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Abstract
Photovoltaic (PV) modules consist of electrically interconnected solar cells. PV modules
usually have a series-parallel (SP) connection topology. It is known that under partial
shading conditions mismatching between the cells occur, which can drastically reduce
the power output of a PV module. Research has shown that for traditional silicon PV
modules, other configurations, like the total-cross-tied (TCT) configuration, can be less
susceptible to power losses under partial shading. Since thin-film modules have the
potential to be integrated in various building elements and multi-functional surfaces,
non-uniform irradiance is to be expected more often. This makes researching shadow
tolerant electrical designs for thin-film solar arrays worthwile. In this research, a generic
MATLAB code was developed to simulate the electrical behaviour of a PV module
for multiple interconnection topologies and for any type of cell, type of bypass diode,
module size and shading pattern. A bypass diode is an electrical component included in
PV modules, that prevents the solar cells from being damaged by mismatching effects.
The goal of this study is to discover which out of the two configurations SP and TCT,
constitutes the most shadow tolerant thin-film PV module.

It was shown that the designed model has a sufficient degree of precision, by means of
a verification experiment in which fifteen different shading patterns were tested for four
CIGS modules. Thereafter, the MATLAB model was used to calculate current-voltage
curves and maximum power points of TCT and SP modules for various modules sizes
and shading patterns. The properties of CIGS cells were used for modelling the solar cell
components of the modules, and the bypass diodes were modelled as Schottky diodes.
Analysis of the resulting data indicates that neither of the configurations generally has
the largest maximum power output. However, it was found in the simulated scenarios
that if TCT is the best configuration, the power gain compared to SP can be very
large: up to about 200%. Whereas, if SP was the best configuration in a certain shading
scenario, then the power loss of TCT compared to SP is limited to 20%. On this basis, it
is recommended to use a TCT configuration if no additional information about expected
shading patterns is available. To determine which configuration is optimal for specific
situations, further development would be necessary to combine the designed model with
a tool that predicts shading patterns over time.
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Introduction
With increasing awareness about carbon emissions and global warming, research related
to renewable energy becomes more and more important. Solar energy is one of those
renewable energy resources, and in particular thin-film solar techniques show promising
prospects for the future. At Solliance Solar Research, the goal is to further develop
production processes and systems for thin-film solar technologies until they can be scaled
up to an economically viable level. Thin-film solar cells that are worked on at Solliance
include perovskite cells and CIGS cells.

Figure 1: Semi-transparent perovskite
thin-film cell [1]

Figure 2: Flexible CIGS thin-film cell
(Appendix II)

Solliance Solar Research was founded in 2010 and is a joint venture between the
Dutch TNO, the Belgian imec and ECN (the Energy research Centre of the Netherlands,
that became a part of TNO in 2018). Together with industrial and academic partners,
Solliance Solar Research plays a leading role in the worldwide research and development
of thin-film solar technology. Solliance has a strong focus on developing technologies for
adaptable, flexible and semi-transparant thin-film solar applications. The vision for the
future is massive application of thin-film solar technologies in infrastructure, building
materials and transport to create multi-functional use of available area. [2]

However, integration of solar thin-film in a wide variety of applications can pose some
extra challenges. In practice, 3D applications of thin-film solar modules can have non-
uniform solar irradiance due to self-shadowing, or varying surface angles with respect to
the sun. In addition, integration of solar modules to create multi-functional surfaces will
be mostly called for in urban areas. But then partial shadowing caused by surrounding
structures is to be expected. These situations decrease the power output of solar modules
considerably.

Solar cell performance depends of course on the solar irradiance, but also on other
ambient conditions like the temperature. Solar modules are formed by connecting solar
cells in series and/or parallel. Due to fluctuations in solar irradiance and temperature,
the maximum power output of a solar module varies. The output voltage, and with
that the output current and power, of a solar module is a function of the load. By
controlling the output voltage at the load, it is possible to have the solar module
operate at its maximum power output. When the ambient conditions on the cells are
homogeneous this maximum power point is well predictable. However, the behaviour
of a solar module under non-uniform irradiance, i.e., partial shade, changes drastically.
In addition to a global maximum power point there may occur multiple local maximum
power points under partial shading conditions, which is a problem for maximum power
point trackers. On top of that, calculating the module’s electrical behaviour becomes
much more complicated as the module no longer behaves like a scaled up version of a
single solar cell. The module turns into a system of complicated interactions between
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non-linear circuit components that all behave differently. Since the cells are affecting
each other, some cells may be forced to operate at a voltage level exceeding a certain
breakdown voltage. This can damage the solar module permanently, and therefore
bypass diodes are incorporated to protect the cells. Bypass diodes add yet another
challenge to predict the solar module’s behaviour, as they are one more non-linear
circuit component that complicate interactions in the module. Furthermore, the type
and number of bypass diodes also affects the solar module behaviour.

In case of non-uniform conditions, the choice of interconnection topology for the solar
module has an impact on the maximum power output. There are multiple interconnection
topologies, like total-cross-tied (TCT), series-parallel (SP), bridge-linked (BL), and
honey-comb (HC). These configurations have been tested under partial shading conditions
for crystalline silicon modules [3], but no such research was found for thin-film solar
modules. At Solliance, a number of measurements was done to compare TCT and SP
configurations under partial shading and it was observed that the TCT configuration
can have promising results for thin-film CIGS solar cells. That was the motivation for
setting up this research project.

The objective of this research is to develop a model that predicts solar module
behaviour for various partial shading scenarios, and moreover, to compare the interconnection
topologies SP and TCT for thin-film solar modules to find the most shadow tolerant
design.
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1 Background
Before we can get to the actual research question, let’s start with an underlying theoretical
framework about photovoltaics and electrical circuits. In this chapter we present basic
concepts and principles of physics that can be found in educational physics books like
Jewett and Serway [4] (chapter 4).

1.1 Photovoltaic technology
Photovoltaic technology is a technology that converts photonic energy into electricity
using solar cells. An example of a photonic energy source is of course the sun. Over the
last decades photovoltaic technology has gained in popularity, with many commercially
available photovoltaic (PV) applications today. The solar cell, also called PV cell
throughout this report, contains a material that absorbs sunlight. In this material
the photons excite electrons to a higher energy state. These electrons then move into an
external circuit, where the electrons’ energy will be used up by a load and the electrons
return to the solar cell. The material in solar cells that is used for this energy conversion
is generally a p-n junction semiconductor. [5]

There are a number of solar cell types, of which the most widely used and oldest one
is crystalline silicon. In current research, these cells have conversion efficiencies between
21.2% and 27.6%. [6] A newer type of solar cells, are the thin-film cells. These are, as the
name suggests, thinner cells, sometimes flexible and (semi-)transparent, which renders
them suitable for a wide variety of applications. Another advantage of thin-film cells
is that they have a lower cost and need less material compared with silicon based solar
cells. [7] Among the thin-film solar cells there are different types based on materials that
are used in the cell: a-Si thin-film solar cells, c-Si solar cells, CdTe solar cells, CIS &
CIGS solar cells and perovskite solar cells. [7] The efficiency of CIGS thin-film solar cells
can be up to 23.4%, and perovskite cells currently have research-cell efficiencies up to
25.2% (see Appendix I). [6] So these thin-film technologies can compete with the silicon
PV cells. A disadvantage of perovskite cells is the short lifespan, but perovskite cells
are rapidly developing and Solliance, and partners, recently managed to make a more
stable version of these cells. [1]

Another upcoming development is multi-junction solar cells. These are stacks of
individual solar cells, which absorb different wavelengths of incoming sunlight due to
the different materials in each layer. The layers together create a more efficient cell than
cells with a single semiconductor layer. In theory the efficiency of a multi-junction with
perovskite cells can even become 73% [8]. The production time and costs are however
larger than for single-junction cells. [9]

1.2 Electrical circuits
Electric current I is the net flow of electric charge. The moving charged particles
(electrons and ions) that constitute this flow are called the charge carriers. The convention
is that the direction of the current is the same direction as the flow of positive charge
carriers. So in a circuit the direction of the current is from the plus terminal of the
power source outwards. Voltage is the difference in electrical potential between two
points. These two points are indicated by a plus and minus sign.

An electrical circuit consists of connected components. To calculate the voltage and
current in parts of the circuit, Kirchoff’s circuit laws are used. The first law, Kirchoff’s
current law, states that sum of the currents in a circuit junction equals 0, where incoming
currents are positive and outgoing currents are negative. Kirchhoff’s second law, the
voltage law, states that in all closed loops of a circuit the directed sum of the voltages
equals zero.
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A third law that will be relevant is Ohm’s law: V = IR. This law states that the
current I flowing through a conductor between two points is directly proportional to
the potential difference V across those points. The proportionality constant is R, the
resistance. Note that not all electrical components obey this linearity property. For
example, the diode is one of those non-ohmic, or nonlinear, semiconductors.

As a corollary of the voltage law, two electric components connected in parallel have
the same voltage (in opposite direction within their loop) but can have different current.
Similarly, from the current law we can derive that two components in series have the
same current but can have different voltages. See the examples below.

1A

I

10Ω

+

−

V1A

Two current sources of 1A in parallel
with a resistor R = 10Ω. As a

consequence I = 2A and
V = IR = 20V.

−
+

1V

−
+

1V

I

10Ω

+

−

V

Two voltage sources of 1V in series with
a resistor R = 10Ω. As a consequence

V = 2V and I = V/R = 0, 2A.

A circuit that is not connected is called an open circuit. In this case there is no
net flow of charge carriers, so the current is zero. The voltage over the end points
of the circuit is called Voc: the open circuit voltage. A short circuit is a circuit with
a connection allowing current from a power source to flow freely between two points,
where there should be a resistor or load. The voltage level is zero and the current is
called Isc, the short circuit current.

−
+

0A
+

−

Voc

Open circuit with a voltage source.

Isc

+

−
0V

Closed circuit with a current source.

1.3 Circuit components
A solar photovoltaic cell can be modelled with an electrical circuit. The following
components occur in this circuit:

diode current source resistor

1.3.1 Diode

A diode is an electronic component that (ideally) conducts current in only one direction.
A diode is formed by a so-called p-n junction. A p-n junction, also called a semiconductor
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junction, is formed by the boundary surface between two layers of material.

Figure 3: Representation of a p-n
junction. [4]

One layer is the p-type and the other
is the n-type. In the negative- or n-
type layer the majority charge carriers are
electrons. A charge carrier is a charged
particle that can freely move around in
the material. The n-type layer also
contains positively charged atoms that
donated an electron, but those are fixed.
The net charge of the layer is zero, so the
‘n’ relates to the charge of the majority
charge carriers.

In the p-type (positive-type) layer the
majority charge carriers are holes. A hole
is the lack of an electron in an atom where
one could exist in the atom lattice. The
p-type layer also has a net charge of zero:
the holes are offset by fixed negatively
charged atoms that accepted an electron.

In each layer there is also a minority
of some charge carriers that are oppositely
charged from the majority charge carriers. This is basically an impurity in the material.
For instance, the n-type layer, also contains some holes in lesser amount. Those are the
minority charge carriers.

At the p-n junction, where the two layers touch, there is interaction between the holes
and electrons. Electrons fill up the holes, and what is left are the fixed positively charged
atoms and the negatively charged atoms. Because the charged atoms are situated next
to each other, the net charge at the p-n junction is still zero. The zone around the p-n
junction where this happens is called the depletion zone. The depletion zone basically
acts as an insulator. So the thinner the depletion zone, the higher the conductivity of
the diode. The thickness of the depletion zone, and therefore the conductivity, depends
on the external voltage that is applied.

If there is a positive voltage applied to the p-layer, it will pull electrons from the
n-layer and repel holes from the p-type layer. Both carriers are moving towards the p-n
junction and the depletion zone becomes thinner. The conductivity of the diode increases
as the voltage increases, and this state is called the forward bias. Schematically a diode
in forward bias looks like this:
+ −

The opposite situation, where negative voltage is applied to the p-type and positive
voltage is applied to the n-type, is called reverse bias. The negative voltage on the
n-side will pull the electrons away from the p-n junction, and the positive voltage on
the p-side does the same for the holes. The depletion zone becomes thicker and ideally
the current is totally blocked. However, due to the minority charge carriers there is a
small current, called the reverse saturation current I0. Note that I0 is the size of the
reverse saturation current, so it is a positive value, but the direction is opposite from
current under forward bias. If the diode is in reverse bias, we also say that the current
is in block direction, which schematically looks like this:
− +
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In an ideal situation the diode behaves as a switch that conducts the current completely
in forward bias (positive voltage), and conducts no current in reverse bias (negative
voltage). However, in reality the I-V curve of a diode looks different: the current
doesn’t suddenly change from zero at negative voltages to infinity at positive voltages.
Instead, the diode has an exponential I-V curve where for negative voltages the current
is slightly negative (limited by horizontal asymptote −I0), for no voltage there is of
course no current, and for positive voltages the current is in positive direction. This I-V
characteristic is described with the Shockley diode equation,

I = I0

(
exp

(
qV

nkT

)
− 1

)
, (1.1)

where k is the Boltzmann constant, q is the elementary charge (charge of an electron),
T is the temperature of the diode in Kelvin, I0 is the reverse saturation current and n
is what is called the ideality factor. The diode current is I, and V is the voltage across
the diode.

-0.06 -0.04 -0.02 0.02 0.04 0.06

V [V]

-2

2

4

6

8

I [A]

10-6

I-V curve diode

diode

ideal diode (switch)

Figure 4: I-V curve of a switch compared with a diode based on the Shockley diode
equation with I0 ≈ 6 · 10−7, T = 278K, n = 1.

We see that I and V are not directly proportional, i.e., a diode is not an ohmic
conductor. In this equation we can also see that, indeed, under reverse bias (i.e., V
is negative) the current of the diode approaches the reverse saturation current: as
V → −∞ we have I → −I0. The parameter n is the diode ideality factor. This
unitless factor depends on the quality of the diode and is a value between 1 and 2. In
an ideal situation recombination of an electron and a hole does not occur at the p-n
junction of a semiconductor. In that case the ideality factor is 1. However, in reality
there is a recombination in depletion regions and this can increase the ideality factor
up to 2. The factor depends on the material of the semiconductor and is also not really
a constant. The ideality factor varies with the current level; it decreases from 2 at low
currents to 1 at high currents, but might also go up to 2 again at high current levels
depending on carrier concentrations in the device. [10,11,12]

The Shockley diode equation lacks in describing some properties about the diode.
Firstly, for negative voltages exceeding a certain reverse voltage, called the breakdown
voltage Vbr, reverse current starts to flow freely. This might cause a breakdown of the
diode. Also, there is a maximum forward current that the diode can withstand before
it heats up too much. Lastly, there is a slightly steeper jump in the current just before
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zero, though this is negligible since we’re talking about such small currents around zero.
An actual diode I-V characteristic looks more like in Figure 5, but we can estimate the
region between breakdown voltage and maximum forward current with the Shockley
equation.

Figure 5: I-V curve diode. Vbr is the breakdown voltage and Vf is the forward voltage:
the threshold voltage at which point the forward current is considered to start

flowing. [13]

1.3.2 Current source

As suppliers of electricity, the most known are voltage sources. Examples of voltage
sources are a battery or the power supply of a wall outlet. A voltage source delivers a
fixed voltage and generates variable current. On the other hand we have a current source.
A current source generates a fixed current and has a variable voltage. A photovoltaic
cell can be modelled with the help of a current source. However, the current is not
exactly fixed like for a general current source. Fluctuation in the current of a photocell
is caused by shifting ambient conditions like temperature and irradiance. So the solar
cell is a current source in the sense that it generates a fixed current for fixed ambient
conditions.
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2 Photovoltaic cell
The electrical behaviour of a photovoltaic (PV) cell can be illustrated with an I-V
curve. This is a graph that shows the relation between the output voltage (V) and
output current (I) of a cell. The photovoltaic cell generates current, which is influenced
by the level of sunlight on the cell, however, the amount of output current can not be
directly controlled. On the other hand, the operation point (I,V) is determined by the
load that is connected to the PV cell or module.

-0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 V [V]

-1

1

2

3

4

I [A]

I-V curve

(V
oc

, 0)

(0,I
sc

)

Figure 6: Simulated I-V curve of a MiaSolé CIGS cell (Appendix II) at an irradiance
of 1000W/m2 and cell temperature of 25◦C.

Overall, the shape of the I-V curve is generally the same for all solar cells. However,
the slopes of the approximately linear pieces before and after the ‘knee’ of the curve can
vary depending on the resistances in the cell. More about the effects of the resistances
later will be discussed later.

2.1 Single diode model
In order to be able to evaluate the performance of photovoltaic cells and modules under
various ambient conditions, a PV model will be useful. The photovoltaic cell can be
modelled with an electrical circuit. This is called an equivalent circuit model. The most
widely used equivalent circuit model of a photocell is the single diode model.

There are more elaborate models like a double diode model and even a multi-
dimension diode model. Models like this can achieve lower modelling errors than the
single diode model, especially for thin-film PV technologies. [14] The disadvantage is,
however, that these models have higher computation costs and need more preliminary
data to find all the unknown parameters. Whereas the single diode model can predict
the cell behaviour by just using the information provided by the PV cell manufacturer
without needing to measure additional data. This makes the single diode model most
suited for our objective; making a model of PV modules where theoretical ambient
conditions and PV cell properties can easily be put in.

In the single diode model [15,16] there is a current source and a diode connected in
parallel.
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Iph

−

+

I
+

−

V

ID

Figure 7: Single diode model of an ideal photocell.

Because of the diode, a nonlinear component, we know that the current-voltage relation
of the PV cell will behave nonlinearly. Iph is the photogenerated current and ID is the
current through the diode. We can calculate I according to Kirchoff’s current law as

I = Iph − ID. Now we remember that ID = I0

(
exp(

qVD
nkT

)− 1

)
and since VD = V , we

get the following equation.

I = Iph − I0
(

exp(
qV

nkT
)− 1

)
(2.1)

However, the single diode model above is an ideal depiction of a photocell. In reality,
the photocell does not behave like this because there are some resistances.

Iph

−

+

Rs
I
+

−

V

ID

Rsh

Ish

Figure 8: Single diode model of a photocell.

Parameter Rsh is the shunt resistance. A shunt is a microscopic defect in the solar cell
which provides an alternative path for the current between the contacts on the front
and the back surfaces. The shunt resistance is preferable as high as possible, since a low
resistance would mean that the current prefers to travel through the shunt. Rs is the
series resistance, which is caused by resistance in the cell and within the contacts, and
by interaction between the semiconductor layer and the metal contacts. We assume Rs
and Rsh are known constant properties of the photocell for now.

By Kirchoff’s current law we get that I = Iph − ID − Ish. By Ohm’s law we know
that Ish = Vsh/Rsh. With Kirchoff’s voltage law and by Ohm’s law we can derive

Vsh = V + Vs = V + IRs. Note that VD = Vsh, so ID = I0

(
exp(

qVsh

nkT
)− 1

)
. We get

the following equations:

Ish =
V + IRs

Rsh
and ID = I0

(
exp(

q(V + IRs)

nkT
)− 1

)
.

Now we can derive the following I-V characteristic for a photovoltaic cell.

I = Iph − I0
(

exp(
q (V + IRs)

nkT
)− 1

)
− V + IRs

Rsh
(2.2)

Note that for Rsh → ∞ and Rs → 0 the Equation 2.2 equals 2.1. This makes sense
since in an ideal cell there are no defects in the layers so the shunt resistance is infinitely
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large. Also, the wiring would have no resistance which means the series resistance is
zero, and the ideality factor would be 1 for a perfect semiconductor layer.

