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1 Introduction

Large scale quantum computers do not yet exist, but if one were to be built a quantum
computer it would be able to break many of the public-key cryptosystems systems currently
used [11]. Because scientist believe that a large scale quantum computer could be build in
the not-too-distant future, there is a present need to construct cryptographic systems secure
against a quantum computer. Constructing a cryptographic system, testing its security and
then implementing it in everyday use, can take a long time [11]. Time we can not afford to
waste.

To create a cryptographic system resistant to quantum attacks, one typically uses the
hardness assumption of a mathematical problem. Equivalence problems are often used as the
basis for such cryptographic systems. They take two mathematical objects and ask for an
equivalence mapping relating the two. The equivalence map should preserve some structure
of the objects. This preservation requirement makes it more difficult for an adversary to find
an equivalence map given only the two objects.

For example, the code equivalence problem takes as input two codes with the Hamming
metric and asks for an equivalence between the codes that preserves the metric. Finding a
one-to-one map between the two finite codes can be easily done. Finding a one-to-one map
that preserves the metric is more difficult. It is thus assumed that an adversary would not
be able to construct such a map.

Given an equivalence problem one can construct a Sigma protocol. If the equivalence
is hard to find for an adversary (using a quantum computer), multiple rounds of a Sigma
protocol give a zero knowledge identification scheme. This identification scheme gives rise
to a provable secure signature scheme with the Fiat-Shamir transform [7]. The security of
the signature scheme relies on the hardness of finding the equivalence. Therefore, if a new
equivalence problem is proposed for this signature scheme, it must be determined how difficult
it is to find the equivalence.

In 2023 the Matrix Equivalence Digital Signature Scheme (MEDS) was submitted to
the NIST post quantum cryptographic standardization process. This competition is created
to select cryptographic systems that are secure against a quantum computer. MEDS is
a signature scheme based on matrix codes and equivalences. This thesis aims to find the
security of the signature scheme MEDS. By studying the hardness of the underlying problem.

The MEDS system relies on the equivalence problem for matrix codes, where the equiv-
alence must preserve the so-called rank metric. This metric is defined by the rank distance
between two codewords, two matrices A, B € M, ,(¢q). The rank distance is defined to be
d(A, B) = k(A — B). A matrir code is an F,-linear subspace of Fy*™ endowed with this
rank metric. An isometry between two codes C and D is a mapping that preserves the rank
metric.

Any isometry p: C — D can in fact be written as p = (L, R) with L, R € GL,(q), where
the mapping is given by C — LCR, or as matrix transposition, i.e., the mapping C — C'.
Alternatively, the isometry may be a combination of both forms. Any isometry is of this form
as proven in [9, 19]. In this thesis, we consider only isometries of the first form as commonly
done, [2, 3, 5, 13].

The equivalence problem for two matrix codes C and D can now be defined and asks for
an isometry between the codes.



Problem 1. The Matriz Code Equivalence problem (MCE);
Given two equivalent matrix codes C and D over F2*™;

q
Problem: find two matrices L € GL,(¢) and R € GL,,(q) such that LCR = D.

The hardness of the MCE problem is previously investigated in [5, 13], both for a classical
and quantum computer. This thesis extends the research on the complexity of the MCE
problem, providing further insights into its computational hardness.

The complexity of solving the MCE problem depends on the structure of the codes. In
particular the presence of automorphisms. We define an automorphism of a matrix code
C C Mym(q) to be an isometry from a code onto itself. The automorphism group of C,
denoted as Aut(C), consists of all automorphisms of C. The code has a trivial automorphism
group if the only automorphism of the code is multiplication with a scalar from F,.

Reijnders, Samardjiska, and Trimoska in [13] investigated the hardness of the MCE prob-
lem with the assumption that the codes have trivial automorphisms. Under this assumption
they were able to prove that the MCE problem is polynomial time equivalent to Bilinear
Maps Linear Equivalence and the Quadratic Maps Linear Equivalence problem. Using the
second reduction Reijnders, Samardjiska, and Trimoska could give an algorithm to solve the
MCE problem in time complexity O (qmin{”’m}) [13, Algorithm 2].

On the other hand, if the codes are guaranteed to have many automorphisms, the MCE
problem becomes more easy to solve. If the codes are Fyn-linear, then there exists an algorithm
that solves the MCE problem in polynomial time [5, Algorithm 3].

The same article investigates a variant of the MCE problem where the left side of the
isometry is the identity matrix. This variant of the MCE problem is called the Matrix Code
Right Equivalence problem and can be solved in polynomial time [5, Algorithm 2].

Problem 2. The Matriz Code Right Equivalence problem (MCRE),
Given two matrix codes C and D over Fg*™;
Problem: find if there exists a matrix R € GL,,(q) such that CR = D.

This thesis aims to describe the complexity of the MCE problem when the matrix codes
have non-trivial automorphisms and the codes are not Fyn-linear. Using the structure of the
automorphism groups this thesis develops the Sylvester algorithm. The Sylvester algorithm
can be used to discover the isometry for two equivalent codes. This thesis moreover describes
the computational complexity of this algorithm.

Contributions. Given two matrix codes, this thesis investigates the space of all isome-
tries that exists between these codes, the isometry group. The size of this isometry group
heavily depends on the automorphism groups of the codes. If the codes have many automor-
phisms, there are also many isometries connecting the codes. Even stronger, the structure
of the automorphism groups relates to the structure of the isometry group. This thesis in-
vestigates the relation between these structures. As a result, we develop and present the
Sylvester algorithm for the MCE problem. This algorithm does not require the codes to
have non-trivial automorphism groups, but for codes with trivial automorphism groups the
algorithm yields an exponential complexity.

The Sylvester algorithm uses the structure of the automorphism groups to form Sylvester
equations. The isometry should be a solution to the Sylvester equation generated by the
algorithm. A brute force approach is then used to search through all potential solutions to



the Sylvester equation, ensuring that at least one isometry is found. The complexity of the
algorithm mostly depends on the size of solution space to the Sylvester equation, as the size
of this solution space determines the complexity of the brute force attack.

The Sylvester algorithm presented in this thesis can be used to solve the MCE problem.
The algorithm yields a polynomial time complexity if the codes are Fn-linear. If the codes
have trivial automorphism groups, the Sylvester algorithm yields a complexity comparable
to that of a brute force attack. This high complexity is a direct consequence of the because
brute force used during the Sylvester algorithm.

Furthermore, this thesis gives the complexity of finding the isometry in all other cases.
This is to say for codes that have non-trivial automorphism groups that are not Fy»-linear.
The complexity can be found in Theorem 8.1 and Theorem 8.2. It depends on the number of
automorphisms that the codes have. If the codes have several automorphisms, the complex-
ity moreover depends on the specific automorphism that is used during the Sylvester attack.
A different automorphism leads to a different Sylvester equation which leads to a different
number of solutions to this equation.

Outline. Section 2 introduces main objects and tools that we consider throughout the
thesis. Section 3 provides background information on the matrix code equivalence problem.
It explains the relation between the automorphism and isomorphism groups and introduces
the outline of the Sylvester algorithm that uses this structure relation. Section 4 states some
remarks about how we can obtain the automorphisms needed to find the isometry and thus to
preform the Sylvester algorithm. Section 5 and Section 6 together give a detailed description
of the Sylvester algorithm. Section 7 investigates the complexity to preform the Sylvester
algorithm. Section 8 summarizes the Sylvester algorithm and the complexity. Section 9 con-
cludes the thesis and addresses some points for further research.

Acknowledgments. Special thanks to my supervisors Simona Samardjiska and Krijn Rei-
jnders for guiding me during the process of research and the writing of this thesis. Thanks
as well to my second reader Wieb Bosma for reading this thesis. Special thanks to Ina de
Vries, who kindly helped me find the courses that lie in my interest and which provided me
with the right background to write this thesis.

Thanks to all the students in the master room: Eline, Gilan, Nathan, Robin, and Wouter,
for providing me with distraction and laughter when I needed it. Thanks also for helping me
correct my English mistakes and figure out the “trivial” proofs that I stumbled upon.



2 Preliminaries

We write F, for the finite field of g elements with ¢ a prime power. I.e. ¢ = p" for some
n > 0 and p a prime number. The characteristic of the finite field is then defined as p and
denoted as Char(F;). We define F} to be F,\{0}. We use capital calligraphic letters like C, D
to indicate codes, and capital bold letters like C, D to denote codewords. Capital letters like
A, B are used to denote matrices that are not considered as codewords.

The space of matrices over F, of size n x m is denoted My, ,,(q) or M, (q) if m = n.
The space of non-singular n x n matrices over F, is denoted GL,,(g). The projective space of
non-singular matrices is denoted PGL,,(g). In this projective space multiplication by scalars
is not considered. For the identity matrix we write I. For prime numbers other than the
characteristic of the field r is used.

In literature, it is commonly assumed that matrix multiplication can be performed in time
@) (n?’) This assumption is based on the standard and practical algorithm that yields this
time complexity as noted in [16]. However, Strassen discovered a method to multiply two
matrices in time O (nlog(7)), which approximates to O (n2'81) [17]. The fastest algorithm for
matrix multiplication known is presented by Coppersmith and Winograd. They prove that
two matrices can be multiplied in time O (n?37) [4]. In this thesis we follow [1] and denote
M (n) for the complexity of matrix multiplication, the complexity of Sylvester algorithm can
then easily be calculated when the algorithm is implemented.

2.1 Basic properties of matrices

Non-singular matrices are used intensively, thus this section introduces general properties of
GL,(q). The size of GL,(q) is well known, [8, page 381], [15, Proposition 1.10.1].

Lemma 2.1. There are HZ;& q" — ¢* different matrices in GLy(q).

Proof. In the first column each of the n entries has ¢ options. We exclude the zero column
as it leads to a singular matrix. There are thus ¢" — 1 options for the first column. For
the second column there are again g™ options, except for the ¢ multiples of the first column.
Iterate this, for the k4 1-th column there are ¢"™ options, minus the vectors in the span of the
first k& columns. This span is of size ¢*, providing ¢" — ¢* options for the k+ 1-th column. [

We say that the order of a non-singular matrix A € GL,(q) is the least number k for
which A*¥ = I. As a consequence, the inverse of the matrix A is A*~!. This number k can
not exceed ¢" — 1, as the maximum order a matrix in GL,(¢q) can have is ¢" — 1 [6]. When
the order of a matrix A € GL,,(¢) is known, the order of A™ for some natural number m is
described in the following lemma. This lemma holds in more general; for numbers a € F, the
order of a' can be described by this lemma.

Lemma 2.2. For any matrix A € GL,,(q) the order of A™ is exactly

Order(A)

A™) = '
Order(A™) ged(m, Order(A))

Proof. Let Order(A) = k and Order(A™) = [. Then it holds that (A™)! = A™ =1 = Ak
From this equation it can be deduced that ml > k, otherwise ml would have been the order



of A. Moreover, ml is a multiple of k because otherwise A™ # I, leading to k | ml. Take

l= %, then k | ml. This is moreover the least such [, concluding the argument. O
gc (mvk)

From this lemma it can be deduced that if the order of A is prime and m < Order(A),
then the order of A™ equals Order(A). This can be deduced because the greatest common
divisor of m and Order(A) equals 1.

