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Hoofdstuk 1

Introductie

In 1961 introduceerde de wiskundige Hao Wang vierkante tegeltjes waarvan de zijdes
gekleurd zijn. Deze tegels, vernoemd naar hem, worden Wang-tegels genoemd. De vraag
die bij deze tegels gesteld wordt is de volgende: Als je een eindige verzameling Wang-
tegels hebt, kan je dan het oneindige vlak bedekken met tegels uit deze verzameling?
Hierbij mogen tegels niet geroteerd of gespiegeld worden en mogen tegels naast elkaar
liggen als naast elkaar liggende zijdes dezelfde kleur hebben. Hierbij mogen dezelfde te-
gels natuurlijk vaker voorkomen in de betegeling. Een volgende vraag is of het mogelijk
is het vlak alleen aperiodiek te bedekken met een verzameling Wang-tegels. Op deze
vraag gaan we vooral in in deze scriptie.

Hao Wang had het volgende vermoeden over Wang-tegels: als het vlak met een ver-
zameling Wang-tegels te bedekken is, kan dit ook altijd op een periodieke manier. Dit
staat bekend als het vermoeden van Wang. In 1966 was Robert Berger, een student van
Hao Wang, de eerste die aantoonde dat het vermoeden van Wang niet klopte [2]. Zo'n
vijf jaar daarna bewees Raphael Robinson hetzelfde op een andere manier [14]. Weer
jaren later, in 2007, bewees Jarkko Kari, hetzelfde op nog een andere manier [I1]. In
deze scriptie gaan we in Hoofdstuk 3 in op het bewijs van Jarkko Kari.

Er blijken verzamelingen Wang-tegels te bestaan waarmee het vlak alleen aperiodiek
betegeld kan worden. Er zijn meerdere wiskundigen die hebben gezocht naar zulke ver-
zamelingen en probeerden zo’n klein mogelijke verzamelingen te vinden. Robert Berger
begon als eerste met een verzameling van meer dan 20.000 Wang-tegels. Hij vond zelf
ook al snel een kleinere verzameling van maar 104 tegels. Dit aantal werd in de jaren
daarna nog verder naar beneden gebracht. In 1995 vond Jarkko Kari een verzameling
van 14 Wang-tegels waarmee je het vlak alleen aperiodiek kan bedekken [I0]. Gebruik-
makend van het idee van Jarkko Kari vond Karel Culik een kleinere verzameling van 13
Wang-tegels [4]. Op dit idee gaan we verder in in Hoofdstuk 2.

Het blijkt dat de kleinste verzameling Wang-tegels waarmee je het vlak alleen aperi-
odiek kan bedekken bestaat uit 11 tegels met 4 kleuren. Het vermoeden van Wang met
het gebruik van drie of minder kleuren is wel waar. Deze resultaten worden besproken
in Hoofdstuk 4.

In het laatste hoofdstuk worden een aantal tegels beschreven die erg lijken op Wang-
tegels. Dit zijn tegels met bijvoorbeeld inkepingen en uitstulpingen of tegels met ge-
kleurde hoeken in plaats van zijdes.



Hoofdstuk 2

Een aperiodieke verzameling
van 13 Wang-tegels

In 1995 vond Jarkko Kari een verzameling van 14 Wang-tegels die het vlak alleen aperi-
odiek kunnen bedekken [I0]. Hij liet zien dat er met zijn verzameling tegels betegelingen
te maken zijn, maar dat er geen periodieke betegeling mee bestaat. Daarna vond Karel
Culik een verzameling van dertien tegels en vijf kleuren, die het vlak ook alleen aperi-
odiek kan bedekken [4]. Hij vond deze verzameling door dezelfde techniek als Kari te
gebruiken en bewees ook op dezelfde manier dat de verzameling aperiodiek is.

Om te beginnen is het goed om precies te weten wat een Wang-tegel is en hoe je hiermee
het vlak kan bedekken.

Figuur 2.1: Een Wang-tegel

Definitie 2.1. Een tegel is een eenheidsvierkant. Van de rand horen alleen de linker-
rand, onderrand en het hoekpunt linksonder bij de tegel.

Definitie 2.2. Een Wang-tegel is een tegel waarbij elke zijde gekleurd is.

Vaak worden deze kleuren weergeven met rationale getallen.
Laat T een eindige verzameling tegels en B een eindige verzameling Wang-tegels zijn.

Definitie 2.3. Een functie f : Z?> — T is een betegeling. De onderste linkerhoek van
een tegel in een betegeling ligt op een punt van de vorm (a, b) € Z2.

Een betegeling van het vlak kan je ook zien als een verzameling tegels die het vlak
helemaal opvullen zonder dat tegels elkaar overlappen.

Definitie 2.4. Een Wang-betegeling van het vlak met tegels uit B is een betegeling f
waarbij aangrenzende zijdes van tegels dezelfde kleur hebben.

Dit betekent dat Wang-tegels niet geroteerd of gespiegeld mogen worden in een Wang-
betegeling.

Definitie 2.5. Een betegeling f is periodiek met periode (a,b) € Z?\ {(0,0)} dan en
slechts dan als f(z,y) = f(z + a,y + b) voor elke (z,y) € Z2.



Definitie 2.6. Een betegeling f is dubbel periodiek als er een a > 0 en b > 0 bestaan
zodat f(x,y) = f(x +a,y) = f(z,y +b) voor alle (z,y) € Z?

Propositie 2.7. Als er een periodieke betegeling bestaat met tegels van T, dan bestaat
er ook een dubbele periodieke betegeling met tegels van T.

Bewijs. Stel dat er een periodieke betegeling bestaat met tegels van T en periode (a, b) €
7Z2\{(0,0)} zodat f(z,y) = f(z +a,y +b) voor elke (z,y) € Z2. Er zijn 3 verschillende
gevallen:

l.a>0enb=0
2.a=0enb>0
3.a>0enb>0

We bekijken eerst geval 1. Het aantal tegels in de verzameling T is eindig, dus er bestaan
maar eindig veel verschillende stukken in de betegeling met hoogte 1 en lengte a. Dat
betekent dat er ergens in de betegeling twee dezelfde rijen van lengte a onder elkaar
liggen. Stel dat deze rij na k rijen herhaald wordt. Dan volgt dat

fx,y) = flz,y + k)
fle+1ly) = flz+1,y+k)

fle+a—-1y)=f(r+a—1,y+k)

Nu hebben we een rechthoek van breedte a en lengte k dat we periodiek kunnen herhalen
en waarvoor geldt dat f(x,y) = f(z +a,y) = f(z,y + k) voor alle (x,y) € Z*. Dus we
hebben een dubbel periodieke betegeling met tegels uit T

Figuur 2.2: Geval 1 van Propositie 2.7

f(x,y) f(x+a,y)
flxy+1) f(x+a,y+1)
f(x,y+2) f(x+ay+2)

f(xy+k) f(x+a,y+k)

Geval 2 gaat op dezelfde manier alleen nu hebben we een rechthoek van breedte k
en lengte b.