Below we can see the effects of the three parameters Rsh, Rs and n on the I-V curve
compared to an ideal PV cell. In Figure 9, only the ideality factor is varied. We see that
the higher the ideality factor, the softer the ‘knee’ of the curve. In Figure 10, the shunt
resistance is varied. We can see that for higher values of Rsh (Rsh > 100 in this case)
the I-V curve nearly coincides with the ideal I-V curve. In Figure 11 we see the effect
of varying the series resistance. For smaller values of Rs (Rs < 0.001 in this case) the
I-V curves also rapidly converges to the ideal I-V curve. In the figures we can see that
the slope around the short circuit point is mainly influenced by the shunt resistance,
while the slope around the open circuit point is mainly influenced by both the series
resistance and the ideality factor.
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Figure 9: Simulated behaviour of a
CIGS cell for varying ideality factors and

constant series resistance and shunt
resistance
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Figure 10: Simulated behaviour of a
CIGS cell for varying shunt resistances and

constant series resistance and ideality
factor
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Figure 11: Simulated behaviour of a
CIGS cell for varying series resistances and

constant shunt resistance and ideality
factor

It is important to note here that the cells in the figures are modelled as CIGS cells at
standard test conditions (more about these conditions later). So the other parameters
of the I-V characteristic, I0 and Iph, are based on the choice of Rsh and Rs. They are
calculated, this method will be shown later on, such that all curves go through the same
open and short circuit points as provided by the datasheet in Appendix II. This means
that I0 and Iph have different values for the different choices of Rs, Rsh and n. If we
were to assume that I0 and Iph are the same for all cells, then the figures would show
shifts in open circuit voltages and short circuit currents for the varying resistances and
ideality factors. This can be seen in the figure below where we set I0 = 10−7A, Iph = 5A
and cell temperature T = 25◦C.
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Equation 2.2 is a nonlinear implicit function and I can not be written in terms of
elementary functions. Let us instead write this equation as the solution curve at 0 of
a function in the two variables V and I. We define the function Fcell and get the I-V
curve for Fcell = 0.

Definition 2.1.

Fcell(V, I) = Iph − I0
(

exp(
q (V + IRs)

nkT
)− 1

)
− V + IRs

Rsh
− I

To solve the I-V curve at a certain voltage V , Fcell(V, I) = 0 needs to be solved
with a numeric method like fzero, which finds the zero of a function in one variable,
in MATLAB. However, this is not a very fast method. So when this method is used
for calculating many (V, I)-points for multiple cells, then the program’s computing time
quickly increases. Instead we can rewrite the I-V characteristic with the help of the
Lambert W function, which can be solved more efficiently.

2.2 Lambert W function
The Lambert W function is the inverse of the function C→ C, z 7→ zez, so z = W (zez).
The Lambert W function can not be expressed in terms of elementary functions. Let
f : R→ R, x 7→ xex, then f−1 is the LambertW function restricted to the real numbers.

-1 1 2 3 4
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1
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3

4

f(x) = xex

f -1(x) = W(x)

Figure 12: The Lambert W function and its inverse

Since f ′(x) = xex + ex, we see that the minimum of f is (−1,−1/e). Also, f is
injective on [0,∞). Proof. Suppose x, y ≥ 0, and f(x) = f(y) and let y ≥ x w.l.o.g.
Then we get that x/y = ey−x. Since y− x ≥ 0 we know that x/y = ey−x ≥ 1. So x ≥ y
which implies x = y.
We have a strict minimum in (−∞, 0), so the continuous function f is not injective on
this domain. Moreover, we know that f(x) < 0 for x < 0 and f(x) → 0 as x → −∞.
We can conclude that the Lambert W function is multi-valued on [−1/e, 0) and single-
valued on [0,∞). Also note that since f is a (single-valued) function, the Lambert W
function is injective.

The Lambert W function is usually mentioned as consisting of two branches: the
principle branchW0, which is the part forW (x) ≥ −1, and the lower branchW−1, which
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is the part for W (x) ≤ −1. Note that the W0 branch is a strictly increasing function,
because xex is strictly increasing for x > −1.

With the help of the Lambert W function we can rewrite the I-V characteristic of a
cell (see Equation 2.2). As a result we can get the output current of cell, Icell, as a

function of the voltage V . Define c =
q

nkT
and d =

RsRsh

Rs +Rsh
.

Icell(V ) =
Rsh

Rs +Rsh
(Iph + I0 −

V

Rsh
)− 1

cRs
W
(
cdI0e

cd(V/Rs+Iph+I0)
)

(2.3)

Proof. From Equation 2.2 we get

I = Iph − I0 exp (cV + cRsI) + I0 −
V

Rsh
− Rs

Rsh
I

⇒ Rsh +Rs

Rsh
I +

V

Rsh
− Iph − I0 = −I0 exp (cV + cRsI)

⇒ 1

cd

(
cRsI + cd(

V

Rsh
− Iph − I0)

)
= −I0 exp (cV + cRsI)

Now let’s say α = cRsI and β = cd(
V

Rsh
− Iph − I0), just for notational clarity. We get

− (α+ β) = cdI0e
cV+α

⇒ −(α+ β)e−(α+β) = cdI0e
cV+α−(α+β)

⇒ −(α+ β)e−(α+β) = cdI0e
cV−β

Note that the right-hand side of the last equation is no longer dependent on I. Because
z = W (zez), we now know that −(α + β) = W

(
−(α+ β)e−(α+β)

)
= W

(
cdI0e

cV−β).
So

−
(
cRsI + cd(

V

Rsh
− Iph − I0)

)
= W

(
cdI0 exp

(
cV − cd(

V

Rsh
− Iph − I0)

))
⇒ I =

d

Rs
(Iph + I0 −

V

Rsh
)

− 1

cRs
W

(
cdI0 exp

(
cd

(
(
Rs +Rsh

RsRsh
− 1

Rsh
)V + Iph + I0

)))
⇒ I =

Rsh

Rs +Rsh
(Iph + I0 −

V

Rsh
)− 1

cRs
W
(
cdI0e

cd(V/Rs+Iph+I0)
)

Note that for a solar cell we always have c ≥ 0 (since T ≥ 0K, n ≥ 0), d ≥ 0 (since
Rs, Rsh ≥ 0) and I0 ≥ 0. So the argument of W in Equation 2.3 is always greater than
or equal to zero, i.e. ,always lies on the W0 branch. Since W (x) is single-valued for
x ≥ 0, this means that Icell is always single-valued, i.e., is a function on R. Note also
that Icell is a strictly decreasing function because −1/cRs < 0, the argument of W in
Icell is a strictly increasing function of V , and the W0 branch is a strictly increasing
function as seen in the previous section.

With the Lambert W function we can also write the voltage of a cell, Vcell, as a function
of it’s total current I.

Vcell(I) = Rsh(Iph + I0)− (Rsh +Rs)I −
1

c
W
(
cRshI0e

cRsh(Iph+I0−I)
)

(2.4)
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Proof. We rewrite Eq. 2.2to

V

Rsh
= Iph − I0 exp(cV + cIRs) + I0 −

Rs

Rsh
I − I

⇒ cV = cRsh (Iph + I0 − I)− cRsI − cRshI0 exp (cV + cIRs)

⇒ − cV + β = cRshI0 exp (cV + cIRs)

where β = cRsh (Iph + I0 − I)− cRsI. So

(−cV + β)e−cV+β = cRshI0e
cIRs+β

⇒ − cV + β = W
(
cRshI0e

cIRs+β
)

⇒ V = Rsh(Iph + I0 − I)−RsI −
1

c
W
(
cRshI0e

cRsh(Iph+I0−I)
)

Since c,Rsh, I0 ≥ 0 we know that the argument of W in Equation 2.4 is larger than
or equal to 0. So Vcell is also a function on R. In other words we now know that it’s
inverse, Vcell, is an injective function. Note that we know that Vcell and Icell are inverses
because they are both derived from Eq. 2.2, even though this is not immediately visible
in the definitions of Vcell and Icell. Since Vcell is the inverse of Icell, we know that it is
also a strictly decreasing function.

2.3 Maximum power point
Power is current times voltage (the unit is Watt [W = V ·A]). The output voltage over
the cell is fixed by the load that is connected to the solar cell or solar module, which in
term determines the output current. So the power output of the cell is also controlled
by the voltage of the load. There is an operating point where the power output (P) is
maximal. This is clarified by the P-V curve as seen in the following figure. Ideally, all
solar cells operate always at this maximum power point (MPP).
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I-V and P-V curves

I-V curve

P-V curve

MPP: V = 0.5450, I = 4.2500, P = 2.3163

Figure 13: Simulated I-V and P-V curves of a CIGS cell (Appendix II) at STC.
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At the open circuit operating point the current is 0A, and at the short circuit point
the voltage is 0V. Consequently, at these points there is no power production. If V > Voc
the P-V curve drops below zero, i.e., the solar cell consumes power. If V < 0 the solar
cell is in reverse bias. In this case the solar cell also consumes power. When the solar
cell consumes too much power, it might heat up and cause defects, called hot spots, in
the cell.

At the maximum power point we have that the derivative of power with respect to
voltage is zero. So for the voltage value at the MPP, VMPP, we have dP

dV

∣∣
V=VMPP

= 0.
We can write power output as a function of voltage with Equation 2.3:
Pcell(V ) = Icell(V ) · V . We get that

dPcell

dV
=
dIcell
dV

· V + Icell(V ). (2.5)

Let’s define χ(V ) = cdI0 exp (cd(V/Rs + Iph + I0)), then χ′(V ) = cd
Rs
χ(V ). So

Icell(V ) =
Rsh

Rs +Rsh
(Iph + I0 −

V

Rsh
)− 1

cRs
W (χ(V ))

⇒ dIcell
dV

= − 1

Rs +Rsh
− 1

cRs
W ′ (χ(V )) · cd

Rs
χ(V ) (2.6)

For calculating the derivative of Lambert W let y = W (x). Then, since y = W (yey)
and W injective, we have x = yey. So

1 =
dW (yey)

dy
=
dW (x)

dx
· dx
dy

⇒ 1 = W ′(x)(yey + ey) = W ′(x)
(1 + y)yey

y
= W ′(x)

(1 +W (x))x

W (x)

We know that W (x) = −1 for x = −1/e, so

W ′(x) =
W (x)

(1 +W (x))x
, for x /∈ {−1/e, 0} (2.7)

Now let’s combine (2.6) and (2.7).

dIcell
dV

= − 1

Rs +Rsh
− 1

cRs

W (χ(V ))

(1 +W (χ(V )))χ(V )
· cd
Rs
χ(V )

⇒ dIcell
dV

= − 1

Rs +Rsh
− Rsh

(Rs +Rsh)Rs
· W (χ(V ))

1 +W (χ(V ))

⇒ dIcell
dV

= −Rs +RsW (χ(V )) +RshW (χ(V ))

(Rs +Rsh)Rs(1 +W (χ(V )))

⇒ dIcell
dV

= − (Rs +Rsh)(1 +W (χ(V )))−Rsh

Rs(Rs +Rsh)(1 +W (χ(V )))

Note that always χ(V ) ≥ 0 for a solar cell, soW (χ(V )) 6= −1. We get the final equation:

I ′cell(V ) =
d

R2
s
· 1

1 +W (χ(V ))
− 1

Rs
(2.8)

where χ(V ) = cdI0e
cd(V/Rs+Iph+I0).

Combining this with (2.5) gives the following equation for the derivative of the output
power.

P ′cell(V ) =
d

R2
s
· V

1 +W (χ(V ))
−
(

1

Rs
+

1

Rs +Rsh

)
V − 1

cRs
W (χ(V )) +

d

Rs
(Iph + I0)

(2.9)
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where χ(V ) = cdI0e
cd(V/Rs+Iph+I0).

Finally, to find the maximum power point of a PV cell we can solve P ′cell(VMPP) = 0
numerically.

2.4 Determining model parameters
There are five unknown parameters in the photovoltaic cell: I0, Iph, Rsh, Rs, n. The
temperature T also needs to be calculated, because the T in the I-V equations refers to
the temperature of the cell. This is not the same as the ambient temperature. Known
properties of the cell are some temperature coefficients, KI and KV , and the nominal
operating cell temperature NOCT. Also known are the short circuit current and open
circuit voltage for standard test conditions, resp. Isc, ref and Voc, ref. The consensus is
that standard test conditions (STC) are:
- a solar irradiance, Gref, of 1000W/m2

- a cell temperature of Tref = 25◦C and
- no wind.
In most locations, the standard test conditions are not representative of the average
operating conditions. The cell temperature of fully illuminated modules is usually much
higher than 25◦C, unless the weather is really cold, and the solar irradiance less than
1000 W/m2. [17]

All these known properties have values that can be found on the manufacturer’s
datasheet of the PV cell. Besides that the manufacturer provides the voltage and current
at the nominal power point (VMPP, ref and IMPP, ref). The nominal power point is the
maximum power point for standard test conditions (STC).

These known values can be used to determine the single diode model parameters.
For example, the datasheet of a CIGS photocell provided by the manufacturer MiaSolé
can be seen in Appendix II.

2.4.1 Cell temperature

The temperature T used in the model (Eq. 2.2, 2.3) is the cell temperature (in Kelvin).
However, most of the time only the ambient temperature (temperature of the surrounding
air) of the cell is measured, and not the temperature of the cell itself. These two
values are not the same. The cell temperature depends on the irradiance, ambient
temperature and the NOCT. The NOCT is the nominal operating cell temperature [in
◦C], a property provided by the solar photovoltaic cell manufacturer. The NOCT is the
cell temperature measured for nominal operating conditions (not to be confused with
standard test conditions) which are:
- an irradiance of 800 W/m2 on the cell surface
- an ambiant temperature of 20◦C
- a wind velocity of 1 m/s
- open back side mounting.
We can approximate the cell temperature with the following expression [18]:

T = Tamb +
NOCT− 20◦C

800W/m
2 ·G (2.10)

where G is the solar irradiance in W/m2. Note that if Tamb is provided in degrees
Celsius, then T calculated as above is also in Celsius. So then we need to convert T to
Kelvin for use in the I-V equations.
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2.4.2 Short circuit current

The given value Isc, ref is the reference short circuit current. This is the short circuit
current of the cell for standard test conditions.

The short circuit current is dependent on irradiance, and on temperature as well. So
we can write the short circuit current as Isc(T,G). The dependence of the short circuit
current on temperature is approximately linear. The relation with the temperature
is given by the temperature coefficient of the short circuit current: KI . The given
temperature coefficient is usually obtained at the standard irradiance: 1000 W/m2. If
the given coefficient is a relative temperature coefficient, i.e., the coefficient is in %/◦C,

then it represents
1

Isc

dIsc
dT

∣∣∣∣
Isc=Isc,ref

· 100%. So we can calculate the short circuit current

at a temperature T , and for standard irradiance, as

Isc(T,Gref) = Isc,ref

(
1 +

KI

100%
(T − Tref)

)
.

The relative temperature coefficient for short circuit current of thin-film solar cells is
positive and usually quite small: order of 10−3 - 10−1. Sometimes, the given temperature
coefficient is absolute, i.e., in A/◦C, and then we have

Isc(T,Gref) = Isc,ref +KI(T − Tref).

The short circuit current is approximately directly proportional to the irradiance and
can be estimated with Isc(T,G) = G/Gref · Isc(T,Gref). We get the equation for short
circuit current:

Isc(T,G) = Isc,ref

(
1 +

KI

100%
(T − Tref)

)
G

Gref
(2.11)

Note that since theKI is usually very small for thin-film solar cells, we can conclude that
the short circuit current of thin-film solar cells is mostly influenced by the irradiance
level. [19,20,21]

2.4.3 Open circuit voltage

The given value Voc, ref is the open circuit voltage for STC. The open circuit also has a
linear correlation with the temperature. For given relative temperature coefficient KV

and for standard irradiance, we can calculate the open circuit voltage as

Voc,Gref(T ) = Voc,ref

(
1 +

KV

100%
(T − Tref)

)
. (2.12)

Again, if the given temperature coefficient is absolute, so in V/◦C, then we use

Voc,Gref(T ) = Voc,ref +KV (T − Tref).

The open circuit voltage of a solar cell decreases with higher temperature so the temperature
coefficient of the open circuit voltage is negative.

The open circuit voltage also depends on irradiance, however this dependency is not
linear, and the temperature coefficient of the short circuit current varies for different
levels of irradiance. The given temperature coefficient is only for the standard irradiance.
Therefore it is not possible to calculate Voc at an irradiance that is not 1000 W/m2,
with the given temperature coefficient. Instead, we calculate the open circuit voltage
with Vcell(0) and only use the temperature coefficient of the open circuit voltage for
calculating I0, as we will see next. [19,20,21,22]
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2.4.4 Reverse saturation current

The reverse saturation current does not vary with irradiance, but does depend heavily
on the cell temperature. The reverse saturation current may be expressed as

I0 = I0,ref

(
T

Tref

)3

exp

(
qEg

(
1

Tref
− 1

T

))
,

where Eg is the band gap energy of the semiconductor material and I0,ref is the reverse
saturation current at reference temperature, which can be approximately obtained as

I0,ref =
Isc,ref

exp (qVoc,ref/nkTref − 1)
. [23,24,16,25]

However, the reverse saturation current can be obtained more accurately and without
needing to know the band gap energy. Since the reverse saturation current does not
vary with irradiance, as we can see in the formulas above, we can calculate the reverse
saturation current atGref. We get the following two equations by respectively substituting
the open circuit, and short circuit values at standard irradiance in Equation 2.2.

0 = Iph(T,Gref)− I0(T )

(
exp(

qVoc(T )

nkT
)− 1

)
− Voc(T )

Rsh

Isc(T ) = Iph(T,Gref)− I0(T )

(
exp(

qRsIsc(T )

nkT
)− 1

)
− RsIsc(T )

Rsh

where Voc(T ) = Voc,Gref(T ) and Isc(T ) = Isc(T,Gref).
Combining the two equations we get(

1 +
Rs

Rsh

)
Isc(T ) = −I0(T )

(
exp(

qRsIsc(T )

nkT
)− exp(

qVoc(T )

nkT
)

)
+
Voc(T )

Rsh

⇒ I0(T ) =

Rs+Rsh
Rsh

Isc(T )− Voc(T )
Rsh

exp( qVoc(T )
nkT )− exp( qRsIsc(T )

nkT )

With equation (2.11) and (2.12) we obtain the expression for the reverse saturation
current at cell temperature T :

I0(T ) =
(Rs +Rsh)Isc(T )− Voc(T )

Rsheq/nkT
(
eVoc(T ) − eRsIsc(T )

) , where (2.13)

Voc(T ) = Voc,ref(1 +
KV

100%
(T − Tref)), and

Isc(T ) = Isc,ref(1 +
KI

100%
(T − Tref)).

Note that the reverse saturation current is the size of a current and does not contain
any information of the direction of the current. Therefore, the reverse saturation current
can not be negative. This means that if (Rs + Rsh)Isc(T ) < Voc(T ) or Voc(T ) < RsIsc,
the values of Rs and/or Rsh are not realistic. The value of Rs might be too high and
the value of Rsh too low.

2.4.5 Photogenerated current

The photogenerated current can be calculated with the previously obtained parameters.
Consider the I-V characteristic at the short circuit current:

Isc = Iph − I0(eqIscRs/nkT − 1)− IscRs

Rsh
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We get

Iph(T,G) =
Rsh +Rs

Rsh
Isc(T,G) + I0(T )(eqIsc(T,G)Rs/nkT − 1) (2.14)

We see that Iph depends on irradiance and temperature, since I0 and Isc depend on
irradiance and temperature.

