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Introduction

In this thesis we look at tilings of finite, abelian additive groups. Tiling mathematical spaces is not
so different from tiling for example your kitchen floor. You start with a fixed tile and place similar
looking tiles all over the space until you have covered the whole floor. This tiling now consists of
the starting tile and all shifts of this starting tile.

We can look at this from a mathematical point of view. We can apply this sense of tilings to finite
spaces and it depends on the structure of the space or the tile how the tiling looks. We started by
looking just at the vector spaces Fnq for prime powers q. In this sense, the name tiling is a very
natural choice. In these spaces, a tiling consists of a tile V and a set of coset representatives A.

Since the construction of tilings do not depend on the vector space structure of Fnq , the question
arose whether or not we would be able to extend the definition. Via a detour through different
articles, we discovered that some research on a similar structure has been done in group theory,
using the “same” definition under a different name: factorization.

This makes tilings of finite vector spaces even more interesting. We can look at tilings from a
metric point of view, like the tilings in Rn, or as a factorization of a finite abelian group.

We say that a group G has the Rédei property if in every tiling (V,A) of G, then either V or A
is contained in a strictly smaller subgroup of G. So if G does not have the Rédei property, then
there exists a tiling (V,A) such that 〈V 〉 = 〈A〉 = G. We say that such a tiling is full-rank. So, we
would like to know what kind of groups admit full-rank tilings and thus, which vector spaces allow
full-rank tilings?

It is interesting to see that a lot of work has been done independently. The work on full-rank
tilings of Fn2 in [1] does not use results on the Rédei property. Also, work on the Rédei property does
not mention any work done on tilings of vector spaces. Dinitz appears to be the first to combine
the results from both fields in his article [3]. His work provides a good overview of the work that
was done and that was not. Since this article was easier to understand, it became the base of this
thesis.

Before looking at the full-rank property, we want to be able to create any tiling. Our approach
was an algorithm executed in Magma. After finding a tiling, we would check if it could be full-rank.
Of course, this is a naive idea and we had to somehow narrow down the search. We combined
articles on the Rédei property and the full-rank property.

It is reasonable to wonder why we would even want full-rank tilings. This is because of a conjecture
Minkowski expressed as an open problem in his book in 1907. It was reformulated by Hajós in 1942
in [5] on page 428

Sind ξ1, . . . , ξn homogene lineare Formen in den Veränderlichen x1, . . . , xn, mit reellen
Koeffizienten und der Determinante 1, besitzt weiter keine diezer Formen nur ganzzahlige
Koeffizienten, so gibt er ganze Zahlen x1, . . . , xn, die nicht alle verschwinden und für
welche |ξ1| < 1, . . . , |ξn| < 1 ist.

In 1942, Hajós proved the following theorem that solved the Minkowski conjecture. He formulated
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five different, equivalent versions of the conjecture and proved the last.

Let G be a finite abelian non-p-group with factorization G = A1 + · · ·+An where all Ai
are cyclic subsets with prime order. Then at least one of the Ai is a subgroup of G.

This is the fourth equivalent form in [5], page 463. He moved from the homogeneous linear forms
statement, to a more geometric statement, to three statements in group theory.

Then Hajós himself wondered for which groups G there exist only factorizations A,B such that
at least one of the factors is periodic. We say that these groups have the Hajós property. This
question raised by Hajós was solved by Sands, de Bruijn and Rédei and it was proven that if a
group has the Hajós property, then it has the Rédei property.

Since we also looked at spaces with a vector space structure, it is natural to look at the span of a
subset. The span of a subset might be different from an additive subgroup generated by this subset.
We are interested how this would relate to the existing theory and what indicators this might have.
In this way it could help understanding the previously published results. We were able to prove
that every vector space Fnq has a tiling where both the spans of both V and A generate the whole
space, if q is a prime power but not a prime number. Even though this is a simple result, no one
ever mentioned it, which is rather interesting.

In Chapter 1 we give the definitions of factorizations of finite abelian groups and tiling in more
detail and explain that we look at the same definition under a different name. Then we look at
the form of tilings and describe a recursive decomposition of a tiling. We also give an equivalence
relation on tilings.

In Chapter 2 we look at more specific groups and describe which of those groups have the full-rank
property and which vector spaces have the full-dimensional property.

In Chapter 3 we show how to use tilings of binary vector spaces to construct perfect binary codes.
In the last Chapter we list the open problems and possibilities for further research.
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Chapter 1

Definitions

In this chapter, we will give most of the important definitions. We start by defining tilings or fac-
torizations of finite abelian groups and then look at tilings of finite vector spaces. The definition
of a tiling does not depend on the multiplicative structure of a module or vector space, so we can
generalize the definition and look at more specific properties.

Throughout this thesis, let (G,+) be an additive, finite, abelian group with identity element 0.
We say that a subset A ⊂ G is called normalized if 0 ∈ A. The subset is periodic if there exists
g ∈ G \ {0} such that g +A = A.

Recall that for subsets A1, . . . , An ⊂ G, the sum A1 + · · ·+An is given by the set

{a1 + · · ·+ an | ai ∈ Ai} .

We say this sum is direct if every a ∈ A1 + · · ·+ An has a unique representation a = a1 + · · ·+ an
for ai ∈ Ai. If we have a direct sum A1 + · · ·+An that is equal to G, we say that the sum defines
a factorization of G. We say that a factorization is normalized if each factor Ai is normalized.

Notation 1.1. Let A be a subset of the group G. By 〈A〉 we mean the subgroup generated by A
in G.

Definition 1.2. Let G be a finite abelian group. We say that G has the Rédei property if for every
normalized factorization G = A+B, one of the factors A and B is contained in a subgroup strictly
smaller than G.

Definition 1.3. Let G be a finite abelian group. We say that G has the Hajós property if for every
normalized factorization G = A+B, one of the factors A or B is periodic.

Lemma 1.4. If a finite abelian group G has the Hajós property, then it has the Rédei property.

This is proven using induction on the number of prime factors of |G| by Szabó, Lemma 1 in [12].

Example 1.5. In this example we will see that the group (Z/4Z)2 has the Rédei property and the
Hajós property.

We pick A = {(00), (10), (01), (11)} and B = {(00), (20), (02), (22)}. It is clear that A+B = Z/4Z,
so this gives a normalized factorization. Moreover, 〈A〉 = (Z/4Z)2 but 〈B〉 6= (Z/4Z)2. Therefore,
this group has the Rédei property. Furthermore, all nonzero elements of B are periodic points for
B and we see that the group has the Hajós property as well.

Definition 1.6. A given subset V ⊂ G is a tile of G if there exists a partition of G into disjoint
additive cosets of V . We denote a set of coset representatives by A. The pair (V,A) is now a tiling
of G.

We say that V is a linear tile if there exists a tiling (V,A) such that 〈A〉 = A or 〈V 〉 = V .
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Without loss of generality, we may assume that both V and A contain the identity element. We
will come back to this when we discuss equivalence of tilings. The set A is a representative system,
it could be possible that (V,A) and (V,A′) are both tilings of a group G while A 6= A′.

