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1 Introductie
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Een verzameling van punten A t/m F, met daartussen lijnen, waarbij je
naast de lijnen ook nog een getal kan toevoegen om een hedendaagse kwestie
gestructureerd voor je te zien. Dat is wat we zien in het plaatje hierboven. Als
we de letter ‘E’ nou Utrecht noemen, en ‘A’ Amsterdam, en de getallen naast
de lijnen betekenen afstanden in kilometers, wat is dan de kortste route van A
naar E? De conclusie is natuurlijk dat we via stad B moeten reizen gebaseerd
op afstand.

Een verzameling punten, ook wel knopen genoemd, met daartussen een ver-
zameling lijnen wordt een graaf genoemd. De mogelijkheden en interpretaties
van grafen zijn enorm! We kunnen bijvoorbeeld een graaf maken van landen
op de wereldkaart, waarbij de knopen de landen voorstellen en lijnen de aan-
grenzende landen, of het wegennetwerk binnen nederland reconstrueren waarbij
knopen de steden voorstellen en lijnen de verbindende snelwegen.

In deze scriptie ga ik mij vooral bezighouden met abstracte grafen. Ik wil
kijken naar het idee van planariteit (definitie 2.3) van enkelvoudige grafen (de-
finitie 2.2) en waar enkelvoudige grafen aan moeten voldoen om planair te zijn.
Beginnend in het tweedimensionale vlak, ga ik me vervolgens oriénteren op de
driedimensionale ruimte en ben ik benieuwd hoe planariteit van grafen zich ge-
draagt op driedimensionale oppervlakken. (zoals bijvoorbeeld een bol, donut of
een voorwerp met 10 gaten).



2 Planaire grafen

2.1 Basisdefinities

Voor we het hebben over planaire grafen, zal ik de volgende definities van een
graaf aanhouden.

Definitie 2.1. Een graaf G=(V,E) is een geordend paar waarin V een wil-
lekeurige eindige verzameling knopen, weergegeven door v;, is en waarin E een
verzameling is bestaande uit verbindende zijden, weergegeven door e;; = {v;, v }:
de eindpunten van een zijde.

De elementen uit ‘V’ heten de knopen (vertices) van de graaf en de elementen
uit ‘E’ heten zijden (edges).
Tussen elke twee knopen kan er een zijde bestaan, maar ook meerdere. Een
zijde van een willekeurige knoop naar zichzelf, ook wel een lus genoemd, is ook
een correcte zijde in een graaf.

Definitie 2.2. Een graaf G = (V, E) heet enkelvoudig als de graaf geen lussen
bevat en er tussen elke twee knopen hoogstens één zijde bestaat.

Definitie 2.3. Een enkelvoudige graaf G = (V, E) heet compleet als elke knoop
verbonden is met alle andere knopen. Zo’n graaf wordt vaak genoteerd als k.,
waarbij n het totaal aantal knopen is van de graaf

Definitie 2.4. Een graaf G = (V,E) heet samenhangend als je vanaf elke
willekeurige knoop naar alle andere knopen kan lopen via zijden in E :
Vo,w eV, 3 v=v,va,...,0, =w zodanig dat {v;,v;11} € F

In deze scriptie zal er voornamelijk naar samenhangende enkelvoudige grafen
worden gekeken, tenzij anders vermeld wordt.
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Een bekende puzzel in deze wereld is het Utility problem. Stel je hebt drie
huizen die elk de standaard benodigde gas/water/elektriciteit nodig hebben.

2.2 Planariteit



Kun je de drie huizen verbinden met gas, water en elektriciteit zonder dat de
lijnen elkaar snijden?

Proberende zul je erachter komen dat dit net niet gaat lukken, maar waarom?
Hier kunnen we een nuttige uitspraak over doen zodra we weten wat planariteit
is en hoe het zich gedraagt.

Definitie 2.5. FEen plainaire graaf is een graaf die je in het vlak zodanig kan
tekenen dat zijden elkaar niet snijden.

Als we een graaf planair tekenen, ontstaan er ingesloten gebieden. Dit worden
facetten (faces) genoemd. Hierbij tellen we het buitengebied als een extra facet.

Voorbeeld 2.6. De complete graaf ky is planair omdat deze te tekenen is als een
graaf zonder snijdende zijden. Het aantal facetten is gelijk aan 4 (Stelling 2.7).
De complete graaf ks is niet planair. Hiervoor is geen tekening te maken zonder
snijdende zijden (voor het bewijs, zie stelling 2.8). Over het aantal facetten
kunnen we nog geen uitspraak doen.

Figuur 1: k4 in verschillende vormen Figuur 2: k;

Zoals te zien is in figuur 1, is de graaf k4 planair. Dat een graaf in eerste
instantie twee snijdende zijden bevat, is dus geen conclusie voor het niet planair
zijn van grafen. We kunnen k4 uiteindelijk zonder snijdende zijden tekenen, dus
is k4 planair.

Hoe groter de graaf wordt, hoe moeilijker en complexer de tekeningen wor-
den. We zouden niet makkelijk van een graaf kunnen zeggen of hij planair is of
niet. Euler heeft echter laten zien dat er een verband bestaat tussen de knopen,
zijden en facetten van een planaire graaf.

Stelling 2.7. (Euler Karakteristiek I) Voor samenhangende planaire grafen
G = (V,E) geldt de formule #V —#E +#F = 2, waarbij F het aantal facetten
is van de planaire graaf.

Bewijs. We bewijzen de Euler Karakteristiek met behulp van natuurlijke induc-
tie naar het aantal zijden.

P(1):

Stel een graaf G = (V, E) heeft één zijde. Dan heeft deze ook precies twee kno-
pen. Omdat deze graaf planair is, en maar één zijde heeft, is er geen facet, op
het triviale omliggende facet na. Kortom, #V =2, #F =1 en #F = 1. Hieruit
volgt dat #V — #E+#F =2—1+1=2. Dus P(1) geldt.

P(n) = P(n+1):



Stel een samenhangende graaf G = (V, E) is planair op n zijden. Dan geldt
dat #V — #E + #F = 2. We voegen nu één zijde e;; toe aan onze bestaande
graaf, waarbij deze zijde geen andere zijden kruist, omdat dit een tegenspraak
zou kunnen geven met de planariteit van de graaf. Nu zijn er twee opties:

Optie 1: e;; wordt verbonden aan v; waarbij v; een nieuwe knoop is die in
eerste instantie niet in V' zat. Op deze manier ontstaat er geen nieuw facet en
geldt: A#F = 0,A#V =1 en A#FE = 1, wat opnieuw resulteert in #V —
#E +#F =2.

Optie 2: Onze nieuw zijde wordt verbonden aan een willekeurige bestaande
knoop. Omdat de graaf samenhangend is, ontstaat er een nieuw facet. Het
resultaat is: A#F = 1,A#V = 0 en A#FE = 1. Ook dit betekent dat nog
steeds #V — #E + #F = 2.

