locatie heeft, wordt
het volledige cluster reflecteerd: alle PD’s uit het cluster worden gespiegeld vanaf hetzelfde punt. Na een
beraadslaging met DNV GL blijkt deze hypothese waarschijnlijk niet te kloppen. Het bepalen van de
precieze oorzaak vereist betere kennis van de werking van de SCG-firmware en de fysische eigenschappen
van PD’s; dit is een onderwerp voor later onderzoek. Onze algoritmes, of de SCG-firware, zou moeten
worden aangepast om onderscheid te kunnen maken tussen echte cluster en hun kopieén.

12.4 Tijdperken

Bij sommige circuits zie je dat het gedrag door de tijd heen opeens heel erg kan veranderen. Bijvoorbeeld
dat er in een keer veel minder ruis is en dat de ruis gemiddeld een significant hogere lading heeft. Dit
zou kunnen komen door een verplaatsing van de SCG of door een software of hardware update. Dit heeft
nadelige effecten op de algoritmes: Een cluster dat significant meer punten bevat dan de rest van de
kabel rond die tijd, maar vergeleken met de rest van de tijd niet zo veel, wordt niet gevonden. Het zou
erg handig zijn voor de algoritmes als dit soort tijdperken automatisch gevonden zouden kunnen worden.
Dit zou misschien kunnen door te kijken naar de gemiddelde lading op een tijdstip of naar momenten
dat er iiberhaupt langere tijd niet gemeten wordt.

12.5 Indicatie van warnings of bepalen moffen

Een ultiem doel zou zijn dat de algoritmes ook het warningsniveau kunnen vaststellen. Als de dataset
groot genoeg is, zou wellicht met machine learning kunnen worden bepaald wanneer welk warningsniveau
toepasselijk is. Op dezelfde wijze zou ook het type mof kunnen worden gevonden.

12.6 De grootte van de ladingen

Op dit moment maken de algoritmes (op uitzondering van Poisson met weigh charges=True) geen
gebruik van de grootte van de ladingen van de PD’s. De ladingen bij een kapotte mof zijn over het
algemeen hoger dan die van ruis. Er zouden dus nog algoritmes ontworpen kunnen worden die wel
naar de lading kijken. Een voorbeeld zou zijn om een soort drempelwaarde in te voeren, zodat alleen
de ladingen hoger dan die drempelwaarde worden meegenomen. Vervolgens zouden gewoon dezelfde
algoritmes op deze nieuwe verzameling PD’s kunnen worden losgelaten.

12.7 Clusterbreedtes

We hebben wat gekeken naar de ’breedtes’ van clusters en hoe de PD’s binnen een cluster verdeeld zijn.
Een van de vragen is: waar komt deze breedte vandaan? Komt dit doordat de PD’s daadwerkelijk zo
verspreid rond de mof plaatsvinden, of komt dit door een meetfout van de SCG? In het laatste geval zou
de breedte van de clusters per circuit ongeveer gelijk moeten zijn. En is deze breedte dan rechtevenredig
met de lengte van het circuit? Dit is iets wat verder uitgezocht zou kunnen worden.

Referenties

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay
2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825—-2830.

37

Deel IV
Appendix

A Monte Carlo-algoritme

Als uitsmijter nog een laatste algoritme. Monte Carlo is een naam die veel gebruikt wordt voor rando-
mized algoritmes. Monte Carlo-clustering is dus randomized clustering. Het hoofdidee is het volgende
stappenplan:

1. Kies een heleboel willekeurige partial discharges

2. Teken een rechthoek om de gekozen partial discharges

3. Combineer de rechthoekjes met de | (or)

4. Bestempel de rechthoekjes met de meeste rechthoekjes waardoor ze gevonden zijn als Cluster

Om deze stappen wat inzichtelijker te maken staan hieronder een aantal plaatjes.