Furthermore, if V is a tile of G, with tiling (V,A), then A is also a tile of G with associated
tiling (A, V ).

This naturally raises the following question: given a subset V in a finite abelian group G, can we
determine whether V can be a tile of G? This question is not easy to answer. In [2], Coppersmith
and Miller try to answer this for subsets of Fn2 . They provide two computational criteria to verify
that certain subsets are not tiles of Fn2 . They show how we can use bin packing and linear program-
ming for the verification.

The definition of tilings is not very insightful. Therefore, in the next remark, we will give some
evident properties and a more useful, equivalent way of saying that two subsets tile a space.

Remark 1.7. Let V and A be two subsets of G.

1. If (V,A) is a tiling of G, then every x ∈ G has a unique representation x = v + a for some
v ∈ V , a ∈ A.

2. An alternative definition states that the pair (V,A) is a tiling of G if and only if

{v1 − v2 | v1, v2 ∈ V } ∩ {a1 − a2 | a1, a2 ∈ A} = {0} and V +A = G.

In particular, we have that |V | · |A| = |G|.

Furthermore, if G = Cn2 is an elementary 2-group of rank n, then (V,A) is a tiling of Cn2 if
V +A = Cn2 and 2V ∩ 2A = {0}.

3. If V and A both are subgroups of G, then (V,A) is a tiling of G if and only if A = G/V .

So far, we have only looked at finite abelian groups in general. We want to make a start with
looking into more specific groups. Let q be a prime power and Fq be the finite field with q elements.
While the definition of a tiling of Fnq might be the same as a tiling of (Z/qZ)n, the properties of the
tiles are very different. First, we will give some more notation.

Notation 1.8. If G equals the additive group of Fnq for a prime power q, we can also look at the
vectorspace structure of Fnq . For a subset V ⊂ G, Span(V ) is the linear subspace of G generated by
V .

Of course, if q = p for a prime number p, then Span(V ) = 〈V 〉.

Definition 1.9. Let (V,A) be a tiling of G.

1. We say that V is periodic tile if V is a periodic subset of G.

2. We say that a tiling (V,A) is full-rank if

〈V 〉 = 〈A〉 = G.

3. If G = Fnq for some prime power q, we say that a tiling (V,A) is full-dimensional if

Span(V ) = Span(A) = Fnq .
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In the next chapter, we will show that not all groups G admit a full-rank tiling or a full-dimensional
tiling when defined. It is clear that a full-rank tiling is also full-dimensional.

In general, full-rank and full-dimensional are not the same thing. For example, if we look in F2
4,

then Span({(10), (01)}) = F2
4 while 〈{(10), (01)}〉 = {(00), (10), (01), (11)}.

If G is of the form Fnp for a prime number p, then saying that a tiling is full-rank is equivalent to
saying it is full-dimensional.

Example 1.10. In this example we will construct a tiling (V,A) of F4
3. We start with an arbitrary

subset V of F4
3 of 32 elements containing the zero vector. We immediately see from Remark 1.7 that

A should have 32 elements as well. Suppose V is given by

V = {(0000), (1000), (0002), (2112), (0012), (2211), (2201), (0001), (1020)} .

To find A, we can naively check all elements of F4
3 \ V but that is not the most efficient way to

construct tilings.
We do know that the zero vector will be contained in A, so we start with A = {0}. We set U = V

to keep track of which vectors we already have. We want find all coset representatives for V , so we
loop through all elements s in the group and check if we already found all s+ v for v in V . If not,
we add s to A and all s+ v to U . Now, if U and G have the same number of elements, then we are
finished. This algorithm finds one tiling (V,A) if it exists and [0] if it does not.

Note that there might be a lot more tilings (V,A′) of the group, but here we only want to find one.

Input: a subset V of the group G

1. Set A := [0] and U = V

2. for s in G do

3. if s in U then continue

4. Set Us = [ ]

5. for v in V

6. if s+ v in U then continue in s

7. else add s+ v to Us

8. Add s to A and add Us to U

9. if |U | = |G| then return A

10. return [0]

Output: a list A such that (V,A) gives one tiling of G or [0] if there does not exists a tiling (V,A).

This algorithm with input V as above and G = F4
3 finds

A = {(0000), (2020), (1010), (0100), (0200), (2120), (2220), (1110), (1210)} .

The tiling we find by the algorithm depends on the ordering of G. This is used in step 2 and step
5. We conclude that (V,A) is a tiling of F4

3.

It is easy to see that the tiling is not full-dimensional and not full-rank: Span(V ) = 〈V 〉 = F4
3,

but Span(A) 6= F4
3 and 〈A〉 = A. Also, V is not periodic while A is. The periodic points of A are

(2020), (1010), (0100), (0200), (2120), (2220), (1110), (1210).
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Classification of Tilings

Now we want to make some kind of classification of tilings of G. The first proposition in this section
shows that we are mainly interested in tilings (V,A) such that V generates the whole group. We
will see later in Theorem 1.13 that this proposition can be generalized: the classification of tilings
of a group can be reduced to the tilings of all its subgroups.

We will look at the decomposition of tilings of modules into non-periodic full-rank tilings or trivial
tilings and we will illustrate this with an example.

Proposition 1.11. A subset V ⊂ G tiles G if and only if it tiles 〈V 〉.

This proof is based on the proof of Proposition 2 in [3].

Proof. Suppose we have a tiling (V,A) of G. Set A0 = A∩〈V 〉, this A0 is not empty because 0 ∈ A.
Then A0 ⊂ A and V +A0 ⊂ 〈V 〉. We claim that (V,A0) is a tiling for 〈V 〉 . By definition, we have
(V − V ) ∩ (A − A) = {0} and it follows that (V − V ) ∩ (A0 − A0) = {0}. Since 〈V 〉 ⊂ V + A, for
any x ∈ 〈V 〉 we have x = v + a for some v ∈ V, a ∈ A. But 〈V 〉 is closed under addition in G, so
a = x− v ∈ 〈V 〉. This shows that a ∈ A0. Then 〈V 〉 ⊂ V +A0, so V +A0 = 〈V 〉 . This proves our
claim so we conclude that (V,A0) is a tiling of 〈V 〉.

For the other direction, suppose we have a tile V of 〈V 〉 with tiling (V,A0). Since 〈V 〉 is a
subgroup of G, it is a tile of G. Let (〈V 〉 , A1) be this tiling of G. Then clearly (V,A0 + A1) is
a tiling of G: V + A0 + A1 = 〈V 〉 + A1 = G and (V − V ) ∩ (A0 + A1 − (A0 + A1)) = {0} since
(V − V ) ∩ (Ai −Ai) = {0} for i = 0, 1.

If we replace all 〈V 〉 by Span(V ) in the proof, we get the following proposition.

Proposition 1.12. Let q be a prime power. A subset V ⊂ Fnq tiles Fnq if and only if it tiles Span(V ).

In the next theorem, we show that a tiling always has a certain fixed form.