Definition 2.3. The span of a matrizx A € GL,,(q) is the set consisting of all possible terms
> aiAb or equivalently all matrices polynomial in A, i.e.

span(A) = {f(A) | € Fyla]}. (2.1)

For a pair of matrices (A1, A2) we define the span to be

span((A4j, Az)) = {Z ai(AL, AY) | a; € IFQ} :

i

In the span sums are preserved. The subset of the span where we consider only multiplication
is defined below.

Definition 2.4. For a matriz A € GL,(q) the subset of the span with only multiplication is
the set A
powers(A) = {aA" | a € F}.

Equivalently to the span, we can define powers for a pair of matrices;
powers((A1, A2)) = {a(A}, A}) | a € Fy}.

The characteristic polynomial of a matrix A € M,,(q) is defined as det(x I —A), it is denoted
® 4(z). The minimal polynomial, denoted p4(x), is the polynomial of least degree such that
A vanishes. It divides the characteristic polynomial and has the exact same roots. The
eigenvalues of a matrix A € M,,(q) are the n roots of the characteristic polynomial ® 4(x),
denoted A1, .., A\,. The characteristic polynomial ® 4(x) might have double roots, correspond-
ing to double eigenvalues. If these eigenvalues are counted double we say it is counted with
multiplicity. For example, counted with multiplicity the characteristic polynomial of a matrix
in GL,(q) has n roots.

For any A € GL,(q) it holds that if A is an eigenvalue of A then A" is an eigenvalue of
A™. Consequently, for any A € GL,(q) if A has order r then all eigenvalues A have \" = 1
and thus have an order that divides r. If r is prime then all eigenvalues have order r. A
number is called an r-roots of unity if it has order r, there are r such numbers.

Lemma 2.5. Given w # 1 an r-root of unity, with r prime, then the field Fy(w) contains all
r-roots of unity.

gcdgzr,doerlg;)(w)) = gcd(a,r)' If r is
prime, then all a < r are coprime with r. Thus, all w,w?,...,w" 1 w" = 1 € F,(w) have order
r and are r-roots of unity. As these are r roots, these are all r-roots of unity. The field Fq(w)
contains all r-roots of unity as w € F,(w) and the field is closed under multiplication. O

Proof. According to Lemma 2.2 for all a the order of w® is



Throughout this thesis we will use matrices of prime order r, all eigenvalues have order r
and all eigenvalues are in the same extension field as shown in Lemma 2.5. The size of this
a field extension can be expressed as is done in Corollary 2.6.

Corollary 2.6. The degree d of the smallest extension field Fy(w) containing all r-roots of
unity is the least d such that r | ¢® — 1.

Proof. Let the extension field Fy(w) be isomorphic to F 4. By definition wi1 =1 mod ¢

and w" = 1 by assumption, which implies 7 | ¢® — 1. The degree of the smallest field extension
is the least d for which it holds that r | ¢¢ — 1. O

2.2 Normal forms and invariant factors

During this section we will work over the polynomial ring F[z]. Definitions and theorems in
this section are adapted from “The Theory of Matrices” [10], unless stated otherwise.

The Smith’s normal form is a standard form for matrices defined over F,[z]. Each matrix
is equivalent to a unique Smith normal form, so to introduce the subject of normal forms we
introduce the notion of equivalence.

Definition 2.7. A matriz A over Fy[x] is defined to be equivalent to matriz S over F4[x] if
there exist two non-singular matrices P, Q) € GL,(q) such that S = PAQ.

Theorem 2.8. Every matriz x1—A over Fy[z] of rank r is equivalent to a diagonal matriz

i 0 -« 0 ... 0
0 fo - 0 ... 0

S=lo o ... £ ... 0 (2:2)
00 0 0 0 0

where each f; divides fi11. This is called Smith’s normal form.

Note that the matrix S of the previous theorem can be established by elementary row
operations on I —A. In particular, the determinant of the Smith normal form is a scalar
multiple of the determinant of the original matrix. We can scale the matrix S to have the
same determinant as I —A.

Definition 2.9. An i-minor of a matriz A € My(q) or A € My(q)[x] with i < n is the
determinant of a submatriz of A consisting of i rows and i columns.

Definition 2.10. For any A € M,(q) let d; be the greatest common divisor of all the i
minors of the matriz x 1 —A. The invariant factors of A are defined as:

da dp,

=d ==, ..., fa=
fi 1, f2 4  f a

The invariant factors f; are the factors that appear in the Smith normal form. They are
defined up to a unit factor. In particular, they are thus preserved under equivalence.



Remark. The index of the invariant factors is important as f,_; divides f,, and so on, i.e.
fil-| fn=1] fn- We assume and respect this order during the thesis.

The invariant factors are strongly related to the characteristic and minimal polynomial.
In fact, the invariant factor f, is the minimal polynomial. The characteristic polynomial of
a matrix is the product f; - ... - f,, of its invariant factors.

Example 2.11. Let matrix A € GL3(7) be given by

4
A=1|0
0

S O =~

6
1
6

The product of the invariant factors equals the characteristic polynomial and the last invariant
factor equals the minimal polynomial. These relations can be used to calculate the invariant
factors. The characteristic polynomial is ®4(x) = (x + 3)*(z + 5). The minimal polynomial
equals (z + 3)(x + 5), since (A + 3I)(A + 5I) = 0. The invariant factors are thus f; = 1,
fo=(z+3) and fy = (z+3)(x +5).

With the invariant factors of a matrix, the Smith normal form can be formed.

Example 2.12. Revisit the matrix A € GL3(7) from Example 2.11. The invariant factors
are 1, (x+3) and (x4 3)(z+5). The matrix is non-singular and thus of full rank. The Smith
normal form is

1 0 0
SNF(zI-A)= |0 (z+3) 0 . (2.3)
0 0 (x +3)(z+5)

The invariant factors are defined up to a unit factor as stated before. In particular, they
can be assumed to be monic polynomials. For any monic polynomial there exist a companion
matrix.

Definition 2.13. Given a monic and non-zero polynomial f(x) of degree d of the form

d—1
fz) =%+ Z ¢z
=0
Define the companion matrix C¢ of f(x) as

0 1 0 0

0 0 1 0

0 0 0 1

—C¢ —C€ —C -+ —C4g-1

For the definition of the companion matrix we followed [10], as this shape is commonly
used, for example in MAGMA. Some authors define the companion as the transpose of the
matrix described above, this is done in [16]. We do however follow [16] in the definition of the
Frobenius normal form. If the transpose of the companion matrices is used, the Frobenius
normal form is transposed as well.



Definition 2.14. The Frobenius normal form F' of a matriz A € GL,(q) is the block diagonal
matriz in Equation (2.4) where each block Cy, is the companion matriz of the invariant factor
fi of A with deg(f;) > 1. The other entries of the matrixz are zero.

The invariant factor f,_; is the least invariant factor for which deg(f,—;) > 0.

It is well known that any matrix can be transformed into its Frobenius normal form
through left and right multiplication by a non-singular matrix P and its inverse P~!, which
is stated in [16].

Theorem 2.15. For any matriv A € My (q) there exists a matrix P € GLy(q) such that
PAP~! is the Frobenius normal form of the matriz A.

Example 2.16. Revisit matrix A € GL3(7) from Example 2.11.

4
A=1|0
0

S O =~

6
1
6

The invariant factors are 1, (z + 3) and (z + 3)(xz + 5). The trivial invariant factor 1 is not
used in the Frobenius normal form. The invariant factors z +3 and (x+3)(z+5) = 22 +2+1
have the following companion matrices

01
Cays = (4) Cozyoy1 = <6 6> .

This gives the following Frobenius normal form

FNF(A) =

O O =
o O O
= O

2.3 Similar matrices

For two different matrices A, B € M, (¢q) the Smith and Frobenius normal form can be the
same. This introduces the subject of similar matrices.

Definition 2.17. Two matrices A, B € My(q) are called similar, denoted A ~ B, if there
exists P € GL,(q) such that PAP~1 = B.

By Theorem 2.15 any matrix is similar to its Frobenius normal form. Consequently, two
matrices can be defined similar if and only if they share the same Frobenius normal form.
Theorem 2.18 is a standard result, and it states several properties that are preserved under
similarity.



Theorem 2.18. For any matriz A € GL,(q) the following properties are preserved by simi-
larity.

o Rank;

e Characteristic polynomial, minimal polynomial, determinant, trace and the eigenvalues;
e The Frobenius and Smith normal form;

e Order.

Proof. Let L € GL,(q) and form the matrix B similar to A by B = LAL~!. The multi-
plication of matrix A with matrices L, L™! of full rank does not change the rank. It holds
that;

rk(B) = mk((L - A) - L™') = rnk(L - A) = rnk(A).

The characteristic polynomial of A, denoted ® 4(z), is det(x I —A). Using the multiplication
rules for determinants of [8, page 96] we can deduce that;

Properties derived from the characteristic polynomial are preserved as well, i.e. determinant,
trace, eigenvalues and the minimal polynomial. The Frobenius normal form is preserved as
noted before. The Smith’s normal form is invariant under equivalence and therefore also
under similarity. For the order, assume A¥ = I then:

Bi=(L-A- L YW=rL. A L'=L.T-L7'=1

This implies that the order of B divides the order of A. The same calculation can be done
with A and B swapped. This implies that the order of both matrices is equal. ]

Theorem 2.18 specifies which properties of a matrix are invariant under similarity. This
is a one-way argument, meaning that two non-similar matrices could share such a property
without being similar. However, the converse is true under certain additional assumptions,
one of which is stated in the following theorem and proven in [12].

Theorem 2.19. Given two matrices A, B € My(q). If they have the same characteristic
and minimal polynomial that coincide, pp = 4 = ®p = pp, then A and B are similar.

Proof. The minimal and characteristic polynomial of A and B coincide with their character-
istic polynomial, which implies that there is only one block in the Frobenius normal form.
Moreover, this normal form is the same for both A and B. As such we can conclude that the
matrices are similar. O

10



Example 2.20. It is important to note that the minimal and characteristic polynomial of two
matrices might be the same while the matrices are not similar. Take matrices A, B € GL5(7)
to be

4 0 0 0O 01000
04000 51 0 00
A=10 0 0 1 0], B=]0 0010
00001 00001
003 06 00 3 06

Both matrices have characteristic polynomial (z + 3)*(z + 2). The minimal polynomial of
both is (z + 3)?(x + 2), but the matrices are not similar. Matrix A has the invariant factors

fi=fo=1 fs=(x+3), fa=(z+3), and f5 = (z + 3)*(v + 2).
The matrix B has the invariant factors
fi=fo=f3=1, fi=(x+3)?and f5 = (z + 3)*(z +2)
The invariant factors are different, and thus the matrices are not similar.

Lemma 2.21. For any matriz A € GLy,(q) with order coprime to q it holds that the charac-
teristic polynomial of A is the same as the characteristic polynomial of A9.