Circuit 2063
2018-11 - .. .'..' "- o® . -0. .‘- . EE 2] o .‘.. _':".... .. -‘ .q,'.. .) . .. -. ..-
hibge e e e e L .
-09 4 A L . % . - S e c. - .. .
2018-09 :3._'..;4. - : . . e ‘.-‘.s.‘... vy D
e . . ‘ .. 0B [
£ _...?.;Q-_.':Q."; B R T N L SR T
2018-074 foov- oo e e TR e . :
) . . " S ‘n Y R .
o 2018-051 : : .-
© . ", .
) S .-~
2018-03{ B¢ 7. ' .
2018-01
2017-11 1 ‘
2017-094 e T 2w 3
0 500 1000 1500 2000

Location (m)

Figuur 31: Stap 1: Kies een heleboel willekeurige punten

Het aantal punten dat we kiezen kan op twee manieren worden bepaald. De eerste is door een parameter
choices_exact, waarbij de gebruiker een exact aantal punten dat moet worden gekozen kan aangeven.
Als deze parameter op None staat (de standaardwaarde), dan wordt er op een dynamische manier een
geschikt aantal punten gekozen. Het aantal hangt in dit geval af van de lengte van het circuit (in meters)
en de tijdsduur van de metingen (in maanden). De gebruiker kan dit nog iets sturen door de parameter
choices_div te veranderen: Het aantal gekozen punten wordt uiteindelijk gedeeld door choices_div.

38

Circuit 2063

2018-11 - ® Rl _li... .. Y . .« ° ...
LK A R - ~
e, L A Y . o~y
';v, .t
2018-09 . chne - .
. ® o Rus g o ® ° ®.
e o Sry . .
S s Y
2018-07 S "
g 2018-05 - » .
© e .
[a)
2018-03 ST . .
2018-01 '
2017-11 - ‘
2017-094 - e e 1 e 3
0 500 1000 1500 2000

Location (m)

Figuur 32: Stap 2: Teken rechthoekjes om de gekozen punten

De grootte van de rechthoekjes is standaard ingesteld op 32 meter breed en 6 dagen lang. De gebruiker
kan dit zelf aanpassen door de parameters loc_rect_size en time_rect_size aan te passen. Met
name time_rect_size groter maken kan interessant zijn, aangezien clusters vaak langer langwerpig zijn.
Grotere rechthoeken betekent natuurlijk ook dat ze sneller overlappen. Hier moet eventueel rekening
mee worden gehouden door andere parameters aan te passen; dit wordt niet dynamisch gedaan.

Circuit 2063

2018-04 -

2018-03 -
9
©
[a)

2018-02 A

2018-01 A

2017-12 . . : :

200 300 400 500 600 700

Location (m)

Figuur 33: Stap 2: Ingezoomd op een verdacht gebied

39

Op het ingezoomde plaatje is goed te zien dat er erg veel rechthoeken liggen in het meest rechtse cluster,
terwijl andere plekken minder rechthoeken hebben. Dit komt doordat het rechtse cluster veel partial
discharges bevat, waardoor de kans dat een van de PD’s willekeurig gekozen wordt relatief groot is. Op
deze manier is goed terug te zien dat Monte Carlo-clustering zich goed houdt aan de definitie dat een
cluster een rechthoek is met uitzonderlijk veel partial discharges.

Circuit 2063

2018-04 q-

2018-03

Date

RURTRIDY

2018-02 A

staiethiatagle -

2018-01

2017-12 T T T T
200 300 400 500 600 700

Location (m)
Figuur 34: Stap 3: Combineer de rechthoekjes

Stap 3 zou gewoonlijk een moeilijke stap zijn om te programmeren, maar gelukkig kunnen we hiervoor
gebruik maken van de functie | die al gedefiniéerd is voor Rectangle en Cluster. Hierdoor kunnen we
deze stap in 2 regels opschrijven:

clusters = {Cluster({r}) for r in rectangles}
reduced = functools.reduce(operator.__or__, clusters)

Tijdens het tekenen van de rechthoeken hebben we ze allemaal een uniek nummer gegeven en deze
opgeslagen in de found_by property van Rectangles. Tijdens het combineren zijn dus al deze nummers
bijgehouden. Bij een grotere Rectangle kunnen we nu makkelijk kijken hoeveel Rectangles uit stap 2
overlap hebben met deze grote Rectangle. Dat is namelijk: len(rectangle.found_by). We kiezen
nu een minimum waarboven dit aantal moet zitten voordat we een Rectangle toelaten als Cluster. Net
zoals bij het aantal willekeurige punten kan dit weer op twee manieren: Een exact aantal gekozen met
de parameter found_exact, of dynamisch op basis van de circuitlengte, tijdsduur, en de parameters
choices_div en found_div.