Theorem 1.13. Let V be a tile of G such that 〈V 〉 6= G. Let z = |G|/|V | and m = |G|/| 〈V 〉 |. The
pair (V,A) is a tiling of G if and only if A has the following form:

1. For i = 0, . . . ,m− 1, take Ai ⊂ 〈V 〉 such that (V,Ai) is a tiling of 〈V 〉;

2. Let c0 = 0, c1, . . . , cm−1 be coset representatives of G/ 〈V 〉.

Then A = A0 ∪ (c1 +A1) ∪ · · · ∪ (cm−1 +Am−1).

This proof is based on the proof of Theorem 3 in [3].

Proof. Suppose we have a tiling (V,A) of G. Let c0 = 0, c1, . . . , cm−1 be representatives of G/ 〈V 〉
and set Ai = −ci + (A ∩ (ci + {V })). If 0 6∈ Ai for some i, we can change the representative ci
so that A′i = −ai − c′i + (A ∩ (ai + c′i + 〈V 〉)) = −ai + Ai. The last equality follows from the
fact that ai ∈ 〈V 〉 which was proven in the previous proposition. Now, ai ∈ Ai so 0 ∈ A′i. But
we would have gotten that if we picked c′i instead of ci. Therefore, we can assume that 0 ∈ Ai for all i.

For the other direction, assume that A is in the specific form. We see that |Ai| = z/m so that
|A| = z and |V | · |A| = |G|. To prove that (V,A) is a tiling of G, we only need to show that
(V − V ) ∩ (A−A) = {0}.

For a ∈ A−A, we have three possible forms:

1. (ci + ai)− (ci + ai);

2. (ci + ai1)− (ci + ai2) for ai1 6= a12;
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3. (ci + ai)− (cj + aj) for i 6= j

where ai, ai1, ai2, aj ∈ A. Clearly, all a of the first form equal 0.
For the set of elements of the second type, let us denote those by U . For u ∈ U , we see that

u = ai1 − ai2 ∈ Ai − Ai. Since (V,Ai) is a tiling of 〈V 〉 we have (V − V ) ∩ (Ai − Ai) = {0}. Then
for all i, (V − V ) ∩ U = {0}.

Now we look at the third possibility. Let W denote the set of the elements of the last type. We
know that ci − cj 6∈ 〈V 〉 for all i 6= j and Ai ⊂ 〈V 〉 by construction. Then W ∩ 〈V 〉 = ∅. It
immediately follows that (V − V ) ∩W = ∅.

Now we combine the results:

(V − V ) ∩ (A−A) = (V − V ) ∩ ({0}+ U +W ) = {0}

which shows us that (V,A) is a tile of G.

This theorem implies that we can construct all tilings of G, given all tiles V such that 〈V 〉 = G.
But we can decompose these tilings even further if we switch the roles of A and V in the theorem.
If we have a tiling (V,A) of G such that 〈V 〉 = G, we can look at the tiling (A, V ). If 〈A〉 6= G we
can give d1, . . . , dm−1 such that

V = V0 ∪ (d1 + V1) ∪ · · · ∪ (dm−1 + Vm−1). (1.1)

Now, (A, Vi) is a tiling of 〈A〉 and the d1, . . . , dm−1 are representatives of 〈V 〉 / 〈A〉. Using Equation
1.1, we can decompose each of the tilings (V,Ai) of 〈V 〉 into smaller tilings unless 〈V 〉 = 〈Ai〉 . We
can continue this process until we find full-rank tilings of subgroups of G or tilings (V ′, A′) where
〈V 〉 = V and A = 0. This leads to the next proposition.

Proposition 1.14. Any tiling of G can recursively be decomposed into smaller tilings that are either
full-rank or trivial.

In this example, we will look at a rather trivial tiling and see how we can decompose it.

Example 1.15. Suppose that (V,A) is a tiling of F5
2 given by

V = {(00000), (10000), (01000), (00100)}

and
A = {(00000), (00010), (00001), (00011), (11100), (11110), (11101), (11111)} .

The coset representatives of V are given by c0 = (00000), c1 = (00010), c2 = (00001), c3 = (00011).
Now we set Bi = A∩{ci + w | w ∈ 〈V 〉} and construct Ai = {−ci + b | b ∈ Bi} . Since we are working
in a group of characteristic 2, we have −ci = ci.

We need to check now whether (00000) ∈ Ai for i = 0, 1, 2, 3. In this case,

A0 = A1 = A2 = A3 = {(00000), (11100)} .

This shows us that (00000) ∈ Ai, so we are done.
We have to check that this gives a decomposition:

A0 ∪ (c1 +A1) ∪ (c2 +A2) ∪ (c3 +A3) = {(00000), (11100)} ∪ {(11110), (00010)}
∪ {(11101), (00001)} ∪ {(11111), (00011)}

=A.

So this gives us a decomposition of A.
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We can continue and look at tilings (Ai, V ) and split V in the same manner. Since all Ai are
the same, we only need to look at A0. The coset representatives are given by d0 = (00000), d1 =
(10000), d2 = (01000), d3 = (11000). We calculate that Vi = {(00000)}, so we are done.

Therefore, we see that the initial tiling (V,A) can be built up from 16 tilings of the form

({(00000), (11100)} , {(00000)}).

The recursive decomposition of Proposition 1.14 breaks down tilings into trivial tilings or full-
rank tilings. But we can also decompose full-rank tilings. These can be broken down into non-
periodic full-rank tilings. We will give some notation and propositions first and then show how this
decomposition works.

Notation 1.16. For any subset A ⊂ G, we say A0 = {x ∈ G | x+A = A}. This is the set of all
periodic points of A.

Clearly, A is non-periodic if and only if A0 = {0} and A0 ⊂ A if 0 ∈ A.

Proposition 1.17. If 0 ∈ A then A0 ⊂ A is a subgroup of G and A0 is a tile of A.

Proof. For a, b ∈ A0 we have (a+ b) +A = a+ (b+A) = a+A = A and −a+A = −a+ a+A = A
so a+ b,−a ∈ A0. This shows that A0 is a subgroup.

For a ∈ A clearly a+A0 ∈ A so we can write A as a union of cosets of A0. The cosets are disjoint
because A0 is a subgroup of G.

From now on, we takeA′ ⊂ A to be the set of representatives ofA/A0. By the previous Proposition,
(A0, A

′) is a tiling of A.

Theorem 1.18. Let (V,A) be a tiling of G and let A0 be the set of all periodic points of A.
Then (V/A0, A/A0) is a tiling of G/A0. Furthermore, if (V,A) is a full-rank tiling, then so is
(V/A0, A/A0). The set A/A0 is non-periodic and V/A0 is periodic if V is periodic.

The proof is given by Dinitz in [3]. The proof is not difficult, it is rather straightforward with
quite some technical details.

It would be very insightful to include an example of how this theorem works. But the groups that
allow full-rank tilings are quite big as we will see in the next chapter. Due to this size any example
illustrating the use of this Theorem will not be insightful.

Equivalence

Also, we want to know something about equivalence of tilings. When are two tiles, or two tilings,
equivalent? Does equivalence preserve the full-rank condition?

Definition 1.19. Let A,A′ be two subsets of a group G =
n∏
i=1

Gi. We say that the two subsets are

equivalent if we can obtain A′ out of A after applying transformations of the following types:

◦ a permutation of the coordinates;

◦ a permutation of the elements of Gi in all coordinates i.
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This definition of equivalence of subsets is clearly an equivalence relation.

