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Voorwoord

Archimedes van Syracuse (287 - 212 v.Chr.) wordt vaak tot één der grootste wis- en natuur-
kundigen aller tijden gerekend. Bijna iedereen kent hem wel vanwege zijn natuurkundige
uitvindingen, vanwege zijn ingenieuze oorlogswapens of toch in ieder geval wel om zijn be-
roemde kreet «Ebpnxo, ebpnxal» “Ik heb het, ik heb het!”,ﬂ die hij slaakte toen hij de wet
van Archimedes ontdekte. Onder wiskundigen genieten ook Archimedes’ wiskundige werken
bekendheid, maar bijna niemand kent zijn runderprobleem.

Het runderprobleem van Archimedes lijkt in eerste instantie niet meer dan een eenvoudig
raadsel: bereken het aantal runderen van de zonnegod Helios aan de hand van een aantal
voorwaarden. Dat raadsel blijkt echter zo pittig te zijn, dat velen zich erop hebben stukge-
beten, totdat aan het einde van de negentiende eeuw werd aangetoond dat het totale aantal
runderen in het gunstigste geval een getal is van 206 545 cijfers. Pas in 1965 werd dit getal
ook volledig uitgerekend. Dit bedrieglijk lastige probleem staat centraal in deze scriptie, met
bijzondere aandacht voor de zogenaamde Pellvergelijking, die optreedt bij het zoeken naar
een oplossing.

Deze scriptie is een bachelorscriptie voor de opleiding Wiskunde. Naast bachelorstudent
Wiskunde ben ik, na een bacheloropleiding Griekse en Latijnse Taal en Cultuur te hebben
afgerond, tevens masterstudent Oudheidstudies. In deze scriptie combineer ik dan ook mijn
kennis van beide vakgebieden: niet alleen heb ik gekeken naar het wiskundige aspect van
het runderprobleem, maar tevens heb ik kritisch naar de originele probleemstelling gekeken.
Uiteraard is al het Grieks voorzien van vertalingen en uitleg, zodat deze scriptie ook zonder
kennis van het Oudgrieks gelezen kan worden.

Ik wil graag mijn begeleider, dr. Wim Veldman, bedanken voor het enthousiasme waarmee
hij mij begeleid heeft bij dit ingewikkelde onderwerp. Voor zijn hulp bij de voorbereiding
van de eindpresentatie van deze scriptie bedank ik dr. Wieb Bosma. Een bijzonder woord
van dank gaat uit naar dr. Floris Overduin, die bereid was samen met mij een kritische blik
te werpen op de Griekse tekst.

Vaak wordt deze kreet vertaald als “Tk heb het gevonden, ik heb het gevonden!”. Het Griekse perfectum
legt echter nadruk op het resultaat van de handeling en niet op de handeling zelf. Het resultaat is in dit geval
dat Archimedes de oplossing heeft (en dat komt doordat hij hem gevénden heeft). “Ik heb het, ik heb het!”
geeft dus beter weer dat het in het Grieks om een perfectum gaat.
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1 Inleiding

Lange tijd kenden we van Archimedes, naast verhalen door andere auteurs, alleen weten-
schappelijke verhandelingen, geschreven in het Dorisch dialect. In 1773 ontdekte Gotthold
Ephraim Lessing, een bekend Duits schrijver en dramaturg, in de bibliotheek van Wol-
fenbiittel enkele uit het oog verloren teksten, waaronder een probleem waarbij vermeld werd
dat het van Archimedes was. In tegenstelling tot de wetenschappelijke verhandelingen is dit
probleem gesteld in de vorm van een epigram, poézie dus, in het Ionisch dialect. Het gedicht
bestaat uit 22 elegische distichaﬂ waarin de lezer wordt gevraagd het aantal runderen van
de zonnegod Helios te bepalen aan de hand van enkele voorwaarden.

Dergelijke opgaven zijn geen vreemde verschijning in de Griekse literatuur: boek 14 van de
Anthologia Palatmaﬂ staat er zelfs helemaal vol mee. Meestal gaat het om korte raadsels die
gemakkelijk op te lossen zijn of strikvragen met een verrassende wending. Eén van de over-
geleverde problemen is het volgende kleine runderprobleem, dat gesteld is in acht dactylische
hexameters[]

Eic tnv AOyelov xénpov

Adyeinv épéeve uéya ovévog Ahxeldao,

ALY Bouxohivyv Billruevoe: 6¢ & anduelto:
CApgl pev ‘Ahgelolo podg, plhog, Huiou T@voe-
wolpn & oydodtr 6y dov Kpdvou dugpivépovton:
dwdexdtn & andvevde Topolinmolo mop” ipdv-
auel & dp" "HAba dlay éetxooth) vepédovton-
autdp év Apxadin (ye) tpinxoothv npohéloira
rowndg & al Aebooelg dyéNag TOOE TEVTIAXOVTOL. Y

Over de mest van Augeias

Aan Augeias vroeg de sterke Herakled?]

naar het aantal runderen in zijn kudde, en hij antwoordde:
“Bij de rivier de Alpheios, vriend, is de helft ervan;

en een achtste deel wordt geweid bij de Kronosheuvel;

een twaalfde is ver weg bij het heiligdom van Taraxippos;
en in het heilige Elis wordt een twintigste gevoed;

maar in Arkadié heb ik een dertigste achtergelaten;

en wat je hier ziet is wat nog over is: vijftig stuks.”

Deze korte opgave is gemakkelijk: er hoeft slechts één lineaire vergelijking in één onbekende
opgelost te worden. Met x voor het totale aantal runderen vinden we de vergelijking

2 8 12 20 30

Na het gelijknamig maken van de breuken vinden we % x = 50, waaruit onmiddellijk volgt

dat het totale aantal runderen 240 was.

2Een elegisch distichon bestaat steeds uit twee verzen, achtereenvolgens een dactylische hexameter en een
dactylische pentameter. Het gedicht telt dus 44 verzen in totaal.

3De Anthologia Palatina is (letterlijk) een bloemlezing, bestaande uit zestien boeken gedichten, voorna-
melijk epigrammen. Hun datering loopt uiteen van de zevende eeuw v.Chr. tot de zesde eeuw n.Chr.

4 AP 14.4, hier overgenomen uit Benson (2014), 191.

PAhxeidne “Alkeides” is een alternatieve benaming voor Herakles.



Volgens de overlevering had Augeias echter wel 3000 runderenﬁ Hieruit blijkt direct dat
dergelijke raadsels vaak wel een mythologische of historische achtergrond hebben, terwijl het
antwoord daar niet noodzakelijkerwijs direct iets mee te maken hoeft te hebben.

Het runderprobleem van Archimedes is vijf en een half keer zo lang als het runderprobleem
over de mest van Augias en aanzienlijk ingewikkelder. De kleinste oplossing van het probleem
blijkt immers voor het totale aantal runderen een getal op te leveren met maar liefst 206 545
cijfers. In deze scriptie wordt eerst de precieze formulering van het probleem besproken, even-
als enige informatie over Archimedes’ leven en werk, inclusief de vraag of het terecht is dat
Archimedes’ naam aan het runderprobleem gekoppeld is. Daarna komen de geschiedenis van
de ontdekking en van de oplossing van het probleem aan de orde. Vervolgens worden oplos-
singen gepresenteerd voor vereenvoudigde versies van het probleem, inclusief een wiskundige
uitleg hoe ingezien kan worden dat het complete probleem oneindig veel oplossingen heeft en
hoe deze oplossingen berekend kunnen worden. In de traditionele methode hiervoor speelt
de zogenaamde Pellvergelijking een belangrijke rol; om hiermee te kunnen werken wordt
theorie over kettingbreuken gebruikt. Tot slot wordt kort ingegaan op alternatieve, eventu-
eel efficiéntere, oplossingsmethoden en op alternatieve interpretaties van de tekst waardoor
de opgave en daarmee dus ook de oplossing verandert. Omdat er veel oplossingen van sub-
tiel wisselende problemen worden besproken, zijn voor de overzichtelijkheid alle oplossingen
tevens terug te vinden in appendix [B]

Bij het runderprobleem van Archimedes zijn we op zoek naar aantallen runderen en daarom
alleen geinteresseerd in positieve gehele getallen. In deze scriptie wordt daarom de conventie
gehanteerd dat de natuurlijke getallen beginnen bij 1, zoals dat bij de Grieken ook gebrui-
kelijk was. Dus N = {1,2,3,...}.

SMagak (2001), 57.



2 Inhoud van het runderprobleem

In dit hoofdstuk wordt de inhoud van het runderprobleem in detail besproken. Steeds wordt
een gedeelte van de tekst weergegeven, zowel in het Grieks als in vertaling, gevolgd door een
toelichting met aandachtspunten[] Inhoudelijke overgangen in de tekst treden niet altijd op
bij een verseinde. Daarom, en ook omdat het handig kan zijn de tekst van het probleem los
te kunnen raadplegen, is het runderprobleem in zijn geheel ook opgenomen in appendix [A]l
De tekst in de appendix dient nadrukkelijk ter snelle referentie: voetnoten bij de vertaling
en verdere opmerkingen zijn in de appendix achterwege gelaten.

2.1 Inleiding op het gedicht

IMeoBAnua dnep Apyundng év emtypdupacty ebpov tolg €v Alelavdpela nepl
Tabto mparypatevouévol {ntely anéoteikey €v Tf] npog Epatoodévny tov
Kupnvolov €miotolf.

Probleem dat Archimedes, in epigrammen gevonden hebbend, aan degenen in
Alexandrié die zich omtrent die dingen bezighouden om te bestuderen
verzond in de brief aan Eratosthenes van Cyrene.

In de manuscripten wordt het runderprobleem voorafgegaan door deze inleidende zin. Er
wordt overduidelijk geclaimd dat Archimedes iets met het probleem te maken heeft; het is
echter onduidelijk wat precies zijn rol is: het woord «ebpdv» is voor meerdere interpretaties
Vatbaarﬁ Er zou bedoeld kunnen worden dat Archimedes het probleem ergens in epigrammen
ontdekt had, waarmee de rol van Archimedes niet meer zou zijn dan een doorgeefluik. Er
zou ook bedoeld kunnen worden dat Archimedes het probleem opgelost had, wat gezien
de moeilijkheidsgraad onwaarschijnlijk lijkt, of zelfs dat Archimedes het probleem bedacht
hadﬂ In alle gevallen blijft onduidelijk wat Archimedes’ bijdrage geweest zou zijn aan de
poétische formulering van de opgave. Deze kwestie komt nader aan de orde in hoofdstuk 3]
De kwestie of Archimedes het probleem zelf op had kunnen lossen komt nader aan de orde
in de hoofdstukken [3] en Bl

Het tweede deel van de zin brengt minder interpretatieproblemen met zich mee: de claim
is dat Archimedes het probleem naar zijn collegawiskundigen in Alexandrié gestuurd heeft,
specifiek naar Eratosthenes van Cyrene. Of men in Alexandrié een oplossing of op zijn minst
een antwoord wist te bedenken op de opgave is helaas niet bekend. Meer informatie over
Archimedes’ Alexandrijnse contacten volgt in hoofdstuk

2.2 Inleiding op het probleem

IIAndbv Hellowo Boddv, & Eelve, yétpnoov
peovTid’ EmoThoug, €l HETEYE coging,

nooon dp’ év medlowc Lxehfic mote Booxeto vicou
Opwvaxing tetpayf] otigea dacoouévn

YEOUV GANICCOVTA: TO UeEV AeUXOlo YdhoxToc,
XUOVEW O ETEQOV YPWUATL AUUTOUEVOY,

Ao ye pev Eaviov, to B¢ Towxlhov:

"De tekst is ontleend aan Lloyd-Jones & Parsons (1983), 77-79. Omdat de tekst niet op alle punten even
duidelijk is, heb ik geprobeerd in de vertaling zo dicht mogelijk bij het Grieks te blijven, zodat woord voor
woord duidelijk is wat precies in de Griekse tekst staat.

8Het werkwoord ebpioxw betekent “vinden”. Dit kan op verschillende manieren worden uitgelegd, waaron-

der “(een probleem) aantreffen”, “(een oplossing) vinden”, “(een opgave) uitvinden”, etc.
9Zie Benson (2014), 172.
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De menigte runderen van Helios, o vreemdelingm tel die
nadat je je gedachte erop hebt vastgepind, als je deelhebt aan wijsheid,
hoe groot graasde die eens op de vlakten van Sicili€¢, het eiland
Thrinakia, in vieren in groepen verdeeld,
die hun huidskleur afwisselden: de ene [had die] van witte melk,
en door zwarte huid schitterend was de volgende,
een andere weer roodbruin, en een gevlekt;

Het epigram valt onmiddellijk met de deur in huis: de opdracht is om het aantal runderen
van Helios uit te rekenen. Helios was de Griekse zonnegod en zijn runderen waren bekend uit
de epische traditie, in het bijzonder uit de Odyssee. Wanneer Odysseus tijdens zijn omzwer-
vingen aankomt op het eiland Thrinakia, een andere benaming voor SiciliéB treft hij daar
de runderen van Helios aan. Van tevoren zijn Odysseus en zijn bemanning al meermaals
gewaarschuwd dat ze absoluut van de runderen af moeten blijven, maar door slecht weer
worden ze gedwongen langer op het eiland te verblijven. Wanneer het eten opraakt, besluit
Odysseus’ bemanning om toch een paar runderen te slachten, liever dan van de honger om
te komen. De straf van de goden blijft niet uit: door bliksemschichten van Zeus komen alle
mannen om, op Odysseus naE In de Odyssee wordt ook het aantal runderen gegeven: er
waren zeven kuddes bestaande uit elk vijftig runderen en dus 350 runderen in totaal; ook
waren er nog net zo veel schapen. Volgens deze beschrijving zijn deze dieren onsterfelijk en
krijgen ze geen jongen

Na een paar verzen uit het epigram weten we al dat de runderen van Helios deze keer
anders gerangschikt zijn dan in de Odyssee. Er is namelijk sprake van slechts vier kuddes,
die bovendien ingedeeld zijn op kleur: een witte kudde, een zwarte, een roodbruinﬁ en een
gevlekte. In deze scriptie wordt W gehanteerd voor wit, Z voor zwart, R voor roodbruin
en G voor gevlekt. Met behulp van de subscripts 4, o en +0 wordt aangegeven dat het
respectievelijk stieren, koeien en de hele kudde betreft. Zo wordt bijvoorbeeld het aantal
zwarte stieren aangegeven met Z,, het aantal witte koeien met Wo en het aantal dieren in de
gevlekte kudde - bestaande uit zowel stieren als koeien - met G , +or (Dus G 5 o= Gy+Go.)