Proof. This lemma follows from the notion that the eigenvalues of A? are the eigenvalues of
A raised to the power gq. The characteristic polynomial ®4(x) is defined over F, thus the
Frobenius map z — z? leaves the roots invariant if the order of the roots is coprime with g.
If on the contrary, the order of A and ¢ have a non-trivial common divisor, then Order(A?)
is different from Order(A) by Lemma 2.2. The matrices can thus not be similar. O]

Theorem 2.22. Given A € GL,(q) with order coprime to q and where all roots of the
minimal polynomial have multiplicity 1. Then A is similar to AY.

Proof. Let A have Frobenius normal form F,ie. A= QFQ™!, then A is similar to A9 if and
only if F' is similar to F'?, as demonstrated by the following calculation:

A1 = (QFQ V)1 = QF'Q .

Thus, it is only needed to prove this theorem for a matrix F' in FNF form. The matrix F
has blocks C¥,,...,Cy,, for some m < n and F'? has blocks C’;l, v C;{m. The assumption that
all roots of the minimal polynomial have multiplicity 1 implies that all invariant factors have
roots with multiplicity 1. This implies that for any block C'; the minimal and characteristic
polynomial coincide. By Lemma 2.21, Cy has the same characteristic polynomial as C’;’c. This
characteristic polynomial also coincides with the minimal polynomial by the same assumption
that the roots have multiplicity 1. The matrix C} is thus similar to C’? by Theorem 2.19.
This leads to the existence of matrices Py, , ..., Py, such that

T

-1 q -1 q
PrCp PRt~ O,y PpCy Pt~ O

In particular this implies the existence of the diagonal block matrix P with blocks Py, ..., Py,
which shows the similarity of F' and F¢ as PFP~! = F4. O

11



3 Matrix Code Equivalence problem

The aim of this thesis is to evaluate the complexity of the matrix code equivalence problem.
Specifically when the codes posses non-trivial automorphism groups. The objective of this
section is to provide background information and insight into this problem.

Any matrix code is equipped with the rank metric and an isometry between two codes
preserves this metric. The group of all isometries is defined below:

Definition 3.1. The isometry group for two matriz codes C,D C My, (q) is defined to be
Iso(C,D) ={pn=(L,R) | L € GL,(q), R € GLy,(q), LCR = D}.
If the isometry is one-sided with a trivial right side we denote the isometry with u = (L, I).

Definition 3.2. The conductor group for two matriz codes C,D C My, m(q) is the group
Cond(C,D) = {M € M,(q) | MC C D}.

If the matrix M is singular, then MC C D is a strict subset. Equality holds if and
only if M € GL,(q). Write Cond(C) to denote the conductor group of a code on itself i.e.
Cond(C,C). This group is called the endomorphism group.

Recall that automorphisms are isomorphisms from a code to itself. Automorphisms can
also be one-sided. We write Auty,(C) for the group of automorphisms of the form (A,I),
and similarly, Autg(C) denotes the group of automorphisms with a non-trivial right side. To
stress the trivial side, in Auty,(C) and Autr(C) we refer to these as one-sided automorphism
group. Two-sided automorphism groups have a non-trivial matrix on both the left and the
right side.

The groups Iso(), Cond() and Aut() are closely related. By definition the automorphism
group of a code equals the isometry group of the code onto itself, Aut(C) = Iso(C,C). If the
isometry between two codes is one-sided with a trivial right side, the group Iso(C, D) equals
the set {(L,I) | L € Cond(C,D) and L € GL,(q)}. The correspondence of the automorphism
group with the conductor group is then evident;

Autr,(C) = Cond(C) N GL,(q).

The open question addressed in this thesis concerns the complexity of the MCE problem
when C and D have non-trivial automorphisms.

Problem 3. The Matrixz code equivalence problem with non-trivial automorphisms;

Given two equivalent matrix codes C and D over Fg*™ with non-trivial automorphism
groups;

Problem: find two matrices L € GL,(q) and R € GL,,(q) such that LCR = D.

The aim of the thesis is to describe the complexity of Problem 3.

12



3.1 Approach of the problem

To solve the Matrix code equivalence problem for codes with non-trivial automorphisms we
use the structure of the automorphism groups of the codes. Given two equivalent matrix
codes the automorphism groups of both are related by the isometry.

Proposition 3.3. Given two equivalent matriz codes C,D C My, m(q). Any automorphism
(A1, Ag) € Aut(C) relates by u = (L, R) to a unique pair (B, B2) € Aut(D) as follows:

Bi=L-A-L ' and By=R ' Ay-R.

Proof. This can be seen by the diagram below. Note that on the left side, multiplication is
done to the left, and on the right side to the right.

c At o
(leRIJ J(L,R)
D———— D
(B1,B2)

O

Given two equivalent matrix codes C,D C M,, ,(¢). The proposition proves that any
automorphism A = (A1, A2) € Aut(C) is similar to an automorphism B = (B, B2) € Aut(D).
This correspondence reveals crucial information about the isometry. The automorphisms
satisfy the following equations and (L, R) is a solution,

(3.1)
AY =YB,.

{XA1 = BiX
These equations are called Sylvester equations as Sylvester in [18] was the first to investigate
matrix equations of this form. These equations are the basis of the algorithm presented in
this thesis, which therefore is called the Sylvester algorithm.

Outline Sylvester algorithm. To perform the Sylvester algorithm, one must first identify
similar automorphisms (A;, A2) € Aut(C) and (B1, B2) € Aut(D). Given these automor-
phisms the Sylvester equations B1 X = X A; is solved. The space of solutions to B1 X = X A;
is denoted SolSp(Bi, A1). As explained, the isometry is non-singular and a solution to the
Sylvester equation. However, the solution space contains also singular matrices which will
thus not give rise to an isometry. We therefore reduce the space SolSp(Bj, A1) to a smaller
space which contains exactly the non-singular matrices of SolSp(Bi, A;). This smaller space
is denoted SolSpNon-Sing(Bj, A1).

At least one of the matrices in the reduced space SolSpNon-Sing(Bj, A;) is an isometry.
To find this isometry we preform a brute force attack. The brute force picks a random matrix
L € SolSpNon-Sing(Bj, A;). With a polynomial MCRE solver, the brute force can check if
LC is right equivalent to D. If no equivalence is found, the process needs to be repeated
with a different matrix L. The complexity of this brute force attack is estimated at the
end. This brute force approach is the bottleneck of the algorithm, and it heavily depends
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on the amount of isometries there are in SolSpNon-Sing (B, A1) and of the size of the space
SolSpNon-Sing(B1, Ay).

Outline Sylvester algorithm in the thesis During this thesis the Sylvester algorithm
is developed and explained. Each section is a new step in the algorithm, the outline is stated
below.

- Section 4 finds similar automorphisms (A4, A2) € Aut(C) and (B, Ba) € Aut(D).
- Section 5 finds the solution space SolSp(Bj, A1) to the equation B1 X = X A;.

- Section 6 reduces SolSp(Bj, A1) to the smaller space SolSpNon-Sing(By, A1).

- Section 7 estimates the complexity of preforming a brute force attack.

- Section 8 describes the Sylvester algorithm and analysis the algorithm.

During the Sylvester algorithm only information of the left side of the automorphisms
is used to find the left side of an isometry. Information of the codes is used to find the
corresponding right side of the isometry.

3.2 Automorphism group

This section aims to investigate properties of the automorphism group for a matrix code
C € My, ;m(q). The automorphism group is a subset of GLy(¢q) x GLy,(¢). It is closed under
multiplication with scalars of F, and the group action. For automorphisms (A;, A2) and
(A}, A5) of code C, define scalar multiplication a € I, and the group operation o to be

G(Al,Az) O( /I’A/Q) = (aA1 . /17A/2 . Ag)

With these definitions the automorphism group forms a group. It does not matter if scalar
multiplication is done on the left or right side as it commutes with the matrices.

By definition of composition of automorphisms for any automorphism (A4;, A2) € Aut(C)
it holds that powers((A1, A2)) € Aut(C). On the contrary, span((A41, A2)) is in general not
preserved for the two-sided automorphisms as the following calculation illustrates:

(A1 + A, As + A43)C = (A1 + A7)C (A2 + Ay)
= (A + A})(CAy + C4Y)
= A1CAy + A1CA/2 + AIICAQ + A&CA&
The linear structure of C assures that the term A;CA; + A{CAj is in C. The mixed terms
A;CAL + AJCAy however do not need to be preserved in the code. In general the two-

sided automorphism group is thus not closed under addition. For one-sided automorphisms,
addition is preserved in the conductor group.

Lemma 3.4. For any C C My m(q) and A € Cond(C) it holds that span(A) C Cond(C).
Proof. We need to prove that Y. a;(A%, Id) is in Cond(C). It is clear that a;(A%I) is in

Cond(C) by the argument that multiplication is preserved in automorphism group. To proof
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that addition is preserved in the conductor group, take any C € C. For any two matrices
A, A" € Cond(C) the sum of both is in the conductor group as the calculation illustrates;

(A+ A TI)IC = (A+ A)CI
— ACI+A'CI.

Both automorphisms A, A’ are in the left-sided automorphism group, thus both AC and A'C
are in C. The sum of both is in C by its linear structure. O

It is important to stress that non-singular elements of the conductor group are in the left
one-sided automorphism group. This implies that for any two matrices A, A’ € Cond(C) it
holds that if (A + A’) is non-singular, then this sum is in Auty,(C).

Given D C M,, »(¢) and let C and D be two equivalent matrix codes. The automorphisms
of C are strongly related to the automorphisms of D by the isometry u: C — D as noted in
Proposition 3.3. This relation is two-sided; the isometry group Iso(C, D) can also be described
with use of the automorphisms of C as the following corollary explains.

Corollary 3.5. Given two equivalent matriz codes C,D C My m(q). If Iso(C,D) is non-
empty then #Aut(D) = #Aut(C) = #Iso(C, D) and the isometry group is:

Iso(C,D) = {0 A| A € Aut(C)}. (3.2)

Proof. For any isomorphism p it holds that o A is an isomorphism as can be seen in the
diagram below. Similarly, given two isomorphisms the composition of both, p~!
an automorphism on C.

o, gives

c— 4 ¢ C % C
N l" o Wu—l
D D

From the structure of the isomorphism group it follows that the size of the automorphism
groups is equal to the size of the isomorphism group. O
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4 Algorithm to find similar automorphisms

Context - This thesis investigates the complexity of the MCE problem given that the codes
have non-trivial automorphisms. To make use of the structure of the automorphisms, it is
needed to find non-trivial similar automorphisms.

Goal - The goal of this section is to prove how similar automorphisms of two codes can
be found given non-trivial automorphisms of both codes. This section thus aims solve the
following problem.

Problem 4. Finding similar matrices;

Input: A = (A1,As2) and B = (Bi, Ba), two pairs of matrices where A; and B are
non-trivial, i.e. A; # I # By, but Ay and By could be trivial;

Problem: find A’ = (A}, A}) and B’ = (B, B}) with A’ € powers(A), B’ € powers(B),
A’ similar to B’ and A} prime order.

Given two matrices A, B Problem 4 finds similar matrices in the sets powers(A) and
powers(B) as all matrices in these sets are in the automorphism group.