Op deze manier kunnen we willekeurig veel zijden toevoegen aan onze graaf,
en zo elke planaire graaf opbouwen met elementaire zijden, waarbij de graaf nog
voldoet aan #V — #E + #F = 2. Dus voor alle samenhangende planaire grafen
geldt: #V —#E + #F = 2. O

Stelling 2.8. k5 is niet planair

Bewijs. Stel ks is wel planair, dan voldoet deze aan de Euler karakteristiek
#V — #FE + #F = 2. k5 heeft 5 knopen, en 10 zijden. Dit zou betekenen dat
F =17, oftewel, k5 heeft 7 facetten. Een facet wordt ingesloten door minimaal
drie zijden. Dit zou betekenen dat er minimaal F'3(= 21) grenszijden zijn. Elke
zijde is de grens van twee aansluitende facetten, wat betekent dat ks minstens
21/2 = 10,5 zijden bevat. Dit zou betekenen dat k5 minstens 11 zijden heeft.
Dit is een tegenspraak met het feit dat ks 10 zijden heeft. Dus F # 7 , dus k5
voldoet niet aan Euler’s karakteristiek, dus k5 is niet planair. O

Als we nu weer terugkijken naar het utility probleem, dan kunnen we daar
nu wel een betere uitspraak over doen. Als we het utility probleem als een graaf
zouden afbeelden, dan krijgen we graaf als in figuur 3.

Figuur 3: ks 3

We kunnen dus de huizen als één groep zien, en de utilities als één groep.
Dit is een voorbeeld van een bipartitie graaf.

Definitie 2.9. We noemen een graaf bipartiet als je de knopen in twee verza-
melingen U en W kan opdelen zodanig dat elke zijde e;; een verbinding is van
verzameling U naar W. Fen volledig bipartiete graaf wordt genoteerd als K,
met u=|U| en w = |W|.



Het utility probleem kunnen we dus opvatten als een k3 3 graaf, waarbij we
drie huizen in U hebben (die onderling niet verbonden zijn), en de utilities in
W. Dan is nu de vraag, is k3 3 planair?

Stelling 2.10. k33 is niet planair.

Bewijs. Stel ks 3 is wel planair, dan voldoet k33 aan de Euler karakteristiek
H#V —H#HE+#F =2.V =6, F =9, en dus geldt dat F = 5. In het geval
van een bipartiete graaf wordt elk facet begrensd door minimaal 4 zijden. Elke
zijde is de grens van twee verschillende facetten. Kortom, ks 3 bevat 20/2 = 10
grenszijden. Dit zou betekenen dat ks 3 minstens 10 zijden heeft. Dit is in
tegenspraak met het feit dat k33 9 zijden heeft. Dus k33 voldoet niet aan de
Euler formule, dus k3 3 is niet planair. O

Het is dus niet mogelijk om k3 3 te tekenen in het platte vlak zonder twee
snijdende zijden, en dus kunnen we het utility probleem niet oplossen in het
platte vlak.

2.3 Kuratowski & Wagner

In 1930 kwam Kazimierz Kuratowski met een interessante stelling over planaire
grafen. Deze stelling maakte gebruik van de termen deelgraaf en onderverdeling.

Definitie 2.11. Zij G, H twee grafen, Dan is H een deelgraaf van G als H
bestaat wit een deelverzameling van de knopen en van de zijden van G. Hierbij
moet de deelverzameling van de knopen alle eindpunten bevatten van de zijden
die in de deelverzameling van zijden zitten.

Definitie 2.12. Zij G een graaf en ey, een willekeurige zijde van de graaf. Dan
is een onderverdeling van een zijde een toevoeging van een knoop v. op de
zigde eqp en krijgen we de zijden eq. en eqy. Hierbij voegen we de knoop v, toe
aan V', en de twee zijden aan E.

We noemen een graaf H een onderverdeling van G als wit G, door middel van
onderverdelingen, de graaf H gemaakt kan worden.

Stelling 2.13. (Kuratowski’s Theorem,)
Zij G = (V,E) een graaf. Dan is G planair < G bevat geen onderverdeling van
k33 of ks als deelgraaf.

Bewijs. = Stel G bevat wel een onderverdeling van ks 3 of ks als deelgraaf en
noem deze deelgraaf H. Met stelling 2.8 en 2.10 zien we dat k33 en ks niet
planair zijn. Een onderverdeling van een planaire graaf is wederom planair. H
is dus een deelgraaf van een planaire graaf die k3 3 of k5 bevat. Deze is dus niet
planair, en dus is G ook niet planair.

< De omgekeerde stelling is een een stuk lastiger, en zal ook niet hier worden
bewezen. Voor het bewijs verwijs ik naar Tamar-Mattis[6]. O

Naast Kuratowski was ook Klaus Wagner bezig met planariteit van gra-
fen. Wagner kwam ook met een soortgelijke stelling als Kuratowski, maar deze
maakte gebruik van minoren.



Definitie 2.14. Zij G, H twee grafen. Dan is H een minor van G als we H
kunnen verkrijgen wit G door herhaaldelijk toepassen van:

1) Een zijde elimineren;

2) FEen zijde elimineren en de twee knopen aan het uiteinde samenvoegen;

3) Een knoop elimineren, en daarbij ook de bijbehorende zijden.

Opmerking 2.15. Een minor en deelgraaf zijn bijna hetzelfde, behalve dat we
bij een minor ook nog twee knopen kunnen samentrekken (bewerking 2).

Stelling 2.16. Zij G = (V, E) een graaf. dan is G planair < ks s en ks niet
tot de minoren van G behoren.

Je zou kunnen zeggen dat Kuratowkski’s theorem sterker is dan die van
Wagner omdat een onderverdeling nog in een minor kan worden veranderd,
maar een minor niet altijd in een onderverdeling. In de gevallen van de twee
grafen k33 en ks is het erg makkelijk aan te tonen dat als een graaf één van
de twee grafen als minor heeft, dat deze ook de graaf als onderverdeling heeft.
Hiermee zijn stelling 2.13 en 2.16 equivalent.



3 Representaties van gesloten oppervlakken

3.1 Het Crossing number

We kijken even terug naar het Utility probleem. We hebben bewezen dat deze
niet planair te tekenen is in het platte vlak, maar kunnen we deze wel planair
teken op gesloten oppervlakken? Als we dit proberen op een bol, dan komen we
al snel tot de conclusie dat een bol topologisch hetzelfde is als het platte vlak.
Hierop zou het utility probleem nog steeds niet op te lossen zijn.

Het wordt interessant om het utility probleem op een bol te bekijken met
een gat in het midden, oftewel, een donut. Het gat van de donut zorgt ervoor
dat we minstens één zijde door het midden kunnen sturen, die vervolgens aan
een andere kant er weer uit komt.

Stelling 3.1. k33 is planair op een donut

Bewijs. Zie figuur 4.

Figuur 4: k3,3 getekend op de donut.

We hebben nu bewezen dat k33 planair is door het te laten zien middels
een tekening. In hoofdstuk 3 zullen we dit ook bewijzen zonder een tekening te
maken.

Waar k3 3 niet planair was op een bol, is deze wel planair op een donut.
Hieruit volgt dat eigenschappen van een graaf kunnen veranderen zodra je een
gat toevoegt aan het gesloten oppervlak waarop je de graaf tekent, omdat zijden
zich nu door het gat naar de andere kant kunnen bewegen zonder een andere
zijde te snijden.