Tot slot bekijken we geval 3. We hebben nu een periode (a,b) € Z? met a en b beiden
niet nul. Dus f(z,y) = f(z + a,y + b) voor elke (x,y) € Z?. Aangezien er maar eindig
veel tegels in de verzameling T zitten, zijn er maar eindig veel manieren om een a bij b
vlak te bedekken. Er zijn dus ergens in de betegeling twee dezelfde a bij b vlakken die
onder elkaar liggen. Stel dat het vlak na k rijen weer herhaald wordt. Dan volgt dat

f(@,y) = f(z,y + bk)
flx+1,y) = flx + 1,y + bk)

flx+a—1y)= flx+a—1,y+bk)

flxz,y+1) = f(z,y + 1+ bk)
flz+1,y+1)=fla+1,y+1+0bk)

fe+a—-1y+1)=flza+a—1,y+ 1+ bk)
fley+2) = fz,y + 2+ bk)

fle+a—-1y+b—-1)=fx+a—1,y+b—1+bk)

Figuur 2.3: Geval 3 van Propositie 2.7, elk getal stelt een a bij b vlak voor.

1 2 | 3 | k| 1

2 3 1 2

3 2 3
3

Wegens f(z,y) = f(z + a,y + b) geldt dat het a bij b vlak gelijk is aan het a bij
b vlak rechtsboven daarvan. We kunnen nu een vlak maken wat we periodiek kunnen
herhalen en waarvoor geldt dat f(z,y) = f(z + ¢,y) = f(z,y + d) voor alle (z,y) € Z?
met ¢ = ak en d = bk. De eerste kolom van a bij b vlakken bestaat uit de k£ vlakken
van de periodieke betegeling die we al hadden. Dan kunnen we de de linkerbovenhelft
al helemaal invullen, want vlakken zijn hetzelfde als het vlak rechtsboven ervan. We
kunnen de eerste kolom van a bij b vlakken nogmaals herhalen, want de het eerste a
bij b vlak past onder het laatste a bij b vlak van de kolom. Vanuit daar kunnen we de
diagonalen vullen en krijgen we ook de rechteronderhelft. Nu hebben we een ak bij bk



vlak wat we kunnen herhalen waarvoor geldt dat f(z,y) = f(z + ak,y) = f(x,y + bk)
voor alle (z,y) € Z?. Er bestaat dus een dubbel periodieke betegeling met tegels uit
T. O

Definitie 2.8. Een betegeling f is aperiodiek als die niet periodiek is.

Definitie 2.9. Een verzameling tegels is periodiek als er een periodieke betegeling mee
te maken is.

Figuur 2.4: De verzameling T35 van dertien tegels

1 1 1 0 0 0
—2X =1 |=2X 0 [[-1X 0 ||=1X-=2]| 0 X-2]|0 X~-1
2 1 2 1 2 1
o’ 2 1 1 0’ 2 1
0" X0 {0 X0 || 0 X5 || 0 X3 | 3 X3 | 3 X5 || 2 X0
0 1 0 0’ 0 1 1

Definitie 2.10. Een verzameling tegels is aperiodiek als er minstens een aperiodieke
betegeling mee te maken is.

We zeggen dat een Wang-tegel te vermenigvuldigen is met ¢ als ag + b = ¢ 4+ d met
a,b,cen d zoals in Figuur 2.1. Het kan gebeuren dat een tegel met meerdere getallen te
vermenigvuldigen is. De verzameling Wang-tegels 773 van Karel Culik, die uit dertien
tegels met in totaal vijf kleuren bestaat, is in twee delen op te splitsen. De eerste zes
tegels zijn (onder andere) te vermenigvuldigen met 3 en noemen we T3 en de overige

1

zeven tegels zijn allemaal met 5 te vermenigvuldigen en noemen we T% . Met 0/ wordt

op dezelfde manier gerekend als met O.

Propositie 2.11. Met de verzameling tegels Tys (Figuur 2.4) is geen periodicke betege-
ling te maken.

Bewijs. Neem aan dat er een periodieke betegeling bestaat. Dan bestaat er ook een
dubbele periodieke betegeling f : Z? — T met horizontale periode a en verticale periode
b. Er zijn geen betegelingen mogelijk met als verticale periode 1 of 2, zoals eenvoudig
na te gaan is. We kunnen dus aannemen dat b > 3. Aangezien er met tegels uit T%
niet meer dan twee opeenvolgende rijen betegeld kunnen worden, wat ook eenvoudig te
zien is, kunnen we zonder verlies van algemeenheid aannemen dat de nulde rij betegeld
wordt met tegels uit T5.

De som van de kleuren van de bovenzijdes van de tegels f(1,4), f(2,1),..., f(a,i) no-
teren we met n; voor i« € Z. De betegeling heeft horizontale periode a, dus de a tegels
links van f(1,4) zijn hetzelfde als de a tegels rechts van f(a,?). Een rij kan alleen be-
staan uit tegels van T3 of alleen uit tegels van T% . Dit komt doordat tegels uit de T5 en
T% andere getallen op de verticale zijdes hebben staan. Er geldt dat

Ln,, als de tegels in de %€ rij uit T% komen.

3n;, als de tegels in de i%¢ 1ij uit T3 komen,
Ni+1 =
2

Dit is zo, omdat tegels uit T5 te vermenigvuldigen met 3 en zijn de tegels uit T% te

vermenigvuldigen met % Als je een rij van lengte a hebt van tegels uit 75 dan staat er



op de linkerkant van de rij hetzelfde getal als aan de rechterkant van de rij, want de rij
heeft periode a. Omdat alle tegels uit de rij te vermenigvuldigen zijn met 3 geldt voor
de rij dat 3a + b = ¢+ d met b = d. Er volgt dan dat ¢, de onderkanten van de tegels
uit de rij, 3 keer zo groot is als a, de bovenkanten van de tegels uit de rij. Als je een rij
van tegels uit T% neemt gaat het op dezelfde manier.

De verticale periode van de betegeling is b en daarom geldt dat ny = np+1 = q1g293 - - -
qy - 11, met g; gelijk aan 3 of % Aangezien er geen tegel is in T3 die aan de onderkant
het getal 0 heeft staan en in de nulde rij alleen tegels uit T3 staan, kan de eerste rij geen
nullen aan de bovenzijde hebben staan. Daaruit volgt dat ny # 0 en uit de vergelijking
volgt dan dat q1¢2qs--- g, = 1. Alle termen daarvan zijn of 3 of % en het product daarvan
kan nooit gelijk zijn aan 1. Dit geeft een tegenspraak en er bestaat dus geen periodieke
betegeling met tegels uit 713. O

2.1 Beatty rijen

We willen nu nog laten zien dat er betegelingen te maken zijn met de verzameling T}3.
Om dit te bewijzen maken we gebruik van Beatty rijen.

Definitie 2.12. Een bi-oneindige 1ij = van een verzameling S is een functie x : Z — S.
De waarde (i) noteren we als x; met ¢ € Z.

Definitie 2.13. Een bi-oneindige Beatty rij is een rij A(a) van gehele getallen, die
bestaan uit het gehele deel van de veelvouden van o met o € R. Oftewel, voor alle
i€Z, Ala); = |i-af.

Voorbeeld 2.14. De bi-oneindige Beatty rij van 5,31 is als volgt:
..,—11,—6, 0, 5, 10, 15, 21, 26, 31, ...

Het volgende probleem werd in 1926 geintroduceerd door Samuel Beatty [I] en werd
door A. Ostrowski bewezen.

Stelling 2.15. Voor alle positieve irrationale getallen o en B die voldoen aan de ver-
gelijking a1 + =1 = 1, komt elk geheel getal, behalve —1 en 0, precies één keer voor
in de Beatty rij A(a) of in de Beatty rij A(B).