2.3 Runderprobleem deel I: verhoudingen van de stieren

€V OE EXGOTR
otigel Ecav tabpol TAdeot Perdouevol
oupUETE(NG Tolfjode TETELYOTES dPYOTELYOC HEV
XUAVEWY TapnY Nuioel HoE Teite
xal Eavdolg chunacty looug, @ Eelve, vonoov,
a0 TAE XVAVEOUC TE TETEATE TE PEREL

10Het woord Egivoc kan zowel vreemdeling als vriend betekenen. In de context van een epigram, dat oor-
spronkelijk een in steen gebeiteld grafschrift was, al dan niet langs een openbare weg, ligt de vertaling
“vreemdeling” het meest voor de hand. In de betekenis “vriend” wordt de aanspreekvorm Zeive in elegieén
niet gebruikt, en in feite ook niet bij echte vrienden. (Zie Sider (2016), 145.) Het woord wordt gebruikt om
gasten welkom te heten, zodat een vertaling als “beste” wellicht beter is. Het is dus onwaarschijnlijk dat
Archimedes direct zijn collegawiskundigen in Alexandrié aanspreekt als “vriend”. Idem in vers 11, 27 en 42.

"Tn Od. 12.127 wordt het eiland waar de runderen van Helios zich bevinden aangeduid met «@pivoxpin
vijcoc» “het eiland Thrinakria”. In de Oudheid is dit al geidentificeerd met de vorm Tewoxpio “driepuntig”,
“met drie landtongen”, wat overeenkomt met de driehoekige vorm van Sicilié. (Zie bijvoorbeeld Thuc. 6.2.)
Met Opwvaxin zou dan Opwvaxpein bedoeld worden.

20d. 12.261-425.

¥ 0d. 12.127-141.

14Het is niet altijd duidelijk wat kleuren in het Oudgrieks voorstelden. Zodoende wordt Eoavdéc vaak vertaald
als “geel”, wat in combinatie met runderen een bijzonder ongelukkige vertaling is. Het lijkt waarschijnlijker
dat hier “roodbruin” bedoeld wordt; “blond” zou eventueel ook nog kunnen.



WX ToYeOWY Xol TéUTTw, €Tl Eavdolol te ndouy.
Tolg & Umoleimopévoue mohdypwtac dupel
15 AEYEVVEY Tapwy EXTe uépel EBdoudTe TE
xoll Eavioic abTobg mdoty ioalopévouc.

en in iedere
groep waren stieren met hun aantallen zwaarwegend
die er toevallig met een zodanige verhouding waren: dat de witharigen
10 aan van de zwarte stieren de helft en een derde
en aan alle roodbruinen tezamen gelijk waren, o vreemdeling, begrijp dat,
maar de zwarten zowel aan het vierde deel
van de gemengdgekleurden als aan een vijfde, en nog aan alle roodbruinen.
En de overgelaten gevlektgekleurden, observeer dat
15 aan van de witte stieren een zesde deel en een zevende
en aan alle roodbruinen zij gelijk waren.

Ten eerste worden in vers 7 t/m 16 de verhoudingen tussen de verschillende kleuren stieren
gegeven. Opvallend is dat wordt toegevoegd dat de stieren «mifdcol Perdoduevoly waren, “met
hun aantallen zwaarwegend”ﬁ Men meent wel eens dat de betekenis zou moeten zijn dat
er meer stieren waren dan koeienm maar dat is niet wat letterlijk in de tekst staat en
daarmee slechts één interpretatie. Als we de versregels omzetten in vergelijkingen, vinden we
de volgende drie vergelijkingen voor de verhoudingen van de stieren.

1 1
1 1
4 5
1 1

2.4 Runderprobleem deel I: verhoudingen van de koeien

Onheiouot 8¢ Pouol T80 EMAETO AEUXOTELYES UEV
floov ouUTAoNE XVAVENS AYEANC
TR TELTAT TE PEPEL Ol TETPATL ATEEXES loat-
20 0T HUAVEN TE TETEATE TE TAALY
UXTOYPOWY Xl TEUNTL Ouol pépel iodlovto
oLV Tadpolg TACUS EIC VOUOV EQYOUEVALS.
Eoviotplywy 8 ayEAng TEUNTL HEEEL NOE ol EXTL
rowthan lodpripov mhfidog Exov TeTpayf.
25 Sovial & erduebvto pépoug teitou fuloel loo
dpyevviic ayéhng EBBoudtw T uépet.

En voor de vrouwelijke runderen waren het deze [groepen|: de witharigen
waren aan van de gehele zwarte kudde tezamen
zowel het derde deel als een vierde precies gelijk;
20 maar de zwarten (@) waren aan zowel het vierde deel weer
van de gemengdgekleurden als een vijfde deel tezamen gelijk,

157ie Sider (2016), 146.
'6Schreiber (1993). Zie ook Wurm (1830), 196.
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terwijl zij allen met de stieren naar weidegrond gingenm

Maar aan van de kudde der roodbruinharigen een vijfde deel en ook een zesde
hadden de gevlekten (@) een gelijktallige hoeveelheid in vieren.

En de roodbruinen (@) werden geteld als aan de helft van een derde deel gelijk
van de witte kudde en aan een zevende deel.

Vervolgens worden in vers 17 t/m 26 de verhoudingen tussen de verschillende kleuren koeien
gegeven. Merk op dat in al deze vergelijkingen steeds de volledige hoeveelheid runderen van
een bepaalde kleur optreedt, zodat de verhoudingen van de koeien mede afhankelijk zijn
van de aantallen stieren. Omdat van iedere kleur de stieren slechts in één van deze nieuwe
vergelijkingen een rol spelen, zijn de verhoudingen tussen de stieren echter onafhankelijk van
de aantallen koeien. Als we de versregels omzetten in vergelijkingen, vinden we de volgende
vier vergelijkingen voor de verhoudingen van de koeienE

Wo=(5+7) Zoso (@)
Z=(1+5) Goe )
Go=(5+5) R 0
Ro=(5+7) Worro 7

2.5 Nawoord bij deel I van het probleem

Eeive, ob & Hellowo Bdec noéoo dtpexeg einv,
Xwelg uev Tadpwv Latpepéwy dprdudy,

Ywelc 8 ab Yihetan doon xaTd YeoLdv ExaoTol,
oOx diidplc xe Aéyol 008 dpriudsy adang,

00 uny e Ye cogoic evapliulog.

En vreemdeling, als jij de aantallen (Q) runderen van Helios precies gezegd hebt,
afzonderlijk van goedgevoede stieren het nummer,

en afzonderlijk weer de vrouwelijke, hoeveel alle afzonderlijk (9) per kleur [zijn],
zul je niet een onwetende genoemd worden, noch een met getallen onbekende,

maar toch ook nog niet een onder de wijzen gerekende.

De zeven vergelijkingen die de verhoudingen van de stieren en de verhoudingen van de koeien
weergeven vormen samen het eerste deel van het runderprobleem. In vers 30 wordt voor het
oplossen ervan een beloning in het vooruitzicht gesteld: je mag jezelf dan “niet onwetend”
noemen en “niet met getallen onbekend”. In vers 31 wordt dit prettige vooruitzicht echter
weer onmiddellijk teniet gedaan, omdat je jezelf als je de opgave weet op te lossen nog altijd
niet tot de wijzen mag rekenen.

'"De betekenis van vers 22 is niet geheel duidelijk. Voor deze vertaling, die gezien de context het meest
logisch lijkt, zou «ndoouc ... Epyouévoucy eigenlijk vervangen moeten worden door «mdo@v ... Epyouévevy
zodat er een genitivus absolutus staat, zoals Struve voorstelt. (Zie Lloyd-Jones & Parsons (1983), 78.) Een
dativus absolutus komt in het Grieks niet voor.

18De oplettende lezer zal het wellicht zijn opgevallen dat in de omzetting van tekst naar vergelijking het
woord «tetpayfi» “in vieren” in vers 24 verdwenen lijkt. Door de meeste wetenschappers die het runderpro-
bleem bespreken wordt dit woord inderdaad genegeerd, omdat het de regelmaat in de vergelijkingen verstoort.
Dit is wellicht niet helemaal terecht. In eerste instantie wordt in deze scriptie het probleem behandeld zo-
als gebruikelijk is, zonder inachtneming van het woord «tetpayfi». In hoofdstuk [J] wordt deze kwestie nader
besproken.
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2.6 Runderprobleem deel II: geometrische condities

AN\ T ppdleu

xoll tdde mavta oy Hellowo mddn,.

Apyotpryec tabpot pev nel wotato TAndiy
xvavéolg, {otavt’ éunedov loduetpol

elc Bddog eic ebpdc Te, T & ab mepurxea TV
nipmiovto mhiviou BOpwvoxing media.

Soaviol & abt’ eic Ev ol mowxilot ddpoicVévteg
lotavt’ aufohddny €€ Evog dpyduevol

o) fijua Terelolivieg 1O TEEAoTEGOV 0UTE TROCOVTLY
aANOYEOWY TopwY OUT EMLAELTOUEVLV.

Maar kom, overdenk

ook al deze eigenschappen van de runderen van Helios.

Witgehaarde stieren mengden eens onderling hun menigte
met de zwarten, zij gingen stevig staan, gelijk in maat

naar diepte en naar breedte, en nu weer werden de heel grote
vlakten van Thrinakia in het geheel gevuld met een bouwsteen.

Maar nadat dan weer de roodbruinen tot één en de gevlekten verzameld waren,
gingen zij staan, met een omhoogwerping vanaf één beginnend

aan een figuur, completerend de driehoekB terwijl noch andersgekleurde
stieren aanwezig waren, noch [er stieren] werden achtergelaten.

Dat zelfs het oplossen van het eerste deel van het runderprobleem nog niet betekent dat je
jezelf tot de wijzen mag rekenen, vormt wellicht een teleurstelling. Daarom wordt de lezer
met « AN Thy “Maar kom” snel aangespoord om ook nog twee aanvullende voorwaarden
in beschouwing te nemen. Samen met de voorwaarden voor het eerste deel vormen deze
het tweede deel van het runderprobleem. Hier gaat het niet langer om verhoudingen, maar
worden twee geometrische condities toegevoegd. Het is echter niet volledig duidelijk hoe deze
condities moeten worden opgevat.

Enerzijds wordt vermeld dat de witte stieren en de zwarte stieren samen een «mAivdog»
vormden, oftewel een “baksteen”. Het is echter onduidelijk welke vorm een mAivioc had: die
van een rechthoek of die van een vierkant. In de traditionele benadering van het probleem
wordt uitgegaan van een Vierkantm De versie waarbij van een rechthoek wordt uitgegaan
staat bekend als Wurms probleem en wordt besproken in hoofdstuk [8] Anderzijds wordt
vermeld dat de roodbruine en de gevlekte stieren samen een driehoek vormden, die begon
bij één. Soms meent men dat het aantal roodbruine en gevlekte stieren min één een driehoek
vormdeE maar de genoemde «auBoiddrn» “omhoogwerping” suggereert dat bedoeld wordt
dat één stier op de eerste rij van de driehoek stond, twee op de tweede rij, etc. Als we de
versregels omzetten in vergelijkingen, vinden we de volgende twee vergelijkingen voor de
geometrische condities.

Wy +Zg =a? (8)
q(qg+1

9 etterlijk betekent towpdonedov “drierand”. Dit woord is een zogenaamde hapaz, dat wil zeggen in de
hele Griekse literatuur alleen op deze ene plek overgeleverd. (Sider (2016), 148.)

20Sider (2016), 148.

21Zie Bartlova (2012), 106.



2.7 Nawoord bij deel II van het probleem

Tabta cuveZevpmv xol évi mpanidecoty dipoloag
xal TANY€wy drodolc, &elve, T& mdvta pétpa

€oYE0 AUBLOWY VXNPOEOS ot TE TéVTWS
xEXPWEVOC TAUTY Y dunviog v coin.

Nadat je die dingen samen uitgevonden hebt en in je geest verzameld hebt
en van de hoeveelheden, vreemdeling, al de metingen overgedragen hebt,

ga dan jubelend de overwinning dragend en weet dat je geheel en al
beoordeeld [bent] als goedgevoed in dié wijsheid.

Na het oplossen van het eerste deel van het runderprobleem mag je jezelf nog niet tot de
wijzen rekenen. Als je echter ook de oplossing met inachtneming van het tweede deel weet
te vinden, dan mag je jubelend de overwinning dragen. Merk op dat nu niet meer gevraagd
wordt naar de precieze hoeveelheden, maar dat in plaats daarvan gevraagd wordt alles in je
geest te verzamelen en de metingen over te dragen. Met andere woorden, het lijkt voldoende
om een methode te presenteren waarmee je de gevraagde getallen kunt uitrekenen, zonder
ze daadwerkelijk uit te rekenen. Aangezien de getallen zo ontzettend groot worden, is dat
erg prettig.

Tot slot zou je verwachten dat je na het oplossen van het complete runderprobleem jezelf
eindelijk tot de wijzen mag rekenen. Maar dan komt er toch een teleurstelling: je mag jezelf
slechts goedgevoed noemen in één bepaalde wijsheid. Het woord «dunvioc» “goedgevoed” is
een ongebruikelijk woord, dat iets te maken heeft met mais of graan. Er is zelfs gesuggereerd
dat het zou refereren aan de bemanning van Odysseus, die zich tegoed deed aan Helios’
runderen@ Het is dus maar de vraag of het willen oplossen van het runderprobleem wijs is,
en of je er wel wijs van wordt.

#Benson (2014), 185-186.
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3 Leven en werk van Archimedes

Archimedes leefde in de tweede eeuw v.Chr. in Syracuse, een Griekse kolonie in het zuidoosten
van Sicilié. Bij de lokale bevolking werd hij het bekendst door zijn verschillende soorten
oorlogsmachines en hijskranen. Met de “klauw van Archimedes” kon hij bijvoorbeeld schepen
laten kapseizen. Toen Syracuse in 212 v.Chr. door de Romeinen belegerd werd, wist hij hen
met verschillende verdedigingsmachines lang buiten de deur te houden, maar uiteindelijk
vonden de Romeinen toch een weg om de stad in te nemen. Er kwam een soldaat om de toen
75-jarige Archimedes mee te nemen. Deze had enige cirkels in het zand getekend en vroeg
de soldaat om alsjeblieft de cirkels niet te verstoren. De soldaat verloor zijn geduld en stak
Archimedes dood.