2.4.6 Shunt resistance, series resistance and the ideality factor

In the calculations of the reverse saturation current and photogenerated current above
we see that they depend on the shunt resistance, series resistance and ideality factor.
This means that we have five unknown properties: I0, Iph, Rsh, Rs and n, and only three
known datapoints that they depend on: (Voc, 0), (0, Isc) and (VMPP, IMPP) for STC. In

addition we also know that
dP

dV

∣∣∣∣
V=VMPP

= 0. That gives us four equations to find five

unknown variables, which means we can’t find the unique values unless we have more
data points. Ideally we get more data points and fit the unknowns of I-V curve to those
data points, however, for the purpose of our model we don’t want to require measuring
of the PV cells beforehand.

As we saw in chapter 1, the ideality factor n is a value between 1 and 2, but it
is not really a constant and it depends on complex recombination processes in the
semiconductor material. As a result, it is really complicated to determine the ideality
factor. In literature [15,16,21,26], we mostly see two methods. The first is assuming a
constant ideality factor based on the PV technology, see the table below. These factors
are purely empirically determined and are an approximation.

Technology n
Si-mono 1.2
Si-poly 1.3
a-Si:H 1.8
CdTe 1.5
CIS 1.5
GaAs 1.3

Table 1: Ideality factor n dependence on PV technology [16]

Then with the ideality factor fixed, we can determine the resistances by solving the
following system of equations:{

Icell(VMPP, ref) = IMPP, ref

P ′cell(VMPP, ref) = 0

where we substitute I0 = I0(Tref) and Iph = Iph(Tref, Gref) from equation (2.13) and
(2.14), in the equations of Icell, Equation 2.3, and of P ′cell, Equation 2.9.

The second method is to fit the ideality factor, together with the shunt resistance
and series resistance to given data of the PV cell. Using this method is justified, as the
model is just a means of simulating the behaviour of a cell as good as possible. This
method can improve the model’s accuracy, but as said before we have too little data
supplied by the manufacturer to determine n, Rsh and Rs uniquely. Since we know that
n is a value between 1 and 2 it is possible to fit Rsh and Rs for fixed values of n and
then pick ‘the best’ set of values. This is done by solving the abovementioned system
of equations multiple times for n ranging from 1 with small increments (0.01) up to
2. Then we minimize the norm of the residual from the system of equations of all the
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possible (n,Rsh, Rs) combinations, i.e., we pick the values for which the nominal power
point deviates least from the given nominal power point.

If we use both methods for the CIGS cell from Appendix II, we get the following I-V
curves.
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I-V curve cell 1

P-V curve cell 1

MPP cell 1: (V, I, P) = (0.5450, 4.2500, 2.3163)
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MPP cell 2: (V, I, P) = (0.5450, 4.2500, 2.3162)

Figure 14: For cell 1 the method of predetermining n = 1.5 is used. The corresponding
resistances for this cell are Rs = 0.0026, Rsh = 3.52. Cell 2 is determined with the

fitting method and has n = 1.07, Rs = 0.0078, Rsh = 2.32.

As we can see both methods give a nominal power point that is within the range of
precision of the given nominal power point, and both I-V curves go through the correct
open circuit and closed circuit points. The shape of the I-V curves however, are different
because, mathematically, with different n belong different resistances.

A problem with the fitting method is that there are multiple choices of the parameters
that cause only small deviations from the given nominal power point. Since the nominal
power point isn’t given with great precision, this means that the choice of n,Rsh, Rs is a
bit arbitrary and imprecise. For example, if the increments for ranging n are 0.1 instead,
then the fitting method gives us a cell with n = 1.0, Rs = 0.0087, Rsh = 2.19. These
are different values compared with the fitting method from the figure above, while the
nominal power points, up to the given precision, are the same. So the fitting method is
only useful when there is nothing known about the value of n or when there is at least
one more data point.

With an extra data point around the short circuit point we have a third method
to get the three unknown parameters: first determine the shunt resistance, and then
determine the two other parameters with the system of equations from before. As we
saw in figures 9, 10 and 11, the slope around the short circuit point is mostly influenced
by only the shunt resistance. With some estimations we can show the shunt resistance
is approximately minus the inverse of the I-V curve slope around (0, Isc). [12,16,26] Let’s
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substitute V = 0 in Equation 2.3. We get

Isc = Icell(0) =
Rsh

Rs +Rsh
(Iph + I0)− 1

cRs
W (χ(0))

⇒ W (χ(0)) = cRs(
Rsh

Rs +Rsh
(Iph + I0)− Isc, ref)

Since T ∼ 102 (cell temperature in Kelvin), q/k ∼ 104, n ∼ 100, we have c = q/(nkT ) ∼
102. Moreover, we can assume that the series resistance is approximately at most of
order 10−2 (at least for the thin-film solar cells), so at most cRs ∼ 100. Also, for
a general functioning solar cell (not a very low shunt or very high series resistance),
we have that Rsh/(Rsh + Rs) ≈ 1, Isc ≈ Iph and I0 ≈ 0. Therefore, we get that
W (χ(0)) ≈ 0. Now let’s calculate I ′cell(0) with Equation 2.8: I ′cell(0) ≈ d

R2
s
− 1

Rs
=

Rsh−(Rs+Rsh)
Rs(Rs+Rsh)

= − 1
Rs+Rsh

≈ −1/Rsh. So if we have an extra data point around the short
circuit point, we approximate Rsh by −∆V/∆I and then calculate Rs and n with the
system of equations as shown before.

A final note is that while in most studies n,Rs andRsh are determined as constants, in
reality the ideality factor and resistances vary with temperature and irradiance changes.
Assuming these parameters to be constant, might cause errors in the model, especially
for studying the behaviour of PV modules under shadow and mismatch conditions.
Unfortunately, the temperature and irradiance relation with the ideality factor and
resistances is nonlinear and there are no formulas known to directly calculate this relation
analytically. [26,27] As a result determining the temperature and irradiance influence on
these parameter either requires additional measuring [28] or requires a more complicated
model (with neural networks) [27] that isn’t in the scope of this research. Therefore we
ignore the effect of temperature and irradiance on Rs, Rsh and n in this model, keeping
in mind that this might cause some inaccuracies.

2.5 Effect of temperature and solar irradiance
Because the temperature and irradiance influence multiple model parameters in different
ways, the effect of these ambient conditions on the I-V curve isn’t immediately clear.
For example, based on the I-V characteristic in Equation 2.2 it seems that higher cell
temperature would increase the current levels of a cell. But in reality current mostly
decreases with increasing temperature because the temperature also effects parameters
I0 and Iph. In the figures below the effect of temperature and irradiance becomes clear.
The figures are simulation results of MiaSolé CIGS cells with 17% efficiency, using the
model that is described in the previous sections.
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Figure 15: Various ambient temperatures for a
constant irradiance of 1000W/m2

An increase in ambient temperature mainly linearly decreases the open circuit voltage
which in turn decreases the maximum power point. Also, if we were to zoom in on the
short circuit currents in Figure 15 then we can see that a temperature increase slightly
increases the short circuit current. This is to be expected by the temperature coefficients
found on the data sheet.

Figure 16: Various solar irradiance levels
for a constant ambient temperature of

−10◦C

Figure 17: Various solar irradiance levels
for a constant cell temperature of

25◦C

A decrease in irradiance clearly linearly decreases the short circuit current linearly,
as we expect by equation (2.11), but the effect on open circuit voltage is unclear in
Figure 16. The reason for this is that the cell temperature changes for each level of
irradiance, even if the ambient temperature stays the same. In Figure 17 we see that
if the cell temperature is kept constant, then a decrease in open circuit voltage is to be
expected for a decrease in irradiance.

For future modelling examples and figures we will always use MiaSolé CIGS cells
with an efficiency of 17% from Appendix II with fixed ideality n = 1.5, unless otherwise
mentioned. This type of cell is available at Solliance and will later on be used to verify
the model with. When no specific ambient conditions are mentioned, the conditions will
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be set at 1000W/m2 and 20◦C ambient temperature. Note that these are not standard
testing conditions, in that case the ambient temperature would have to be −10◦C to
get a cell temperature of 25◦C for the CIGS cells. However, as a more realistic ambient
temperature, the temperature of a typical summer day in the Netherlands was picked,
which is about 20◦C.
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3 Photovoltaic module
A PV module, also called an array, consists of multiple connected PV cells. Moreover, a
module can be built with a number of solar sub-modules. The number of sub-modules,
cells per sub-module and the way they are interconnected is up to the designer. The type
and size of cells can be picked based on desired application properties. The maximum
current and voltage are limited though, by the connected wires and the inverter.

To be able to feed the solar generated electricity into the grid, inverters are used.
Inverters can turn the direct current of the PV application into alternating current.
Often the inverters have a maximum power point tracker (MPPT) built in, to make
sure that the PV modules operate at the maximum power point voltage. In large solar
plants multiple PV modules might feed into one inverter. That means that if not all
the modules have the same MPP, then there will be some losses in power output. There
also exist micro-inverters, they are connected to a single module to ensure each module
is operating at its MPP, but these are more expensive. [29] For this research we will focus
on partial shading for single PV modules, but the model could also be used to simulate
varying ambient conditions on multiple PV modules.

The connection topology of the cells or sub-modules in a PV module is called the
configuration. The most widely used configuration in PV modules is the series-parallel
configuration.

In the electrical circuit representation of a PVmodule, the solar cell will be represented
with the following diagram.

This is a simplified depiction of the single diode model circuit, with the positive
terminal at the top of the ‘envelope’. These envelopes can in addition represent an
entire module, since a PV module can also consist of smaller sub-modules.

3.1 Homogeneous module
When all the cells in a module are the same and temperature and irradiance are uniform,
then we will call the module homogeneous. The I-V characteristic of the module will
look like the I-V characteristic of a single cell but scaled up horizontally and vertically,
based on the number of cells in series and in parallel.

3.1.1 Parallel cells

Suppose we interconnect a number, Np, of cells in parallel. We define Vi and Ii as the
voltage and current of cell number i. Let V be the total voltage over the endpoints
of the module and I the output current of module. Below, we see an example with
four cells in parallel. Because the cells are connected in parallel, we know that the total

I1 I2 I3 I4

I
+

−

V

voltage of the module is equal to the voltage of each cell: V = Vi, ∀i = 1, . . . , Np and the
output current of the module is the sum of all output currents of the cells: I =

∑Np

i=1 Ii.
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Because the voltage over each cell is the same, we get that all the cells have the same
output current Icell(V ). So I = NpIcell(V ). On the other hand, we can also write V as
a function of I: we know all cells have the same output current Ii = I/Np and V = Vi,
so V = Vcell(I/Np).

3.1.2 Cells in series

Suppose we interconnect Ns cells in series to form one ‘string’. We define Vi and Ii
as the voltage and current of cell number i. Let V be the output voltage of the string
(voltage over the endpoints of the string) and I the output current of the string. Below,
is an example of four cells in series. Since the cells are connected in series, we know that

− +

V1

− +

V2

− +

V3

− +

V4

I

the total current of the string is equal to the current in each cell: I = Ii, ∀i = 1, . . . , Ns,
and the total voltage is the sum of all cell voltages: V =

∑Ns

i=1 Vi. We can calculate the
current of each cell with Icell(Vi). Because we know that all cell currents are equal and
Icell is an injective function, we get that the voltages of all cells are equal. Hence, Vi = Vj ,
∀i, j = 1 . . . Ns and V =

∑Ns

i=1 Vi, so Vi = V/Ns for all i. Thereby, I = Icell(V/Ns).
Note that this only holds because Icell is the same function for all the cells, i.e., all
parameters in Icell are the same for all cells, because they have the same intrinsic and
ambient properties. Like before, we can also write V as function of I instead: since we
know that V = NsVi and Ii = I for all i, we get V = NsVcell(I).

Note that string is only used to describe a set of cells connected in series. For a set
of cells connected in parallel we’ll use the term parallel set. The term set will be used
as a collective name to describe both strings and parallel sets.

3.1.3 Series-parallel and total-cross-tied configuration

If we create strings with Ns cells connected in series, and then connect Np of such strings
in parallel, then we get a Ns ×Np series-parallel configuration. This is shown in Figure
18 with Ns = 2 and Np = 3. If we connect Ns parallel sets in series and all of those
parallel sets consist of Np cells, then we get the Ns × Np parallel-series configuration.
This is shown in Figure 19 with Ns = 2 and Np = 3.

Figure 18: 2× 3 series-parallel
configuration

Figure 19: 2× 3 parallel-series
configuration

The parallel-series configuration is better known as the total-cross-tied (TCT) con-
figuration. The reason for this is that the circuit of a parallel-series configuration is
equivalent to the circuit of series-parallel with cross ties, like in the following figure.
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Figure 20: 2× 3 TCT configuration, equivalent to the circuit in Figure 19

Most of the present-day solar modules have a series-parallel (SP) configuration. In
a series-parallel configuration, all strings have the same voltage over them, which is the
output voltage of the module V . Therefore, if all the cells are the same and irradiance
and temperature are uniform, then the separate strings all have the output current
Icell(V/Ns), as seen before. So each string has the same output current and we get that
the output current of the module is I = NpIcell(V/Ns).

In the parallel-series, or total-cross-tied, configuration, all the parallel sets are con-
nected in series, so we know that the output current of each set equals the total output
current I. Therefore, in case of a homogeneous module, we know that the voltage for
each string is Vcell(I/Np), as seen before. Hence, the voltage over each parallel set is
NsVcell(I/Np), which is also the value for total output voltage V of the module. If
we want to write the output current in terms of the output voltage then, using that
Vcell and Icell are inverses, we get Vcell(I/Np) = V/Ns ⇒ Icell(V/Ns) = I/Np. So
I = NpIcell(V/Ns).

In particular, we get that the open circuit current of a homogeneous module is
NpIsc, cell and the open circuit voltage is NsVoc, cell for both configurations. Also, we
get for both configurations that P = V · NpIcell(V/Ns) = NsNp · (V/Ns)Icell(V/Ns)
= NsNpPcell(V/Ns), i.e., the P-V curve is the singe cell P-V curve scaled with Np ·Ns
in P -direction and with Ns in V -direction. Thereby, VMPP = NsVMPP, cell and PMPP
= NsNpPMPP, cell. Moreover, we can conclude that the entire I-V and P-V curves for
both configurations are the same. So a rectangular homogeneous module can simply be
described with the cell information, number of cells/strings in parallel Np and number
of parallel sets/cells in series Ns. In conclusion, for a homogeneous modules the choice
of interconnection topology doesn’t matter. This changes however when the module is
no longer homogeneous, for example because of partial shading on the module.

3.2 Partial shading and mismatching
In a homogeneous module each individual cell operates at the same voltage and current
as the rest of the cells, and the module’s P-V curve is just a scaled up version of the single
cell P-V curve. So we know that if the MPPT adjusts the voltage such that the module
is operating at its maximum power point, then each cell operates optimally, namely at
it’s own maximum power point. But in a non-homogeneous module, i.e., a module where
the cells have different parameter values, the interconnection between cells causes them
to operate at less optimal operating points, even if the module operates at it’s MPP.
This is because the cells negatively affect each others operating points. This effect is
called mismatching. Mismatching can cause there to be many local maximum power
points in the P-V curve, which causes problems for maximum power point trackers.
Also, there can be a lot of power dissipation in mismatched cells and some cells may be
forced to operate at a voltage exceeding their breakdown voltage.

Mismatching can be caused by multiple differences in the cell’s properties. If the
cells have different series resistances for example, this also causes mismatching. This
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research focuses on mismatching caused by partial shading on the modules, i.e., the
cells are intrinsically the same but there is non-uniform solar irradiance on the module.
This means that the irradiance and temperature dependent parameters Tcell, Iph and I0
differ. That being said, the used model developed in this research could also potentially
be used to investigate mismatching losses caused by something else (different resistances,
having a broken or degraded cell in the module etc.).

The effect of mismatching on the output current and voltage of module is influenced
by the interconnection between the cells. In a series string the short-circuit current will
be mostly restricted by the short-circuit current of the cell with the lowest output
current. Similar mismatch losses can also occur in parallel sets but they are less
severe. [12]

We can see this in Figure 21, where we compare mismatching due to partial shading
on a string and a parallel set. The figure shows I-V curves of three cells connected
both in series and in parallel. Fully illuminated cells have 1000W/m2, and a shaded
cell has 0W/m2. Both the series and the parallel set have one shaded cell and two fully
illuminated cells. The ambient temperature is set at 20◦C. Clearly the current is mostly
impacted by the cell with the lowest current for the series set, while the parallel set is
much less influenced by the shaded cell. This results in a higher maximum power output
for the parallel set.

Figure 21: I-V curves of partially shaded parallel and series sets, both have one shaded
cell and two fully illuminated cells.

In a parallel set the current of one cell doesn’t need to flow through the other cells to
reach the positive terminal. So for example the short circuit current of the parallel set
in Figure 21 is just twice the short circuit current of the illuminated cell. For a parallel
set in general, the voltage over each cell is total voltage over the string V , and output
current I is the sum of current of each cell. Thus,

I =

Np∑
i=1

Icelli(V ), (3.1)
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where Icelli is Icell as in Equation 2.3 but with parameters specific to the cell i, since
we connect different cells now. We label these parameters that belong to cell i as
Iphi

, I0i , Rsi , Rshi
. Analogously, Vcelli is the voltage output as function of current specifically

for cell i.
So in a parallel set, the limiting factor that is influenced by the other cells is the cell

voltage, since all the cells must have the same voltage level. We can see in the figure
that for the fully shaded cell the MPP is located at zero voltage, but the power levels for
voltages larger than zero and up to the modules open circuit voltage do not decrease by
a lot. So the shaded cell’s power output at the VMPP of the fully illuminated cell, is not
much lower than the shaded cell’s maximum power. Thus, in terms of maximum power
output voltages the cells are not really mismatching a lot; at the maximum power point
of the parallel set, all the cells are also operating such that the power output is roughly
around there individual maximum power.

For a string, the current of one cell has to go through the other cells. The voltage
levels of the cells do not directly influence each other, so for example in Figure 21 the
open circuit voltage of the string is just twice the open circuit voltage of the illuminated
cells. In general we can write:

V =

Ns∑
i=1

Vcelli(I). (3.2)

The fact that the cells have to have the same current explains the more extreme
mismatching for strings. We can see that for current values that are a bit larger than
the short circuit current, the voltage of a cell approaches minus infinity rather quickly.
So if we want a string to operate at a current that is slightly larger than the short
circuit current of the worst cell, then this cell will consume a lot of power because of the
large negative voltage. Hence, forcing cells to operate at the same current level has a
much more harmful influence on the corresponding voltage, and therefore on the power
output of a string. This is why the string is limited by it’s worst cell, and why there
is no operating point for which all the cells are operating with close to optimal power
output.

This effect is the motivation for trying to find more shadow tolerant designs than
the widely used series-parallel configuration, since it consists of strings which are very
susceptible to partial shading. However, this is not the whole story. In reality bypass
diodes are used in modules to reduce mismatch losses and also protect the cells from
breaking down due to power dissipation and large negative voltages that exceed breakdown
voltages. The bypass diodes also cause the SP configuration to become more tolerant
to partial shading.