Als wij ons dus niet meer beperken tot het platte vlak, maar tot gesloten
oppervlakken in het algemeen, zijn er meer grafen planair. Maar welke grafen
zijn nu planair op bijvoorbeeld de donut? Voordat we hier naar gaan kijken,
willen we eerst wat weten over het crossing number.



Definitie 3.2. Het crossing number van een graaf G, genoteerd als Cr|G], is
het minimale aantal benodigde snijpunten die G heeft in zijn meest simpele vorm
bij een tekening in het platte vlak.

Merk op: Een graaf G is planair < Cr[G] =0

Voorbeeld 3.3. Als we terug kijken naar onze grafen k4, ks en ks s dan geldt
voor deze grafen dat Crlks] = 0,Crlks] =1 en Cr[kss] = 1.

Het crossing number zegt dus iets over het aantal snijpunten dat nodig is om
een graaf te tekenen in zijn meest simpele vorm. Dit geeft ons meer informatie
over de vorm van een graaf. Als Cr[G] =1, dan weten we dat er twee zijden
snijden. Om deze graaf vervolgens planair te maken, zouden we deze weer
kunnen projecteren op de donut om te kijken of hij hier wel planair op te tekenen
is. Dit brengt ons ook bij de volgende stelling:

Stelling 3.4. Zij G een graaf met Cr|G] = 1, dan geldt dat G planair is op de
donut.

Het volgende bewijs is een intuitief bewijs, waarop ik niet al te diep in zal
gaan.

Bewijs. Zij e; en e de zijden die elkaar snijden. Omdat Cr[G] = 1, zijn er geen
andere zijden die een probleem opleveren. Z.v.v.a. laat e; nu over de breedte
van de donut lopen en e; over de lengte. Op deze manier komen zowel e als es
bij precies de overige knopen van de graaf aan, zonder een zijde te snijden, en
kun je deze zijden verbinden aan de bijbehorende knopen. Dit heft het snijpunt
op van e; en ez. Dit heeft als gevolg dat G planair is op de donut. O

Definitie 3.5. Fen graaf G die snijpuntloos is op de donut wordt ook wel een
Toroidale graaf genoemd.

Gevolg 3.6. Alle grafen G met Cr[G] = 0 en Cr[G] = 1 zijn Toroidale grafen.

Toroidale grafen hebben een kleurring van hoogstens 7. Dit wil zeggen dat
als je de knopen van de graaf kan kleuren zonder dat twee verbonden knopen
dezelfde kleur hebben, dat deze planair is op de donut, waarbij we hoogstens
7 verschillende kleuren gebruiken. k7 is een voorbeeld van een graaf met een
kleuring van precies 7.

3.2 Representaties in het platte vlak

Het bestuderen van grafen op een gesloten oppervlak blijkt vaak een lastig
concept te zijn. Naast dat objecten soms abstracte vormen zijn, zijn de meeste
definities we kennen beter toepasbaar in het platte vlak. Het zou dus goed
uitkomen als we onze donut kunnen representeren als het platte vlak en hier
vervolgens onze definities en stellingen op kunnen toepassen, en dat is mogelijk.



R

P S ——

Figuur 5: De representatie van een donut.

In figuur 5 zien we hoe een vlak wordt omgevouwen naar een donut. Aller-
eerst vouwen we de twee oranje pijlen (blauwe zijden) naar elkaar toe totdat
deze elkaar raken. Daarna vouwen we de zwarte pijlen (groene zijden) naar
elkaar toe. Zodra de groene zijden elkaar raken, ontstaat er dus een cirkel met
een gat in het midden, oftewel, een donut.

Het unieke van deze manier van representeren in het tweedimensionale vlak
is dat als je een zijde helemaal naar boven trekt en ‘over’ de blauwe zijde heen
gaat, dan kom je er onderaan weer uit! De donut is immers rond, dus als je
helemaal rond gaat, kom je weer bij het begin uit. Dit is beter te zien aan de
rode zijden in figuur 6.

oy

46

Figuur 6: k5 op de donut zonder snijpunten

Voorbeeld 3.7. (K5 planair op de donut) In figuur 6 zien we dat ks op de donut
kan worden getekend zonder snijpunten. Als we nu de randen naar elkaar toe
vouwen zoals in figuur 5, krijgen we een donut met daarop de graaf ks getekend
zonder snijpunten.

In figuur 6 zien we dus dat de zijden {1,3}, {1,4} en {3,5} via de kader
verspringen naar de andere kant. In feite kunnen we onze graaf aan beide

10



kanten opnieuw tekenen, en zullen de zijden aan elkaar aansluiten. Uitgaande
van onze initiéle graaf in het midden, laten we op deze manier zien dat elke
willekeurige knoop wordt verbonden met elke andere knoop. Dit wordt ook wel
een behang representatie genoemd.

-1

-1

»2

2

- 1

-1

- 1

"1

"2

- 1

- 1

» 2

.2

Figuur 7: ks als behang representatie

De behang representatie geeft een mooi idee hoe de graaf zich planair ge-
draagd op een donut. We kunnen nu het aantal facetten tellen en hiermee
Euler’s formule gebruiken. Dit zullen we beter bekijken in Hoofdstuk 3 en 4.
In figuur 8 zien we hoe k33 er op de donut uitziet, en in figuur 9 zien we de
behang representatie van k3 3

Figuur 8: ks 3 zonder snijpunten op de donut.
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Figuur 9: ks 3 als behang representatie

3.3 Het projectieve vlak en de fles van Klein

De donut wordt gerepresenteerd in het tweedimensionale vlak door middel van
de overstaande randen naar elkaar toe te ‘vouwen’. Maar we kunnen natuurlijk
ook randen op andere manieren vouwen om weer andere vormen te krijgen. We
kijken naar figuur 10.

-~ -4

> -

Figuur 10: Fles van Klein(links) en het projectieve vlak(rechts)

Merk op dat we links één van de twee randen draaien ten opzichte van elkaar
en rechts alle randen draaien ten opzichte van elkaar. Dit resulteert in de fles
van Klein (links) en het projectieve vlak (rechts).
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Figuur 11: Fles van Klein(links) en het projectieve vlak(rechts)

Hoewel deze vormen al erg abstract zijn, en minder goed voor te stellen dan
een donut (want de driedimensionale oppervlakken doorsnijden zichzelf), zouden
we onze theorie van planaire grafen ook hierop kunnen voortzetten. Ook deze
vormen zijn als een tweedimensionaal vlak te beschouwen en dus kunnen we
ook hier grafen op representeren. Bij een donut gingen de zijden van een graaf
onder erin en kwamen ze op dezelfde hoogte er boven weer uit, maar bij getwiste
randen zullen de zijden er gespiegeld uitkomen: Gaat een zijde aan de onderkant
van de rand er af, en zit deze iets meer links van het midden, zal deze rechts van
het midden er uitkomen aan de bovenkant. Dit wordt geillustreerd in figuur 12,
waarbij de zijde groen gekleurd is.

-

. -

Figuur 12: De groene zijde komt er gespiegeld uit

Als we de fles van Klein en het projectieve vlak als een behang representatie
willen aanschouwen, dan moeten we onze graaf spiegelen aan de hand van de
draaiingen van de randen. De representatie van de fles van Klein zal er dan zo
uitzien:
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Figuur 13: Behang representatie van fles van Klein. Alle bewerkingen zijn gegeven t.o.v.

het origineel.