Toen hij nog jong was, had Archimedes wiskunde gestudeerd in Alexandrié bij leerlingen van
Euclides, waaronder ook Eratosthenes van Cyrene, aan wie Archimedes het runderprobleem
zou hebben gestuurd. Wiskundig gezien behaalde Archimedes enorme resultaten. Zo wist hij

bijvoorbeeld de waarde van 7 te benaderen tot 27%3 << % en had hij een op zes decimalen
nauwkeurige rationale benadering voor de wortel uit 3: v/3 & %. Deze beide resultaten

verschenen in zijn werk «KoOxhou yétpnoic» “Het meten van de cirkel”, onderdeel van een
briefcorrespondentie met de wiskundige Dositheos van Pelousion. Ook met grote getallen
hield Archimedes zich bezig, zoals blijkt uit het werk « Woppitne» “De zandrekenaar”: een aan
koning Gelon IT van Syracuse gerichte verhandeling waarin Archimedes een bovengrens vindt
voor het aantal zandkorrels op aarde. Dat doet hij door eerst aan de hand van astronomische
berekeningen een bovengrens vast te stellen voor de grootte van het universum, om vervolgens
te berekenen hoeveel zandkorrels maximaal in het universum zouden kunnen passen. De
bovengrens voor het aantal zandkorrels komt uit op 1093, wat nog lang niet zoveel is als de
aantallen runderen in de kleinste oplossing van het runderprobleem. En passant ontwikkelde
Archimedes een eigen systeem om grote getallen op te kunnen schrijven. Op beide werken
zou Apollonius van Perga gereageerd hebben met eigen werken met verbeteringen; helaas
zijn deze werken verloren gegaan. Naast deze twee werken bewees Archimedes ook nog veel
meetkundige resultaten.

We weten niet zeker of en op welke manier Archimedes daadwerkelijk iets met het runder-
probleem te maken had. Bedacht Archimedes het runderprobleem? En schreef hij zelf poézie
of goot iemand anders het in elegische disticha? Hier is veel over gespeculeerd, maar uiter-
aard zijn deze speculaties niet onomstotelijk bewijsbaar. Een interessant idee werd in 1986
door Knorr opgeworpen, namelijk dat Eratosthenes het eerste deel zou hebben geschreven
en Archimedes als antwoord het probleem zou hebben aangevuld met het tweede gedeelte@
De gedachte van een reactie is populair, want er is bijvoorbeeld ook geopperd door Hultsch
(eind negentiende eeuw) dat het runderprobleem een reactie was op Apollonius’ reacties op
Archimedes’ Werkenﬁ Benson laat vanuit een filologische benadering zien dat het epigram
met het runderprobleem poétisch gezien heel vernuftig in elkaar zit, met veel woordspelingen
en originaliteit@ Zijn conclusie is dat Archimedes het probleem en het gedicht zelf geschre-
ven heeft, maar op dit punt is de argumentatie weinig overtuigend. Vanuit een hypothese
dat Archimedes het gedicht geschreven heeft, wordt geconcludeerd dat dat inderdaad zo
was, maar het enige argument lijkt te zijn dat het gedicht zoveel sporen van genialiteit bevat
dat niemand anders dan Archimedes het geschreven zou kunnen hebben. Dat Archimedes
over het algemeen proza in het Dorisch schreef en geen poézie in het Ionisch wordt niet be-

23Z7ie Vardi (1998), 317; Bartlova (2012), 105.

24Zie Vardi (1998), 317; Bértlova (2012), 105. Bértlova merkt op dat deze hypothese in een uitgave van de
encyclopedie voor oudheidkunde van Pauly is verschenen, maar in een latere uitgave wegens zijn speculatieve
karakter weer verwijderd is.

#Benson (2014).
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sproken. Krumbiegel houdt het midden en denkt dat Archimedes wel het probleem bedacht
heeft, maar niet het gedicht geschreven heeft@ Een vaker geaccepteerde theorie is dat het
probleem alleen aan Archimedes is toegeschreven omdat het zo ingewikkeld ism We zouden
uiteraard graag de geniale Archimedes alle krediet willen geven voor het runderprobleem,
maar of dat realistisch is, dat blijft voorlopig de vraag.

Er is ook veel gespeculeerd over de vraag of Archimedes het probleem zelf kon of had kun-
nen oplossen. Gezien het zeer grote aantal runderen dat de oplossing vormt, is het zeer
onwaarschijnlijk dat Archimedes ooit het precieze getal heeft uitgerekend: zelfs met een
schrijfsnelheid van drie cijfers per seconde zou het meer dan negentien uur duren om alleen
al het eindantwoord op te schrijven@ Een betere vraag is of Archimedes wist dat er een
oplossing bestond en zo ja, of Archimedes ook een methode had waarmee deze oplossing
theoretisch berekend zou kunnen worden. Tegenwoordig wordt vaak gedacht van wel, omdat
de manier waarop Archimedes zijn goede benaderingen voor 7 en /3 vond, suggereert dat
hij ook wel in staat was met de Pellvergelijking te werken, de traditionele methode om het
runderprobleem op te lossen@

26Krumbiegel (1880), 125-128.

2"Bartlova (2012), 104-105.

2Bartlova (2012), 105.

29Vardi (1998), 317-318. Maar zie ook Nygrén (2001), die een alternatieve oplossingsmethode heeft gevon-
den, waarover meer in hoofdstuk [8] en claimt dat Archimedes die theoretisch zou kunnen hebben gehanteerd.
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4 Ontdekking en oplossing van het runderprobleem

Het runderprobleem is lange tijd verloren geweest; het was niet samen met Archimedes’
andere werken overgeleverd. Voor 1773 kenden we slechts twee hints naar het bestaan van een
dergelijk probleem. Cicero (eerste eeuw v.Chr.) noemt twee keer in zijn brieven aan Atticus
een lastig probleem een «mpofAnua Apyiundeliovy “Archimedisch probleem”m De tweede
hint is explicieter en is er in de vorm van een scholior@ bij een dialoog van Plato. Daar
wordt vermeld dat er een probleem is dat bekend staat als het door Archimedes bedachte
runderprobleemﬂ

In 1773 werd in een bibliotheek in het Duitse Wolfenbiittel door Lessing het runderprobleem
ontdekt, samen met nog een paar andere werken. Later is ook nog in Parijs een manuscript
gevondenﬂ Bij het runderprobleem bevond zich tevens een scholion met een oplossing@
Het scholion bestaat uit twee delen. In het eerste deel worden zonder berekening aantallen
gegeven voor de kuddes runderen en het totale aantal en vervolgens ook de afzonderlijke
aantallen voor stieren en koeien van een bepaalde kleur. In het tweede deel wordt de opgave
geparafraseerd; deze parafrase komt overeen met de negen vergelijkingen die we gevonden
hebben in hoofdstuk De oplossing in het scholion is correct voor deel I van het probleem (en
is het tachtigvoudige van de kleinst mogelijke oplossing), maar helaas niet voor het complete
probleem. Lessing heeft het probleem na ontdekking uitgegeven, helaas zonder vertaling,
inclusief een oplossing door Leisteﬂ Leiste lost het eerste deel van het probleem op en weet
het complete probleem te herleiden tot een Pellvergelijking. Hiervan meldt hij alleen dat
deze theoretisch oplosbaar is, maar hij doet er geen poging toe.

Hierna storten enkele Duitse wetenschappers zich op het probleem, die in eerste instantie
alleen maar verwarring zaaien. Vader en zoon Struve geven het runderprobleem opnieuw uit
in 1821, maar noemen de verzen 31 t/m 44, deel IT van het probleem, niet authentiek. Het
probleem zou volgens hen door een niet nader genoemde wiskundige gemaakt zijn, die de
rest van zijn leven in zijn vuistje zou hebben gelachen dat niemand het “Archimedische”
probleem kon oplossen, hijzelf incluisﬁ Hierna volgen artikelen van Hermann in 1828 (in
het Latijn) en van Wurm in 1830 als bespreking van het werk van Hermann. Wurm kijkt als
eerste echt kritisch naar de tekst en doet allerlei suggesties voor alternatieve interpretaties.
(Deze worden nader besproken in hoofdstuk @) Daarna volgen nog enkele besprekingen, de
een nuttig, de ander verwarring zaaiend, en ook wordt er beweerd dat Gaufl (1777-1855)
een complete oplossing voor het runderprobleem zou hebben gevonden, alleen is daar verder
helaas niets van bekendﬂ In 1880 komt de echte doorbraak. In een gezamenlijk artikel waarin
Krumbiegel de literaire kant en Amthor de wiskundige kant voor zijn rekening neemt@ weet
Amthor het aantal cijfers en de eerste vier cijfers van de eindoplossing te berekenen; van de
eerste vier cijfers heeft hij de eerste drie goed. In 1895 weten Bell, Fish en Richard na
vier jaar hard werk vervolgens de eerste 32 cijfers uit te rekenen, waarvan de eerste 30 ook
daadwerkelijk correct zijn@

Met de komst van computers waren Williams, German en Zarnke in 1965 voor het eerst in

30Cic. Att. XII, 4 & XIII, 28. Zie Bartlova (2012), 105.

3'Een scholion is een aantekening bij een tekst, vaak een opmerking of een verklaring. Scholia zijn over
het algemeen in later tijden toegevoegd (en dus niet van de oorspronkelijke auteur van de tekst) en over het
algemeen slecht te dateren.

327ie Wurm (1830), 194 en Bartlova (2012), 105.

33Sider (2016), 142.

34Een Duitse vertaling is opgenomen in Krumbiegel (1880), 135-136.

35Lessing (1773), 421-446. De oplossing van Leiste is te vinden in Lessing (1773), 438-446.

367Zie Wurm (1830), 194.

3TKrumbiegel (1880), 123.

38Krumbiegel (1880) & Amthor (1880).

397ie Vardi (1998), 317.
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staat het complete getal uit te rekenen@ In 1981 was Nelson al in staat om deze berekening in
10 minuten te doen op een CRAY-1-supercomputer; tevens berekende hij vijf nieuwe (grotere)
oplossingen. De kleinste oplossing printte hij volledig als 47 pagina’s computeroutput in het
Journal of Recreational Mathematics@ Een goede, moderne, volledige bespreking van alle
wiskundige aspecten van het runderprobleem werd gegeven door Vardi in 1998;@ uiteraard
zijn er meerdere moderne besprekingen. Inmiddels is de techniek zo ver gevorderd dat een
oplossing met behulp van Mathematica in slechts één seconde berekend kan Wordenﬁ

40Zie Vardi (1998), 317.

“INelson (1981).

“2Vardi (1998).

“3Bartlova (2012), 104 & 106-107.
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5 Niet onwetend, maar ook nog niet wijs (deel I)

Deel I van het runderprobleem (vers 1 t/m 31) lijkt wellicht een moeilijke opgave, maar met
enige wiskundige handigheid is het vinden van een oplossing niet bijzonder lastig. Wie echter
alleen met pen en papier mag rekenen heeft enig doorzettingsvermogen nodig, want ondanks
dat het probleem er heel mooi uitziet treden in de berekening al snel vervelende breuken
op. Het eerste deel van het probleem komt feitelijk neer op het oplossen van zeven lineaire
vergelijkingen in acht onbekenden.

In de meeste artikelen over het runderprobleem wordt dit eerste deel slordig behandeld.
Wiskundigen zijn geneigd om het aan te duiden als “makkelijk” en geven vaak ofwel een
stukje computercode, ofwel een schets van de oplossingsmethode waar een kritische lezer
zelf nog veel aan dient te rekenen om alle stappen te verifiéren. Classici slaan vaak iedere
vorm van rekenen over en beperken zich liever tot literaire observaties. Daarom, en om
inzichtelijk te maken dat voor de oplossing van het eerste deel van het probleem slechts
elementaire wiskunde benodigd is, volgt in dit hoofdstuk een specifieke berekening voor het
eerste deel van het runderprobleemF_I] In hoofdstuk @] zullen alternatieve interpretaties van
het runderprobleem worden besproken. Ook met het oog daarop is het nuttig om een goed
beeld te hebben van deze relatief eenvoudige oplossingsmethode.

In hoofdstuk[2l hebben we de tekst van het runderprobleem omgezet in de zeven onderstaande
lineaire vergelijkingen.

1 1
11 29 = (4 + 5) Gorg ()
Go = (5 + 6) Ryio  (6)

R = <6 + 7) W o (7)

Omdat in de vergelijkingen (4) t/m (7) sprake is van gehele kuddes lijkt het er in eerste
instantie wellicht op dat er 12 onbekenden zijn. Uiteraard is elke gehele kudde te schrijven
als som van het aantal stieren en het aantal koeien, zodat er in feite toch maar 8 onbekenden
zijn. Na het optellen van de breuken en het opsplitsen van de gehele kuddes in stieren en
koeien zien de vergelijkingen er als volgt uit.

7
Wo=—(Z5+7 (4)
5 2 =15 (%0 + %)

9

9 Zo= - (Gyp+G 5

Zg=5;Go+ Ry (2 ? 20< s +Ce) )
11

13 Go=: (Rgy +R 6

Go=p1Wo+Ry () 0 =35 (Rs tHp) ()
13

Ro= = (Wo+Wg) (1)

De eerste stap is om de verhoudingen van de hoeveelheden stieren uit te rekenen. Merk
op dat alleen de eerste drie vergelijkingen hier invloed op hebben. Eerst berekenen we de

4 Deze berekening is gebaseerd op Bartlova (2012), 100-101. Zij doet de berekening echter via een net iets
andere route.
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verhouding tussen W, en R, door de eerste vergelijking alleen in termen van W, en R,
te schrijven. Hiervoor schrijven we Z, uit met behulp van de tweede vergelijking en de dan
optredende G, met behulp van de derde vergelijking.

5/(9

5/9

— | = w R R R
6(20(42 o * O’)+ O’)+ o
13 3 5

= W R

2 9 Tghd T
Dit is equivalent met 112 Was = ﬂ Roz, oftewel W, = % Ro7| ggg’g Ry = gg% Ry, en
dus geldt dat 297 W, = 742 R ». Omdat 297 = 33.11 en 742 = 2753 relatief priem zijn,
volgt hieruit dat W, = 742n en Ry = 297n (n € N).

S| Ot

—
w
=

Ry + R

Met behulp van deze waarden kunnen we ook de waarden voor G ;» en Z, uitrekenen. Dit
is nu alleen nog maar een kwestie van invullen.

13 13 689 891 1580
9 9 1580
Zg = 55Cq + Ry =55 —5— n+20Tn=23Tn +297n = 534n

Omdat het aantal stieren een geheel getal dient te zijn, geldt nu nog voor G 4, en daarmee
dus automatisch ook voor de andere stieren, dat n € 3N. Door overal met 3 te vermenig-
vuldigen kunnen we weer n € N hanteren. We vinden zo alle oplossingen voor de eerste drie
vergelijkingen: W, = 2226n, Z, =1602n, G, = 1580n en Ry = 891 n voor alle n € N.

