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Introduction

The use of symbolic computing is one of the characteristics of a computer algebra
package. For example, the number

√
2 is represented as a symbol with the property

that its square is 2. This enables us to do exact calculations. Compared to numerical
calculations, there also are some drawbacks concerning computations with radical
expressions. For example, algebraically, one will not be able to distinguish between
the positive and the negative square root of 2. If one wants to do a computation
for one specific choice of these roots sometimes a numerical estimate is necessary.
Moreover, we often get complicated expressions although there is a simpler expression
for the number that we are interested in. The simplification of radical expressions
was an important motivation for the research in this thesis.

Look at

α =
3

√√
5 + 2 − 3

√√
5 − 2,

where, as in the rest of this introduction, when we take a root of a positive real
number, we mean the real positive root of this number. A numerical estimate of α
is given by

3

√√
5 + 2 − 3

√√
5 − 2 = 1.618033988 . . .− 0.618033988 . . . .

We see that α is approximately equal to 1. Using symbolic computations we prove
that α actually equals 1. One can check that α is a root of the polynomial x3 +
3x− 4 = (x− 1)(x2 + x+ 4), which has only a single real root. Therefore α has to

equal 1. Intuitively the notation 1 is simpler than
3
√√

5 + 2 − 3
√√

5 − 2. To make
this precise we introduce the notion of radicals and nesting depth.

Let K be a field of characteristic 0 and let K̄ be some fixed algebraic closure
of K. We say that α ∈ K̄ is a radical over K if there exists some n ∈ Z>0 with
αn ∈ K. We denote by K(0) the field K itself and inductively define the fields K(k)

for k ≥ 1 as

K(k) = K(k−1)({α ∈ K̄ with αn ∈ K(k−1) for some n ∈ Z>0}).

We say that α ∈ K̄ is a nested radical over K if there exists some k ∈ Z>0 with
α ∈ K(k). We say that α has nesting depth k over K if α ∈ K(k) \K(k−1).

VII
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It is desirable for the computer to produce the simplest possible expression for
the outcome of a computation with nested radicals. Richard Zippel [40] gave the
following identity

6

√

7
3
√

20 − 19 = 3
√

5/3 − 3
√

2/3. (1)

Following [5], [20], [21], [28], [40] we say that the right hand side of this equation is a
denesting of the left hand side; the equality shows that some element that is clearly
contained in K(2) is even contained in K(1).

The element α ∈ K̄ is a nested radical if and only if there exists a Galois extension
L/K with α ∈ L and a chain of field extensions

K = K0 ⊂ K1 ⊂ . . . ⊂ Kt = L,

such that for 1 ≤ i ≤ t the field Ki is generated by radicals over Ki−1. For example,

if we take the nested radical α =
6
√

7 3
√

20 − 19 from equality (1) over Q, then an
obvious choice for the first fields in this chain would be

Q ⊂ Q
(

3
√

20
)

⊂ Q

(

3
√

20,
6

√

7
3
√

20 − 19

)

= Q

(

6

√

7
3
√

20 − 19

)

.

In general we have to adjoin all conjugates of α to obtain a Galois extension. In

this case however, it turns out that Q
(

6
√

7 3
√

20 − 19, ζ6

)

is Galois over Q. One can

check this using a computer algebra package or by using equality (2) below.
If we adjoin sufficiently many roots of unity in the first step of the chain, then

we see that Ki/Ki−1 is abelian for all i ≥ 1. In our example:

Q ⊂ Q(ζ6) ⊂ Q
(

3
√

20, ζ6

)

⊂ Q

(

6

√

7
3
√

20 − 19, ζ6

)

.

As K is a field of characteristic 0, an element α is a nested radical if and only if the
Galois group of the normal closure of K(α) over K is solvable ([22] Chapter VI).
Given a chain of field extensions K = K0 ⊂ K1 ⊂ . . . ⊂ Ks, for which Ki/Ki−1, for
i ∈ Z>0, is generated by a radical, and an element α ∈ Ks of nesting depth t ≤ s
Susan Landau [20] provides an algorithm that computes a symbolic representation
for α in K(d), where d is the length of the derived series of the Galois closure of
Ks/K. We have t ≤ d ≤ t+ 1.

Carl Cotner [7] improved this result. He showed that the nesting depth of α
is computable and gave an algorithm to find a symbolic representation of minimal
nesting depth.

For specific types of nested radicals it is possible to give a simple algorithm to
compute a symbolic representation of minimal depth. This we will do in chapters 3
and 4 for certain elements of K(2). Given a subfield L of K(1), an element δ of L, and
some n ∈ Z≥2 we will prove that n

√
δ ∈ K(1) implies that δ satisfies a strong condition
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which may be phrased as ‘δ is almost an n-th power in L’. Indeed, equality (1) holds
because ‘7 3

√
20 − 19 is almost a sixth power in Q( 3

√
20 )’; we have

7
3
√

20 − 19 =
1

144

(

3
√

20 − 2
)6

(2)

and
6

√

1

144

(

3
√

20 − 2
)

= 3
√

1/12
(

3
√

20 − 3
√

8
)

= 3
√

5/3 − 3
√

2/3.

To prove our claim in general we use Galois groups of radical extensions. If the
ground field K contains the appropriate roots of unity and the extension is finite
then we have a Kummer extension and the Galois group is well known. We discuss
Kummer theory in chapter 1. Moreover, we discuss non-finite Kummer extensions
and describe the Galois group for certain radical extensions for which the ground
field K does not contain the appropriate roots of unity. We show that the Galois
group of

L = K({α ∈ K̄∗ with αn ∈ K for some n ∈ Z>0})
over K can be embedded in a semidirect product of two explicitly described groups.
An important reason to study Galois groups of radical extensions is to gain insight
in the structure of subfields of the extension.

Let L/K be a Kummer extension generated by radicals α1, α2, . . . over K. By
Kummer theory all subfields of L = K(α1, α2, . . .)/K are generated by a subgroup of
W = 〈K∗, α1, α2, . . .〉. This also holds for pure radical extensions. (A field extension
L/K is pure if every primitive p-th root of unity contained in L is in fact contained
in K, for prime numbers p and for p equal to 4.) However, this is not true in general.
For example, the Galois extension Q(ζ7)/Q has two non-trivial subfields, Q(ζ7+ζ−1

7 )
and Q(

√
−7 ), which are not generated by a power of ζ7.

In chapter 2 we study the extension Q(α)/Q for some radical α ∈ C and give
a both necessary and sufficient condition for the subfields of Q(α) to be generated
by a subgroup of 〈Q∗, α〉. This gives us also some non-pure extensions for which all
subfields are generated by a subgroup of 〈Q∗, α〉, like Q(α)/Q where α is a complex
number with α4 = −3.

Above we considered the simplification of nested radicals. Another problem con-
cerning nested radicals is finding a representation of some element as a radical expres-
sion. The element can, for example, be given as the root of a solvable polynomial or
can be given by an analytic expression. For singular values of the Rogers-Ramanujan
continued fraction we determine radical expressions in chapter 5.

Below we give a more detailed description of this thesis in an overview per chap-
ter.

Chapter 1

For ease of exposition we consider a perfect field K in this introduction. In chapter 1
we will have a slightly weaker condition on K. Let K̄ be a fixed algebraic closure
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of K. We define the group of radicals over K as

A = {α ∈ K̄∗ : αn ∈ K for some n ∈ Z>0}.

In chapter 1 we describe the Galois group of the extension K(A)/K. In the case
K = Q and K̄ ⊂ C , the group A is the direct product of µ(C ), the group of
roots of unity in C , and the group R of real positive radicals in A. The group
AutQ∗(A) of group automorphisms of A that are the identity on Q∗ is isomorphic
to Hom(Q>0, µ̂) o Aut(µ(C )), where µ̂ denotes lim

←−−−n
µn(C ), the inverse limit of

the groups of n-th roots of unity in C for all n ∈ Z>0, with respect to the maps
µn(C ) −→ µm(C ) : ζ 7→ ζn/m, for all m | n ∈ Z>0. The map

AutQ∗(A) −→ Γ = Hom(Q>0, µ̂) o Aut(µ(C ))

is given by

σ 7→
(

a 7→
(

σ( n
√
a )

n
√
a

)

n∈Z>0

, σ|µ(C )

)

,

where n
√
a denotes the positive real root of a. The Galois group Gal(Q(A)/Q) can

be embedded in this group Γ. We know that
√
x ∈ Q(µ(C )) ∩ Q(R) for all x ∈

Q>0. This gives a condition that turns out to determine the image of Gal(Q(A)/Q)
completely. Any homomorphism f from Q>0 to µ̂ induces a map f̃ from Q>0 to
〈−1〉 by composition with the projection map µ̂ −→ 〈−1〉. In section 1.7 we find

Gal(Q(A)/Q) '
{

(f, z) ∈ Γ with f̃(a) =
(a

z

)

for all a ∈ Q>0

}

,

where
(

a
z

)

denotes a generalised Jacobi symbol.
In chapter 1, we also give such a description for Gal(K(A)/K), where K is a

perfect field and
A = 〈α ∈ K̄∗ : αn ∈ K for some n ∈ I〉,

with I 6= ∅ an arbitrary subset of Z>0. In general we cannot give a splitting of A,
but we can give a splitting of A/µ(K). We fix a choice for this splitting and follow
the lines of the proof sketched above to give a similar description of Gal(L/K).

Chapter 2

In chapter 2 we determine all radicals α ∈ C for which the subfields of Q(α) are all
generated over Q by a power of α.

For instance, if we take for α a primitive fifth root of unity, ζ5, then there exist a
subfield Q(

√
5 ) of Q(α) that is not generated by a power of α. If we take α = ζ5 ·

√
5,

then all subfields of Q(α)/Q are generated by a power of α.
To find the subfields of Q(α) we study the Galois group of Q(ζn, α) over Q,

where n is the least positive integer with αn ∈ Q. The group Gal(Q(ζn, α)/Q) can
be embedded in Z/nZ o (Z/nZ)∗ and its image G is determined by the intersection



INTRODUCTION XI

field Q(ζn) ∩ Q(α). For every radical α ∈ C this field is of the form Q(αd) for
some divisor d of n. The number of n-th roots of unity in this intersection field,
#µn

(

Q(ζn)∩Q(α)
)

, splits the problem in different cases. We identify some radicals
for which evidently subfields exist that are not generated by a power of α. It turns
out that there are no other radicals for which such subfields exist. This gives us
the following necessary condition on α for all subfields of Q(α) to be generated by a
power of α:

(i) #µn
(

Q(ζn) ∩ Q(α)
)

≤ 2 and we have 6 - n or
√
−3 /∈ 〈Q∗, α〉 or

(ii) #µn
(

Q(ζn) ∩ Q(α)
)

= 3 or

(iii) #µn
(

Q(ζn) ∩ Q(α)
)

= 4 and 1 + i ∈ 〈Q∗, α〉 or

(iv) #µn
(

Q(ζn) ∩ Q(α)
)

= 6 and
√
−3 ∈ 〈Q∗, α〉 or

(v) #µn
(

Q(ζn) ∩ Q(α)
)

= 10 and both 4 - n and
√

5 ∈ 〈Q∗, α〉.
If H ⊂ G is such that Q(ζn, α)H = Q(α), then there is a one-to-one correspondence
between subgroups of G containing H and subfields of Q(α). We prove in each of the
five cases above that all subgroups of G containing H are of the form G∩

(

dZ/nZ o

(Z/nZ)∗
)

for some divisor d of n. These groups correspond to the fields Q(αn/d),
which showes that the above condition is also sufficient.

Chapter 3

At the beginning of the 20th century Ramanujan ([1]) gave the following denesting
formula:
√

m 3
√

4(m− 2n) + n 3
√

4m+ n

= ± 1
3

(

3
√

(4m+ n)2 + 3
√

4(m− 2n)(4m+ n) − 3
√

2(m− 2n)2
)

.

Let α and β be integers and define γ =
√

3
√
α+ 3

√
β. In chapter 3 we prove, using

the normal closure of Q(γ)/Q, that γ can be denested if and only if 3
√
α+ 3

√
β equals

3
√
α
k · 3

√
β
l · f · e2 for some f ∈ Q, k, l ∈ Z>0 and e in Q( 3

√
α, 3

√
β ). We use this to

show that γ can only be denested if there exist integers m and n with

β

α
=

(4m+ n)n3

4(m− 2n)m3
(3)

or if β/α is a cube in Q.
For example, if we take m = n = 1, then the quotient above equals − 5

4 . Hence
we have the denesting

√

3
√

5 − 3
√

4 = 1
3 (

3
√

2 +
3
√

20 − 3
√

25 ).
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It can be shown that there do not exist integers m, n satisfying equation (3) if, for

instance, we take α = 2 and β = 3. Hence
√

3
√

2 + 3
√

3 cannot be denested.

Chapter 4

Let K be a field, let α1, . . . , αt be radicals over K and define L = K(α1, . . . , αt). In
this chapter we give a necessary condition for a nested radical of the form n

√
δ with

n ∈ Z>0 and δ ∈ L \K to be contained in K(1).

We define the field K∞ ⊂ K̄ as the smallest extension over K containing all
roots of unity in K̄. At the beginning of this introduction we described the Kummer
correspondence between subfields and subgroups of the multiplicative group of gen-
erating radicals. We use this correspondence to show that n

√
δ ∈ K(1) implies that

there exist w ∈ K∞ ∩ L, e ∈ L and integers s1, . . . , st with δ = w · en ·∏i α
si
i .

If both the field L and the finite subextension of K(1) containing n
√
δ are pure

then we even have w ∈ K. In general w is not contained in K. We provide an
example where w is contained in (K∞ ∩ L) \K.

Chapter 5

This chapter consists of an article co-authored with Alice Gee. It was accepted by
the Ramanujan Journal in May 2001 and can also be found in [10]. We determine
nested radicals for singular values of the Rogers-Ramanujan continued fraction

R(z) = q
1
5

∞
∏

n=1

(

1 − qn
)(n

5),

where z is an element of the complex upper half plane, q is e2πiz and
(

n
5

)

denotes
the Legendre symbol.