3.3 Bypass diodes
A bypass diode is a non-linear circuit component in PV modules that prevent cells from
breaking down. As discussed before, the effects of mismatching can cause some cells to
be forced to operate at large negative voltages. When these voltages exceed a certain
breakdown voltage, the cell is permanently damaged and this must of course be avoided.
Bypass diodes are connected in anti-parallel with a string of cells. Anti-parallel means a
parallel connection but with the polarities reversed. So if there is a positive voltage over
the string that the bypass diode is in parallel with, then the bypass diode is reverse-
biased. Only when the voltage falls below a certain value, namely minus the forward
voltage, −Vf , of the bypass diode, then current starts flowing through the bypass diode.
When the current flows through the diode, there is less current going through the cells,
hence the cells are ‘bypassed’. The number of cells that should be connected with a
bypass diode depends on the forward voltage of the bypass diode and the breakdown
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voltages of the cell. If this is chosen correctly, the cells get bypassed before they can
reach dangerous negative voltages. As we can see in the following figures, the bypass
diode also reduces the loss of power caused by power consumption in cells, especially in
strings. Beside the loss of energy yields, power consumption by a cell might also cause
the cell to heat up, become a hot-spot and break down. As a general rule a negative
power output of a cell is dangerous when it is less than −2Pmax, where Pmax is the
maximum power output of the cell.

Figure 22: I-V curves of a string of nine unshaded cells, a shaded cell, and the
combined string of these cells. The black mark indicates the individual operating point
of the shaded cell at the module’s Isc. We can see that a large amount of power from
the unshaded cells is dissipated in the shaded cell, and the shaded cell is operating at a

large negative voltage. [30]

Figure 23: Connecting a bypass diode to the shaded cell limits its reverse voltage. The
shaded cell now has much lower reverse voltage and lower power dissipation at the
module’s Isc. The combined module has much higher current levels than before. [30]

The number of the diodes that are connected to a string of any amount of solar
cells, affects the solar array behaviour. In modules made of CIGS cells, every two
cells are connected with a Schottky bypass diode. This type of diode has a forward
voltage between 0.2V and 0.3V. [31] The breakdown voltage Vbr of a CIGS cell is −1.5V.
Although the cell doesn’t immediately break at this voltage, it is stable for 60 seconds,
it is not adviced to exceed this voltage level. [32] Suppose that there are two CIGS cells
connected in series, with one cell shaded, and that string is connected in anti-parallel to
a bypass diode (see Figure 24). If the illuminated cell has a voltage of about 0.6V (the
open circuit voltage of a MiaSolé CIGS cell is about 0.7V), and the diode is ‘turned on’,
i.e., the voltage over the bypass diode is about −0.3V, then the voltage of the shaded
cell must be −0.3− 0.6 = −0.9V. So the voltage of the shaded cell does not exceed the
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breakdown voltage. Now suppose we connect three cells, of which one shaded, with a
bypass diode (see Figure 25). If the illuminated cells operate at 0.6V and the bypass
diode operates at −0.3V, then the voltage of the shaded cell is −0.3−0.6−0.6 = −1.5V.
So even though there is current bypassed through the diode, the shaded cell operates at
a dangerous voltage level. That is why the Schottky diode is suitable to be connected
with two CIGS cells and not with more.

−

+

0.5V −

+

−0.3V

Figure 24: Two CIGS
cells with one bypass

diode.

−

+

0.5V

−

+

0.5V

−

+

−0.3V

Figure 25: Three CIGS
cells with one bypass

diode.

For the TCT configuration we don’t need to place a bypass diode every two cells
but only every two parallel sets. Each cell in the parallel set has the same voltage, thus
only entire parallel sets need to be bypassed. Since incorporating bypass diodes can be
expensive and labour-intensive, this is a big advantage of the TCT configuration. The
resulting SP and TCT modules with bypass diodes will look like the following.

−

+

−

+

Figure 26: 4× 2 SP and TCT configuration with bypass diodes

If there is an uneven number of cells in the strings or an uneven number of parallel
sets, then the last row will get its own bypass diode(s).

We will see later on, in Section 6.1, that including the the bypass diodes can increase
the power output of SP by a lot. So where TCT was clearly the better choice before
including bypass diodes, with bypass diodes the results aren’t that conclusive anymore.

A bypass diode will be modelled as a circuit component with the Shockley diode equation
(1.1), but for reversed polarity (because of the anti-parallel connection). Then the diode
can be included in the model with a parallel connection to sub-modules. Thus, we define
the I-V characteristic of a bypass diode with the following function.

Definition 3.1.
Fbd(V, I) = I0

(
exp(

−qV
nkT

)− 1

)
− I
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Hence, we find the diodes operating points for solving Fbd(V, I) = 0.
Usually not much is known about the bypass diode, so we assume the diode’s reverse

saturation current to be a constant, just as the ideality factor. The temperature of the
diode depends on the location of the diode. We don’t assume any variations in the
diodes temperature, for the changes in irradiance. Temperature can be chosen based on
the ambient temperature and location; if the diode is located inside the module it will
probably have a temperature close to the module’s temperature. Overall, we will model
the diode as a more constant component than the PV cells. Finding the n and I0 of the
diode, will be based on known specifications like the forward voltage, or a given I-V curve
of the diode. But the obtained parameters may vary from the reality when the bypass
diodes are connected in a module, because of a different operating temperature, some
connection losses due to resistances in wiring, or because given specifications weren’t
precise. However, the type of diode does affect the modules I-V curve a lot. Therefore,
if there are more measurements available, the diode parameters can be fitted to match
actual measurements of the module under partial shade.

The Schottky diode used at Solliance is called: Flexible Circuit 201878-001 Flex
Schottky Bypass Diode - Thin Film CIGS Solar Qty 100. Some of the specifications are:
a maximum reverse voltage of 45V, a maximum forward current of 15A and a leakage
current of 0.4mA.

With the Schottky diode connected per two CIGS cell, the maximum reverse current
and maximum forward current will clearly be not exceeded. Moreover, we now know
that I0 = 0.4 · 10−3A, since leakage current is the same as reverse saturation current.
We don’t really know the temperature and the ideality factor. However, based on some
measurements that we will describe in Section 5.5, the values for the other parameters
that came closest to the behaviour of bypass diodes in tested shaded modules are: a
diode ideality factor of 1.4 and a temperature of 55 degrees Celsius. From here on out
the bypass diodes will be modelled with those parameter values.

3.4 Special shading patterns
3.4.1 Semi-homogeneous shade

Earlier we saw that the maximum power output for TCT and SP is the same if the
irradiance and temperature is uniform. There are more shading scenarios for which
TCT and SP have the same maximum power output.

In this section, we will look at TCT modules and SP modules without bypass diodes.
We will call a shading pattern a semi-homogeneous shade if it either casts a uniform
shade on each entire row in a module, i.e., for each row all the cells in that row must have
the same irradiance, or if it casts a uniform shade on each entire column in a module,
i.e., for each column all the cells in that column must have the same irradiance. See the
figure below.

Horizontal
semi-homogeneous shade:
uniform shade per row

Vertical
semi-homogeneous shade:
uniform shade per column

Note that for a schematic depiction of a module like in this figure, the corresponding
TCT and SP modules are connected as they were connected before. This means that
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for the SP configuration the columns are connected in series, and then these strings are
connected in parallel. For the TCT configuration the rows are connected in parallel and
then these parallel sets are connected in series. The positive terminal is always at the
top of the module, and the negative terminal is at the bottom.

When there is a horizontally shaped semi-homogeneous shade on a TCT module,
then the module is a series connection of homogeneous parallel sets. For a SP module,
a horizontal semi-homogeneous shade results in a parallel connection of all the same
strings, but the strings themselves might not be homogeneous. For a vertically shaped
semi-homogeneous shade this is the other way around: a TCT module consists of the
same, possibly non-homogeneous, parallel sets connected in series, and the SP module
consists of homogeneous strings connected in parallel. This is clarified by the following
picture.

Horizontal
semi-homogeneous
shade for TCT

Horizontal
semi-homogeneous

shade for SP

Vertical
semi-homogeneous
shade for TCT

Vertical
semi-homogeneous

shade for SP

Claim 3.1. We claim that for semi-homogeneous shades, TCT and SP modules have
the same I-V curve.

Proof. First we need to prove that for a parallel set the output current is an injective
function of voltage, and for a string the output voltage is an injective function of current.
Let cell 1, 2, . . . , Np be connected in parallel, and ν < µ are two distinct voltage values.
Assume that the parallel set has the same current output at both voltages, then by
Equation 3.1 we know that

∑
i Icelli(ν) =

∑
i Icelli(µ). Hence,

∑
i Icelli(ν)− Icelli(µ) =

0. But we know that Icell is a strictly decreasing function, so Icelli(ν) − Icelli(µ) > 0
for all i = 1, . . . , Np. So by contradiction, ν and µ have to be the same value and hence
the output current of a parallel set is an injective function of the output voltage. In
a similar way, using Equation 3.2 and the fact that Vcell is strictly decreasing, we can
prove that the output voltage of a string is an injective function of the output current.

Now assume we have a vertical semi-homogeneous shade on the module.
For SP, each string is homogeneous and each string has the same output voltage V .
Let the size of the module be Ns x Np. There are Np strings and since all strings are
homogeneous this means there are Np different cells. For string Si we have that the
total current is Icelli(V/Ns), where celli is the cell that makes up string Si. The total
output current of the module is

∑Np

i=1 Icelli(V/Ns).
For TCT, each parallel set is the same and each parallel set has the same total

current. By the fact that for a parallel set the output current is injective as a function
of voltage and all parallel sets are the same, we get that all the parallel sets must
also have the same total voltage. So the voltage per parallel set is total voltage V of
the module divided by the number of parallel sets Ns. We get for total current of a
parallel set:

∑Np

i=1 Icelli(V/Ns). Per construction this is also the total current of the
TCT module. Thus, we see that TCT and SP have the same output current as function
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of output voltage.
Assume we have a horizontal semi-homogeneous shade on the module.
For TCT, each parallel set is homogeneous and each parallel set has the same output
current I. We get that for a parallel set Si the voltage is Vcelli(I/Np), where cell i is the
cell that makes up Si. There are Ns parallel sets each of them consisting of one type of
the Ns different cells. Thus, the total voltage of the TCT module is

∑Ns

i=1 Vcelli(I/Np).
For SP, the Ns different cells make up Np of the same strings. The strings are

connected in parallel so all have the same output voltage. By the fact that the output
voltage of a string as function of current is injective, and that the strings are all the
same, we get that the output current of the strings must also be the same. So the current
per string is I/Np, where I is the module’s output current. We get that output voltage
of a single string is

∑Ns

i=1 Vcelli(I/Np). Therefore, the output current of the module is∑Ns

i=1 Vcelli(I/Np), which is the same as for the TCT configuration.

3.4.2 Shading equivalencies

The order of cells or sub-modules in a set doesn’t matter for the output, and therefore
some shading patterns turn out to be equivalent. Which patterns are equivalent depends
on the topology of the module. In a TCT module the rows are parallel sets, so cells in a
row can be interchanged, and the entire rows are connected in series, so entire rows may
be interchanged. In a SP module, the columns are strings, so cells in a column can be
interchanged, and the entire columns are connected in parallel, so entire columns may
be interchanged.

To recap, shading patterns are TCT-equivalent, i.e., the same for TCT modules, if
one pattern is a permutation of entire rows and/or a permutation of cells inside rows of
the other pattern. Shading patterns are SP-equivalent, i.e., the same for SP modules,
if one pattern is a permutation of entire columns and/or a permutation of cells inside
columns of the other pattern. Two shading patterns will be called equivalent if they are
TCT- and SP-equivalent, which means that two patterns are equivalent if one pattern
is a permutation of entire rows and/or entire columns of the other pattern.

For example, in the figures below we have: Figure 27 is TCT-equivalent to Figure
28, SP-equivalent to Figure 29, and equivalent to Figure 30.

Figure 27 Figure 28 Figure 29 Figure 30

3.5 System of equations
In the previous section, we saw the calculation of output voltage or current for modules
under semi-homogeneous shading. In this calculation we needed to use that the sub-
modules where either all the same or all homogeneous. If this is not the case, we can
not formulate the output current or voltage with a single function as we did there.
For example, for a TCT module we can calculate the current of each parallel set with
Equation 3.1: say that parallel set Si has output voltage VSi

then the output current
is ISi

=
∑Np

j=1 Icelli(VSi
). The problem is that we don’t know what VSi

is, if not all
the parallel sets are the same. We only know that the VSi

values add up to be the
voltage output of the model. Analogously, we don’t directly know the current per string
of a SP module, so we don’t know the voltages and currents of the cells. As a result,
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even for a 2x2 SP or TCT module we can’t solve the output current for a given voltage
analytically. Instead, in order to solve the I-V curve of a non-homogeneous module we
need to formulate a system of equations.

Say we have a module M with n number of base elements. Base elements are the
PV cells and bypass diodes. Each cell or bypass diode i has a certain unknown voltage
Vi and current Ii. Note that this gives us 2n unknown variables: V1, . . . , Vn, I1, . . . , In.
We either have a given output voltage, Vout, of the module and need to calculate the
module’s corresponding output current, Iout, or vice versa. So in total we have 2n + 1
unknowns, since one of Iout, Vout is given and the other is unknown. For each cell or
bypass diode i we have the equation Fi(Vi, Ii) = 0. For a PV cell Fi = Fcelli as in the
Definition 2.1, but with parameters Iphi

, I0i , Rsi , Rshi specific to this cell i. For a bypass
diode we have Fi = Fbd as in Definition 3.1, with the parameters specific to the chosen
type of bypass diode. This means we get the n equations for all the base elements:
Fi(Vi, Ii) = 0.

On top of that we have information about the interconnections. A module for the
purpose of this research can always be structured as a combination of series and parallel
connections. So a module is a set of sets, PV cells, and/or bypass diodes. The sets in a
module can in term consist of multiple connected sets again. In other words, a module
is a combination of parallel and series connections of smaller sub-modules. At the base,
if we keep breaking down the sub-modules into smaller sub-modules, we always end up
with sets consisting only of base elements.

Claim 3.2. We claim that we can describe all the interconnections in module M , with
n− 1 equations of the form

∑n
i=1 γiVi + δiIi = 0, where all γi, δi ∈ {−1, 0, 1} and either

all γi or all δi are zero.

Claim 3.3. Secondly, we claim that the module’s output voltage is of the form
n∑
i=1

αiVi,

and the output current is of the form
n∑
i=1

βiIi, where αi, βi ∈ {0, 1},∀i ∈ {1, . . . , n}. We

proof this inductively.

Proof. The smallest sub-modules that we can break the module down to, are strings
or parallel sets of only base elements. We see that for this base case the claims holds:
Suppose the base elements in such a set are numbered 1 ≤ k, k+ 1, . . . , k+ (m− 1) ≤ n,
i.e., the set has m base elements. Then if the set is a string, we know Ik = Ik+1 = . . . =
Ik+m−1. In other words, we can describe the set’s interconnections with Ik+1 − Ik =
0, . . . , Ik+m−1 − Ik = 0. If the set is a parallel set then the set’s interconnections are
described with equations Vk+1 − Vk = 0, . . . , Vk+m−1 − Vk = 0. In both cases, this is
a system of m − 1 linear equations of the form

∑n
i=1 γiVi + δiIi = 0, with coefficients

γi, δi ∈ {−1, 0, 1} and where either all the coefficients γi or all δi are zero (and note that
γi, δi = 0 for i /∈ {k, k + 1, . . . , k + m − 1}). Also we know that the output current of
the set is Ik, in case of a series set, or

∑k+m−1
j=k Ij , in case of a parallel set. And the

output voltage is
∑k+m−1
j=k Vj , in case of a series set, or Vk in case of a parallel set. So

the claims 3.2 and 3.3 hold for sets consisting only of base elements.
Now, assume that for sub-modules of module M the claims 3.2 and 3.3 are true.

This is the induction hypothesis (IH). Suppose the module M consist of m sub-modules
S1, . . . , Sm. Each submodule Sk, k ∈ {1, 2, . . . ,m}, has a certain number of base
elements, say nk elements. Let these base elements be given index numbers, and
these numbers form the set Nk ⊂ {1, ..., n}. By IH we get that the configuration
of each submodule Sk can expressed in a system of nk − 1 equations of the form
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∑
j∈Nk

γjVj + δjIj , where γj , δj ∈ {−1, 0, 1} and either all γj or all δj are zero. In
total this gives us (n1−1)+(n2−1)+ . . .+(nm−1) = (n1 +n2 + . . .+nm)−m = n−m
equations. These equations describe the configurations for each of the sub-modules
internally, but we also have equations for the interconnection between the sub-modules
S1, . . . , Sm. IfM is a string of the sub-modules we get the m−1 equations IS2−IS1 = 0,
IS3 − IS1 = 0, . . . , ISm − IS1 = 0, and if M is a parallel set then we get the m − 1
equations VS2

− VS1
= 0, VS3

− VS1
= 0, . . . , VSm

− VS1
= 0. Let’s call these equations

the connection equations. By IH we know that claim 3.3 holds for all sub-modules, i.e.,
for all k ∈ {1, 2, . . . ,m} we have αj , βj ∈ {0, 1}, j ∈ Nk such that ISk

=
∑
j∈Nk

αjVj
and VSk

=
∑
j∈Nk

βjIj . Substituting this into the connection equations from before
and keeping in mind that the sets {Nk| k = 1, . . . ,m} are disjunct by definition and⋃
{Nk| k = 1, . . . ,m} = {1, 2, . . . , n}, we getm−1 equations of the form

∑n
i=1 γiVi+δiIi,

where all γi, δi ∈ {−1, 0, 1} and either all γi or all δi are zero. In conclusion, in total
we get (n−m) + (m− 1) = n− 1 equations of the form as in claim 3.2 to describe the
configuration of M .
Finally, note that if the module is a parallel set the total voltage and current are

VM = VS1 =
∑
j∈N1

αjVj , where all αj ∈ {0, 1}, and

IM =

m∑
k=1

ISk
=

m∑
k=1

∑
j∈Nk

βjIj =

n∑
i=1

βiIi, where all βi ∈ {0, 1}.

Analogously, if M is a series set the total voltage and current for the module are

VM =

m∑
k=1

VSk
=

n∑
i=1

αiVi, where all αi ∈ {0, 1} and

IM = IS1 =
∑
j∈N1

βjIj , where all βj ∈ {0, 1}.

This proves that claim 3.3 also holds.

To calculate the output current/voltage and incorporate the given voltage/current
value of the module, the final two equations of the system are VM − Vout = 0 and
IM − Iout = 0, where VM and IM can be expressed with the formulas seen in claim 3.3.
In conclusion, we have n equations for the base element behaviour: Fi(Vi, Ii) = 0. We’ll
define F =

{
Fi(Vi, Ii) for all i ∈ {1, 2, . . . , n} .

We have n − 1 equations describing the interconnections as seen in claim 3.2 and
its proof above. We’ll define H to be the system of the left-hand sides of these n − 1
equations. Note that the coefficients γ and δ are defined per equation, so
H =

{ ∑n
i=1 γk,iVi + δk,iIi for all k ∈ {1, 2, . . . , n− 1} ,

where for each k we have either γk,i ∈ {−1, 0, 1}, δk,i = 0 ∀i ∈ {1, . . . , n} or δk,i ∈
{−1, 0, 1}, γk,i = 0 ∀i ∈ {1, . . . , n}.