Met behulp van deze waarden kunnen we, met inachtneming van de verhoudingen tussen
de stieren, ook de verhoudingen tussen de koeien toevoegen. Voor Wo houdt dat wederom
herhaaldelijk substitueren in: door in de vierde vergelijking Zo uit te schrijven met behulp
van de vijfde vergelijking en de dan optredende G en Ro met behulp van respectievelijk de
zesde en de zevende vergelijking, vinden we de waarde voor Wo. Voor W, Z,, G; en R
worden steeds de hierboven berekende verhoudingen ingevuld.

7
5) 7 7 (9 9 )
D L1602+ — (=
13 1602n+ 5 (55 Go T35 C¢
© 1869 21 21 (11 11 )
9 2o 15807 - e
5 gy 180t g5 fie Fg
(1) 1869 1659 77 LT (13 13 >
e i = .891n -2 i
5 "t o0 SN g (e t e
1869 1659 68607 143 1
_ 9222 =20
5 "t " 500 " as00 6”+4800W92
_ TATG00 331800 68607 53053 . 143
~ 7800 800 800 800 4800 ¢
4657 1201060 60053

Dit i ivalent t ——— = =
it is equivalent met o0 Wo 00 " 10

4800 60053 =~ 288254400 = 7206360
4657 40 186280 = 4657

Hieruit volgt dat Wo =
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Voor de overige koeien is het nu wederom slechts invulwerk.

13 13 13 7206360 2930540 5439213
Ro= - (Wa+Wo)=-2.2226n+ — . L2000 639 -
? 42( g+ 9) 12 "t a6 " "t et T 4657
11 11 11 5439213 3267 19943781 3515820
Go=—(R.+Ro)=—-801n+— - - -
? 30( g+t 9> 30 "T30 Tae57 T 10 " 46570 T 4657
9 9 9 3515820 1582119 4893246
o= (GatGo)=—  1580m+ — . 22002 711 -
? 20( g 9) 20 o0 a6 " "t 657 T 4657

Opnieuw geldt nu dat we de breuken in de factoren weg moeten zien te krijgen, aangezien
we oplossingen in gehele getallen zoeken. Na vermenigvuldiging van alle verhoudingen met
4657 vinden we alle mogelijke oplossingen.

W, =10366482n Wo = 7206360 n
Zg =T7460514n Zo =4893246n
Gy = T7358060n Go =3515820n
R, =4149387n Ro =5439213n

Voor deel I van het runderprobleem geldt bovenstaande oplossing voor alle n € N. Wie tot
hier is gekomen is volgens Archimedes noch een onwetende, noch een met getallen onbekende.
Wie echter ook tot de wijzen gerekend wil worden, zal ook deel II van het probleem in acht
moeten nemen en verder moeten rekenen aan het complete probleem.

17



6 De route tot het jubelen (deel II)

Voor het complete probleem hebben we, naast de voorwaarden uit deel I, te maken met twee
extra voorwaarden. Zoals we al zagen in hoofdstuk [2] is de eerste extra voorwaarde dat het
aantal witte en het aantal zwarte stieren samen een kwadraat vormt en is de tweede extra
voorwaarde dat het aantal roodbruine en het aantal gevlekte stieren samen een driehoeksgetal
vormt. In totaal komen we daarmee op negen vergelijkingen, namelijk de zeven die we in het
vorige hoofdstuk al gebruikten en de twee nieuwe.

W+ Zp =a” (8)

q(g+1) (9)

2
De in het vorige hoofdstuk berekende oplossing voor de eerste zeven vergelijkingen is het
uitgangspunt voor het oplossen van het complete probleem.

Wg = 10366482n Wo = 72063607
Zg =T460514n Wg + Zp = 178269961 Zg = 48932467
Gg = T358060n Ry + Gy =1150744Tn Gg = 3515820m
Ry =4149387n Rg = 5439213n

Een eerste stap om tot de oplossing van het complete probleem te komen, is het uitrekenen
van de extra condities die de achtste vergelijking met zich meebrengt. De oplossing van deel 1
van het probleem moet nu dus ook voldoen aan de voorwaarde W »+2 » = 17826996 n = z2.
Priemfactoriseren geeft dat 178269967 = 22-3-11-29 - 4657 - n = 22 en daaruit volgt
dat n = 3-11-29-4657 - m? = 4456 749 m?. De oplossing van het runderprobleem met
inachtneming van de eerste acht vergelijkingen wordt dus verkregen door in alle uitkomsten
in de oplossing van deel I n te vervangen door 4456 749 m?. De oplossing geldt dan voor
alle m € N. De getallen zijn iets groter dan bij de oplossing van slechts de eerste zeven
vergelijkingen, maar met wat moeite nog steeds prima met de hand uit te rekenen. Voor de

eerste acht vergelijkingen vinden we op deze manier de volgende oplossing.

W = 46200 808 287 018 m? Wo = 32116 937723 640 m”
Z 5 = 33249 638 308 986 m* Zo = 21807969217 254 m?
Gy = 32793026 546 940 m? Go = 15669 127269 180 m”
R, = 18492776 362 863 m* Rg = 24241207098 537 m”

Goed uit te rekenen is de oplossing ook nog als we alleen de eerste zeven vergelijkingen
bekijken in combinatie met de negende vergelijking. In dat geval moet de oplossing van
het eerste deel van het probleem voldoen aan de voorwaarde Ry + Gy = 11507447n =

@, oftewel g% +q — 2 - 11507447 n = 0. Hierbij geeft ¢ het aantal rijen van de driehoek
aanﬁ Omdat het aantal rijen van de drichoek een geheel getal moet zijn en we dus een
geheeltallige oplossing zoeken voor deze kwadratische vergelijking, moet de discriminant van

de vergelijking een kwadraat zijn. Hieruit volgt dat D =12 —4-1-(—2-11507447n) = k2,

45Vardi vergeet een 0 bij de waarde van Gy wanneer hij R, en G 4 optelt en de kwadratische vergelijking
opstelt, waarbij hij tweemaal foutief het getal 573634017639 als som geeft in plaats van 1351238949 081.
Hij geeft wel de juiste oplossingen voor de aantallen stieren en koeien en voor g. Zie Vardi (1998), 308.
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oftewel D = 14 92059576 n = k2, oftewel k? = 1 (mod 92059 576). Om deze vergelijking
op te lossen is het handig om de Chinese reststelling te gebruiken@

Stelling 6.1 (Chinese reststelling). Laten mq, ma,...,m, gehele getallen zijn die onderling
relatief priem zijn, oftewel ggd(m;,m;) = 1 voor allei # j € {1,...,n}. Bekijkm = my-ma-
-+« -my en de n vergelijkingen x = a; (mod m1),x = az (mod my3), ...,z = a, (mod my)
voor gekozen ai,as,...,a, € Z.

Dan is er een unieke geheeltallige oplossing © waarvoor geldt dat 0 < x < m. De op-
lossing wordt gegeven door x = z* (mod m) met x* = 37, aiq;;- (mod m). Hierin is
g = (mﬂi)‘ﬁ(mi)_1 (mod m;), waarin ¢ de Euler-o-functie is (oftewel: ¢(m;) is het aantal
gehele getallen k met 1 < k < m; waarvoor ggd(k,m;) =1).

Bewijs. Voor een bewijs verwijs ik naar het boek van Niven, Zuckerman & Montgomery@
O

Priemfactoriseren van 92059576 geeft 92059576 = 23 - 7 - 353 - 4657. Wanneer een k € Z
voldoet aan k? =1 (mod 92059 576), dan geldt dus ook k* =1 (mod 23), k2 =1 (mod 7),
k2 =1 (mod 353) en k2 =1 (mod 4 657). Wegens de Chinese reststelling geldt dit andersom
ook. We zoeken dus een k waarvoor k? de waarde 1 oplevert, zowel modulo 22 als modulo 7
als modulo 353 als modulo 4 657.

Bekijk ten eerste de vergelijking k? = 1 (mod 23). Modulo 23 = 8 geldt dat 1> = 32 = 52 =
72 =1, dat 22 = 62 = 4 en dat 0% = 42 = 0. Hieruit volgt dat k =1 (mod 2).

Bekijk ten tweede de vergelijking k¥ = 1 (mod p) waarbij p een oneven priemgetal is. Stel
dat k een oplossing is, dan geldt k2 — 1 = 0 (mod p), oftewel (k + 1)(k — 1) = 0 (mod p),
oftewel p | (k+1)(k—1). Omdat p priem is geldt dat ofwel (a) p | (k+1), ofwel (b) p | (k—1).
In geval (a) geldt dat (k+ 1) = 0 (mod p) zodat k = —1 (mod p). In geval (b) geldt dat
(k—1) = 0 (mod p) zodat &k = 1 (mod p). Het is gemakkelijk te controleren dat beide
oplossingen aan de vergelijking voldoen. Hieruit volgt dat k = +1 (mod p).

Om nu alle oplossingen k te verkrijgen die voldoen aan k?> = 1 (mod 92059 576), moet
bepaald worden voor welke k gelijktijdig aan de vier condities ¥ = 1 (mod 23), k? = 1
(mod 7), k2 = 1 (mod 353) en k? = 1 (mod 4657) wordt voldaan. Zoals we net hebben
gezien is dit equivalent met het gelijktijdig voldoen aan de vier condities k¥ = 1 (mod 2),
k=41 (mod 7), k= =£1 (mod 353) en k = £1 (mod 4657).

Dit geeft 1-2-2-2 = 8 mogelijke combinaties die met behulp van de Chinese reststelling
kunnen worden opgelost. Alle oplossingen worden gegeven door alle mogelijke combinaties
van (ki, ko, ks, kq) met ky =1, ke = £1, ks = £1 en ky = £1 in de formule

k =k ((7-353-4657)*@~1  (mod 2))-7-353- 4657+
ko((2-353-4657)?M~1 (mod 7)) -2-353- 4657 +
ks((2-7-4657)¥3%)~1 (mod 353))-2-7-4657 +
ka((2-7-353)P467=1 (mod 4657))-2-7-353  (mod 2-7-353 - 4657).
Omdat (7-353-4657)?@)~1 (mod 2) =1, (2-353-4657)?(N~1 (mod 7) = 3,

(2-7-4657)9353)-1 (mod 353) = 320 en (2 -7 - 353)¥465)-1 (mod 4657) = 768, geldt dat
= 11507 447 + 9863 526 + 20863 360 + 3795456 (mod 23014 894).

“Deze methode wordt ook gehanteerd door Vardi; zie Vardi (1998), 308.
47Zie Niven, Zuckerman & Montgomery (1991), 64-65.
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Dit geeft uiteindelijk de volgende oplossingen@

k=1 (mod 23014894) k=15423983 (mod 23014 894)
k=3287843 (mod 23014894) k=18711825 (mod 23014894)
k =4303069 (mod 23014894) kE=19727051 (mod 23014894)
k=7590911 (mod 23014894) k=23014893 (mod 23014894)

De oplossing k£ = 1 geeft n = 0 en daarmee een oplossing van het runderprobleem waarin
alle aantallen runderen 0 zijn. Dat is uiteraard niet de bedoeling@ De kleinste oplossing van
de vergelijkingen (1) t/m (7) + (9) treedt dus op bij k = 3287 843.

Nu kunnen we weer terug naar de kwadratische vergelijking die uit de voorwaarden van het
runderprobleem volgt, waarvoor we eerder hebben vastgesteld dat de discrimininant gelijk is
aan D = 1492059576 n = k2. Met k = 3287843 volgt dat 92059576 = 32878432 — 1 =
10809911 592 648, oftewel n = 117 423. Het aantal rijen van de driehoek is =25Y2 — =Ltk
3287812 — 1643921 en de kleinste oplossing van de vergelijkingen (1) t/m (7) + (9) is de
volgende.

W = 1217263415886 Wo = 846192410280
Zg = 876035935422 Zo = 574579625058
Gy = 864005479 380 Go = 412838131860
R = 487233469 701 Ro = 638688708099

Met inachtneming van alle negen vergelijkingen wordt het probleem aanzienlijk ingewik-
kelder. Voor het uitrekenen van de condities die de negende vergelijking met zich mee-
brengt moeten we immers niet langer met de vergelijking 11507447n = @ rekenen
als we ook de achtste vergelijking in onze berekening meenemen. We moeten er dan name-
lijk ook nog rekening mee houden dat n = 4456 749 m?. Hieruit ontstaat de kwadratische
vergelijking ¢ + ¢ — 2 - 11507447 - 4456 749 m? = 0. Wederom zoeken we een geheeltal-
lige oplossing voor ¢ en moet de discriminant van de vergelijking een kwadraat zijn, zodat
D =12—-4-1-(-2-51285802909 803 m?) = k2, oftewel D = 1+410 286423278424 m? = k2.
Het is nu niet meer voldoende om te checken wanneer k2 = 1 (mod 410286 423 278 424). Aan
die voorwaarde moet wel voldaan worden, maar het enige dat we dan zeker weten is dat we
een oplossing gevonden hebben voor de vergelijking 1 4 410286423278424 2z = k2. Voor
iedere oplossing (k, z) zal nu nog geverifieerd moeten worden of de bijbehorende waarde
z daadwerkelijk een kwadraat is. Dat is een zeer bewerkelijk proces waar enorme getal-
len bij komen kijken. Een handigere aanpak is daarom het herschrijven van de vergelijking
als k% — 410286 423278424 m? = 1. Dit is een Diophantische vergelijkingrﬂ van de vorm
2?2 — Ny? = 1, waarbij N € N geen kwadraat is. Dit type vergelijking staat bekend als de
vergelijking van Pell. Er kan bewezen worden dat deze vergelijking altijd oneindig veel oplos-
singen heeft; dit is het onderwerp van het volgende hoofdstukﬂ Dit bewijst dat Archimedes’
runderprobleem oplosbaar is en zelfs oneindig veel oplossingen heeft.

“8Vardi rekent voor de factor 2° niet met & = 1 (mod 2), maar met k = 1,3,5,7 (mod 8). Het gevolg
daarvan is dat hij een rijtje oplossingen geeft modulo 92059576 dat vier keer zo lang is als het hier gegeven
rijtje modulo 22039576 — 23014 894. Zie Vardi (1998), 308.

“In vers 7 wordt nadrukkelijk gezegd dat er véél stieren zijn!

59Een Diophantische vergelijking is een algebraische vergelijking waarvoor geheeltallige oplossingen gezocht
worden.