First we prove that R(z) is a modular function of level 5. In fact, the field F5

of functions of level 5 over Q(ζ5) equals Q(R, ζ5). Let τ be an element of the upper
half plane with [1, τ ] a Z-basis of some imaginary quadratic order. We denote by
H5 the field of function values in τ of elements of F5. The first main theorem of
complex multiplication states that H5 is abelian over Q(τ). Therefore, all elements
of H5, and especially R(τ), are nested radicals over Q(τ) and consequently over Q
since [Q(τ) : Q] equals 2.

To compute the radical expression for these numbers we use Lagrange resolvents.
For example, let i be a primitive 4-th root of unity and assume that K is a field
containing i. If α = R(τ) generates a cyclic extension of degree 4 over K, then we
use the Galois group of K(α)/K to compute conjugates α1 = α, α2, α3 and α4 of α.
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We define

l0 = α1 + α2 + α3 + α4,

l1 = α1 + iα2 − α3 − iα4,

l2 = α1 − α2 + α3 − α4,

l3 = α1 − iα2 − α3 + iα4.

Then we have 4 · α1 = l0 + l1 + l2 + l3 and l0, l
2
2, l

4
1 and l43 are elements of K. A

radical expression for α over K is

1

4

(

l0 +
√

l22 + 4

√

l41 + 4

√

l43

)

.

In general we form a chain of subextensions of H5/Q. A radical expression for α
over Q is now derived by doing similar computations as above recursively in every
subextension in the chain until we end up in Q. In chapter 5 we use that, for our
choice of τ , the powers are elements of Z, the ring of integers of Q. We compute
a sufficiently precise numerical estimate for α = R(τ) to find these integers. In
every step the nesting depth increases by 1. We give radical expressions that can
be uniquely interpreted: we only take roots of positive real numbers for which we
choose the unique positive real root.
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Chapter 1

Galois groups of maximal

radical extensions

Kummer theory gives a description of the Galois group of a radical extension over
a ground field containing the appropriate roots of unity. In this chapter we give a
similar description for certain radical extensions of a ground field that is not required
to contain those roots of unity.

For a field K we fix an algebraic closure K̄. We denote by K∗ the group of
invertible elements in K and by µ(K) the group of roots of unity in K. For a
subgroup A of K̄∗ we denote by µ(A) the subgroup of roots of unity in A.

Let K be a field of characteristic char(K). Then the group of radicals over K is
given by

A = {α ∈ K̄∗ : αn ∈ K for some n ∈ Z>0 with char(K) - n}.

This set A is a multiplicative group and the radical extension L = K(A) over K is
a Galois extension. In this chapter we describe its Galois group Gal(L/K).

In sections 1.1, 1.2 and 1.3 we give the necessary definitions and recall the main
results from Kummer theory. In section 1.4 we show that there exists a subgroup C
of A with

A/µ(K) = µ(K̄)/µ(K) × C/µ(K).

The group C is not uniquely determined. We fix a choice for C and define the
fields M = K(µ(A)) and F = K(C). In section 1.5 we study how Gal(L/K) acts

on elements of M and F . This gives a subgroup Z of Ẑ∗ isomorphic to Gal(M/K)
and a Kummer-like homomorphism group J . We will show that Gal(L/K) can be
embedded in a semidirect product Γ = J o Z of these groups.

In order to determine the image of Gal(L/K) in Γ we determine the intersectionD
of the fields M and the maximal Kummer extension inside F over K. In sections 1.6

1



2 CHAPTER 1. MAXIMAL RADICAL EXTENSIONS

and 1.7 we construct the following diagram.

Γ = J o Z J

Z Gal(D/K)

The image of Gal(L/K) in Γ consists of the elements (f, z) ∈ J o Z for which the
images of f and z in Gal(D/K) are equal. Finally, in section 1.8 we prove some
properties of the field D and compute it in some simple examples.

Throughout the chapter we use the case K = Q as a standard example. The
group Gal(Q(A)/Q) was described before by H.W. Lenstra in the exercises of the
lecture notes ‘Galois Theory for Schemes’ [24].

1.1 Preliminaries

In this section we give some basic definitions and results.
We start with the basics about profinite groups. For details we refer to [12]. Given

a directed set I and an inverse system of finite groups (Gi)i∈I we obtain a profinite
group G = lim

←−−−i∈I Gi. This is a topological group under the relative topology inside
the product

∏

i∈I Gi, with the discrete topology on the groups Gi. We denote an
element g of G by g = (gi)i∈I . A profinite group is compact and Hausdorff. If the
groups Gi are all abelian, then G is abelian as well.

For all n, n′ ∈ Z>0 with n | n′ we consider the reduction maps of the abelian

groups Z/n′Z −→ Z/nZ. We denote by Ẑ the projective limit of Z/nZ for all n ∈ Z>0

with respect to these homomorphisms. Moreover, we define for a prime number p
the group

Zp = lim
←−−−

n∈Z>0

Z/pnZ.

In fact Ẑ and Zp, for all primes p, are rings and we have a canonical isomorphism of

rings Ẑ ' ∏

p Zp, where p ranges over the prime numbers. Similarly the group Ẑ∗

is the projective limit lim
←−−−n∈Z>0

(Z/nZ)∗ with reduction maps (Z/n′Z)∗ −→ (Z/nZ)∗

for all n, n′ with n | n′ in Z>0.
Let (Gi)i∈I be an inverse system of finite abelian groups for some index set I.

We show that G = lim
←−−−i∈I Gi is a Ẑ-module. Let a be an element of Ẑ; we write

a = (an)n∈Z>0
. For all i we define ni = #Gi. If h is an element of the group Gi for

some i ∈ I, then we define ha = hani . With this action Gi is a topological Ẑ-module
with discrete topology. As G inherits the action on its components we have

ga =
(

g
ani
i

)

i∈I

for all (gi)i∈I ∈ G. Hence G is a topological Ẑ-module as well.
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Definition 1. By P we denote the set of prime numbers. A Steinitz number is a
formal expression

m =
∏

p∈P
pm(p),

where m(p) is an element of {0, 1, 2, . . . ,∞} for all p ∈ P .

The Steinitz numbers for which we have m(p) <∞ for all primes p and m(p) = 0
for almost all p are identified with positive integers by multiplying out the formal
expression.

Let m =
∏

p∈P p
m(p) and n =

∏

p∈P p
n(p) be Steinitz numbers. We say that

m divides n and write m | n if m(p) ≤ n(p) for all p ∈ P . Moreover, we define
for a set I of Steinitz numbers the greatest common divisor and the least common
multiple as

gcdm∈I(m) =
∏

p∈P
pminm∈I m(p) and lcmm∈I(m) =

∏

p∈P
psupm∈I m(p).

Let m be a Steinitz number, then we define mẐ =
⋂

n|m nẐ, where the intersec-
tion ranges over the integers n dividing m.

Proposition 2. The map m 7→ mẐ from the set of Steinitz numbers to the set of
closed subgroups of Ẑ is bijective.

Proof. For every integer n, the subgroup nẐ of Ẑ is closed because it is the kernel
of the continuous projection map Ẑ −→ Z/nZ. As an intersection of closed groups,

also mẐ is a closed subgroup of Ẑ for every Steinitz number m.

Let S be a closed subgroup of Ẑ and denote, for every integer n, the projection
map Ẑ −→ Z/nZ by πn. Let x be an element of

⋂

n π
−1
n (πn(S)). As the maps

πn : S −→ πn(S) are surjective, there exists for every n ∈ Z>0 an element sn ∈ S

with πn(x) = πn(sn). It is easy to see that Ẑ equals lim
←−−−n∈Z>0

Z/n!Z. Since S is a

closed subgroup of Ẑ, the limit x of the sequence (sn!)n is also contained in S. It
follows S =

⋂

n π
−1
n (πn(S)) . Writing πn(S) = dnZ/nZ for some integer dn | n one

obtains S = mẐ for the Steinitz number m that equals lcmn∈Z>0
(dn).

As a profinite group G is a continuous topological Ẑ-module, the annihilator
Ann

Ẑ
(G) is closed. Hence, by proposition 2, it equals mẐ for some Steinitz num-

ber m.

Definition 3. The exponent of a profinite group G is the Steinitz number exp(G)
for which we have

exp(G) · Ẑ = Ann
Ẑ
(G) = {a ∈ Ẑ : ga = 1 for all g ∈ G}.



4 CHAPTER 1. MAXIMAL RADICAL EXTENSIONS

Proposition 4. Let G = lim
←−−−i∈I Gi for finite abelian groups Gi. If the projection

map G −→ Gi is surjective for all i ∈ I then we have

exp(G) = lcmi∈I (exp(Gi)) .

Proof. Let a ∈ Ẑ. By definition we have a ∈ exp(G) · Ẑ if and only if ga = 1 holds
for all g ∈ G. As G maps surjectively to the Gi this is also equivalent to

ga = 1 for all g ∈ Gi and all i ∈ I.

So, we have the following equivalent statements:

a ∈ exp(G) · Ẑ ⇐⇒ a ∈ exp(Gi) · Ẑ for all i ∈ I

⇐⇒ a ∈
⋂

i∈I
exp(Gi) · Ẑ

⇐⇒ a ∈ lcmi∈I(exp(Gi)) · Ẑ.

This concludes the proof of the proposition.

In the next section we study Kummer extensions. The field extensions that we
consider do not have to be finite. We state two main theorems of infinite Galois
theory ([12]).

Definition 5. Let K ⊂ L be an algebraic field extension. For a group G ⊂ AutK(L)
we write LG for the field of elements of L that are invariant under G. More explicitly
we have

LG = {l ∈ L : σ(l) = l for all σ ∈ G}.
We call L/K a Galois extension if there exists a group G ⊂ AutK(L) such that
K = LG. If L/K is a Galois extension then we define the Galois group Gal(L/K)
to be AutK(L).

Theorem 6. Let K be a field and L a subfield of K̄ containing K. Denote by I
the set of subfields E of L for which E is a finite Galois extension of K. Then I,
when partially ordered by inclusion, is a directed set. Moreover, the following four
assertions are equivalent:

• The field L is a Galois extension of K.

• The field L is normal and separable over K.

• There is a set F ⊂ K[x] of separable non-constant polynomials such that L is
the splitting field of F over K in K̄.

• The composite of the fields E in I equals L.
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If L/K is a Galois extension, then there is a group isomorphism

Gal(L/K) ' lim
←−−−

E∈I
Gal(E/K)

mapping σ ∈ Gal(L/K) to (σ|E )E∈I .

For a Galois extension L/K, this gives Gal(L/K) the structure of a profinite
group. For finite normal subextensions E/K of L/K the projection maps to the
Galois groups Gal(E/K) are surjective.

Theorem 7. Let L/K be a Galois extension of fields with Galois group G. The
maps

{E : E is a subextension of L/K} {H : H is a closed subgroup of G},
ψ

ϕ

defined by ϕ(E) = AutE(L) and ψ(H) = LH , are bijective and inverse to each other.

1.2 Kummer theory

In this section we give the definition of a Kummer extension of exponent m, for
a Steinitz number m, and give some basic results from classical Kummer theory,
following [22] chapter VI.

Definition 8. Let m be a Steinitz number and let K be a field. We define the
multiplicative group

µm(K) = {ζ ∈ K∗ : ζn = 1 for some n ∈ Z>0 with n | m}.

When we consider a fixed field K within some algebraic closure K̄ we will also use
the notation µm for µm(K̄).

Similarly, we define for a multiplicative group A the group µm(A).

Definition 9. For n ∈ Z>0 we write wn(K) = #µn(K). For a Steinitz number m
we define the Steinitz number wm(K) as lcmn|m

(

wn(K)
)

, where n ranges over the
positive integers dividing m.

Definition 10. Let m be a Steinitz number. A field extension L over K is called a
Kummer extension of exponent m if it is a Galois extension, wm(K) equals m, and
the group Gal(L/K) is a profinite abelian group of exponent dividing m.

If L/K is a Kummer extension of exponent m =
∏

q∈P q
m(q) and K has charac-

teristic p for some prime p then µp(K) consists of one single element as xp − 1 =
(x− 1)p ∈ K[x] holds. Therefore we have p - wm(K). We conclude m(p) = 0.
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Proposition 11. A field extension L/K is a Kummer extension of exponent m if
and only if all finite extensions M/K with K ⊂ M ⊂ L are Kummer extensions of
exponent m.

Proof. Let I be the set of all finite subextensions of L over K
Assume that L/K is a Kummer extension of exponent m with Galois group G.

As L/K is abelian, also M/K is a Galois extension with abelian Galois group GM
for all M ∈ I and, by theorem 6, we have G = lim

←−−−M∈I GM . Let M be an element
of I. As G maps surjectively to GM we have exp(GM ) = n for some n ∈ N with
n | m. Using wm(K) = m, we see that the extension M/K is a Kummer extension
of exponent m over K.

Now assume that all finite subextensions of L/K are Kummer extensions of
exponent m. Then, as L is the composite of the fields M for M ∈ I by theorem 6,
also L/K is a Galois extension. Its Galois group is G = lim

←−−−M∈I Gal(M/K) and thus
L/K is abelian. By proposition 4 the group G is of exponent m and as wm(K) = m
holds we conclude that L/K is a Kummer extension of exponent m.

Corollary 12. A field extension L/K is a Kummer extension of exponent m if and
only if all extensions M/K with K ⊂ M ⊂ L are Kummer extensions of exponent
m.

Definition 13. Let n be a positive integer and letK be a field containing a primitive
n-th root of unity. Then within a fixed algebraic closure K̄ of K we define K

(

a1/n
)

for a ∈ K as the splitting field of xn − a over K. For a subset W of K∗ we write
K(W 1/n) for the composite of the fields K(a1/n) for all a ∈W .

For a Steinitz number m and a field K with wm(K) = m we define for all
W ⊂ K∗ the field K(W 1/m) as the composite of the fields K(W 1/n) for all n ∈ Z>0

with n | m.

In classical Kummer theory we have the following theorem ([22], VI, 8.2).