De representatie van het projectieve vlak zal op analoge wijze gemaakt wor-
den, rekening houdend met zowel verticale als horizontale spiegelingen omdat

er twee draaiingen zijn:

— - -
Herizontale splzgaling Horizontale spiegeling
vy A Y Verticalespisgeling \ R
Verticale spiegeling Verticale spiegeling
> - — -
s - -
- -4

AY

Ay

Y tHorizortale spiegaling ‘ | Origineal ‘ A

J Horizontale spiegeling ‘

Horizontale splegeling
&
Verticale spiegeling

Y vericslespiezeling |

L Y

Herizontale spiegeling
&
Verticalz spiegzling

-
-

-
Lo

Figuur 14: Behang representatie van het projectieve vlak. Alle bewerkingen zijn gegeven

t.o.v. het origineel.

Wat precies de eigenschappen zijn van grafen op deze abstracte oppervlak-
ken, zou een mogelijkheid voor een vervolgonderzoek kunnen zijn.
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4 Representatie van grafen

Het volgende hoofdstuk is vooral afgeleid van het boek van Nora Hartsfield
en Gerhard Ringel, Pearls in Graph Theory: A Comprehensive Introduction, J
Academic Press, Boston, 1994

4.1 Kleuring van een graaf

We zullen nu een nieuwe manier introduceren om grafen te representeren, zonder
ze te hoeven tekenen. Op deze manier kun je veelal eigenschappen van de graaf
bekijken zonder dat je deze daadwerkelijk voor je hoeft te zien. In dit hoofdstuk
bekijken we weer grafen in het algemeen, zonder dat ze per definitie planair zijn.

Stel dat we een willekeurige knoop hebben van een graaf G = (V, E). We
kleuren deze knoop zwart of wit: Een zwarte knoop heeft een negatieve draai-
richting en een witte knoop een positieve draairichting t.o.v. een tekening in
het vlak, zoals we zien in figuur 15.

PN

Figuur 15: Een zwarte en een witte knoop met bijbehorende draairichting.

Stel dat we beginnen op een willekeurige knoop, dan gaan we over de zijden
lopen’. Als we dan weer bij een zwarte knoop komen, pakken we de eerstvol-
gende zijde in negatieve draairichting. Bij een witte knoop, het omgekeerde. Op
deze manier loop je een pad. In figuur 16 wordt dit afgebeeld.

Figuur 16: Verloop van een pad.

Van een willekeurige graaf kunnen we elke knoop zowel zwart als wit maken.
Een kleuring van alle knopen van graaf wordt ook wel een rotatie genoemd.
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Definitie 4.1. Fen rotatie van een graaf G is een kleuring van de graaf waarin
elke knoop zwart of wit wordt gemaakt. Hierbij wordt met zwart de negatieve
draairichting aangegeven en met wit de positieve draairichting. Een rotatie van

de graaf wordt ook wel genoteerd met de griekse letter p.

Figuur 17: Een rotatie van een graaf die drie circuits induceert.

Links in figuur 17 zien we een voorbeeld van een rotatie van een graaf. Er
zijn twee knopen zwart gemaakt, en de rest is wit. Als we beginnen in een
willekeurige knoop en dan over een zijde lopen, lopen we bij een zwarte knoop
vervolgens naar de eerste zijde in negatieve draairichting, en bij wit omgekeerd.
Uiteindelijk komen we terug bij de initiéle zijde. Vanuit hier wordt dit pad steeds
opnieuw herhaald en noemen we deze ronde een circuit. Het aantal circuits dat
onze rotatie p oplevert noteren we als r(p). In figuur 17 zien we dus dat r(p)=3.

_—
=

Figuur 18: Andere rotatie van dezelfde graaf: alle knopen zijn wit

In figuur 18 zien we dezelfde graaf, maar nu zijn alle knopen wit. Hiervoor
geldt dat r(p)=>5, zoals te zien is op de afbeelding. Het aantal circuits kan dus
verschillen bij elke rotatie. In het geval van deze graaf zullen dat er altijd 1, 3
of 5 zijn. Waarom dat zo is, zullen we later bekijken.

Als we de knopen van de graaf in figuur 17 zouden nummeren, dan kunnen
we een schema maken waarin we voor elke knoop kunnen aangeven aan welke
knopen ze verbonden zijn. Voorbeeld 4.2 geeft ons wat meer inzicht in zo’n
schema.
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Figuur 19: Een nummering van de graaf.

Voorbeeld 4.2. Stel G is een genummerde graaf zoals in figuur 19. Een schema
voor G kan dan worden gegeven door:

1. 632
2. 135
3. 124
4. 356
5. 246
6. 541

M.a.w.: de eerste rij vertelt ons dat knoop 6, knoop 3 en knoop 2 grenzen
aan knoop 1, waarbij deze op volgorde staan afhankelijk van de kleuring van de
knoop. In dit geval is dat eerst 6, dan 3 en dan 2. (Let op dat dit cyclisch is, en
dus 632 = 263 = 326) De tweede rij vertelt ons dat de knopen 1, 3 en 5 grenzen
aan knoop 2, in die volgorde. Op deze manier krijgen we dus een schema van
de graaf.

Voorbeeld 4.3. Stel we hebben de rij 1. 265347, dan kunnen we er het volgende
beeld bij maken waarin de knopen in goede volgorde na elkaar komen:

L] 5

20 43

Figuur 20: De buren van knoop 1 op de goede volgorde.

We kijken nu terug naar k5. Een rotatie van ks wordt gegeven door het
volgende schema:
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1. 3524
2. 1453
3. 2415
4. 1532
5. 1324

Aan de hand van alleen het schema, is het mogelijk om het aantal circuits te
bepalen van deze graaf. Dit gaat op de volgende manier: We beginnen in knoop
1. We kunnen hier elke mogelijke kant op, dus laten we zeggen dat we naar
knoop 2 lopen. Ons pad is dan 12. Vervolgens zijn we in knoop 2 gearriveerd,
komende van knoop 1. Als we dan in de tweede rij kijken, de rij van knoop 2,
zien we dat er na 1 een 4 staat. We vervolgen onze weg en komen aan in knoop
4. Ons pad is dus 124. In knoop 4 zien we dat er na de 2 een 1 komt. Ons pad
wordt dan 1241 en we gaan zo door tot het einde. We resulteren uiteindelijk
in het volgende circuit: 12413523425431532145. Als we nu door zouden gaan,
dan krijgen we uiteindelijk repeterende cijfers. Kortom, ons circuit is compleet.
Dit circuit heeft lengte 20, dus we kunnen hieruit bepalen dat dit het enige
circuit is omdat elke zijde maximaal tweemaal wordt doorlopen (de ene kant
op, en de andere kant) en k5 maar 10 zijden heeft. We hebben dus een rotatie
opgeschreven waarbij we eigenschappen weten van zowel de rotaties als de buren
van de knopen, zonder dat we hierbij een tekening hebben hoeven maken.