Bewijs. Neem N een positief geheel getal. Dan is L%J het aantal positieve getallen in de

Beatty rij van « dat kleiner is dan N en L%J het aantal positieve getallen in de Beatty
rij van (3 dat kleiner is dan N. Er geldt ook dat

N % =Na '+ N '=N@'!'+p =N
[0

Aangezien « en (3 irrationaal zijn, hebben % en % een fractioneel deel ongelijk aan nul.

Daaruit volgt dat
N N
— —|=N-1.
515

Dit is gelijk aan het aantal positieve getallen in de rijen kleiner dan N. Op dezelfde
manier zijn er N getallen in de rijen kleiner dan N 4 1. Er ligt dus precies 1 getal in
een van de rijen tussen N en N + 1 als N een positief geheel getal is.

Als N een negatief geheel getal is, gaat het op dezelfde manier. — L%J is dan het



aantal negatieve getallen in de Beatty rij van « groter dan N en — {%J het aantal in
de Beatty rij van 8. Er geldt dat

en dat

2[5

Dit is gelijk aan het aantal negatieve getallen in de rijen groter dan N. Op dezelfde
manier zijn er N getallen in de rijen groter dan N + 1. Er ligt dus ook precies 1 getal
in een van de rijen tussen NV en N + 1 als N negatief is. O

Voorbeeld 2.16. Neem a =7 en 8 = 5.
Dan o' + 571 :%—i—”—*l:l.

De Beatty rij van 7 is: 3, 6, 9, 12, 15, 18, 21, 25, 28, ...
De Beatty rij van =5 is: 1, 2, 4,5, 7, 8, 10, 11, 13, 14, ...
Er is te zien dat alle positieve getallen vanaf 1 precies een keer in een van beide rijen

voorkomt. Hetzelfde geldt voor de negatieve kant van beide rijen.

Definitie 2.17. De bi-oneindige rij B(a); = A(a); — A(a);—1 heet de gebalanceerde
representatie van « voor alle ¢ € Z. Dit zijn de verschillen van twee opeenvolgende
elementen uit de Beatty sequence a.

Stelling 2.18. De gebalanceerde representatie van « bestaat uit mazrimaal twee verschil-
lende getallen, namelik | en [a].

Bewijs. A(a); is altijd minstens |« groter dan A(«);—1, want A(a); = [ (1 — Do+ «].
Daaruit volgt dat B(«); = A(a); — A(a)i—1 > |a]. Net zo is A(a); is altijd maximaal
[a] groter dan A(a);—1. Daaruit volgt dat B(«); = A(a); — A(a);—1 < [a|. A(a); en
A(a);—1 zijn beide gehele getallen, dus B(«); is ook een geheel getal. Daaruit volgt dat
B(a); alleen || of [«a] kan zijn. O

Voorbeeld 2.19. We kunnen de gebalanceerde representatie van 5,31 uitrekenen.
B(5,31)_1 = A(5,31)—1 — A(5,31)_o = —6——11=5

B(5,31)g = A(5,31)p — A(5,31) -1 =0——-6=6

De gebalanceerde representatie van 5,31 wordt:

ey 5,6,5,5,5,6, ...

2.2 Mealy machines

Een eindigetoestandsautomaat is een abstract wiskundig model dat bestaat uit een ein-
dig aantal toestanden en een aantal transities. Als een eindigetoestandsautomaat twee
tapes heeft wordt de machine een eindigetoestandstransducer genoemd. Hierbij wordt
de ene tape voor de input gebruikt en de andere tape voor de output. Nu is een Me-
aly machine een eindigetoestandstransducer waarvan de output wordt bepaald door de
toestand waarin de machine zich bevindt en door de huidige input. Als een eindigetoe-
standstransducer deterministisch is houdt dat in dat er voor elke toestand met bepaalde
input maximaal één transitie mogelijk is. Als die niet-deterministisch is, kan het zijn
dat er voor een toestand met bepaalde input meerdere transities mogelijk zijn.

Een Mealy machine kan weergegeven worden als een gelabelde gerichte graaf waar-



Figuur 2.5: De Mealy machine Ms3.

1/1
1/2 1/2
0/1 0/1
0/2

van de knopen toestanden zijn en de pijlen transities. De transities worden gelabeld
door een paar a/b van symbolen. Het eerste symbool is het input symbool en komt van
de eerste tape en het tweede symbool is het output symbool en komt van de tweede tape.

Een eindige verzameling Wang-tegels is te interpreteren als een Mealy machine. Hierbij
geven de boven- en onderkant van de tegel respectievelijk de input en de output van de
transitie aan. De toestand waarin de transitie begint is de linkerzijde van de tegel en de
toestand waarin die eindigt is de rechterzijde.

Als M een Mealy machine is, voldoen de bi-oneindige rijen x en y aan een relatie p(M)
dan en slechts dan als er een rij tegels bestaat, met overeenkomende verticale zijdes,
waarvan de zijdes aan de bovenkant de rij  vormen en de zijdes aan de onderkant de rij
y. Dit betekent dat er een overeenkomst is tussen het bestaan van een betegeling van
het vlak en het bestaan van bi-oneindige iteraties van de Mealy machine op bi-oneindige
rijen.

2.3 Een toepassing
Figuur 2.6: De Mealy machine M 1

21 2/1

1/0
/—\

0/0 0/0

\_/

1/1



We gaan nu niet-deterministische Mealy machines M, construeren om te laten zien
dat er met de verzameling tegels T3 betegelingen bestaan, op dezelfde manier als Karel
Culik heeft gedaan []. Dit doen we voor een gegeven positief, rationaal getal ¢ = .
Deze machine vermenigvuldigt een gebalanceerde representatie B(a) van reéle getallen
met g. De toestanden van M, representeren alle mogelijke waardes van g|r] —|gr| voor
r € R. Het is makkelijk in te zien dat alle mogelijke waardes van ¢|r] — |gr] veelvouden

zijn van +. Uit
m

qlr] =1 <gr—1<[gr] <gr<gq(lr] +1),
volgt dat

—q <q|r] —lgr] <1

Daardoor zijn er nog n + m — 1 elementen die toestanden van M, kunnen worden.
Dit zijn de elementen van de verzameling toestanden

n—1 n-—2 m—2 m-—1

S ={- , N , }

m m m m

Verder moeten we nog weten wanneer er een transitie is van de ene toestand naar de
andere in M. Er is een transitie van toestand s met input symbool a en output symbool
b naar toestand s+qa—b als die toestand bestaat. Als die niet bestaat is er geen transitie
met label a/b vanaf toestand s. De eerste transitie komt van toestand so = 0 en heeft
als input B(«); en als output B(ga);. De toestand waar de transitie heen gaat is dan

s1 = 8o+ ¢B(a)1 — B(qa):
= q(A(a)1 — A(a)o) — A(ga)1 + A(ga)o
= q(A(a)1 — 0) — A(gar)1 +0
= qA(a)1 — A(ga)1.

De volgende toestand wordt dan

sy = 51+ qB(a)2 — B(qa)2
= gA(a)2 — A(qa)a2.

Na het lezen van de input tot en met B(«);—1 en het geven van output tot en met
B(gqa);—1 gaat de machine naar toestand

Si—1 = qA(Oé)ifl - A(qa)ifl«

De manier waarop de Mealy machine is geconstrueerd, zijn de input letters B(a) en
output letters B(ga) in relatie met p(M,). De Mealy machine M3 is op de manier die net
is beschreven geconstrueerd met ¢ = 3 en de Mealy machine M 1 met g = % De input
symbolen van M3 zijn {0,1} en de output symbolen zijn {1,2}. B(«) en B(3a) hebben
de relatie p(M3) voor alle reeéle getallen « die voldoen aan 0 < @« < 1len 1 < 3a < 2,
oftewel voor alle o € [3, 2]

Van M; zijn de input symbolen {0, 1,2} en de ouput symbolen {0,1,2}. B(a) en B(3a)
hebben de relatie p(My) voor alle o € [0, 2].