Finally, we define system K to be the two formulas that include the output voltage
and current formula from claim 3.3, and the given and unknown values of Vout and Iout.
W.l.o.g. the given value will be ν for the output voltage and Iout is the unknown variable

from here on out. Then we haveK =

{∑n
i=1 αiVi − ν, with αi ∈ {0, 1} ∀i ∈ {1, . . . , n}∑n
i=1 βiIi − Iout, with βi ∈ {0, 1} ∀i ∈ {1, . . . , n}

Let G be the complete system (F ,H,K). Then to calculate module’s (I-V) point G = 0
needs to be solved. This system has n + (n − 1) + 2 = 2n + 1 equations and 2n + 1
unknown variables, therefore it is a square system and has a unique solution.
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Figure 31: Example of a (non-realistic)
module, divided into sub-modules and

numbered base elements

Let us illustrate the system of equations with
an example. As seen in the description of G
each PV cell and bypass diode gets assigned a
number. As a convention we number the sets
and base elements inside a (sub-)module from
left to right and top to bottom, see Figure 31.

If we assume that the output voltage is
given, Vout = ν. Then this module has the
13 unknown variables:
V1, V2, . . . , V6, I1, I2, . . . , I6, Iout. The F part
of the system of equations consists of
Fi(Vi, Ii), i ∈ 1, . . . , 6. For the equations
describing the interconnections we work from
the inside out.

H =



string SS1 :

{
I2 − I1
I3 − I1

string SS2 : /

parallel set S1 : VSS2 − VSS1
parallel set S2 : V6 − V5
string M : IS2 − IS1

Note that this gives us 5 equations, as
required. And building up from the sub-
modules with only base elements we get:
VSS2 = V4, VSS1 = V1 + V2 + V3, IS2 = I5 + I6
and IS1 = ISS1 + ISS2 = I1 + I4. We get

H =



I2 − I1
I3 − I1
V4 − V1 − V2 − V3
V6 − V5
I5 + I6 − I1 − I4

Lastly, we get the two equations for the output voltage and current of the entire module.

K =

{
VM − ν
IM − Iout

For VM we can write VS1 + VS2 = VSS1 + V5 = V1 + V2 + V3 + V5, and for IM we can
write IS1 = ISS1 + ISS2 = I1 + I4. Hence,

K =

{
V1 + V2 + V3 + V5 − ν
I1 + I4 − Iout

In conclusion, the total system G =


F
H
K

= 0

describes the PV module M with 13 equations and 13 unknown variables.
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4 MATLAB model
For the purpose of this research, understanding the electrical behaviour of SP and TCT
configurations under partial shading, a generic model was developed in MATLAB to
calculate maximum power points and entire P-V and I-V curves of nonhomogeneous
modules. The model takes into account the users choice of irradiance, ambient tem-
perature, number of cells, interconnection topology, type of bypass diode, number of
bypass diodes and type of cells in the PV module. Also, the model can be used to
observe what is happening internally in the module, by calculating the operating points
for all the individual cells, at a specific operating point of the entire PV module. Though
the model is not limited to thin-film PV modules, the simulated results generated with
the model in the next chapters will be specifically for thin-film since that is the objective
of this research.

The theoretical framework that is described in the previous chapters is the basis that
the MATLAB model is built on. However, there are some (numerical) methods applied
in the model that deserve some additional elaboration. But let’s first discuss the general
structure of the model.

4.1 Structure of the model
The structure of the model in MATLAB is based on definition of classes. The module
components PV cell, PV set and bypass diodes are all defined as classes with certain
properties and methods. For an instance of the PVcell class, the properties given by
the manufacturer and ambient conditions are user-defined, and then the corresponding
parameters of the I-V characteristic are calculated, as discussed in Section 2.4. An
instance of the BypassDiode class has the properties I0, n and T defined by the user.
An instance of the PVset class is a set of PVcell-type objects, BypassDiode-type objects,
and/or more PVset-type objects. The configuration, ‘parallel’ or ‘series’, and array of
the sub-modules are given by the user. So in the same way as described in the theory in
Section 5.1, a PV module is inductively defined as a PVset-type object consisting of other
PV sets or base elements. For example, let c0 be a PVcell-type object, then we can make
a 2 × 3 TCT module (without bypass diodes) with the constructor PVset(‘series’,
[PVset(‘parallel’, [c0, c0, c0]), PVset(‘parallel’, [c0, c0, c0])]).

All of the three defined classes have a Current(obj,V) method, which calculates
the current(s) of an object obj for a voltage value V or an array of voltage values V.
Similarly, Voltage(obj, I) calculates the output voltage(s) of obj corresponding to a
current value I or an array of current values I. For a PV cell the current and voltage
are calculated with the Lambert W function as in Equation 2.3 and 2.4. For a bypass
diode, the current as function of voltage is calculated with the Shockley diode equation,
see Equation 1.1, except with the voltage multiplied with a factor −1 because of the
reversed polarity as explained in Section 3.3. The inverse of that equation,

V = −nkT
q

ln

(
I

I0
+ 1

)
,

is used to calculate the voltage as function of the current for the bypass diode. For a PV
set the current and voltage are calculated with the system of equations as described in
Section 3.5. Each of the classes have methods that, given a vector of unknown variables
and an array of index number(s) of base element(s), calculates the system of equations
for an object of the class. The system of equations of a PVset object is then inductively
constructed from the base up: each base element gets assigned a number, this is saved
in a property of the PVset object called Layout, then for each of the sub-modules the
method is called which constructs the system of equations for the sub-module, given
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the unknown variables of the total module and the index numbers of the base elements
in that sub-module. For example, let’s say we have a module with 5 base elements
and vector of unknown variables x = (V1, V2, V3, V4, V5, I1, I2, I3, I4, I5, Iout). Then a
PVcell-type object in the module with assigned index number 4, will have a method
that, given the index number ‘4’ and the vector of variables x, returns its system of
equations: the equation Fcell4(x4,x9) = 0. Note that x4 = V4 and x9 = I4. In the
PVset method, the system of equations of the sub-modules will be combined with the
equations for the interconnection between the sub-modules and with the equations for
the module’s voltage output and current output to form the total system of equations (as
described in Section 3.5). Then in the Current or Voltage method of a PVset object,
the system of equations is solved for a given output voltage or current of the module.
We’ll elaborate on the solving of the system in the next section.

The function plotIV is defined to plot the I-V (and P-V) curve of a module or cell,
using the Current method to calculate (I-V) points which are then linearly interpolated.
The methods Current and Voltage can return not only the module’s operating point at
a given voltage or current, but also the operating points of each individual base element
at that point. This way the internal workings of a module can be better understood.
Another practical function in the model is makeModule. This allows for the user to easily
make a TCT or SP module with or without bypass diodes, instead of having to define the
module inductively as a PV set of sets, as shown before. The function makeModule can
make a module, as a PVset type, based on a given matrix of cells, possibly a bypass diode,
and the configuration ‘TCT’ or ‘SP’. Note that the ambient temperature and irradiance
are known, because they are defined as properties of the PVcell object. The function
makeModule is adapted for CIGS modules, so the BypassDiode object is connected per
two cells, or per two parallel sets of cells in case of the TCT configuration. If there is
an uneven number of rows in the matrix of cells, then the last cells in a string, or the
last parallel set, are also connected to one bypass diode. When there is no BypassDiode
object given to the function makeModule, then a module without bypass diodes is created.
Another option of input for the makeModule is to enter, instead of a matrix of cells, an
irradiance matrix, ambient temperature and PVcell object. In that case, the function
defines a module based on the irradiance matrix: an Ns ×Np irradiance matrix defines
an Ns ×Np PV module where the cells are the given PVcell object but with the given
ambient temperature and with for each cell the irradiance value of the corresponding
entry in the given irradiance matrix. The PVcell method changeGandTambient will
be called to change the ambient temperature and the irradiance of the PVcell object,
and this method will also change the dependent parameters I0, Iph and Tcell of the cell
accordingly. It is important to note here that a matrix, either irradiance matrix or
matrix of cells, always defines the same interconnection layout as a shading pattern
would (see Section 3.4).

4.2 Solving the system of equations
The system of equations of a PV module is solved in MATLAB using the trust-region
method. This is the most suitable method considering that an initial guess for an I-
V point of a module, which needs to be supplied to the numerical method, is hard
to estimate. The trust-region method turns out to be the fastest gradient method
compared with other numerical methods, and the trust-region method can guarantee
stability regardless of the initial conditions [33,27]. The MATLAB function used to solve
the system of equations is called fsolve. This function can be chosen with a trust-region
method option. We can also supply the Jacobian matrix of the system of equations to
fsolve. This decreases the computing time vastly, since the Jacobian matrix is sparse
for our system, which isn’t recognised automatically. So if the Jacobian matrix isn’t
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supplied, then at each iteration of the solving steps in fsolve the Jacobian is calculated
for all entries, even the zero-entries.

4.2.1 Jacobian matrix of the system of equations

Let G = 0 be the system of equations for a PV module M with n base elements, as seen
in Section 3.5. W.l.o.g. we can assume that the output voltage is the given value and
the vector of unknown variables is x = (V1, V2, . . . , Vn, I1, I2, . . . , In, Iout) ∈ R2n+1. The
system G consists of three parts F ,H and K.
Part F :
This part consists of the functions Fi(Vi, Ii) for all base elements i ∈ {1, 2, . . . , n}. The
derivative of Fi with respect to x is

dFi(Vi, Ii)

dx
= [0, . . . , 0,

∂Fi(Vi, Ii)

∂Vi
, 0, . . . , 0,

∂Fi(Vi, Ii)

∂Ii
, 0, . . . , 0].

↑ ↑
i-th entry (n+ i)-th entry

Using Definition 2.1, we get for a PV cell:

∂Fcell(V, I)

∂V
= −I0 ·

q

nkT
exp

(
q(V + IRs)

nkT

)
− 1

Rsh
and

∂Fcell(V, I)

∂I
= −I0 ·

qRs

nkT
exp

(
q(V + IRs)

nkT

)
− Rs

Rsh
− 1.

Using Definition 3.1, we get for a bypass diode:

∂Fbd(V, I)

∂V
= −I0 ·

q

nkT
exp

(
−qV
nkT

)
and

∂Fbd(V, I)

∂I
= −1.

In conclusion, we get

∇F = (aij) ∈ Rn×(2n+1), where aij =

{
∂Fi(xi,xi+n)

∂xj
if j ∈ {i, i+ n}

0 otherwise
.

Note that this is a sparse matrix.
Part H:
This part of the system consists of the n− 1 formulas describing the interconnections in
the module. In Section 3.5 we saw that

H =
{ ∑n

i=1 γk,iVi + δk,iIi for all k ∈ {1, 2, . . . , n− 1}

where for each k we have either γk,i ∈ {−1, 0, 1}, δk,i = 0 ∀i ∈ {1, . . . , n} or δk,i ∈
{−1, 0, 1}, γk,i = 0 ∀i ∈ {1, . . . , n}. We get

∇H =
dH
dx

=

 γ1,1 . . . γ1,n δ1,1 . . . δ1,n 0
...

. . .
γn−1,1 . . . γn−1,n δn−1,1 . . . δn−1,n 0

 ∈ {−1, 0, 1}(n−1)×(2n+1)

Since in each row either all δ or all γ are zero, ∇H will also be sparse.
Part K:
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This part contains the formulas considering the module’s output voltage and current. As

seen in Section 3.5, we have K =

{∑n
i=1 αiVi − ν, with αi ∈ {0, 1} ∀i ∈ {1, . . . , n}∑n
i=1 βiIi − Iout, with βi ∈ {0, 1} ∀i ∈ {1, . . . , n}

.

So,

∇K =

(
α1 . . . αn 0 . . . 0 0
0 . . . 0 β1 . . . βn −1

)
∈ {−1, 0, 1}2×(2n+1).

In conclusion, the Jacobian of system G is

∇G =

∇F∇H
∇K

 ,

which is a sparse (2n+ 1)× (2n+ 1) matrix.

4.2.2 Euler’s method

The MATLAB method fsolve finds the solution of the vector of unknown variables
x = (V1, V2, . . . , Vn, I1, I2, . . . , In, Iout) ∈ R2n+1 for the system of equations G = 0. Note
that the formulas in G are functions of x. The method fsolve requires an initial guess
for x to be able to solve the system. Since the trust-region method is used as system
solver in fzero, the zero-vector is a good enough initial guess to ensure convergence
to the solution. However, the closer the initial guess is to the actual value of x, the
fewer iteration steps are needed to converge to the solution of the system and thereby,
less computation time will be needed. For the calculation of the I-V curve the Current
method is used for an array of voltages ranging from before 0 to after Voc with small
voltage increments in between. This means that we can base the initial guess for the
solution of x at a voltage νt on the solution for the previous voltage νt−1 in the array.
The way we estimate the initial guess based on the previous solution is with the explicit
Euler method.

Let G : Rn → Rm be given, and x : R → Rn−1, t 7→ x = (x1, x2, . . . , xn−1) is an
unknown function. Suppose that we have the following system of equations;

G(x(t), t) = 0, with initial point G(x0, t0) = 0 where x0 = x(t0),

and we want to find an approximation for the solution at a next time step t1. In other
words we want to find x(t1) for which G(x(t1), t1) = 0.

We know dG
dt = 0 ∈ Rm, since G(x, t) = 0. We also know that dG

dt = ∂G
∂x ·

dx
dt + ∂G

∂t
because of the chain rule for total derivatives. So,

∂G

∂x
· dx
dt

= −∂G
∂t
.

Let J bet the Jacobian, i.e., J = ∇G, then ∂G
∂x = J [1, 2, . . . ,m; 1, 2, . . . , n − 1], the

submatrix of J consisting of rows 1 to m and columns 1 to n− 1. We define Gx := ∂G
∂x .

Similarly, we have Gt := ∂G
∂t = J [1, 2, . . . ,m;n]. Thus everything combined we get for

t0:
Gx(x(t0), t0) · x′(t0) = −Gt(x(t0), t0).

Assuming that the Jacobian J is known, we can get x′(t0) ∈ Rn−1 by solving that
equation. Finally, we get an approximation for the solution at next time step t1 with
Euler’s estimation:

x(t1) ≈ x(t0) + x′(t0) ·∆t,
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where ∆t = t1 − t0 must be sufficiently small.

Now let’s apply Euler’s method to the system of equations of a PV module. Instead
of time steps ∆t we have voltage steps ∆v. Let G be the system G from Section 3.5,
but with the module’s output voltage seen as a variable v instead of as a given value ν.
Clearly, the vector of unknown variables x = (V1, . . . , Vn, I1, . . . , In, Iout) depends on the
choice of v. Let x : R→ R2n+1 be the function that maps v to the corresponding vector
of variables x = (V1(v), V2(v), . . . , Vn(v), I1(v), I2(v), . . . , In(v), Iout(v)). Then we get
the system of equations G(x(v), v) = 0. Note that G : R2n+2 → R2n+1. Given an initial
solution (x0, v0) with x0 = x(v0), we want to find an approximation of x1 = x(v1) such
that G(x1, v1) = 0. Since G is the system G restricted to its first 2n + 1 variables, we
see that Gx = ∇G. In all the functions of G, ν only occurs in the first function of part
K, which describes the output voltage of the module as

∑n
i=1 αiVi − ν. Thus, because

ν is replaced with variable v in G and the first function of part K corresponds to the

2n-th function of G, we conclude that Gv =


0
...
0
−1
0

 ∈ R2n+1.

Therefore, we can find x′(v0) by solving

∇G(x(v0), v0) · x′(v0) = −(0, . . . , 0,−1, 0),

as is shown above. Then, we get the Euler estimation:

x(v1) ≈ x(v0) + x′(t0) ·∆v.

In the MATLAB model, if the Current method is called for a PVset object and an
array of voltages V = [v0, v1, . . .], then the used method fsolve is given the zero-vector
as initial guess for v0, but for the succeeding voltages the described Euler method is
used to determine the initial guess which is given to fsolve. Analogously, the Euler
method will be used in the PVset’s Voltage method for an array of currents.

4.3 Computing time
It was found that constructing the Jacobian and giving this as input to the fsolve
method along with the system of equations, improves the computing time drastically
(compared with only giving the system of equations as input an not the Jacobian). For
example, plotting the I-V curve of four 4×3 modules, namely SP and TCT both with and
without bypass diodes, for a certain random shading pattern took 626 seconds (over 10
minutes) before including the Jacobian matrix. After including the Jacobian this took
only 15 seconds. It was also found that including Euler’s method had an improving
effect of about 30− 40% on the computing time, compared with just using the solution
of the previous voltage (or current) as initial guess.

Overall, the computing time depends on the size of the module, the shading pattern
and whether or not there are bypass diodes. Calculating the I-V curve of small modules
can be done in a matter of seconds. Whereas the I-V curves of the largest modules
simulated in this research, 24× 4, took between 2 and 6 minutes to plot.
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5 Verification of the model
In the following experiment we measured I-V curves of four different PV modules for
partial shading scenarios. The results were compared with the simulated I-V curves in
order to verify the accuracy of our model.

5.1 The PV modules and shading patterns
To try different cell and module sizes, one of the module types is a 12× 4 module built
with ‘half’ CIGS MiaSolé cells, and the other module is a 24 × 4 module built with
‘quarter’ CIGS MiaSolé cells. A SP and TCT configuration with bypass diodes was
made for both module sizes. So in total there are 4 modules to measure. The ‘half’
CIGS cell is a MiaSolé cell cut to a length of 130mm instead of the full length of 312mm
(so technically less than half). This results in a reduced cell output current of 130/312
times the original current output. The output voltage is, in theory, not affected by
cutting the cell. The ‘quarter’ CIGS cell is cut to a length of 65mm, and therefore has
a (65/312)-th part of the original current.

The modules are fairly large, which makes it possible to measure multiple interesting
shading patterns. The shading patterns and naming of the patterns can be found in
Appendices III and IV.

Figure 32: Schematic layout of, from left to right and top to bottom, the SP 12× 4, SP
24× 4, TCT 12× 4 and TCT 24× 4 modules. Dimensions are in milimeters.

In the figure above we see the layout of the modules, where the strings are split in
half and placed side by side for the 24×4 modules to get practical dimensions. The short
circuit current and open circuit voltage for the 12 × 4 modules will be approximately
8A and 8V respectively. The 24 × 4 modules will approximately have Isc = 4A and
Voc = 16V.

In the lamination step of the modules some creasing of the top layer occurred for the
TCT 12×4, SP 12×4 and TCT 24×4 modules. Despite this all the modules reasonably
worked as expected, except for the SP 12× 4 module. More about this later.
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TCT 12× 4 SP 12× 4

TCT 24× 4 SP 24× 4

Figure 33: PV modules. For the 12× 4 modules the positive terminal is oriented at the
top of the pictures, and for the 24× 4 modules the positive terminal is at the top right,

while the negative terminal is at the top left of the picture.

5.2 Solar simulator and irradiance
Solar simulators are devices that illuminate a certain area, simulating the light of the
sun. At the Solliance lab there are two sun simulators for which the PV modules can
be mounted on a vertical rack. This makes it possible to easily stick shapes on the
module to create various shading patterns, without having to take the module out of
the simulator each time. Of the two solar simulators one is made with LED lights and
one is a made with gas-discharge and halogen lamps. The LED solar simulator has the
largest illumination surface. The size of our modules is approximately 60cm by 60cm
and they would fit in both simulators. However, using a reference cell the irradiance
on the module area was measured and it was found that the irradiance in the LED
solar simulator was most homogeneous and higher than in the smaller gas-discharge and
halogen lamp solar simulator (see Figure 34). Therefore the LED solar simulator was
the one used for this experiment. This solar simulator consists of colored LED lights
and is surrounded by a climate chamber. This means that we can set and maintain a
constant ambient temperature of 20◦C (±0.4).
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Figure 34: Measured irradiances in W/m2 for both the small solar simulator (on the
left) and the large solar simulator (on the right).