4.2 Planaire grafen

Het zou fijn zijn dat als wij de eigenschappen van planaire grafen in pure theo-
retische termen kunnen bestuderen, zonder dat we daar tekeningen voor hoeven
te maken. We zullen dan ook een nieuwe definitie van planariteit geven, die
analoog is aan de definities in hoofdstuk 1, maar dan toepasbaar is op het idee
van rotaties van grafen.

Stelling 4.4. Zij G = (V, E) een samenhangende graaf met v knopen, e zijden
en een rotatie p die r(p) circuits induceert. Dan geldt de ongelijkheid v — e +
r(p) <2, env—e+r(p) is even.

Merk op dat deze stelling analoog is aan Euler’s formule, maar nu toegepast
op circuits in plaats van op facetten.

Bewigs. Het bewijs gaat door middel van natuurlijke inductie naar het aantal
circuits.

P(1):

Stel dat de graaf een boom is. Dan is er precies één circuit, want als je ergens in
een punt begint, dan zul je elke zijde heen en terug belopen. In een boom geldt
dat je v knopen hebt, en v — 1 zijden. Dus geldt: v — (v — 1) + 1 = 2 Omdat
2 een even getal is, en de ongelijkheid geldt, geldt onze inductiestap voor één
circuit.
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P(n)=P(n+1):
Neem nu aan dat de stelling waar is voor een graaf met n of minder circuits.
Laat G een graaf zijn met n + 1 circuits en zij p een rotatie van G. We pakken
één zijde €’ die in een circuit voorkomt. Nu zijn er twee gevallen:
(1): €’ is deel van één circuit dat de zijde e’ twee keer (heen en terug) gebruikt.
(2): € is deel van twee verschillende circuits

Bekijk nu de graaf G’ = G\, waarbij de zijde ¢’ verwijderd wordt uit de
graaf, en zij p’ een rotatie van G’ die hetzelfde is als p.
In geval (1) geldt dat als e’ verwijderd wordt, deze ene circuit opgedeeld zal
worden in twee aparte circuits en de overige circuits blijven ongewijzigd. Dan
geldt dat r(p’) = r(p) + 1.
In geval (2) geldt dat als ¢’ verwijderd wordt, de twee verschillende circuits
worden samengevoegd tot één circuit. In dat geval geldt r(p') = r(p) — 1.
Kortom, r(p') =r(p) £ 1.
Stel G’ heeft n of minder circuits. G heeft v knopen en e zijden dus G’ heeft v
knopen en e—1 zijden. Nu volgt met de inductiehypothese: v—(e—1)+r(p’) < 2
env—(e—1)+7r(p)iseven. Dusv—e+r(p)=v—(e—1)—1+7r(p) 1<
v—_(e—1)+r(p) <2, wat de eerste ongelijkheid bewijst.
Omdat —1+1 nul of min twee is, en omdat v — (e — 1) + r(p’) even is, geldt dat
v —e+7r(p) ook even is. Dit bewijst onze stelling. O

Stelling 4.4 geeft dus weer het verband aan tussen zijden, knopen en circuits
van een graaf. Maar dit zegt nog niet direct iets over planariteit van de grafen.
Het bijzondere van stelling 3.4 is het volgende:

Opmerking 4.5. Stel G = (V, E) is samenhangend. Dan is G planair als er
een rotatie p van G bestaat zodanig dat v—e+r(p) = 2, kortom, als de gelijkheid
in stelling 3.4 geldt.

Stelling 4.6. k33 en ks zijn niet planair.

Bewijs. Er is al een keer bewezen dat k3 3 en ks niet planair zijn, maar ditmaal
zullen we dit bewijzen aan de hand van rotaties.

Stel dat k3 3 wel planair is. Dan zegt opmerking 4.5 dat er een rotatie p van k3 3
bestaat zodanig dat v — e+ r(p) = 2. Voor k3 3 geldt dat v =6, e =9 en dus

18 3
r(p) = 5. De gemiddelde lengte van een circuit is vervolgens — = 3—, omdat

elke zijde twee keer gebruikt wordt en er 5 circuits zijn. Maar dit betekent dat
minstens één van de circuits lengte drie heeft. Omdat het kortste circuit in £33
lengte vier heeft, is dit dus niet mogelijk. Dus geen enkele rotatie induceert vijf
circuits, en dus is k3 3 niet planair.

Stel dat k5 wel planair is. Dan geldt met opmerking 4.5 dat er een p is
zodanig dat r(p) = 7, omdat v = 5 en e = 10. De gemiddelde lengte voor een

circuit in ks is dan — = 2?. Dit betekent dat er een circuit is van lengte < 3.

Omdat het korste circuit in ks een lengte van drie heeft, is dit dus ook niet
mogelijk. Dus k5 is niet planair. O
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4.3 Geslacht van een graaf

Als een eindige graaf op een vlak kan worden getekend, dan kan deze ook op
een bol worden getekend. FEen bol is dan een oppervlak zonder randen. We
kijken nu wat meer naar drie-dimensionale objecten, beginnend bij de bol. De
bol is een representatie van het tweedimensionale vlak in het driedimensionale
vlak. Naast de bol hebben we ook al de donut gezien. We kunnen de donut
topologisch namaken door een ‘handvat’ te lijmen aan de bol. Hierdoor krijgt
de bol ook een gat en is deze topologisch hetzelfde als de donut. Ook kunnen
er meer handvatten aan de bol worden geplakt, waardoor deze nog meer gaten
zal bevatten. We noteren de bol als Sp: De bol heeft nul handvatten, ook wel
nul gaten. De donut is Si: De donut heeft één gat, ook wel een bol met één
handvat. In het algemeen is S, het oppervlak verkregen door g handvatten aan
een bol te plakken en dus een oppervlak met g gaten.

De vraag die nu opkomt is: gegeven een graaf G en een oppervlak S,. Hoe
groot moet g zijn om de graaf GG snijpuntloos op dit oppervlak te kunnen te-
kenen? Het is duidelijk dat als G geen snijpunten heeft op Sy, dan heeft hij
dit ook niet op Sg41. Het vraagstuk dat dit interessant maakt is om g zo klein
mogelijk te kiezen zodanig dat G snijpuntloos is op S4. Deze minimale g wordt
ook wel het geslacht van de graaf genoemd en noteren we als 7(G): Het geslacht
van de graaf G.

Zoals we eerder hebben gezien zijn ks en k3 3 snijpuntloos op de donut, maar

niet op een bol. k4 is wel snijpuntloos op een bol. Kortom, y(ks3) =1, v(ks) =1
en v(ky) = 0.
We bekijken nu twee andere interessante grafen: De volledig bipartiete graaf
k44 en de volledige graaf k7. Deze worden mooi afgebeeld in figuur 21. In
k4,4 geldt dat de even en oneven getallen onze verschillende verzamelingen zijn.
Merk hierbij op dat als we de randen naar elkaar toe vouwen zoals in voorbeeld
3.7, dat de punten op de randen dan samenvallen.

0 2 0
4 4
7 5
o) 2 0

Figuur 21: k44 (links) en k7 (rechts) snijpuntloos op de donut .