We willen de Mealy machines M3 en M 1 herhalen zonder dat M1 vaker dan twee
keer in een rij voorkomt. Om dit te voorkomen veranderen we M 1 in een nieuwe Mealy
machine M} door een nieuw input/output symbool 0’ te introduceren. De toestand 0

2
wordt ook veranderd in toestand (', zodat de verzameling toestanden van M3 en M}
2

disjunct zijn. De vereniging van de M3 en M is nu de Mealy machine M.
2

10



Figuur 2.7: De Mealy machine M} .
2

1/0

/\
0'/0 o 1/0’ 1/2 0'/0
\/

1/1

Propositie 2.20. De verzameling T3 heeft overaftelbaar veel betegelingen van het viak.

Bewijs. Als we als input B(«) nemen voor een o € [%,2] dan geeft de Mealy machine

M als output B(3a) als o € [£,2] en B(3a) als « € [£,2]. In het tweede geval, als
a € [1,2] kan de output B(3a) € [3,1] gecodeerd worden in het alfabet {0’,1} en als
B(3a) > 2 berekent de tweede toepassing van M weer B(+a) € [4, 4] gerepresenteerd
in het alfabet {0, 1}.

De machine kan nu nog een keer toegepast worden waarbij de vorige output de nieuwe
input wordt, want de waarde komt altijd uit tussen de % en 2. Dit kan willekeurig vaak
herhaald worden.
Net zo, als a € [1,2], dan is er input B(3a) of B(2a) die in relatie p(M) is met
B(w). B(3a) wordt gebruikt als o > 1 en B(2w) als a < 1. Dit kan ook willekeurig
vaak herhaald worden, dus M kan ook de andere kant op itereren. Dit laat zien dat er
bi-oneindige iteraties van M zijn op bi-oneindige rijen B(«),a € [$,2]. Daardoor zijn
er oneindig veel betegelingen van het vlak. O

Samen met Propositie 2.11 bewijst dit dat je met de verzameling 773 alleen aperio-
dieke betegelingen kan maken.

Als we het vlak bedekken met Wang-tegels, mogen tegels niet gedraaid of gespiegeld
worden. Daarom kunnen we kleuren van de horizontale zijden ook op de verticale zijden
gebruiken, zelfs al worden ze aangegeven met een ander getal. In de verzameling tegels
T zijn er vijf verschillende kleuren nodig op de verticale zijden, namelijk —2, —1,0,0’ en
%. Op de horizontale zijden zijn de vier kleuren 1,2,0 en 0’ nodig. We kunnen de tegels
dus kleuren met vijf verschillende kleuren. Dit kan bijvoorbeeld op de volgende manier.

Figuur 2.8: De verzameling T' van dertien tegels met vijf kleuren
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Hoofdstuk 3

Het Dominoprobleem

Voor we aan dit hoofdstuk kunnen beginnen moeten we weten wat Turingmachines en
affiene afbeeldingen zijn.

3.1 Turingmachines

Een Turingmachine is een abstracte machine die operaties uitvoert op een oneindige tape.
Een Turingmachine heeft een eindig aantal toestanden () en leest met een kop over de
tape. Op deze tape staan symbolen die uit een eindig alfabet > komen. Afhankelijk van
wat de kop leest en in welke toestand de machine is kunnen er verschillende operaties
uitgevoerd worden:

e Vervang het symbool dat door de kop gelezen wordt door een nieuw symbool.
e Verschuif de kop naar links of rechts.
e De machine gaat naar een andere toestand.

De mogelijke transities van een Turingmachine worden weergeven in een vijftupel van
de vorm [g;, s, sk, D, q]. De toestand ¢; € @Q geeft aan waar de machine zich nu be-
vindt, s; € ¥ is het symbool dat de kop leest, s; € ¥ is het symbool dat de kop
schrijft, bij de D kan een L, R of N staan die respectievelijk aangeeft of de tape naar
links of rechts gaat of niet verandert en ¢; € @ is de toestand waar de machine heen gaat.

Een Turingmachine kan in een eindtoestand komen, dit zijn bepaalde toestanden die
aangeven dat de machine stopt als die in zo’n toestand komt. Een andere manier waarop
een Turingmachine stopt is als de kop een symbool leest, terwijl die in een toestand is
waarvoor geen vijftupel bestaat bij dat symbool. Een Turingmachine is deterministisch
als er voor elke toestand ¢; samen met een symbool s; maar één vijftupel bestaat.

3.2 Affiene afbeeldingen

Een affiene ruimte is een meetkundige structuur die een aantal eigenschappen van een
Euclidische ruimte generaliseert. Zo is er in een affiene ruimte geen punt dat als oor-
sprong dient en is de ruimte onafhankelijk van het concept van afstand en de grootte
van hoeken. Wel houdt de ruimte de eigenschappen dat lijnen parallel moeten blijven
en de verhouding tussen lijnstukken moet ook gelijk blijven.
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Alle Euclidische ruimtes zijn op te vatten als en affiene ruimtes. RZ is dus een af-
fiene ruimte, die we aangeven met A%. In deze scriptie maken we alleen gebruik van
affiene afbeeldingen van A2 naar A2.

Definitie 3.1. Een affiene afbeelding f : A2 — A2 is een afbeelding van affiene ruimtes
waarbij punten, rechte lijnen en het platte vlak behouden blijven.

Bij een affiene afbeelding blijven ook parallelle lijnen parallel en verhoudingen be-
houden. De oorsprong hoeft niet per se naar de oorsprong afgebeeld te worden. Enkele
affiene operaties die uitgevoerd kunnen worden op de affiene ruimte A2 zijn rotaties,
translaties en spiegelingen.

3.3 Het Dominoprobleem

Vermoeden 3.2 (Het vermoeden van Wang). Als een eindige verzameling Wang-tegels
het vlak kan bedekken, kan dit periodiek.

In het vorige hoofdstuk hebben we gezien dat er een betegeling bestaat waarmee
je het vlak alleen aperiodiek kan bedekken. In dit hoofdstuk laten we op een andere
manier zien dat Wangs vermoeden niet waar is. Dit doen we met behulp van het
Dominoprobleem.

Probleem 3.3 (Het Dominoprobleem). Beslis, gegeven een eindige verzameling Wang-
tegels, of de tegels het vlak bedekken.

Het Dominoprobleem is beslisbaar als er een algoritme bestaat dat voor een wille-
keurige verzameling Wang-tegels bepaalt of het vlak ermee bedekt kan worden.
Als er geen aperiodieke verzamelingen zouden bestaan, zou het Dominoprobleem beslis-
baar zijn. Dit is zo omdat er dan een betegeling gemaakt kan worden van steeds grotere
vierhoeken totdat er of totdat er een vierhoek gevonden is die periodiek herhaald kan
worden of totdat alle vierhoeken van een bepaalde grootte niet verder uit te breiden
zijn. Dus als het Dominoprobleem onbeslisbaar is, is Wangs vermoeden niet waar.

Stelling 3.4. Het Dominoprobleem is onbeslisbaar.

Voor we dit gaan bewijzen gaan we eerst een aantal problemen en lemma’s introdu-
ceren die we in het bewijs kunnen gebruiken.