LED solar simulator and climate chamber One of the 24× 4 PV modules mounted on
the solar simulator rack. Note that this
rack will be closed during measurements,
so that the module is parallel to the light

source.

For the modelling purpose we take the mean of the measurements in Figure 34,
842W/m2, for the irradiance level of an unshaded cell. Then I-V measurements of the
modules without shading was used as a baseline. It was found that if an irradiance
of 842W/m2 was used in modelling the unshaded module I-V curves, the short circuit
current was underestimated. The short circuit current of the measured module was 0.3A
higher, which is unexpected. Checking with also the other unshaded modules it turned
out that the model is systematically underestimating the short circuit current. The only
cause for this can be an error in estimated irradiance, since increasing efficiency doesn’t
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help the short circuit current being higher. Neither does changing the cell temperature,
as the temperature coefficient of short circuit current isn’t significant enough to validate
such a big simulating error. So the only reason for a higher than estimated short circuit
current is that the actual irradiance is larger than 842W/m2. To get a good fit for an
unshaded TCT 12 × 4 module, it turned out that an irradiance of 875W/m2 resulted
in the smallest difference, 0.02A, in measured and simulated short circuit currents.
A confirmation of this choice was found by checking the difference in simulated short
circuits for the other modules. With the irradiance correction we found ∆0.01A, ∆0.13A,
∆0.03A in measured and simulated Isc for the unshaded modules of 24× 4 TCT, 12× 4
SP and 24 × 4 SP, respectively. The difference for the 12 × 4 SP module is relatively
large, the model overestimates the short circuit current, but this is probably because
the module was damaged by some creasing in the top lamination layer.

The irradiance was measured with a reference cell, which was small (about 3 by 2
cm), and encapsulated in a box. This might block light coming in from the sides. Since
a PV module is much larger and might catch more reflected light, this can explain why
the irradiance on the modules is higher than measured with the reference cell.

5.3 Cell temperature and efficiency
When we take an NOCT of 48 degrees celsius, as prescribed by the MiaSolé datasheet,
we systematically overestimate the open circuit voltage, as we can see for the 12 × 4
TCT module in the figure below.

1 2 3 4 5 6 7

V

-1

1

2

3

4

5

6

I

I-V and P-V curves TCT 12x4 modules

simulated no shade, 17% cell efficiency

simulated no shade, 16.5% cell efficiency

simulated no shade, 16% cell efficiency

simulated no shade, 15.5% cell efficiency

measured noshade

Figure 35: Simulated unshaded TCT 12× 4 module with a NOCT of 48◦C and various
efficiencies compared with the measured I-V curve

The cell temperature has a high impact on the open circuit voltage. Secondly, in
the datasheet and in the figure we can see that the open circuit voltage also depends
on the efficiency of the cell. So in order to choose the right open circuit voltage, we
need to find the correct NOCT and cell efficiency. Unfortunately, the efficiency of the
used cells in particular is not known. It is not likely that the efficiency of a module in
practice is 17%. Therefore, in order to approximate the module efficiency better, it is
more realistic that the cell efficiency is 16% or 15.5%.

The NOCT that is given in the datasheet is for a MiaSolé FLEX-02 module. This
does have a black back-sheet, like our module, but it has a different stack of the cells,
and might use other adhesives and layer materials. So to determine the NOCT for
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our modules, we measured the cell temperature with thermocouples at four different
locations on the front surface, whilst the module was fully illuminated. For an ambient
temperature of 20 degrees two measurements were done and for 25 degrees one measure-
ment was done. Assuming that all modules have the same temperature behaviour since
they consist of the same materials, cell temperatures were only measured for the 12× 4
TCT module.

Tamb 20◦C 20◦C 25◦C
T1 56.7 59.0 61.5
T2 57.2 58.8 62.5
T3 54.1 55.3 58.8
T4 39.0 39.0 43.6

Table 2: Cell temperature measurements
in degrees Celsius at four points on the

module

Figure 36: Locations of the thermocouples

The differences in cell temperatures across the module can have multiple causes, especially
the temperature at T4 is very low. The cooling and heating system in the solar simulator
chamber may cause cold or hot air fluctuation, and the air temperature of 20◦C is
measured at one point in the chamber so we don’t know how the heat is distributed
across the chamber. Also the irradiance at the measurement locations varies slightly.

Comparing the locations of the reference cell irradiance measurements in Figure 34
and the locations of the thermocouples we get that the irradiance at T1 is 875, at T2
is 845, at T3 is 816, and at T4 is 835 W/m2. We can calculate the NOCT with the
following equation, derived from equation (2.10).

NOCT =
Tcell − Tamb

G
· 800 + 20

With the local irradiance and the cell temperature we calculated the NOCT for each
measurement.

Tamb 20◦C 20◦C 25◦C
T1 53.6 55.7 53.4
T2 55.2 56.7 55.5
T3 53.4 54.6 53.1
T4 38.2 38.2 37.8

Table 3: Corresponding calculated NOCT values for the measured cell temperatures

On average the NOCT was 50.5◦C. However, if we use this value to simulate the
unshaded modules for TCT 12 × 4, SP 12 × 4, TCT 24 × 4 and SP 24 × 4 then either
the simulated open circuit voltage is too high (for higher cell efficiency choice) or the
simulated maximum power is too low (for lower cell efficiency choice) for every module,
except TCT 12 × 4. So a second option is to assume that measurements at T4 are
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outliers, and that the cell temperature is only this low at that one corner. If we neglect
the T4 measurements, then we get an average NOCT of 54.6◦C. Using this NOCT,
we can get smallest deviations from measured maximum power points and open circuit
voltages with a cell efficiency of 16%. Only TCT 12 × 4 showed less deviation for the
combination of NOCT = 50.5◦C and efficiency = 16%. Thereby, we set the NOCT at
54.6◦C and pick cell with an efficiency of 16% for the further simulations.

5.4 Cell ideality factor and resistances
As described in Section 2.4 the best way to find cell intrinsic ideality factor and resistances
is to first find Rsh based on the measurements around Isc and then fit n and Rs to the
manufacturer’s given nominal power point. The measurements around Isc are only
available for entire modules, but cell measurements can be derived by dividing voltage
by 12 or 24 and the current by 4. For the 12×4 modules measured points around −0.19V
and 0.7V and for the 24 × 4 modules measured points around −0.19V and 1.4V were
taken. For each module separately, ∆V and ∆I of the single cell were calculated with
these measurements around the short circuit point. Then we know that Rsh = −∆V/∆I
is a good estimation, and we can use the fitting method for n and Rs for each cell. An
advantage of using module measurements for determining cell resistances is that the
series resistance of tabbing material gets included in the model via the cell’s calculated
series resistance.

In conclusion, based on the parameters discussed in the previous sections, the following
properties for the cells were obtained.

Single cell of the TCT 12× 4 module.

PVcell with properties:
Tambient: 20 ◦C
Irradiance: 875 W/m2

NOCT: 54.6 ◦C
TempCoefIshort: 0.008 %
TempCoefVopen: -0.28 %
RefIshort: 1.958 A
RefVopen: 0.664 V
RefImpp: 1.713 A
RefVmpp: 0.531 V
RefPmpp: 0.909 W
IdealityFactor: 2
Rseries: 0.006 Ohm
Rshunt: 9.106 Ohm
Tcell: 57.844 ◦C
Photocurrent: 1.719 A
ReverseSatcurrent: 0 A

Single cell of the SP 12× 4 module.

PVcell with properties:
Tambient: 20 ◦C
Irradiance: 875 W/m2

NOCT: 54.6 ◦C
TempCoefIshort: 0.008 %
TempCoefVopen: -0.28 %
RefIshort: 1.958 A
RefVopen: 0.664 V
RefImpp: 1.713 A
RefVmpp: 0.531 V
RefPmpp: 0.909 W
IdealityFactor: 2
Rseries: 0.007 Ohm
Rshunt: 15.929 Ohm
Tcell: 57.844 ◦C
Photocurrent: 1.719 A
ReverseSatcurrent: 0 A
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Single cell of the TCT 24× 4 module.

PVcell with properties:
Tambient: 20 ◦C
Irradiance: 875 W/m2

NOCT: 54.6 ◦C
TempCoefIshort: 0.008 %
TempCoefVopen: -0.28 %
RefIshort: 0.979 A
RefVopen: 0.664 V
RefImpp: 0.856 A
RefVmpp: 0.531 V
RefPmpp: 0.455 W
IdealityFactor: 1.954
Rseries: 0.01 Ohm
Rshunt: 11.813 Ohm
Tcell: 57.844 ◦C
Photocurrent: 0.86 A
ReverseSatcurrent: 0 A

Single cell of the SP 24× 4 module.

PVcell with properties:
Tambient: 20 ◦C
Irradiance: 875 W/m2

NOCT: 54.6 ◦C
TempCoefIshort: 0.008 %
TempCoefVopen: -0.28 %
RefIshort: 0.979 A
RefVopen: 0.664 V
RefImpp: 0.856 A
RefVmpp: 0.531 V
RefPmpp: 0.455 W
IdealityFactor: 1.915
Rseries: 0 Ohm
Rshunt: 8.504 Ohm
Tcell: 57.844 ◦C
Photocurrent: 0.859 A
ReverseSatcurrent: 0 A

5.5 Determining bypass diode parameters

Figure 37: Simulated I-V curve of Schotkky
bypass diode for two temperatures

The earlier mentioned Flex Schottky
diode is used as bypass diode in the
modules. We know for these bypass
diodes that I0 = 0.4 · 10−3A, and
we know that the bypass diodes are
located inside layers of the modules,
which had a mean temperature of
about 55◦C (this is not the exact
mean of the module temperature, but
small diode temperature differences
didn’t seem to impact the I-V
output). However, we don’t know
ideality factor n. With the values
for T and I0 set, and with keeping
in mind that the diode should ‘turn
on’ between 0.2V and 0.3V, we tried
to estimate the best ideality factor.
This was done by trying increments of
0.1 between 1 and 2, and comparing
the resulting simulated I-V curves with the measured I-V curves for the various shading
patterns in this experiment. It turned out that the best fitting ideality factor is 1.4. In
Figure 38 we see the I-V curve of the bypass diode in forward bias, for both module
temperature and room temperature. For the room temperature we can clearly see that
the forward voltage is between 0.2V and 0.3V.

5.6 Results
Let’s first look at the baseline measurements: the unshaded modules. Since we fitted
cell parameters to these measurements, the simulated I-V curves are good estimations,
except for the SP 12 × 4 module. The I-V curve of this module already shows some
current drops although there is no shading. This indicates that this module has some
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defects. There most likely are some shunted cells, because of the crease in the lamination
layer.

Figure 38: Baseline measured and simulated I-V curves (no shade). On the y-axis we
have current [in A] and power [in W], and the x-axis is voltage [in V]

Secondly, we apply some horizontal and vertical shades. For all modules left half,
right half, top half and bottom half shading is measured. Theoretically the bottom half
shading is equivalent to top half shaded, and left half shading is equivalent to right half
shading. So with these measurements we can detect if there are defects in the module
and where they are located.

We can see in the figure on the left that even though the model overestimates the
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measurements, at least top and bottom shading patterns overlap for the measurements.
On the right we see that the left and right side of the module also behave the same.

The top half and bottom half seem to behave the same for this module, though for
the bottom half shaded we can see a current drop after the short circuit point. For
both halfs the simulated maximum power point is a bit higher than the measured one.
The shading of three and three and a half rows also results in a lower than simulated
maximum power output. In the figure on the right, it becomes clear that the right half
of the module behaves approximately as expected, but the left half performs worse. So
there are some defects in the left half of the module.

For the shading of the bottom half of the TCT 24× 4 module, the power output is a
bit lower than expected, so there are some irregularities in the top half of this module.
Besides this, the left and right half of the module are approximately behaving the same
as the model predicts.
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For the SP 24× 4 module, the top half of the module is also performing a bit worse
than simulated. The left and right half of this module behave the same, though the VMPP
for all vertical shading scenarios seem to deviate more from the simulated value than
for the other modules. We saw this also for the unshaded module, so this is probably
caused by resistances in the module or less efficient cells.

Finally, the I-V and P-V curves for the more interesting shading scenarios are
measured and simulated. These results can be found in Appendix V. Note that we
have one missing measurement for SP 24 × 4, namely slopeB1, and that diagB is not
the same pattern for TCT 12× 4 as for SP 12× 4. Apart from SP 12× 4 the simulation
I-V and P-V curves are really close to the measured curves.

In the tables in Appendix V, the maximum power, short circuit current and open
circuit voltage of all shading scenarios and modules are compared. The absolute error
and relative error in the simulation results of these parameters are calculated. The
relative error for a parameter is the absolute difference of the measured and simulated
value, divided by the measured baseline value (measured value of the parameter for
unshaded scenario). This relative error is in percentage. We find that, ignoring SP
12× 4 module, the relative error in PMPP and Isc is less than 1.6%. The relative error
for Voc is a bit bigger, about 5%, but still relatively small. The errors for the SP 12× 4
module are much larger. It is unclear why this module is performing so much worse than
expected. Looking at the horizontal and vertical shading results, we see some decrease
in current and voltage compared with Simulated values, but this doesn’t explain why in
the other, not semi-homogeneous, shading scenarios the module is behaving so poorly.
Both the short circuit currents and the open circuit voltages (and as a consequence of
course the maximum power output also) are a lot lower than expected in these scenarios.
Supposedly, there are a number of cells or bypass diodes that are damaged in this module.

5.7 Electroluminescence measurements
After the partial shading experiment, we did electroluminescence (EL) measurements of
the modules. For EL measurements, a small current (in this case 20% of the short circuit
current) is fed into the PV modules. Then instead of absorbing light, the PV modules
will emit some light. This can be captured by a photograph in a dark room using special
filters. EL measurements show a qualitative picture of the defects and irregularities in
a PV cell or module: the more light that is emitted, the better the cell. If a cell shows
up black, then it is completely shunted, which means that it is short circuited.
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Figure 39: EL
measurement of
TCT 12× 4

Figure 40: EL
measurement of SP

12× 4

Figure 41: EL
measurement of
TCT 24× 4

Figure 42: EL
measurement of SP

24× 4

In these figures the orientation of the modules is the same as in the pictures and
schematic layout in Section 5.1. So for the 12 × 4 modules the positive terminal is at
the top, and the negative terminal is at the bottom. And for the 24 × 4 modules the
positive terminal is located at the top right half, while the negative terminal is located
at the top left half. Note that because of the module layout, when we talk about the top
half of a 24× 4 in a shading pattern, this is the right half of the module in the real-life
layout. Similarly, the left half in a shading pattern, are outer four columns of cells in
the real-life module, and the right half in a shading pattern, are the inner four columns
in the real-life 24× 4 module.

The TCT 12 × 4 EL measurement looks reasonably uniform. This agrees with the
results of vertical and horizontal shading in the previous section. In the EL measurement
of SP 12×4 we can see what might be the cause for the irregular behaviour of this module:
the emitted light is far from uniform.

For SP 12× 4 the location of the darker cells somewhat coincides with the location
of the crease in the lamination layer (see Figure 33). In the vertical shade I-V curves of
this module, we saw that the left half of the module has lower output currents than the
right half. This can not be explained with the EL measurement.

For the TCT 24×4 module, the left upper cells in the picture emit more light. These
cells are the bottom four rows of the module when considering the shading pattern
layout. In the horizontal shade measurements of this module, we indeed obtained that
the bottom half of the module had a higher power output than the top half.

The SP 24x4 module has two completely shunted cells on the right (i.e., in the
top half of the module in terms of shading pattern layout). This was also seen in the
horizontal shade I-V measurements: the bottom half of the module has a higher power
output than the top half.

Unfortunately, EL measurements were only done after the partial shading measure-
ments. So it is unknown whether the defects are caused by the module manufacturing
phase, for example by the creases in the lamination layer, or because the bypass diodes
didn’t fully protect the cells during the partial shading scenarios. However, from the
above mentioned consistency in EL measurements and vertical/horizontal shade I-V
measurements, which were taken before the other partial shading measurements, it
seems like the defects in the modules were already there at the beginning of the partial
shading I-V measurements. All the modules were still working at the end of the I-V
measurements, so assuming that the defects formed in the lamination phase, the bypass
diodes did their job in protecting the cells from negative voltages, negative currents and
too much power dissipation.
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6 Findings
Finally, we can use our verified model to generate some data in order to compare TCT
with SP for various shading patterns. For all the following measurements we modelled
the cells after MiaSolé CIGS PV cells with an efficiency of 17%, unless otherwise
mentioned. The used method for determining the resistances and ideality factor, is
prefixing the ideality factor at 1.5 as given in Table 1. The bypass diodes are modelled
as Schotkky diodes as before with I0 = 0.4 · 10−3A, n = 1.4, T = 328K (i.e., 55 degrees
Celsius). The standard full irradiance is 1000W/m2, and the ambient temperature is
set at 20 degrees Celsius.

PVcell with properties:
Tambient: 20 ◦C
Irradiance: 1000 W/m2

NOCT: 48 ◦C
TempCoefIshort: 0.008 %
TempCoefVopen: -0.28 %
RefIshort: 4.7 A
RefVopen: 0.673 V
RefImpp: 4.25 A
RefVmpp: 0.545 V
RefPmpp: 2.316 W
IdealityFactor: 1.5
Rseries: 0.006 Ohm
Rshunt: 3.711 Ohm
Tcell: 55 ◦C
Photocurrent: 4.718 A
ReverseSatcurrent: 0 A

Table 4: Properties of a CIGS cell with an efficiency of 17% at the given ambient
conditions.

6.1 Effect of bypass diodes
6.1.1 Modules with and without bypass diodes

We generated I-V curves for SP and TCT 4×4 modules with and without bypass diodes.
The used shading patterns and the results can be found in Appendix VI. We use the
abbreviations BDs for modules with bypass diodes in these results. Table 5 gives an
overview of the maximum power outputs for the various shading patterns and results.
From here on out we define the difference in power outputs for TCT and SP, ∆PMPP, to
be PMPP, TCT−PMPP, SP. This difference results in a negative value if TCT has a lower
power output than SP, since we are looking for a configuration that is more shadow
tolerant than the traditional SP configuration. The relative error, relative ∆PMPP, will
also be in terms of improving or decreasing with respect to SP. So the relative error is
defined as relative ∆PMPP = (PMPP, TCT − PMPP, SP)/PMPP, SP · 100%.
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without bypass diodes with bypass diodes
∆PMPP [W] rel. ∆PMPP [%] ∆PMPP [W] rel. ∆PMPP [%]

Vertical 0.000 0.000 0.002 0.010
Horizontal 0.000 0.000 -0.867 -8.328
Vertical fading 1.944 7.927 1.947 7.938
Horizontal fading 0.517 3.757 0.519 3.776
Diagonal 23.364 2570.279 13.861 133.145
Diagonal fading 12.713 92.403 12.715 92.444
Corner 2.557 15.832 2.560 15.848
Corner fading 1.585 10.665 1.587 10.684
Vertical large 0.000 0.000 0.002 0.017
Horizontal large 0.000 0.000 -0.456 -7.367

Table 5: Power output results from shading patterns on 4× 4 SP and TCT modules,
with and without bypass diodes (see Appendix VI).

We see that the first four shading patterns (vertical, horizontal, vertical large, horizon-
tal large) are semi-homogeneous shades. Therefore, the I-V curves of the SP and TCT
modules without bypass diodes coincide, as can be seen in the figures in the Appendix.
However, with the bypass diodes this is no longer the case, but we can see that the
differences, especially for vertical shading, are very small. This is because the differences
are only caused by the different layout and number of the bypass diodes. We see for the
horizontal semi-homogeneous shading patterns, that SP slightly outperforms TCT (by
less than 8%).