Theorem 14. Let n be a positive integer and K a field containing a primitive n-th
root of unity. There is a bijection from the set of all subgroups W of K∗ containing
K∗n to the set of all Kummer extensions of exponent n over K inside K̄, given by
W 7→ K

(

W 1/n
)

.

It is not hard to check that the inverse of this map is given by sending a Kummer
extension L/K of exponent n to the subgroup L∗n ∩K∗ of K∗.

Using this correspondence we can give a nice description of the Galois group of
a Kummer extension of exponent n ∈ Z>0.

Theorem 15. Let n be a positive integer and let L/K be a Kummer extension of
exponent n. If W is the subgroup of K∗ containing K∗n corresponding to L/K as
in theorem 14, then there is an isomorphism of topological groups

ϕ : Gal(L/K)
∼−→ Hom

(

W/K∗n, µn(K)
)

,
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such that ϕ(σ)(aK∗n) = σ(α)/α for all α ∈ L and all a ∈W with αn = a. Here the
group Hom

(

W/K∗n, µn(K)
)

has the relative topology in
∏

µn(K), where the product
ranges over the elements of W/K∗n, and µn(K) has the discrete topology.

Proof. WriteWL = W and define for all finite subextensions E/K of L/K the unique
group WE such that K∗n ⊂ WE ⊂ WL and E = K(WE). Then it is shown in [22],
chapter VI theorem 8.1, that for every finite subextension E/K of L/K the map ϕ
induces an isomorphism from Gal(E/K) to Hom

(

WE/K
∗n, µn(K)

)

. As we have
WL/K

∗n = lim
−−−→E⊂LWE/K

∗n this gives the following commuting diagram

Gal(L/K)
ϕ

Hom(WL/K
∗n, µn(K))

lim
←−−−E

Gal(E/K) ∼ lim
←−−−E

Hom(WE/K
∗n, µn(K)).

It follows that ϕ is an isomorphism as well. As Gal(L/K) = lim
←−−−E⊂L Gal(E/K) is

compact and the group Hom
(

W/K∗n, µn(K)
)

is Hausdorff it remains to prove that
the map ϕ is continuous.

Define for all a ∈W the map ϕa : Hom
(

W/K∗n, µn(K)
)

−→ µn(K) by ϕa(f) =

f(a ·K∗n) and the projection map τa : Gal(L/K) −→ Gal
(

K(a1/n)/K
)

. Then ϕ is
continuous if and only if ϕa◦ϕ is continuous for all a ∈W . Let a in W and let α ∈ K̄
with αn = a. We define a map fa : Gal(K(a1/n)/K) −→ µn(K) by fa(σ) = σ(α)/α.
Then the map ϕa ◦ ϕ : Gal(L/K) −→ µn(K) equals fa ◦ τa.

Gal(L/K)
ϕa◦ϕ

τa

µn(K)

Gal
(

K(a1/n)/K
)

fa

Both τa, by definition of a projection map, and fa, as a map between finite groups,
are continuous and thus also ϕa ◦ ϕ is continuous.

Let K be a field and let n be a positive integer. In theorem 14 we saw that
there is a one-to-one correspondence between Kummer extensions of exponent n
and subgroups W of K∗ containing K∗n. For a Steinitz number m, we can use this
correspondence to show that the intersection of Kummer extensions of exponent m
can be expressed in terms of the generating radicals of the extensions.

Definition 16. Let K be a field, K̄ an algebraic closure of K and m a Steinitz
number not divisible by the characteristic of K. If µm is contained in K we define
the multiplicative group of radicals of exponent m over K as

(K∗)1/m = {α ∈ K̄∗ with αn ∈ K∗ for some n ∈ Z>0 with n | m}.
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Proposition 17. Let m be a Steinitz number not divisible by the characteristic
of K. If K1 = K(W1) and K2 = K(W2) are Kummer extensions of exponent m, for
subgroups W1,W2 of (K∗)1/m containing K∗, then we have

K1 ∩K2 = K(W1 ∩W2).

Proof. Let n be a positive integer dividing m. As µn ⊂ K∗ holds, there is a bijection
between the set of subgroups of K∗ containing K∗n and the set of subgroups of
(K∗)1/n containing K∗ given by sending K∗n ⊂ W ⊂ K∗ to W 1/n = {a ∈ K̄∗ :
an ∈ W}. Hence, theorem 14 gives a bijection between the set of subgroups of
(K∗)1/n containing K∗ and the set of Kummer extensions of exponent n over K
inside K̄. As both these sets are partially ordered we have for K∗ ⊂ U ⊂ (K∗)1/n

and K∗ ⊂ V ⊂ (K∗)1/n that K(U) ∩K(V ) = K(U ∩ V ).
Define for i = 1, 2 groups Wi,n = Wi ∩ (K∗)1/n for all n ∈ Z>0 dividing m. Then

we have

K(W1 ∩W2) =
⋃

n|m
K(W1,n ∩W2,n)

=
⋃

n|m

(

K(W1,n) ∩K(W2,n)
)

= K(W1) ∩K(W2) = K1 ∩K2.

In chapters 3 and 4 we study denestings of nested radicals. We will use the
following reformulation of theorem 14.

Corollary 18. Let n ∈ Z>0 and let K be a field containing a primitive n-th root of
unity. Let α, α1, . . . , αk ∈ K̄∗ such that we have αn, αn1 , . . . , α

n
k ∈ K. Then α is an

element of K
(

α1, . . . , αk
)

if and only if there are b ∈ K∗ and l1, . . . lk ∈ N such that
α can be written in the form

α = b

k
∏

i=1

αlii .

Proof. We only prove the implication from left to right as the other one is clear. Let
L be the field K(α1, . . . , αk ) and assume that α is contained in L∗. Let W denote
the subgroup 〈αn1 , . . . , αnk 〉 ·K∗n of L∗. Then we have K(W 1/n) = L. Hence, by the
remark following theorem 14, we have αn ∈ L∗n ∩K∗ = W . Therefore we find

αn = dn
k
∏

i=1

αnlii ,

for some d ∈ K∗ and l1, . . . lk ∈ N. As K contains a primitive n-th root of unity,
taking n-th roots and multiplying d by some n-th root of unity gives the corollary.
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1.3 Maximal Kummer extensions

In this section K is a field and K̄ is a fixed algebraic closure of K. Furthermore m
is a Steinitz number not divisible by the characteristic of K such that wm(K) = m
and L/K is the maximal Kummer extension of exponent m over K:

L = K((K∗)1/m) = K
(

{α ∈ K̄∗ : αn ∈ K for some n ∈ Z>0 with n | m}
)

.

In this section we describe the Galois group of the field extension L/K.
For all n ∈ Z>0 we defined the group µn as the multiplicative group of n-th

roots of unity in K̄. For all n, n′ ∈ Z>0 with n | n′ there is a reduction map
fn′n : µn′ −→ µn defined by f(x) = xn

′/n. For this system of groups and maps we
write µ̂ = lim

←−−−n∈Z>0
µn.

The group µ̂ is isomorphic to Ẑ as a Ẑ-module if the characteristic of K is 0. It
is isomorphic to

∏

p∈P,p6=q Zp if the characteristic of K is q > 0.
One checks that we have, for all Steinitz numbers m, a canonical isomorphism of

Ẑ-modules

µ̂/µ̂m
∼−→ lim

←−−−

n|m
µn,

where µ̂m = µ̂(mẐ) and where n ranges over the positive integers.
Similarly, we have Ẑ/mẐ

∼−→ lim
←−−−n|m Z/nZ and (Ẑ/mẐ)∗

∼−→ lim
←−−−n|m(Z/nZ)∗.

Theorem 19. Let L/K be the maximal Kummer extension of K of exponent m.
There is an isomorphism of topological groups

Gal(L/K) ' Hom(K∗, µ̂/µ̂m),

given by

σ 7→
(

a 7→
(

σ(αn)

αn

)

n∈Z>0,n|m

)

,

where for all a ∈ K∗ and all n ∈ Z>0 with n | m we choose αn ∈ L with αnn = a.

Proof. Define for all n ∈ Z>0 with n | m the field Ln = K((K∗)1/n). As L is the
composite of the Ln for all n ∈ Z>0 with n | m, an application of theorem 6 shows
that the group G = Gal(L/K) is topologically isomorphic to lim

←−−−n|m Gal(Ln/K).

Let n be a positive integer with n | m. Using theorems 14 and 15 we see that
Gal(Ln/K) is isomorphic to Hom

(

K∗/K∗n, µn(K)
)

under the isomorphism sending
σ ∈ Gal(Ln/K) to the map (aK∗n 7→ σ(α)/α), where α is an element of L with
αn = a.

As every homomorphism from K∗ to µn annihilates K∗n we have

Gal(Ln/K) ' Hom(K∗, µn).
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Let n, n′ ∈ Z>0 such that n | n′ then we get the following diagram.

Gal(Ln′/K)
∼−→Hom(K∗, µn′)

↓ ↓
Gal(Ln/K)

∼−→Hom(K∗, µn)

The map from Hom(K∗, µn′) to Hom(K∗, µn) is induced by the identity on K∗ and
the homomorphisms fn′n : µn′ → µn are defined by fn′n(x) = xn

′/n. It is easy to
check that the diagram commutes.

As the maps fn′n are the same as in the definition of µ̂, we get the following
isomorphisms of topological groups:

Gal(L/K) ' lim
←−−−

n|m
Gal(Ln/K)

' lim
←−−−

n|m
Hom(K∗, µn)

(∗)' Hom(K∗, lim
←−−−

n|m
µn)

= Hom(K∗, µ̂/µ̂m).

The canonical map (∗) is a homeomorphism as the product topologies on

∏

n|m

(

∏

a∈K∗
µn

)

and
∏

a∈K∗

(

∏

n|m
µn

)

are the same.

Now we state a lemma that we use in section 1.7. Define m∞ =
∏

p|m p
∞, where

the product ranges over the prime numbers dividing m and write w = wm∞(K).
Then µw is contained in K, the field K(µwm) is contained in L and Gal(L/K(µwm))
is a subgroup of Gal(L/K).

Lemma 20. If L/K is the maximal Kummer extension of K of exponent m, then
the isomorphism of theorem 19 induces an isomorphism

Gal
(

L/K(µwm)
)

' Hom
(

K∗/µw, µ̂/µ̂
m
)

.

Proof. Let ϕ be the isomorphism from theorem 19. We define the homomorphism

ϕ′ : Gal
(

L/K(µwm)
)

−→ Hom
(

K∗/µw, µ̂/µ̂
m
)

by ϕ′(σ(a · µw)
)

= ϕ(σ(a)) for all a ∈ K∗. We show that ϕ′ is well-defined. Let

a, b ∈ K∗ with a/b ∈ µw. Let n ∈ Z>0 with n | m and let σ ∈ Gal
(

L/K(µwm)
)

.
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Then, for all α, β ∈ L with αn = a and βn = b we have σ(α)/α = σ(β)/β as
σ(α/β) = α/β ∈ K(µwm).

This gives the following commuting diagram

Gal(L/K)
ϕ

∼
Hom(K∗, µ̂/µ̂m)

Gal
(

L/K(µwm)
) ϕ′

σ 7→σ

Hom
(

K∗/µw, µ̂/µ̂m
)

,

ψ

where ψ(f)(a) = f
(

a · µw
)

. The homomorphism ϕ′ is injective as ϕ is injective. Let

f ∈ Hom
(

K∗/µw, µ̂/µ̂m
)

and define σ = ϕ−1(ψ(f)). Let a ∈ µw. As µw is contained
in the kernel of f we have f(a) = 1 ∈ µ̂/µ̂m. Therefore also ψ(f)(a) = 1 ∈ µ̂/µ̂m

and consequently for all integer divisors n of m we have σ(αn)/αn = 1 for all αn ∈ L
with αnn = a. Hence it follows σ(α) = α for all α ∈ L with αn = 1 and n | wm. So
σ ∈ Gal(L/K) is contained in Gal(L/K(µmw)). As we have ϕ′(σ) = f , we conclude
that ϕ′ is surjective.

1.4 Separating the roots of unity

We fix the following notation for the rest of this chapter:

K is a field;
K̄ is an algebraic closure of K;
m is a Steinitz number not divisible by the characteristic of K;
w is wm∞(K);
A is the multiplicative group of radicals of exponent m over K

defined by A = {α ∈ K̄∗ : αn ∈ K for some n ∈ Z>0 with n | m};
L is the field K(A).

The torsion elements in the groups K∗ and A are precisely the roots of unity. In
particular the groups of m∞-torsion in K∗ and A are µm∞(K∗) = µw respectively
µm∞(A) = µmw.

We would like to write A as a direct product with its torsion subgroup as one
of the factors. Unfortunately, as we will see in example 22, this is not possible for
every abelian group. However, we can write A/µw as a direct product with its torsion
subgroup as one of the factors. To show this we consider the inclusion map

γ : µmw/µw −→ A/K∗.

Theorem 21. There exists a homomorphism δ : A/K∗ −→ µmw/µw such that
δγ = 1 holds.

We will use the rest of this section to prove this theorem and to construct the
desired splitting of A/µw. But first we show that there exist abelian groups that are
not a direct product with the torsion subgroup as a factor.
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Example 22. Consider the group
∏

p Fp, where p ranges over the prime numbers.

The torsion subgroup of
∏

p Fp is
⊕

p Fp. For H =
(
∏

p Fp
)

/
⊕

p Fp the sequence

0 −→
⊕

p

Fp −→
∏

p

Fp −→ H −→ 0

is exact. First we show that H is divisible. Let x = (xp)p∈P be an element of
∏

p Fp
and let n be a positive integer. We define y = (yp)p∈P by

yp =

{

xp/n if p - n

0 if p | n.

Then we have ny − x ∈ ⊕p Fp. So, for every x̄ ∈ H and every n ∈ Z>0 there is
an element ȳ ∈ H with x̄ = nȳ. This shows that H is a divisible group. If the
sequence splits, H is isomorphic to the kernel of the splitting map

∏

p Fp −→
⊕

p Fp
and consequently H is isomorphic to a subgroup of

∏

p Fp. But this is not possible
as
∏

p Fp has no non-zero divisible subgroups. We conclude that the sequence above
does not split. It is therefore not possible to give a splitting of

∏

p Fp with its torsion
subgroup as one of the factors.