In figuur 21 zien we dus dat y(k4,4) = y(k7) = 1: De grafen zijn snijpuntloos
op een donut. De grafen voldoen niet aan stelling 2.7, omdat deze op een donut
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snijpuntloos zijn maar niet in het platte vlak. We bekijken daarom opnieuw de
Euler Karakteristiek, en ditmaal in zijn volledige vorm:

Definitie 4.7. (Euler Karakteristiek 1) Zij G een samenhangende graaf en p
een maximale rotatie. Dan geldt dat v(G) =g, alsv —e+1r(p) =2 —2g .

Met stelling 3.4 geldt dat v — e+ r(p) < 2, en p — ¢+ r(p) is even, dus g is
een positief geheel getal. Merk op dat als g = 0, we precies stelling 4.4 krijgen,
wat waar is op Sp.

Als we figuur 21 bekijken, dan verwachten we dat deze grafen voldoen aan
de Euler Karakteristiek met g = 1. in het geval van k7 geldt dat: v ="T7,e = 21
en g = 1. We krijgen als resultaat dat er een rotatie moet bestaan zodanig dat
r(p) = 14. Dit kan precies aangezien er 21 zijden zijn, elke zijde twee keer wordt
gebruikt en een circuit minstens drie zijden nodig heeft. In het geval van k4 4
geldt dat v = 8,e = 16 en g = 1. Hieruit volgt dat er een rotatie moet be-
staan zodanig dat r(p) = 8. Dit komt weer precies uit met het feit dat elke zijde
twee keer wordt gebruikt, maar hier een circuit minstens vier zijden nodig heeft.

Een andere mogelijkheid van definitie 4.7 is om te kijken wat precies het
geslacht van een graaf is. Neem bijvoorbeeld G = kg. We weten dat v = 8 en
e = 28. In een volledige graaf heeft een kleinst mogelijke circuit een lengte van

drie. Omdat e = 28 geldt dat we in het meest ideale geval 18— circuits kunnen

maken, (In dit geval zijn er enkele circuits van lengte > 3). Het feit is dat er
minstens 18 circuits gemaakt kunnen worden. We weten hierbij echter niet hoe
de graaf eruit zal zien. Er geldt vervolgens dat r(p) = 18. Als we dit bekijken
in definitie 4.7, volgt hieruit dat g = 2, dus deze graaf zou snijpuntloos kunnen
worden getekend op Ss.

4.4 Geslacht groter dan 1

Definitie 4.7 is een belangrijke stelling waaruit we veel informatie kunnen halen
betreft snijpuntloze grafen. Zover weten we dat als de graaf snijpuntloos is op
S1, dat we deze kunnen uitvouwen tot een tekening in het platte vlak. Maar wat
als g > 1, kunnen we dan ook een representatie maken in het platte vlak? Het
antwoord hierop is ja, en we kijken naar het volgende figuur voor een voorbeeld:
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Figuur 22: Een 8-hoek omgevouwen naar een Sz oppervlak

We zien hier dat we een Sy oppervlak door een octagon kunnen representate-
ren. Allereerst vervormen we de octagon iets, zodat de vervolgstappen duidelijk
zijn, vervolgens worden de gele en rode randen naar elkaar toe gebracht en ten
slot verbinden we de groene en blauwe randen met elkaar door middel van een
grote boog. In de laatste stap vormen de gaten zich. We merken op dat in de
initi€éle octagon de gelijke kleuren niet tegenover elkaar zitten, maar in de vorm
ABAB-CDCD, in groepen van 4. Dit heeft als reden dat eerst twee randen naar
elkaar toe worden gevouwen, waarna er ruimte is om een gat te vormen met
de overige twee randen van een kleur. Omdat we twee groepen van vier zijden
hebben, kunnen we twee gaten maken, kortom een Sy oppervlak.

Als er een graaf zou worden getekend in de octagon van figuur 22,dan kunnen
de zijden dus over de randen van de octagon heen gaan. Als ze bijvoorbeeld
over de gele zijde heen gaan, komen ze uit op de andere gele zijde. Hoe precies
de grafen er dan uit komen te zien is niet geheel duidelijk, maar als er een graaf
snijpuntloos kan worden getekend op een octagon, dan weten we wel zeker dat
deze ook planair is op een Sy oppervlak.

Op deze manier kunnen we elke S, representeren door een veelhoek in het
tweedimensionale vlak:

Stelling 4.8. Als S, een oppervilak is van geslacht g, dan wordt deze gerepre-
senteerd in het platte vlak als een V-hoek, waarbij V =4 xg.

Bewijs. 7ij g het geslacht van de graaf. Voor elk gat in het oppervlak heb je
vier zijden nodig om een gat te vormen, dus je hebt 4 x g zijden nodig. O

Voorbeeld 4.9. (Een Sy opperviak)
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Figuur 23: Een 40-hoek omgevouwen naar een S1o oppervlak
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5 Algoritme

Nu we een globaal idee hebben hoe we met planariteit kunnen werken op Sy
oppervlakken, zou het nuttig zijn om een schets van een dergelijke graaf te
kunnen geven. Stel, we hebben een willekeurige graaf G. Het doel is om G
snijpuntloos weer te geven op een oppervlak waarin het geslacht zo klein mogelijk
is. Daarnaast willen we een schets geven van G om deze dan ook daadwerkelijk
te construeren.

Een schets van de graaf kunnen we geven op de manier beschreven in pa-
ragraaf 4.1, waarbij we aannemen dat alle knopen een positieve draairichting
hebben. Dit heeft twee effecten:

1) Als we in een snijpuntloze graaf alle knopen dezelfde kleur geven, krijgen
we het maximale aantal rotaties;

2) We weten van elke knoop wat de buren zijn en op welke volgorde ze ver-
schijnen.

Omdat we willen dat het resultaat dat we krijgen een schema is van een
snijpuntloze graaf op een geslacht g, is het dus verstandig om alle knopen de-
zelfde kleur te geven. 2) zegt vervolgens iets over hoe we deze graaf kunnen
tekenen. Om te weten wat het geslacht van de graaf is, gebruiken we definitie
4.7. Gecombineerd kunnen we een mooie representatie krijgen van G. We geven
een algoritme die werkt voor volledige en volledige bipartiete grafen.

5.1 Algoritme voor volledige grafen

Het algoritme berust op eerst informatie inwinnen over de graaf, en vervolgens
circuits van lengte drie proberen te maken in de graaf. De circuits die we
gemaakt hebben zullen gebruikt worden om weer nieuwe circuits van lengte drie
te vinden, die geen tegenstrijdigheid opleveren met de al gevonden circuits. We
zullen het algoritme laten zien voor de grafen ks,kg en ky 4.

5.1.1 Algoritme voor ks.
Stel G = ks.
2 20
v=>5e=10en r(p) = §*10: 3 Er geldt dat v — e + r(p) = 2 — 2g. We
weten dat er maximaal 6 circuits zijn, en dit betekent dat g # 0, dus g = 1,

want 1 > 0. Dus, met definitie 4.7 en stelling 4.4, is er een rotatie p, waarbij
r(p) = 5, zodanig dat G planair is op 5.