We can also note that sometimes including the bypass diodes doesn’t significantly
change the maximum power points (all ‘vertical shades’, ‘corner shades’, ‘horizontal
fading’ and ‘diagonal fading’), the small differences we see in the table might even be
accounted to inaccuracies of the used numerical methods. And in other cases including
the bypass diodes only increased the power output of the SP module (‘diagonal’), or it
increased the power output for both modules (‘horizontal’ and ‘horizontal large’).

It is also important to note that we can see in Table 5 for the modules with bypass
diodes, that in two cases the SP outperforms the TCT by 8%. However, for some of
the other cases the TCT outperforms the SP with even up to a 133% increase in power
output (so the TCT’s power output is more than twice as much as the SP’s). It is
really hard to predict what configuration is going to have the higher power output, the
horizontally shaped shading patterns have a different outcomes, but it does seem like
the advantages of TCT might outweigh its disadvantages. We will try to verify this later
on with more shading patterns on different sized modules.

6.1.2 Individual cell operating points

To see if there is any dangerous negative voltages, powers or currents in the module,
we looked at all the module’s operating points between 0V and the open circuit voltage
for the ‘diagonal fading’ pattern from Appendix VI. For all these operating points the
model calculated the corresponding operating points for each cell and gave the minimal
voltage, current and power that was found in the individual cells.

For the SP module without bypass diodes the minimal voltage level that was found in
a cell was −1.83V at the module’s short circuit point. This is lower than the breakdown
voltage, so the cell might be damaged. At this point the minimum power point at a
cell was also found: −6.04W. The maximum negative power that a cell can withstand
is considered to be −2 times its nominal power point, which is 2.32W in this case. So
there is a cell in the module that exceeds the negative power output that should be the
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limit. In Figure 43 we can see all the individual voltages and power points in the cells.
The layout of these matrices correspond to the module layout in the same way that the
shading patterns do.

The lowest current that was found in the SP module was −0.48A at the open circuit
point of the module. The individual cell currents can be found in Figure 44. It is not
really known what effect negative currents have on the cell.

Figure 43: Cell voltages [V] and power points [W] at
the short circuit point of the 4× 4 SP module under
shading pattern ‘Diagonal fading’ (Appendix VI)

Figure 44: Cell currents
[A] at the open circuit
point of the 4× 4 SP
module under shading

pattern ‘Diagonal fading’
(Appendix VI)

If we do the same for the SP module with bypass diodes we see that the cells don’t
exceed the breakdown voltage and negative power limit anymore. The lowest negative
voltage is still found at the module’s short circuit point, and so is the lowest cell power,
but these minimum values are now −0.98V and −3.11W, respectively. We can find the
corresponding voltages and powers at the short circuit point in Figure 45. The larger
rectangles represent the bypass diodes connected to the two cells left of the bypass diode.

The minimum current in a cell is found at the module’s open circuit point and is
−0.48A. Note that this value did not increase.

Figure 45: Cell voltages [V] and power points [W] at the short circuit point of
the 4× 4 SP module with bypass diodes under shading pattern ‘Diagonal

fading’ (Appendix VI)

Figure 46: Cell currents [A] at the open circuit
point of the 4× 4 SP module with bypass diodes

under shading pattern ‘Diagonal fading’ (Appendix
VI)
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In the same way we find a minimum cell voltage and power of −1.03V and −5.14W
for the TCT module, at its short circuit point. This voltage level does not exceed the
breakdown voltage, but the power does exceed the negative power limit. The minimal
current was found at the open circuit voltage and has a value of −0.80A.

With the bypass diodes, the minima were found at the same operating points as
before, but they are now at the safe levels of −0.69V, −3.36W and −0.80A instead.

In conclusion, we can see that the bypass diodes do protect the cells from exceeding
the breakdown voltage and from dissipating too much power (and possibly becoming a
hot spot).

6.1.3 Other bypass diodes

To see if the choice of bypass diode has an effect on the maximum power output we
generated the I-V curves of the ‘horizontal’ shading pattern and ‘corner fading’ shading
pattern for two other (theoretical) types of bypass diode. Bypass diode 1 has a forward
voltage between 0 and 0.1V and has parameters I0 = 0.4 · 10−1A, n = 1.4, T = 328K.
Bypass diode 2 has a forward voltage between 0.6 and 0.7V and has parameters I0 =
0.4 · 10−8A, n = 1.4, T = 328K.

Figure 47: ‘Horizontal’ shading
pattern (see Appendix VI) for 4× 4 SP
and TCT modules with bypass diode 1

Figure 48: ‘Horizontal’ shading
pattern for 4× 4 SP and TCT modules

with bypass diode 2
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Figure 49: ‘Corner fading’ shading
pattern (see Appendix VI) for 4× 4 SP
and TCT modules with bypass diode 1

Figure 50: ‘Corner fading’ shading
pattern for 4× 4 SP and TCT modules

with bypass diode 2

It can be seen that, in case the power output increases because of the bypass diodes,
then a bypass diode with a lower forward voltage can allow the modules to have a much
higher power output. Though we do see in Figure 49 that the power output of the SP
module decreases a bit with the bypass diode 1.

Of course, the bypass diodes should be chosen so that they protect the cells and not
purely in order to get the highest maximum power output. However, if there are safe
multiple options for the bypass diodes, the bypass diode with the lowest forward voltage
has an advantage.

6.2 Random patterns
In order to obtain a larger amount of data, we generated random patterns. Six module
sizes were tried, each with 48 cell in total: 16×3, 12×4, 8×6, 6×8, 4×12 and 3×16. For
all of these module sizes we generated 40 (pseudo-)random discrete irradiance matrices.
The irradiance matrices can be split into two groups:
Group 1: matrices where entries can be 400, 500 and 600W/m2

Group 2: matrices where entries of the matrices can be 0, 100, 200, . . . , 900 or 1000W/m2.
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Figure 51: Example of two random irradiance matrices. On the left a matrix from
group 1 for a 12× 4 module, and on the right a matrix from group 2 for a 6× 8 module.

For each of the groups 20 random matrices were generated, per module size. Then
the maximum power points for both the TCT and SP module (with bypass diodes)
are calculated for all these irradiance matrices and module sizes. This gives us in total
6 · 40 = 240 data points for ∆PMPP and relative ∆PMPP, as defined before.

Since all of the modules have the same number of cells, namely 48, and a single cell
for 20 degrees and full irradiance has a maximum power output of 2.0479W, we get a
maximum power of 98W for the unshaded modules.

Figure 52: Absolute and relative power output differences between SP and TCT for
random shading patterns, compared to the mean irradiance per cell.

In Figure 52 we see that all the difference values are positive, which means that the
in all the generated scenarios TCT performs better. Even up to about 230% better (i.e.,
the maximum power output of TCT is more than 3 times the maximum power of SP).

Also, in this figure we can see that the power difference for irradiance matrices of
group 1 is much lower, even though the mean irradiance is also located around 500W/m2

(i.e., total irradiance is about the same). So the mean or total irradiance level does not
correlate with the relative difference in power output between SP and TCT. We do see
that for the absolute power difference there is a slight positive trend of higher difference
for a higher mean irradiance. However, this can be attributed to the fact that higher
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irradiance gives higher power output levels, so the differences in power output can also
be larger.
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Figure 53: Relative difference in maximum power points compared with the standard
deviation of irradiance per cell.

The data in Figure 53 that is grouped together on the left is from irradiance matrix
group 1, and on the right we see the data from irradiance matrix group 2. The standard
deviation of irradiance per cell is calculated as the standard deviation of all the values in
the corresponding irradiance matrix. The irradiance levels can vary more for group 2, so
that is why the deviation range for this group is wider. In general, we see an increasing
trend: the larger the standard deviation of irradiance across the module, the more TCT
can relatively improve compared with SP. For group 1 we see relative differences between
zero and 20%, while for group 2 we see relative differences ranging from 25 to 250%.
So if large differences in irradiance are expected, then the benefits of picking TCT over
SP can also be high. But you only expect this large standard deviation if something is
completely covering some part of you module. Also, on sunny days the differences in
irradiance between shade and no shade can be more intense. Still the advantages with
less irradiance deviation can still be about 5-25% improvement over SP.
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Figure 54: Relative ∆PMPP w.r.t. the
standard deviation of irradiance per cell

for group 1
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Figure 55: Relative ∆PMPP w.r.t. the
standard deviation of irradiance per cell

for group 2

Within group 1 we don’t really see a positive correlation between the relative error
and standard deviation of irradiance, but then the standard deviation doesn’t have a
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larger range in Figure 54. In Figure 55 we do see that within group 2 there is a slight
positive correlation with standard deviation of the irradiance.

To see if the dimensions of the module matter for random shading we calculated the
mean relative difference in maximum power output per module size.

module size mean relative ∆PMPP
16× 3 42.6
12× 4 60.1
8× 6 66.1
6× 8 65.7
4× 12 70.2
3× 16 49.7

It seems like the wider the module the more advantage of TCT over SP, but there
is a limit to this as at the 3 × 16 module the mean was decreasing. Though this isn’t
conclusive proof.

A final note on random patterns is that they might not be very realistic scenarios,
we might expect more regular shapes because of nearby objects that cast a shade on
the PV module. However, the irradiance matrices with lower deviation (group 1) could
represent shading caused by trees, by dirt on the module, or shading caused by traffic
as could occur, for example, on a pavement made with solar panels. The irradiance
matrices with higher deviation (group 2), can occur on a bright day when the light is
not diffused.

6.3 Impact of module dimensions
The next question is; does the difference between the power output of SP and TCT
depend on the module dimensions. Modules of size 16 × 4, 8 × 8, 4 × 16 were tested
with four different shading pattern shapes. These module sizes were picked so that the
following shading patterns could be scaled nicely, without creating half shaded cells,
according to the module size.

Figure 56: Green and orange shading patterns, scaled according to the module size.
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Figure 57: Red and blue shading patterns, scaled according to the module size.

The coloured cells are fully shaded (0W/m2) in the corresponding colour shading
pattern. So for example, in the pattern ‘red’ all cells have irradiance 1000W/m2, except
for the red filled cells, those are fully shaded. Then we also define a ‘red inverse’ shading
pattern, this has the irradiance matrix of ‘red’ but inverted: cells that are coloured red
are now the fully illuminated and the empty cells are fully shaded. This is also applied
for the other colours, therefore we get eight shading patterns that are scaled with the
module size.
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PMPP TCT [W] PMPP SP [W] ∆PMPP [W] rel. ∆PMPP [%]
Green 16 x 4 70.652 64.040 6.612 10.325

8 x 8 70.653 64.040 6.614 10.328
4 x 16 70.654 64.040 6.615 10.329

Green inverse 16 x 4 19.070 20.522 -1.452 -7.077
8 x 8 18.228 20.522 -2.295 -11.181
4 x 16 17.391 20.522 -3.131 -15.259

Red 16 x 4 38.929 43.550 -4.621 -10.611
8 x 8 37.210 43.550 -6.340 -14.558
4 x 16 35.503 43.550 -8.047 -18.479

Red inverse 16 x 4 28.654 31.012 -2.359 -7.606
8 x 8 27.371 31.012 -3.641 -11.742
4 x 16 26.097 31.012 -4.916 -15.850

Blue 16 x 4 66.611 63.569 3.042 4.785
8 x 8 66.612 63.569 3.043 4.787
4 x 16 66.613 63.569 3.044 4.789

Blue inverse 16 x 4 40.982 42.121 -1.139 -2.705
8 x 8 40.541 42.121 -1.581 -3.752
4 x 16 17.543 20.591 -3.048 -14.801

Orange 16 x 4 33.539 30.138 3.401 11.285
8 x 8 33.541 30.138 3.403 11.290
4 x 16 33.542 30.138 3.403 11.293

Orange inverse 16 x 4 46.929 42.532 4.397 10.339
8 x 8 46.456 42.532 3.924 9.226
4 x 16 26.246 31.082 -4.836 -15.557

Table 6: Results of the shading patterns for the different modules sizes.

What we can see in Table 6 is that even though the shading patterns are scaled with
the module’s size and shade the exact same amount for the three modules, there is still
a difference in power output between the modules sizes and a difference in (relative)
∆PMPP. For the shading patterns ‘green’, ‘blue’ and ‘orange’, TCT has a higher
maximum power output and also the (relative) ∆PMPP are almost the same for the
different module sizes. We have a larger deviation in (relative) ∆PMPP for the other
shading patterns. Overall, the TCT’s power output mostly decreases relatively to the
SP’s power output when the module is wider and shorter. This effect can be explained
by the bypass diode layout; for the size 4 × 16 there is more mismatching between
the pairs of cells (or parallel sets) that are connected to a bypass diode, because the
shading patterns can have uneven number of rows for this size. Why this effect doesn’t
influence the ‘green’, ‘blue’ and ‘orange’ patterns is unclear. In conclusion, the effects of
scaling and different sizing are complicated. Without any specific information about the
expected shading patterns, cell type, and bypass diode, there can be no recommendation
given for the best module dimensions.

We can also look into the possibility of rotating the layout of the interconnections
between the cells. Rotating the interconnections means that for a SP the cells in a
row get connection in a string instead of the cells in a column, and those horizontal
strings then get connected in parallel. For a TCT module we mean by ‘rotating the
interconnection layout’ that instead of the rows, the cells in columns will be connected
in parallel and then these vertical parallel sets get connected in series. Bypass diodes
will be changed accordingly. Then we see that if a certain shading pattern is excepted,
rotating the layout interconnection can by very beneficial. For example, the ‘blue’ 4×16
module is the rotation of the ‘red’ 16× 4 module and vice versa. We see that the ‘blue’
shading pattern has much higher power outputs than the ‘red’ shading patterns, about
20W higher. So if we would expect the ‘red’ shading pattern on a 16 × 4 module, it
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will be beneficial for the power output to rotate the connection layout. And the same
for the other two modules: rotating the connection layout in case ‘red’ horizontal shade
is expected gives higher power output. We could also see this effect in the previous
simulations in Appendices V and VI: vertical shades have higher power outputs than
the same amount of shade horizontally, for both SP and TCT. Further research would
be needed into this effect to determine in exactly which cases rotating interconnection
layout would be beneficial and possible.

6.4 More patterns

PVcell with properties:
Tambient: 20 ◦C
Irradiance: 1000 W/m2

NOCT: 54.6 ◦C
TempCoefIshort: 0.008 %
TempCoefVopen: -0.28 %
RefIshort: 2.35 A
RefVopen: 0.664 V
RefImpp: 2.055 A
RefVmpp: 0.531 V
RefPmpp: 1.091 W
IdealityFactor: 1.5
Rseries: 0.014 Ohm
Rshunt: 3.558 Ohm
Tcell: 63.25 ◦C
Photocurrent: 2.367 A
ReverseSatcurrent: 0 A

Table 7: Parameters of half a CIGS cell
of 16% at shown ambient conditions.

We defined some more shading patterns but
now for 12×4 modules of half CIGS cells that
have an efficiency of 16% (see Figure 7), to get
more variety on the cell types that we obtain
the results for. The ambient temperature is
again 20 degrees Celsius, and full irradiance is
1000W/m2. The bypass diodes are Schottky
diodes, modelled with same parameter values
as before. The shading patterns can be found
in Appendix VII. Note that if a cell has a
shade across half of it, then we model this
as half of the full irradiance on the cell, so
500W/m2. Probably a cell will not have the
same electrical behaviour for less irradiance
or partial shade on the cell. But the effect
of partly shading a cell is not exactly known.
Therefore, by lack of a better method, if a
cell has a ratio x uncovered and the rest of
it’s surface is fully shaded, then we will model
this as if the cell has an x ratio of the full
irradiance.

We can conclude from Table 8 that even
though sometimes the SP has a higher maximum power output, the relative difference
with the TCT power output stays under 10% in these cases. The mean relative difference
in power outputs of the cases where SP performs better is −5.0%. On the other hand,
when the TCT configuration has a larger power output, then it can be up to a 77%
improvement of power output over SP. The mean relative difference of the cases where
TCT performs better than SP is 17.0%. So statistically the TCT performs better,
but again like for the other simulations, for specific cases it is hard to predict what to
expect. For example, ‘Diag3a’ and ‘Diag4a’ are the same shades but just shifted one
row downwards for ‘Diag4a’. Despite that, because of a difference in shading pattern
with respect to the bypass diodes, the TCT and SP almost have the same power output
for ‘Diag3a’ but have a large relative difference of 41% for ‘Diag4a’. Also among the
same category of shades (diagonal, corner, spot), sometimes SP is better and sometimes
TCT is better.

A final measurement is that based on the results in Table 8 it might seem that
the TCT configuration more often has the same power output. This however is not
necessarily true, because if we look at the 24x4 simulation measurements from the
verification experiment (tables in Appendix V), then amongst those measurements the
SP comes out on top most often. The baseline of the SP 24x4 does have a 0.1W higher
power point, but this can not bridge the gap between the other SP and TCT power
output simulations. Since simulated shading patterns will never cover all the possible
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Pattern PMPP TCT [W] PMPP SP [W] ∆PMPP [W] rel. ∆PMPP [%]
Diag1a 36.902 34.622 2.280 6.585
Diag1b 26.095 24.849 1.246 5.013
Diag2a 25.488 26.684 -1.196 -4.483
Diag2b 18.546 20.391 -1.845 -9.046
Diag3a 34.617 34.586 0.031 0.089
Diag3b 24.089 14.719 9.370 63.658
Diag4a 34.617 24.506 10.111 41.259
Diag4b 24.095 21.287 2.808 13.189
Diag5a 34.617 26.684 7.933 29.731
Diag5b 26.406 14.915 11.491 77.045

Corner1a 34.730 37.299 -2.570 -6.889
Corner1b 26.079 26.855 -0.776 -2.890
Corner2a 32.300 31.887 0.414 1.297
Corner2b 23.623 23.261 0.361 1.554
Corner3a 34.315 34.871 -0.557 -1.596
Corner3b 30.244 27.896 2.349 8.419
Corner4a 29.295 29.200 0.096 0.328
Corner4b 19.180 19.582 -0.402 -2.052

Spot1 39.543 39.424 0.118 0.300
Spot2 30.369 29.086 1.284 4.413
Spot3 24.120 25.771 -1.651 -6.405
Spot4 29.441 29.037 0.404 1.391
Spot5 23.985 25.606 -1.621 -6.329

Table 8: Results of the shading patterns in Appendix VII on 12× 4 TCT and SP
modules of half CIGS cell with an efficiency of 16%.

shading patterns, it is impossible to derive a quantitative conclusion from just these
simulations.
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Conclusion
There is no conclusive answer on which configuration has the highest power output in
general, because there are too many variables. Among the factors that influence the
difference in maximum power output between a TCT and SP configuration, are the
number and type of bypass diodes, dimensions of the module, the ambient conditions
and the shading pattern. Not only does the shape of the shading pattern matter, but also
the location on the module with respect to the bypass diodes; shifting a shade one row
can make a big difference for the power output. It was found for 240 random shading
patterns that the TCT configuration always had a higher power output than the SP
configuration in those cases. The data showed a positive correlation between the relative
difference of both configurations’ maximum power outputs, and the standard deviation
of the irradiance levels on the module. In other words, the more the irradiance levels
between cells of the module deviated, the relatively better TCT was compared with SP.
The relative maximum power difference between TCT and SP can range from about 2%
to 230%, which means that TCT can even have more that 3 times the power output of
SP (for high deviation in irradiance of about 350W/m2). For non-random, more regular,
shading patterns it was found that the SP configuration could have a higher maximum
power output than the SP configuration. However, the maximum power output of TCT
was at most 5% worse than the maximum power output of SP. Whereas, when TCT
had a higher maximum power output, then it could be an improvement of up to 77%
compared to SP. Therefore, if no more specific information is known about the expected
shading patterns, TCT can be a safer option, because it could increase the power output
by a lot or otherwise have almost the same power output as the SP configuration.