If A,A′ are two equivalent subsets of a group G, then there exists a permutation π in Sn and n
permutations φi in SGi for each coordinate i. Then the set

{π(φ1(a1), . . . , φn(an)) | (a1, . . . , an) ∈ A}

equals A′.
This definition is normally used only in vector spaces or coding theory.

Remark 1.20. In Fn2 , we have a simpler definition. We can replace the condition of the permutation
of elements of F2 on each coordinate by adding a fixed element of Fn2 to all elements in the subset.

So, if A,A′ are two equivalent subsets of Fn2 , then there exists a permutation π in Sn and a vector
v in Fn2 such that the set

{π(a) + v | a ∈ A}

equals A′.

Now we can deduce from this definition, the definition of equivalence of tilings of finite abelian
groups G.

Definition 1.21. ◦ We say that two tiles V, V ′ are equivalent if they are equivalent as subsets
of G.

◦ We say that two tilings (V,A), (V,A′) are equivalent if A,A′ are equivalent as subsets of G.

◦ We say that two tilings (V,A), (V ′, A′) are equivalent if V, V ′ and A,A′ both are equivalent
with the same coordinate transformation.

Since a tilings (V,A) is not an ordered pair, we say that the two tilings (V,A) and (A, V ) are also
equivalent.

Example 1.22. Consider the set V = {(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)} in F3
2. This set is equiv-

alent to V ′ = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)}.
We see that 〈V 〉 6= F3

2 while 〈V ′〉 = F3
2. The set V ′ does not contain the zero vector. It still is a

tile: if we consider the set A = {(0, 0, 0), (1, 0, 0)} then (V ′, A) tiles F3
2.

Example 1.23. In this example we will write down all non-trivial tilings of F3
2 up to equivalence.

We have the following ten non-trivial tilings. The sets {(000), (100)} , {(000), (110)} and {(000), (111)}
are pairwise not equivalent. Therefore, the ten tilings are all pairwise not equivalent.

000 000
100 001

010
111




000 000
100 001

110
111




000 000
100 001

010
011




000 000
100 011

101
110




000 000
110 001

100
101




000 000
110 010

011
111




000 000
110 011

100
111




000 000
111 001

010
100




000 000
111 001

100
101




000 000
111 011

101
110
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Chapter 2

Full-Rank And Full-Dimensional
Tilings

In this chapter, we look at more specific groups. From now on, by Fm we denote a finite group
on m elements. So if m is a prime number p, then Fm equals the additive group of Fp. If m is a
composite number, then Fm equals the additive group of Z/mZ. If m is a prime power q, then we
look at both the additive groups of Fq and of Z/qZ.

In the first section, we look only at the case of composite m and in the second to the case of prime
numbers. Then we want to look at the prime powers.

But first, we will give three theorems that apply in all cases since they apply to finite, abelian,
additive groups.

Theorem 2.1. Let G be a finite, cyclic, abelian group and let (V,A) be a tiling of G. If the order of
both V and A is either a prime power or a product of two primes, then one factor must be periodic.

This is proven by Sands in [10].

Corollary 2.2. If G is a finite, cyclic abelian group with tiling (V,A) and the order of both V and
A are prime powers or the product of two primes, then (V,A) is not a full-rank tiling.

This Corollary follows from Lemma 1.4.

In the next theorem, we will see that once we find a full-rank tiling, there exist full-rank tilings
in all modules of higher dimension over the same group.

Theorem 2.3. If a nontrivial finite abelian group G admits a full-rank tiling, then there exists a
full-rank tiling of G×H where H is any finite abelian group.

This is Theorem 9 as stated by Dinitz in [3].

Corollary 2.4. Let m ≥ 2 and n ≥ 1. If Fnm admits a full-rank tiling, then there exists a full-rank
tiling of Fn+1

m .

To understand how this works, we give a special case of the proof Dinitz gives in [3] for the proof
of the Theorem.

Proof. Let (V,A) be a full-rank tiling of Fnm. We will construct a full-rank tiling of Fn+1
m .

Suppose there exists a ∈ A \ {0} such that 〈A \ {a}〉 = Fnm. Set V ′ = {(v, x) | v ∈ V, x ∈ Fm} and
A′ = {(a′, 0) | a ∈ (A \ {a})} ∪ {(a, 1)}. Now, (V ′, A′) is a full-rank tiling of Fn+1

m .
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If such a does not exist, then A \ {0} and V \ {0} are minimal generating sets for Fnm. Dinitz
then proves that Fnm can not have more then 36 elements if it has a full-rank tiling. He checks all
possibilities and concludes that Fnm can not have a full-rank tiling and not have such a.

Theorem 2.5. Let m ≥ 3 and n ≥ 3. Then F2n
m admits a full-rank tiling.

The proof of this theorem is based on Theorem 2 of [13].

Proof. In this proof, we will construct a full-rank tiling.
Let x11, x12, . . . , xn1, xn2 basis elements of F2n

m . We set Ki = 〈xi1〉, Hi = 〈xi2〉 and construct
Ai = (Ki\{(m− 1)xi1})∪{(m− 1)xi1 + xi2}. Now, we takeH = H1+· · ·+Hn and A = A1+· · ·+An.

Then (H,A) gives a tiling of F2n
m . This can be seen from

H +A = H1 +A1 + · · ·+Hn +An

= 〈x11, x12〉+ · · ·+ 〈xn1, xn2〉
= F2n

m .

It is clear that 〈H〉 6=F2n
m , so we will construct a set V out of H such that (V,A) is a full-rank tiling.

We remove the sets

(m− 1)x12 +H2, (m− 1)x22 +H3, . . . (m− 1)xn2 +H1

from H and then we add the sets

(m− 1)x12 +H2 + x21, (m− 1)x22 +H3 + x31, . . . (m− 1)xn2 +H1 + x11.

This set we will call V . We claim that (V,A) is a tiling of F2n
m .

We will first prove that

(m−1)x12+H2+A = (m−1)x12+x21+H2+A, (m−1)x22+H3+A = (m−1)x22+x31+H3+A, . . .

(m− 1)xn2 +H1 +A = (m− 1)xn2 + x11 +H1 +A.

We will verify the first equality, the other equations can be proved similarly.

(m− 1)x12 + x21 +H2 +A = (m− 1)x12 + x21 +H2 +A1 + · · ·+An

= (m− 1)x12 + x21 + (H2 +A2) +A1 +A3 + . . . An

= (m− 1)x12 + x21 + 〈x21, x22〉+A1 +A3 + · · ·+An

= (m− 1)x12 + 〈x21, x22〉+A1 +A3 + · · ·+An

= (m− 1)x12 + (H2 +A2) +A1 +A3 + . . . An

= (m− 1)x12 +H2 +A.

