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Abstract

The power consumption rate of computing devices has seen an enormous increase over the
last decades. Therefore computer systems must make a trade-off between performance and
energy usage. This observation has led to speed scaling, a technique that adapts the speed
of the system to balance energy and performance. Fundamentally, when implementing
speed scaling, an algorithm must make two decisions at each time: (i) a scheduling policy
decides which jobs to serve, and (ii) a speed scaler decides how fast to run.

In this thesis we introduce a preemptive single machine scheduling problem where the
machine speed is externally given and depends on the number of jobs that is available for
processing. A job is available for processing when it is released but not yet completed.
The objective is to minimize the sum of weighted completion times. We will look at some
variations of this problem by adding release dates or restricting ourselves to unit weights,
unit processing times or by looking at the non-preemptive case.

When the machine speed is constant over time, it is well known that the Smith’s rule yields
an optimal schedule for both the preemptive and non-preemptive case. Unfortunately this
rule gives arbitrary bad results for the problem under consideration.

We introduce a greedy algorithm that solves the problem to optimality when all weights
are equal. With only small changes we can alter this algorithm to work when weights are
arbitrary and we have unit processing times.

For arbitrary weights and processing times our algorithm finds an optimal schedule when
we restrict ourselves to a certain order of job completions. However, we do not know
which is an optimal order of job completions. The WSPT-order, which is optimal when
machine speed is fixed, can even give arbitrary bad results.
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Chapter 1

Introduction

Energy usage and power management are important issues in recent research. Moore [18]
predicted in 1965 that the number of transistors on integrated circuits would double every
two years. That prediction came true and the effects of it are now kicking in: the power
consumption rate of computing devices has been increasing exponentially. This increased
power usage poses two types of difficulties [13]:

• Energy Consumption. As energy is power integrated over time, supplying the re-
quired energy may become really expensive, or even technologically infeasible. This
is a characteristic difficulty in devices that rely heavily on batteries for energy, and
will become even more problematic as battery capacities are increasing at a much
slower rate that the power consumption.

• Temperature. The energy used in computing devices is in large part converted to
heat. For high-performance processors, cooling solutions are rising at $1 to $3 per
watt of heat dissipated, meaning that the cooling costs are rising and threaten the
computer industry’s ability to deploy new systems. Computer processor designers
are about to hit a thermic wall.

Therefore computer systems must make a fundamental trade-off between performance
and energy usage. The days of ‘faster is better’ are gone, and energy usage can no longer
be ignored in designs. This has led to speed scaling, a technique that adapts the speed
of the system to balance energy and performance. Running a job slower saves energy,
yet it takes longer and therefore may affect performance. The first paper about speed
scaling was written by Yao, Demers and Shenker in 1995 [26]. Their problem was defined
as follows:

Problem 1 (Speed scaling). Let J be a set of jobs and each job j ∈ J is associated with
a release date rj , a deadline dj and a volume pj . We assume release dates and deadlines
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are given. We have a variable-speed processor, which is associated with a power function
P (s) = sα with α ≥ 2. Assuming job j is always processed at a speed of sj , then j requires
vj/sj time to be completed. The energy consumption of the processor is integrated over
time. A schedule is said to be feasible if the volume of each job is completely processed
not before its release date, but before it’s deadline. The goal is to find a feasible solution
that minimizes the energy consumption.

In this problem minimizing the energy consumption while obeying the deadlines is the
only objective. But when there are no deadlines, one can think of a secondary objective
as well: minimizing the flow time or sum of completion times. The intuition is that users
are willing to pay a certain amount, say x units, of energy to reduce one unit of flow
time. Thus a bi-objective would be to optimize total flow time plus x times the amount
of energy. Albers and Fujiwara [2] were the first ones to research this bi-objective. A
third objective is, given some energy budget, to minimize the sum of completion times or
flow time.

Wierman, Andrew and Lin [25] mention three types of speed scaling:

• Dynamic speed scaling: adapting the speed at all times to the current state. A lot
of research has been done about dynamic speed scaling, for example by Grunwald,
Levis and Morrey [11].

• Static speed scaling: running at a static speed chosen a priori to balance energy
and performance.

• Gated-static speed scaling (power-down mechanisms), running at a static speed,
except when the machine is idle. We encounter this at an everyday basis: the
display of our desktop turns off after some period of inactivity and our laptop
transitions to a standby mode if it has been idle for a while.

There already has been a lot of research on speed scaling, particularly on dynamic speed
scaling, and there are some interesting results. Some of those results are discussed in
Chapter 3. An overview of speed scaling results can be found in the review article by
Albers [1].

Fundamentally, when implementing speed scaling, an algorithm must make two decisions
at each time: (i) a scheduling policy decides which job(s) to serve, and (ii) a speed scaler
decides how fast to run. In this thesis we focus on scheduling policies that, given some
speed function such that the machine speed depends on the number of available jobs
(active job count), create a schedule that minimizes the sum of completion times.

This problem occurs in our daily life as well. When people have a lot of things to do they
tend to work faster than they would when only one or few jobs were assigned to them.
Or, when a machine has a lot of jobs to do it needs some of it’s capacity to ‘remember’
these jobs. As soon as the job are completed, they don’t have to be remembered anymore
and more capacity can be used to process other jobs.
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The same problem was proposed on the Dagstuhl Seminar in March 2013 by Urtzi Ayestra
[3]:

Problem 2 (Problem proposed on Dagstuhl seminar). ‘Classical results in size-based
scheduling in a single-server queue show that giving preference to short flows is optimal
in a wide variety of settings. However all these results typically assume that the speed
of the server is constant over time and indeendent of the state of the queue. In this
short talk we will show that when the capacity of the system is time-varying (either as a
function of the state or as an exogenous process) giving preference to short flows is no
longer necessarily optimal, which opens several interesting questions’.

1.1 Problem Description

In Problem 2 it is said that in single server queues (and single machine scheduling in-
stances) it is often optimal to process small jobs first when the objective is to minimize
the flow-time or sum of completion times. In Section 3.1 we show that algorithms as SPT,
WSPT and SRPT, all algorithms that prefer small jobs, are indeed optimal for several
single machine scheduling problems. In all those problems the machine speed is assumed
to be constant. In the light of power-saving it is interesting to vary this speed, and let
the machine speed depend on the number of available jobs. In this case it’s not always
optimal to schedule small jobs first.

We look at the following problem:

Problem 3 (JDMS). Suppose we have n jobs, one machine and a speed function s :
{1, . . . , n} → R. The machine runs at speed s(i), where i is the number of available
jobs. Furthermore preemption is allowed. How do we schedule the jobs to minimize the
weighted sum of completion times?

We add processing characteristics as release dates, and restrictions as unit processing
times and unit weights to this main problem. These additions are put between brackets
behind the main problem. For example, when we want to look at JDMS where jobs have
release dates, we denote this problem as JDMS(rj).

We define the machine speed when there are i available jobs as s(i), or short: si. When
we don’t have release dates it sometimes is more convenient to determine the machine
speed by the number of jobs that are completed. Therefore we introduce si, the speed
when i jobs are completed, and thus n+ 1− i jobs are still available.
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Chapter 2

Framework and Notation

In this chapter we give a short introduction to scheduling and introduce the notation that
will be used in the rest of the thesis. This will only be an introduction in scheduling,
and some basic knowledge of complexity theory is presumed. Additional information
about scheduling can, amongst others, be found in: Scheduling: Theory, Algorithms, and
Systems written by Pinedo [20]. For an introduction in complexity theory we refer to
Computational Complexity by Papadimitriou [19].

In scheduling instances we work with jobs and machines, and we want to schedule the jobs
on the machines such that some objective is minimized. In practice we use scheduling
to solve a wide variety of problems: to solve scheduling problems in companies that
use machines, to make schedules for hospitals and schools, to make the train schedule,
etc. The number of jobs used in a schedule is usually expressed as n and the number
of machines is expressed as m. A job j has, independent of the machine on which it is
processed, a processing time pj . When job j is processed on machine i this takes time
pi,j = pj/vi,j , where vi,j is the speed at which job j is processed on machine i.

Schedules are often visualized in Gantt-charts [8]. In these charts we see at which time a
certain job is scheduled on which machine. An example of a Gantt-chart with four jobs
and two machines can be found in Figure 2.1. For a better understanding of schedules
we use Gantt-charts as visual aid.

2.1 Notation for scheduling problems

A convenient notation for theoretic scheduling problems is introduced by Graham, Lawler,
Lenstra and Rinnooy Kan [10]. It consists of three fields: α, β and γ. In the α|β|γ
- structure we organize the properties of a problem. We use α to denote the machine
environment, β to describe the processing characteristics and constraints and γ to describe
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Figure 2.1: Example Gantt-chart

the objective value.

In the machine environment, α, we denote with how many and what kind of machines
we work. The following environments are commonly used:

1. Single machine (1). The case of a single machine is the simplest of all possible
machine environments and is a special case of all environments mentioned below.
In our problem we only work with the single machine environment.

2. Parallel machines (P ). We work with identical machines in parallel. In this case
pi1,j = pi2,j for all machines i1, i2.

3. Related parallel machines (Q). There are parallel machines with different
speeds. The speed of machine i is denoted by vi. If job j is fully processed on
machine i, then this takes time pi,j =

pj
vi

. If all machines have the same speed, then
this environment is identical to the previous one.

4. Unrelated machines (R). This environment is a further generalization of the
previous one. There are different machines in parallel, and machine i can process
job j with speed vi,j . If job j is fully processed on machine i, this will take time pi,j =
pj
vi,j

. If the speeds of the machines are independent of the jobs, this environment is

identical to the previous one.

Several other machine environments are mentioned in the literature, among which: flow
shop (F ), job shop (J) and open shop (O) and variants of these. These environments are
not discussed nor explained here, because we don’t need them for our problem.

In the β-field we denote the processing characteristics and constraints of the instances.
We explain the ones we use in this report below. There are a lot more possible entries
for this field though.

1. Release date (rj). If this symbol appears in the β-field it means job j cannot be
processed before time rj . If this symbol is not in the β-field, it means all jobs can
start at any time.
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2. Deadline (dj). This symbol may appear in the β field, but can be implied by the
objective function as well. There are two types of deadlines: 1) strict deadlines,
where a schedule is only feasible if all jobs are completed before their deadline. 2)
Deadlines that may be exceeded, but there is some penalty when this happens.

3. Preemptions (prmpt). When prmpt is in the β-field, we can interrupt a job at
any point in time and put a different job on the machine instead. The amount of
processing a preempted job has already received is not lost. When a preempted job
is put back on the machine afterwards (this doesn’t have to be the same machine
as before if there are more machines available), it only needs this machine for the
remaining processing time. If prmpt is not in the β-field, we have to keep a job on
a machine, once started, until its completion.

4. Unit processing time (pj = 1). When this appears in the β-field all processing
times are equal to 1.

5. Unit weights (wj = 1). When this appears in the β-field all weights are equal to
1.

In the γ-field we denote the objective function. In this notation the objective is always
to minimize some function that depends on the completion times of the jobs. The time
job j exists in the system (that is, its completion time on the last machine on which it
requires processing) is denoted by Cj .

Examples of possible objective functions are:

1. Makespan (Cmax). This function is defined as max(C1, . . . Cn). It is equal to the
completion time of the last job that leaves the system.

2. Total completion time (
∑
Cj). The sum of completion times of n jobs gives an

indication of the total holding or inventory costs incurred by the schedule.

3. Total weighted completion time (
∑
wjCj). When some jobs have a higher

priority than others, or different jobs have a different (inventory)cost it may help
to add a weight to the completion times of the jobs.

2.2 Definitions

We also give some definitions that can be helpful to examine properties of problems.