Een tape met aangegeven gescand symbool en de toestand van de Turingmachine vormen
samen een configuratie van de Turingmachine.

Definitie 3.5. Een configuratie heet onsterfelijk als die niet in een eindtoestand komt.

Probleem 3.6 (Het sterfelijkheidsprobleem van Turingmachines). Beslis, gegeven een
Turingmachine, of er een onsterfelijke configuratie bestaat.

Lemma 3.7. Het sterfelijkheidsprobleem van Turingmachines is onbeslisbaar.

Dit werd in 1966 bewezen door P.K. Hooper [6].

Voor we verdergaan moeten we eerst weten hoe Turingmachines getransformeerd kunnen
worden in twee-dimensionale stuksgewijze affiene afbeeldingen. Dit kan door configura-
ties van Turingmachines te coderen als twee reéle getallen (I,7) € R?. Het linker getal
geeft het linker gedeelte van de tape aan en het rechter getal het rechter deel van de
tape.
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Voorbeeld 3.8. Stel dat er positieve gehele getallen ..., a,b, ¢, d, e, f, g, h, 1, ... op de tape
staat en de kop e leest, terwijl de machine in toestand ¢ is, waarbij ¢ ook een positief
geheel getal is. Dan wordt het linker deel als [ = gd.cba... en het rechter deel van de
tape gecodeerd als r = ef.ghi.... Het gehele deel van | en r bepaalt waar de machine
daarna heengaat, athankelijk van in welk eenheidsvierkant (I,r) ligt.

Elke transitie van de Turingmachine associéren we met een rationale affiene afbeel-
ding van R? die de transitie simuleert. Aangezien een Turingmachine altijd maar eindig
veel transities heeft wordt een deterministische Turingmachine omgezet in een systeem
van eindig veel rationele affiene transformaties fi, fo, ..., f van R?. De eenheidsvierkan-
ten Uy, Us,...,U, zijn het domein van de affiene afbeeldingen. De afbeelding f; wordt
gebruikt als (r,{) in het eenheidsvierkant U; ligt. Samen vormen de afbeeldingen een
partiéle functie f : R? — R? met als domein U = U; U U, U ... U U, en als operatie
x +— fi(z) voor z € U;.

Definitie 3.9. Een punt x € R? is onsterfelijk als voor elke i = 0, 1,2... de waarde f(z)
in het domein U ligt.

Dus als een punt onsterfelijk is kunnen we de gegeven affiene afbeelding continu blij-
ven toepassen en zal het punt altijd in een eenheidsvierkant U; blijven.
Nu kunnen we het volgende probleem introduceren en bewijzen dat het probleem onbe-
slisbaar is met behulp van Lemma 3.7

Probleem 3.10 (Het sterfelijkheidsprobleem van stuksgewijze affiene afbeeldingen).
Beslis, gegeven een systeem van rationale affiene transformaties fi, fo,...., f,, van het
vlak en disjuncte eenheidsvierkanten Uy, Us, ..., U,, die als hoekpunten een geheel getal
hebben, of er een onsterfelijk beginpunt is.

Lemma 3.11. Het sterfelijkheidsprobleem van stuksgewijze affiene afbeeldingen is on-
beslisbaar.

Bewijs. Een Turingmachine heeft een onsterfelijke configuratie dan en slechts dan als
het corresponderende systeem van affiene afbeeldingen een onsterfelijk startpunt heeft.
Nu kunnen we het sterfelijkheidsprobleem van stuksgewijze affiene afbeeldingen redu-
ceren tot het sterfelijkheidsprobleem van Turingmachines. Stel dat we een oplossing
voor het sterfelijkheidsprobleem van stuksgewijze affiene afbeeldingen hebben, dan heb-
ben we ook een oplossing voor het sterfelijkheidsprobleem van Turingmachines. Dit
geeft een tegenspraak, omdat we uit Lemma 3.7 weten dat het sterfelijkheidsprobleem
van Turingmachines onbeslisbaar is. Daaruit volgt dat Het sterfelijkheidsprobleem van
stuksgewijze affiene afbeeldingen ook onbeslisbaar is. O

Het volgende dat we willen laten zien is dat het Dominoprobleem onbeslisbaar is.
Dit doen we door het sterfelijkheidsprobleem van stuksgewijze affiene afbeeldingen te
reduceren tot het Dominoprobleem. Hiervoor gaan we laten zien dat we een betegeling
kunnen maken als we een onsterfelijk punt hebben. We gebruiken hiervoor hetzelfde
idee als bij de betegeling van het vorige hoofdstuk. Daar was een verzameling tegels zo
gegeven dat elke betegeling geforceerd wordt een oneindige baan te simuleren volgens de
één-dimensionale stuksgewijze lineaire functie. We doen nu hetzelfde alleen dan met een
andere functie, namelijk de een-dimensionale stuksgewijze lineaire functie f : [%, 2] —

[2,2] met

s, als z > 1.

2z, als z <1,
f(x):{g

14



Deze functie heeft geen periodieke banen, dus de verzameling tegels die erbij hoort
is aperiodiek. Om ervoor te zorgen dat deze constructie gaat werken, gaan we hem wat
generaliseren. Als eerste veranderen we de lineaire afbeeldingen in affiene afbeeldingen
en als tweede moeten de afbeeldingen nu over R? worden. De kleuren van de Wang-
tegels worden weergeven met elementen uit R2.

Laat f : R? — R? een affiene afbeelding zijn. We zeggen dat de tegel

de functie f berekent als f(n) +w =z + o.

Stel dat we een rij gaan bedekken van lengte m waarin alle tegels dezelfde f berekenen.
Dan volgt dat

1 1
f(n)+ —w=s+ —e,
m m

met n en s het gemiddelde van de boven- en onderkant van de tegels, respectievelijk.
Als we de rij, oftewel m steeds langer maken, wordt het effect van w en e steeds kleiner,
totdat deze helemaal wegvallen. Als we een oneindige rij hebben, wordt het gemiddelde
van de input door f gestuurd naar het gemiddelde van de output. Dit is zo doordat
limy, o0 %w — 0 en lim,, %e — 0.

We bekijken nu een gegeven systeem van affiene afbeeldingen f; en eenheidsvierkan-
ten U;. Voor elke i construeren we een verzameling T; van Wang-tegels die de functie f;
berekenen en waarvan de bovenkanten in U; liggen. We zeggen dat

T=JT.

In elke rij is er een andere verzameling T;, wat ervoor zorgt dat ze niet gemengd
worden in een horizontale rij tegels.
We gaan laten zien dat als er met T' een betegeling te maken is, het systeem van affiene
afbeeldingen een onsterfelijk punt heeft. Bekijk een willekeurige horizontale rij in de
betegeling. Alle bovenkanten van de tegels in die rij horen bij een compacte en convexe
verzameling U;. Daarom bestaat er een x € U; dat het limiet is van het gemiddelde van
de bovenkanten van een rij van toenemende lengte. Het limiet van het gemiddelde van
de onderkanten van de rij is dan f;(z). Deze f;(x) is weer de bovenkant van de volgende
rij en daarop kan de functie f weer toegepast worden. Dit kan herhaald worden voor
alle rijen die daarna komen en we zien dat = een oneindige baan van affiene afbeeldingen
is begonnen en dus een onsterfelijk punt is.