100k de vergelijking 2 — Ny*> = —1 staat bekend onder de naam vergelijking van Pell; deze heeft echter
niet altijd oplossingen. In deze scriptie worden alleen Pellvergelijkingen van de vorm z? — Ny? = 1 bekeken.
Overigens had de wiskundige John Pell (1611-1685) weinig van doen met de vergelijking van Pell, zie Olds
(1963), 89 en Selenius (1975), 168.
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7 Pellvergelijking

In het vorige hoofdstuk hebben we gezien hoe het runderprobleem van Archimedes geredu-
ceerd kan worden tot een Pellvergelijking. In dit hoofdstuk is het eerste doel om te laten
zien dat de vergelijking van Pell altijd oneindig veel oplossingen heeftF_?] Om dit in te zien
maken we gebruik van kettingbreuken en kettingbreuktheorie die in de zeventiende en acht-
tiende eeuw ontwikkeld is. Het tweede doel van dit hoofdstuk is om te laten zien hoe de
oplossingen voor de Pellvergelijking kunnen worden berekend en hoe hieruit de oplossingen
voor Archimedes’ runderprobleem volgen.

De theorie berust op de gedachte dat de oplossingen van de Pellvergelijking rationale bena-
deringen van v N geven. Het volgende lemma maakt duidelijk dat we inderdaad met grote
precisie kunnen zeggen dat % ~ v/ N, en dat de benadering beter wordt naarmate y toeneemt.

Lemma 7.1. Als (x,y) een oplossing van de Pellvergelijking x* — Ny? = 1 is, dan geldt:
T 1
0<f-vVN< T

Bewijs. We kunnen de vergelijking 22> — Ny? = 1 schrijven als (33 + y\/ﬁ) (33 — y\/ﬁ) =1.
Omdat z en y natuurlijke getallen zijn, weten we dat z+yvN > 1++/N, zodat z —yvVN €
(0,1). (Het product moet immers 1 zijn.) Hieruit volgt dat ook ¢ — VN = (a: - y\/N) . % €
(0,1) en dus in het bijzonder dat 7 — VN > 0.

We kunnen (:Eij\/N) (x—yﬁ) = 1 ook schrijven als (x+y\/ﬁ)y (% — \/N) = 1.

. . z _ 1 2 _ 2 2

Hieruit volgt dat v VN YotV We weten dat x Ny“+1 > Ny*, zodat z > yv N.
x _ — 1 1

Daarom geldt dat z + yv N > 2y N, en dus dat 0 < m VN ey < NI O

Het idee is nu om een rationale benadering % van v/ N te vinden op een zodanige manier dat
(x,y) een oplossing vormt van de Pellvergelijking. Op het eerste gezicht is niet direct duidelijk
of dat wel kan. Het blijkt echter te kunnen door VN te ontwikkelen tot een kettingbreuk en
deze op de juiste plaats af te kappen. Om dat te bewijzen is wel enige theorie nodig.

7.1 Bewijs dat de Pellvergelijking oneindig veel oplossingen heeft

Het doel van deze paragraaf is om, met behulp van kettingbreuktheorie, in te zien dat
de Pellvergelijking altijd oneindig veel oplossingen heeft. Niet alle stellingen zullen in detail
worden bewezen, maar wel wordt het gehele proces toegelicht. De eerste stap is het definiéren
van het begrip kettingbreuk.

Definitie 7.2. Fen enkelvoudige kettingbreuk of reguliere kettingbreuk is een getal

van de vorm aj + — 1 met a1 € Z; az,as, ... € N. Korte notatie: ay,az,as, . ..].
as +
? 1
a3+ —

In een kettingbreuk in algemene zin kunnen op de posities van de enen ook andere positieve
gehele getallen staan; soms worden ook complexe getallen gebruikt. Om de Pellvergelijking
op te lossen hebben we echter voldoende aan enkelvoudige kettingbreuken. Vanaf hier wordt
de term kettingbreuk gebruikt voor enkelvoudige kettingbreuken.

52In deze scriptie wordt, tenzij anders vermeld, met Pellvergelijking altijd de vergelijking z? — Ny? = 1
bedoeld. De vergelijking 22 — Ny? = —1 wordt buiten beschouwing gelaten.
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Allereerst is het belangrijk om in te zien dat een kettingbreuk eindig of oneindig kan zijn
en dat de kettingbreuk in het eerste geval een rationaal getal representeert en in het tweede
geval een irrationaal getal. Dit kan het handigste verklaard worden aan de hand van een
voorbeeld Stel dat we % willen schrijven als kettingbreuk. Dit kan door herhaaldelijk

deling met rest toe te passen. Ten eerste vinden we dat % = % + 1—72 =44 1—72 =44 ﬁ
7

Vervolgens passen we deling met rest toe op 1—72, enzovoorts. Uiteindelijk vinden we dan dat
1

1
B =4+ ———— Mok opdat 2 = 1+ 1}, dus ook § = 4+
b= R A
1+ ! 14 1
24 24
2 —

14 =
+1

Een getal wordt dus niet altijd op unieke wijze gerepresenteerd door een kettingbreuk: % =
[4,1,1,2,2] = [4,1,1,2,1,1]. Het is duidelijk dat deling met rest ook toegepast kan worden
wanneer we een irrationaal getal als kettingbreuk willen schrijven. Ieder getal € R is dus op
deze manier te ontwikkelen tot een kettingbreuk. Nu het procedé duidelijk is geworden door
een voorbeeld, kunnen we de twee beweringen hardmaken.

Lemma 7.3. leder getal g € Q heeft een eindige kettingbreukontwikkeling. Andersom repre-
senteert iedere eindige kettingbreuk een getal € Q.

Bewijs. Herhaaldelijk deling met rest toepassen levert een kettingbreuk op. Met de eerste
toepassing van deling met rest vinden we % = %1 + %2 met g |p; en 0 < pg < ¢. In de tweede
stap moeten we deling met rest toepassen op de breuk %; deze heeft een kleinere noemer
dan de eerste breuk (p2 < ¢). Omdat na iedere stap de teller van de rest kleiner wordt (in
de volgende stap neemt po de rol van ¢ over en de nieuwe rest de rol van ps), maar de rest
wel strikt groter moet zijn dan 0, vinden we op een zeker moment een rest gelijk aan 0. In
dat geval is het algoritme afgelopen en hebben we een eindige kettingbreuk verkregen.

Andersom volstaat het om op te merken dat een eindige kettingbreuk stap voor stap om te
schrijven is tot één breuk door herhaaldelijk toepassen van de identiteit a + % = %:’1. O

Lemma 7.4. leder getal € R\Q heeft een oneindige kettingbreukontwikkeling. Andersom
representeert iedere oneindige kettingbreuk een getal € R\Q.

Bewijs. Herhaaldelijk deling met rest toepassen levert een kettingbreuk op. Omdat een ein-
dige kettingbreuk een getal € Q representeert, moet een getal € R\Q wel gerepresenteerd
worden door een oneindige kettingbreuk.

Andersom volstaat het om op te merken dat iedere kettingbreuk een getal € R represen-
teert@ Omdat getallen € Q door eindige kettingbreuken gerepresenteerd worden, moeten
oneindige kettingbreuken wel getallen € R\Q representeren. O

Voor de oplossing van het runderprobleem zijn we geinteresseerd in de kettingbreukont-
wikkeling van VN € R\Q. We hebben dus alleen te maken met oneindige kettingbreuken

53De getallen in dit voorbeeld zijn ontleend aan Olds (1963), 117.
54Hiervoor is het nodig om in te zien dat iedere oneindige kettingbreuk convergeert. Merk op dat het

afkappen van de kettingbreuk afwisselend een groter en een kleiner getal oplevert dan de vorige afkapping.

1
< al—|—a—127 daarna weer a1+71> ar + 1

az + — az + az + —
as 1 as
a3+ —
a4

Namelijk: a; + = > a1, maar a; +

ag ?

enzovoorts.
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[a1, a2, a3, ...]. Twee soorten oneindige kettingbreuken blijken belangrijk te zijn: periodieke
kettingbreuken en zuiver periodieke kettingbreuken.

Definitie 7.5. Een periodieke (enkelvoudige) kettingbreuk [ay,a2,as,...] is een ket-
tingbreuk die vanaf een zeker moment repeterende regelmaat vertoont. Concreet: er bestaan
’i,p € N zodat a; = Qi4p = Ai42p = .5 Ajrl = Qifl4p = AiL142p = -5 o5 Qigp—1 =
Ajy2p—1 = Qit3p—1 = .... Notatie: [a1,az,...,@;, Git1, .-, Gitp_1]- Het getal p is de periode
van de kettingbreuk.

Definitie 7.6. Fen zuiver periodieke (enkelvoudige) kettingbreuk [a1, a2, as,...| is een
kettingbreuk die vanaf het begin periodiek is. Concreet: er bestaat een p € N zodat a1 = ap41 =
Aop1 = ...5 02 = Qpp2 = A2py2 = ...} ...; Gp = A2p = a3p = .... Notatie: [ay,az, ..., ap).

Het getal p is de periode van de kettingbreuk.

Om iets te kunnen zeggen over de kettingbreukontwikkeling van v/N is het nodig om het
blikveld iets te verruimen. We moeten kijken naar zogenaamde kwadratische irrationaliteiten.
Ook moeten we twee nieuwe begrippen invoeren: we moeten definiéren wat de geconjugeerde
is van een kwadratische irrationaliteit en wat we verstaan onder het begrip gereduceerde kwa-
dratische irrationaliteit. Daarna zijn we klaar om de twee cruciale stellingen in het bewijs te
begrijpen die ons zullen helpen in te zien hoe de kettingbreukontwikkeling van v/ N eruitziet.

Definitie 7.7. Fen kwadratische irrationaliteit is een getal van de vorm @ met
a,bjc € Z,b#0,c# 0 en D € N geen kwadraat. Door deze keuze voor D is dit een getal
€ R\Q en heeft het dus een oneindige kettingbreukontwikkeling.

Definitie 7.8. De geconjugeerde van een kwadratische irrationaliteit A = @ is het

getal \ = a=bvD

C

Definitie 7.9. Een kwadratische irrationaliteit A heet gereduceerd als voldaan wordt aan
A>1en—-1<A<O.

De belangrijkste stelling in het bewijs dat de Pellvergelijking oneindig veel oplossingen heeft,
is de stelling van Lagrange. Lagrange bewees in 1770 dat een kettingbreuk periodiek is dan en
slechts dan als hij een kwadratische irrationaliteit representeertﬁ Voor het bewijs daarvan
gebruikte hij een stelling die zegt dat een kettingbreuk zuiver periodiek is dan en slechts dan
als hij een gereduceerde kwadratische irrationaliteit representeert.

Stelling 7.10. Een kettingbreuk is zuiver periodiek dan en slechts dan als hij een geredu-
ceerde kwadratische irrationaliteit representeert.

Stelling 7.11 (Stelling van Lagrange). Fen kettingbreuk is periodiek dan en slechts dan als
hij een kwadratische irrationaliteit representeert.

Bewijs. Het voert te ver om deze stellingen hier te bewijzen. Voor goede, volledige en dui-
delijke bewijzen verwijs ik naar het boek van Oldsm O

Met deze twee stellingen is het mogelijk de (oneindige) kettingbreukontwikkeling van v/ N €
R\Q, met N € N geen kwadraat, te bepalen Uit de keuze van N volgt dat VN > /2 > 1.
Voor de geconjugeerde geldt echter —v/N < —1 en dus is VN = [a1, ag, .. .| niet gereduceerd.
Anderzijds is a1 het grootste gehele getal dat kleiner is dan v/N. Nu geldt niet alleen v N +
ap; > 1, maar ook —1 < VN 4+ a1 < 0, zodat het getal VN + a3 wel gereduceerd is.

550lds (1963), 89.
%0Zie voor stelling Olds (1963), 93-95 & 104-108. Zie voor stelling Olds (1963), 110-111.
7Zie Olds (1963), 112-113.
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Volgens stelling is de kettingbreuk van v N + a1 dus zuiver periodiek. Kortom: v/ N +
a1 = [2a1,as, .. ., a,)]. Hieruit volgt dat VN = [a1,az, ..., ap, 2a1]. Er kan ook nog bewezen
worden dat het periodieke deel met uitzondering van de laatste term symmetrisch is, dat
wil zeggen as = ap, az = ap—1, enzovoortsﬁ Om de oplossingen van de Pellvergelijking te
bepalen hebben we deze eigenschap echter niet nodig.

Het is mogelijk om met behulp van recursieve formules de waarde van een afgekapte oneindige
kettingbreuk te berekenen. Voor iedere kettingbreuk zijn we dan op zoek naar de zogenaamde
convergenten c;. Voor de kettingbreuk [a1, ag, as,...] geldt dat ¢; = [a1], ca = [a1, az], enzo-
voorts. De convergenten kunnen op hun beurt worden geschreven als ¢; = % Voor «; en (3;
hebben we voor ¢ € N, ¢ > 3, de recursieve formules

Qi = ;-1 + Q-2

Bi = a;fi—1 + Bi—2

met bijbehorende beginvoorwaarden ay = a1, as = asa1 + 1, f1 =1 en By = GQE

Met nog enig rekenwerk kan worden bewezen wat de oplossingen van de Pellvergelijking
22— Ny?> =1 zijnm De kleinste oplossing wordt gegeven door x1 = «ay, en y1 = 3, als p even
is, en door x1 = ag, en y1 = B2 als p oneven is@ Alle overige oplossingen worden gegeven

d
door x4 + yaV' N = (:U1 =+ y1\/N> voor d € N.

7.2 Oplossing van het complete runderprobleem

In het vorige hoofdstuk hebben we het runderprobleem met alle negen vergelijkingen gere-
duceerd tot de Pellvergelijking k? — 410286423278424m? = 1. In de vorige paragraaf is
gebleken dat de oplossingen daarvan gevonden kunnen worden door de kettingbreukontwik-
keling van /410286 423 278 424 te berekenen en deze op de juiste plaats af te kappen. Met
de gevonden mogelijke waarden van m kan vervolgens de oplossing van het runderprobleem
expliciet worden opgeschreven.

Deze oplossingsmethode is precies wat de Duitse wiskundige Meyer in 1867 voor ogen had.
Na 240 stappen van de kettingbreukontwikkeling te hebben berekend, had hij niet het gevoel
tot een oplossing te komen en gaf hij op. In een tijd zonder computers was dat wellicht geen
onverstandige beslissing, aangezien de kettingbreukontwikkeling van /410286 423 278 424
een periode blijkt te hebben met een lengte van maar liefst 203 254. Zelfs met een snelheid van
100 delingen met rest per dag zou het bijna drie jaar duren om de kettingbreukontwikkeling
uit te rekenen tot het punt halverwege de periode vanaf waar symmetrie optreedt. Dit is dus
geen handige aanpak@

Gelukkig is het mogelijk om de Pellvergelijking te reduceren tot een eenvoudigere vorm.
Priemfactoriseren van 410 286 423 278 424 geeft 410 286 423 278 424 = 23.3.7-11-29-353-4 6572,
We kunnen twee factoren 2 en twee factoren 4657 uit dit getal halen en bij de factor m?
trekken, door 12 = 2246572 -m? te schrijven. Op de plaats van het getal 410 286 423 278 424

580lds (1963), 113.