Motivation - Assume that the codes have non-trivial one-sided automorphisms. An au-
tomorphism of a code is an isometry from a code to itself. To find a one-sided automorphism
intuitively a MCRE solver can be used with as input two times the same code.

One should require that the output of this solver is a non-trivial automorphism. This can
be done by running the MCRE solver of [5] with input two times the same code described
with a different basis. The algebraic algorithm for the MCE problem of [2] can also be used.
This gives in fact all one-sided automorphisms.

For two-sided automorphisms however the reduction to the MCE problem does not help
as we are trying to solve this problem. This thesis does not investigate if there exists a more
sophisticated way to find two-sided automorphisms and assumes a two-sided automorphism
is given before preforming the Sylvester algorithm.

The Sylvester algorithm presented in this thesis can be used with two and one-sided au-
tomorphisms. We will thus always write the automorphism as (A, A2) where A; is assumed
to be non-trivial. It will be clearly indicated where the algorithm differs for one-sided and
two-sided automorphisms.

Proposition 4.1. Problem 4 can be solved in time O (n - Order(By) + qn3) by Algorithm 1.
Assuming that Order(A;) < Order(B)

Proof. The order of a matrix is the least common multiple of the order of its eigenvalues.
Computing the order of the matrix can thus be done by computing the order of its eigenvalues.
The eigenvalues can be found with the characteristic polynomial. The time complexity of
finding the eigenvalues is O (M (n)) as proven by Strassen. Finding the order of an eigenvalue
A can be done by brute forcing all powers until the order is found. This results thus in
Order(A) multiplications. Note that this order might exceed ¢ — 1 if A is not defined over F,.
This needs to be repeated for all eigenvalues of both matrices. The time complexity is thus
at most O (n - max{Order(A;), .., Order(\,,)}). Which has as upper-bound O (n - Order(By)).
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Algorithm 1 Finding Similar Matrices
Input Two pairs of matrices (A1, As), (B1, B2) in GL,,(¢) X PGL,(q).
Output If they exist, two pairs of matrices M = (Mj, M) € powers((A41, Az)) and
N = (N1, Np) € powers((B1, B2)) such that M ~ N and M; of prime power.
Order(A;) > O (n- Order(A;))
Order(By) > O (n - Order(By))
71,72, ..., 7] < PrimeFactorization(Order(A;))
T1,72, ..., Ty < PrimeFactorization(Order(B)).
r:=max{{ri, ro, ...} N{ry,re,...,ry}}
M = AQrdertAn/r > O (M(n)log(Order(A;)/r))
N := BOrder B/ > O (M (n)log(Order(By)/r))
m := min{r, ¢}.
for i in [1..m] do

if FNF(M') equals FNF(N) then > O (n?)
return (M, 5O AN/ gOrder(B)/ry > O (M (n)log(Order(By)/r)
end if
end for
return |

On a quantum computer the factorization of Order(A4;) and Order(B;) can be done
efficiently with Shor’s algorithm.
The maximum prime order of a matrix in powers(A;) and powers(B;) is r with

r := max (PrimeFactorization(Order(A;)) N PrimeFactorization(Order(By))) .

The order of M and N is r by Lemma 2.2. For any matrix M of prime order r it holds that
M?2, .., M™ ! have order r. For all these matrices it needs to be checked if they are similar to
N. The complexity of checking similarity is the complexity of finding the Frobenius normal
form for M* and comparing it to the Frobenius normal form of N. Finding the Frobenius
normal form can be done in O (n?) as proven in [16].

Lemma 6.9 states that all invariant factors of a matrix of prime order have roots with
multiplicity 1. The matrix M" is thus similar to M by Theorem 2.22. The iteration thus
finds a matrix M?* similar to N within ¢ steps if it exists.

If none of the matrices M, M?, .., M9~" are similar to N, then it is impossible to find
similar matrices in powers((Aj, A3)) and powers((By, By)). Namely, for each matrix A similar
to B it holds that A’ ~ B’ as A = QBQ™~! implies A* = QB'Q~!. If none of the matrices
of powers(M) are similar to N an error is returned. Otherwise, the returned matrices are in
the sets powers((A1, Az)) and powers((Bi, B2)) as required. The overall complexity reads

O (n - Order(By) + qn®) .
O

If Algorithm 1 has the right input, similar matrices will be returned. We will be preforming
the algorithm with similar matrices. The question arises in which cases the returned similar
automorphisms are related by an isometry.
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Theorem 4.2. Given two equivalent matriz codes C,D C My, ;m(q) with isometry p. Let
A = (A1, Az) in Aut(C) be similar to B = (By,Ba) € Aut(D) by u and let them both be
similar to automorphism B’ = (B}, BY) in Aut(D). There always exists an isometry u' such
that ' (A) = B’ if and only if there exists B” € Aut(D) such that B' = B" o B.

Proof. This follows from Corollary 3.5. If there exists an isometry u/'(A) = B’ and pu(A) = B,
then B” = p/op~1! is an automorphism of D. Moreover, B”oB = p/op~tou(A) = u'(A) = B'.
To prove the statement the other way around, assume there is an isometry p such that
w(A) = B and B’ = B" o B, then B’ = B"” o u(A). The isometry p/ = B” oy thus relates the
automorphisms A and B’. O

As a corollary it follows that it is unimportant whether the original isometry maps A to B
or to B?. This because B¢ = B9~ 1o B and B! is an automorphism as required. Algorithm 1
thus outputs two matrices that are similar by an isometry if the original isometry maps the
automorphisms from powers(A) to powers(B).

We assume it to be unlikely that any A € Aut(C) is similar to several automorphisms
B, B’ € Aut(D) and that B and B’ do not relate by an automorphism B”. We thus assume
that any pair of similar matrices gives rise to an isometry.

Theorem 4.3. Given two equivalent matriz codes C,D C My m(q). Given non-trivial au-
tomorphisms A = (A1, A2) € Aut(C) and B = (By,Bs) € Aut(D). There exists an al-
gorithm working in time O (n - Order(By) + qng) that finds A" = (A1, As) € Aut(C) and
B’ = (By, By) € Aut(D) and assures that A’ and B’ are similar, are mapped by an isometry
and both A and B} have prime order.

Proof. Proposition 4.1 finds two similar matrices in time complexity O (n - Order(B;) + gn?).
If the algorithm succeeds it can be assumed that these are linked by an isometry by Theo-
rem 4.2 and the remark afterwards. If the algorithm fails, other automorphisms should be
provided. O

Theorem 4.4. Given two equivalent matriz codes C,D C My, ;m(q) with non-trivial one-sided
automorphism groups. There exists an algorithm with time complexity O (n - Order(B) + qn3)
that finds A" € Auty,(C) and B € Auty,(D) and assures that A" and B’ are similar, are mapped
by an isometry and both have prime order. Here B is an automorphism in Auty,(D) found
in the first step of the algorithm.

Proof. As noted before a non-trivial one-sided automorphism A of C and B = (B, Bz) for D
can be found in polynomial time. Use Algorithm 1 to find similar matrices. This can be done
in time O (n - Order(B1) + qn3) by Proposition 4.1. If the one-sided automorphism groups are
spanned by one matrix the algorithm terminates with similar matrices. If Auty,(C) is spanned
by several automorphisms this procedure needs to be repeated with another input. ]
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5 The solution space of the Sylvester equation

Context - Recall the Sylvester algorithm we preform to find the equivalence between two
matrix codes. At first, we find automorphisms of both codes that are similar, this is done
in the previous section. From these similar automorphisms we form a Sylvester equation.
One of the solutions of the Sylvester equation is the isometry. This section thus aims to
investigate the structure of the solution space for two automorphisms.

Approach - The automorphisms are assumed to be similar, thus in particular we are in-
terested in the solution space of the Sylvester equation for similar matrices. The main result
of this section is Theorem 5.6.

Theorem 5.6. For similar matrices B € GL,(q) and A € GL,(q) the solution space
SolSp(B, A) of BX = X A can be found in polynomial time O (dim(SolSp(B, A)) -n - M(n)).
The solution space is SolSp(B, A) = {LA' | A’A = AA'} for some solution L and all matrices
A" commuting with A. The space SolSp(B, A) has dimension of size

n

> (2(n—1i) +1) - deg(fi),

i=1
for f; the invariant factors of A.

Outline section - To prove Theorem 5.6, Section 5.1 states the size of the solution space
for the Sylvester equation with arbitrary input. This section moreover looks into the size of
the solution space for similar matrices. Section 5.2 investigates the structure of the solution
space to the Sylvester equation.

5.1 Sylvester’s equation

This section aims to find the number of solutions to the Sylvester equation, Equation (5.1)
BX =XA (5.1)

for any two matrices A, B € M,,(¢). This number is described by Cecioni and Frobenius and
depends on the invariant factors of the matrices. We cite the statement without proof, but a
proof can be found in [10, Thm. 46.2].

Theorem 5.1 (Cecioni and Frobenius). For two matrices A,B € My(q) the number of
linearly independent solutions of the equation BX = X A is Zf] ged(fi, gj) where f; ranges
over the invariant factors of A and g; over the invariant factors of B.

The invariant factors for similar matrices A and B are the same. The indexation of the
invariant factors respects the order of division. This gives the formula in Theorem 5.1 a
particular form, as described in Corollary 5.2.

Corollary 5.2. Given similar matrices A, B € GL,(q), and let the f; be the invariant factors
of A. Then the number of linearly independent solutions of the equation BX = X A is

S (20 — i) + 1) - deg(fi).

=1
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Proof. The invariant factors g; of B are the exact same as the invariant factors of A, which
implies that gcd(f;, g;) is the same as ged(f;, fj). The indexation of the invariant factors
respects division, i.e. f; | f; for i < j implying ged(f;, f;) = fi. Write the Cecioni and
Frobenius equation as:

ST ecd(fi f) =D ged(fi fi)+ DD ged(fi fi) + D> ged(fi, f;)

ij=1 i=1 j>i i=1 j<i i=1 j=i
By symmetry > i, 377 deg(fi) = >0, o1, deg(f;) thus conclude

> ged(fi f3) =2) ) deg(fi) + ) deg(fi).
i=1

i,j=1 i=1 j>i

The term deg(f;) appears n — ¢ times in the first sum, plus 1 time in the second sum. This
gives the desired result of >""" |(2(n — i) + 1) - deg(f;). O

The formula of Corollary 5.2 can in particular be used to count the solutions of AX = X A,
as a matrix is always similar to itself. This is the number of matrices that commute with A
and is known. The number of matrices that commute with a given matrix is described by
Frobenius, as documented in [8, Theorem 3.16]. The formulation and formula of this theorem
is slightly different from ours, but equivalent.

The solution space of BX = XA is the smallest when the characteristic polynomial
coincides with the minimal polynomial of A. This however is an exceptional case and does
not hold in general. In general there would be more invariant factors leading to more solutions

to BX = XA.

Corollary 5.3. If for any A € GLy,(q) the minimal polynomial equals the characteristic
polynomial and A is similar to B € GLy(q), then there are q" solutions to BX = X A.