40

Circuit 2063

2018-04 -
2018-03 A
2
©
a
2018-02 A
2018-01 A
2017-12 T T T T
200 300 400 500 600 700
Location (m)
Figuur 35: Stap 4: Maak clusters
Circuit 2063
.. K
2018-11 - L AR W w
DL LR "o
;a;:. ‘L - 2 .
2018-09 - B S .
b, <04 . (] . o
oy LI : .
2018-07 - s ‘ :
o 2018:05 1 .,
©)
a
2018-03 A .
2018-01 A
2017114
2017-094 o o A e, 3
0 500 1000 1500 2000

Location (m)
Figuur 36: Eindresultaat

Het eindresultaat ziet er redelijk uit. De belangrijkste clusters zijn gevonden, al worden ze niet helemaal
correct weergegeven: grote delen van de clusters vallen buiten de gekozen Rectangles. Het resultaat is
waarschijnlijk beter geweest als we time_rect_size groter maken. Ook is het algoritme randomized,
dus door het algoritme opnieuw uit te voeren, vinden we een andere uitkomst, die wellicht beter is.

41

De runtime van het Monte Carlo algoritme hangt heel erg af van hoeveel willekeurige punten er worden
gekozen. Nu is het punten kiezen zelf niet het probleem: het probleem is dat we deze de rechthoekjes
om deze punten heen allemaal moeten combineren met de |. Deze methode is erg langzaam als we veel
rechthoekjes combineren. Hier een tabel van runtimes:

Aantal punten | Runtime

100 70 ms
300 520 ms
500 1.23 s
1000 5.12 s

Ter illustratie: bij het circuit hierboven hebben we ongeveer 300 punten gebruikt om het eindresultaat
te bereiken. Voor de runtime geldt dus: meer punten is slechter. Het algoritme is dus langzamer dan
Poisson en Pinta. Dat | zo langzaam is bij veel rechthoeken maakt bij Ensemble clustering niet uit,
omdat we daar hooguit 20 Rectangles hebben. Die kunnen dus snel gecombineerd worden. Dat we bij
Monte Carlo-clustering 300+ clusters gebruiken, is dus een probleem als je naar de runtime kijkt.

De nauwkeurigheid van het resultaat hangt erg af van hoeveel punten er worden gekozen. In dit ge-
val is het dus: meer punten is beter. Er moet dus een afweging worden gemaakt tussen runtime en
nauwkeurigheid. Toch is Monte Carlo-clustering minder nauwkeurig dan de andere 3 algoritmes, tenzij
een groot aantal punten wordt gebruikt. Ruis kan Monte Carlo nog wel goed herkennen; de willekeurige
rechthoekjes liggen dan zo verspreid dat ze waarschijnlijk nooit overlappen. Ook een circuit met een klein
aantal clusters (1 of 2) lukt goed. Er komen wel problemen om de hoek kijken als het aantal clusters
groot wordt. Dan raken de willekeurige rechthoeken verspreid over de verschillende clusters, waardoor
geen enkel cluster een groot aantal willekeurige rechthoeken heeft. Daarom overlappen de rechthoeken
niet, en worden er geen rechthoeken als verdacht bestempeld. Monte Carlo-clustering kan dus niet het
verschil zien tussen een circuit met 0 clusters en een circuit met bijvoorbeeld 10 clusters, iets wat de
andere algoritmes wel kunnen. Ook worden clusters soms in meerdere verdachte rechthoeken opgesplitst
die per toeval net niet overlappen. Dit is bijvoorbeeld ook te zien in [35] Het rechtse cluster wordt
aangegeven met 2 Rectangles die net niet overlappen.

Dit alles bij elkaar maakt dat Monte Carlo-clustering een aantal grote zwaktepunten heeft die de andere
algoritmes niet hebben. Hierom hebben we ook besloten om het als ‘bonus-algoritme’ te beschouwen.
Het concept erachter vinden we leuk en dat een randomized algoritme soms goede resultaten geeft is
interessant, maar in de praktijk denken we dat de nadelen van Monte Carlo-clustering niet opwegen
tegen de voordelen, zeker als we het vergelijken met algoritmes als Poisson, DBSCAN en Pinta.

42

	Inleiding
	SCG
	I Analyse SCG data
	De data
	Opvallende kenmerken

	II Cluster-Algoritmes
	Een cluster-algoritme algemeen
	Poisson-algoritme
	Pinta-algoritme
	DBSCAN-algoritme
	Ensemble-model
	Vergelijking

	III Tot slot
	Conclusie
	Ideeën voor de toekomst

	IV Appendix
	Monte Carlo-algoritme