Inspired by the previous example we also construct a Kummer extension gener-
ated by a group of radicals for which the torsion subgroup is not a direct factor.
Example 23 is based on a suggestion by B. Poonen.

Example 23. Denote by ζp a primitive p-th root of unity. Consider the fields
K = Q(ζp : p ∈ P ) and K( p

√

2 · ζp : p ∈ P ) and let R be the generating group of

radicals 〈K∗, p
√

2 · ζp : p ∈ P 〉. Below we will show that R/µ(R) is not a direct factor
of R. It follows immediately that also µ(R) is not a direct factor of R.

First we determine µ(R). Suppose ζ is a root of unity contained in R. Then ζ is
of the form k

∏

p
√

2 · ζp
np

for some element k of K and integers 0 ≤ np < p. Let r
be the product of all primes for which we have np 6= 0 and let n be the least common
multiple of r2 and the order of ζ. Then we have

ζn = 1 = kn ·
∏

p∈P
2np·n/p ∈ K.

Let p be a prime above 2 in Q(k). We normalise the p-valuation in Q(k)/Q by
vp(2) = 1 and find

−n · vp(k) = vp(2)
∑

p∈P
np · n/p =

∑

p∈P
np · n/p.

Suppose that p is a prime with np 6= 0. Then p divides n. Let l be the largest
integer with pl | n. We have pl | nq · n/q for all primes q 6= p. As pl is not a
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divisor of np · n/p, we have pl -
∑

p np · n/p. But pl is a divisor of n and we have a
contradiction. We conclude that np equals 0 for all primes p and that µ(R) equals
µ(K∗) = 〈µp : p ∈ P 〉.

If R/µ(R) is a direct factor of R then there exists a splitting of the projection
map π in the exact sequence

0 −→ µ(R) −→ R
π−→ R/µ(R) −→ 0.

Clearly, the element 2 · µ(R) is a p-th power in R/µ(R) for all primes p. Hence,
the image of 2 · µ(R) under the splitting homomorphism is also a p-th power for all
primes p. By definition of π this image is of the form 2 · ζ for some root of unity ζ.
Let q be a prime that does not divide the order of ζ. Then each of the elements ζ,
2 · ζ and 2 · ζq is contained in Rq. It follows that also ζq is contained in Rq. But this
is impossible as µ(R) equals 〈µp : p ∈ P 〉. Therefore the sequence does not split and
the group R is not a direct product with µ(R) as one of the factors.

To construct a splitting of the inclusion map γ from the beginning of this section,
we remark that A/K∗ is a torsion group. All elements are of finite order and we
define

Ap = {α ∈ K̄∗ : αn ∈ K for some n ∈ Z>0 with n | gcd(m, p∞)}.

We have
A/K∗ =

⊕

p∈P
Ap/K

∗.

Also µmw/µw is a torsion group, hence we have

µmw/µw =
⊕

p∈P
Up, where Up = µgcd(p∞,m)w/µw.

The p-part of γ is the restriction of γ to Up, so we have γp : Up −→ Ap/K
∗. It

suffices to show that there exists a splitting of γp for every prime p dividing m.

Definition 24. Let R be a ring. An R-module Q is called injective, if given any
R-module N , a submodule N ′ and a homomorphism N ′ −→ Q, there exists an
extension of this homomorphism to N .

Lemma 25. Let p be a prime dividing m. Let R be a ring and suppose we have
R-module structures on Up and Ap/K

∗ such that γp : Up −→ Ap/K
∗ is an R-module

homomorphism and such that the group Up is an injective R-module. Then there
exists a homomorphism δp : Ap/K

∗ −→ Up with δpγp = 1.

Proof. When we take Q = N ′ = Up and N = Ap/K
∗, in the notation of definition 24,

then there exists an extension δp of the identity on Up mapping Ap/K
∗ to Up, as Up

is injective. For this homomorphism we have δpγp = 1.
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First we prove that Up is an injective Z-module in the case that p∞ | m.

Lemma 26. An abelian group is injective if and only if it is divisible.

Proof. This is proved in [22], chapter XX, lemma 4.2.

Lemma 27. If p is a prime with p∞ | m then the group Up is an injective Z-module.

Proof. It suffices to prove that Up = µp∞w/µw is divisible; to do so, we show that for
every a ∈ Up and for every prime q the group Up contains an element b with a = bq.

Let a be in Up and let q be a prime. Then a is the class of a pn-th root of unity
ζpn for some n ∈ N. If p equals q there exists a primitive pn+1-th root of unity ζ in
Up with ζp = ζpn ; we take b = ζ ·µw ∈ Up. If p 6= q then gcd(p, q) = 1 and thus there
are x, y ∈ Z with xpn+yq = 1. Let b = ζypn ·µw ∈ Up, then we have bq = ζpn ·µw.

Now we will consider the case that p is a prime dividing m such that p∞ - m.
Again we will show that Up is an injective module, only this time, the group is not
an injective Z-module, but it is an injective Z/pnZ-module.

Lemma 28 (Baer’s Criterion). Let R be a ring and E an R-module. Then E
is an injective R-module if and only if for all left ideals J ⊂ R, every R-module
homomorphism J −→ E can be extended to a homomorphism R −→ E.

Proof. This is theorem 2.3.1 in [39].

Lemma 29. Let p be a prime dividing m with p∞ - m and let n ∈ Z>0 with pn | m
and pn+1 - m. Then the group Up is an injective Z/pnZ-module.

Proof. If p∞ divides w then Up is the trivial group and hence Up is an injective
Z/pnZ-module.

Assume p∞ - w. Then Up is isomorphic to Z/pnZ. We apply Baer’s criterion.
Let J be an ideal of Z/pnZ, then there exists some k ∈ N with k ≤ n such that
J = pk · Z/pnZ holds. When τ : J −→ Z/pnZ is a homomorphism then we have
τ(J) ⊂ pk · Z/pnZ. As both J and Z/pnZ are additive cyclic groups generated by
pk respectively 1, we define an extension τ ′ : Z/pnZ −→ Z/pnZ of τ as follows. Let
α ∈ Z/pnZ such that τ(pk) = pk · α holds. We define τ ′(1) = α. Then for all
β = pk · β′ ∈ J we have

τ(β) = β′ · τ(pk) = β′ · pk · α = β · τ ′(1) = τ ′(β),

so, τ ′ is an extension of τ . We conclude that Z/pnZ, and consequently Up, is an
injective Z/pnZ-module.

Proof of theorem 21. Let p be a prime with p∞ | m. Then by lemma 27 the group
Up is an injective Z-module. As an abelian group also Ap/K

∗ is a Z-module and the
inclusion map γp is a Z-module homomorphism.
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Let p be a prime dividing m and let n ∈ Z>0 with pn | m and pn+1 - m. Then
by lemma 29 the group Up is an injective Z/pnZ-module. As an abelian group
annihilated by pn also Ap/K

∗ is a Z/pnZ-module and the inclusion map γp is a
Z/pnZ-module homomorphism.

Therefore, by lemma 25, for every prime p dividing m there exists a homomor-
phism δp : Ap/K

∗ −→ Up with δpγp = 1. Since A/K∗ is the direct sum of the groups
Ap/K

∗ for p ∈ P the maps δp on the p-part together give us a splitting δ of γ.

Corollary 30. There exists a subgroup C of A with K∗ ⊂ C such that

A/µw = µmw/µw × C/µw.

Proof. By theorem 21 there exists a homomorphism δ : A/K∗ −→ µmw/µw such that
δγ = 1. We define ψ : A/µw −→ µmw/µw by ψ(a) = δ(a ·K∗) for all a ∈ A/µw. Let
ϕ : µmw/µw −→ A/µw be the inclusion map. Then we have the following splitting
exact sequence:

0 µmw/µw ϕ
A/µw

ψ

ker(ψ) 0 .

We conclude
A/µw = µmw/µw × ker(ψ).

Let C be the set of all elements c of A with c · µw ∈ ker(ψ), then C is a subgroup
of A and by construction we have K∗/µw ⊂ ker(ψ).

Example 31. We consider Q̄ ⊂ C . We set K = Q and m =
∏

p∈P p
∞. We have

L = K(A) with

A = {α ∈ C ∗ with αn ∈ Q for some n ∈ Z>0}.

There exists a splitting of A with µmw(A) = µ(C ) as a component:

A = µ(C ) × {α ∈ R>0 with αn ∈ Q for some n ∈ Z>0}.

Taking both factors modulo µw(Q∗) = {±1} gives a splitting of A/µw. The corre-
sponding maps δ and ψ are given by δ(a · Q∗) = 1 · {±1} for all a ∈ A ∩ R>0 and
δ(ζ ·Q∗) = ζ · {±1} for every root of unity ζ and ψ(a · µw) = δ(a ·Q∗) for all a ∈ A.
Note that many other splittings can be found.

1.5 Galois action on radicals

In this section we embed the group Gal(L/K) in a semidirect product

Γ = Hom(K∗/µw, µ̂/µ̂
m) o Z
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where Z is a particular subgroup of (Ẑ/wmẐ)∗.
Let from now on C be a fixed subgroup of A with K∗ ⊂ C such that

A/µw = µwm/µw × C/µw.

The existence of C follows from corollary 30. We define the following two subfields
of L = K(A):

M = K(µwm) and F = K(C).

First we will consider the action of Gal(L/K) on the roots of unity in µwm, then the
action on C. Let σ be an element of Gal(L/K), then for every n ∈ Z>0 with n | wm
there exists a natural number kσ,n such that for every primitive n-th root of unity,

ζn, we have σ(ζn) = ζ
kσ,n
n . Define the homomorphism

ω : Gal(L/K) −→ (Ẑ/wmẐ)∗ ' lim
←−−−

n|wm
(Z/nZ)∗

by
ω(σ) = (kσ,n)n|wm .

We show that ω is well-defined. Let n, n′ ∈ Z>0 with n | n′. For every primitive

n′-th root of unity ζn′ there exists a primitive n-th root of unity ζn with ζ
n′/n
n′ = ζn.

Now for all σ ∈ Gal(L/K) the elements kσ,n ∈ (Z/nZ)∗ and kσ,n′ ∈ (Z/n′Z)∗ satisfy

ζkσ,n
n = σ(ζn) = σ(ζ

n′/n
n′ ) = (ζ

kσ,n′

n′ )n
′/n = ζ

kσ,n′

n .

Hence, we have kσ,n ≡ kσ,n′ modulo n for all n | n′ in Z>0 and all σ in Gal(L/K).

It follows that ω(σ) is an element of (Ẑ/wmẐ)∗ for all σ.

Lemma 32. The homomorphism ω induces an isomorphism of topological groups
between the Galois group Gal(M/K) and a closed subgroup Z of the kernel of the

projection map πw : (Ẑ/wmẐ)∗ −→ (Ẑ/wẐ)∗.

Proof. Since we have M = K(µwm) the map ω is injective on Gal(M/K). As µw is
contained in K∗ we have kσ,n = 1 for all n ∈ Z>0 with n | w and all σ ∈ Gal(L/K).
Therefore, the image Z = ω(Gal(M/K)) is a subgroup of the kernel of the projection
map πw.

The map ω is continuous if and only if for all n ∈ Z>0 with n | wm the compo-
sitions ωn of ω with the projection on (Z/nZ)∗ are continuous. The maps ωn factor
over Gal(K(ζn)/K):

Gal(M/K)
ωn

(Z/nZ)∗

Gal
(

K(ζn)/K
)

.

∼
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Being the composition of a projection map and an isomorphism of finite groups, the
homomorphisms ωn are continuous.

As both Gal(M/K) and (Ẑ/wmẐ)∗ are profinite groups, the map induced by ω
is a continuous bijection from a compact space to a Hausdorff space and therefore it
is a homeomorphism.

We fix the following notation:

Z = ω
(

Gal(M/K)
)

⊂ (Ẑ/wmẐ)∗,

and we define
Γ = Hom(K∗/µw, µ̂/µ̂

m) o Z,

where the action of Z on Hom(K∗/µw, µ̂/µ̂m) is induced by the action of (Ẑ/wmẐ)∗

on µ̂/µ̂m.
Now we consider the more difficult part of the action of Gal(L/K) on A: the

action on the elements of C. The extension F = K(C) over K is, in general, not
a Galois extension, but K(µm)(C)/K(µm) is. Inspired by the homomorphism from
lemma 20 we define a map

χ : Gal(L/K) −→ Hom(K∗/µw, µ̂/µ̂
m),

describing the action of Gal(L/K) on the elements of C.
First we define the map χ in our standard example.

Example 33. We look at the situation of example 31 again. We assume that the
fixed group C for this example is the group of real radicals in C . Let the elements
of C/{±1} be represented by the radicals in the set

{α ∈ R>0 : αn ∈ Q∗ for some n ∈ Z>0}.

The field F is defined as

F = K(C) = Q
(

{α ∈ R>0 : αn ∈ Q∗ for some n ∈ Z>0}
)

.

Define for every a ∈ Q>0 and for all n ∈ Z>0 the element n
√
a as the positive real

n-th root of a. In analogy with Kummer theory we define the map χ by

χ(σ) =
(

a 7→
(

σ( n
√
a )/ n

√
a
)

n∈Z>0

)

∈ Hom(Q>0, µ̂)

for all σ ∈ Gal(L/Q) and for all a ∈ Q>0. We now show that χ is a well-defined
map. Take a ∈ Q>0 and define for n ∈ Z>0 and σ ∈ Gal(L/Q) the root of unity ζσ,n
by σ( n

√
a )/ n

√
a. Then we have for all n, n′ ∈ Z>0 with n | n′

ζσ,n
n
√
a = σ( n

√
a ) = σ( n′

√
a )n

′/n = ζ
n′/n
σ,n′

and thus, by definition of µ̂, we have χ(σ) ∈ Hom(Q>0, µ̂). As Q>0 is a system of rep-
resentatives of Q∗/{±1} this also defines a map from Gal(L/Q) to Hom(Q∗/{±1}, µ̂).
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To define the map χ in the general case we use the following lemma.