5901ds (1963), 21-23. Meestal worden de letters p en g gebruikt, maar omdat de p ook gebruikt wordt voor
de periode van een kettingbreuk komt dat hier niet handig uit. In voetnoot 54 bleek al dat een convergent c;
met ¢ even groter is dan de convergent c;—1, terwijl ¢; met j oneven kleiner is dan c¢;j_1.

50Niven, Zuckerman & Montgomery (1991), 353-355.

51Uit lemma volgt dat g > +/N. Dit verklaart mede, in combinatie met het afwisselend groter en
kleiner zijn van de convergenten, waarom er een verschil is tussen het berekenen van de oplossingen van
Pellvergelijkingen voor even en voor oneven periodes: de oplossing wordt alleen bij even periodes verkregen.

527ie Lenstra (2008), 5 voor deze anekdote inclusief verdere verwijzingen.
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komt dan het getal 2-3-7-11-29-353 = 4729494 te staan en dus vinden we de Pellvergelijking
k? —47294941% = 1 met als aanvullende voorwaarden 2|/ en 4657 |1.

Het oplossen van deze nieuwe Pellvergelijking, vooralsnog zonder rekening te houden met
de aanvullende eisen voor [, is een stuk gemakkelijker. De lengte van de periode van de
kettingbreukontwikkeling van 4 729 494 is slechts 92. Deze kettingbreukontwikkeling kan dus
zelfs met de hand berekend worden door met veel aandacht herhaaldelijk deling met rest toe
te passen@ Het afkappen van de kettingbreuk op de juiste plaats geeft als kleinste oplossing
voor de Pellvergelijking de volgende waarden.

k1 = 109931986 732829 734 979 866 232 821 433 543 901 088 049
l1 = 50549485234 315033074477 819 735 540 408 986 340

Hieruit kunnen alle oplossingen van de Pellvergelijking berekend worden met k,[ € N. Iedere
oplossing is nu van de vorm el = ky+ ld\/ﬁ, waarbij € = k1 + l1V/N. De enige stap die nu
nog resteert is om zodanige oplossingen te vinden dat voldaan wordt aan de eis 2|l en aan
de eis 4657 | 4. Gelukkig blijkt dat aan de voorwaarde 2|1, in alle gevallen voldaan Wordt@

Lemma 7.12. Voor iedere oplossing van de Pellvergelijking kfl — 4729494 l?i =1 geldt dat
2] 1g.

Bewijs. Omdat 4729494 een even getal is en 472949412 dus ook, weten we dat k3 oneven
is, en daarmee kg dus ook. Omdat modulo 8 geldt dat 12 = 3% = 52 = 72 = 1, geldt dat
k2 =1 (mod 8). Hieruit volgt dat 472949413 = 0 (mod 8), oftewel 23 |4 729494 (2. Omdat
het getal 4729494 = 2-3-7-11-29- 353 slechts één factor 2 bevat, volgt hieruit dat 22 ]lfl,
oftewel 2| 14. O

De laatste horde is dus om een oplossing te vinden die voldoet aan de eis 4657 | [. We weten
dat iedere oplossing van de vorm &% = kg + 14v/4729494 is. Modulo 4657 mogen we ook
met /4729494 (mod 4657) = /2639 rekenen, aangezien optelling en vermenigvuldiging
met deze wortel geen effect heeft op de coéfficiénten kg en Iy (mod 4657). Omdat 2639
geen kwadraat is modulo 4 657 rekenen we dus in het eindige lichaam Fy657(v/2639), een
kwadratische uitbreiding van Fy¢57 = Z/4 657 Z.

Het checken op deelbaarheid van [; door 4 657 gaat als volgtWe weten dat €@ = ky+1qV'N,

waaruit volgt dat 6% = kd+lldx/ﬁ = kg —lgV/N. Hieruit volgt weer dat % — 8% =kg+1lqgvVN —

(kd — ld\/ﬁ) = 2l4v/N = 0 (mod 4657). Met andere woorden, ‘%i — 8% = 0 (mod 4657),
oftewel €2 — 1 =0 (mod 4657), oftewel €2 =1 (mod 4 657).

In het eindige lichaam waarin we rekenen geldt voor elke x # 0 dat #P*! =1 (mod p) voor
in dit geval p = 4657@ en we willen graag dat €2 = 1 (mod 4657). Hieruit volgt dat
2d|4657 + 1, oftewel d |25, oftewel d|2329, oftewel d|17 - 137. Dit beperkt het aantal
machten van ¢ die gecheckt moeten worden enorm. Met enkele simpele vermenigvuldigingen
kan vastgesteld worden dat modulo 4 657 het volgende geldt.

53Dit is precies wat Amthor deed, zie voor de volledige berekening Amthor (1880), 159-162.
54Lemma en bewijs zijn ontleend aan Vardi (1998), 311.
65 : ‘e 2639\ _
Berekening van het Jacobisymbool geeft ( m) =—1.
56Zie Vardi (1998), 311-312.
5"Vardi (1998), 311-312.
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v =e? =262+ 5512639
17— 106 + 3078v/2639

3T — 3256 4+ 360612639

,YQ 329 _ 1

Hieruit volgt dat alle oplossingen 2329 met z € N aan de voorwaarde 4 657 | I; voldoen. De

kleinste oplossing voor de Pellvergelijking die aan de voorwaarden van Archimedes’ runder-
probleem voldoet is dus €232, In het algemeen geldt dat de oplossing £232%% = kyg09. +
l2329,v4 729494 voldoet. Met behulp van de identiteit L = kogog9, —

k23292412 320-V/4 729494
19329,v4 729494 vinden we dat

Lo 2l VAT2049% _ kasn. + laune:VAT29494 — (kzaz. — laae.VAT20494)
23292 2v/4729494 2v/A729494

_ 1 ( £2329z _ L ) '
24/4729 494 g2329z

Vanuit deze waarde van ls329, kunnen we vervolgens de waarde van m berekenen. Bij het
reduceren van de Pellvergelijking naar een eenvoudigere vorm voerden we [ in volgens de

formule 1% = 22 - 46572 - m?. Hieruit volgt dat m? 2525%%272 Met bovenstaande berekening
voor ls 399, volgt hieruit dat
2 _ 3320 _ 12 (€2~2329z _ 9. 2329z 1 + 1 )
22 . 46572 22 VAT729 4942 . 22 ) 46572 52 329z €2~2 329z

1 46582 1 )
_ _9).
4410286 423 278 424 <€ t e

Nemen we nu de oplossing van vergelijkingen (1) t/m (8) en vervangen we daarin m? door
bovenstaande uitdrukking, dan vinden we de exacte oplossing van het complete runderpro-
bleem van Archimedes.

We beginnen dus met de oplossing van vergelijkingen (1) t/m (8) uit hoofdstuk [6]

W = 46 200 808 287 018 m? Wo = 32116 937723 640 m”
Z 5 = 33249638 308 986 m” Zg = 21807969 217254 m?
Gy = 32793026 546 940 m? Go = 15669 127269 180 m*
R = 18492776 362863 m* Rg = 24241207098 537 m?

Invullen van de uitdrukking voor m? geeft het volgende.

_ 46200808287018 (6465& N _2> Wo — 32116 937 723 640 (&6582
O T 4. 410286423 278424 £46582 ® T 4.410286423278 424
7. 33249 638 308 986 (546582 2> P 21807969 217 254 (54658z
T T 4410286423 278 424 546582 ® T 41.410286423 278424
G 32793 026 546 940 (546582 B 2) Go — 15669 127269 180 <E4658Z
I T 4.410286423278424 54658z ® T 4.410286423278424
R 18492 776 362 863 (546582 2) Ro — 24241207 098 537 <€46582
T T 4. 410286423 278424 54658z ® T 4.410286423278424
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Door breuken uit te werken krijgen de uitdrukkingen een aangenamer formaat.

159 1

JF T 5648 (54658Z T Tesss 2) Wo

Zg = % <546582 + 546158,2 - 2> ZQ

Gy = % <54658Z + 54;582 - 2> Go

Ry = % (5465SZ + 846158z - 2) Ro
Merk nu op dat —1 < % (546%

— 2) <0, zodat W

lijke redenering voor alle groepen stieren en koeien geldt

128685 [ yess. 1
= 6575684 (E c4658z 2)
= % (546582 + A 6158z - 2>
= % (54 058 1 4 6158z - 2)
= % (€4 058 1 o4 6158z - 2)

_ | 159 64 658z
T 15648

De oplossing is dus nog eenvou-

J, en dat een soortge-

diger als volgt te schrijven.

159 128 685
W — 4658zJ W — 46582J
¢~ |poag” ® = | 6575684
|80 s, S| 2446623 g
Jd ~ 139536 | ® 7 | 184119152
395 125 565
.= 46582 o — 4 6582J
I 19768 ° ® = | 13151368
891 5439213
R — 46582 Ro — 46582
g~ |79072° ® = | 368238304
Voor de kleinste oplossing is het totale aantal runderen dan {% 4658J. Het aantal

cijfers wordt gegeven door

o

25194541

2o 193041 4658 | _ _
184110152 ° >—‘ [logig (25194 541) — logy (184119 152) 4+ 46581og; (€) |

= 206 545.

58Vardi vergist zich hier consequent en geeft overal in zijn artikel aan dat naar boven afgerond dient te
worden. Zo geeft hij bijvoorbeeld ten onrechte W, = [%84 658z-|. Zie Vardi (1998), 306 & 312-313. De
verwarring ontstaat mogelijk doordat bij het uitrekenen van het aantal cijfers van de oplossing wel naar

boven afgerond dient te worden.
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8 Alternatieve oplossingsmethoden

Met behulp van theorie over kettingbreuken hebben we gezien dat het volstaat om één
kettingbreukontwikkeling uit te rekenen om oplossingen te vinden voor de Pellvergelijking,
en daarmee ook voor Archimedes’ runderprobleem. We hebben echter ook gezien dat deze
berekening zeer bewerkelijk is. Het is ook maar de vraag of men in Archimedes’ tijd deze
methode zou hebben gevolgd. Ondanks dat het runderprobleem “opgelost” is, blijft het
daarom interessant en relevant of oplossingen makkelijker en/of anders gevonden kunnen
worden. In dit hoofdstuk worden drie alternatieve oplossingsmethoden besproken: die van
Lenstra, die probeert een efficiéntere manier te vinden om de Pellvergelijking op te lossen; die
van Nygrén, die met zijn “simple solution” het gebruik van kettingbreuken lijkt te omzeilen;
en die van de oude Indiérs, die al een algoritme hadden om de Pellvergelijking op te lossen,
dat ook op een moderne manier met kettingbreuken bestudeerd kan worden.

Lenstra bespreekt in zijn artike@ voornamelijk de efficiéntie van programma’s die met het
traditionele kettingbreukalgoritme, zoals in het vorige hoofdstuk besproken, de Pellvergelij-
king 22 — Ny? = 1 oplossen. Een eerste conclusie is nog niet heel veelbelovend: de methode
heeft een numerieke tijdcomplexiteit van /N - (1 4 log N )%, waarbij c¢5 € R een getal on-
afhankelijk van NV is; voor de meeste waarden van N is de methode exponentieel langzaam
en iedere methode die een oplossing (z, y) uitschrijft is exponentieel langzaam voor oneindig
veel waarden van N. Het startpunt voor een nieuwe methode is daarom dat een oplossing
(x,y) compacter moet kunnen worden weergegeven dan in decimale of binaire notatiem
De methode die Lenstra voorstelt maakt gebruik van zogeheten smooth numbers of gladde
getallen: gehele getallen ongelijk 0 die op het teken na opgebouwd zijn uit kleine priemfac-
toren["]| Het voert te ver om deze methode hier te bespreken. De methode lijkt sneller te
werken dan de traditionele methode, maar het bewijzen hiervan is voorlopig nog onmoge-
lijk. (Hier komt onder andere de gegeneraliseerde Riemannhypothese bij kijken.)lﬂ Anderen
werken aan een kwantumalgoritme, dat wellicht de toekomst zou kunnen worden wanneer
kwantumcomputers beschikbaar komen, aldus Lenstra]™|

Het moge duidelijk zijn dat methodes als kwantumalgoritmes heel ver afstaan van pogingen
die Archimedes zelf, of een tijdgenoot, zou kunnen hebben ondernomen om het runderpro-
bleem op te lossen. Veel meer gericht op eenvoudige oplossingstechnieken is het werk van
Nygrénm die claimt een “simple solution” gevonden te hebben en daaruit concludeert dat
Archimedes het runderprobleem had kunnen oplossen. Deze oplossing reduceert het pro-
bleem niet direct tot een Pellvergelijking; in plaats daarvan moeten we 64 vergelijkingen
van de vorm pu®? + 1 = quv? oplossen, waarvan er gelukkig snel 60 te verwerpen zijn als
onoplosbaar@ Uiteindelijk blijven 4 vergelijkingen over, waarvan 1 toch de Pellvergelijking
2% — 472949492 = 1 blijkt te zijn[Y|

De oplossingsmethode gaat pagina’s lang door en maakt steeds gebruik van handigheidjes,
waaronder bijvoorbeeld matrixrekening. Uiteindelijk is de methode equivalent met het af-
kappen van een kettingbreuk en het uitrekenen van de bijbehorende convergent met behulp
van recursieve formules. Er treden uiteraard nog steeds enorme getallen op. Ondanks dat een

5Lenstra (2008).
"Lenstra (2008), 6-8.
"Lenstra (2008), 13.
"TLenstra (2008), 18.
"3Lenstra (2008), 19.

T Nygrén (2001).
"Nygrén (2001), 13-15.
" Nygrén (2001), 15.
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“simple solution” beloofd is, blijft het artikel ingewikkeld en wordt niet uitgelegd hoe Ar-
chimedes of een tijdgenoot een dergelijke oplossingsmethode gevonden zou moeten hebben.
De Grieken kenden bijvoorbeeld geen matrixrekening, en er wordt dan wel opgemerkt dat
het zonder ook wel moet kunnenm maar dat maakt toch nog niet inzichtelijk hoe Nygrén
zich precies voorstelt dat Archimedes gerekend zou kunnen hebben. Het grote voordeel van
Nygréns methode is naar eigen zeggen dat de concepten van irrationale getallen en zelfs breu-
ken niet nodig zijn en dat alle berekeningen alleen op gehele getallen uitgevoerd dienen te
worden. Het blijft echter onderbelicht hoeveel tijd nodig zou zijn om een volledige oplossing
met de hand uit te rekenen.