We gaan nu op zoek naar die rotatie van G: We beginnen met de eerste
willekeurige knoop 1. Deze is verbonden met alle andere knopen, dus de volg-
orde maakt nu nog niet uit. Z.v.v.a zeggen we dat 1 verbonden is in positieve
draairichting met 5432. Zodoende weten we ook dat de knopen 5,4,3 en 2 met
knoop 1 verbonden zijn. We krijgen het schema:
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5432
1xxx
1xxx
1xxx

U LN

1xxx

Aangezien de knopen 3 en 2 na elkaar komen, kunnen we de zijde (2,3)

construeren. Hierdoor hebben we ons eerste circuit van lengte drie gemaakt,
namelijk: circuit(123). Analoog, uitgaande van knoop 1, kunnen we ook de
circuits ¢(134), ¢(145) en c¢(152) maken.
Een manier om c(xyz) te lezen gaat als volgt: In knoop y gaat x naar z .
Omdat het circuit een lengte van drie heeft, kun je dit circuit ook noteren als
c(zxy) of c(yzx) en dus: in knoop x gaat z naar y of in knoop z gaat y naar x.
Uit een tekening wordt dit al snel duidelijk.

Uit ¢(123) en c(152) weten we meer over de buren van knoop 2, namelijk:
1 gaat, door 2, naar 3 en 5 gaat, door 2, naar 1. Hierdoor weten we dat de
buren van 2 de knopen 3,5 en 1 zijn, op deze volgorde. Analoog kunnen we
uit de circuits ¢(123), ¢(134), ¢(145) en ¢(152) informatie halen over de andere
knopen. We eindigen met het volgende schema:

5432
13x5
14x2
15x3
12x4

U W N

We kunnen al snel de overige x invullen omdat er maar vijf knopen zijn.
We eindigen met een schema waarin voor elke knoop zijn buren aangegeven
zijn in positieve draairichting. Ook weten we dat deze snijpuntloos is in 5.
Kortom, we hebben een snijpuntloze representatie gemaakt van de graaf op een
S1 oppervlak, namelijk:

5432
1345
1452
1523
1234

CUR W N

5.1.2 Circuits van ks:

Om de circuits te controleren, bekijken we elke zijde apart en bekijken we in
welk circuit deze thuishoort.

We beginnen met (1,2), en bekijken vervolgens (1,3), (1,4) enz. Als we alle
buren van knoop 1 hebben bekeken, beginnen we met (2,1), (2,2) etc. Dit gaat
dus de hele graaf zo door.
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We beginnen met zijde (1,2). Dit betekent dat we beginnen in knoop 1 en
naar knoop 2 toe wandelen. We krijgen het pad: 1-2. In het schema bij knoop
2 zien we de getallen 1 3. Dit betekent dat uitgaande van knoop 2, 3 na 1 komt.
Dus in termen van circuits, lopen we van 1 naar 2, en door naar knoop 3. We
krijgen dus het pad: 1-2-3. In het schema bij knoop 3 zien we dat 2 op het einde
staat , maar 1 weer in het begin, dus 1 komt na 2, dus we lopen weer naar 1.
We krijgen het pad: 1-2-3-1. Dit herhaaldelijk toepassen levert ons 123123123x
op. Dit is gelijk aan ¢(123). Zodoende volgt ook snel:

(1,3) — ¢(134)

(1,4) — ¢(145)

(1,5) — ¢(152)

We bekijken nu zijde (2,1). In 1 gaat 2 naar 5. We lopen dus door naar 5 met
als pad: 215x. In 5 gaat 1 naar 2, dus we krijgen het pad 2152x. We zien
uiteindelijke dat de zijde (2,1) al in ¢(152) bevat was, en dus volgt uit (2,1) het
circuit ¢(152).

We zien vervolgens dat (2,3) — c(123).

We bekijken nu (2,4). In 4 gaat 2 naar 3. Dus we krijgen het pad 243x. In 3
gaat 4 naar 5, dus 2435x enz. We krijgen: 2435425324x. Aan het eind zien we
2 en 4 weer naast elkaar staan en gaat dit pad zich repeteren. We krijgen het
circuit: ¢(24354253).

We hebben nu dus 5 circuits gevonden met een gemiddelde lengte van 4. Dit
gaat gepaard met het feit dat e = 10, elke zijde twee keer voorkomt in een
circuit, en we dus 20 zijden in onze gevonden circuits doorlopen. Daarnaast
hebben we een schema gemaakt die ons in positieve draairichting alle buren van
elke knoop laat zien. We hebben dus een abstracte representatie gegeven van
een snijpuntloze ks, zonder deze te tekenen.

5.1.3 Algoritme voor kg
stel G = ks.
2 56

v=2_8,e=28enr(p) = 5*28: 3 Er geldt dat v —e+1r(p) = 2 — 2g9. We
weten dat er maximaal 18 circuits zijn, en dit betekent dat g # 0 en g # 1,
maar g = 2 voldoet wel, want —2 > —2. Dus, met definitie 4.7 en stelling 4.4,
is er een rotatie p, waarbij r(p) = 18, zodanig dat G planair is op So.

We proberen dus nu weer een representatie te maken van de graaf, uitgaande

van circuits van lengte drie.
Z.v.v.a. beginnen we opnieuw met onze uitgangspositie:

8765432
13xxxx8
14xxxx2
15xxxx3
16xxxx4
17xxxx5b

RGN

18xxxx6
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8. 12xxxx7

Dit is dus opnieuw verkregen door knoop 1 te verbinden met alle overige
knopen en de circuits van lengte drie rond 1 te maken.
We hebben nu dus de circuits: ¢(123), ¢(134), ¢(145), ¢(156), ¢(167), ¢(178),c(182).
We moeten er nog 11 vinden, waarbij onze gemiddelde lengte uitkomt op ITh
Omdat we (1,2); (1,3); (1,4); ....; (1,8) nu hebben bekeken, gaan we over op
(2,1).
(2,1) — ¢(182);
(2,3) — ¢(123);
We komen nu uit bij (2,4). In 4 gaat 2 naar onbekend. Hier is dus nog mo-
gelijkheid tot een circuit van lengte drie. De vraag is nu welk getal hier moet
komen te staan. We gaan dus weer mogelijkheden af.
¢(241) is niet mogelijk vanwege ¢(123).
c(242) is triviaal niet mogelijk omdat we niet van 2 naar 2 mogen lopen.
¢(243) is niet mogelijk omdat dit zou betekenen dat in knoop 3, 4 naar 2 gaat.
Maar met onze opbouw van knoop 3 in het schema, zou dit betekenen dat knoop
3 maar drie buren heeft.
c(244) is triviaal niet mogelijk
¢(245) is niet mogelijk vanwege c¢(145)
¢(246) is wel mogelijk! Kortom, we krijgen het nieuwe circuit: ¢(246). Dit vullen
we vervolgens in in het schema:

8765432
13-64-8
14xxxx2
15-26-3
16xxxx4
17-42-5

18xxxx6

®© NS WD

12xxxx7

We weten van ¢(246) nog niet waar de getallen precies in het schema staan.
We zouden ze dus nog kunnen opschuiven. We weten alleen zeker dat: in 2 gaat
6 naar 4,
in 4 gaat 2 naar 6,
in 6 gaat 4 naar 2.