Lemma 34. For every a ∈ K∗ and every n ∈ Z>0 with n | m there exists a unique
n-th root of a · µw in C/µw.

Proof. Let a ∈ K∗ and let n ∈ Z>0 with n | m. There is an element b ∈ A such that
bn = a. Therefore we have

(b · µw)n = a · µw = (1 · µw)(a · µw) ∈ µwm/µw × C/µw.

As b · µw is an element of A/µw there exist unique ζ ∈ µwm/µw and c ∈ C/µw such
that b · µw = ζ · c holds. For these ζ and c we have ζn = 1 · µw and cn = a · µw, this
proves the existence of an n-th root of a · µw in C/µw.

Let x, y be elements of C/µw with xn = yn ∈ K∗/µw for some n ∈ Z>0. The
quotient x/y is contained in C/µw ∩ µmw/µw = {1}, hence x and y are equal.
Therefore the n-th root of a · µw in C/µw is unique.

Note that Gal(L/K) acts onA. As µw is contained inK we have σ(c)/c = σ(c′)/c′

for all c, c′ ∈ C with c · µw = c′ · µw and for all σ ∈ Gal(L/K).
Now we are ready to define the map χ. We assign to σ ∈ Gal(L/K) a homomor-

phism that for every n ∈ Z>0 with n | m sends a ∈ K∗/µw to σ(xn)/xn ∈ µn where
xn is an element of C with xnn · µw = a. That is, we define

χ : Gal(L/K) −→ Hom(K∗/µw, µ̂/µ̂
m)

by

χ(σ) =

(

a 7→
(σ(xn)

xn

)

n|m

)

, where xn ∈ C with xnn · µw = a.

By lemma 34 we see that for all n, n′ ∈ Z>0 we have xnnn′ ·µw = xn′ · µw. In exactly
the same way as we did in example 33 one proves that χ is a well-defined map. This
map in general is not a homomorphism. Let ρ be the map given by

ρ : Gal(L/K) −→ Γ, where ρ(σ) =
(

χ(σ), ω(σ)
)

.

Proposition 35. The map ρ is an injective homomorphism.

Proof. Let a be an element of K∗/µw and define x = (xn)n|m ∈ ∏

n|m C, where

xnn · µw = a for all n ∈ Z>0 dividing m and where again for all n, n′ ∈ Z>0 we
have xnnn′ · µw = xn′ · µw. For all σ ∈ Gal(L/K) we denote by σ(x)/x the element
(σ(xn)

xn

)

n|m of µ̂/µ̂m. For all σ, τ ∈ Gal(L/K) we have

χ(στ)(a) =
στ(x)

x
=
(σ(x)

x

)

·
(στ(x)

σ(x)

)

= χ(σ)(a) · σ
(τ(x)

x

)

= χ(σ)(a) · χ(τ)ω(σ)(a).
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So, as ω is a homomorphism, ρ is a homomorphism as well. Let σ, τ be elements
of Gal(L/K) with ρ(σ) = ρ(τ). We have ω(σ) = ω(τ) and χ(σ) = χ(τ). It follows
that σ(c) = τ(c) holds for all c ∈ µmw and that σ(c) = τ(c) holds for all c ∈ C.
Hence σ equals τ and ρ is injective.

Proposition 36. The map ρ is continuous.

Proof. As we defined ρ(σ) =
(

χ(σ), ω(σ)
)

we see that ρ is continuous if and only if
both χ and ω are continuous. In lemma 32 we saw that ω is continuous.

The map χ is continuous if and only if for all n | m the compositions χn of χ
and the projection on µn are continuous. These factor over the Galois groups of the
subextensions K(ζn)(a

1/n)/K of L/K:

Gal(L/K)
χn µn

Gal
(

K(ζn)(a
1/n)/K

)

.

.

As the composition of a projection map and a homomorphism of finite groups the
homomorphisms χn are continuous.

In this section we defined the maps in the following commuting diagram.

Gal(L/K)
ρ−→ Γ

↓ res ↓ projection

Gal(M/K)
ω−→ Z

As ρ is injective, the group Gal(L/K) is isomorphic to a subgroup of Γ.

1.6 The maximal Kummer subextension in L

In the previous section we introduced fields F and M such that the composite of
F and M is L. In general, if a Galois extension is the composite of two normal
subextensions, one can express its Galois group in terms of the Galois groups of the
subextensions. Unfortunately, the field F may not be a normal extension. In order
to identify the image of Gal(L/K) in Γ = Hom(K∗/µw, µ̂/µ̂m) o Z we introduce a
normal subfield of F .

Fix the notation v = gcd(m,w). We define a Kummer subextension Fv/K
of F/K by

Fv = K ({c ∈ C with cn ∈ K∗ for some n ∈ Z>0 with n | v}) .
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The maximal Kummer extension of exponent v inside L is

Lv = K ({a ∈ A with an ∈ K∗ for some n ∈ Z>0 with n | v}) .

Below we prove

Lv = Fv ·K(µvw) and K(µvw) ∩ Fv = K.

This enables us to extend the diagram of subextensions of L/K. Let D be the
intersection field M ∩ Fv, then we have the following diagram.

L

M = K(µwm) Lv F

D(µvw) Fv

K(µvw) D

K

Theorem 37. The field Lv is Fv ·K(µvw) and we have K(µvw) ∩ Fv = K.

Proof. Define groups of generating radicals for the fields K(µvw) and Fv by W1 =
〈µvw,K∗〉 and W2 = {c ∈ C with cn ∈ K∗ for some n | v}. As the group (K∗)1/v

equals 〈W1,W2〉 we see that Lv is the composite of K(µvw) and Fv.
By proposition 17, the intersection of the fieldsK(µvw) and Fv is the fieldK(W1∩

W2). As A/µw is the direct product of µwm/µw and C/µw and we have µvw ⊂ µwm
and W2 ⊂ C, we see that W1 ∩W2 is K∗. It follows that K(µvw) ∩ Fv is K.

In the next section we use one more property of the field Fv. Below we will show
that for all c ∈ C with K(c)/K abelian we have c ∈ Fv. To prove this we use the
following result ([29], theorem 2).

Theorem 38 (Schinzel). Let R be a field, let n ∈ Z>0 not divisible by char(R) and
let u be the number of n-th roots of unity in R. Let S be the splitting field of xn − a
over R for some a ∈ R. Then S/R is abelian if and only if au = bn for some b ∈ R.

Proof. (cf. [35], theorem 4.1) Let a be an element of R. Suppose that au = bn

holds for some b ∈ R. Let β be in R̄ with βu = b. Then we have βun = au and
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hence βn ∈ a · µu. It follows that S is a subfield of R(β, µun). As βu = b ∈ R and
µu ⊂ R hold, the extension R(β)/R is cyclic. It follows that R(β, µun) is abelian
and consequently S/R is abelian.

For the converse, suppose that S/R is abelian with Galois group G. Take σ ∈ G
and suppose that it acts on a primitive n-th root of unity ζn in S as σ(ζn) = ζkσ

n . If
α is an element of S with αn = a, then for all τ ∈ G we have

τσ(α)

σ(α)
= σ

(

τ(α)

α

)

=

(

τ(α)

α

)kσ

=
τ(αkσ )

αkσ
,

from which we deduce that (αkσ )/σ(α) is in R as it is fixed by every τ ∈ G. Its n-th
power akσ−1 therefore is in Rn.

Let g denote the greatest common divisor of n and the numbers kσ − 1 for all
σ ∈ G. Then we have ag ∈ Rn. If ζ is an n-th root of unity contained in S, then we
have σ(ζ) = ζ if and only if ζkσ−1 = 1 holds for all σ ∈ G. That is, if and only if ζ
is a g-th root of unity. As the group of n-th roots of unity in R is µu the equality
g = u follows.

Proposition 39. Let c ∈ C. If K(c)/K is abelian then c is an element of Fv.

Proof. Let c be an element of C and assume that K(c)/K is abelian. There exists
a positive integer n with n | m such that cn ∈ K∗ holds. Denote by vn the greatest
common divisor of v and n. By theorem 38 there exists an element b ∈ K∗ with
(cn)vn = bn. It follows cvn = ζn ·b for some n-th root of unity ζn. As we have b ∈ K∗

and K∗ ⊂ C we have b ∈ C. As also cvn ∈ C holds, ζn is an element of C. We
conclude that ζn is an element of K∗ and therefore also cvn is contained in K∗.

1.7 Determining the Galois group

Denote by D the intersection of the fields M and Fv. In this section we will prove
the following theorem for K, L, m, ρ, Fv and Z as before.

Theorem 40. The homomorphism ρ gives an isomorphism between Gal(L/K) and
the subgroup H of Γ = Hom

(

K∗/µw, µ̂/µ̂m
)

o Z defined by

H = {(f, z) ∈ Γ with ν1(f) = ν2(z) ∈ Gal(D/K)} ,

where ν2 : Z −→ Gal(D/K) is defined by ν2(z) = ω−1(z)|D for all z ∈ Z and
ν1 : Hom

(

K∗/µw, µ̂/µ̂m
)

−→ Gal(D/K) is the composition of the canonical Kum-

mer map from Hom
(

K∗/µw, µ̂/µ̂m
)

to Gal(Fv/K) and the restriction map from
Gal(Fv/K) to Gal(D/K).
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First we show that the maps ν1 and ν2 as defined in theorem 40 give a commuting
diagram.

Gal(L/K)
χ

ω

Hom
(

K∗/µw, µ̂/µ̂m
)

ν1

Z
ν2

Gal(D/K)

Recall that χ in general is not a group homomorphism.

Proposition 41. The map

χ′ : Gal(Fv/K) −→ Hom(K∗/µw, µ̂/µ̂
v)

defined by

χ′(σ) =

(

a 7→
(σ(xn)

xn

)

n|v

)

, where xn ∈ C with xnn · µw = a

is an isomorphism of abelian groups. Moreover, if ϕv : µ̂/µ̂m −→ µ̂/µ̂v is the pro-
jection map, then the following diagram commutes.

Hom
(

K∗/µw, µ̂/µ̂m
)

f 7→ϕv◦f

Gal(L/K)
χ

res

Hom
(

K∗/µw, µ̂/µ̂v
)

Gal(Fv/K)
χ′

Proof. From the previous section we know that Fv ∩K(µvw) equals K and that Lv
is Fv(µvw). Hence, there is an isomorphism

Gal
(

Lv/K(µvw)
)

' Gal(Fv/K)

given by restricting the automorphisms of Lv/K(µvw) to Fv. In lemma 20 we proved
for the maximal Kummer extension Lv of K that

Gal
(

Lv/K(µvw)
)

' Hom
(

K∗/µv∞(K∗), µ̂/µ̂v
)

= Hom
(

K∗/µw(K∗), µ̂/µ̂v
)

.

We now define the isomorphism χ′ as the composition

Gal(Fv/K)
∼−→ Gal

(

Lv/K(µvw)
) ∼−→ Hom(K∗/µw, µ̂/µ̂

v).

Let a be an element of K∗/µw. We proved in lemma 34 that for every n | v there
exists a unique element αn ∈ C/µw with αnn = a. We also showed that the quotient



1.7. DETERMINING THE GALOIS GROUP 23

σ(xn)/xn does not depend on the choice of xn ∈ C with xn ·µw = αn. So, it follows
from theorem 19 that the isomorphism χ′ is given by

χ′(σ) =

(

a 7→
(σ(xn)

xn

)

n|v

)

, where xn ∈ C with xnn · µw = a.

It is easy to verify that for this map χ′ the diagram above commutes.

The map ν1 from theorem 40 is the composition of the homomorphisms in the
following diagram

Hom
(

K∗/µw, µ̂/µ̂m
)

f 7→ϕv◦f

Hom
(

K∗/µw, µ̂/µ̂v
) χ′−1

Gal(Fv/K)

res

Gal(D/K).

From the commuting diagram in proposition 41 we conclude that for all σ ∈
Gal(L/K) we have

ν1(χ(σ)) = σ|D

and
ν2(ω(σ)) = ω−1(ω(σ))|D = σ|D .

We get ν1(χ(σ)) = ν2(ω(σ)) for all σ ∈ Gal(L/K) and thus the diagram

Gal(L/K)
χ

ω

Hom
(

K∗/µw, µ̂/µ̂m
)

ν1

Z
ν2

Gal(D/K)

commutes.
Now we can prove theorem 40.

Proof of theorem 40. Let G be the image of Gal(L/M) under ρ in H. We have
canonical maps G ↪→ H and H −→ Z. In lemma 32 we showed that ω induces an
isomorphism of Gal(M/K) to Z and in section 1.5 we defined the homomorphisms
χ and ρ. This gives the following commuting diagram.

0 Gal(L/M)

'χ

Gal(L/K)

ρ

Gal(M/K)

'ω

0

G
γ

H
ϑ

Z
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The first row is exact because of Galois theory. The map ρ is an injective continuous
homomorphism by propositions 35 and 36. The map γ is injective and because the
diagram commutes and ω is an isomorphism we see that ϑ is surjective. We will

prove exactness of the sequence G
γ−→ H

ϑ−→ Z in H. For all g ∈ G we have
ϑ(γ(g)) = 1 so all there is left to prove is that for (f, 1) ∈ H we have (f, 1) ∈ G.

Let (f, 1) be an element of H. Then we have f ∈ Hom(K∗/µw, µ̂/µ̂m) and
ν1(f) = ν2(1) = 1. For all n ∈ Z>0 with n | m we define the fields Ln = M

(

{α ∈
L : αn ∈ K∗}

)

. Then, by theorem 15, we have

Gal(Ln/M) ' Hom
(

(K∗ ·M∗n)/M∗n, µn
)

' Hom
(

K∗/(M∗n ∩K∗), µn
)

.

Let ϕn : µ̂/µ̂m −→ µn, for all n ∈ Z>0 with n | m, be the projection map; we prove
that ϕn ◦ f ∈ Hom(K∗/(M∗n ∩K∗), µn).