Definition 2.1 (Non-delay schedule). A feasible schedule is called non-delay if no ma-
chine is kept idle while an operation is waiting for processing

Requiring a schedule to be non-delay is equivalent to prohibiting unforced idleness. For
many models there are optimal schedules that are non-delay. However, there are models
where it may be advantageous to have periods of unforced idleness (Example 2.2).
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Example 2.2 (Schedule that requires unforced idleness). Suppose we have an instance
of 1|rj |

∑
j∈J Cj, where r1 = 1, r2 = 0, p1 = 2, p2 = 8. Then σ in Figure 7.2 is the unique

non-delay schedule, while σ∗ is, according to this objective function, a better schedule.

0 1 2 3 4 5 6 7 8 9 10

Job 2 Job 1

Job 1 Job 2

C1 + C2 = 18

C1 + C2 = 14

11

σ

σ∗

Figure 2.2: Non-delay schedule σ and optimal schedule σ∗.

Definition 2.3 (Available job). A job is available on time t when it is released but not
yet completed.

Definition 2.4 (Clairvoyant). An algorithm is clairvoyant when all processing times are
known when we start processing the job. When the processing time of a job is only known
when the job is completed, we speak of a non-clairvoyant model.

Definition 2.5 (Offline/Online scheduling). In an offline algorithm all data is known
in advance. For an online algorithm we only know the data of the jobs that are released
before the current time, and extra jobs can come up any time.

Even if an algorithm does not always find an optimal solution to the problem, it can be
useful to study it. For example when they strongly reduce the time to find a solution
that is not so bad compared to the optimum. Furthermore, some algorithms give a lot of
insight in the problem, though they do not find an optimal solution.

Definition 2.6 (c-approximation algorithm). An algorithm is a c-approximation algo-
rithm when the objective value of the solution given by the algorithm is at most c times
the objective value of the optimal solution.
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Chapter 3

Related Work

When implementing speed scaling, an algorithm must make two decisions at each point
in time: (i) a scheduling policy decides which job(s) to serve, and (ii) a speed scaler
decides how fast to run. We already know there are three types of speed scaling: static,
static-gated and dynamic. Instead of making both decisions at the same time one can also
first determine some speed function. This speed function depends for example on time
or the number of available jobs and make a schedule that is optimal according to that
predetermined speed function. JDMS is about scheduling problems with an arbitrary
externally given speed function that depends on the number of available jobs.

In the first section we have a look at results for the well-known single machine problems
where the machine speed is constant. In Section 2 we consider some problems that relate
to JDMS, but are slightly different.

3.1 Single machine problems with fixed machine speed

In this section we are going to sum up some of the well-known results about single
machines that have a fixed machine speed. These results, especially the way of proving
theorems, are useful for JDMS as we mimic some of the methods to obtain results for
JDMS. If the problems are in P, we will give a polynomial algorithm that solves the
problem. If the problem is in NP we will prove that by giving a reduction from a NP-
complete or NP-hard problem. The problems we will have a look at can be found in
Figure 3.1. An overview of complexity results for single-machine problems can be found
in [5].

Note that the problem 1|prmpt, rj , pj = 1|∑wjCj is an open problem.
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1|prmpt, rj |
∑

wjCj

1|prmpt, rj |
∑

Cj 1|prmpt|∑wjCj

1|prmpt, rj , pj = 1|∑wjCj

1|prmpt|∑Cj

1||∑Cj

P

NP-hard

?

1||∑wjCj

Figure 3.1: Overview of single machine problems.

3.1.1 The total weighted completion time

In the α|β|γ structure we denote this problem as 1||∑wjCj . The weight of a job j may
be regarded as an importance factor. For example: it may represent a holding cost per
unit time. This problem gives rise to one of the best known rules in scheduling theory,
the so-called Weighted Shortest Processing Time first (WSPT) rule or Smith’s rule [22].
According to this rule jobs are processed in decreasing order of wj/pj .

Theorem 3.1. The WSPT rule is optimal for 1||∑wjCj [22].

Proof. We prove this theorem by contradiction. Suppose a schedule σ, that differs from
the WSPT schedule, is optimal. In this schedule there must be at least two adjacent jobs,
say job j followed by job k, such that:

wj
pj

<
wk
pk
.

Perform a so-called Pairwise Interchange on jobs j and k and call the new schedule σ′.
While under the original schedule σ job j starts processing at time t and is followed by job
k, under the new schedule σ′ job k starts processing at time t and is followed by job j. All
other jobs remain in their original position. The completion times of the jobs processed
before jobs j and k are not affected by the interchange. Neither are the completion times
of the jobs processed after jobs j and k. Thus the difference in the objective values under
schedules σ and σ′ is due to only jobs j and k (see Figure 3.2).

11



Schedule σ

Schedule σ′

t

t

j k

k j

t+ pj + pk

t+ pj + pk

Figure 3.2: A pairwise interchange of jobs j and k.

Under σ the weighted completion time of jobs j and k is

(t+ pj)wj + (t+ pj + pk)wk, (3.1)

while under σ′ it is
(t+ pk)wk + (t+ pk + pj)wj . (3.2)

We subtract (3.2) from (3.1) to obtain equation (3.3).

(t+ pj)wj + (t+ pj + pk)wk − (t+ pk)wk − (t+ pk + pj)wj (3.3)

When we simplify this equation, as the majority of the terms sum up to zero. We obtain
equation (3.4)

pjwk − pkwj (3.4)

As wj/pj < wk/pk, the sum of the two weighted completion times under σ′ is strictly less
than under σ. This contradicts the optimality of σ and completes the proof.

The Shortest Processing Time (SPT) rule processes the jobs such that the processing time
in this sequence are non-decreasing. The problem 1||∑Cj is a special case of 1||∑wjCj ,
as it happens to be the case where wj = 1 for all j. According to Theorem 3.1 we have
to schedule the jobs in non-increasing order 1

pj
. In other words, in that case we schedule

the jobs in non-decreasing order pj .

Corollary 3.2. SPT is optimal for 1||∑Cj.

Problem 1||∑wjCj has a geometric interpretation as well, using 2D-Gantt charts. This
interpretation was introduced by Eastman, Even and Isaacs [6]. According to Theorem 3.1
processing the jobs in this order wil lead to an optimal solution with value

∑
1≤i≤j≤n piwj .

This sum equals the area of the rectangles in Figure 3.3.

The total size of the rectangles is minimized when the jobs are numbered in non-decreasing
order wi/pi.
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p1

pn−1
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Figure 3.3: 2D-Gantt chart

3.1.2 The total weighted completion time with preemptions

Suppose we have a single machine and it is allowed to preempt jobs. The objective is to
minimize the weighted sum of completion times. Then we prove that preemption will not
help to improve the schedule.

Lemma 3.3. An optimal schedule for 1|prmpt|∑wjCj does not use preemption.

Proof. Suppose there is an optimal schedule σ that uses preemption. Let job i be the
first job that is preempted by some job j. Then we change σ to σ′ by interchanging some
operations.

If the case is Ci ≤ Cj :

1. Take the first pi units of time that were devoted to either job i and j after time t,
and use them instead to process job i to completion.

2. Take the remaining pj units of time that were spend processing job i and j after
time t and use them to schedule job j.

i

i

i i

i i

i

j

jj

j j j

j

Ci

Ci

Cj

Cj

σ

σ′

Figure 3.4: Visualized interchange argument.

If Ci > Cj we take the first pj units of time that were devoted to either job i and j after
time t, and use them instead to process job j to completion. Then take the remaining pj
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units of time that were spend processing job i and j after time t and use them to schedule
job i.

We compare the objective value of σ and σ′. In both cases max(Cσ
′

j , C
σ′

i ) = max(Cσj , C
σ
i )

and min(Cσ
′

j , C
σ′

i ) < min(Cσj , C
σ
i ). In both cases the other completion times stay the

same and therefore in both cases it holds that
∑
wjC

σ
j >

∑
wjC

σ′

j . Thus σ′ is a better
schedule than σ, contradicting the fact that σ is optimal. As the assumption that there
exists an optimal schedule that uses preemption leads to a contradiction, there is no
optimal schedule that uses preemption.

Corollary 3.4. WSPT is optimal for 1|prmpt|∑wjCj.

Proof. As an optimal schedule for 1|prmpt|∑wjCj does not use preemption, it has the
same optimal value as the optimal schedule for 1||∑wjCj . Therefore we conclude from
Theorem 3.1 that WSPT is optimal for 1|prmpt|∑Cj .

Corollary 3.5. SPT is optimal for 1|prmpt|∑Cj.

This follows from Corollary 3.4. The problem 1|prmpt|∑Cj is a special case of problem
1|prmpt|∑wjCj : the case where wj = 1 for all j. According to Corollary 3.4 we have
to schedule the jobs in non-increasing order 1

pj
. In other words, we have to schedule the

jobs in non-decreasing order pj , which is exactly the order of SPT .

3.1.3 The total completion time with release dates and preemp-
tions.

In the previous subsections we assumed all jobs are immediately available. In practice this
is not always the case and therefore we will have a look at the problem where jobs have
release dates. The release date of a job is the time that it becomes available, jobs cannot
be processed before their release date. This problem is denoted as 1|prmpt, rj |

∑
Cj .

Every job i has a remaining processing time p′i, this is the time that a job still needs to
be completed. The algorithm Shortest Remaining Processing Time (SRPT) processes the
job with the shortest remaining processing time and is available at that moment.

L. Schrage has proven that SRPT is optimal for this problem.

Theorem 3.6. SRPT is optimal for 1|prmpt, rj |
∑
Cj. [21]

Proof. Consider an optimal schedule σ in which available job i with the shortest remaining
processing time is not being processed at time t, and instead available job k is being
processed. Let p′i and p′k denote the remaining processing times for jobs i and k at time
t, so p′i < p′k. In total p′i+p′k time units are spent on jobs i and k after time t. We look at
all the time intervals after time t that process either job i or k to obtain another schedule
σ′:
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1. Take the first p′i units of time that were devoted to either of jobs i and k after time
t, and use them instead to process job i to completion.

2. Take the remaining p′k units of time that were spent processing jobs i and k after
time t, and use them to schedule job k.

As p′i < p′k, we know that Cσ
′

i < min(Cσk , C
σ
i ). In both σ and σ′ the same time intervals

are used to schedule job i and k, thus Cσ
′

k = max(Cσk , C
σ
i ). All other completion times

remain the same, thus the objective value of σ′ wil be smaller than the objective value of
σ. This contradicts the optimality of σ.

Thus SRPT is optimal for 1|prmpt|∑Cj .

3.1.4 The total weighted completion time with preemptions and
release dates

The total weighted completion time with preemptions and release dates is strongly NP-
hard. This has been proven by J. Labetoulle, E.L. Lawler, J.K. Lenstra, and A.H.G.
Rinooy Kan in [14]. This means we can transform any instance from some strongly NP-
hard problem to an instance of 1|prmpt, rj |

∑
wjCj in polynomial time. As this proof

is rather complicated, we start with a proof that says 1|prmpt, rj |
∑
wjCj is weakly

NP-hard by making a reduction from the PARTITION problem.

Problem 4 (PARTITION). Given a set J = {1, . . . ,m} and positive integers a1, . . . , am,
do there exist two disjoint subsets S1, S2 ⊂ J with S1 ∪ S2 = J such that

∑
j∈S1

aj =∑
j∈S2

aj?

We define b = 1
2

∑
j∈J aj . Using PARTITION, we prove the following theorem:

Theorem 3.7. 1|prmpt, rj |
∑
wjCj is weakly NP-complete.