Furthermore, we need the sets

(m− 1)x12 +H2 +A, (m− 1)x22 +H3 +A, . . . (m− 1)xn2 +H1 +A

to be disjoint. Suppose that

((m− 1)x12 +H2 +A) ∩ ((m− 1)x22 +H3 +A) 6= ∅,
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which is equivalent to stating that the sets

((m− 1)x12 + 〈x21, x22〉+A1 +A3 + · · ·+An)

and
((m− 1)x22 + 〈x31, x32〉+A1 +A2 +A4 + · · ·+An)

are not disjoint. So pick x in the intersection. Since x ∈ (m−1)x12 + 〈x21, x22〉+A1 +A3 + · · ·+An,
its x11, x12 component is of the form (m−1)x11 where 0 ≤ a ≤ m−2 or of the form ax11+(m−1)x12.
We also have x ∈ (m−1)x22 + 〈x31, x32〉+A1 +A2 +A4 + · · ·+An and this tells us that the x11, x12
component is of the form (m− 1)x11 + x12 or bx11 for 0 ≤ b ≤ m− 2. Such x clearly cannot exist.

Now we have shown that (V,A) gives a tiling of F2n
m . We only need to show that the tiling is

full-rank.

Since xi1, (m− 1)xi1 + xi2 ∈ Ai and Ai ⊂ A for all 1 ≤ i ≤ n, we immediately see that 〈A〉 =F2n
m .

By construction of H, xi2 ∈ V for all 1 ≤ i ≤ n and we added the elements

(m− 1)x12 + x21, (m− 1)x22 + x31, . . . (m− 1)xn2 + x11

to V . Therefore, 〈V 〉 =F2n
m .

We can now conclude that (V,A) is a full-rank tiling of F2n
m .

Combining the previous Theorem and Corollary 2.4 we get the following result.

Corollary 2.6. For m ≥ 3 and n ≥ 6, Fnm has a full-rank tiling.

Full-rank tilings of (Z/mZ)n

In this section, let m be a composite number.

Theorem 2.7. Let a, b, c be composite numbers. Then Z/aZ× Z/bZ× Z/cZ has a full-rank tiling.

This is Theorem 10 in [3]. The next Corollary follows immediately and shows that we can always
find a full-rank tiling of (Z/mZ)3.

Corollary 2.8. The group F3
m has a full-rank tiling.

This proof is based on Theorem 10 in [3] and the construction given in section 2 of [11].

Proof. In this proof, we will construct a full-rank tiling of F3
m.

Let 1 be a generator of Fm, let u be the smallest prime number dividing m and set v = m/u. For
x ∈ G and n ≥ 1 , let [x]n be the set {0, x, . . . , (n− 1)x}.

Set V = [e1]u+[e2]u+[e3]u andB = [ue1]v+[ue2]c+[ue3]v, where e1 = (100), e2 = (010), e3 = (001).
Clearly, (V,B) is a tiling of F3

m and 〈B〉 6= F3
m, while 〈V 〉 = F3

m

Now, we will construct A out of B such that (V,A) gives a full-rank tiling. Let π be any cyclic
permutation of {1, 2, 3}.

We construct

X =
3⋃
i=1

{
(a1, a2, a3) | ai ∈ {0, 1, . . . , (v − 1)} , aπ(i) = u, aπ−1(i) = 0

}
and

Y =
3⋃
i=1

{
(a1, a2, a3) | ai ∈ {1, (u+ 1), . . . , (v − 1)(u+ 1)} , aπ(i) = u, aπ−1(i) = 0

}
.
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Now, we set A = (B ∪ Y ) \X. We claim that (V,A) is a full-rank tiling.
First, we will show that V + [uei]v + ueπ(i) = V + [uei]v + ueπ(i) + ei.

V + [uei]v + ueπ(i) = (
3∑
j=1

[ej ]u) + [uei]v + ueπ(i)

= (

3∑
j=1,j 6=i

[ej ]u) + [ei]u + [uei]v + ueπ(i)

= (
3∑

j=1,j 6=i
[ej ]u) + [ei]uv + ueπ(i)

= (
3∑

j=1,j 6=i
[ej ]u) + [ei]uv + ueπ(i) + ei

= (

3∑
j=1,j 6=i

[ej ]u) + [ei]u + [uei]v + ueπ(i) + ei

= (
3∑
j=1

[ej ]u) + [uei]v + ueπ(i) + ei

= V + [uei]v + ueπ(i) + ei.

Here, we repeatedly used that [ei]m = [ei]m+ei. We now proved that we can replace [uei]v+ueπ(i)+ei
by [uei]v + ueπ(i). We only have to show that

(V + [uei]v + ueπ(i)) ∩ (V + [uej ]v + ueπ(j)) = ∅

for 1 ≤ i, j ≤ 3 and i 6= j.
Suppose that the two sets are not disjoint. Then there exist a = x1e1 + x2e2 + x3e3 ∈ A,

a′ = x′1e1 + x′2e2 + x′3e3 ∈ A′ and 0 ≤ y, y′ < v such that

a+ yuei + ueπ(i) = a′ + y′uej + ueπ(j).

If i 6= j then clearly π(i) 6= π(j). Then either π(i) 6= j or π(j) 6= i. We can not have π(i) 6= j and
π(j) 6= i, because π is a cyclic permutation of {1, 2, 3}. We also can not have π(i) = j and π(j) = i
as then π = (i, π(i)) and this is not possible.

So, suppose that π(j) = k 6= i. Then π(i) = j and π(k) = i. Then the equation becomes

(xi + yu)ei + (xj + u)ej + xkek = x′iei + (y′u+ x′j)ej + (x′k + u)ek.

It follows that xk = x′k + u, but we had xk < x′k + u by construction.
If π(j) = k, π(k) = i and π(i) = j, in the same way we get xj + u = x′j but xπ(i) + u > x′π(i).

Therefore, such x1, x
′
1, x2, x

′
2, x3, x

′
3, y, y

′ can not exist and the intersection is empty.
This shows us that (V,A) is a tiling of F3

m. We will look at the full-rank property now. By
construction, e1, e2, e3 ∈ V so 〈V 〉 = F3

m.
If v = 2 then u = 2 and m = 4. We compute V and A:

V = {(111), (010), (011), (100), (101), (000), (001), (110)}

and
A = {(222), (012), (201), (000), (320), (203), (032), (120)} .

Then 〈V 〉 = 〈A〉 = F3
m, so this construction gives a full-rank tiling if m = 4.
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Now we look at v ≥ 3. For 1 ≤ i ≤ 3 there exists a j such that π(i) = j. If v = 3, then we know
that 0, uej + ei, 2uej ∈ A and it follows that 2uej + (uej + ei) = ei ∈ 〈A〉. If v > 3, then 3uej ∈ A
and 3uej − 2uej = uej ∈ 〈A〉 and we see that uej + ei − uej = ei ∈ 〈A〉. Since this is true for al
1 ≤ i ≤ 3, we can conclude that 〈A〉 = F3

m and therefore, this construction gives a full-rank tiling
for all composite m.

Conjecture 2.9. Let m be a composite number. Then (Z/mZ)2 does not have a full-rank tiling.

We tried finding a full-rank tiling for m = 4, 6, 9, 10 and did not find any. For m = 4, we started
with a sets Vx = {(00), (10), (01), x} for x ∈ (Z/4Z)2 such that |V | = 4 and computed all possible
tilings (Vx, A). We checked and we never found any A such that 〈A〉 = (Z/4Z)2.