Proof. There is one non-constant invariant factor f,, of degree n. Using Corollary 5.2 one
can prove that the number of linear independent solutions is therefore (2(n —n)+1)-n = n.
Name these solutions X1, .., X,,. To form linear dependent solutions, sums can be taken as
the solution space is closed under addition. The linear dependent solutions are of the form
a1 X1+..+a, X, for a; € [F,. For each a; there are ¢ options, giving a total of ¢" solutions. []

Example 5.4. Consider the similar matrices A, B € GL3(7) given by:

44 6 4.0 0
A=10 0 1 B=[11 5]. (5.2)
06 6 355

The invariant factors of A are f1 =1, fo = (z+3) and f3 = (x + 3)(z + 5) by Example 2.11.
The matrices are similar, so the invariant factors of B are the same. By Corollary 5.2 the
number of linear independent solutions for BX = XA is ) ;" | (2(n — i) + 1) - deg(f;).

3
Z(2(3—i)+1)-deg(fi) =5-deg(1) + 3 - deg(z + 3) + deg(2® + = + 1)
i=1

—5-043-1+2=5

There are thus 5 linear independent solutions, hence 7° = 16807 solutions to BX = X A.
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5.2 Structure of the solution space

The number of solutions to the Sylvester equation is described in the previous section. This
section investigates the structure of the solution space.

For two matrices A, B € GLy,(q), the solution space of BX = X A is denoted SolSp(B, A).
SolSp(B, A) exhibits a clear structure; given one solution, all other solutions can be described
using this initial solution and all matrices that commute with A, as expressed in Lemma 5.5.

Lemma 5.5. Given two matrices A, B € GL,(q) and L be any non-singular solution to
BX = XA, then all solutions are LA’ for A" € M,,(q) commuting with A.

Proof. Let L be a solution to BX = XA. Consider the matrices commuting with A, i.e.
solutions to AX = XA. Multiply both sides with L results in LAX = LXA which equals
BLX = LX A because L satisfies BL = LA. Therefore, LX is a solution to BX = X A.

SolSp(B, A) D {LA' | A'A = AA"}.

No other solution exists as both sides have the same size. The number of solutions to
BX = XA and AX = X A is the same as the number of solutions to both equations depend
on the invariant factors of A. OJ

The space SolSp(B, A) can be considered as a matrix code as it is closed under addition
and scalar multiplication. This lemma relates the matrix code SolSp(B, A) to the matrix code
SolSp(A, A) by a left equivalence. This left equivalence can be any element of SolSp(B, A)
which also follows from the lemma. That implies that if one uses a matrix code left equivalence
solver on the codes SolSp(B, A) and SolSp(A, A) the set SolSp(B, A) will be returned.

The main result of this section is stated in the following theorem.

Theorem 5.6. For similar matrices B € GL,(q) and A € GL,(q) the solution space
SolSp(B, A) of BX = X A can be found in polynomial time O (dim(SolSp(B, A)) -n - M(n)).
The solution space is SolSp(B, A) = {LA' | A’A = AA'} for some solution L and all matrices
A" commuting with A. The space SolSp(B, A) has dimension of size

Y (2(n—i) +1) - deg(fi),

i=1
for f; the invariant factors of A.

Proof. There are dim(SolSp(B, 4)) = > ,(2(n—14)+1)-deg(f;) linear independent solutions
to the equation BX = X A, proven in Corollary 5.2. Write this dimension to be m. If m
values of X are fixed the other values are uniquely determinable by solving the equation.

The equation BX = X A can be solved by solving Bx; = a; for all column vectors x; of X
and a; of A. Solving Bx; = a; is of time complexity O (M (n)) [1, Theorem 6.7]. This needs
to be repeated for all n column vectors to find matrix X.

To find a basis of dim(SolSp(B, A)), m linear independent solutions should be found.
This can be done by taking X; to have m zero’s on the first m entries except one 1 on
the i-th entry. The other entries of the matrix are variables and can be found by solving
the equation. Solving BX; = X;A for m matrices X; leads to an overall complexity of
O (dim(SolSp(B, A)) - n- M(n)).

The space SolSp(B, A) equals {LA" | A/A = AA"} as shown by Lemma 5.5. O
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6 Reduction of the solution space

Context - Recall the Sylvester algorithm that we preform for two equivalent matrix codes
with non-trivial automorphism groups. We found similar automorphisms of the codes in
Section 4. For these automorphisms we found the Sylvester equation and solved it in the
previous section. In the solution space of this Sylvester equation we want to find the isome-
try. The isometry is non-singular and thus in particular we are interested in the number of
non-singular solutions to the Sylvester equation. This section aims to find this number.

Approach - Theorem 5.6 states that the solution space for two different similar matri-
ces is left equivalent to the matrices commuting with one of them. In particular, the number
of non-singular solutions of both sets is thus equal. The number of non-singular matrices
commuting with a given matrix is known, we evaluate this in Section 6.1.

Outline section - Section 6.1 gives the number of non-singular matrices commuting with a
given matrix. For the Sylvester attack however we assume that the order of the matrices in
the Sylvester equation is prime. Section 6.2 therefore evaluates the number of non-singular
matrices commuting with a given matrix of prime order r for r not equal to the characteristic
of the field. In the particular case that the matrices of the Sylvester equation have prime
order equal to the characteristic of the field, the number of non-singular matrices commuting
with A is investigated in Section 6.3.

6.1 The number of non-singular matrices commuting with a given matrix

Stanley [15] investigated the number of non-singular matrices that commute with a given
matrix. This section presents this number, the preliminaries needed for it and some examples.
The definitions of this section are adapted from [15].

Definition 6.1. A partition of any natural number is an ordered set A = {A1, A, ...} such
that it holds that \y > Ao > --- > 0. The natural number is the sum ), \; denoted with |\|.

Definition 6.2. For any partition X\ the conjugate partition is denoted N'. The value X, of
N is the number of elements of X that have value at least i.

Example 6.3. A partition of 9 could be {4,2,1,1,1} the conjugate partition is {5,2,1,1}.
Theorem 6.4 is stated without proof. The proof can be found in [15, Theorem 1.10.7].

Theorem 6.4. Given a matriv A € GLy(q) with characteristic polynomial ® 4(x). Assume
® 4(xz) has one irreducible factor f(x) of degree d and multiplicity |\|. Let the partition A
describe the partition of the non-constant invariant factors, i.e. f, = f(x)*, foo1 = f(x)*2,
o ft = f(x)*. Let N be the conjugate partition of X, let b; be the number of parts of X of size
i, or equivalently N — N ;. Let s; = Xj + ...+ X;. Then the number of non-singular matrices,
denoted cq(N), that commute with A of size n = d|\| is

b;
caV) = [T T (¢™ = g9) . (6.1)

i>1 =1
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Any matrix A € GL,(¢) in block-diagonal form commutes with a matrix B in block-
diagonal form if and only if the blocks are of the same size and the blocks commute individ-
ually. This motivates the generalization of Theorem 6.4, the proof can be found in the proof
of Theorem 1.10 in [15].

Theorem 6.5. Take any matric A € GLy,(q). Denote with Xy the partition in which the
irreducible polynomial f appears in the invariant factors of A. The number of matrices

commuting with A is
H Cd()‘f )- (6.2)
f irreducible

Following the notation of Theorem 6.4 this is the same as

IT 1I lb_[ (qui - q(s"*j)d) : (6.3)

f irreducible :>1 j=1
Where s;, b; and d depend on the irreducible polynomial f as in Theorem 6.4.

If the matrix A has an irreducible characteristic polynomial the number of non-singular
matrices commuting with A is calculated in Example 6.6.

Example 6.6. Given any matrix A € GLy(q) with an irreducible characteristic polynomial
f(z). Then deg(f) = d, the size of A. Verify that A = {1}, ' = {1}, by = 1, all other b,
are zero and s; = 1 for all . Using Theorem 6.4 the number of non-singular matrices that
commute with A is

o) =TT (a% = g==97)

i>1j=1

(1-1)d

=" — gV =g 1.

The following example concerns a matrix A € GL,,(¢q) where A has coinciding minimum
and characteristic polynomial, but the characteristic polynomial is not irreducible. Exam-
ple 6.7 expresses the number of non-singular matrices commuting with A. It shows moreover
the difference in number of singular and non-singular commuting matrices.

Example 6.7. Take matrix A € GL3(7) to be
2 00
A=10 4 0
4 1 1

The characteristic polynomial is ® 4(z) = (z + 3)(x + 5)(x + 6), and it coincides with the
minimum polynomial because all roots have multiplicity 1. According to Corollary 5.3 there
are ¢" = 73 solutions to the equation AX = XA. With Theorem 6.5 in hand we can calculate
the number of non-singular matrices commuting with A. It is the product of c4(A) for all
irreducible factors of ®4(z). Using Example 6.6 one can show that ¢;({1}) = ¢ — 1 for all
factors.

11 a({1}) = (¢—1)* = 6% =216

fe{(z+3), (z+5), (z+6)}

This shows that there are ¢" = 343 matrices commuting with A, of which 216 non-singular.
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6.2 Non-singular matrices commuting with a matrix of prime order

For matrices with prime order, the structure of the characteristic polynomial can be described
neatly. The number of non-singular matrices commuting with a matrix A of prime order is
described in Theorem 6.10. The following lemma investigates the structure of the character-
istic polynomial needed to do this. We give a sketch of the proof, for a detailed proof of the
lemma we refer to [14].

Lemma 6.8. Given a finite field F, of characteristic p. Consider the polynomial " —1 € Fy[z]
for prime number r # p. Let d be the least number such that r | ¢¢—1 and s = % then it

holds that i
2 —1=(z— I)Hgl(x)
=1

where all g;i(z) are irreducible and have same degree d. Each gi(z) over Fa splits as

gia) = [[a =m0

where my: x — aP the Frobenius map and A\; a d root of unity in Fa.

Proof. All roots of 2" — 1 are r-roots of unity, and they are in the same extension field, say
[F,a, as proven in Corollary 2.6. One of the roots is 1, the root of z — 1. The other roots of
unity are roots of an irreducible polynomial of degree d over F,. This implies that =" — 1
factors in x — 1 and parts of degree d. The second claim that all irreducible factors g; of

degree d split over the field F ¢ in this way is proven in [14]. O
The following lemma is adapted from [14].

Lemma 6.9. If matriz A € GLy(q) is of prime order r # Char(F,), then the characteristic
polynomial ® 4(x) splits in irreducible factors g; of the same degree d each of multiplicity «;
and the factor x — 1 of multiplicity ag. For c;; > 0 the characteristic polynomial ® 4(x) is

Da(x) = (@ — 1)° [ gula)™,
=1

with ag + d ), oy = n. The minimal polynomial has the same roots, each of multiplicity 1.