Proof. We prove this theorem by making a reduction from the weakly NP-complete prob-
lem PARTITION. The reduction is as follows: we use m+ 1 jobs, that are defined in the
tabel below:

m normal jobs 1 dummy job
rj = 0 j ∈ J rm+1 = b
pj = aj j ∈ J pm+1 = 1
wj = aj j ∈ J wm+1 = 2

We claim that there there is a solution for PARTITION if and only if the instance of
1|prmpt, rj |

∑
wjCj has an objective value smaller or equal to U1, where U1 is defined as

follows:
U1 =

∑

1≤j≤k≤m
ajak + 3b+ 2 (3.5)
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We prove that if some instance I is a yes-instance for PARTITION, then it will be a
yes-instance for 1|prmpt, rj |

∑
wjCj , by creating the following schedule:

S1 Jm+1 S2

b b + 1

Figure 3.5: Schedule that corresponds to the solution of PARTITION.

Jobs in S1 and S2 are not preempted and processed in arbitrary order. When the dummy
job is left out, we would have had total weighted completion time

∑
1≤j≤k≤m ajak. If the

dummy job is scheduled at b, between S1 and S2, it will increase the objective value in two
ways: (i) by its own weight and completion time, it will add 2(b+1) to the objective value
and (ii) the objective value will increase by b as S2 is shifted one time unit to the right.
Thus this schedule will have a total objective value of

∑
1≤j≤k≤m ajak + 3b+ 2 = U1.

We prove that the schedule in Figure 3.5 is the only schedule with a total weighted
completion time smaller or equal than U1. We first prove that we only have to look at
schedules where the dummy job is not preempted. Suppose dummy jobm+1 is preempted.
Then we change σ to σ′ by putting the first part of m + 1 before the second part, and
shift the jobs that were in between to the left (and leave the other jobs unchanged, Figure
3.6). As Cσm+1 = Cσ

′

m+1 and the other jobs remain in the same place, or are processed

earlier, it holds that Cσ
′

j ≤ Cσj for all jobs j. Therefore σ′ is at least as good as σ. We
repeat this argument until dummy job m+ 1 is no longer preempted.

m+1 m+1

m+1

σ

σ′

Figure 3.6: Changing σ to σ′.

If we only schedule jobs 1, . . . ,m we have to solve a scheduling problem without release
dates. Theorem 3.4 tells us that WSPT will result in an optimal solution. As wj/pj =
aj/aj = 1 for all jobs 1, . . . ,m any nonpreemptive schedule without machine idle time
will be optimal and has value

∑
1≤j≤k≤m ajak. Inserting the dummy job in the schedule

increases the objective value by the total weight of all jobs completed after that dummy
job.

We first define some variables that we use in our proof. Let us denote the index set of all
normal jobs completed before Jm+1 by X1. We define the length of the interval from b
(the release date of Jm+1) until Jm+1 starts as c. Thus c ≥ 0 and when c = 0, dummy
job m + 1 starts at its release date. We define the length of the interval from the end
of X1 until the start of Jm+1 by d. Note that d ≥ 0 and when d = 0, all jobs that are
started before Jm+1 will also be completed before dummy job m+ i (Figure 3.7).
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b+ c

b+ c− d

Jm+1

b+c+1

X1

Figure 3.7: Variables c and d visualised.

We have for any schedule that:

Cm+1 = b+ c+ 1 (3.6)

As wi = pi for all normal jobs 1 ≤ i ≤ m, it holds that:
∑

i∈X1

wi =
∑

i∈Xi

pi = b+ c− d. (3.7)

By inserting the dummy jobs in the original schedule we increase the original value by
2Cm+1 + 2b −∑i∈X1

wi: 2Cm+1 for the inserted dummy job and 2b −∑i∈X1
wi as we

shift the latter part of the schedule to the right by 1 when we insert the dummy job.

Therefore, the objective value of any schedule is:

∑

1≤j≤k≤m
ajak + 2Cm+1 +

(
2b−

∑

i∈X1

wi

)
(3.8)

We combine 3.6, 3.7 and 3.8 to obtain the next equation:
∑

1≤j≤k≤m
ajak + 2(b+ c+ 1) + 2b− (b+ c− d)

We simplify the previous equation:
∑

1≤j≤k≤m
ajak + 3b+ 2 + c+ d

We substitute part of the equation by (3.5)

U1 + c+ d (3.9)

Thus the objective value of any schedule can be written as (3.9).

Suppose we have found a yes-instance I for 1|prmpt, rj |
∑
wjCj , then the objective value

of the schedule is less or equal to U1. As c ≥ 0 and d ≥ 0, it has to hold that c = d = 0.
Then we have a schedule as described in Figure 3.5. Then X1 and J \X1 are two pairwise
disjoint sets with

∑
j∈X1

pj =
∑
j∈J\X1

pj . Thus I is a yes-instance for PARTITION.
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We are going to extend the previous result. We make a reduction from 3-PARTITION to
proof 1|prmpt, rj |

∑
wjCj is not only weakly NP-hard, but also strongly NP-hard. This

problem is defined as follows:

Problem 5 (3-PARTITION). Given a set J = {1, . . . , 3m} and positive integers a1, . . . , a3m
with 1

m

∑
j∈J aj = b and 1

4b < aj <
1
2b (j ∈ J) , does there exist m pairwise disjoint

subsets Si ⊂ J such that
∑
j∈Si

aj = b for i = 1, . . . ,m?

Using 3-PARTITION, we prove the following theorem:

Theorem 3.8. The problem 1|prmpt, rj |
∑
wjCj is NP-hard.

Proof. We prove Theorem 3.8 by making a reduction from the NP-complete problem
3-PARTITION:

The reductions is as follows: we use 4m− 1 jobs, that are defined in the table below.

3m normal jobs m− 1 dummy jobs
rj = 0 j ∈ J rj = (j − 3m)(b+ 1)− 1 j = 3m+ 1, . . . 4m− 1
pj = aj j ∈ J pj = 1 j = 3m+ 1, . . . 4m− 1
wj = aj j ∈ J wj = 2 j = 3m+ 1, . . . 4m− 1

Note that this reduction is similar to the one used to proof Theorem 3.7. We claim that
there exist a 3-partition if and only if the instance of 1|prmpt, rj |

∑
wjCj has an objective

values smaller or equal to U2, where U2 is defined as follows:

U2 =
∑

1≤j≤k≤3m
ajak + (m− 1)m(

3

2
b+ 1). (3.10)

When m = 2, we have an instance of PARTITION and in this case U1 = U2. We
show that when there is a 3-partition with m pairwise disjoint sets S1, . . . Sm, then the
corresponding schedule for 1|prmpt, rj |

∑
wjCj where the objective value is at most U2,

is as follows:

b 2b+1 . . . (m− 1)(b + 1)− 1

S1 S2 Sm

Figure 3.8: Schedule that corresponds to the solution of 3-partition

The total weighted completion time of the schedule in Figure 3.8 can be computed as
follows:

If S1, . . . Sm are all scheduled without dummy jobs in between, the objective value would
be
∑

1≤j≤k≤3m ajak
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When dummy job 3m+i is scheduled after Si, it increases the objective value by 2C3m+1+
(m−i)b. As C3m+1 = i(b+1), the total objective value is increased by 2i(b+1)+(m−i)b =
ib+ 2i+mb

When we add m− 1 dummy jobs to the 3m normal jobs, we obtain objective value

∑

1≤j≤k≤3m
ajak +

m−1∑

i=1

(ib+ 2i+mb) .

This can be simplified to:

∑

1≤j≤k≤3m
ajak +

1

2
m(m− 1)b+m(m− 1) + (m− 1)mb.

Simplify even further to obtain the next equation:

∑

1≤j≤k≤3m
ajak + (m− 1)m(

3

2
b+ 1).

This is exactly U2. Thus the schedule in Figure 3.8 has objective value U2.

We prove that the schedule in Figure 3.8 is the only schedule that has a total weighted
completion time less or equal to U2. To obtain this result we first prove that we only have
to look at schedules where the dummy jobs are not preempted. Suppose we have some
optimal schedule σ, then we look at all the time units where dummy jobs are processed.
As all dummy jobs have equal weight and processing time, we assume that dummy jobs
are scheduled in order of their release dates, without preempting each other.

So when we only look at the time units where dummy jobs are processed, they won’t be
preempted. Though, looking at the whole schedule, dummy jobs can still be preempted
by the first 3m normal jobs. Suppose job 3m+ i is the first dummy job that is preempted.
Then we change σ to σ′ by putting the first part of 3m + i before the second part, and
shift the jobs that were in between to the left and leave the other jobs unchanged (Figure
3.9). As Cσi = Cσ

′

i and the other job remain in the same place, or are processed earlier,

it holds that Cσj = Cσ
′

j for all jobs j. Therefore σ′ is at least as good as σ. We repeat
this argument until all dummy jobs are schedule without being preempted.

3m+i 3m+i

3m+i

σ

σ′

Figure 3.9: Changing σ to σ′.

We give the objective value for all schedules that potentially could have an objective value
smaller or equal to U2. If we only schedule jobs 1, . . . , 3m we have to solve a scheduling
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problem without release dates. Theorem 3.4 tells us that WSPR results in an optimal
solution. As wj/pj = aj/aj = 1 for all jobs 1, . . . , 3m any nonpreemptive schedule
without machine idle time will be optimal and has value

∑
1≤j≤k≤3m ajak. Inserting a

unit-dummy job in a schedule increases the contribution to the objective value of the
latter set by the total weight of all jobs completed after that dummy job. By repeating
this process, inserting the i′th dummy job after the previous dummy job is completed, we
insert all dummy jobs in the original schedule and determine the increase in the objective
value (note that we have proven that is is not useful to preempt dummy jobs).

We first define some variables that we use in our proof. Let us denote the index set of all
normal jobs completed before J3m+i by Xi, the length of the interval from (b + 1)i − 1
(its release date) until J3m+i starts by ci, and the length of the interval from the last
completion before J3m+i until the start of J3m+i by di. Note that when di = 0, this
means all jobs that start before dummy job 3m+ i will also be completed before dummy
job i. Clearly di ≥ 0 and ci ≥ 0 (Figure 3.10).

x = i(b+ 1)− 1x+ ci

x+ ci − di

J3m+i

x+ci+1

Xi

Figure 3.10: Variables ci and di visualised.

Then we have for any schedule that:

C3m+i = i(b+ 1) + ci, for all dummy jobs 3m+ i (3.11)

As wi = pi for all normal jobs 1 ≤ i ≤ 3m, it holds that:
∑

j∈Xi

wj =
∑

j∈Xi

pj = ib+ ci − di. (3.12)

By inserting m− 1 dummy jobs in the original schedule we increase the original value by
2
∑m−1
i=1 Ci (the weight and completion time from the dummy jobs) and as we shift the

latter part of the schedule by 1 for every dummy job we insert, we also get an increase of∑m−1
i=1

(
mb−∑j∈Xi

wj

)
.

Therefore, the objective value of any schedule will be:

∑

1≤j≤k≤3m
ajak + 2

m−1∑

i=1

C3m+i +

m−1∑

i=1


mb−

∑

j∈Xi

wj


 (3.13)

We combine 3.11, 3.12 and 3.13 to obtain the next equation:

∑

1≤j≤k≤3m
ajak + 2

m−1∑

i=1

(i(b+ 1) + ci) +

m−1∑

i=1

(mb− (ib+ ci − di)) (3.14)
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We rewrite the latter part of the equation as one sum.