Discussion and outlook
It is known that there are some inaccuracies in the model. First of all, in reality n, Rs,
and Rsh are temperature dependent, instead of constant as assumed in this research.
Secondly, there are multiple diode models which are more accurate than the single diode
model. However, considering the verification experiment showed that the model is quite
accurate (ca. 2% error in maximum power output estimations), improvement on those
areas might not be significant.

Since there are a limited amount of simulated shading patterns and it will never be
possible to cover all the potential shading patterns, it is impossible to obtain a definite
conclusion from just the simulations done in this research. Also, the results were only
generated for MiaSol’e CIGS cells, and not yet for other thin-film cell types. It is possible
to use the developed model for other type of cells, not even necessarily thin-film, and this
can be an interesting subject for further research. What can also be done, is modifying
the model to be used for other parameter differences of the cells: for example to research
what happens for the I-V and P-V curves in case of cells with different shunt resistances
in a module.

Most importantly, combining the developed model with a tool that predicts the
shading patterns, could be very useful for determining which configuration is the best
option for a specific situation.

As a final note, the configurations explored in this research aren’t the only possible
ones. Besides the TCT and the SP configuration, there are the so-called honey-comb
and bridge-link. They could have some potential [3], and could be an interesting subject
for further research into shadow tolerant design for thin-film modules.

66



References
[1] Solliance, “Scaled perovskite solar modules pass three critical stability tests.” Press

release, 2020.

[2] Solliance, “About us.” Page on www.solliance.eu, 2020.

[3] R. Ramaphrabha and B. Mathur, “A comprehensive review and analysis of solar
photovoltaic array configurations under partial shaded conditions,” International
Journal of Photoenergy, 2012.

[4] J. Jewett and R. Serway, Physics for Scientists and Engineers with Modern Physics,
Eigth Edition. BROOKS/COLE Cengage Learning, 2010.

[5] C. Honsberg and S. Bowden, “Solar cell structure.” Page on www.pveducation.org,
2019.

[6] NREL, “Best research-cell efficiency chart.” Page on www.nrel.gov, 2019.

[7] M. Kibria et al., “A review: Comparative studies on different generation solar cells
technology,” Proceedings of 5th International Conference on Environmental Aspects
of Bangladesh, 2014.

[8] M. T. Hörantner et al., “The potential of multijunction perovskite solar cells,” ACS
Energy Letters, vol. 2, no. 10, pp. 2506–2513, 2017.

[9] F. Dimroth and S. Kurtz, “High-efficiency multijunction solar cells.,” MRS Bulletin,
vol. 32, no. 3, pp. 230–235, 2007.

[10] C. Honsberg and S. Bowden, “Ideality factor.” Page on www.pveducation.org,
2019.

[11] C. Honsberg and S. Bowden, “Measuring ideality factor.” Page on www.
pveducation.org, 2019.

[12] M. A. Green, Solar Cells Operating Principles. Englewood Cliffs: Prentice-Hall,
1982.

[13] P. EE, “Diodes.” Page on www.practicalee.com, 2020.

[14] J. Soon, K.-S. Low, and S. Goh, “Multi-dimension diode photovoltaic (pv) model
for different pv cell technologies,” Institute of Electrical and Electronics Engineers,
2014.

[15] M. Villalva, J. Gazoli, and E. Filho, “Comprehensive approach to modeling
and simulation of photovoltaic arrays,” IEEE TRANSACTIONS ON POWER
ELECTRONICS, vol. 25, no. 5, pp. 1198–1208, 2009.

[16] H. Tsai, C. Tu, and Y. Su, “Development of generalized photovoltaic model using
matlab/simulink,” Proceedings of the World Congress on Engineering and Computer
Science, 2008.

[17] O. Dupré and M. A. Green, Thermal Behavior of Photovoltaic Devices. Springer,
2017.

[18] C. Honsberg and S. Bowden, “Nominal operating cell temperature.” Page on www.
pveducation.org, 2019.

67

www.solliance.eu
www.pveducation.org
www.nrel.gov
www.pveducation.org
www.pveducation.org
www.pveducation.org
www.practicalee.com
www.pveducation.org
www.pveducation.org


[19] D. Cotfas, P. Cotfas, and O. Machidon, “Study of temperature coefficients for
parameters of photovoltaic cells,” Hindawi, International Journal of Photoenergy,
2018.

[20] A.Virtuani, D. Pavanello, and G. Friesen, “Overview of temperature coefficients of
different thin film photovoltaic technologies,” 5th World Conference on Photovoltaic
Energy Conversion, 2010.

[21] A. Parisi et al., “Thin film cigs solar cells, photovoltaic modules, and the problems
of modeling,” Hindawi, International Journal of Photoenergy, 2013.

[22] P. Dash and N. Gupta, “Variation of temperature coefficient of different technology
photovoltaic modules with respect to irradiance,” Inpressco, International Journal
of Current Engineering and Technology, vol. 5, no. 1, 2015.

[23] C. Honsberg and S. Bowden, “Effect of temperature.” Page on www.pveducation.
org, 2019.

[24] J. Phang, D. Chan, and J. Phillips, “Accurate analytical method for the extraction
of solar cell model parameters,” Electronics Letters, vol. 20, no. May, pp. 406–408,
1984.

[25] W. D. Soto, S. Klein, and W. Beckman, “Improvement and validation of a model for
photovoltaic array performance,” Elsevier, Solar Energy, vol. 80, pp. 78–88, 2006.

[26] E. Karatepe, M. Boztepe, and M. Colak, “Development of a suitable model for
characterizing photovoltaic arrays with shaded solar cells,” Elsevier, Solar Energy,
vol. 81, pp. 977–992, 2007.

[27] E. Karatepe, M. Boztepe, and M. Colak, “Neural network based solar cell model,”
Elsevier, Energy Conversion and Management, vol. 47, pp. 1159–1178, 2006.

[28] W. Xiao, W. Dunford, and A. Capel, “A novel modeling method for photovoltaic
cells,” Institute of Electrical and Electronics Engineers, 2004.

[29] C. Honsberg and S. Bowden, “Inverters.” Page on www.pveducation.org, 2019.

[30] C. Honsberg and S. Bowden, “Bypass diodes.” Page on www.pveducation.org,
2019.

[31] I. Poole, “Schottky diode: Schottky barrier diode.” Page on www.
electronics-notes.com, 2020.

[32] S. Mortazavi, K. Bakker, et al., “Effect of reverse bias voltages on small scale gridded
cigs solar cells,” IEEE PVSEC, vol. 44, 2017.

[33] B. McCartin, “A model-trust region algorithm utilizing a quadratic interpolant,”
Journal of Computational and Applied Mathematics, vol. 91, pp. 249–259, 1998.

68

www.pveducation.org
www.pveducation.org
www.pveducation.org
www.pveducation.org
www.electronics-notes.com
www.electronics-notes.com


Appendices

I Best Research-Cell Efficiencies Chart
[6]
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MiaSolé

CIGS SOLAR CELL  

KEY FEATURES

Copper Indium Gallium Diselenide (CIGS) Solar Cells: 
High Power Density in a Flexible Form Factor 

  Aperture effi  ciency of up to 17% in a fl exible form factor.

  Th in—0.33mm

  Lightweight—7.5 gm

  Ideal for many specialized uses. Versatile cell architecture 
means the size can be modifi ed to suit various 
applications.

  Bendable and shatter—proof

HANDLING AND STORAGE NOTES

  Cells are sensitive to temperature and humidity. Th ey 
must be stored either in vacuum—sealed containers or in 
a dry box with ≤5% relative humidity. Cells should be kept 
between 2025  C.

  Cells require encapsulation before use to protect against 
moisture and the environment.

MiaSolé thin—fi lm CIGS solar cells on stainless steel 
substrate have high effi  ciency levels and provide 
signifi cant advantages over conventional, rigid solar 
cells.

II Datasheet MiaSolé CIGS Solar Cell
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2590 Walsh Avenue, Santa Clara, California 95051, USA
1.408.919.5700   info@miasole.com   www.miasole.com

PHYSICAL AND MECHANICAL SPECIFICATIONS

Length 312 mm +2/-4 mm

Width 43.75 mm ± .005 mm

Th ickness 0.33 mm ± 0.1 mm

Weight 7.5 gm ± 0.1 gm

Cell Type Copper Indium Gallium Diselenide (CIGS)

ELECTRICAL PERFORMANCE BY 0.5% EFFICIENCY BINS

Cell Effi  ciency    15.5% 16.0% 16.5% 17%

Nominal Power P 
MPP

[W] 2.12 2.18 2.25 2.32

Power Output Tolerance [W] +0.1/-0 +0.1/-0 +0.1/-0 +0.1/-0

Maximum Power Voltage V
MPP

[V] 0.526 0.531 0.538 0.545

Maximum Power Current I
MPP

[A] 4.04 4.11 4.17 4.25

Open Circuit Voltage V
OC

[V] 0.661 0.664 0.670 0.673

Short Circuit Current I
SC

[A] 4.70 4.70 4.70 4.70

1Standard Test Conditions (STC): 1000 W/m2 , 25°C cell temperature, AM 1.5 spectrum
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MiaSolé

CIGS SOLAR CELL

THERMAL CHARACTERISTICS*

NOCT [ C̊] 48

Temperature Coeffi  cient of P
MPP

[% /̊C] -0.38

Temperature Coeffi  cient of V
OC

[% /̊C] -0.28

Temperature Coeffi  cient of I
SC

[% /̊C] 0.008

CELL DIAGRAM

*based on MiaSole FLEX-02 module measurements
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III Shading patterns 12x4
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diagB 

spotA spotB 

diagB for TCT* 

 

* The shading pattern for the 12x4 TCT 
module was accidentally applied 
wrongly. This was actually found out 
because the simulation curve had such 
differently located current drops. 
Luckily, there was a picture taken of 
the originally applied shade. 
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IV Shading patterns 24x4
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diagB spotA spotB 
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V Results verification experiment
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TCT 12x4 PMPP Isc Voc
measured simulated abs. error rel. error measured simulated abs. error rel. error measured simulated abs. error rel. error

noshade 33.302 32.824 0.478 1.437 6.890 6.872 0.018 0.261 7.192 7.141 0.051 0.706
hor3 16.278 17.451 1.172 3.521 6.795 6.829 0.033 0.483 6.352 5.355 0.997 13.870
hor3.5 16.209 17.451 1.242 3.729 6.795 6.829 0.034 0.495 6.087 5.351 0.736 10.240
hor6t 8.539 9.875 1.336 4.012 6.708 6.781 0.073 1.060 4.216 3.570 0.646 8.983
hor6b 8.665 9.875 1.210 3.633 6.633 6.781 0.148 2.146 3.994 3.570 0.423 5.884
vert2l 15.974 15.600 0.375 1.125 3.474 3.436 0.038 0.553 6.904 6.956 0.052 0.717
vert2r 15.697 15.600 0.097 0.293 3.420 3.436 0.016 0.228 6.919 6.956 0.036 0.504
vert2.5 11.801 11.444 0.357 1.072 2.642 2.576 0.066 0.960 6.781 6.897 0.116 1.612
slopeA1 24.169 24.630 0.461 1.383 6.810 6.836 0.026 0.373 7.098 7.113 0.014 0.196
slopeA2 7.464 7.908 0.444 1.334 6.140 6.559 0.419 6.081 5.184 4.670 0.514 7.146
slopeB1 22.522 22.626 0.104 0.312 6.807 6.833 0.026 0.382 7.066 7.082 0.016 0.221
slopeB2 6.380 6.529 0.150 0.450 6.045 6.544 0.499 7.242 4.924 4.106 0.818 11.376
diagA 13.850 13.898 0.047 0.142 6.506 6.645 0.140 2.029 6.965 7.056 0.091 1.267
diagB 18.449 18.154 0.296 0.888 6.533 6.626 0.093 1.345 6.998 7.052 0.055 0.760
spotA 21.083 20.805 0.278 0.835 6.805 6.792 0.013 0.192 7.067 7.043 0.024 0.334
spotB 11.702 11.560 0.142 0.427 6.767 6.786 0.019 0.277 6.888 7.008 0.120 1.675
Mean 0.512 1.537 0.104 1.507 0.294 4.093

SP 12x4 PMPP Isc Voc
measured simulated abs. error rel. error measured simulated abs. error rel. error measured simulated abs. error rel. error

noshade 30.209 33.125 2.916 9.652 6.742 6.872 0.131 1.937 7.143 7.142 0.001 0.009
hor3 16.818 18.231 1.413 4.677 6.315 6.849 0.535 7.929 6.129 5.350 0.778 10.899
hor3.5 16.786 18.231 1.445 4.784 6.308 6.849 0.541 8.023 6.014 5.347 0.667 9.333
hor6t 10.161 10.868 0.707 2.340 6.160 6.825 0.664 9.856 4.089 3.571 0.518 7.258
hor6b 10.312 10.868 0.555 1.838 6.659 6.825 0.166 2.467 3.817 3.571 0.246 3.439
vert2l 15.710 15.974 0.264 0.874 3.452 3.436 0.016 0.232 6.896 6.966 0.070 0.979
vert2r 12.929 15.974 3.045 10.080 3.286 3.436 0.150 2.227 6.894 6.966 0.072 1.008
vert2.5 11.420 11.841 0.421 1.394 2.598 2.576 0.022 0.325 6.740 6.915 0.175 2.457
slopeA1 2.955 24.142 21.187 70.136 4.782 6.862 2.080 30.847 2.219 7.079 4.860 68.039
slopeA2 3.358 7.229 3.871 12.815 4.598 6.771 2.172 32.220 3.495 4.431 0.936 13.106
slopeB1 3.107 21.840 18.733 62.012 4.751 6.862 2.111 31.306 2.680 6.994 4.314 60.397
slopeB2 2.585 5.521 2.937 9.722 4.338 6.767 2.429 36.033 3.086 3.613 0.526 7.371
diagA 3.681 14.787 11.107 36.767 4.848 6.839 1.990 29.525 3.652 5.941 2.288 32.038
diagB 1.185 18.231 17.046 56.427 4.528 6.849 2.322 34.437 2.695 5.350 2.655 37.170
spotA 7.861 20.088 12.226 40.473 4.767 6.855 2.088 30.977 4.043 6.947 2.904 40.663
spotB 4.867 12.154 7.287 24.123 4.406 6.838 2.432 36.071 4.429 6.928 2.499 34.989
Mean 6.573 21.757 1.241 18.401 1.469 20.572
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TCT 24x4 PMPP Isc Voc
measured simulated abs. error rel. error measured simulated abs. error rel. error measured simulated abs. error rel. error

noshade 32.750 32.584 0.167 0.509 3.445 3.436 0.009 0.252 14.212 14.282 0.070 0.494
hor6 21.314 21.367 0.053 0.162 3.413 3.415 0.002 0.069 12.357 10.712 1.645 11.573
hor6.5 17.832 17.782 0.050 0.153 3.407 3.406 0.001 0.038 12.167 10.708 1.459 10.267
hor12t 10.448 10.288 0.160 0.488 3.383 3.373 0.009 0.274 8.004 7.141 0.863 6.071
hor12b 9.435 10.288 0.853 2.606 3.380 3.373 0.007 0.210 8.658 7.141 1.517 10.672
vert2l 15.515 15.205 0.311 0.949 1.733 1.718 0.015 0.429 13.551 13.901 0.350 2.463
vert2r 15.254 15.205 0.049 0.151 1.725 1.718 0.007 0.195 13.493 13.901 0.408 2.871
vert2.5 11.332 11.009 0.323 0.987 1.304 1.288 0.016 0.475 13.313 13.774 0.460 3.239
slopeA1 28.387 28.487 0.100 0.305 3.424 3.426 0.002 0.061 14.079 14.253 0.174 1.223
slopeA2 8.688 8.489 0.199 0.609 3.356 3.346 0.009 0.275 10.112 8.232 1.880 13.227
slopeB1 26.639 26.415 0.224 0.684 3.424 3.425 0.001 0.025 14.046 14.221 0.175 1.232
slopeB2 7.432 7.066 0.366 1.116 3.350 3.345 0.004 0.130 8.302 7.674 0.629 4.424
diagA 17.700 17.703 0.004 0.011 3.405 3.397 0.009 0.252 13.222 13.488 0.266 1.872
diagB 17.971 17.932 0.040 0.121 3.408 3.407 0.002 0.045 12.801 12.967 0.166 1.165
spotA 18.701 18.583 0.118 0.361 3.405 3.396 0.010 0.282 13.828 14.088 0.260 1.828
spotB 17.969 17.920 0.049 0.149 3.409 3.407 0.002 0.059 13.776 14.063 0.287 2.016
Mean 0.192 0.585 0.007 0.192 0.663 4.665

SP 24x4 PMPP Isc Voc
measured simulated abs. error rel. error measured simulated abs. error rel. error measured simulated abs. error rel. error

noshade 32.437 32.643 0.206 0.635 3.462 3.436 0.026 0.762 14.189 14.282 0.093 0.653
hor6 22.034 21.924 0.110 0.338 3.418 3.411 0.007 0.200 11.478 10.711 0.766 5.400
hor6.5 18.394 18.511 0.117 0.361 3.402 3.400 0.002 0.059 11.436 10.707 0.729 5.138
hor12t 11.568 11.296 0.271 0.836 3.365 3.363 0.003 0.082 7.942 7.141 0.801 5.645
hor12b 10.362 11.296 0.934 2.880 3.434 3.363 0.071 2.050 8.084 7.141 0.943 6.646
vert2l 15.094 14.867 0.227 0.700 1.727 1.718 0.009 0.261 13.525 13.907 0.382 2.696
vert2r 15.316 14.867 0.449 1.384 1.734 1.718 0.016 0.473 13.380 13.907 0.527 3.713
vert2.5 11.134 10.565 0.569 1.754 1.308 1.288 0.020 0.579 13.249 13.762 0.514 3.619
slopeA1 27.858 28.238 0.380 1.171 3.448 3.429 0.019 0.558 14.078 14.168 0.090 0.638
slopeA2 8.991 8.906 0.085 0.261 3.361 3.349 0.013 0.369 9.684 7.691 1.993 14.047
slopeB1 - 28.112 - - - 3.429 - - - 14.000 - -
slopeB2 8.944 8.801 0.144 0.442 3.356 3.348 0.008 0.233 9.552 7.044 2.509 17.679
diagA 20.349 19.831 0.518 1.597 3.423 3.406 0.017 0.495 12.701 11.889 0.811 5.719
diagB 22.148 21.939 0.208 0.642 3.425 3.411 0.015 0.421 12.341 11.303 1.038 7.318
spotA 18.279 18.022 0.257 0.793 3.423 3.410 0.013 0.365 13.634 13.802 0.168 1.187
spotB 18.927 19.323 0.396 1.220 3.412 3.409 0.003 0.096 13.645 13.808 0.163 1.148
Mean 0.325 1.001 0.016 0.467 0.769 5.416
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= 0 W/m² 

= 1000 W/m² 

VI Effect of bypass diodes: results
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Corner Corner fading 

Diagonal Diagonal fading 

Vertical fading Horizontal fading 
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VII More patterns
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