For m = 6, we looked at V = {(00), (10), (01)}, a tile of 3 elements, Vx = {(00), (10), (01), x},
a family of tiles of 4 elements, and Vxyz = {(00), (10), (01), x, y, z} a family of tiles of 6 elements.
Again we computed all possible different tilings and never found a full-rank tiling.

For m = 9, we looked at V = {(00), (10), (01)} and all possible tiles of 9 elements containing
(00), (10), (01). Computing all possibilities, we never find a full-rank tiling. In the same way, for
n = 10 we took all possible sets of size 5 and size 10 containing (00), (10), (01).

Full-rank tilings of Fnp
Theorem 2.10. For p = 2, Fn2 admits a full-rank tiling if and only if n ≥ 10

Cohen, Litsyn, Vardy and Zemor proved in [1] that full-rank tilings do not exist for n ≤ 7 and
that they do exist for n ≥ 112. Later, Etzion and Vardy gave a construction for full-rank tilings for
n ≥ 14 in [4]. LeVan and Phelps used this construction to get a full-rank tiling for n = 10.

Trachtenberg and Vardy used a computer to prove that there does not exist a full-rank tiling for
n = 8 in [17]. Österg̊ard and Vardy have extended this computer proof to show that n = 9 does not
admit a full-rank tiling either in [8]. They used to different methods to show this. The first method
uses group characters to show that the two sets in the tiling must have certain properties. This
calculation was rather slow, it took them 10 days. The second method used the classification of all
[14, 5, 3] binary codes and the Dancing Links Algorithm by Donald Knuth in [6]. This calculation was
much faster: it took only 18 minutes, assuming that all [14, 5, 3] binary codes were already available.

There exists a full-rank tiling of F10
2 , given by

V =

(0000000000)
(1000000000)
(0100000000)
(0010000000)
(0001000000)
(0000100000)
(0000010000)
(0000001000)
(0000000100)
(0000000010)
(0000000001)
(0111110001)
(1100010111)
(1011001011)
(0101101111)
(1010111101)

and A =

(0000000000)
(0001100110)
(0000011001)
(0001111111)
(0000101101)
(0001101000)
(0000010110)
(0001011010)
(0101001100)
(0101100001)
(0101010101)
(0100110011)
(0100111000)
(0101001011)
(0100101110)
(0100011111)

(1100000100)
(1100010010)
(1101100010)
(1100101001)
(1100100111)
(1101110100)
(1101011001)
(1101011110)
(0110100000)
(0111010000)
(0110000011)
(0110001101)
(0111000110)
(0110110110)
(0111111010)
(0111111101)

(1000000011)
(1001010000)
(1000101010)
(1000010101)
(1001100101)
(1000111100)
(1001110011)
(1001001111)
(0011000101)
(0010001010)
(0010011100)
(0010110001)
(0011110100)
(0011010011)
(0010100111)
(0011101011)

(1010000110)
(1010001001)
(1011100000)
(1011001100)
(1010110010)
(1010011111)
(1011111001)
(1011111110)
(1111000001)
(1110011000)
(1111001010)
(1110101100)
(1110110101)
(1111010111)
(1110111011)
(1111101111).
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This tiling had been discovered by LeVan and Phelps, but was printed in [8] because LeVan and
Phelps never published it themselves.

In the next theorem we look at p = 3, so Fn3 . Here, the dimension of Fn3 to admit a full-rank tiling
is lower than for p = 2.

Theorem 2.11. The vector space Fn3 has a full-rank tiling if and only if n ≥ 6.

Szabó and Ward proved in [16] that Fn3 does not admit a full-rank tiling for n ≤ 4.
A different approach was used for n = 5. Österg̊ard and Szabó used the Dancing Links Algorithm

by Donald Knuth described in [6] to show that we can not find any full-rank tilings of F5
3. In [7],

Österg̊ard and Szabó explained that only 9015 possible tiles of F5
3 needed to be checked and none

of them were full-rank. We tried to apply the same idea and we narrowed down the search to only
197 possible tiles by removing equivalent tiles. Still, the algorithm we implemented in magma was
too inefficient to run completely during a regular working day.

For n = 6, we use the construction in the proof of Theorem 2.5. This gives us a full-rank tiling
of F6

3:

V =

(000000)
(010000)
(000100)
(010100)
(010200)
(010201)
(020201)
(020001)
(000001)

(010001)
(010101)
(020101)
(000101)
(000102)
(010102)
(020102)
(020202)
(010202)

(120002)
(000212)
(021200)
(100002)
(000211)
(021000)
(021100)
(000210)
(110002)

and A =

(000000)
(212110)
(102121)
(100000)
(100010)
(001021)
(210021)
(002121)
(000010)

(101000)
(101010)
(211021)
(102100)
(102110)
(001000)
(001010)
(212121)
(210000)

(210010)
(100021)
(002100)
(002110)
(000021)
(211000)
(211010)
(101021)
(212100).

Now, using induction and Corollary 2.4, we see that Fn3 admits a full-rank tiling for n ≥ 6.

In the next example, we look at F2
4 . We can show that F2

4 has a full-rank tiling, while we can not
find one in (Z/4Z)2, starting with a tile that looks the same.

Example 2.12. Let F2
4 =

{
0, 1, a, a2

}
and look at F2

4. Set V = {(00), (10), (01), (11)} and
A = {(00), (a0), (0a), (aa)}. Then clearly V + A = F2

4 and (V − V ) ∩ (A − A) = {(00)}. So
(V,A) is a tiling. It is full-rank: 〈V 〉 = 〈A〉 = F2

4.

We can try the same for (Z/4Z)2. Set V ′ = {(00), (10), (01), (11)} and A′ = {(00), (20), (02), (22)}.
Then clearly V ′+A′ = (Z/4Z)2 and (V ′− V ′)∩ (A′−A′) = {(00)}. So (V ′, A′) is a tiling. It is not
full-rank: 〈V ′〉 = (Z/4Z)2, while 〈A′〉 6= (Z/4Z)2.

In the next two theorems we look at prime numbers greater or equal to 5. There are no exact
lower bounds on the dimension of Fnp to allow full-rank tilings. Dinitz first proved that Fp+1

p has
a full-rank tiling and used this and to show that F4

p has a full-rank tiling. We tried to generalize
these proofs so that it would also apply to prime powers or all composite numbers greater than 3,
but that was not possible because of the zero-divisors.

Theorem 2.13. For p ≥ 5 a prime number, Fp+1
p has a full-rank tiling.

This is Proposition 11 given by Dinitz in [3]. He gave a proof using code theory. We can give a
much simpler proof using previous results.

Proof. Since p ≥ 5 is a prime number, it is odd and n = p+1
2 ≥ 3. Then we can apply Theorem 2.5

to see that F2n
p has a full-rank tiling.
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Theorem 2.14. For p ≥ 5 a prime number, F4
p has a full-rank tiling.

This is Proposition 12 given by Dinitz in [3]. He applied Theorem 1.18 to the tiling he found in
the proof of the previous Theorem.