∑

1≤j≤k≤3m
ajak +

m−1∑

i=1

(2(ib+ i+ ci) + (mb− ib− ci + di)) (3.15)

We simplify the previous equation:

∑

1≤j≤k≤3m
ajak +

m−1∑

i=1

(2i+ ib+mb+ ci + di) (3.16)

Splitting the sum:

∑

1≤j≤k≤3m
ajak +

m−1∑

i=1

2i+

m−1∑

i=1

ib+

m−1∑

i=1

mb+

m−1∑

i=1

ci +

m−1∑

i=1

di (3.17)

Computing the first three sums:

∑

1≤j≤k≤3m
ajak +m(m− 1) +

1

2
m(m− 1)b+ (m− 1)mb+

m−1∑

i=1

ci +

m−1∑

i=1

di (3.18)

We simplify again:

∑

1≤j≤k≤3m
ajak +m(m− 1)(

3

2
b+ 1) +

m−1∑

i=1

ci +

m−1∑

i=1

di (3.19)

We substitute part of the equation by (3.10)

U2 +

m−1∑

i=1

ci +

m−1∑

i=1

di (3.20)

Thus the objective value of any schedule can be written as (3.20).

Suppose we have found a yes-instance I for 1|prmpt, rj |
∑
wjCj , then the objective

value of the schedule is less or equal to U2. As ci ≥ 0 and di ≥ 0 for all 1 ≤ i ≤
m − 1, it has to hold that ci = di = 0. Therefore there must be pairwise disjoint sets
X1, . . . Xm−1, J \ {X1 ∪ · · · ∪Xm−1} such that

∑
j∈Si

pj = b. Thus I is a yes-instance for
3-partition.
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3.2 Related Problems

In this section, we discuss three problems that are related to JDMS. One of the most
extensively studied speed scaling problems was the problem in a paper by Yao, Demers
and Shenkers [26]:

Problem 6 (Speed scaling). Let J be a set of jobs and each job j ∈ J is associated with
a release time rj , a deadline dj and a volume pj . We assume release dates and deadlines
are given integers. We have a variable-speed processor, which is associated with a power
function P (s) = sα with α ≥ 2. The energy consumption of the processor is the power
function integrated over time. Assuming job j is always processed at a speed of sj , then
j requires vj/sj time to be completed. A schedule is said to be feasible if the volume of
each job is completely processed not before its release date, but for its deadline. The goal
is to find a feasible solution that minimizes the energy consumption.

The second problem is discussed by Gawiejnowicz in [9]. His problem is formulated as
follows:

Problem 7 (Gawiejnowicz). Suppose we work with a single processor, where the speed
of the processor depends on the number of completed jobs and is described by a externally
given function. After k jobs there has to be a break, and after that the speed varies again.
How do we schedule the jobs to minimize the makespan?

Problem 7 differs from JDMS on several points. The most important difference is the
objective function of the problem: Gawiejnowicz wants to minimize the makespan, while
we try to minimize the sum of weighted completion times. Another difference is that
preemption not allowed, while we do allow preemption in JDMS. Finally, Gawiejnowicz
introduces breaks in the schedule: after k jobs are processed there has to be some break.
If k ≥ n no break has to be scheduled.

We will also have a look at the following problem:

Problem 8 (Time dependent machine speed). Suppose we work with a single processor,
where the speed of the processor depends on the time. Jobs have release dates, weights
and processing times. How do we schedule the jobs to minimize the sum of weighted
completion time?

This problem differs from JDMS as the speed function does not depend on the number
of available jobs, but on the time instead. Research on this subject has been extensive
(among others: [7], [24], [17]) and there are some interesting recent discoveries.

3.2.1 Fundemental algorithms for speed scaling

One of the most extensively studied speed scaling problems was the problem in a paper
by Yao, Demers and Shenkers [26]. The problem by Yao et al. assumes there is no upper

22



bound on the maximum processor speed. Hence there always exists a feasible schedule
satisfying all job deadlines. Furthermore, it is assumed that a continuous spectrum of
speeds is available. This framework is by far the most extensively studied algorithmic
speed scaling problem. There are three fundamental algorithms for speed scaling, all
introduced in [26]:

1. Algorithm YDS. YDS is referring to the initials of the authors: Yao, Demers and
Shenker. The algorithm proceeds in a series of iterations. In each iteration, a time
interval of maximum density is identified and a corresponding partial schedule is
constructed. Loosely speaking, the density of an interval I is the minimum average
speed necessary to complete all jobs that must be scheduled in I. A high density
requires a high speed. Formally, the density ∆I of a time interval I = [t, t′] is the
total work to be completed in I divided by the length of I. More precisely, let SI
be the set of jobs Ji that must be processed in I because their release time and
deadline are in I, thus: [ri, di] ∈ I. The corresponding total processing volume is:

∆I =
1

|I|
∑

Ji∈SI
pi

Algorithm YDS repeatedly determines the interval I of maximum density. In such
an interval I, the algorithm schedules the jobs of SI at speed ∆I using the Earliest
Deadline First (EDF) policy. This well-known policy always executes the job having
the earliest deadline amongst the available unfinished jobs. We give a small example
of Algorithm YDS:

Example 3.9 (Algorithm YDS). Suppose we have an instance with 5 jobs, specified
as Ji = (ri, di, pi). J1 = (0, 24, 6); J2 = (3, 8, 7); J3 = (5, 7, 4); J4 = (13, 20, 4); J5 =
(15, 18, 3). Interval [3, 8] has the highest density: ∆[3,8] = 2.20 and S[3,8] = {J2, J3}.
Thus we schedule J2 and J3 with speed 2.20 in interval [3, 8]. Excluding interval
[3, 8], interval [13, 20] has highest density: ∆[13,20] = 1 and S[3,8] = {J4, J5}. Thus
we schedule J4 and J5 in interval [13, 20] with speed 1. Then only J1 is left, with
∆[0,3]∪[8,13]∪[20,24] = 0.5 and S[0,3]∪[8,13]∪[20,24] = {J1}. This results in the schedule
in Figure 3.11.

Note that this is an offline-algorithm: all information is known.

2. Algorithm average rate. For any arriving job Ji, Average Rate considers the density
δi = pi/(di − ri), which is the minimum average speed necessary to complete the
job in time if no other jobs were present. At any time t, the speed s(t) is set to
the accumulated density of jobs active at time t. A job Ji is active at time t if it is
available for processing at that time, thus if t ∈ [ri, di]. Available jobs are scheduled
according to the EDF policy. In short: at any time t, use a speed of:

s(t) =
∑

Ji:t∈[ri,di]
δi.
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Figure 3.11: Optimal schedule according to Algorithm YDS.

If energy usage is sα with α > 2 for machine speed s, then the approximation
guarantee is bounded by 2α−1αα

3. Algorithm optimal rate. This algorithm computes the optimal schedule for the
jobs that are currently known (using YDS). This algorithm has a approximation
guarantee of exactly αα and is therefore better than Algorithm Average Rate.

In practice the machine speed is bounded, and often only a finite set of discrete speed
levels s1 < s2 < ... < sd is available. With some small changes Algorithm YDS can still
find an optimal schedule. We first construct the schedule according to YDS. For each
identified interval I of maximum density, we approximate the desired speed ∆I by the
two adjacent speed levels sk and sk+1, such that sk < ∆I < sk+1. Speed sk+1 is used
first for some δ time units and sk is used for the last |I| − δ time units in I, where δ is
chosen such that the total work completed in I is equal to the original amount of |I|∆I .

These were the first results on speed scaling by Yao et al.

3.2.2 Gawiejnowicz: minimizing the makespan

Without loss of generality, the speeds are chosen from the interval [0, 1]. This problem
matches situations where machines consists of devices with their own renewable power
source (for example: batteries) or when we consider the work of human groups (construc-
tion workers, painters, etc). Examples of the settings are hard physical work where the
execution of a job causes a tiredness of workers such that the next job is processed with
a lower speed. Or the other way around, the processing on a machine which gets hot
during work up to the point of time when further growth in temperature could cause its
destroying. In both cases after some time a break is needed.
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In his paper Gawiejnowicz proves that, for an arbitrary speed functions, it is best to
process the job with the largest processing time at the position where is it processed at
the highest speed, the second largest processing time at the position where it is processed
with the second largest speed, etc. This results in an optimal solution.

Let vj be the speed when j jobs are completed. The algorithm is as follows:

begin
Sort pj in non-increasing order
For j:=1 to n do
{ s1,j = vj ,

s2,j = j }
Sort sj,1 in non-increasing order
Reindex s according to sj,1 values
For j:=1 to n do

Insert pj at the s′j,2th place in the list L
end

Thus this problem is solvable in polynomial time. We see that JDMS without preemption
can be solved in a similar way.

3.2.3 Time dependent machine speed

The problem that is most related to JDMS is Problem 8, where, in contrary to being
dependent on the number of available jobs, the machine speeds depends on the moment
in time. There are a lot of practical examples where the machine speed indeed depends on
time. Think about computers that become slower over the years or faster after some heat-
up period, people that work slower because of their age or planned machine reparations
that make the machine completely unavailable for some time.

This problem is being discussed for over 30 years already and it is only recently, in 2010,
that one found a constant approximation algorithm for minimizing the function

∑
wjCj .

This was a (4 + ε)-approximation by Epstein et al [7]. This guarantee holds for any given
speed function. When the speed is only increasing, there is an approximation algorithm
with approximation-rate (

√
3+1)/2. This scheme was found by Stiller and Wiese in 2010

[23]. When release dates are added, and we work with arbitrary speed functions, the
problem is proven to be NP-hard, even when for each job the weight and processing time
are equal [24].

In 2013 Megow and Verschae [17] came up with an efficient PTAS for minimizing the total
weighted completion time on a machine of varying speed and improved the old PTAS with
rate (1+ε). They use an interesting technique, a variant of 2D-Gantt chart interpretation
(described in section 3.1.1). Their PTAS can be found in [17].
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Chapter 4

JDMS without preemption

In this chapter we consider the problem JDMS as stated in Chapter 1, with the restriction
that jobs cannot be preempted:

Problem 9 (JDMS without preemption). Suppose we have n jobs, one machine and a
speed function s. The machine speed depends on the number of available jobs. How do
we schedule the jobs to minimize the sum of weighted completion times?

Note that this problem is similar to 1||∑wjCj , except that the machine speed depends
on the available jobs. Therefore 1||∑wjCj is a special case of JDMS without preemption.

4.1 JDMS(wj = 1) without preemption

In this subsection we show how to construct an optimal schedule for JDMS(wj = 1)
without preemption. The algorithm is similar to the algorithm by Gawiejnowicz [9], where
he looked at the same problem, but tried to minimize the makespan instead. Suppose we
have n jobs with processing times p1 ≤ · · · ≤ pn. We know that the job on position i is
processed with speed si. We denote the processing time and completion time of the job
that is processed on position i as p(i) and C(i). We write the completion time of job i as:

C(i) =

i∑

j=1

p(j)

sj
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Using this equation we rewrite the objective function:

n∑

i=1

Ci =

n∑

i=1

C(i)

=

n∑

i=1

i∑

j=1

p(j)

sj

=

n∑

i=1

(n+ 1− i)
si

p(i)

We define qi = n+1−i
si

, then qi is a constant and we rewrite the objective function as:

n∑

i=1

Ci =

n∑

i=1

qip(i).

We develop an algorithm that assigns all jobs to a position, such that the resulting
schedule is optimal.

Algorithm 4.1 (Greedy appointment). Let I be an instance of JSMD(wj = 1) without
preemption and suppose without loss of generality that p1 ≤ · · · ≤ pn.

1. Initialize: let qi = n+1−i
si

.

2. Assign job j to the position with the j’th largest qi value.

Now we have to prove that this algorithm results in an optimal solution.

Theorem 4.2. Algorithm 4.1 results in an optimal schedule for JDMS(wj = 1) without
preemption.