Proof. The order of A is r, A = I and A thus vanishes on the polynomial z" — 1. This
polynomial is of the form 2" —1 = (z—1) [[,_, gi(«) where all g; have degree d as in Lemma 6.8.
The minimal polynomial p4(x) is the polynomial of least degree on which A vanishes. Thus,
pa(z) | 2" —1, implying that p4(z) is the product of some factors (z—1), g1(x), ..., gs(x). The
characteristic polynomial has the exact same roots as the minimal polynomial, and therefore
equals (x — 1) [[._; gi(2)® with o = 0 if g, is not a factor of p4(z) and a; > 0 otherwise.
Moreover, the degree of the characteristic polynomial is n, thus ag +d ), oy = n. O

Using the structure of the characteristic polynomial of a matrix A of prime order. The
number of non-singular matrices commuting with A is described in the following theorem.
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Theorem 6.10. If A € GL,(q) has prime order r # Char(F,) then the number of non-
singular matrices that commute with A is

GLao(@)] ] 1GLa(a®)l.

9k k21

Were oy, for k > 1 is the number of times the factor g of degree d appears in ®4(x) and ag
is the number of times x — 1 appears.

Proof. Lemma 6.9 proofs that the characteristic polynomial of A is

®a(z) = (x = 1)* [ ] gula)™
k=1

with each oy > 0, deg(gx) = d and a9 +d ), _, g, = n. For each factor g, the partition
is A, = {1,1,...} with o) times 1 because the minimal polynomial contains each irreducible
factor exactly once. This implies that the irreducible factors appear at most once in all
invariant factors. The conjugate partition is Aj = {ay}, thus b1 = ay, and b; = 0 for other ¢,
s; = ay, for all i. With Theorem 6.4 c4(\g) is thus

b;
catv) = [T T - "

i>1j=1

ar
= [ (@™ - (¢hter7
j=1

§=0
= |GLay (q%)-

With Theorem 6.5 the number of non-singular matrices commuting with A is

IT O =1GLay@|- [] 1GLaxla®):

f irreducible 9k, k>1

Example 6.11. Take A € GL4(5) of order 3 to be

SN O
W = DN W
N DN O
W = N

It has minimal polynomial (z—1)(22+x+1) and characteristic polynomial (z—1)?(2%2+xz+1).
The degree of (z2+x+1) is d = 2 it appears once, so a; = 1. The factor x — 1 appears twice,
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thus ag = 2. The number of non-singular matrices commuting with A can be calculated with
Theorem 6.10 and reads

1 0

IGLy(q)] - IGL1 (%) = [ [ (& = &) - [ (¢ = )

k=0 k=0
= (¢* = 1)(¢" — q) = 480.
The number of matrices commuting with A is by Corollary 5.2
=1 QU=+ 1)-deg(fi) — (343
= ¢5 = 15625.

6.3 Non-singular matrices commuting with a matrix of prime order equal
to the characteristic of the field

In the previous section we investigated the number of non-singular matrices commuting with
a matrix of prime order. During that section it is assumed that the prime order is not equal to
the characteristic of the field. This section aims to find the number of non-singular matrices
for a matrix of prime order equal to the characteristic of the field.

The following statement and proof can be found in [14].

Lemma 6.12. If matriz A € GL,,(q) is of prime order p with p the characteristic of the field,
then the characteristic polynomial ® 4(x) is (x — 1)".

Proof. The order of A is p, so A vanishes on the polynomial P — 1. Over a field of character-
istic p, P — 1 equals (x —1)P. As A vanishes on this polynomial, it holds that p4(x) | (z —1)P.
Therefore, the minimal polynomial only contains the factor x — 1 several times. The charac-
teristic polynomial has the same roots and since it has degree n it equals (z — 1)™. O

A matrix of prime order r with r not the characteristic of the field has other factors then
(x — 1) in the characteristic polynomial. This is proven in Lemma 3.3 of [14].

Lemma 6.13. Given any matriz A € GL,(q) with characteristic polynomial ® () = (v —
1)*. Then A has order p* for some k > 0.

For matrices with as order the characteristic of the field the number of commuting matrices
is can be described with Theorem 6.4. We can not say anything more precise; the minimal
polynomial is at most degree p and the characteristic polynomial of degree n and the invariant
can have different degrees. This leads to different numbers of commuting matrices and
different number of non-singular commuting matrices. This is shown in the following two
examples.

Example 6.14. Take matrix A € GL4(5) to be

4 3 11
31 01
A_4130
21 21
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This matrix has order 5 and characteristic polynomial (z — 1)*. The minimal polynomial
of this matrix is (z — 1)*. The number of non-singular matrices commuting with A is thus
q" — 1 by Example 6.6 which is 5* — 1 = 624. The total number of matrices commuting with
A is ¢™ with Corollary 5.3 these are 5% = 625 matrices.

Example 6.15. Take matrix A € GLg(3) to be

N = NN O N
O = = O DN =
o= NN NN O
_ NN~ N

1
1
1
0
0
1

N OO = OO

This matrix has order 3, characteristic polynomial (x —1)% minimal polynomial fg = (z—1)3
and invariant factor f5 = (x — 1) the other invariant factors are constant 1. The number of
non-singular matrices commuting with A can be calculated with Theorem 6.4 in hand. The
degree of (x —1) is 1, the partition {3, 3}, the conjugate partition {2,2,2}, b3 =2 and b; =0
for i # 3 and s; = 2, so = 4 and s3 = 6. This gives

b;
a(f3,30) =[] [ — ¢

i>1j=1

— (36 _ 3(6—1))(36 _ 3(6—2))

= (3" -387)(3° -39

= 314.928
non-singular matrices that commute with A. This is around 3! to 3'2 matrices. The number
of matrices commuting with A can be calculated with Corollary 5.2 and is:

320021 (2(6—0)+1)-deg(f;) _ 33:3+3
_ 312

= 531.441.
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7 Fraction of the solution space that is the left side of an
isometry

Context - Recall the Sylvester algorithm that we preform for two equivalent matrix codes
with non-trivial automorphism groups. We found similar automorphisms of the codes in Sec-
tion 4. For these automorphisms we found the Sylvester equation and solved it in Section 5.
In the previous section we described the number of non-singular matrices in this solution
space.

Approach - This section aims to describe the complexity of preforming a brute force on the
solution space of the Sylvester equation. Given two equivalent matrix codes C,D C M, 1, (q)
with non-trivial automorphism groups. Let (Aj, A2) € Aut(C) be similar to (B, Ba) €
Aut(D). The Sylvester equation we get is BjX = X Aj. The brute force attack samples non-
singular matrices L from the solution space of B1 X = X A;. For such a matrix L we check if
LC is right equivalent to D. This section aims to estimate how many samples need to be done.

Outline section - Section 7.1 describes which solutions to the Sylvester equation are the left
side of an isometry. The complexity of the brute force attack thus depends on the number
of left sides of an isometry in the solution space of the Sylvester equation. Section 7.2 and
Section 7.3 together describe the complexity for the brute force Sylvester algorithm with
two-sided automorphisms. Section 7.4 describes the same for one-sided automorphisms.

7.1 Commuting automorphisms

As mentioned, we solve a Sylvester equation to find the left side of an isometry between
two codes. There is not a unique isometry and neither a unique left side of an isometry in
the solution space of the Sylvester equation. This section aims to find the solutions we are
interested in.

For two automorphism (A;, A2) and (Bi, Bz) of matrix codes C, D C M, n(q) the
solution space to the Sylvester equation equals {LA’ | A’A; = A1 A'}, proven in Lemma 5.5.
The set with left sides of an isometry equals {LA’ | A" € Auty,(C)} as shown in Corollary 3.5.
The intersection of both sets thus describes the solutions that are the left side of an isometry.
This intersection depends on automorphisms that commute with A;. The aim of this section
is thus to describe what automorphisms commute with each other.

Lemma 7.1. Any matriz A commutes with all matrices polynomial in A.

Proof. Let the polynomial f € F,[z] of degree d be written as f(z) = Z?:o a; X", then:

d d d
A-f(A) =A@ A=) a At = <ZaiAi> A= f(A)- A
=0 =0 =0

It can be deduced that A commutes with f(A) completing the proof. O

The statement of Lemma 7.1 is a one way statement. If matrix A € M,,(¢) commutes
with matrix B € M,(q), then B does not necessarily need to be polynomial in A. For
example all matrices commute with the identity matrix, but only scalar multiples of I are
polynomial in I. Next examples show the same for a non-trivial matrix.
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Example 7.2. Revisit matrix A € GLg(3) from Example 6.15. This matrix has minimal
polynomial (z—1)3. All matrices polynomial in A are thus ag+a1 A+aA? for ag, a1, az € F,.
These are ¢® = 3% = 27 matrices. The matrices commuting with A on the other hand is 32
with Corollary 5.3 which are many more matrices.

The example shows that if the degree of the minimal polynomial is low, then there are
fewer matrices polynomial in A. On the other hand, the low degree of the minimal polyno-
mial assures that there are other non-constant invariant factors. These factors lead to more
matrices commuting with A as can be seen in the formula of Corollary 5.2.

If the minimal polynomial coincides with the characteristic polynomial, then all matrices
commuting with A are polynomial in A.

Lemma 7.3. If the minimal polynomial and characteristics polynomial of a matriz A in
M, (q) coincide, then B € My (q) commutes with A if and only if B is polynomial in A.

Proof. Lemma 7.1 gives an inclusion of the following two sets
{B[B=f(A), f(z) € Fylz]} C{B|AB = BA}.

In order to prove equality we use a dimension argument. The minimal polynomial of A
coincides with the characteristic polynomial, the right-hand side therefore has dimension n
by Corollary 5.3. The dimension of the space of matrices polynomial in A depends on the
degree of the minimal polynomial of A, n in this case. The basis of the space of matrices
polynomial in A is {1, z, .., z38Pa(@) =1 — zn=11  The left-hand side thus is also of dimension
n. The dimension of the two spaces is equal and one is a subset of the other; therefore we
can conclude that the sets are equal. O

Matrices that commute with an automorphism but are not in its polynomial span are
difficult to describe. Therefore, we focus on matrices polynomial in the automorphism.

Addition is preserved in the conductor group; for a one-sided automorphism (Aj,I) all
matrices polynomial in A; are in the conductor group. This leads to the following corollary
for one-sided automorphisms.

Corollary 7.4. Given two equivalent matriz codes C,D C My, 1, (q) with A € Auty,(C) similar
to B € Auty(D) be given. If the minimal polynomial and characteristics polynomial of A
coincide then all non-singular solutions to BX = X A are the left side of an isometry.

Proof. This corollary can be proven with a dimension argument. The size of BX = XA is
q" by Corollary 5.3. The matrices polynomial in A are also ¢" as can be seen in the proof of
Lemma 7.3. The non-singular elements of this set are the left side of an isometry. O

Remark. The coincidence of the minimal and characteristic polynomial is a sufficient and
necessarily condition. If the minimal polynomial has degree lower than n, then the matrices
polynomial in A are fewer than ¢” and the matrices commuting with A are more than ¢".

Unfortunately addition is not preserved in the group of two-sided automorphisms. As
a result, not all pairs of matrices in the span of a two-sided automorphism are in the au-
tomorphism group. Guaranteed is however that for any automorphism powers and scalar
multiplications is preserved in the automorphism group as proven in Section 3.2.
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7.2 Size of the set of powers of a given matrix

For two-sided automorphisms, it can be guaranteed that all elements of their set of powers
are automorphisms. These automorphisms correspond one-to-one to the isometries that can
be found via the Sylvester attack. The goal of this section is therefore to express the size
of powers(A) for a given matrix A € GL,(q). Note there might be more automorphisms
commuting with this two-sided automorphism. We focus only on the automorphisms in
powers(A), which leads to an upper bound.