Nu moeten we nog laten zien hoe we de tegels zo kunnen kiezen dat er een onsterfelijke
baan van affiene afbeeldingen is die correspondeert met de betegeling. We bekijken het
eenheidsvierkant

U=[nn+1] x [m,m+1]
met n,m € Z. Elementen van

Cor(U) ={(n,m),(n,m+1),(n+1,m),(n+1,m+1)}
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zijn de hoekpunten van U. Voor elke x € R? en k € Z noteren we
Ap(x) = [k -x]
waarbij elk codrdinaat afzonderlijk afgerond wordt, oftewel

L, 9)] = (L= ly))-

We gaan nu net als bij de Beatty rijen de gebalanceerde representatie van x introduceren.
We zeggen dat

Bk(x) = Ak(X) — Ak_l(x)
=|k-x]—[(k—1)-x].
Het is duidelijk dat als x € U, dan
By (x) € Cor(U).

Voorbeeld 3.12. Neem het punt (3.2, 4,6) € [3,4] x [4,5] =U.
Dan geldt dat Cor(U) ={(3,4),(3,5),(4,4),(4,5)} en

B3((3.2,4.6)) = A3((3.2,4.6)) — A((3.2,4.6))
=13-(3.2,4.6)] — [2-(3.2,4.6)]
= [(9.6,13.8)] — [(6.4,9.2)]
=(9,13) — (6,9)
=(3,4)eU

De vector x wordt gerepresenteerd door de bi-oneindige rij
ey B—2(X)a B—l(x)a BO(X)a Bl(x)a B2(X)a

van hoekpunten. Dit is de gebalanceerde representatie van x.

De verzameling tegels die correspondeert met een rationele affiene afbeelding f;(x) =
Mx + b en zijn domein U; bestaat uit alle tegels van de volgende vorm met k € Z en
(.’E, y) € Uz

a= fi(Ap-1(x)) — Ap-1(fi(x)) + (k — 1)b
B = By(x)

v = fi(Ak(x)) — Ak(fi(x)) + kb

§ = By(fi(x))

Als we nu een vaste x € U; hebben, dan passen de tegels voor opvolgende k € Z aan
elkaar met de verticale zijdes. Hierdoor wordt een horizontale rij gevormd waarvan de
boven- en onderzijde respectievelijk de gebalanceerde representatie van x en f;(x) geven.
Een berekening laat zien dat de tegels erboven de functie f; berekenen, oftewel f;(n) +
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W =12+ o.
fi is rationaal en daarom kunnen er maar eindig veel tegels geconstrueerd worden, ook
al zijn er oneindig veel k € Z en x € U;.

Nu kunnen we bewijzen dat het Dominoprobleem onbeslisbaar is.

Bewijs Stelling 3.4. Het is het duidelijk dat als een gegeven systeem van affiene af-
beeldingen een onsterfelijk punt x heeft, er een geldige betegeling bestaat waarvan de
horizontale rijen de gebalanceerde representaties hebben van de opeenvolgende punten
van de baan van x. We concluderen dat er een verzameling tegels die het vlak bedekken
bestaat dan en slechts dan als het gegeven systeem van affiene afbeeldingen onsterfelijk
is. We weten uit Lemma 3.10 dat het onsterfelijkheidsprobleem van affiene afbeeldingen
onbeslisbaar is, dus het Dominoprobleem is ook onbeslisbaar. O

Het volgende probleem is een andere variant van het Dominoprobleem. Bij dit pro-
bleem wil je niet weten of er een betegeling bestaat, maar of er een periodieke betegeling
bestaat.

Probleem 3.13 (Periodieke Dominoprobleem). Beslis, gegeven een eindige verzameling
Wang-tegels, of er een periodieke betegeling bestaat met deze tegels.

Als er geen aperidiodieke verzamelingen Wang-tegels zouden bestaan, zou dit pro-
bleem hetzelfde zijn als het Dominoprobleem. In Hoofdstuk 2 hebben we echter gezien
dat zulke verzamelingen bestaan.

Stelling 3.14. Het periodieke Dominoprobleem is onbeslisbaar.

Dit bewijs werd gegeven door Emmanuel Jeandel in 2009 en is te vinden in [§].
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Hoofdstuk 4

Minimale verzamelingen tegels

Als je gebruikt maakt van één kleur, is er precies één Wang-tegel te maken, namelijk
met alle zijdes die kleur. Met deze tegel kan je het vlak bedekken en alleen op een
periodieke manier, je herhaalt namelijk steeds dezelfde tegel. Nu gaan we kijken naar
wat er gebeurt als je gebruikt maakt van twee of drie kleuren.

4.1 Twee en drie kleuren

Laat B een eindige verzameling Wang-tegels zijn en laat X (B) de verzameling van alle
betegelingen in Z? zijn met tegels uit B. Laat P(B) de verzameling van alle periodieke
betegelingen in Z? zijn met tegels uit B. Het is duidelijk dat P(B) C %(B).

Wangs vermoeden was dat als er je met een verzameling Wang-tegels het vlak kan
bedekken, dit altijd periodiek kan. Dit is ook wel te schrijven als: Als 2(B) # 0 dan
P(B) # 0.

In de vorige hoofdstukken hebben we al gezien dat Wangs vermoeden niet waar is, maar
als je enkel gebruikt maakt van twee kleuren is de bewering wel waar.

Stelling 4.1. Fen verzameling Wang-tegels met twee kleuren kan het vlak alleen perio-
diek bedekken.

Deze stelling is in 2010 bewezen door Wen-Guei Hu en Song-Sun Lin [7]. Zij maak-
ten daarvoor gebruik van minimale cyclische voortbrengers en maximale non-cyclische
voortbrengers.

Definitie 4.2. Een verzameling B is een minimale cyclische voortbrenger als P(B) # ()
en P(B') =0 voor alle B’ & B.

Dit zijn de verzamelingen B waarmee een periodieke betegeling te maken is, maar
waar dit voor alle deelverzamelingen van B niet het geval is.

Definitie 4.3. De verzameling B is een mazimale non-cyclische voortbrenger als P(B) =

0 en P(B") # 0 voor alle B G B”.

Dit zijn de verzamelingen B waarmee geen periodieke betegeling gemaakt kan wor-
den, maar voor alle verzamelingen die groter zijn dan B wel.

We noteren de verzameling van alle minimale cyclische voortbrengers met C(p) en de
verzameling maximale non-cyclische voortbrengers met N (p), waarbij p > 2 het aantal
kleuren is. Het is duidelijk dat C(p) NN (p) = 0, want met de verzamelingen die in C(p)
zitten kun je wel een periodieke betegeling maken en met de verzamelingen uit A (p) niet.
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Wangs vermoeden voor twee kleuren is waar als de volgende uitspraak aangetoond kan
worden:

% (B) = 0 voor alle B € N(2).

Als B € N(2) bestaat er geen periodieke betegeling met tegels uit B. Wangs vermoeden
voor 2 kleuren is niet waar als er wel een aperiodieke betegeling bestaat met tegels uit
B. Als 3X(B) = () bestaat er geen betegeling met tegels uit 1, dus ook geen aperiodieke
betegeling.

Met het gebruik van twee kleuren is het mogelijk zestien verschillende Wang-tegels te
maken.