Proof. Let σ be an optimal schedule for an instance of JDMS(wj = 1) without preemption
and let σ′ be a schedule obtained by Algorithm 4.1. Suppose σ differs from σ′ and let k
be the position where σ and σ′ differ with largest qk. Suppose that in σ job a is assigned
to position k and in σ′ job b is assigned to position k. Then the positions of both job a
and b in σ differ from their position in σ′. According to the algorithm job b should be
assigned to the largest remaining qj . Thus pb ≤ pa, and qi ≤ qk. We make σ∗ from σ, by
switching job a and b and leaving the other jobs on the same position. Then the following
holds:

n∑

i=1

Cσi −
n∑

i=1

Cσ
∗

i =

n∑

i=1

qip
σ
(i) −

n∑

i=1

qip
σ∗

(i)

= qkpa + qipb − qkpb − qipa
= (qk − qi)(pa − pb)
≥ 0
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Thus:
n∑

i=1

Cσi ≥
n∑

i=1

Cσ
∗

i .

As σ was already optimal, σ∗ is optimal too. Repeating this process at most k times will
give us schedule σ′. Therefore σ′ is optimal as well. Thus Algorithm 4.1 results in an
optimal schedule.

Note that when the speed function is constant this problem equals 1||∑Cj and Algorithm
4.1 equals the SPT-algorithm.

4.2 JDMS(pj = 1) without preemption

We now restrict to unit processing times. We write w(j) to describe the weight of the job
that is processed on position j. Again we rewrite the objective function:

w(i)C(i) = w(i)

i∑

j=1

1

sj
.

And thus:
n∑

i=1

w(i)C(i) =

n∑

i=1

w(i)

i∑

j=1

1

sj

We define coefficients qi =
∑i
j=1

1
sj

. Note that q1 < · · · < qn. The objective function can

be written as:
n∑

i=1

wiCi =

n∑

i=1

w(i)C(i) =

n∑

i=1

w(i)qi

This sum is minimized when the smallest weight is assigned to the largest coefficient, etc.
Thus when we schedule the jobs in order of non-increasing weights we obtain an optimal
schedule. Note that this order coincides with the WSPT rule.

4.3 JDMS without preemption

Lastly we have a look at JDMS without preemption. Again we rewrite the sum of com-
pletion times:

w(i)C(i) = w(i)

i∑

j=0

p(j)

sj
.
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And thus:

n∑

i=1

wiCi =

n∑

i=1

w(i)C(i)

=

n∑

i=1

w(i)

i∑

j=0

p(j)

sj

=
∑

1≤j≤i≤n

w(i)p(j)

sj

=
n∑

1=j

p(j)

sj




n∑

i=j

w(i)




Smith proved that WSPT order is optimal when the machine speed does not change [22],
but unfortunately it can be arbitrarily bad compared to the optimum when the machine
speed depends on the number of active jobs. This can be shown by only using two jobs:

Example 4.3 (WSPT may be arbitrarily bad). Suppose we have 2 jobs with p1 = 2, p2 =
A,w1 = 1, w2 = A, s1 = 1 and s2 = A. If we use WSPT order job 2 proceeds job 1, as
w1/p1 = 1

2 < 1 = w2/p2. The total weighted completion time is then:

w1C1 + w2C2 = A · A
1

+ 1 ·
(
A

1
+

2

A

)
= A2 +A+

2

A
.

When we first complete job 1 and then complete job 2 we get total weighted completion
time:

w1C1 + w2C2 = 1 · 2

1
+A ·

(
2

1
+
A

A

)
= 3A+ 2.

Thus the optimal solution has value 3A + 2. We compare the value of WSPT to the
optimal value:

lim
A→∞

(
WSPT

OPT

)
= lim
A→∞

(
A2 +A+ 2

A

3A+ 2

)
=∞.

Thus WSPT order can be arbitrarily bad compared to the optimum.
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Chapter 5

Unit weight JDMS

In this chapter we discuss the problem JDMS(wj = 1). Note that 1|prmpt|∑Cj is a
special case of JDMS(wj = 1). As we can preempt an infinite number of times, this is
equivalent with dividing the machine capacity amongst jobs. In this chapter we show
how to construct an optimal solution for this problem.

Before we give such a construction, we will prove several properties of an optimal solution.
In this chapter we always assume that we work with n jobs, such that p1 ≤ · · · ≤ pn,
unless stated otherwise.

5.1 Properties of JDMS(wj = 1)

Lemma 5.1. There is an optimal schedule in which C1 ≤ · · · ≤ Cn.

Proof. Suppose we have an optimal schedule σ and it does not hold that C1 ≤ · · · ≤ Cn.
Then we look at the smallest i such that Ci+1 < Ci. We change σ to σ∗ by only changing
σ at job i and i+ 1, by processing job i such that it is finished at time Ci+1, so we have
Cσ
∗

i = Ci+1. This is possible as pi ≤ pi+1. We show we can let job i+ 1 finish at time Ci
without changing something about the other jobs.

As the time points where jobs finish stay the same, it holds that the speed of the machine
is equal in σ and σ∗ at every point in time. Therefore per time unit the same amount
of work can be done in σ and σ∗. So there is exactly enough space for job i + 1 to be
finished at time Ci. Thus

∑n
i=1 Ci =

∑n
i=1 C

σ∗

i and σ∗ will remain optimal.

Iterating this process implies that there is an optimal schedule σ′ such that C1 ≤ · · · ≤
Cn.
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Using the structure of Lemma 5.1, we formulate JDMS(wj = 1) as a linear program.
Therefore we introduce variables ∆1, · · · ,∆n, where:

∆i =

{
C1 if i = 1
Ci − Ci−1 if 1 < i ≤ n

At the interval [0, C1], the machine is operating at speed s1 and during the intervals
[Ci−1, Ci], the machine is operating at speed si.

We rewrite the constraints for a feasible solution in linear equations with only variables
∆1, . . . ,∆n. The sum of completion times can be rewritten as:

n∑

i=1

Ci =
n∑

i=1

i∑

j=1

∆j =
n∑

i=1

(n− i+ 1)∆i.

To make sure the requested order on the completion times is enforced, we want ∆i ≥ 0
for all i. Lastly we want to make sure that before time Ci, at least jobs 1, . . . , i have been
fully processed already. Thus:

i∑

k=1

∆k · sk ≥
i∑

k=1

pk.

Combining these equations we obtain the following LP:

minimize

n∑

i=1

(n− i+ 1) ·∆i

subject to

i∑

k=1

∆k · sk ≥
i∑

k=1

pk , 1 ≤ i ≤ n

∆i ≥ 0 , 1 ≤ i ≤ n

Note that a feasible solution for this LP does not correspond with an unique schedule,
but with a non-empty set of schedules for which the completion times are set.

As we can formulate JDMS(wj = 1) as an LP, we can find an optimal solution in poly-
nomial time by solving the LP. Though there is a another, faster, way to construct the
optimal solution, which we will explain below.

We first prove that there exists an optimal solution, such that at all completion times,
each job that has started is finished. To prove this property we introduce some additional
notation. We define yσi (t) as the amount of processing that job i attained up to time t in
schedule σ. We drop the σ from this notation if it is clear from the context.
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Lemma 5.2. We can find an optimal schedule such that for all i, j, where 1 ≤ i, j ≤ n,
it holds that yi(Cj) ∈ {0, pi}.

Proof. We prove this lemma by using the LP formulation for JDMS(wj = 1). We refor-
mulate the lemma in terms of this linear program. For each job one of the following has
to hold:

• ∆k+1 = 0, and thus Ck = Ck+1.

• If Ck+1 > Ck, then it has to hold that
∑k
j=1 sj∆j =

∑k
j=1 pj . If that is not the

case, then, when we use Lemma 5.1 in combination with the assumption that a
machine is always working at full speed, there exists a job l ≥ k + 1 such that
0 ≤ yl(Ck) ≤ pl.

Thus we want to prove that for k = 1, . . . , n− 1 either:

∆k+1 = 0 (1) or

k∑

j=1

sj∆j =

k∑

j=1

pj . (2)

Suppose the contrary and we have an optimal solution such that there exists a k with:

∆k+1 > 0 and

k∑

j=1

sj∆j >

k∑

j=1

pj .

We define ` as:
` = max{j ≤ k|∆j > 0}.

We define two new feasible solutions, for some ε > 0:

1. We define σ′ as the solution where ∆` = ∆` − ε
s`

and ∆k+1 = ∆k+1 + ε
sk+1

. We

can lower ∆` because
∑l
j=1 sj∆j >

∑k
j=1 pj . We see ε as the amount of processing

time of jobs pj with j ≥ k+1 that in σ is processed before C` and in σ′ is processed
after Ck. The change in the objection value is:

n∑

i=1

Cσ
′

i −
n∑

i=1

Ci =

n∑

i=1

(n− i+ 1)∆i −
n∑

i=1

(n− i+ 1)∆i

= (n− k)
ε

sk+1
− (n− `+ 1)

ε

s`

2. We define σ′′ as the solution where ∆σ′′

` = ∆` + ε
s`

and ∆σ′′

k+1 = ∆k+1 − ε
sk+1

. We

can lower ∆k+1 because ∆k+1 > 0. We see ε as the amount of processing time of
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jobs pj with j ≥ k + 1 that in σ is processed after C` and in σ′′ is processed before
Ck. The change in the objection value is:

n∑

i=1

Cσ
′′

i −
n∑

i=1

Ci =

n∑

i=1

(n− i+ 1)∆σ′′

i −
n∑

i=1

(n− i+ 1)∆i

= (n− `+ 1)
ε

s`
− (n− k)

ε

sk+1

The change in the objective value is opposite for both new solutions. As σ was optimal,
the change in the objective value has to be 0, and thus σ′ and σ′′ are both optimal as
well.

Suppose k is the smallest value such that neither (1) or (2) holds. If we define:

ε = min{∆k+1,

k∑

j=1

sj∆j −
k∑

j=1

pj}.

Then either σ′ or σ′′ will give a feasible, optimal solution where either (1) or (2) holds
for job k. We repeat this procedure until this property holds for all k ∈ {0 . . . n}.
Thus if C1 ≤ · · · ≤ Cn, we can find an optimal schedule such that for all i, j, where
1 ≤ i, j ≤ n, it holds that yi(Cj) ∈ {0, pi}.

Lemma 5.2 implies that we can divide the jobs into groups of consecutive jobs, such that
all jobs in a group will start and end at the same time. We use Gi to denote the i’th
group of jobs and we denote an optimal solution as [G1, . . . , Gk] (Figure 5.1).

Job 1

Job k

Job k + 1

Job q − 1

Job q

Job n

Group G1 Group G2 Group k− 1 Group k

...
...

Figure 5.1: Schedule in which the jobs are divided into k groups.

5.2 Optimal algorithms

We give two algorithms that find an optimal schedule for this problem. Suppose we have
n jobs with processing times p1 ≤ · · · ≤ pn. Then, according to Lemma 5.1, we know
there exists a optimal schedule such that C1 ≤ · · · ≤ Cn. According to Lemma 5.2 there
should be an optimal schedule in which for all i, j, where 1 ≤ i, j ≤ n, it holds that
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yi(Cj) ∈ {0, pi}. So the only thing we need to know is how to partition the jobs into
groups of consecutive jobs. We give two algorithms that will result in an optimal schedule.

5.2.1 Shortest path on a directed acyclic graph

Here we describe an algorithm that uses a shortest path algorithm in directed, acyclic
graphs.

Algorithm 5.3 (Construction using graphs). We construct a directed graph, G = (V,A),
where V = {1, . . . n + 1} is the set of vertices and A the set of edges. In V the jobs are
represented by {1, . . . n}, and the last, n + 1’st vertex represents the fact that all jobs
have been scheduled. The set A of edges consists of all edges (i, j) with i < j, where an
edge (i, j) corresponds to the group of jobs i, . . . , j − 1. Processing all jobs in a group

i, . . . , j−1, takes ∆i =
(∑j−1

k=i pk

)
/si time. The length of edge (i, j) is set to (n−i+1)∆i.