Is this the smallest bound? Rédei conjectured in Problem 5 in the section Open Problems in [9]
that F3

p does not have a full-rank tiling for any p. This is still an open problem but it has been
verified for p ≤ 11 using Latin squares in [15].

Conjecture 2.15 (Rédei’s Conjecture). For a prime number p, F3
p does not have a full-rank tiling.

Theorem 2.16. Let p be a prime number, p ≤ 11. Then F3
p does not admit a full-rank tiling.

Szabó and Ward show this by contradiction. They start with assuming that a full-rank tiling
(V,A) of F3

p exists for a prime number p, where |V | = p and |A| = p2. Then 〈V 〉 = F3
p and there

are elements x, y, z ∈ V generating F3
p . This means that can write all elements in the set in the

form of ix+ jy + kz for i, j, k ∈ {0, . . . , p− 1} .
This is an immediate proof that for p = 2, 3 we cannot have a full-rank tiling. If p = 2, then

V = {0, x} and if p = 3 then V = {0, x, y}. So the tile V contains only one, if p = 2, or two, if
p = 3, nontrivial elements while at least three non-trivial elements are required to generate F3

p . So
〈V 〉 6= F3

p and the tiling is clearly not full-rank.

So now we look at 5 ≤ p ≤ 11. We can code the elements ix + jy + kz by the triple (i, j, k) and
consider the p2 elements of A as a p× p table T , where Ti,j = k. Using some possible replacements
that are written down in the article, we can consider T to be a Latin square.

At this point, some restrictions are given for the properties of the Latin square. If π is a permuta-
tion of {0, 1, . . . , p− 1}, they say that “the ith row of the Latin square contains (is) permutation π”
[15], page 1201. A permutation σ of a finite abelian group (G,+) is said to be a complete mapping
of G if g 7→ g+σ(g) for g ∈ G, is again a permutation of G. Szabó and Ward continue to show that
the rows and columns of the Latin square are complete mappings of (Fp,+).

They give one last definition on permutations. The kth transversal of the Latin square T is given
by the permutation on {0, 1, . . . , p− 1} which maps i to j precisely when Ti,j = k. These transversals
are complete mappings.

The authors then make a claim that if there exists a full-rank tiling of F3
p , then there is one such

that the Latin square belonging to the tiling contains “nonlinear complete mappings in the first
column, first row and the 0th transversal”, page 1202 in [15].

For p = 5, it is shown that all complete mappings are linear, in all possible Latin squares. So this
contradicts the claim and the theorem is proven.

For p = 7, 11, it requires more work to show that F3
p does not have a full-rank tiling. They list all

complete mappings fixing 0 and compute that that there do not exist Latin squares of size p that
meet the requirements of the claim.

For p = 13, the idea of using Latin squares in this way does not work. There are too many
Latin Squares possible and it is not possible to proceed in the same way. Szabó and Ward end
with saying that further reductions must be made to prove Rédei’s conjecture. However, in 2011,
Szabó described a computer search to show that F3

13 does not admit full-rank tilings in [14]. He
used graph theory combined with the Dancing Links Algorithm to show that there are no full-rank
tilings possible.

Full-rank tilings of Fnq
In this section we want to give an overview for which prime powers q and which n we have a full-rank
tiling of Fnq .
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We know that we have an isomorphism of additive groups

(Fnpk ,+) ∼= (Fknp ,+).

Using Corollary 2.4 and other results from the previous section, we can make an overview for
which q and which n we have a full-rank tiling.

◦ If q = 2k, then Fnq has a full-rank tiling if and only if kn ≥ 10 by Theorem 2.10;

◦ If q = 3k, then Fnq has a full-rank tiling if and only if kn ≥ 6 by Theorem 2.11;

◦ If q = pk for a prime number p ≥ 5, then Fnq has a full-rank tiling if kn ≥ 4 by Theorem 2.14.

Example 2.17. In this example we give a full-rank-tiling of F3
9. Let F9 =

{
0, 1, a, a2, a3, 2, a5, a6, a7

}
and b = a2 and a2 = a+ 1.

Then φ : F6
3 → F3

9 given by φ(x1, x2, x3, x4, x5, x6) = (x1+x2b, x3+x4b, x5+x6b) is an isomorphism
of additive abelian groups.

If we look at the full-rank tiling of F6
3 as given in the proof of Theorem 2.11, we can construct a

tiling of F3
9. We get the sets

φ(V ) =

(0 0 0)
(a2 0 0)
(0 a2 0)
(a2 a2 0)
(a2 a6 0)
(a2 a6 a2)
(a6 a6 a2)
(a6 0 a2)
(0 0 a2)

(a2 0 a2)
(a2 a2 a2)
(a6 a2 a2)
(0 a2 a2)
(0 a2 a6)
(a2 a2 a6)
(a6 a2 a6)
(a6 a6 a6)
(a2 a6 a6)

(a5 0 a6)
(0 a6 a5)
(a6 a5 0)
(1 0 a6)
(0 a6 a7)
(a6 1 0)
(a6 a7 0)
(0 a6 1)
(a7 0 a6)

and φ(A) =

(0 0 0)
(a a 1)
(1 a a)
(1 0 0)
(1 0 1)
(0 1 a)
(a 0 a)
(0 a a)
(0 0 1)

(1 1 0)
(1 1 1)
(a 1 a)
(1 a 0)
(1 a 1)
(0 1 0)
(0 1 1)
(a a a)
(a 0 0)

(a 0 1)
(1 0 a)
(0 a 0)
(0 a 1)
(0 0 a)
(a 1 0)
(a 1 1)
(1 1 a)
(a a 0).

Then φ(V ) + φ(A) = F3
9 and (φ(V ) − φ(V )) ∩ (φ(A) − φ(A)) = {(000)} . We can verify that

〈φ(V )〉 = 〈φ(A)〉 = F3
9 and we conclude that we get a full-rank tiling of F3

9.

Using the results from the last three sections and especially Theorem 2.3, for most groups we can
answer the question whether an arbitrary finite abelian group G has the full-rank property.

Full-dimensional tilings

In this section we look at tilings of Fnq for prime powers q. When are they full-dimensional?

Throughout this section, let q be a prime power pk, where k ≥ 2.

Theorem 2.18. If Fnq has a full-dimensional tiling, then so has Fn+1
q .

Proof. Let (V,A) be a full-dimensional tiling of Fnq . We will construct a full-dimensional tiling
(V ′, A′) of Fn+1

q out of (V,A).
Suppose there exists a ∈ A such that Span(A \ {a}) = Fn+1

q . Then set

V ′ = {(v, x) | v ∈ V, x ∈ Fq}

and
A′ =

{
(a′, 0) | a′ ∈ (A \ {a})

}
∪ {(a, 1)} .
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Clearly, (V ′, A′) is a tiling of Fn+1
q . It is also easy to see that it is full-dimensional: Span(V ′) =

Span(A′) = Fn+1
q .