We gaan nu verder met circuits van lengte drie zoeken, waarbij c(246) nu ook
een bestaand circuit is. We waren gebleven bij (2,5).
(2,5) = ¢(253). We krijgen nu het schema:

1. 8765432
2.135-64-8
3.14xxx52
4.15-26-3
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.16-23-4
17-42-5
.18xxxx6
L12xxxx7

0~ o o

Merk op dat we knoop 2 nog niet helemaal kunnen invullen omdat we niet
weten waar precies onze laatste buur komt. Die kan zowel links als rechts van
64 komen. Vervolgens, (2,6) — ¢(265). We weten nu dat in 2, 5 naar 6 gaat.
Hiermee zijn alle posities vastgesteld in knoop 2, en hebben we onze eerste
volledige knoop. We krijgen nu het schema:

8765432
1356478
14xxx52
15-26-3
1623xx4
.1 7xx425
. 18xxxx6
12xxxx7

®© N oA WD

We blijven dit proces herhalen totdat we alle zijden hebben bezocht en re-
sulteren uiteindelijk met het volgende schema:

1.8765432
.1356478
1468752
.1587263
.1623784
1783425
.1853246
.1236457

0~ DU WD

5.1.4 Circuits van kg

Aan de hand van ons schema, en aan de hand van onze opbouw van het al-
goritme, hebben we al meteen de circuits van lengte drie te pakken. Dit zijn
namelijk de volgende circuits:

c(123); c(134); c(145); ¢(156); c(167); c(178); c(182); c¢(246); c(253); c(265);
c(274); ¢(357); c(364); c(386); c(485) en ¢(587).

De lezer kan verifiéren dat dit alle circuits van lengte drie zijn. Als we
opnieuw alle zijden gaan checken aan de hand van het schema, dan zien we dat
zijde (2,8) een nieuw circuit oplevert. In 8 gaat 2 naar 3. In 3 gaat 8 naar 7.
In 7 gaat 3 naar 2. In 2 gaat 7 naar 8. Hierna zijn we weer rond en hebben
we een circuit van lengte vier te pakken, namelijk ¢(2837). Zodoende vinden we
ook het circuit ¢(4768). We hebben nu dus 16 circuits van lengte drie, en 2 van
lengte vier. Dit brengt ons op een totale lengte van 56 en dat klopt precies met
het feit dat kg 28 zijden heeft. We hebben nu dus een snijpuntloze representatie
gemaakt van kg, waarvan we weten dat deze planair is op Ss.
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5.2 Algoritme voor volledig bipartiete grafen

Het algoritme voor volledige bipartiete grafen gaat anders in zijn werking, na-
melijk een stuk makkelijker. Omdat bij bipartiete grafen een circuit minstens
lengte vier heeft, en je schommelt tussen twee deelverzamelingen, kunnen we
alle bipartiete grafen op dezelfde manier indelen. dit gaat als volgt:

Zij G een bipartiete graaf waarbij we de gescheiden verzamelingen A en B
noemen. Stel dat A uit de oneven getallen bestaat en B uit de even getallen.

[t

) We zetten alle knopen van A onder elkaar;

[\

) We geven knoop 1 een willekeurige burenlijst, voor het gemakt 2468. .. ;
) Knoop 3 krijgt diezelfde burenlijst, maar dan gespiegeld: ...8642;

) Knoop 5 krijgt weer dezelfde burenlijst als knoop 1;

) Dit herhaal je totdat we alle knopen hebben gehad;

6) Analoog voor B.

O =~ W

We zullen dit illustreren aan de hand van £y 4.

5.2.1 Algoritme voor k4 4
Stel G = ]{,‘4)4.

2
v=28e=16¢en r(p) = 1*16 = 8. Er geldt dat v — e+ 7(p) = 2 —2g. We
weten dat er maximaal 8 circuits zijn, en dit betekent dat g # 0 , maar g = 1
voldoet wel, want 0 > 0. Dus, met definitie 4.7 en stelling 4.4, is er een rotatie

p, waarbij 7(p) = 8, zodanig dat G planair is op Sj.
We passen direct het algoritme toe om het volgende schema te krijgen:

2468
8642
2468
8642
1357
7531
1357
7531

@O NN oW

5.2.2 Circuits van k4 4

We krijgen de volgende circuits, die de lezer zelf zou kunnen checken:

¢(1238); ¢(1472); ¢(1634); c(1876); c(3254); c(3658); c(5278); c(5674).

Dit zijn 8 circuits met een lengte van 4. Dit is precies wat we wouden heb-
ben. Dit geeft ons dus een snijpuntloze representatie van de graaf k4 4 op het
oppervlak S;.
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5.3 Resultaat

Naast dat dit algoritme hierboven voor ks, kg en k4 4 is gedemonstreerd, is deze
ook getest voor kg; k7; kio; k3,35 ka,5; k5 —e en k3 3 — e met positieve resultaten.
Hij werkt alleen nog niet willekeurige grafen.

Voorbeeld 5.1. (Tegenvoorbeeld voor het algoritme op willekeurige grafen)

We bekijken een graaf, waarbij we de volgorde van de knopen nog niet aan
hebben gegeven. We beginnen met een lijst die alleen vertelt aan welke knopen
elke knoop is verbonden:

1) 2345689
2) 135809

3) 12479

4) 137

5) 126809

6) 1578

7) 346

8 125609
9)12358

2
In dit geval geldt dat v =9 en e = 21. Je kan hier mazimaal — *x 21 = 14

circuits maken. Als je precies 14 circuits kan maken, dan geldt met stelling 4.4
en definitie 4.7 dat g = 0. Hierbij moet gelden dat elk circuit een lengte van
drie heeft. Zodra er een circuit van lengte vier is, kunnen we geen 14 circuits
krijgen, en dus geldt dat g # 0.

Laten we de zijde (1,4) bekijken. FEr is maar één knoop zowel met 1 als /
verbonden en dat is knoop 3. De zijde (1,4) komt in twee circuits voor, nameijk
¢(184) en nog een. Maar er is geen enkele andere knoop met zowel 1 als 4
verbonden, maar de zijde (4,1) komt wel in een circuit voor. Dus er is een
circuit met lengte > 3. Dit levert dus een tegenspraak op met het feit dat g = 0.

Waarom dit algoritme goed gaat in volledige en volledig bipartiete grafen
is het feit dat elk circuit een lengte van drie resp. vier heeft. Elke knoop is
nou eenmaal met alle andere knopen verbonden en in het geval van bipartiete
grafen met de gehele andere verzameling knopen. Het huidige algoritme werkt
(nog) niet voor willekeurige grafen, daar is nog iets meer onderzoek voor nodig
hoewel ik een sterk vermoeden heb dat je in elke graaf de circuits zou kunnen
vinden. Aan de hand van de gevonden circuits zou je vervolgens het geslacht
van de graaf kunnen bepalen.

Uiteindelijk krijgen we dus een abstracte beschouwing van hoe een graaf
zich snijpuntloos representeert op een gesloten oppervlak, waarbij we ook het
geslacht van de graaf komen te weten. Al worden alle buren van alle knopen in
positieve draairichting weergegeven, is het daadwerkelijk tekenen nog steeds een
grote kunst. Met een kleine handleiding ernaast is het zeker geen onmogelijke
opgave.
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