Lemma 7.5. Given a matric A € PGLy,(q) and let py its minimal polynomial. Then;
powers(A) evaluated in PGL,,(q) is of size k if and only if k is the least number such that
AF =1

In GLy(q), powers(A) is of size (q — 1)k if and only if A* = a1 for some a € F} and k is
the least number for which this holds.

Proof. Let k be the least number such that A* = I then clearly powers(A) = {4, A2, .., A*} is
of size k in PGLy,(q). Over GL,(q) it is of size (¢ — 1)k as we add ¢ — 1 scalar multiplications.
If powers(A) is of size k, then necessarily A*+1 equals some A! for I < k. The order of A is
exactly the least number for which this sequence repeats and thus A* = I. If A*¥ =TI over
PGL,(q) then A* considered over GL,(q) is aI for some scalar a € Fg. O

The number k of Lemma 7.5 depends on the eigenvalues and not just the order. Lemma 7.6
gives a lower bound for the size of powers(A) given only the order of the matrix.

Lemma 7.6. The set powers(A) of a matriz A € GL,(q) over Fy is:
o Of size ¢ — 1 if A equals I in PGL4(n).
o Of size (¢ — 1) Order(A) if Order(A) is prime.

o At least of size (¢ — 1) - M#IMM otherwise.

Proof. Lemma 7.5 states that powers(A) is of size k for A € PGL,(q) and k the least such
that A¥ =T1. If A =T in PGL,(q) then k = 1. Over GL,(q), powers(A) is of size (¢ — 1)k.
For the remainder of the proof we assume k # 1, and we will be working over GL,(q).
The number & divides Order(A), if Order(A) is prime then & = Order(A). The result that
powers(A) is of size (¢ — 1)k follows directly from Lemma 7.5.
If Order(A) is not prime, then k could be a non-trivial divisor of Order(A). It holds that

AF = a1 for some a € F, and thus (A*)9~1 = 1. Tt follows that Order(A) divides k(g — 1).

The least k satisfying these constraints is Mg;%m, proven in Lemma 2.2. O

7.3 Two-sided automorphisms

Assume we are given two equivalent matrix codes and similar two-sided automorphisms to
preform the Sylvester attack. The Sylvester equation is formed with the left sides of the
automorphisms. The equation can be solved, and this section aims to describe the complexity
of a brute force attack preformed in this solution space. In this section we focus only on the
non-singular matrices in the solution space. The left side of the two-sided automorphism is
assumed to be of prime order.

30



Theorem 7.7. Given two equivalent matriz codes C,D C My, y(q). Let (A1, A2) € Aut(C)

be similar to (B, B2) € Aut(D). Assume Ay has prime order r # Char(F,). Then the

fraction of the non-singular matrices in the solution space B1 X = X A1 that are the left side
of an isometry is

(¢—Dr

—1 ; -1 N

1520 (g — ) I [T5%0 - (@) — (¢%)7)

Where ag is the number of times (x — 1) appears and oy for k > 1 the number of times the

factor gr of degree d appears. The order of complexity of searching the space for a left side

of an isometry is:
1
@ <rq5—1> (7.2)

(7.1)

with S = 04(2) +> da%. For evaluations of S we refer to Table 1.

Proof. The number of matrices in powers(A;) is (¢ — 1)r by Lemma 7.6. This is the number
of matrices that commute with A; and are in the automorphism group. This number corre-
sponds to the number of elements LA" in SolSp(Bj, A1) that are the left side of an isometry
Lemma 5.5. The total number of non-singular matrices in the space SolSp(Bi, A1) is the
same as the number of non-singular matrices commuting with A; and is by Theorem 6.10

ap—1 ap—1
II (=) I T (@™ - ().
F=0 k=0

Divide both numbers to get the fraction of solutions that are the left side of an isometry
expressed in Equation (7.1). The order of complexity of finding the left side of an isometry

apg—1

is 1 divided by the fraction in Equation (7.1). The order of complexity of || 20 (q* —¢’) is
(@) (qo‘%) this leads to the total complexity presented in Equation (7.2). O
Remark. We aim to estimate S = a2 + dY is1 a2 in terms of n? and n, where n can be
expressed as n = ag +d ), ag. For d # 0 it thus holds that },_; ap = *2. If d = 0,

then g equals n and S = oz(z). This only happens when the prime order equals p = Char(F,)
by Lemma 6.13. Assume d # 0, then S is at most

S=af+d) o}

k>1
2
Sa%—i—d(Zak)
k>1
n—ap\’
:oz%—i-d( d0>
n?  2nap  of 9
~d g tate

The complexity depends on the number of times z — 1 appears in ® 4(z), ag, and the degree
d of the other factors. If oy — n it follows that d is less equal than n — oy and thus d — 1.
The time complexity is small when «g is small and d relatively big in comparison to n.
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ap | S <™ Znao 4 9 4 2
e

B e A )
2 (5 +n?) =03
n n2

Table 1: Estimations of S

Assume the Sylvester algorithm is preformed with similar automorphisms of which the
left side has coinciding minimal and characteristic polynomial. The solution space that the
Sylvester equation gives contains a high fraction of non-singular matrices. In fact reducing
the space of all solutions to the non-singular solutions leads to at most a speedup of a factor
q as the following proposition shows.

Proposition 7.8. Given two equivalent matriz codes C,D C My, m(q). Let (A1, Az) in
Aut(C) be similar to (B1, B2) € Aut(D). Assume Ay has prime order r # Char(F,). Assume
moreover that the minimal polynomial of Ay coincides with the characteristic polynomial,
then the faction of non-singular matrices of the solution space B1 X = X Ay is at most %, i.€.

{X | BX = XA X non-singular}| < 1
{X [ BX = XA}| T q

Proof. The minimal polynomial equals the characteristic polynomial, hence there are ¢"
solutions to the equation B1X = X A;. Moreover, all factors of the characteristic polynomial
appear at most once, thus all o; of Theorem 6.10 are either 0 or 1. We stress this by writing
J to indicate if z — 1 is a factor of p4(x). There are thus ”T_‘S unique factors of degree d. The
number of non-singular solutions can be evaluated with Theorem 6.10. The size of GLg, (¢%)
is (¢* — 1) for a; = 1 and 0 otherwise. The number of non-singular matrices commuting with

Ay is thus (¢ — 1)%(¢¢ — I)HT_5 by Theorem 6.10. The fraction of non-singular matrices is

n—=¢
(q—1)°(¢* —1)"a
q" '
The numerator has degree n, the same degree as the denominator; they differ a constant
factor. The quotient can thus never exceed %. ]

Example 7.9. Revisit the matrix A € GL3(7) of Example 6.7. The number of non-singular
matrices commuting with A are 62 = 216, all matrices commuting with A are 73 = 343
matrices. This difference is a factor % = %, which is indeed less than 3, the size of the field.

7.4 Omne-sided automorphisms

Assume we are again given two equivalent matrix codes but, in contrast with the previous
section, we are given similar one-sided automorphisms to preform the Sylvester attack. The
Sylvester equation is formed with the automorphisms. The equation can be solved, and this
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section aims to describe the complexity of a brute force attack preformed in this solution
space. In this section we again focus only on automorphisms of prime order, but we do not
restrict to the non-singular matrices.

Working with left one-sided automorphism implies that addition is preserved in the con-
ductor group. The non-singular matrices of the conductor group are in the automorphism
group. The non-singular matrices of the conductor group are difficult to describe, thus we
evaluate the fraction of the conductor group with all solutions to the Sylvester equation.

Theorem 7.10. Given two equivalent matriz codes C,D C My m(q) and let A € Auty,(C),
B € Auty,(D) similar automorphisms be given. Assume A, B have prime order r # Char(FF,).
Then the fraction of matrices in the solution space BX = X A that are in Cond(C, D) is

n—1
H g~ n=i)+1)-deg(fi). (7.3)
=1

Proof. The size of span(A) depends on the minimal polynomial and is ¢°8(®4) which is
qd8(fn) | This expresses the number of matrices that commute with A and are guaranteed to
be in the conductor group Cond(C). The total number of matrices in the space SolSp(B, A)
equals g2i=1(2(n=)+1)-deg(fi) 1y Theorem 5.1 which equals [[, ¢=9+1-dee(fs)  Divide
both numbers to find the fraction of matrices in the solution space BX = X A that are in
the conductor group Cond(C,D):

n—1

[ g~ C-ir+idests)
i=1

O]

The degree of invariant factor f, does not contribute to the fraction in the previous
theorem. This implies that if the degree of f,, = pa(x) is high, then the degree of the other
invariant factors is low and thus the sum Z?;ll(Q(n — i)+ 1)deg(f;) is small.

If the degree of the minimal polynomial is high the fraction of Theorem 7.10 is big. There
are thus more solutions that give rise to an isometry.

Remark. Theorem 7.10 yields a number of solutions, but some might be singular. This gives
therefore an upper bound for the number of non-singular solutions that are the left side of
an isometry. This does not pose a problem, on average most matrices are non-singular.

In the particular case that the minimal polynomial equals the characteristic polynomial
the left sides of an isometry can be easily found.

Example 7.11. Take A, B as in Corollary 7.4 and assume moreover A has an irreducible
characteristic polynomial. Then SolSp(B, A) has size ¢" by Corollary 5.3. Moreover, ¢" — 1
solutions are non-singular by Theorem 6.10; there is 1 invariant factor of degree n, the size
of | GLy(¢™)| = ¢"™ — 1. The only singular solution is thus the zero solution. An isometry can
thus be found in polynomial time.
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8 The Sylvester algorithm

This thesis explained a brute force algorithm for the MCE problem based on the Sylvester
equation. The complexity of this algorithm is described in Section 7. The algorithm is
presented in its entirety in this section. During this section we assume that the similar
automorphisms are given. Some notes on the complexity of finding this is stated in Section 4.
Similar matrices are easiest found for one-sided automorphism groups.

The MCRE problem is solvable in polynomial time as explained. During the algorithms
presented below we do not chose a solver and denote the time of a solver by p;(m).

Theorem 8.1. Given two equivalent matriz codes over My, m(q) with non-trivial one-sided
automorphism groups and two non-trivial one-sided automorphisms that relate by the isome-
try. The MCE problem with this input can be solved in time complezity

o (nM(n) + M(n)py(m) - qZ?;f(2(n—i)+1)-deg(fi)) (8.1)

using the Randomized Sylvester algorithm described in Algorithm 2.

Algorithm 2 Randomized Sylvester algorithm one-sided automorphisms

Input Two equivalent matrix codes C,D C M, ,(q) with non-trivial one-sided auto-
morphisms A € Autr,(C) and B € Auty (D).
Output A pair (L, R) € GL,(¢q) X GL;,(q) such that LCR = D.