Let n be some positive integer and let a be an element of K∗∩M∗n. Because K∗

is contained in Cn we have a = cn for some c ∈ C ∩M∗. As c is an element of M the
extension K(c)/K is abelian. Moreover, as c ∈ C we have c ∈ Fv, by proposition 39.
It follows that c ∈ Fv ∩M = D. We saw that ν1(f) = 1, that is ν1(f) acts trivial
on the elements of the field D. Because c is an element of D with cn = a we have
f(a)n = 1. We conclude that K∗ ∩M∗n is contained in ker(ϕn ◦ f) and thus ϕn ◦ f
is an element of Hom(K∗/(M∗n ∩K∗), µn).

Now, for all n, n′ ∈ N with n | n′ we get the following commuting diagram.

Gal(Ln′/M)

res

∼
Hom(K∗/(M∗n′ ∩K∗), µn′)

g 7→gn′/n

Gal(Ln/M)
∼

Hom(K∗/(M∗n ∩K∗), µn)

The field L is the composite of the fields Ln for all positive divisors n of m and thus
we have

G = Gal(L/M) = lim
←−−−

n|m
Gal(Ln/M).

For all n | m we have ϕn ◦ f ∈ Hom(K∗/(M∗n ∩K∗), µn) and for all a ∈ K∗/µw we

have
(

ϕn′ ◦ f(a)
)n′/n

= ϕn ◦ f(a) for all n, n′ ∈ Z>0 with n | n′. It follows that

f = (ϕn ◦ f)n|m ∈ lim
←−−−

n

Hom(K∗/(M∗n ∩K∗), µn).

Hence (f, 1) is an element of G.
We have a commuting diagram consisting of two exact sequences. As the homo-

morphisms Gal(L/M) −→ G and Gal(M/K) −→ Z are isomorphisms, the injection
ρ also has to be an isomorphism. The group Gal(L/K) is compact because it is a
profinite group and as H is Hausdorff the continuous isomorphism ρ is a homeomor-
phism and thus Gal(L/K) and H are isomorphic as topological groups.
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We will use this theorem to give an explicit description of Gal(L/K) in the case
that K equals Q and m is

∏

p∈P p
∞.

Lemma 42. Let a be a positive integer and let n be an element of Ẑ∗. Then there
exist positive integers ni with gcd(ni, 2a) = 1 for all i ∈ Z>0 such that limi→∞ ni
equals n in Ẑ.

Proof. Let π∗, for all k ∈ Z>0, be the projection from Ẑ∗ to (Z/kZ)
∗
. Now define ni

for every i ∈ Z>0 as the integer obtained by lifting π∗
2a(i!) to Z. Then for all i ∈ Z>0

we have gcd(ni, 2a) = 1 and n equals limi→∞ ni.

Definition 43. Let p be a prime and let a be an integer. We denote the Legendre

symbol of a and p by
(

a
p

)

.

For a positive odd integer b and an integer a with gcd(a, b) = 1 the Jacobi symbol
is defined as

(a

b

)

=
∏

p|b

(

a

p

)vp(b)

,

where for a prime p and an integer b we denote by vp(b) the p-valuation of b.

Now let a be an element of Q∗ and let n be an element of Ẑ∗. Write a = b/c for
b, c ∈ Z\{0} and write n = limi→∞ ni for a sequence (ni)

∞
i=0 of positive integers ni

for which gcd(ni, 2bc) = 1 for all i > 0. We define the Jacobi symbol

(a

n

)

= lim
i→∞

(

b

ni

)/(

c

ni

)

,

where
(

b
ni

)

and
(

c
ni

)

are the ordinary Jacobi symbols. Below we show that this is

well-defined. Let a, b, c, n, ni be as above and let p be an odd prime number. Then
we have by quadratic reciprocity

(

p

ni

)

=







(

ni

p

)

if p ≡ 1 mod 4
(

ni

p

)

· (−1)
ni−1

2 if p ≡ 3 mod 4.

By the supplementary laws we have
(

−1
ni

)

= (−1)
ni−1

2 and
(

2
ni

)

= (−1)
n2

i−1

8 . As
(

ni

p

)

, (−1)
ni−1

2 and (−1)
n2

i−1

8 stabilise for large i the limits

(−1

n

)

= lim
i→∞

(−1

ni

)

and
( p

n

)

= lim
i→∞

(

p

ni

)

, for p prime,

exist and do not depend on the choice of the ni. By multiplicativity this gives
(

a
n

)

.
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Example 44. Let us return to the case where K = Q and m =
∏

p∈P p
∞. We

choose C as in example 33.

Remark that µ̂/µ̂2 ' µ2. We have w = 2 and also v = 2. The field Lv is
Q({α ∈ C with α2 ∈ Q}) and the field K(µvw) is Q(i). The fields Fv and D are
equal:

Fv = D = Q({α ∈ C with α2 ∈ Q>0}).

Let, as before, ϕ2 : µ̂/µ̂m = µ̂ −→ µ2 be the projection map. Then the isomorphism
ν1 : Hom(Q>0, µ̂) −→ Gal(D/Q) satisfies

ν1(f)(
√
a ) = ϕ2(f(a)) · √a for all f ∈ Hom(Q>0, µ̂) and all a ∈ Q>0.

Let p be an odd prime. Notice that Q(
√
p∗ ), with p∗ = (−1)(p−1)/2p, is the unique

subfield of degree 2 of Q(ζp)/Q. If σ is an element of Gal
(

Q(ζp)/Q
)

and we have
σ(ζp) = ζep for some e ∈ {1, 2, . . . , p− 1} then

σ(
√
p∗ ) =







√
p∗ =

(

e
p

)√
p∗ if e is a square in (Z/pZ)∗

−√
p∗ =

(

e
p

)√
p∗ if e is not a square in (Z/pZ)∗.

Moreover, if σ′ is an element of Gal(Q(ζ8)/Q) and we have σ′(ζ8) = ζf8 for some
f ∈ {1, 3, 5, 7} then

σ′(
√
−1 ) = (−1)

f−1
2

√
−1 and σ′(

√
2 ) = (−1)

f2
−1
8

√
2.

Let a be an element of Z>0 with prime factorisation

a = 2v2(a) ·
∏

p≡1 mod 4

pvp(a) ·
∏

q≡3 mod 4

qvq(a)

Then we have

√
a =

√
2
v2(a) ·

∏

p≡1 mod 4

√
p
vp(a) ·

∏

q≡3 mod 4

√−qvq(a) ·
√
−1

x
,

with x = 0 if 2 |∑q vq(a) and x = 1 if 2 -
∑

q vq(a). The homomorphism ν2 : Z −→
Gal(D/K) maps z ∈ Z to the restriction of ω−1(z) ∈ Gal(M/K) to Gal(D/K).
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Hence we have, for all z ∈ Z,

ν2(z)(
√
a ) = ν2(z)





√
2
v2(a) ·

∏

p≡1 mod 4

√
p
vp(a) ·

∏

q≡3 mod 4

√−qvq(a) ·
√
−1

x





=
(

(−1)
z2
−1
8

√
2
)v2(a)

·
∏

p

((

z

p

)√
p

)vp(a)

·
∏

q

((

z

q

)√−q
)vq(a)

·
(

(−1)
z−1
2 ·

√
−1
)x

=

(

2

z

)v2(a)

·
∏

p

(p

z

)vp(a)

·
∏

q

(( q

z

)

· (−1)
z−1
2

)vq(a)

· (−1)
z−1
2 ·x · √a

=
(a

z

)

· (−1)
z−1
2 (

P

q vq(a)+x) · √a

=
(a

z

)

· √a.

Now let a ∈ Q>0 with a = b/c for b, c ∈ Z \ {0}. Then Q(
√
a ) = Q(

√
bc ) and

(

a
n

)

=
(

b
n

) (

c
n

)

=
(

bc
n

)

, therefore Gal(L/Q) is isomorphic to the group
{

(f, z) ∈ Hom(Q>0, µ̂) o Ẑ∗ with ϕ2

(

f(a)
)

=
(a

z

)

for all a ∈ Q>0

}

.

1.8 Computing the field D

In this section we will show that the field D = M ∩Fv equals the intersection M ∩F .
Moreover we give a method to compute the field D in some specific cases. At the
end of the section we provide some examples.

Proposition 45. The intersection M ∩ F is the field D.

Proof. As D = M∩Fv and Fv ⊂ F we have that D ⊂M∩F . Now let σ ∈ Gal(L/K)
with σ|D = 1. We prove that also σ|M∩F

= 1. We have

ν1
(

χ(σ)
)

= σ|D = 1|D = ν2
(

ω(1)
)

and hence
(

χ(σ), ω(1)
)

∈ H. So, by theorem 40 there is an automorphism τ ∈
Gal(L/K) such that

ρ(τ) =
(

χ(τ), ω(τ)
)

=
(

χ(σ), ω(1)
)

.

It follows χ(σ) = χ(τ) and therefore we have σ(c) = τ(c) for all c ∈ C. We conclude
σ|F = τ|F . The equality ω(τ) = ω(1) implies that τ|M = 1 holds. So, we have

σ|M∩F
= τ|M∩F

= 1|M∩F
= 1.

Hence M ∩ F is contained in D.
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We introduce some more notation.

Definition 46. Let p be a prime and let s be a Steinitz number. By Kp we denote
the field K(µp∞(K̄)) and by Kp,s we denote the maximal abelian subextension of
Kp/K of exponent s.

Note that if char(K) = p we get Kp = K.

Lemma 47. Let Λ be the group Gal(M/K) and let Λp denote the Galois group
Gal((M ∩Kp)/K), for all primes p dividing m. If the natural map

g : Λ/Λv −→
∏

p|m
(Λp/Λ

v
p)

is injective, then the maximal abelian subextension of exponent v of M/K is the
composite of the fields M ∩Kp,v.

Proof. Consider the following commuting diagram.

Λ/Λv
g ∏

p(Λp/Λ
v
p)

Λ

fp

As we have Λp = Gal((M ∩Kp)/K) it follows Gal((M ∩Kp,v)/K) = Λp/Λ
v
p. Define

for all primes p the map fp : Λ −→ Λp/Λ
v
p. Then we have Mker(fp) = M ∩ Kp,v.

If g is injective then ker(f) = ker(p) = Λv. The field MΛv

is the maximal abelian
subextension of exponent v in M/K.

As we will see in example 49 it is not true in general that the maximal abelian
subextension of exponent v of M/K is the composite of the fields M ∩Kp,v. But if
this holds, then lemma 47 gives us a method to compute the field D.

Theorem 48. If the maximal abelian subextension of exponent v of M/K is the
composite of the fields M ∩ Kp,v, then the field D is the composite of the fields
(

M ∩Kp(µvw)
)

∩ Fv for the primes p | m.

Proof. We introduce two fields. LetD′ be the composite of the fields
(

M∩Kp(µvw)
)

∩
Fv for all primes p | m and let E be the composite of the fields M ∩ Kp,v for all
primes p | m.

By lemma 47 we have
D′ ⊂ D ⊂ E.

To prove that D = D′ we first show that D(µvw) = D′(µvw).
In section 1.6 we saw that the maximal Kummer extension of exponent v over K,

the field Lv, is the composite of Fv and K(µvw). The groups of radicals of exponent
v over K, generating the fields Lv, Fv and K(µvw), are

Av = {a ∈ A with cn ∈ K∗ for some n ∈ Z>0 with n | v},
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Cv = {c ∈ C with cn ∈ K∗ for some n ∈ Z>0 with n | v}
and µvw. We have Av = 〈Cv, µvw〉.

Let p be a prime dividing m. The field M ∩Kp,v(µvw) is contained in Lv, hence
there exists a subgroup T of Av such that M ∩ Kp,v(µvw) = K(T ). As T is a
subgroup of 〈Cv, µvw〉 and as µvw is contained in T we have

(T ∩ Cv) · µvw = T.

Therefore, by proposition 17, also the following equality of fields holds

(

K(T ) ∩ Fv
)

(µvw) = K(T ). (1.1)

As Kp(µvw) ∩ Fv is a field of exponent v over K we have, by corollary 18, Av ∩
Kp(µvw) ⊂ Kp,v(µvw). It follows

Kp(µvw) ∩ Fv = Kp,v(µvw) ∩ Fv. (1.2)

As K(T ) equals M ∩Kp,v(µvw) we can substitute equation 1.2 in the left hand side
of equation 1.1. We obtain

(

(M ∩Kp(µvw)) ∩ Fv
)

(µvw) = M ∩Kp,v(µvw).

Taking the composite over all primes p dividing m gives D′(µvw) = E(µvw). As we
have D′ ⊂ D ⊂ E we derive that D(µvw) = D′(µvw).

Now look at the following diagram:

D(µvw)

D D′(µvw)

D′ K(µvw)

K.

All the extensions are Galois extensions and by theorem 37 we know that the inter-
section D ∩K(µvw) equals K. We conclude that

Gal(D(µvw)/D) ' Gal(K(µvw)/K) ' Gal(D′(µvw)/D′),

hence we have D = D′.
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Example 49. Let p and q be distinct primes congruent to 1 modulo 4. Let m be
2pq. We construct a field K for which the composite of the fields Kp,2 and Kq,2

is smaller than the maximal Kummer extension of exponent 2 over K in the field
M = K(µpq). Define elements rp, sp in Q(ζp) and elements rq, sq in Q(ζq) that
generate subfields of Q(ζp) and Q(ζq) as indicated in the following diagrams.

Q(ζp)

2

Q(ζq)

2

Q(rp)

2

Q(rq)

2

Q(sp) Q(sq)

Q Q

As Q(ζpq)/Q(sp, sq) is a Galois extension with Galois group C4 × C4 we have the
following diagram of subfields.

Q(ζpq)

Q(ζp, rq) . . . Q(rp, ζq)

. . . Q(ζp, sq) . . . Q(rp, rq) . . . Q(sp, ζq) . . .

Q(rp, sq) K Q(sp, rq)

Q(sp, sq)

LetK be the quadratic subextension of Q(ζpq)/Q(sp, sq) that is not equal to Q(rp, sq)
or Q(sp, rq). The maximal Kummer extension of exponent 2 in K(ζpq)/K is a
degree 4 extension. However, the extension Kp,2 = Kq,2 = Q(rp, rq) is of degree 2
over K.