Now every path from 1 to n+ 1 divides the jobs into groups, and the length of this path
will correspond to the sum of completion times.

A shortest path algorithm for a directed acyclic graph takes O(n2) time, where n is the
number of jobs.

1 2 3 . . . . . . . . . . . . n n+ 1

Figure 5.2: Visualized graph.
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Lemma 5.4. The length of a 1 − (n + 1) path in the graph G = (V,A) as described in
Algorithm 5.3 equals the sum of completion times of the schedule that the path represents.

Proof. Suppose our path consists of the edges (a1, a2), . . . , (am−1, am). If i /∈ {a1, . . . am},
then ∆i = 0, as all jobs in the group are processed at the same time.

m−1∑

j=1

w(aj ,aj+1) =

m∑

j=1

(n− aj + 1)∆aj

=

n∑

i=1

(n− i+ 1)∆i

=

n∑

i=1

Cj

Thus the length of a path in graph G, made according to Algorithm 5.3, equals the sum
of completion times of the schedule that the path represents.

Theorem 5.5. Algorithm 5.3 results in an optimal schedule for JDMS(wj = 1)

Proof. Clearly every path represents a way the groups could have been split up. According
to Lemma 5.4, the length of the path equals the sum of completion times of the schedule
that the path represents. Finding the shortest path will therefore give us a partition of
the jobs that is a feasible solution to our problem, with minimal sum of completion times.

Every path corresponds to a schedule and every schedule satisfying Lemma 5.2 corre-
sponds to a path. The length of the path is equal to the sum of completion times. Thus
the shortest path corresponds to an optimal solution.

5.2.2 Greedy algorithm

In this subsection we develop a greedy algorithm that finds an optimal schedule. We first
give a more intuitive explanation and after that a formal definition of the algorithm in
pseudo code.

Our greedy algorithm determines a feasible sequence of groups. This sequence indicates
which groups of jobs should be processed in which order. Our algorithm first orders the
jobs such that p1 ≤ p2 ≤ · · · ≤ pn, which takes O(n log n) time. It then determines for
each job i, whether it is better to schedule this job in the previous group or to start a
new group for job i. When inequality (5.1) holds, job i is scheduled to be processed in
the previous group and otherwise a new group will be started. The pseudo code of this
greedy algorithm can be found in Algorithm 5.6.

|Gk|+ (n+ 1− i)
n+ 1− i ≤ sGk

si
. (5.1)
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Here we use sGk
to refer to the speed at which Gk is processed.

Algorithm 5.6 (Greedy algorithm). Suppose we want to schedule n jobs with processing
times p1 ≤ · · · ≤ pn. We schedule the jobs one by one, according to the following
algorithm:

Initialization: G1 = {1}, k = 1, E = 1, s = s1

For i = 2 until i = n do
{ If (E + n+ 1− i)si ≤ (n+ 1− i)s

Then
E → E + 1,
Gk → Gk ∪ {i}

Else
E → 1,
s→ si,
Gk+1 = {i}
k → k + 1,

Return [G1, . . . , Gk]

This pseudo code takes O(n) time.

Theorem 5.7. Algorithm 5.6 finds an optimal partition of the jobs into groups.

Proof. Suppose σ is an optimal schedule for an instance of this problem with n jobs, where
p1 ≤ · · · ≤ pn, such that C1 ≤ · · · ≤ Cn (Lemma 5.1). Let σ∗ be the solution according
to Algorithm 5.6. We will show that the total completion time of σ∗ is not more than
that of σ, and thus σ∗ is also an optimal schedule. Let job i be the first job in σ that is
not scheduled according to Algorithm 5.6. Then there are two possible situations:

1. In σ, job i is scheduled in a new group Gk, whereas in σ∗ it is still processed in
group Gk−1.

2. Job i is scheduled in the previous group Gk, while it should be scheduled in a new
group.

Suppose we are in the first situation: in σ, job i is scheduled in a new group Gk, whereas
in σ∗ it is still processed in group Gk−1. Then we change σ to σ′ by merging Gk and
Gk−1. Then in σ′, jobs 1, . . . , i are scheduled the same as in σ∗.

We look at the total value that groups Gk, Gk−1 and Gk ∪ Gk−1 contribute to the
objective value. These are the only jobs that are interesting to look at, as the value that
the other jobs contribute to the objective value in σ and σ′ does not change.
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Given some schedule τ , let cτ (S) =
∑
j∈S(n+ 1− j)∆j(τ) be the function that computes

the value that group S in τ contributes to the objective value. Then:

cσ(Gk) + cσ(Gk−1) = (|Gk−1|+ |Gk|+ r)

∑
i∈Gk−1

pi

sGk−1

+ (|Gk) + r|
∑
i∈Gk

pi

sGk

. (5.2)

cσ′(Gk ∪ Gk−1) = (|Gk−1|+ |Gk|+ r)

∑
i∈Gk∪ Gk−1

pi

sGk−1

. (5.3)

Let r denote the number of jobs scheduled after group Gk, which is equal in both σ and
σ′.

According to Algorithm 5.6 it holds that:

|Gk−1|+ (n+ 1− i)
n+ 1− i ≤ sGk−1

sGk

. (5.4)

Combining the fact that |Gk|+ r = n+ 1− i and (5.4) we know that:

|Gk−1|+ |Gk|+ r

|Gk|+ r
≤ sGk−1

sGk

. (5.5)

Rewrite (5.5):
(|Gk−1|+ |Gk|+ r)

sGk−1

≤ (|Gk|+ r)

sGk

. (5.6)

Multiplying both sides with
∑
i∈Gk

pi:

(|Gk−1|+ |Gk|+ r)

∑
i∈Gk

pi

sGk−1

≤ (|Gk|+ r)

∑
i∈Gk

pi

sGk

. (5.7)

Adding (|Gk−1|+ |Gk|+ r)

∑
i∈Gk−1

pi

sGk−1
yields:

(|Gk−1|+ |Gk|+r)
∑
i∈Gk∪ Gk−1

pi

sGk−1

≤ (|Gk−1|+ |Gk|+r)
∑
i∈Gk−1

pi

sGk−1

+(|Gk|+r)
∑
i∈Gk

pi

sGk

.

(5.8)

Combining (5.2), (5.3) and (5.8) yields:

cσ′(Gk ∪ Gk−1) ≤ cσ(Gk) + cσ(Gk−1). (5.9)

Thus the value of our changed schedule σ′ is smaller or equal than the objective value of
σ, thus σ′ is optimal as well.
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Now suppose we have the second situation: job i is scheduled in the previous group Gk,
while it should be scheduled in a new group. Then we change σ to σ′ by splitting group
Gk in two groups at job i: Gk,1 and Gk,2. Job i is now the first job in group Gk,2. Then
in σ′, jobs 1, . . . , i are scheduled the same as in σ∗.

We look at the total value that groups Gk, Gk,1 and Gk,2 contribute to the objective
value. These are the only jobs that are interesting to look at, as the value that the other
jobs contribute to the objective value in σ and σ′ does not change.

cσ(Gk) = (|Gk|+ r)

∑
i∈Gk

pi

sGk

. (5.10)

cσ′(Gk,1) + cσ′(Gk,2) = (|Gk,1|+ |Gk,2|+ r)

∑
i∈Gk,1

pi

sGk,1

+ (|Gk,2|+ r)

∑
i∈Gk,2

pi

si
. (5.11)

Let r be the number of jobs scheduled after Gk.

According to Algorithm 5.6 it holds that:

|Gk,1|+ (n+ 1− i)
n+ 1− i >

sGk,1

si
. (5.12)

Combining the fact that |Gk,2|+ r = n+ 1− i and (5.12) we know that:

|Gk,1|+ |Gk,2|+ r

|Gk,2|+ r
>
sGk,1

si
. (5.13)

Rewrite (5.13):
(|Gk,1|+ |Gk,2|+ r)

sGk,1

>
(|Gk,2|+ r)

si
. (5.14)

Multiplying both sides with
∑
i∈Gk,2

pi:

(|Gk,1|+ |Gk,2|+ r)

∑
i∈Gk,2

pi

sGk,1

> (|Gk,2|+ r)

∑
i∈Gk,2

pi

si
. (5.15)

Adding (|Gk,1|+ |Gk,2|+ r)

∑
i∈Gk,1

pi

sGk,1
yields:

(|Gk,1|+|Gk,2|+r)
∑
i∈(Gk,1∪ Gk,2)

pi

sGk,1

> (|Gk,1|+|Gk,2|+r)
∑
i∈Gk,1

pi

sGk,1

+(|Gk,2|+r)
∑
i∈Gk,2

pi

si
.

(5.16)

Rewrite (5.16):

(|Gk|+ r)

∑
i∈Gk

pi

sGk

> (|Gk,1|+ |Gk,2|+ r)

∑
i∈Gk,1

pi

sGk,1

+ (|Gk,2|+ r)

∑
i∈Gk,2

pi

si
. (5.17)
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Combining (5.10), (5.11) and (5.16) yields:

c(Gk) > c(Gk,1) + c(Gk,2). (5.18)

Thus the value of our changed schedule σ′ is smaller than the objective value of σ,
contradicting the fact that σ is optimal. Therefore this situation cannot happen.

Every time we change an optimal schedule according to one of the two options above,
schedule σ′ is also optimal. On top of that we know that the index of the first job for
which σ′ makes a different decision than σ∗ has increased compared to σ. Therefore, by
changing the schedule at most n times, we find an optimal schedule. This is the same
schedule as σ∗.
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Chapter 6

JDMS with general weights

In this chapter we work with general weights instead of unit weights. It appears that
this problem is in some ways similar to JDMS(wj = 1), and with only slight changes,
some of the properties we have proven still hold. The main difference is that we cannot
find an order on the completion times that guarantees an optimal solution. But when
an order on the job completions is enforced, Lemma 5.2 still holds for the weighted
problem, which we show in Lemma 6.1. Using this lemma, we propose a greedy algorithm,
similar to Algorithm 5.6, that finds an optimal partition of the jobs into groups given a
predetermined order of job completions.

6.1 Properties of JDMS

In Chapter 5 we proved that there exists an optimal solution such that for all i, j, where
1 ≤ i, j ≤ n, it holds that yi(Cj) ∈ {0, pi}. We want to prove that this still holds for
JDMS(wj). We first prove that, whenever we enforce an order on the completion times,
there exists a solution that satisfies this property. Note that as the optimal solution obeys
a certain order of job completions, there exists an optimal solution such that for all i, j,
where 1 ≤ i, j ≤ n, it holds that yi(Cj) ∈ {0, pi}.
Suppose that the jobs are indexed such that the completion times satisfy C1 ≤ · · · ≤ Cn.
We formulate JDMS as a linear program in the same way as we did in Chapter 5. Thus
we again introduce variables ∆1, · · · ,∆n, where:

∆i =

{
C1 if i = 1
Ci − Ci−1 if 1 < i ≤ n

The LP is as follows:
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minimize

n∑

i=1




n∑

j=i

wj ·∆i




subject to

i∑

k=1

∆k · sk ≥
i∑

j=1

pj , 1 ≤ i ≤ n

∆i ≥ 0, 1 ≤ i ≤ n

Using this LP we prove the next lemma:

Lemma 6.1. We can find an optimal schedule such that for all i, j, where 1 ≤ i, j ≤ n,
it holds that yi(Cj) ∈ {0, pi}.

Proof. We prove this lemma using the same arguments as we used in Lemma 5.2. Given
an order of completion times, we make a corresponding LP and reformulate this lemma
in terms of this linear program. For each job k = 1, . . . , n− 1 one of the following has to
hold:

∆k+1 = 0 (1) or

k∑

j=1

sj∆j =

k∑

j=1

pj . (2)

Suppose we have an optimal solution such that there exists a k with:

∆k+1 > 0 and

k∑

j=1

sj∆j >

k∑

j=1

pj .