Wat wel interessant is, is dat Nygrén opmerkt dat zijn methode sterke gelijkenissen vertoont
met werk van Gauﬁm Zou de urban legend dat Gaufl een oplossing gevonden zou hebben
voor het runderprobleem dan toch waar zijn?lﬂ Nygrén is duidelijk niet op de hoogte van
dit verhaal, want hij merkt onmiddellijk op dat Gaufl geen interesse gehad zou hebben in
individuele problemen. De “simple solution” van Nygrén is knap gevonden, maar het artikel
overtuigt nog niet volledig dat dit de manier is waarop Archimedes het probleem aangepakt
zou hebben.

De meest veelbelovende alternatieve oplossingsmethode is een oud algoritme uit de Indiase
wiskunde. Met de zogeheten cakravalamethode waren de oude Indiérs al in staat om de
vergelijking van Pell op te lossen. Het woord cakra betekent “wiel” in het Sanskrit. Het betreft
hier dan ook een cyclisch, dat wil zeggen iteratief, algoritme dat onder andere met behulp
van cirkels kan worden gevisualiseerd@ Het algoritme kan ook op een moderne manier
worden geschreven met behulp van kettingbreuken en lang is gedacht dat Euler, Lagrange en
anderen met de in hoofdstuk [7] besproken methode deze Indiase methode hadden herontdekt.
Selenius legt uit dat rondom deze kwestie veel misverstanden bestaan en dat de methodes,
hoewel ze sterke gelijkenissen vertonen, niet precies dezelfde zijn@ Een belangrijk verschil
is dat kettingbreuken optreden met niet alleen plussen, maar ook met minnen. Daardoor
worden de periodes van de kettingbreukontwikkelingen korter en zijn er met een vergelijkbare
oplossingsmethode als beschreven in hoofdstuk [7] minder stappen nodig om de oplossing van
de Pellvergelijking te vinden. Selenius geeft als voorbeeld de kettingbreukontwikkeling van
v/58. Om dit voorbeeld te begrijpen moeten we onze definitie van een kettingbreuk enigszins
uitbreiden 2

Definitie 8.1. Een enkelvoudige kettingbreuk of reguliere kettingbreuk is een getal

van de vorm aj *+ — met a1 € Z; az,as,... € N.
agzl:
1
agi—

De korte notatie moet ook worden uitgebreid: een onderstreepte term geeft aan dat de
betreffende term door een min in plaats van een plus voorafgegaan wordt. Bijvoorbeeld:

1
ap — 71 = [a17@7a3:| .
az + —
as

""Nygrén (2001), 38.
"8Nygrén (2001), 38.

"7Zie hoofdstuk

80Zie Selenius (1975), 178.
81Selenius (1975), 169-172.
82Gelenius (1975), 170.
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Volgens de moderne kettingbreukmethode geldt dat /58 = [7,1,1, 1,1, 1, 1, 14]; hierbij wor-
den alleen plussen gebruikt. Omdat de periode van deze kettingbreuk 7 is, een oneven getal,
moeten we de veertiende convergent ci4 uitrekenen om de oplossing van de Pellvergelijking
met N = 58 te krijgen. Als ook minnen zijn toegelaten, kan de kettingbreuk echter ook
korter worden geschreven als v/58 = [8,2,1,1,1,1,15], als v/58 = [8,3,2,1,1,15] of als
V58 = [8,3,3,2,15]. Het idee van deze kortere schrijfwijzen is dat zodra een 1 optreedt, een
min in plaats van een plus toegepast moet worden in de kettingbreuk. In deze gevallen blijkt
dezelfde oplossing al bij de twaalfde, respectievelijk tiende, respectievelijk achtste convergent
gevonden te Wordenﬁ

De cakravalamethode lijkt van na Archimedes’ tijd te zijn en wordt vaak rond 1000 n.Chr.
gedateerd, maar dit valt niet met zekerheid vast te stellen@ Kende Archimedes een soort-
gelijke methode? Toen de 75-jarige Archimedes vlak voor zijn dood cirkels in het zand aan
het tekenen was, probeerde hij toen met behulp van een cyclische cakravalamethode zijn
runderprobleem op te lossen? Fantasie en romantiek zouden een mens doen zeggen dat het
wel zo méét zijn, maar de nuchtere waarheid gebiedt ons te zeggen dat we het niet weten en
waarschijnlijk ook nooit met zekerheid zullen weten.

83De moderne kettingbreukontwikkeling en de twee eerste verkorte ontwikkelingen, inclusief steeds de eerste
drie convergenten en de laatste benodigde convergent, worden gegeven door Selenius; zie Selenius (1975), 170.
81Selenius (1975), 168.
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9 Alternatieve interpretaties

Tot nu toe hebben we aandacht geschonken aan één specifieke versie van het runderprobleem,
de gangbare versie. Maar het runderprobleem van Archimedes is niet overal even eenduidig
qua formulering; zoals we al zagen in hoofdstuk [2| zijn soms meerdere interpretaties mogelijk.
In dit hoofdstuk worden twee alternatieve interpretaties besproken: wat zijn de verschillen
met het gangbare probleem, zijn deze alternatieven aannemelijk en, niet in de laatste plaats,
wat voor invloed hebben alternatieve interpretaties op de oplossing van het probleem?

9.1 «tetpayn» (vs. 24)

In besprekingen van Archimedes’ runderprobleem wordt het woord «tetpoyfj» in vers 24
vaak genegeerd, omdat het de regelmaat in de vergelijkingen verstoort. We bevinden ons
hier in het gedeelte waar de verhoudingen van de koeien gegeven worden voor het eerste deel
van het runderprobleem. Dit leidt tot vergelijking (6*) als alternatief voor vergelijking (6).

Eovdotplywv 8 dyéAng méunte uépel NOE xal ExTe
nowihan iodpripov mAfidoc Eyov TeTpoy .

Hoaviol 6" erduebvto pépoug Teitou Nuloel loo
apyevviic ayéhng EBdoudtew Te uépetl.

Maar aan van de kudde der roodbruinharigen een vijfde deel en ook een zesde
hadden de gevlekten (@) een gelijktallige hoeveelheid in vieren.

En de roodbruinen (@) werden geteld als aan de helft van een derde deel gelijk
van de witte kudde en aan een zevende deel.

11
Go = (5 + 6) R340 (6)

G 1 1

()
Niet zelden wordt “in vieren” wel in een vertaling opgenomen, maar wordt het vervolgens
genegeerd bij de omzetting naar vergelijkingen. Hermann en daarmee ook Wurm leggen
echter wel de nadruk op dit woord en stellen voor om het mee te nemen bij de interpretatie
van het runderprobleem{g_sl Overige besprekers van het probleem vinden het woord maar
lastig en laten het liever weg. Krumbiegel wijdt er wel nog een hele bespreking aan, maar
concludeert dat hij het woord vervelend vindt{g_gl Hij lost het probleem op door het woord
bij het volgende vers te trekken, als volgtE]

Eovdotplywv ayéAng méunte uépel NOE xal ExTe
nowthan iodpripov mAfidoc Exov. Tetpayn

Covial & erduebvto pépoug Teitou fuloel Too
apyevviic ayéhne eBdoudtew te PépeL.

Maar aan van de kudde der roodbruinharigen een vijfde deel en ook een zesde
hadden de gevlekten (@) een gelijktallige hoeveelheid. En ten vierde

werden de roodbruinen (Q) geteld als aan de helft van een derde deel gelijk
van de witte kudde en aan een zevende deel.

85Wurm (1830), 195-196.
86Krumbiegel (1880), 132-133.
8TKrumbiegel (1880), 129.
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Naast dat een vertaling als “ten vierde” ook niet zomaar voor de hand ligt, is deze emendatie
zeer onwaarschijnlijk, omdat het partikel 8¢ bijna altijd de tweede plaats in de zin inneemt@
Een zin zal normaliter in het Grieks nooit beginnen met Tetpoyfj Eaviol 6¢ ... maar altijd
met Tetpayfj 6¢ Eovdal . ... Het alternatief van Krumbiegel is daarom niet overtuigend.

Met vergelijking (6) vervangen door vergelijking (6*) wordt het oplossen van het runderpro-
bleem eenvoudiger, doordat de getallen die optreden kleiner worden. De oplossingsmethode
verandert niet. De methode uit hoofdstuk [b| geeft de volgende oplossing voor deel I van het
probleem, de vergelijkingen (1) t/m (7) met vergelijking (6*) in plaats van vergelijking (6).

W, =336126n Wo = 335580n
Zg =241902n Zo =333378n
Gy =238580n Go =502260n
Ry, =134541n Ro =207909n

De methode uit hoofdstuk [0] levert vervolgens weer een oplossing voor de eerste acht ver-
gelijkingen op waarin met m? moet worden vermenigvuldigd en een Pellvergelijking. Er
moet gelden dat W, + Z, = 578028n = x2. Priemfactoriseren geeft dat 578028n =
22.3.11-29-151-n = 22 en daaruit volgt dat n = 3 -11-29 - 151 - m? = 144507 m?
voor alle m € N. Daarnaast moet gelden dat R, + G, = 373121 - 144 507m? = @,
oftewel ¢® + g — 2 - 11507447 - 144507 m? = 0. Hieruit ontstaat de kwadratische verge-
lijking ¢ + ¢ — 2 - 373121 - 144507 m? = 0. Wederom zoeken we een geheeltallige oplos-
sing voor ¢ en moet de discriminant van de vergelijking een kwadraat zijn, zodat D =
12 —4-1-(—2-373121- 144507 m?) = k?, oftewel D = 1 + 431348770 776 m? = k2.

De methode uit paragraaf geeft nu een eenvoudigere Pellvergelijking. Priemfactoriseren
van 431348770776 geeft 431348770776 = 23 -3 -7 -11-29 - 1512 - 353. We kunnen twee
factoren 2 en twee factoren 151 uit dit getal halen en bij de factor m? trekken. Op de plaats
van het getal 431348770776 komt dan het getal 2-3-7-11-29 353 = 4729494 te staan
en dus vinden we de Pellvergelijking k% — 472949412 = 1 met als aanvullende voorwaarden
2|1 en 151 |1. Er geldt: [2 = m?-22.1512. Merk op dat deze vereenvoudigde Pellvergelijking
dezelfde is die we in onze oorspronkelijke bespreking van het runderprobleem vonden, en
dat het enige verschil de voorwaarde 151 |l in plaats van 4657 |l is. De oplossing van de
Pellvergelijking blijft hetzelfde en ook het argument dat altijd voldaan wordt aan de eis 2|1
blijft onveranderd.

De laatste horde is nu om een oplossing te vinden die voldoet aan de eis 151|[. We weten
dat iedere oplossing van de vorm &% = kg + 131/4729494 is. Modulo 151 mogen we met
V4729494 (mod 151) = /23 rekenen. Omdat 23 geen kwadraat is modulo 151 rekenen
we dus in het eindige lichaam Fy51(1/23), een kwadratische uitbreiding van Fi5; = Z/151 Z.
Om te checken op deelbaarheid van l; door 151 moeten we volgens dezelfde argumentatie
als eerder nagaan wanneer £2¢ = 1 (mod 151).

In het eindige lichaam waarin we rekenen geldt voor elke z # 0 dat zP*! =1 (mod p) met
deze keer p = 151 en dus krijgen we nu 2d|151 + 1, oftewel d| 132, oftewel d |76, oftewel

88 Denniston (1954), 185-189. In poézie kan soms van deze regel worden afgeweken, maar het lijkt onwaar-
schijnlijk dat dat alleen op deze ene plek in het runderprobleem zou gebeuren. De tekst van het runderprobleem
vertoont nauwelijks rare poétische woordvolgorde.

89Berekening van het Jacobisymbool geeft (%) =—1.
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d |22 -19. Modulo 151 geldt dus het volgende.

v =¢e? =54+ 105V23
7?2 =93 +15v/23

% =83+ 72V23
A9 =1

Hieruit volgt dat alle oplossingen €' met z € N aan de voorwaarde 151 |l voldoen. De

kleinste oplossing voor de Pellvergelijking die aan de voorwaarden van Archimedes’ runder-
probleem voldoet met vergelijking (6*) in plaats van (6) is dus £'?. In het algemeen geldt dat
de oplossing €% = kig, + l195v/4 729494 voldoet. We vinden op dezelfde manier als eerder
dat

1
2 38z
= —2]).
T 4431348770776 <5 == )
De uiteindelijke oplossing van het complete probleem met vergelijking (6*) in plaats van (6)
is dan de volgende.

] 159 382J | 11985 ngJ
Wo = |5618° Wo=|126m1°
801 166 689
7 — 38z T — 382J
<~ 39536 ° | ® = 15969936
305 4. 125565 4.
Go = |T9763° | G = 5081968
891 207 909
R — 38z R — 382J
S~ |790m2° ® = 11939872 °

Voor de kleinste oplossing is het totale aantal runderen nu {25554596(?8 538J. Het aantal cijfers

wordt gegeven door

582 569
[mgm <2984968 538ﬂ = [logyo (582569) — log, (2984 968) + 381logy, (¢)]

= 1685.

Dat is nog steeds een heel groot getal om met de hand uit te rekenen, maar toch aanzienlijk
kleiner dan het getal van 206 545 cijfers dat optreedt als kleinste oplossing voor de gangbare
versie van het probleem.

9.2 Wurms probleem

Een alternatieve interpretatie die door Wurm is voorgesteld heeft betrekking op de geome-
trische condities in het tweede deel van het probleem. De witte stieren en de zwarte stieren
zouden samen een «mAivdoc» vormen, een “baksteen”. In de traditionele benadering van
het probleem wordt uitgegaan van een vierkant, maar Wurm was van mening dat het een
rechthoek zou moeten Zijn@ Dit leidt tot vergelijking (8*) als alternatief voor vergelijking

(8).

Weo+Zs=p-q (8%)

9OWurm (1830), 196.
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Hierbij is het gewenst dat p : ¢ ongeveer de verhouding van een rund weergeeft. Omdat echter
nergens de verhouding van een rund strikt wordt voorgeschreven, is dit meestal wel ongeveer
kloppend te krijgen. Het vinden van de kleinste oplossing van Wurms probleem begint met
de oplossing van de vergelijkingen (1) t/m (7) + (9) die we in hoofdstuk [6] vonden.