Figuur 4.1: De 16 Wang-tegels met 2 kleuren

0), (E1) (Ev) (R) ,
(L), (E2) , (E2) (1),
(B) (E3) , (Es) , ),
(E) (Ea) (Ea) , (1),

We kunnen de elementen van C(p) en N(p) met p = 2 nog makkelijk uitrekenen.
C(p) blijkt 38 elementen te hebben en N(p) heeft er 8. Deze elementen kunnen in
verschillende klasses ingedeeld worden. Om de klasses te definiéren maken we gebruik
van de symmetriegroep van een vierkant, namelijk de dihidrale groep met 8 elementen:
Dy = {I,p,p? p3,m,mp, mp?, mp>}. Hierbij is p een rotatie van 90° en m de spiegeling
om de verticale as. Verder bekijken we de permutatiegroep Ss.

Figuur 4.2: De rotaties en spiegelingen van een rechthoek, [7]
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In het geval met twee kleuren veranderen alle zijdes in de andere kleur. Bij het
maken van een Wang-betegeling zijn de permutaties van de kleuren van de horizontale
en verticale zijdes van de Wang-tegels onathankelijk van elkaar. Daarom noteren we de
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permutatie van horizontale zijden met a € Sy en de permutatie van de verticale zijden
met 3 € Ss.

Nu definieren we de equivalentieklasse van een verzameling B van Wang-tegels:
Bl ={B :B = (((B)7)a)s,T € Dyen a, 8 € Sa}.

De 38 elementen uit C(2) zijn in 6 klasses van minimale cyclische voortbrengers in
te delen, namelijk:

1. [{0}],

2. [{Er, Eu}l,
3. [{B1, Br}],
4. [{B,T}],

5. [{E1, B, R}],
6. [{E1, Eq, B}].

Het is eenvoudig na te gaan dat je met tegels uit een klasse een periodieke betegeling
kunt maken en als je een tegel eruit haalt niet meer.

Voorbeeld 4.4. In de klasse [{ E1, E1 }] zitten 4 elementen, namelijk {Ey, E1 },{E2, Fa},
{E3,E3} en {E,, E;}. Deze elementen zijn hetzelfde op rotatie na. Bij de periodieke
betegeling van de Wang-tegels F; en E; is er om en om een kolom tegels van E; en I
en ziet er als volgt uit:

Als je een van de twee tegels weghaalt, is het niet meer mogelijk om een (periodieke)
betegeling te maken. Dus alle elementen in de klasse [{ E1, E4 }] zijn minimale cyclische
voortbrengers.

Er is precies één klasse van maximale non-cyclische voortbrengers in N'(2). Deze
wordt gegeven door [{Ej, Ea, B3, B4, T, R} = [N,]. De andere 7 verzamelingen zijn
te verkrijgen door de volgende transformaties uit te voeren: p, p2, p2, m, mp, mp?, mp>.
Deze verzamelingen kunnen ook gevonden worden door de maximale verzameling te
nemen, die geen enkele minimale cyclische voortbrenger bevat.

Stelling 4.5. Als B € N(2), dan X(B) = 0.

Het bewijs van deze stelling is na te lezen in [7]. Nu kunnen we Wangs vermoeden
voor 2 kleuren bewijzen.

Stelling 4.6. Als X(B) # 0, dan geldt P(B) # 0 voor p = 2.

Bewijs. Uit Stelling 4.5 volgt dat als B € N(2), als P(B) = 0, dan ook X(B) = 0.
Daaruit volgt dan dat als X(B) # 0, dan ook P(B) # 0 voor p = 2. O
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Nu we weten dat Wangs vermoeden voor 2 kleuren waar is, kunnen we ook naar 3
kleuren kijken. In [3] hebben Hung-Hsun Chen, Wen-Guei Hu, De-Jan Lai en Song-Sun
Lin laten zien dat Wangs vermoeden voor 3 kleuren ook waar is.

Stelling 4.7. Een verzameling Wang-tegels met drie kleuren kan het viak alleen perio-
diek bedekken.

Zij hebben deze stelling op dezelfde manier bewezen als die voor 2 kleuren. Het
verschil tussen de bewijzen zit in de grote van de verzameling minimale cyclische voort-
brengers en de verzameling maximale non-cyclische voortbrengers. De verzameling C(3)
heeft namelijk 787.605 elementen die in 2.906 klasses ingedeeld kunnen worden, waar
C(2) maar 38 elementen heeft. Met zoveel verschillende elementen is het niet meer te
doen om het met de hand te berekenen en daarom worden er computerberekeningen
gebruikt om de stelling te bewijzen.

4.2 11 tegels en 4 kleuren

We weten dat er door alleen tegels met twee of drie kleuren te gebruiken alleen periodieke
betegelingen gemaakt kunnen worden, maar wat is nu de kleinste verzameling waarmee
je het vlak alleen aperiodiek kan betegelen?

Stelling 4.8. De minimale verzameling Wang-tegels waarmee je het vlak alleen aperi-
odiek kan bedekken bestaat uit 11 tegels en 4 kleuren.

Deze stelling is bewezen door Emmanuel Jeandel and Michael Rao in 2015[9]. Het
was al bekend dat een verzameling tegels met twee of drie kleuren nooit aperiodiek
is, dus het minimale aantal kleuren wat nog zou kunnen was vier. Verder laten ze
zien dat er geen aperiodieke verzameling bestaat met tien of minder tegels. Door veel
verschillende verzamelingen van elf tegels te bekijken en te proberen hebben ze een
aperiodieke verzameling van elf tegels met vier kleuren gevonden.
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Hoofdstuk 5

Andere soorten tegels

Tot nu toe hebben we alleen gekeken naar Wang-tegels, waarbij tegels naast elkaar mo-
gen komen te liggen in een betegeling als aangrenzende zijdes dezelfde kleur hebben. Er
bestaan ook andere soorten tegels om het vlak mee te betegelen, zoals Robert Berger in
[2] beschreef.

Een andere soort tegel is die met complementaire kleuren. Hierbij worden alle kleu-
ren gepaard met een andere complementaire kleur. Een betegeling is nu valide als zijdes
die naast elkaar liggen complementaire kleuren hebben. De vraag of je op deze manier
het vlak kan bedekken is equivalent aan de vraag of het kan met Wang-tegels met gelijke
kleuren. Van een betegeling met Wang-tegels met gelijke kleuren, kan je namelijk alle
kleuren aan de rechter- en bovenzijde veranderen in de complementaire kleur om een
betegeling te maken die voldoet aan het probleem met complementaire kleuren.

Als er ook rotatie wordt toegestaan bij beide problemen zijn ze niet meer equivalent.
Het probleem met Wang-tegels waar zijdes met dezelfde kleur naast elkaar moeten liggen
wordt triviaal als rotatie toegestaan is, want met één tegel kan je dan al het hele vliak
bedekken.

Lemma 5.1. Het probleem met complementaire kleuren blijft onbeslisbaar als translatie
en rotatie is toegestaan.