Find a basis of the Sylvester equation BX = X A > O (nM(n))
repeat
do
L + SolSp(B, A).
Determinant (L) > O (M(n))
while Determinant(L) equals 0
Solve the MCRE problem with LC and D > O (pi1(m))
until L, R are found with LCR = D >0 (qz?;f(2(n—z’)+1)~deg(fi>>

return (L, R)

Proof. 1If A and B relate by an isometry Proposition 3.3 guarantees that some solution L to
BX = X A is the left side of an isometry. With this left side L an MCRE solver can find R
and give the isometry. It is therefore clear that the algorithm succeeds.

To find a basis of the Sylvester equation Theorem 5.6 can be used. The basis can be
found time complexity O (nM(n)).

We are interested in non-singular solutions, and thus we implement a check for singularity.
Strassen [17] demonstrates how any O (n®), « > 2 algorithm for matrix multiplication can
be used to obtain an O (n®) algorithm for computation of determinants. Checking a matrix
for singularity is thus of complexity O (M (n)).

Use a MCRE solver working in time p;(m) to find if a right equivalence between LC and
D exists. If no right equivalence is found repeat this loop. Theorem 7.10 proves that this

takes roughly O (qZ?;l1 (2(n—i)+1)-deg(f i)> repetitions. Together this gives the time complexity
of Equation (8.1). O
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Theorem 8.2. Given two equivalent matriz codes over My, y,(q) with non-trivial two-sided
automorphism groups and two non-trivial two-sided automorphisms that relate by the isome-
try. The MCE problem with this input can be solved in time complexity

O () + M) - pa(m) - 25

using the Randomized Sylvester algorithm described in Algorithm 3. With S as in Theorem 7.7
and Table 1.

Algorithm 3 Randomized Sylvester algorithm two-sided automorphisms

Input Two equivalent matrix codes C,D C M,,,,(¢q) and similar non-trivial two-sided
automorphisms (Aj, Ag) € Aut(C) and (B, Bz) € Aut(D).
Output A pair (L, R) € GL,(¢) X GL,(¢) such that LCR = D.

Find a basis of the Sylvester equation B1 X = XA, > O (nM(n))
repeat
do
L+ SOlSp(Bl,Al).
Determinant (L) > O (M(n))
while L singular
Solve the MCRE problem with LC and D > O (pi(m))
until L, R are found with LCR =D > O (%qs_l)

return (L, R)

Proof. The proof is similar to Theorem 8.1. The expected number of repetitions to find an
equivalence is O (%qs _1) as proven in Theorem 7.7. O

To conclude this thesis we present some examples to evaluate the complexities described
in Theorem 8.1 and Theorem 8.2. To this end we need to fix a solver for matrix multiplication
and an MCRE solver.

We assume M (n) = n3, this assumption is based on the standard and practical algorithm
that yields this time complexity as pointed out in [16].

The MCRE solver of [5] is not very constructive, and the complexity is difficult to evalu-
ate. The algebraic attack to the MCE problem described in [3] is constructive and moreover
its complexity is easily evaluated. The MCE solver can be used to solve a right equivalence
by choosing the matrix on the left to be the identity matrix. The complexity of this algebraic
MCRE solver can be expressed in terms of m and the dimension of the code. It has time com-
plexity O (M (m? + dim(C)?)). Without loss of generality we can assume that m < dim(C)
[13, Lemma 26]. The complexity of solving the MCRE problem is thus assumed to be O (mG).

If the codes are Fyn-linear, [5] proves that the MCE problem is solvable in polynomial time.
This is equivalent to saying that the codes have one-sided left automorphisms group and a
matrix with an irreducible characteristic polynomial in these left sided automorphism groups.
This is expressed in the following theorem.
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Theorem 8.3. Given two equivalent matriz codes C,D C My, (q). If there exists a matric
A € Auty,(C) with an irreducible characteristic polynomial, then the codes are Fyn-linear.

Proof. Definition 25 in [5] states that A € M,,(q) with irreducible polynomial spans Fy» as an
algebra. Thus, if there exist a matrix A € Auty,(C) with irreducible characteristic polynomial
it spans Fgn. This implies that the code is Fyn-linear. 0

To compare the Sylvester algorithm for Fyn-linear codes to the polynomial time algorithm
of [5] we should evaluate the Sylvester algorithm for a matrix with irreducible characteristic
polynomial. To illustrate this, consider the following example.

Example 8.4. Given two equivalent matrix codes C,D C M, ,(¢) and A € Auty,(C) and
B € Auty,(D) be similar. If the minimal polynomial of A equals its characteristic polynomial
then Algorithm 2 terminates with this input in time O (n4 +n3. m6) assuming that n =m
as commonly done [2, 3] the complexity reads O (ng).

Note that the assumption for Example 8.4 is that the automorphisms have coinciding
minimal and characteristic polynomial which is slightly less strict than the assumption that
the characteristic polynomial irreducible. The example shows that the MCE problem can
be solved in polynomial time under this assumption. In particular, the Sylvester algorithm
solves the MCE problem in polynomial time if the codes are [Fyn-linear.

The next example is presented to illustrate the complexity of the MCE problem if the
matrix with irreducible characteristic polynomial is part of a two-sided automorphism.

Example 8.5. Given two equivalent matrix codes C,D C M, ,(¢) and let similar two-
sided automorphisms (A;, As) € Aut(C) and (Bp,B2) € Aut(D) be given. If A; has an
irreducible characteristic polynomial, then Proposition 7.8 shows that the fraction of non-
singular solutions to B1 X = X A; is at most +. Corollary 7.4 shows that all non-singular
solutions are the left side of an isometry. Assuming m = n Algorithm 3 terminates in time

O(n4+n3-m6-q):(9(n9-q).

The MCE problem given codes with trivial automorphism groups is solvable in time
@) (qmin{”’m}) [13]. If the Sylvester algorithm is used with trivial automorphisms the algo-
rithm is exponential slower than the algorithm of [5] and expressed by the following example.

Example 8.6. Given two equivalent matrix codes C,D C M, ,(q). Take (I,I) € Aut(C) and
(I,LI) € Aut(D) the input for Algorithm 2. Then Algorithm 2 terminates in time O (q 2_1>.
Algorithm 3 terminates in the same time complexity.

The complexity of this example is the complexity of a brute force attack where all matrices
are searched. This brute force complexity is inherited form the brute force attack on the
solution space SolSp(B, A). To improve the Sylvester algorithm it should not use brute force.

The Sylvester algorithm can describe the complexity of the MCE problem where the
matrix codes are not Fyn-linear and neither trivial. The Sylvester algorithm with a brute
force search reaches time complexities between polynomial and q”z. Some examples can be
found below.
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Example 8.7. Given two equivalent matrix codes C,D C M,, ,(¢q) and (A,I) € Aut(C) and
(B,I) € Aut(D). If A has two non-constant invariant factors, Algorithm 2 terminates in the

worst case in time ,
O (m6 . qin) .

If there are at most 2 invariant factors, f,—1 has degree at most |5 |. This leads to the highest
value of the sum, S0 (2(n — i) + 1) - deg(f;) = 3deg(fn_1) = 3n.

In the best case the degree of the invariant factor f,_1 is 1 and the algorithm terminates
in time complexity

@) (m6 . q3) .
This can be seen by evaluating the sum, Y77 (2(n —4) 4 1) - deg(f;) = 3deg(fn_1) = 3.

Example 8.8. Given two equivalent matrix codes C,D C M, (q). Let non-trivial two-
sided automorphisms (Aj, A2) € Aut(C) similar to (By, B2) € Aut(D) be given. Assume A;
has pa(x) = g(x) an irreducible polynomial of degree d = 5. The characteristic polynomial
is then g(x)2. This gives S = 5 22 = 2n of Theorem 7.7. Algorithm 3 terminates in time

@ (mG : 1q2"> .
r

All eigenvalues are d roots of unity. The order of the matrix therefore divides ¢¢ — 1. In the
best case scenario the matrix has order ¢ — 1 = ¢2 — 1 the algorithm then terminates in

time complexity
@ (m6 . q%”) .

Example 8.9. Given two equivalent matrix codes C,D C M,, ,,(q). Let (A,I) € Aut(C) and
(B,I) € Aut(D) similar automorphisms be given. If A has 3 non-constant invariant factors,
Algorithm 2 terminates in the worst case in time

@ (m6 . qgn) .

The invariant factors f,,_2 and f,—1 have degree at most | % |. This leads to the highest value
of the sum, Z?;ll@(n — i)+ 1) -deg(f;) = bdeg(fn—2) + 3deg(fn-1) = %n + %n
In the best case the degree of the invariant factors f,_o and f,_1 is 1 and the algorithm

terminates in time complexity
O (m6 . q8) .

Remark. If the degree of the minimal polynomial is high then the complexity of solving the
MCE problem with the Sylvester algorithm is lowest. On the other hand, if there are many
invariant factors all invariant factors contribute to the sum and the complexity of solving the
MCE problem with the Sylvester algorithm has a high complexity.
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9 Conclusion

During this thesis, we demonstrated the correspondence between the automorphism and
isomorphism groups of two equivalent matrix codes. Any isometry relates two automorphisms
by similarity, and this relation can be used to find the isometry. Two automorphisms that
are similar give rise to a Sylvester equation. The solution space of this Sylvester equation has
a particular structure, which can be compared to the structure of the space of matrices that
commute with a given matrix. Investigating the structure of this second space, thus provides
insights into the structure of the solution space of the Sylvester equation. The structure
reveals information on the number of isometries within the solution space, which in turn
determines the complexity of a brute force attack.

The structure of the solution space to the Sylvester equation potentially contains more
information. During the thesis we used the structure only to estimate the number of isometries
in the solution space and, consequently, to estimate the complexity of a brute force attack.
It might be interesting to explore this structure further to identify a more efficient searching
method. If such a method could be developed, the Sylvester algorithm would become more
efficient, allowing the MCE problem to be solved more quickly.

The Sylvester algorithm presented in this thesis can be used to solve the MCE problem.
The analysis of its complexity allows us to understand the difference in complexity when
solving the MCE problem for matrix codes with trivial versus non-trivial automorphism
groups. We clearly demonstrated how the complexity depends on the automorphisms used
in the algorithm.

The complexity of the Sylvester algorithm primarily depends on the automorphisms used
in the algorithm. If the automorphism has on one side a matrix with a few invariant factors,
the complexity of solving the MCE problem with the Sylvester algorithm is the lowest. On
the other hand, if the automorphism used has on both sides matrices with many invariant
factors, the complexity of solving the MCE problem with the Sylvester algorithm is the
highest. This implies that for matrix codes with Fy-linear automorphism groups, the MCE
problem can be solved in polynomial time. Conversely, for two equivalent matrix codes with
trivial automorphism groups, the Sylvester algorithm cannot efficiently find the equivalence,
resulting in exponential complexity.

This thesis does not extensively address the complexity of finding automorphisms given
two matrix codes. During this thesis we assumed that similar automorphisms were given.
For one-sided automorphism groups, all automorphisms can be found efficiently, and it is a
matter of searching to find similar automorphisms. However, for two-sided automorphism
groups, finding similar automorphisms could be more complicated. Despite this, identifying
these similar automorphisms is necessary for the algorithm to function. The complexity of
finding these similar automorphism remains an open question.
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