Wy = 1217263415886 Wo = 846192410280
Zg = 876035935422 Zo = 574579625058
Gy = 864005479 380 Go = 412838131860
R = 487233469 701 Ro = 638688708099

Er geldt nu W, + Z, = 2093299351308 = 22 - 3% - 1129 - 4349 - 4657. Vardi stelt voor
omp=22-3%.4349 = 1409076 en ¢ = 11-29 - 4657 = 1485 583 als oplossing te nemen: dit
is de beste benadering van een vierkant die met deze getallen verkregen kan worden@ De
oplossing van de vergelijkingen (1) t/m (7) + (9) is dus ook de oplossing van de vergelijkingen
(1) t/m (9) met (8*) in plaats van (8).

De aanduiding Wurms probleem voor dit probleem is echter ietwat ongelukkig, omdat Wurm
zelf voorstelt niet alleen vergelijking (8*) in plaats van (8) te nemen, maar ook vergelijking
(6*) in plaats van (6) te nemen en een alternatieve vergelijking (3*) in plaats van (3) te
nemen. Dit is namelijk de enige manier, zo zegt hij, waarop het totale aantal runderen op
Sicilié past@ Voor de derde vergelijking kijkt Wurm naar het woord «bUmoAeinopévouc» in
vers 14.

O TAE XVAVEOUS TE TETEATL TE PEREL
WX TOYEOWY Xol TéUTTY, €Tl Eavdolol te mdouw.

Tolc & OmoAelmopEvoug ToihdypwTac dUpeL
GEYEVVEV Tadpwy ExTe uépel EBBoudTe Te

xal Eavdoic adtole ndow icalouévouc.

maar de zwarten zowel aan het vierde deel

van de gemengdgekleurden als aan een vijfde, en nog aan alle roodbruinen.
En de overgelaten gevlektgekleurden, observeer dat

aan van de witte stieren een zesde deel en een zevende
en aan alle roodbruinen zij gelijk waren.

Wurm merkt op dat de “overgelaten gevlektgekleurden” gelijk zouden zijn aan het totale
aantal gevlektgekleurden min het in het vorige vers ter vergelijking van grootte genoemde
vierde en vijfde deel ervan. Zo zouden de “overgelaten gevlektgekleurden” slechts gelijk zijn
aan 1 — % — % = % van het totale aantal gevlektgekleurden@ Dit leidt tot de alternatieve
vergelijking (3*) in plaats van vergelijking (3). Deze lezing lijkt mij erg gezocht en zal hier
dan ook niet nader besproken worden, maar het moge duidelijk zijn dat ook dit probleem,

mutatis mutandis, met vergelijkbare technieken kan worden opgelost.

1 1
11 1 1
il S *
=G <6+7>Woz+Roz (3%)

Vardi (1998), 308.
2Wurm (1830), 202.
9 Wurm (1830), 200.
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10 Conclusie en discussie

Archimedes’ runderprobleem lijkt in eerste instantie lang en ingewikkeld, maar nadat het
eenmaal is omgezet in vergelijkingen ziet het er juist bedrieglijk simpel uit. Het berekenen
van het eerste deel van het probleem levert niet veel moeilijkheden op en met de aanvullende
voorwaarden van het tweede deel lijkt alles in eerste instantie ook nog relatief gemakkelijk te
gaan. Wanneer echter een oplossing moet worden berekend die aan alle negen vergelijkingen
voldoet, blijkt dit opeens gruwelijk ingewikkeld te zijn. Pas met behulp van computers was
het mogelijk de kleinste oplossing volledig uit te schrijven, een getal van 206 545 cijfers.

Archimedes’ runderprobleem kent een levendige geschiedenis vol verschillende ontdekkingen,
interpretaties en oplossingsmethoden. Bij het oplossen wordt het grootste obstakel gevormd
door het moeten oplossen van een Pellvergelijking. Over de Pellvergelijking, en dan met
name ook de negatieve Pellvergelijking, is het laatste woord nog niet gezegd. Er wordt nog
volop onderzoek gedaan om deze vergelijking goed te begrijpen en zo efficiént mogelijk op
te kunnen lossen. Voor problemen van normale grootte werkt de moderne kettingbreukme-
thode goed, maar bij problemen met enorme getallen zijn efficiéntere methodes vereist. Waar
enerzijds nieuwe technieken worden toegepast met bijvoorbeeld smooth numbers en kwan-
tumcomputers, blijkt anderzijds de oude Indiase cakravalamethode al bijzonder effectief te
zijn.

Door de raadselachtige formulering van het runderprobleem zijn er meerdere interpretaties
mogelijk. In deze scriptie is voor zover ik kon achterhalen voor het eerst een oplossing be-
studeerd waarbij het woord «tetpayfj» “in vieren” in vers 24 niet genegeerd wordt, met het
verrassende resultaat dat de kleinste oplossing van het probleem nu slechts 1 685 cijfers heeft
in plaats van 206 545.

Historisch, poétisch en mythologisch zijn er nog veel vragen bij Archimedes’ runderprobleem.
Was het van Archimedes? Kon hij het oplossen? Wat was het doel van het probleem? Deze
vragen zijn kort aangestipt, maar zullen helaas onbeantwoord moeten blijven. Ondanks dat
Archimedes’ runderprobleem inmiddels “opgelost” is, blijft het op alle mogelijke manieren
fascinerend, intrigerend en ook in de moderne tijd zelfs voor de meeste wiskundigen een echt
probleem.
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A Runderprobleem (Grieks + vertaling)

IMeoBAnua dnep Apyundng €v eémypduuacty ebpmv tolg év Alelavdpela nepl Talta mpaypa-
tevouévolg {nrelv anéotellev év Tf] tpodc Epatociévny 1ov Kupnvaiov Eémotolf.

IIndbv "Hellowo Bo&v, & Ecive, pétpnoov
peovtld’ EmoThoNS, el HETEYEC cOYing,

néoon &’ év medlowc Lxehfic mote Booxeto vicou
Opwvaxing tetpayf] otigea dacoouévn

XEOWMY GANdCCOVTA: TO UEV AeUxolo YdhaxTOC,
XUOVEW O ETEPOV YPWOUATL NUUTIOUEVOY,

dAho ye pev Eaviov, T Be mowlhov- €V Be ExAOTE
otigel Ecav tabpol TAdeot Perdouevol

oupUETE(NG Tolfjode TETELYOTES: dPYOTELYOC HEV
XVOVEWY TAVPWY NUloEL HOE TElTe

xal Eavdolg clunacty looug, & Eelve, vonooy,
a0 TAE XUAVEOUS TE TETEATE TE UEREL

UXTOYPOWY Xl TEUTTW, €Tt Eavioiol te Taou.
Tolg 8" Urohelnouévoug mowAdyEwTUS BpeL

AEYEVVEY Talpwy ExTe uépel EBdoudTe Te
xal Eavdolg adtolg ndow icalouévouc.

Onheiouot 8¢ Bouol TEd" EMAETO AEUXOTELYES HEV
ooy oLUUTACNE XVAVENS AYEANC

TR TELTATW TE PEPEL Ol TETPATL ATEEXES loat-
O TAE HUAVENL TE TETEATL TE TAALY

UXTOYEOWY xal TEUNTL ouol pépel iodlovto
oLV TadPOolG TACULE EIC VOUOV EQYOUEVALS.

Sovidotplywy 8 ayéAng TEUNTL HEEEL NOE ol EXTW
nowihan iodpripov mhiidoc Eyov TeTpay .

Eovdal 0" Herduebvro pépoug teitou Muloel ioo
apyevviic ayéhng EBBoudtew Te uépet.

Zeive, ob 0" Hellowo Boeg méoo dtpexes einwy,
Y0l Yev Todpwy Latee@ény dpriudy,

xwelc 8 al Yrheton doon XxaTd YEOoLdY EXACTOL,
oux didpic xe Aéyol 008 dpriudy adanc,

o0 unv e ye cogoic evapliutog. AN\ T @edleu
xal Téde mavta Boy Hehlowo mdim.

Apyotpryec tabpot pev nel wotato TAndiy
xvavéolg, {otavt’ éunedov loduetpol

elc Bddog eic ebpoc Te, o & ab mepLuixea TAVTY
nipmiovto mhiviou BOpwvoxing media.

Soaviol & abt eic Ev ol mowxihot ddpoiciévteg
lotavt’ aufohddny € Evog dpyduevol

oxfijuo Terelolvieg O TEEAOTEGOV 0UTE TROCOVTLY
aANOYEOWY TopwWY OUT EMLAELTOUEVLV.

Tobta cuveZevpmv %ol évi mpanidecoty ddpolooug
xal TANY€wy drodolc, &elve, T& mdvTta puétpa

€pYEO ALOLOWY ViXNPOEOg Tod Te TavVTKG
XEXPWEVOC TAUTN Y dunviog €V coin.

38



Probleem dat Archimedes, in epigrammen gevonden hebbend, aan degenen in Alexandrié
die zich omtrent die dingen bezighouden om te bestuderen verzond in de brief aan Eratosthe-

nes van Cyrene.

De menigte runderen van Helios, o vreemdeling, tel die
nadat je je gedachte erop hebt vastgepind, als je deelhebt aan wijsheid,

hoe groot graasde die eens op de vlakten van Sicilié, het eiland
Thrinakia, in vieren in groepen verdeeld,

die hun huidskleur afwisselden: de ene [had die] van witte melk,
en door zwarte huid schitterend was de volgende,

een andere weer roodbruin, en een gevlekt; en in iedere
groep waren stieren met hun aantallen zwaarwegend

die er toevallig met een zodanige verhouding waren: dat de witharigen
aan van de zwarte stieren de helft en een derde

en aan alle roodbruinen tezamen gelijk waren, o vreemdeling, begrijp dat,
maar de zwarten zowel aan het vierde deel

van de gemengdgekleurden als aan een vijfde, en nog aan alle roodbruinen.
En de overgelaten gevlektgekleurden, observeer dat

aan van de witte stieren een zesde deel en een zevende
en aan alle roodbruinen zij gelijk waren.

En voor de vrouwelijke runderen waren het deze [groepen]: de witharigen
waren aan van de gehele zwarte kudde tezamen

zowel het derde deel als een vierde precies gelijk;
maar de zwarten (@) waren aan zowel het vierde deel weer

van de gemengdgekleurden als een vijfde deel tezamen gelijk
terwijl zij allen met de stieren naar weidegrond gingen.

Maar aan van de kudde der roodbruinharigen een vijfde deel en ook een zesde
hadden de gevlekten (Q) een gelijktallige hoeveelheid in vieren.

En de roodbruinen (@) werden geteld als aan de helft van een derde deel gelijk
van de witte kudde en aan een zevende deel.

En vreemdeling, als jij de aantallen (9) runderen van Helios precies gezegd hebt,
afzonderlijk van goedgevoede stieren het nummer,

en afzonderlijk weer de vrouwelijke, hoeveel alle afzonderlijk (¢) per kleur [zijn],
zul je niet een onwetende genoemd worden, noch een met getallen onbekende,

maar toch ook nog niet een onder de wijzen gerekende. Maar kom, overdenk
ook al deze eigenschappen van de runderen van Helios.

Witgehaarde stieren mengden eens onderling hun menigte
met de zwarten, zij gingen stevig staan, gelijk in maat

naar diepte en naar breedte, en nu weer werden de heel grote
vlakten van Thrinakia in het geheel gevuld met een bouwsteen.

Maar nadat dan weer de roodbruinen tot één en de gevlekten verzameld waren,
gingen zij staan, met een omhoogwerping vanaf één beginnend

aan een figuur, completerend de driehoek, terwijl noch andersgekleurde
stieren aanwezig waren, noch [er stieren] werden achtergelaten.

Nadat je die dingen samen uitgevonden hebt en in je geest verzameld hebt
en van de hoeveelheden, vreemdeling, al de metingen overgedragen hebt,

ga dan jubelend de overwinning dragend en weet dat je geheel en al
beoordeeld [bent] als goedgevoed in dié wijsheid.
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B Oplossingen van het runderprobleem

In deze appendix staan de verschillende oplossingen van de verschillende, al dan niet vereen-
voudigde, versies van Archimedes’ runderprobleem overzichtelijk bij elkaar. Er geldt steeds

m, n, p, q, z € N.

Runderprobleem
1 1
1 1
6 7 R (LD
9—<6+7) F+Q

Wy +Zg =a?

1

RonrGoz:q(q;r )

Alternatieve vergelijkingen

Oplossing van vergelijkingen (1) t/m

GQ 1 1
il (5 + 6) Rg o

(7) (Deel I van het probleem,)

Wy = 103664827
Zgy =T460514n
Gy = 73580600
Rg = 4149387n

Oplossing van vergelijkingen (1) t/m

Wo = 72063607
Zo = 4893246 n
Go = 3515820n
Rg = 5439213n

(8)

W = 46200 808 287 018 m”
Z 5 = 33249638 308 986 m”
G5 = 32793026 546 940 m*
Ry = 18492776 362863 m”

Kleinste oplossing van vergelijkingen

Wo = 32116 937 723 640 m”
Zg = 21807969217 254 m”
Go = 15669127269 180 m*
Rg = 24241207098 537 m”

(1) t/m (7) + (9) =

Kleinste oplossing van vergelijkingen (1) t/m (9) met (8*) i.p.v. (8) (Wurms probleem,)

W = 1217263415886
Zg = 876035935422
Gy = 864005479 380
R = 487233469 701

Wo = 846192410280
Zo = 574579625058
Go = 412838131860
Ro = 638688708099
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Voor onderstaande oplossingen geldt dat ¢ = ki + I;v/N met

k1 = 109931986 732829 734 979 866 232 821 433 543 901 088 049
l1 = 50549485234 315033074477 819 735 540 408 986 340

Oplossing van vergelijkingen (1) t/m (9)

B
20 = |39536° | 29 = |{sa10152°
891 esss | | 5439213 o J
Ra= | Ry — | 2239213
¢~ 79072 ® = 368238304 °

Oplossing van vergelijkingen (1) t/m (7) met (6*) i.p.v. (6)

W, =336126n Wo = 335580n
Zg =241902n Zo =333378n
Gy =238580n Go =502260n
Ry, =134541n Ro =207909n

Oplossing van vergelijkingen (1) t/m (9) met (6*) i.p.v. (6)

159 s, 11985 4.
Wo = |5618° J Wo = |126m1°
801 166 689
VA — 38z T — 382J
<~ 39536 ° | ® = 15969936
305 4. 125565 4.
Go = |T9763° | G = 5081968
891 4 207909 44 J
fe = 1790m°¢ ® = 11939872 °
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