Now, suppose that there does not exists an a ∈ A such that Span(A \ {a}) = Fn+1
q . Then V \ {0}

and A \ {0} are both minimal generating sets for Fnq . This means that |V | = |A| = n + 1. Since
(V,A) tiles Fnq , we know that

qn = |Fnq | = |V | · |A| = (n+ 1)2.

Since the right-hand side is an even power, the left-hand side must be an even power as well. We
assumed that q = pk and then k must be even, k = 2k′. We can rewrite the equation in

p2k
′n = (n+ 1)2.

This does not have a solution for prime numbers p and k′, n > 1. Therefore, we always can find an
a ∈ A such that Span(A \ {a}) = Fn+1

q and construct a full-dimensional tiling in Fn+1
q .

Theorem 2.19. If q is a prime power but not a prime number, the vector space Fnq has a full-
dimensional tiling for all n ≥ 1.

Proof. Using the previous Theorem, we only need to prove that Fq has a full-dimensional tiling.

Take V = {0, 1, . . . , p− 1} a subgroup of order p in Fq. Then we immediately see that Span(V ) =
Fq. For A, we need pk−1 elements. We take A to be the set of all coset representatives of V , then
Span(A) = Fq as well. Clearly, (V,A) tiles Fq and it is full-dimensional.

For q = 4, Fq =
{

0, 1, a, a2
}

is the splitting field of x2 + x+ 1 over F2[x]. The sets V = {0, 1} and
A = {0, a} give a full-dimensional tiling of F4.

A full-dimensional tiling of F2
4 is given by

V =

(0 0)
(0 1)
(1 0)
(1 1)

and A =

(0 0)
(0 a)
(a 0)
(a a).

For q = 8, Fq =
{

0, 1, a, a2, a3, a4, a5, a6
}

, that is the splitting field of x3 + x + 1 over F2[x]. A
full-dimensional tiling of F2

8 is given by

V =

(0 0)
(1 0)
(0 1)
(a 0)
(0 a)
(1 a2)
(a2 1)
(a4 a4)

and A =

(0 0)
(0 a4)
(a6 0)
(a6 a4)
(a4 a6)
(a4 a3)
(a3 a6)
(a3 a3).

For q = 9, Fq =
{

0, 1, a, a2, a3, 2, a5, a6, a7
}

is the splitting field of x2 + 2x + 2 over F3[x]. A
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full-dimensional tiling of F2
9 is given by

V =

(0 0)
(1 0)
(0 1)
(1 1)
(a 0)
(0 a)
(a a)
(a 1)
(1 a)

and A =

(0 0)
(2 a6)
(1 a2)
(a2 0)
(a5 a2)
(a3 a6)
(a6 0)
(a a6)
(a7 a2)

.

The tiling we found for F2
4, can be sent to F16. The additive groups are isomorphic via φ : F2

4 →
F16, φ(x, y) = x + yα. Then φ(V ) =

{
0, 1, α, α4

}
and φ(A) =

{
0, α6, α5, α9

}
. This gives a full-

dimensional tiling of F16.
For q = 25, x2 + 4x+ 2

V =

(0 0)
(1 0)
(0 1)
(1 1)
(a 0)
(0 a)
(a a)
(1 a)
(a 1)

(a13 0)
(0 a13)

(a13 a13)
(1 a13)

(a13 1)
(a a13)

(a13 a)
(a7 0)
(0 a7)
(a7 a7)
(1 a7)
(a7 1)
(a7 a13)
(a13 a7)
(a7 a)
(a a7)

and A =

(0 0)
(a2 0)
(a8 0)
(a14 0)
(a20 0)
(0 a2)
(a2 a2)
(a8 a2)
(a14 a2)
(a20 a2)
(0 a8)
(a2 a8)
(a8 a8)

(a14 a8)
(a20 a8)
(0 a14)
(a2 a14)
(a8 a14)
(a14 a14)
(a20 a14)
(0 a20)
(a2 a20)
(a8 a20)
(a14 a20)
(a20 a20).
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Chapter 3

Tilings Of Binary Spaces And Perfect
Binary Codes

In this section, we will consider tilings of binary spaces. We look at the correspondence between
tilings and perfect binary codes. We will show that for each tiling (V,A) of Fn2 we can construct a
perfect binary code of length |V |−1 in a unique way. Furthermore, we will show that given a perfect
binary code and a given linear subcode, we can construct a tiling (V,A) such that 〈V 〉 = Fn2 .

Theorem 3.1. Let (V,A) be a tiling of Fn2 and let ν = |V | − 1. Let H(V ) be the n× ν matrix con-
sisting of elements of V \{0}, in some fixed order, as its columns. Let C =

{
c ∈ Fν2 | H(V )cT ∈ A

}
.

Then C is a perfect binary code of length ν.

This is Proposition 7.1 in [1].
The code constructed in this way is not unique. In the next example we will look at two different

tilings that give the same code.

Example 3.2. Let (V1, A1) be the tiling of F3
2 given by

V1 = {(000), (001), (010), (111)} , A1 = {(000), (100)}

and let (V2, A2) be the tiling of F3
2 given by

V2 = {(000), (101), (011), (111)} , A2 = {(000), (001)} .

The matrix H(V1) belonging to V1 is given by1 1 1
0 1 1
1 0 1


and H(V2) is given by 0 0 1

0 1 0
1 1 1

 .

Now we see that{
c ∈ Fν2 | H(V1)c

T ∈ A1

}
=
{
c ∈ Fν2 | H(V2)c

T ∈ A2

}
= {(000), (111)} .

So the perfect codes belonging to (V1, A1) and (V2, A2) are the same while the tilings (V1, A2) and
(V2, A2) are not equivalent.
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In the next example we show that this theorem might not work on all other finite vector spaces.

Example 3.3. Let (V,A) be the tiling of F3
3 given by

V = {(000), (100), (020)} , A = {(000), (220), (211), (102), (212), (021), (110), (022), (101)} .

We compute

H(V ) =

1 0
0 2
0 0


and see that

C =
{
c ∈ F2

3 | HcT ∈ A
}

= {(00), (11), (22)} .

It is clear that this is a code but that it is not perfect.

The following theorem is somewhat the converse of Theorem 3.1: given a perfect code and a linear
subcode, we can construct a tiling.

Theorem 3.4. Let C be a perfect binary code of length ν and let Γ be a linear subcode of C such
that Γ + C = C. Set γ = dim(Γ) and let H(Γ) be the (ν − γ) × ν parity-check matrix of Γ. Take
V = {0} ∪ {columns of H(Γ)} and define A =

{
H(Γ)cT | c ∈ C

}
. Then (V,A) is a tiling of Fν−γ2

and 〈V 〉 = Fν−γ2 .

This is Proposition 7.6 in [1].
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Open Problems

◦ Conjecture 2.15 is still open. It would be nice to give an all-encompassing proof that F3
p does

not allow full-rank tilings for prime numbers p.

◦ We would like to prove Conjecture 2.9, or even its generalization that Z/aZ× Z/bZ does not
have a full-rank tiling for all a, b ≥ 2. This is proven for prime numbers less than 17, but not
for all numbers.
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January 1973.

[10] Arthur Sands. Factoring Finite Abelian Groups. Journal Of Algebra, 275(2):540–549, 2004.
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