We define ` as:
` = max{j ≤ k|∆j > 0}.

We define two new feasible solutions in the same way as we did in the proof of Lemma
5.2, for some ε > 0:

1. We define σ′ as the solution where ∆σ′

` = ∆σ
` − ε

s`
and ∆σ′

k+1 = ∆σ
k+1 + ε

sk+1
. The

change in the objection value is:

n∑

i=1

wiC
σ′

i −
n∑

i=1

wiC
σ
i =

∑

1≤i≤j≤n
wj∆

σ′

i −
∑

1≤i≤j≤n
wj∆

σ
i

=

(
n∑

i=k+1

wi

)
ε

sk+1
−
(

n∑

i=`

wi

)
ε

s`
.

41



2. We define σ′′ as the solution where ∆σ′′

` = ∆` + ε
s`

and ∆σ′′

k+1 = ∆k+1 − ε
sk+1

. The

change in the objection value is:

n∑

i=1

wiC
σ′′

i −
n∑

i=1

wiC
σ
i =

∑

1≤i≤j≤n
wj∆

σ′′

i −
∑

1≤i≤j≤n
wj∆

σ
i

=

(
n∑

i=`

wi

)
ε

s`
−
(

n∑

i=k+1

wi

)
ε

sk+1
.

As:
n∑

i=1

wiCi(σ
′)−

n∑

i=1

wiCi(σ) = −
(

n∑

i=1

wiCi(σ
′′)−

n∑

i=1

wiCi(σ)

)
,

at least one of the two solutions is better than or equal to σ. As σ is optimal, we actually
know that both new solutions are also optimal.

Suppose k is the smallest value such that neither (1) or (2) holds. Let:

ε = min{∆k+1,

k∑

j=1

sj∆j −
k∑

j=1

pj},

then either σ′ or σ′′ will give a optimal solution where either (1) or (2) holds for job k.
We repeat this procedure until this property holds for all k ∈ {0 . . . n}.
When the completion times satisfy C1 ≤ · · · ≤ Cn, we can find an optimal schedule such
that for all i, j, where 1 ≤ i, j ≤ n it holds that yi(Cj) ∈ {0, pi}. As this holds for any
order, this will also hold for the order of some optimal solution. Therefore there exists an
optimal solution such that or all i, j, where 1 ≤ i, j ≤ n, it holds that yi(Cj) ∈ {0, pi}.

6.2 Greedy algorithm

In this section, we design a greedy algorithm that, given an order on the completion
times, finds an optimal schedule for the weighted version of JDMS. According to Lemma
6.1 there should be an optimal schedule in which for all i, j, where 1 ≤ i, j ≤ n it holds
that yi(Cj) ∈ {0, pi}. So, similar to unweighted JDMS, the only thing we need to know
is in which groups we have to split up the jobs. We give a greedy algorithm that results
in an optimal schedule for the requested order. We first give a more intuitive explanation
and formal definition of the algorithm in pseudo code after.

Algorithm 6.2 returns a feasible sequence of groups. This sequence indicates which groups
of jobs should be processed in what order. Our algorithm first orders the jobs such that
w1 ≥ w2 ≥ · · · ≥ wn, which takes O(n log n) time. It then determines for each job i,
whether it is better to schedule this job in the previous group or to start a new group for
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job i. When inequality (6.1) holds, then job i is scheduled to be processed in the previous
group. Otherwise a new group will be started. The pseudo code of this greedy algorithm
can be found in Algorithm 6.2.

∑
j∈Gk

wj +
∑n
j=i wj∑n

j=i wj
≤ sGk

si
. (6.1)

Here we use sGk
to refer to the speed at which Gk is processed.

Note that when wj = 1 for all j, we have a special case of JDMS. In that case inequality
(6.1) equals inequality (5.1).

Algorithm 6.2 (Greedy algorithm). Suppose we want to schedule n jobs with processing
times p1 ≤ · · · ≤ pn. We schedule the jobs one by one, according to the following
algorithm:

Initialization: G1 = {1}, k = 1, E = w1, s = s1

For i = 2 until i = n do
If (E +

∑n
j=i wj)si ≤ (

∑n
j=i wj)s

Then
E → E + wi,
Gk → Gk ∪ {i}

Else
E → wi,
s→ si,
Gk+1 → {i}
k → k + 1,

Return [G1, . . . , Gk]

Theorem 6.3. When an order on the completion times is enforced Algorithm 6.2 results
in an optimal schedule for JDMS.

Proof. Suppose σ is an optimal schedule for an instance of JDMS with n jobs satisfying
C1 ≤ · · · ≤ Cn. Let σ∗ be the solution according to the algorithm. Then we want to show
that a schedule according to the algorithm will give a solution with an equal objective
value. Let job i be the first job in σ that is not scheduled according to the algorithm.
Then there are two possible situations:

1. In σ, job i is scheduled in a new group Gk, whereas in σ∗ it is still processed in
group Gk−1.

2. Job i is scheduled in the previous group Gk, while it should be scheduled in a new
group.
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Suppose we are in the first situation: in σ, job i is scheduled in a new group Gk, whereas
in σ∗ it is still processed in group Gk−1. Then we change σ to σ′ by merging Gk and
Gk−1. Then in σ′ , jobs 1, . . . , i are scheduled the same as in σ∗.

We look at the total value that groups Gk, Gk−1 and Gk ∪ Gk−1 contribute to the
objective value. The jobs in these groups are the only jobs that are interesting to look
at, as the value that the other jobs contribute to the objective value in σ and σ′ does not
change. Let c be the function that computes the value that a group contributes to the
objective value. Then:

cσ(Gk)+cσ(Gk−1) =


 ∑

j∈Gk−1

wj +
∑

j∈Gk

wj + r



∑
j∈Gk−1

pj

sGk−1

+


∑

j∈Gk

wj + r



∑
j∈Gk

pj

sGk

,

(6.2)

cσ′(Gk ∪ Gk−1) =


 ∑

j∈Gk−1

wj +
∑

j∈Gk

wj + r



∑
j∈Gk∪ Gk−1

pj

sGk−1

. (6.3)

Let r be the number of jobs scheduled after Gk.

According to Algorithm 6.2 it should hold that:

∑
j∈Gk−1

wj +
∑n
j=i wj∑n

j=i wj
≤ sGk

si
. (6.4)

Combining the fact that
∑
j∈Gk

wj + r =
∑n
j=i wj and (6.4) we know that:

∑
j∈Gk−1

wj +
∑
j∈Gk

wj + r
∑
j∈Gk

wj + r
≤ sGk

si
. (6.5)

We rewrite (6.5):

∑
j∈Gk−1

wj +
∑
j∈Gk

wj + r

sGk−1

≤
∑
j∈Gk

wj + r

sGk

. (6.6)

Multiplying both sides with
∑
j∈Gk

pj :


 ∑

j∈Gk−1

wj +
∑

j∈Gk

wj + r



∑
j∈Gk

pj

sGk−1

≤


∑

j∈Gk

wj + r



∑
j∈Gk

pj

sGk

. (6.7)
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Adding
(∑

j∈Gk−1
wj +

∑
j∈Gk

wj + r
) ∑

j∈Gk−1
pj

sGk−1
yields:


 ∑

j∈Gk−1

wj +
∑

j∈Gk

wj + r



∑
j∈Gk∪ Gk−1

pj

sGk−1

≤


∑

j∈Gk

wj + r



∑
j∈Gk

pj

sGk

+


 ∑

j∈Gk−1

wj +
∑

j∈Gk

wj + r



∑
j∈Gk−1

pj

sGk−1

. (6.8)

Combining (6.2), (6.3) and (6.8) yields:

cσ′(Gk ∪ Gk−1) ≤ cσ(Gk) + cσ(Gk−1). (6.9)

Thus the value of our changed schedule σ′ is smaller or equal than the objective value of
σ, thus σ′ is optimal as well.

Now suppose we have the second situation: job i is scheduled in the previous group Gk,
while it should be scheduled in a new group. Then we change σ to σ′ by splitting group
Gk in two groups at job i: Gk,1 and Gk,2. Job i is now the first job in group Gk,2. Then
in σ′, jobs 1, . . . , i are scheduled the same as in σ∗.

We look at the total value that groups Gk, Gk,1 and Gk,2 contribute to the objective
value. The jobs in these groups are the only jobs that are interesting to look at, as the
value that the other jobs contribute to the objective value in σ and σ′ does not change.

cσ(Gk) =


∑

j∈Gk

wj + r



∑
j∈Gk

pj

sGk

, (6.10)

cσ′(Gk,1)+cσ(Gk,2) =


 ∑

j∈Gk,1

wj +
∑

j∈Gk,2

wj + r



∑
j∈Gk,1

pj

sGk,1

+


 ∑

j∈Gk,2

wj + r



∑
i∈Gk,2

pi

si
.

(6.11)

Let r be the number of jobs scheduled after Gk.

According to Algorithm 6.2 it should hold that:
∑
j∈Gk,1

wj +
∑n
j=i wj∑n

j=i wj
>
sGk,1

si
. (6.12)

Combining the fact that
∑
j∈Gk,1

wj + r =
∑n
j=i wj and (6.12) we know that:

∑
j∈Gk,1

wj +
∑
j∈Gk,2

wj + r
∑
j∈Gk,2

wj + r
>
sGk,1

si
. (6.13)
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We rewrite (6.13):
∑
j∈Gk,1

wj +
∑
j∈Gk,2

wj + r

sGk,1

>

∑
j∈Gk,2

wj + r

si
. (6.14)

Multiplying both sides with
∑
j∈Gk,2

pj :


 ∑

j∈Gk,1

wj +
∑

j∈Gk,2

wj + r



∑
j∈Gk,2

pj

sGk,1

>


 ∑

j∈Gk,2

wj + r



∑
j∈Gk,2

pj

si
. (6.15)

Adding (
∑
j∈Gk,1

wj +
∑
j∈Gk,2

wj + r)

∑
j∈Gk,1

pj

sGk,1
yields:


 ∑

j∈Gk,1

wj +
∑

j∈Gk,2

wj + r



∑
j∈Gk,1∪ Gk,2

pj

sGk,1

>


 ∑

j∈Gk,1

wj +
∑

j∈Gk,2

wj + r



∑
j∈Gk,1

pj

sGk,1

+


 ∑

j∈Gk,2

wj + r



∑
j∈Gk,2

pj

si
. (6.16)

We rewrite (6.17):


∑

j∈Gk

wj + r



∑
j∈Gk,1∪ Gk,2

pj

sGk,1

>


 ∑

j∈Gk,1

wj +
∑

j∈Gk,2

wj + r



∑
j∈Gk,1

pj

sGk,1

+


 ∑

j∈Gk,2

wj + r



∑
j∈Gk,2

pj

si
. (6.17)

Combining (6.10), (6.11) and (6.17) yields:

cσ(Gk) > cσ′(Gk,1) + cσ′(Gk,2). (6.18)

Thus the value of our changed schedule σ′ is smaller than the objective value of σ,
contradicting the fact that σ is optimal. Therefore this situation cannot happen.

Every time we change an optimal schedule according to one of the two options above,
schedule σ′ is also optimal. On top of that we know that the index of the first job for
which σ′ makes a different decision than σ∗ has increased compared to σ. Therefore, by
changing the schedule at most n times, we find an optimal schedule. This is the same
schedule as σ∗.
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Therefore, for any order, we can find an optimal schedule for that specific order. But
which order will lead to an optimal solution?

6.3 Unit processing times: JDMS(pj = 1)

We first proof that when all jobs have unit processing times, thus pj = 1 for all jobs j,
we can find an order that leads to an optimal solution.