Below we compute the intersection field D in some special cases. We start with
our standard example.
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Example 50. Let, as before, K = Q, m =
∏

p∈P p
∞, and let F be the field

generated by the real radicals in C . In this case we have v = 2. As the Galois group
of Q(µ(C )) over Q is isomorphic to Ẑ∗ which is the direct product of the Z∗

p for all
primes p we can apply theorem 48.

Let p be an odd prime. Then Q(ζp)/Q is cyclic of degree p − 1 and the unique
subfield of degree 2 of Q(ζp) is Q(

√±p ). As vw = 4 we have Kp(µvw)∩Fv = Q(
√
p ).

Moreover, we have K2(µvw) ∩ Fv = K2 ∩ Fv = Q(
√

2). It follows that

D = Q(
√
p : p ∈ P ).

In the case that K = Q and m =
∏

p∈P p
∞ we could also have made other choices

for the subgroup C in the splitting of A (section 1.5) resulting in a non-real field F .
Also in these cases it is easy to compute the field D. For every prime p precisely one
of the elements

√
p and

√−p is contained in Fv. When we denote this element by p̄
then we have D = Q(p̄ : p ∈ P ).

Example 51. Let K = Q(
√

2 ) and m =
∏

p∈P p
∞. The Galois group of Q(µ(C ))

over Q(
√

2 ) is the direct product of the groups Z∗
p for odd primes p with

Gal(Q(µ2∞)/Q(
√

2 )) ⊂ Z∗
2.

Again we apply theorem 48.
As in example 50 we have v = 2 and for all odd primes the intersection Kp(µvw)∩

Fv equals Q(p̄), where p̄ ∈ {√p,√−p} depending on the choice for C.
Again we have K2(µvw) = K2. For the intersection K2 ∩ Fv there are only few

possibilities. The only extensions over Q(
√

2 ) of exponent 2 in K2 are Q(ζ8) 6⊂ Fv,
Q(ζ16 + ζ−1

16 ) and Q(ζ16 − ζ−1
16 ). The following equalities hold:

(

ζ16 + ζ−1
16

)2
= 2 +

√
2 and

(

ζ16 − ζ−1
16

)2
= −2 +

√
2.

Moreover we have (2+
√

2 )(−2+
√

2 ) ·µw = −2 ·µw. By lemma 34 there is a unique
square root of (2 +

√
2) · µw in C/µw. As we have

√
2 ∈ C and i /∈ Fv precisely one

of the elements ζ16 + ζ−1
16 and ζ16 − ζ−1

16 is contained in Fv.

Example 52. Let K be a real number field and let m be a Steinitz number coprime
to 2. Then v equals 1. Consequently, we have Fv = K = D.

Example 53. Let K be Q̄ ∩ R and let m be 2. Then L = M = K(i) and the field
F equals the ground field K. All square roots of the elements of K≥0 are contained
in K and the product of this group and the group generated by i gives all square
roots of elements of K.

Example 54. If L/K is a Kummer extension of exponent m for some Steinitz
number m, then we have v = gcd(m,w) = m. As the field M equals K(µwm) we
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have M = K(µvw). In section 1.6 we showed that K(µvw)∩ Fv = K, so in this case
we have D = M ∩ Fv = K.

Moreover we have L = MF = MFv and thus Gal(L/K) is the direct product
of Hom(K∗/µw, µ̂/µ̂m) ' Gal(Fv/K) and Z ' Gal(M/K). As M/K is a Kummer
extension, the group Z is isomorphic to Hom(µw, µ̂/µ̂

m). We derive the result of
theorem 19 again: Gal(L/K) ' Hom(K∗, µ̂/µ̂m).



Chapter 2

Subfields of radical extensions

In the main theorem in the previous chapter we computed the Galois group of a
large field generated by radicals. When we are able to compute all subgroups of this
Galois group we know all subfields of the extension. As we will see in chapters 4
and 5, it is useful to know the subfields of a field generated by radicals in order to
denest radicals. In this chapter we study the subfields of the extension Q(α)/Q,
where α is an element of C with αn ∈ Q for some positive integer n.

Definition 55. Let L/K be a field extension. A group C is called a radical group
for L/K if K∗ ⊂ C ⊂ L∗, if L = K(C) and if there exists a positive integer n with
Cn ⊂ K∗.

The extension L/K is called a radical extension of exponent n if there exists a
radical group C for L/K with Cn ⊂ K∗.

Let L/K be a radical extension of exponent n with radical group C. IfK contains
a primitive n-th root of unity then L/K is a Kummer extension of exponent n, the
map

ψ : {subgroups of C containing K∗} −→ {subfields of L containing K}

given by ψ(C ′) = K(C ′) is a bijection, and, if L/K is finite, we have #(C/K∗) =
[L : K]. Under special conditions such a correspondence also holds for other radical
extensions.

In this chapter we determine for which radicals α the map

ψα : {subgroups of 〈Q∗, α〉 containing Q∗} −→ {subfields of Q(α)}

given by ψα(C) = Q(C) is surjective. This results in the following theorem. By
µn = µn(C ) we denote, as in definition 8, the group of n-th roots of unity in C .

Theorem 56. Let α ∈ C be a radical over Q with n ∈ Z>0 minimal such that
αn ∈ Q. Let Dα be the subgroup 〈Q∗, α〉 of C ∗. Every subfield of Q(α) is of the form

33



34 CHAPTER 2. SUBFIELDS OF RADICAL EXTENSIONS

Q(αd) for some positive integer d | n if and only if one of the following conditions
holds:

(i) Dα ∩ µn ⊂ µ2 and we have 6 - n or
√
−3 /∈ Dα,

(ii) Dα ∩ µn = µ3,

(iii) Dα ∩ µn = µ4 and 1 + i ∈ Dα,

(iv) Dα ∩ µn = µ6 and
√
−3 ∈ Dα,

(v) Dα ∩ µn = µ10 and both 4 - n and
√

5 ∈ Dα.

In section 2.1 we give the context of the results in this chapter. We state some
known results for generalising Kummer theory to radical extensions over fields that
do not contain the appropriate roots of unity. The proof of theorem 56 comprises
the rest of the chapter.

In section 2.2 we show the first implication: if every subfield of Q(α) is generated
by a power of α then α has to satisfy one of the conditions (i), (ii), (iii), (iv) or (v).
In section 2.3 we embed the Galois group of Q(ζn, α) over Q in Z/nZo(Z/nZ)∗. We
use the intersection field Q(ζn) ∩ Q(α) to give an explicit description of the image
G of Gal(Q(ζn, α)/Q) in Z/nZ o (Z/nZ)∗. In sections 2.4 and 2.5 we show, for the
radicals α satisfying one of the five conditions of theorem 56, that all subgroups of
the group G are of the form G∩

(

dZ/nZ o (Z/nZ)∗
)

for some divisor d of n. These

subgroups correspond to the fields Q(αn/d). This will finish the proof of theorem 56.
As a corollary we prove the following theorem at the end of section 2.5.

Theorem 57. Let α ∈ C be a radical over Q with n ∈ Z>0 minimal such that
αn ∈ Q. Let Dα be the group 〈Q∗, α〉. The map ψα is bijective if and only if one of
the following properties holds:

(i) Dα ∩ µn ⊂ µ2 and we have 6 - n or
√
−3 /∈ Dα,

(ii) Dα ∩ µn = µ3.

In this chapter we fix the following notation. Always α ∈ C will denote a radical
over Q and n will be the smallest positive integer for which αn is contained in Q.
By Dα we denote the multiplicative group 〈Q∗, α〉 ⊂ C ∗.

If m is a natural number then we denote a primitive m-th root of unity in C by
ζm, the group 〈ζm〉 we denote by µm and the number ϕ(m) is the Euler totient of m.

2.1 Known results

The first results in finding non-Kummer radical extensions for which the map ψ
from the introduction is a bijection impose conditions on the group C to ensure
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that the group index and the degree of the field extension are equal. In [16] Kneser
generalised results of Besicovitch [3], Mordell [25] and Siegel [33]. He proved the
following theorem.

Theorem 58. Let K be a field of characteristic 0. Let L/K be a radical extension
of exponent n with radical group C. If L/K is a finite extension then the degree
[L : K] equals the index (C : K∗) if and only if R1 and R2 hold:

R1: for all odd primes p: if ζp ∈ C then ζp ∈ K,

R2: if 1 + i ∈ C then i ∈ K.

We prove one implication: the conditions R1 and R2 are necessary.
Assume that [L : K] = (C : K∗) holds. For every element c of C we have

[K(c) : K] ≤ (〈K∗, c〉 : K∗). (2.1)

As [L : K] is equal to [L : K(c)][K(c) : K] and (C : K∗) equals the product
(C : 〈K∗, c〉)(〈K∗, c〉 : K∗) it follows from [L : K] = (C : K∗) that equality holds
in 2.1. Let p be an odd prime with ζp ∈ C. Then, in particular we have [K(ζp) :
K] = (〈K∗, ζp〉 : K∗). As the degree [K(ζp) : K] divides p − 1 and the group index
(〈K∗, ζp〉 : K∗) is 1 or p it follows that ζp is an element of K. The same argument
works if 1 + i ∈ C: the field K(1 + i) = K(i) is of degree 2 over K if we have i /∈ K;
in this case the group index (〈K∗, 1 + i〉 : K∗) is 4, so i must be an element of K.

Whether or not the conditions R1 and R2 from theorem 58 are satisfied does not
only depend on the extension L/K but also on the choice for the radical group C.

Example 59. Take K = Q and L = Q(ζ8). If we take C = 〈Q∗, ζ8〉, then C satisfies
the conditions R1 and R2 from theorem 58 and we have 4 = [L : K] = (C : K∗).
But, if we take C = 〈Q∗, ζ8,

√
2〉 then (C : K∗) = 8 6= [L : K]. And indeed, in this

case ζ8 ·
√

2 = 1+ i is an element of C and as i is not contained in Q this group does
not satisfy R2.

Given a radical extension L/K it also depends on the choice for the radical group
C whether or not the map ψ is bijective as we see in the following example.

Example 60. Take K = Q and let α ∈ C be an element with α4 = −9. Define
L = Q(α). When we take C = 〈Q∗, α〉, then the conditions R1 and R2 hold and
the degree of the extension L/K equals the group index (C : K∗). But, as L equals
Q(i,

√
6 ) and C/K∗ is a cyclic group, the map ψ is not a bijection.

If we take C = 〈Q∗, i,
√

6〉, then again C satisfies the conditions in Kneser’s
theorem. However, in this case the map ψ is a bijection.

The previous example also shows that conditions R1 and R2 from theorem 58
are not sufficient for ψ to be a bijection.
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In [11] Greither and Harrison introduce the notion of cogalois theory. Given
a radical extension L/K they fix a choice for the radical group C. They give a
condition on the extension L/K for the map ψ to be a bijection. This condition
implies that every radical group for L/K satisfies R1 and R2.

Definition 61. A field extension L/K is called pure if the following holds: if p = 4
or p is prime then every element ζ ∈ L satisfying ζp = 1 is contained in K.

Let L/K be a field extension and let C be a subgroup of L∗/K∗, then we denote
by K(C) the subextension of L/K generated by all b ∈ L with b ·K∗ in C.

Proposition 62 (Greither and Harrison). Let K be a field of characteristic 0
and let L/K be a pure radical extension. Then the maps

ψ : {subgroups of (L∗/K∗)tors} −→ {subfields of L containing K},

defined by ψ(C/K∗) = K(C) and

ϕ : {subfields of L containing K} −→ {subgroups of (L∗/K∗)tors},

defined by ϕ(M) = (M∗/K∗)tors are bijections that are inverse to each other.

Corollary 63. Let α1, . . . , αt be real numbers for which there exist positive integers
n1, . . . , nt with αni

i ∈ Q for all i. Define L as the subfield Q(α1, . . . , αt) of R. Then
every subfield of L is generated by monomials in the radicals αi.

Proof. As L is a real field the extension L/Q is pure and we can apply proposition 62.
The map ψ is a bijection, hence every subfield of L is generated by a subgroup C of
the multiplicative group 〈Q∗, α1, . . . , αt〉 with Q∗ ⊂ C.

In [18] Halter-Koch reformulates the problem. He remarks that for certain radi-
cals α there exist subfields of Q(α) that are conjugate to a field of the form Q(αd) but
that are not generated by a power of α, see example 65. Therefore he defines a new
map ψ′ mapping subgroups of the radical group C of L/K to classes of conjugate
subfields of L/K. He gives sufficient conditions on C for ψ′ to be a bijection.

Theorem 64. Let K be a field of characteristic 0 and let L/K be a radical extension
of exponent n ∈ Z>0 with radical group C. If the degree of the extension [L : K]
equals the index (C : K∗) and if C satisfies the condition

R3: If 4 | n, i ∈ L, y ∈ L and (1 + i)y ∈ C, then i ∈ K(y) or i ∈ K(iy),

then every subfield K ′ of L containing K is conjugate to a field of the form K(C ′)
for some subgroup C ′ of C containing K∗.



2.2. FIRST IMPLICATION 37

Example 65. Let α be an element of C with α6 = −3. One easily checks that the
group C = 〈Q∗, α〉 satisfies the conditions R1, R2 and R3.

In the extension Q(α)/Q there are subextensions, like Q(ζ3 · α2), that are not
generated by a subgroup C ′ of C, but all subfields of Q(α) are conjugate to a field
Q(C ′) for such a subgroup C ′. Namely, if we fix the notation 3

√
−3 = α2, then the

subfields of Q(α) are

Q, Q(
√
−3 ), Q( 3

√
−3 ), Q(ζ3 · 3

√
−3 ), Q(ζ2

3 · 3
√
−3 ) and Q(α).

These are all conjugate to Q, Q(α3), Q(α2) or Q(α).

We give an example that shows that condition R3 in theorem 64 is not necessary.

Example 66 ([18]). Let K be Q(
√
−2 ) and let α be an element of R with α8 = 5.

If we take L = Q(ζ8, α) and we let C be 〈K∗, i, α〉, then all subfields of L are
conjugate to a field generated by a subgroup of C, although the group C does not
satisfy condition R3: let y be (1 + i) · α2, then we have (1 + i)y = 2i · α2 ∈ C, but i
is an element of neither K(y) nor K(iy).