Bewijs. We gaan het Dominoprobleem reduceren tot het probleem met complementaire
kleuren als translatie en rotatie is toegestaan. Stel we hebben een eindige verzameling
gekleurde tegels waar we het vlak mee willen bedekken door alleen translatie te gebrui-
ken. Tegels mogen hierbij naast elkaar komen te liggen als aangrenzende zijdes dezelfde
kleur hebben. We nemen aan dat horizontale en verticale kleuren verschillend zijn. We
veranderen nu de rechter- en bovenzijde in nieuwe complementaire kleuren. Een kleur
van een zijde geeft nu aan of die links, rechts, boven of onder zit, dus rotatie is niet meer
mogelijk met de tegels. Nu is de gewenste betegeling mogelijk dan en slechts dan als het
vlak betegeld kan worden met de nieuwe tegels zodat complementaire tegels tegen elkaar
liggen, door gebruik te maken van translatie en rotatie. Zoals we net hebben gezien is
rotatie niet mogelijk en is het probleem gelijk aan het Dominoprobleem, waarvan we
uit Hoofdstuk 3 weten dat het onbeslisbaar is. Dus het probleem met complementaire
kleuren is onbeslisbaar als rotatie en translatie toegestaan is. O

Nog een andere tegel is er een met inkepingen en uitstulpingen. Bij een betegeling
met deze tegels mogen ze naast elkaar komen te liggen als een uitstulping in een inkeping
past. Hierbij is het belangrijk dat het hele vlak bedekt wordt en er geen overlappingen of
gaten zijn. Als we aannemen dat er geen inkepingen of uitstulpingen in de hoeken zitten,
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is het probleem of het vlak te bedekken is met zulke tegels equivalent aan het probleem
met Wang-tegels. Ook is het probleem equivalent aan het probleem met complementaire
kleuren als alleen translatie gebruikt wordt of het probleem met complementaire kleuren
als translatie en rotatie gebruikt worden. Als het ook toegestaan is om tegels te spiegelen
zijn de problemen met inkepingen en uitstulpingen en complementaire kleuren niet meer
gelijk. Bij het probleem met inkepingen en uitstulpingen is het namelijk mogelijk dat
er zijdes zijn die niet symmetrisch zijn.

Lemma 5.2. Het probleem om het vlak te betegelingen met tegels met uitstulpingen en
inkepingen blijft onbeslisbaar als er gebruik mag worden gemaakt van translatie, rotatie
en spiegelingen.

Bewijs. Laat een verzameling tegels met inkepingen en uitstulpingen gegeven zijn en
neem aan dat we het vlak willen betegelingen door alleen gebruikt te maken van trans-
latie. Het is nu makkelijk om inkepingen te maken die het passen van tegels niet ver-
andert, maar het wel onmogelijk maakt om rotatie of spiegelingen te gebruiken. Dus de
onbeslisbaarheid van het probleem kan worden gereduceerd naar het Dominoprobleem
uit Hoofdstuk 3. O

5.1 Tegels met gekleurde hoeken

Wang-tegels worden vaak gebruikt in de discipline computergraphics uit de informatica.
Deze discipline houdt zich bezig met het weergeven van beelden met behulp van com-
puters. Ares Lagae en Philip Dutré hebben laten zien dat gekleurde hoektegels eigenlijk
handiger zijn om te gebruiken in computergraphics dan Wang-tegels [12]. Daarom heb-
ben ze samen met Jarkko Kari een aantal methodes bedacht om van een aperiodieke
verzameling Wang-tegels een aperiodieke verzameling gekleurde hoektegels te maken|[I3].

Definitie 5.3. Een gekleurde hoektegel is een tegel, waarbij elke hoek gekleurd is.

Figuur 5.1: Een gekleurde hoektegel
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Als we het vlak gaan bedekken met een verzameling gekleurde hoektegels is het net
als bij Wang-tegels niet toegestaan om de tegels te draaien of spiegelen en mogen tegels
naast elkaar liggen als de aangrenzende hoeken dezelfde kleur hebben.

Het is mogelijk om aperiodieke verzamelingen hoektegels te vinden door een isomorfisme
te maken tussen Wang-tegels en gekleurde hoektegels. Er bestaan een aantal constructie
methodes om dit te doen, dit zijn diagonale translatie, horizontale translatie, verticale
translatie, rotatie en subdivisie. De methodes diagonale translatie, rotatie en subdivisie
werken voor alle aperiodieke verzamelingen Wang-tegels. Bij de constructiemethodes
van horizontale en verticale translatie worden de verticale of horizontale zijdes gene-
geerd, respectievelijk. Dit geeft niet per definitie een bijectie tussen de Wang-tegels
en gekleurde hoektegels en deze constructies werken dan ook niet voor veel aperiodieke
verzamelingen Wang-tegels.

Bij diagonale translatie worden de gekleurde hoektegels (gestippelde lijnen Figuur

5.2) diagonaal geplaatst ten opzichte van de Wang-tegels (dichte lijnen Figuur 5.2). De
hoeken van de gekleurde hoektegels komen in het midden van de Wang-tegels te liggen.
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Figuur 5.2: Diagonale translatie, [13]
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Elke Wang-tegel krijgt een verschillende kleur. De kleuren van de zijdes van de Wang
zijdes zijn bij deze constructie niet belangrijk. De hoeken van de gekleurde hoektegels
krijgen nu de kleur van de Wang-tegel waar ze in liggen. De verzameling gekleurde
hoektegels die je hiermee krijgt bestaat uit een tegel voor elke vier Wang-tegels die een
twee bij twee vierkant vormen. Het aantal kleuren van de tegels uit de verzameling
is het aantal verschillende Wang-tegels, want elke Wang-tegel kreeg een andere kleur.
Als de verzameling Wang-tegels aperiodiek is, dan is de verzameling gekleurde hoekte-
gels die ermee correspondeert ook aperiodiek. Als deze methode wordt toegepast op de
verzameling Wang-tegels van 13 tegels met 5 kleuren uit Hoofdstuk 2, krijgen we een
aperiodieke verzameling van gekleurde hoektegels met 125 tegels bestaand uit 13 kleuren.

Figuur 5.3: Horizontale translatie, [13]
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De kleinste aperiodieke verzameling van gekleurde hoektegels, die tot nu toe gevon-
den is, is een verzameling van 44 tegels met 6 kleuren. Deze is gevonden door de horizon-
tale translatie methode te gebruiken op een aperiodieke verzameling van 16 Wang-tegels
met 6 kleuren [5]. Deze methode lijkt erg op die van diagonale translatie. Het verschil
is dat de tegels bij horizontale translatie horizontaal getransleerd worden (Figuur 5.3).
Een hoek van een gekleurde hoektegel krijgt de kleur van de horizontale zijde van de
Wang-tegels waar die tegenaan ligt. Het aantal kleuren wat een verzameling gekleurde
hoektegels krijgt is gelijk aan het aantal kleuren van de verzameling Wang-tegels. Deze
methode werkt niet om de verzameling van 13 Wang-tegels met 5 kleuren te veranderen
in gekleurde hoektegels.
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De laatste methode die we gaan bespreken is de subdivisiemethode. Bij deze methode

Figuur 5.4: Subdivisie, [13]
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correspondeert elke Wang-tegel met vier gekleurde hoektegels. Deze vier gekleurde hoek-
tegels liggen elk met een hoek in de desbetreffende Wang-tegel. De hoeken die in het
midden van de Wang-tegel liggen krijgen de kleur die uniek gegeven is aan de Wang-
tegel. De acht hoeken (twee van elke tegel) die aan de Wang-tegel grenzen krijgen de
kleur van de zijde waaraan ze grenzen. De laatste hoeken van de gekleurde hoektegel
krijgen een extra kleur. Een voorbeeld is te zien in Figuur 5.5. Het totaal aantal kleuren
van de verzameling gekleurde hoektegels is nu het aantal Wang-tegels plus het aantal
kleuren dat gebruikt wordt in de verzameling Wang-tegels plus één van de extra kleur.
Het aantal tegels wat in de verzameling gekleurde hoektegels zit is vier keer het aantal
tegels wat in de verzameling Wang-tegels zit. Als de verzameling Wang-tegels aperiodiek
is, is de verzameling gekleurde hoektegels dat ook.

Figuur 5.5: De vier gekleurde hoektegels verkregen door een Wang-tegel, [13]
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