Lemma 6.4. Suppose we have an instance of JDMS(pj = 1) such that w1 ≥ · · · ≥ wn,
then there is an optimal schedule in which C1 ≤ · · · ≤ Cn.

Proof. Suppose we have an optimal schedule σ and it does not hold that Cσ1 ≤ · · · ≤ Cσn .
Then we look at the smallest i such that Cσi+1 < Cσi and wi > wi+1 (if wi = wi+1 then job
i and i+ 1 are identical and therefore switching job i with job j will result in an optimal
schedule as well). We change σ to σ∗ by processing job i + 1 whenever σ processes job
i and job i whenever σ processes job i + 1. All other jobs are processed as in σ. As
pi = pi+1, we know that Cσ

∗

i+1 = Cσi and Cσ
∗

i = Cσi+1 and Cσ
∗

j = Cσj for all j 6= i, i+ 1.

Thus wjC
σ
j = wjC

σ∗

j for all j 6= i, i + 1. Furthermore, as wi > wi+1, Cσ
∗

i+1 > Cσ
∗

i ,

Cσi = Cσ
∗

i+1 and Cσi+1 = Cσ
∗

i , some simple rewriting learns us that:

wiC
σ
i + wi+1C

σ
i+1 = wi+1C

σ∗

i + wiC
σ∗

i+1

= wi+1C
σ∗

i + wiC
σ∗

i+1 − (wiC
σ∗

i + wi+1C
σ∗

i+1) + (wiC
σ∗

i + wi+1C
σ∗

i+1)

= (wi − wi+1)(Cσ
∗

i+1 − Cσ
∗

i ) + (wiC
σ∗

i + wi+1C
σ∗

i+1)

> wiC
σ∗

i + wi+1C
σ∗

i+1

Thus
∑n
i=1 wiC

σ
i >

∑n
i=1 wiC

σ∗

i

As σ is optimal it has to hold that wi = wi+1, which contradicts with the fact that
wi > wi+1. Therefore σ could not be optimal.

So when we number the jobs such that w1 ≥ · · · ≥ wn, we know that there exists an
optimal solution with C1 ≤ · · · ≤ Cn and Algorithm 6.2 will find this solution.

6.4 Arbitrary processing times

Dropping the restriction of unit processing time may seem a small change, but unfor-
tunately we cannot find an order that will lead to an optimal schedule. Smith [22] has
proven that WSPT is optimal for the problem if the machine speed does not change.
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Therefore, if there exists any way to number the jobs such that there always exist an
optimal solution with C1 ≤ · · · ≤ Cn, it has to be according to the decreasing ratio wj/pj
. Unfortunately, there does not always exist an optimal schedule for this order of jobs.
We show this by giving a counterexample:

Example 6.5 (WSPT not optimal for decreasing speed). Suppose we have 2 jobs with
p1 = 1, p2 = 10, w1 = 1, w2 = 9, s1 = 5 and s2 = 1, then it holds that w1/p1 >
w2/p2. Therefore, according to WSPT, there should be an optimal solution with C1 ≥ C2.
According to Algorithm 6.2 it is optimal to schedule them at the same time.

w1C1 + w2C2 = (9 + 1) · 10 + 1

5
= 22

Suppose we process job 1 after job 2. Then the objective value is:

w1C1 + w2C2 = 1 · 3 + 9 · 2 = 21.

In this example we see that it can be strictly better to have C2 < C1 and there does not
always exists an optimal schedule that obeys the WSPT order.

As WSPT-order doesn’t lead to an optimal solution, we cannot guarantee that Algorithm
6.2 will find an optimal schedule. In fact, using WSPT-order can even lead to an arbitrary
bad solution.

Example 6.6 (WSPT arbitrarily bad for increasing speeds). Suppose we have two jobs
with p1 = 2, p2 = A,w1 = 1, w2 = A, s1 = 1 and s2 = A. If we use WSPT order, we want
C1 ≤ C2, as w1/p1 > w2/p2. According to algorithm 6.2 it is optimal to first complete
job 2 and then complete job 1. Then we get objective value:

w1C1 + w2C2 = A · A
1

+ 1 ·
(
A

1
+

2

A

)
= A2 +A+

2

A

When we first complete job 1 and then complete job 2 we get objective value:

w1C1 + w2C2 = 1 · 2

1
+A ·

(
2

1
+
A

A

)
= 3A+ 2

Thus the optimal solution has at most value 3A+ 2. By letting A go to infinity, the ratio
also approaches infinity:

lim
A→∞

(
WSPT

OPT

)
≥ lim
A→∞

(
A2 +A+ 2

A

3A+ 2

)
=∞

Thus WSPT order can be arbitrarily bad compared to the optimum.
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Chapter 7

JDMS with release dates

In this chapter we add release dates to JDMS. Note that when the machine speed is
constant we have problem 1|rj |

∑
wjCj , which is proven to be strongly NP-hard [14]

(Section 3.1.4 ). Therefore JDMS(rj) is strongly NP-hard as well.

When restricting the problem in other ways, interesting problems again occur. By re-
stricting to unit weights for example: JDMS(rj , wj = 1). The machine speed is si, when
there are i jobs available at that moment. We write ri(t) to denote the remaining pro-
cessing time of job i at time t. We already know that SRPT is an optimal algorithm for
1|preempt, rj |

∑
Cj , see Theorem 3.6. When the speed function s is non-decreasing, we

can extend this result to JDMS(rj , wj = 1).

Theorem 7.1. If the speed function s is non-decreasing, then JDMS(rj , wj = 1) can be
solved in polynomial time by SRPT.

Proof. Consider an optimal schedule σ in which available job i with the shortest remaining
processing time is not being processed at time t, and instead available job j is being
processed, so ri(t) < rj(t). In total ri(t) + rj(t) is spent on jobs i and j after time t.

Now we change σ to σ′:

1. Take the first ri(t) units of time that were devoted to either of jobs i and j after
time t, and use them instead to process job i to completion.

2. Take the remaining rj(t) units of time that were spent processing job i and j after
time t and use them to schedule job j.

In Figure 7.1 this interchange argument is visualized. We obtain a better schedule σ′, as
Cσ
′

i < min(Cσi , C
σ
j ) and Cσ

′

j ≤ max(Cσi , C
σ
j ). Furthermore, as Cσ

′

i < min(Cσi , C
σ
j ), we

can begin to process faster on a higher speed (as s is non-decreasing). Therefore Cσ
′

k ≤ Cσk
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Cj

Cj

σ

σ′

Figure 7.1: Visualized interchange argument

for all jobs k with k ≥ i. As some jobs are completed earlier and no jobs are completed
later, σ′ is a better schedule than σ, which contradicts the optimality of σ.

For an arbitrary speed function s an optimal schedule may require unforced idleness. A
non-delay schedule can be even arbitrary bad.

Theorem 7.2. A non-delay schedule for JDMS(rj , wj = 1) can be arbitrarily bad com-
pared to the optimal solution.

Proof. In a non-delay schedule we cannot leave a machine idle when there are jobs avail-
able for processing. We look at the following instance:

p1 = A, p2 = A,
r1 = 0, r2 = 2.
s1 = 1, s2 = A,

In Figure 7.2 are two possible schedules. The top one is the unique, non-delay schedule.
The bottom schedule delays the end of job 1 and therefore left the machine idle, while
we could finish job 1.

C1

C1, C2

C2

0 1 2 3 4 . . .

0 1 2 3 4 . . .

σ1

σ2

Figure 7.2: Top: Unique non-delay schedule. Bottom: schedule with unforced idleness.

We look at the objective functions for both schedules:
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∑
Cσ1
j = Cσ1

1 + Cσ1
2 = 1 + (A+ 2) = A+ 3

∑
Cσ2
j = Cσ2

1 + Cσ2
2 = 2

(
2 +

A

A

)
= 6

We compare the objective value of the unique non-delay schedule σ1 to the objective value
of σ2.

OPTNon-delay

OPT
≥ lim
A→∞

(∑
Cσ1
j∑

Cσ2
j

)
= lim
A→∞

(
A+ 3

6

)
=∞.

Therefore a non-delay schedule can be arbitrarily bad compared to the optimal schedule.

Corollary 7.3. An optimal schedule for JDMS(rj , wj = 1) may require unforced idleness.
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Chapter 8

Results and discussion

In this thesis we defined problem JDMS and looked at several variations. The table below
is a summery of the problems we solved:

Without preemption With preemption
JDMS(wj = 1) Solvable in polynomial time

(Chapter 4).
Solvable in polynomial time
(Chapter 5).

JDMS(pj = 1) Solvable in polynomial time
(Chapter 4).

Solvable in polynomial time
(Chapter 6).

JDMS Remains open Remains open
JDMS(rj , wj = 1) Strongly NP-hard, as it is already

strongly NP-hard when machine
speed is fixed [16].

Solved in polynomial time by
SRPT when si is non-decreasing
(Chapter 7). Remains open for
an arbitrary speed function.

We discuss these results briefly.

The first results we obtained were for JDMS without preemption (Chapter 4). For both
JDMS(wj = 1) and JDMS(pj = 1) without preemption we succeeded in constructing an
optimal solution by rewriting the objective function as

∑n
i=1 a(i)qi, where a(i) was either

the processing time or weight on position i and qi some constant. Such a function is
minimized by assigning the smallest ai to the largest qi and thus in both cases an optimal
schedule can be created.

We also looked at JDMS without preemption. In this case we did not find an optimal
solution, nor proved that it is weakly or strongly NP-hard. We did prove that the optimal
policy when the machine speed is constant, WSPT, can be arbitrarily bad in this case.

The most remarkable results in this thesis were the ones for JDMS(wj = 1) and for
JDMS(pj = 1) (Chapter 5, 6). We developed an algorithm that, if we request some order
on the completion times, will construct an optimal schedule for that specific order. For
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problems JDMS(wj = 1) and JDMS(pj = 1) we succeeded in finding these orders:

• For the problems JDMS(wj = 1) we proved that when p1 ≤ · · · ≤ pn, then there will
always be an optimal solution such that C1 ≤ · · · ≤ Cn, and thus by requesting the
order C1 ≤ · · · ≤ Cn Algorithm 5.6 will find an optimal solution for JDMS(wj = 1).

• For JDMS(pj = 1) we proved that when w1 ≥ · · · ≥ wn, there will always be an
optimal solution with C1 ≤ · · · ≤ Cn, and thus by requesting the order C1 ≤ · · · ≤
Cn Algorithm 6.2 will find an optimal solution for JDMS(pj = 1).

For JDMS we have not found an order such that there is always an optimal solution that
obeys this order. When the machine speed is constant Smith [22] proved that WSPT
results in an optimal schedule. For JDMS the WSPT order can be arbitrarily bad.

In Chapter 7 we had a quick look on JDMS(rj , wj = 1). We proved that a non-delay
schedule may be arbitrarily bad, thus sometimes unforced idleness is necessary to con-
struct an optimal schedule. If the speed function is non-decreasing, JDMS(rj , wj = 1)
can be solved in polynomial time by SRPT. For an increasing or arbitrary speed function
the problem remains unsolved.

8.1 Open problems

Not all problems that we mentioned are solved. There are three problems that are inter-
esting for further research:

1. JDMS without preemption.
We proved that WSPT can be arbitrarily bad.

2. JDMS.
We proved that WSPT can be arbitrarily bad when the speed is increasing. We
have also given an example that WSPT is not necessarily optimal when the speed
is decreasing. Though it is not clear if WSPT can be arbitrarily bad in this case.
Algorithm 6.2 can find the optimal solution for any requested order on completion
times. As the number of orders on completion times is of order

3. JDMS(rj , wj = 1) with arbitrary or non-increasing speed function.
SRPT is optimal when si is non-decreasing, but when si is arbitrary an optimal
solution may require unforced idleness. A non-delay schedule can be arbitrarily bad.
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