2.2 First implication

In this section we prove proposition 67, which gives one implication of theorem 56.
Recall that α ∈ C is a radical over Q with n ∈ Z>0 minimal such that αn ∈ Q and
that Dα is the subgroup 〈Q∗, α〉 of C ∗.

Proposition 67. If every subfield of Q(α) is of the form Q(αd) for some positive
integer d | n then one of the following conditions holds:

(i) Dα ∩ µn ⊂ µ2 and we have 6 - n or
√
−3 /∈ Dα,

(ii) Dα ∩ µn = µ3,

(iii) Dα ∩ µn = µ4 and 1 + i ∈ Dα,

(iv) Dα ∩ µn = µ6 and
√
−3 ∈ Dα,

(v) Dα ∩ µn = µ10 and both 4 - n and
√

5 ∈ Dα.

First we give two lemmas.

Lemma 68. Let K be a field and let a be an element of K. Let f be the polynomial
xm − a ∈ K[x] for some integer m ≥ 2. Then f is reducible over K if and only if at
least one of the following two properties holds.

• There exist a divisor d > 1 of m and an element b in K such that a = bd.

• We have 4 | m and there exists an element c ∈ K such that a = −4c4.
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Proof. This is [22] Chapter VI, section 9, page 297, theorem 9.1.

Lemma 69. Let d be a divisor of n. If Q(αn/d)/Q is an abelian extension then we
have µd · Q∗ = 〈Q∗, α2n/d〉.

Proof. As Q(αn/d)/Q is abelian and αn/d is a root of xd − αn ∈ Q[x], theorem 38
shows that there exists some rational number b with α2n = bd. Taking d-th roots
gives α2n/d = ζkd · b for some positive integer k.

Let g = gcd(k, d), then we have
(

α2n/d
)d/g ∈ Q∗. Suppose that g is greater

than 2, then there is an integer t < n with αt ∈ Q∗, which gives a contradiction with
the minimality of n.

If g equals 1, then ζkd is a primitive d-th root of unity and thus 〈Q∗, α2n/d〉 is
µd · Q∗.

Suppose that 4 | d. Then there exist t ∈ Z>1 and l ∈ N with d = 2t · l.
Substituting this in the identity α2n/d = ζkd · b gives

αn/(2
t−1·l) = b · ζk2t·l.

As n is minimal with αn ∈ Q we have
(

ζk2t·l
)2t−2·l

/∈ Q. Therefore ζk4 is not contained
in Q and hence k is odd and so g equals 1.

If g equals 2 then 4 - d and we have gcd(d/2, k/2) is 1. Write ζ = ζ
k/2
d/2 , then

α2n/d = ζkd · b = ζ · b,

where ζ is a primitive d/2-th root of unity. We saw above that d/2 is odd. Therefore
−ζ is a primitive d-th root of unity. We conclude that, also in this case, the group
〈Q∗, α2n/d〉 equals µd · Q∗.

Corollary 70. Let d be a divisor of n. If Q(αn/d)/Q is an abelian extension then
we have µd ⊂ Q(αn/d).

For the rest of this section we assume that every subfield of Q(α)/Q is of the
form Q(αd) for some positive integer d | n. First we show that the intersection
Dα ∩ µn is contained in µ60, then we prove that Dα ∩ µn equals µk for some k in
{1, 2, 3, 4, 6, 10}. Finally we give a subfield of Q(α)/Q that is not generated by a
power of α for the cases that are excluded in proposition 67.

Lemma 71. If all subfields of Q(α) are generated by αd for some divisor d of n,
then Q(α) has at most one subfield of degree 2 over Q.

Proof. Suppose that K is a quadratic subfield of Q(α). Then there exists an integer t
with K = Q(αn/t). All extensions of degree 2 over Q are abelian. So, by corollary 70,
we have µt ⊂ K. Hence ϕ(t) ≤ 2. We conclude that t is one of the numbers
1, 2, 3, 4, 6. For t = 1 we have Q(αn/t) = Q. Moreover we know that Q(αn/3) ⊂
Q(αn/6) and Q(αn/2) ⊂ Q(αn/4), so there are at most two different subfields of Q(α)
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of degree 2 over Q. If both Q(αn/3) = Q(µ3) and Q(αn/4) = Q(µ4) are quadratic
subfields of Q(α), then Q(

√
3 ) is another subfield of Q(α) of degree 2 over Q. This

field cannot be generated by a power of α, so, Q(α) has at most one subfield of
degree 2.

Proposition 72. If all subfields of Q(α) are generated by αd for some divisor d
of n, then we have Dα ∩ µn ⊂ µ60.

Proof. Let k be the positive integer with Dα ∩ µn = µk. If p is a prime dividing k,
then Q(ζp) is a subfield of Q(α). Let K be Q(ζp + ζ−1

p ) ⊂ Q(ζp). The extension
K/Q is abelian and µn ∩K is contained in 〈−1〉. As a subfield of Q(α) the field K
is generated by a power of α. Let r ∈ Z>0 be the largest integer with K = Q(αn/r).
As K is abelian we have by corollary 70 that µr ⊂ K and thus r | 2. So, K is a
subfield of degree 1 or 2 over Q. We conclude that the only primes dividing k are in
the set {2, 3, 5}.

Suppose that p is an element of {3, 5} such that p2 divides k. Then the field
Q(ζp2) is abelian and it is of degree p(p − 1) over Q. Therefore Q(α) contains an
abelian subfield K of degree p with µn ∩K ⊂ 〈−1〉, generated by a power of α. This
gives a contradiction with corollary 70 and thus gcd(9 · 25, k) is a divisor of 15.

Suppose that 8 divides k. Then ζ8 is contained in Q(α). Therefore Q(α) has three
different subfields of degree 2 over Q, which gives a contradiction with lemma 71.
We conclude that k divides 15 · 4 = 60.

Corollary 73. If all subfields of Q(α) are generated by αd for some divisor d of n,
then we have Dα ∩ µn = µk for some k in {1, 2, 3, 4, 6, 10}.

Proof. By proposition 72 we have k | 60 and by lemma 71 there is at most one
subfield of degree 2 over Q in Q(α). If 3 divides k then this unique quadratic field
is Q(ζ3). If 4 divides k it is Q(i) and if 5 divides k it is the subfield Q(

√
5 ) of

Q(ζ5). Hence k cannot be 12, 15, 20, 30 or 60. In the case that 5 divides k the field
Q(

√
5 ) is generated by a power of α. As Q(

√
5 )/Q is an abelian extension we see

by corollary 70 that the field Q(
√

5 ) equals Q(αn/t) for some t ∈ {1, 2}. As Q(αn)
is Q we have t = 2 and 2 | n. We conclude that also k is even; this excludes k = 5.
Hence, k is an element of the set {1, 2, 3, 4, 6, 10}.

We have shown that the assumption that all subfields of Q(α) are generated
by a power of α implies that Dα ∩ µn equals µk for some k in {1, 2, 3, 4, 6, 10}.
Proposition 67 states that this assumption leads to some additional restrictions on
n and Dα. In the following lemmas we prove, for each of the possible values for k,
that the extra conditions are necessary.

Lemma 74. If Dα ∩ µn is contained in µ2 and all subfields of Q(α) are generated
by a power of α then we have 6 - n or

√
−3 /∈ Dα.
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Proof. We use lemma 68 to show that [Q(α) : Q] equals n. Suppose that the poly-
nomial xn − αn is reducible over Q.

We do not have 4 | n and αn = −4c4 for some c ∈ Q, as in that case αn/2 = 2ic2

and i ∈ Dα ∩ µn. Therefore there exists a divisor d > 1 of n and an element
b ∈ Q with αn = bd. If d is even, then also n is even and we find the equality
(xn − αn) = (xn/2 − bd/2)(xn/2 + bd/2) ∈ Q[x], which gives a contradiction with the
minimality of n. So, d is odd and hence we have αn/d = ζkd · b for some k ∈ N with
gcd(k, d) = 1. Therefore ζkd ∈ Dα ∩ µn ⊂ µ2. It follows that d equals 1 and thus
xn − αn is irreducible over Q.

Suppose that we have 6 | n and
√
−3 ∈ Dα. As [Q(α) : Q] equals n, the

degree of Q(αn/d) over Q is d for all divisors d of n, thus Q(αn/3) is the unique
subextension of Q(α)/Q of degree 3 generated by a power of α. As

√
−3 ∈ Dα, we

have ζ3 ∈ Q(α) and therefore also Q(ζ3 · αn/3) is a subfield of Q(α) of degree 3 over
Q. As ζ3 ∈ Q(αn/3, ζ3 · αn/3) and [Q(ζ3) : Q] = 2, the field Q(ζ3 · αn/3) cannot be
generated by a power of α.

Lemma 75. Suppose that 4 divides n. If αn is an element of −Q∗2 \ −4 · Q∗4 then
Q(αn/4) has three different subfields of degree 2 over Q.

Proof. By lemma 68 the minimal polynomial of αn/4 is x4 −αn = x4 + t2 ∈ Q[x] for
some t ∈ Q∗. Let β be a root of x4 + t2. The elements β2, 1

tβ
3 + β and 1

tβ
3 − β are

roots of the polynomials

x2 + t2, x2 + 2t and x2 − 2t.

These are, again by lemma 68, all irreducible as we have −t2 /∈ −4 ·Q4, so there are
three different subfields of Q(α) of degree 2 over Q.

Lemma 76. If Dα ∩ µn is µ4 and all subfields of Q(α) are generated by a power
of α then we have 1 + i ∈ Dα.

Proof. As we have Dα ∩ µn = µ4 we know that 4 divides n and that αn/2 is an
element of i · Q∗. Suppose that αn is not an element of −4 · Q∗4. By the previous
lemma we know that Q(α) had three different subfields of degree 2 over Q. This
gives a contradiction with lemma 71. Therefore we conclude αn ∈ −4 · Q∗4 and
hence we have αn/4 ∈ (1 + i) · Q∗ ∪ (1 − i) · Q∗. If αn/4 ∈ (1 + i) · Q∗, then clearly
we have 1 + i ∈ Dα. If αn/4 ∈ (1 − i) · Q∗, then (1 + i) = −(1 − i)3/2 is an element
of Dα as well.

Lemma 77. If d is a divisor of n with µd ⊂ Dα then we have 〈Q∗, α2n/d〉 = µd ·Q∗.

Proof. As µd is contained in Dα, the group 〈Q∗, ζd〉/Q∗ is the unique subgroup of
order d/ gcd(d, 2) of the cyclic group Dα/Q

∗. As also 〈Q∗, α2n/d〉/Q∗ has order
d/ gcd(d, 2) the subgroups 〈Q∗, α2n/d〉 and 〈Q∗, ζd〉 = µd · Q∗ of Dα containing Q∗

must be equal.
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Lemma 78. If Dα ∩ µn is µ6 and all subfields of Q(α) are generated by a power
of α then we have

√
−3 ∈ Dα.

Proof. As we have Dα ∩ µn = µ6 the integer n is divisible by 6. By lemma 77 we
have Q(αn/3) = Q(ζ3). In lemma 71 we saw that there can only be one subfield of
Q(α) of degree 2 over Q. So, the unique quadratic subfield of Q(α) is Q(αn/2) =
Q(ζ3) = Q(

√
−3 ). Thus, by corollary 18, we have αn/2 ∈

√
−3 · Q∗.

Lemma 79. If Dα ∩ µn is µ10 and all subfields of Q(α) are generated by a power
of α then we have 2 | n, 4 - n and

√
5 ∈ Dα.

Proof. In lemma 71 we showed that there can be at most one subfield of degree 2
over Q in Q(α). As we have Q(

√
5 ) ⊂ Q(ζ5) ⊂ Q(α) this subfield is Q(

√
5 ). We

therefore have 2 | n and αn/2 ∈
√

5 · Q∗.
We have Q(αn/5) = Q(ζ5) by lemma 77. Hence, if 4 is a divisor of n then the

fields Q(αn/4) and Q(αn/5) are subfields of Q(α) of degree 4. Both of these fields

contain Q(αn/2) = Q(
√

5 ). The field Q(αn/4) is isomorphic to Q(
4
√

5c2 ) for some
c ∈ Q as αn/2 is an element of

√
5 · Q∗. As Dα does not contain i, the extension

Q(αn/4)/Q is not abelian and thus Q(αn/5) is not equal to Q(αn/4). Hence, there
also exists some third subfield of Q(α) of degree 2 over Q(

√
5 ).

We show that there exist at most two subfields of degree 4 of Q(α) generated by a
power of α. Let t be a divisor of n such that [Q(αn/t) : Q] is equal to 4. For divisors
r | r′ of n we have Q(αn/r

′

) ⊂ Q(αn/r). So, for all prime divisors p of t we have
[Q(αn/p) : Q] divides 4. As, lemma 68, xp−αn is reducible if and only if there exists
some integer b with αn = bp and n is minimal, we have [Q(αn/p) : Q] ∈ {p, p − 1}
and hence p ∈ {2, 3, 5}. Suppose 3 | t, then, as x3 − αn is reducible, we have
Q(αn/3) = Q(ζ3). But, this is impossible as Q(

√
5 ) is the unique subfield of degree 2

of Q(α)/Q. Therefore t is the product of a power of 2 and a power of 5. If 5 | t then
Q(αn/t) contains the field Q(αn/5), if 5 - t, then 4 | t and Q(αn/t) contains the field
Q(αn/4). Thus Q(αn/t) equals one of these two fields.

2.3 The Galois group

In the previous section we showed one implication in theorem 56. In this section we
start the proof of the other implication. First we show that Gal(Q(ζn, α)/Q) can be
viewed as a subgroup of Z/nZ o (Z/nZ)∗. Then we prove that the intersection field
Q(ζn)∩Q(α) is of the form Q(αn/r) for some integer r. For the radicals that satisfy
one of the conditions (i), (ii), (iii), (iv) or (v) of theorem 56 we explicitly determine
this intersection field. We compute its Galois group and use this to give an explicit
description of Gal(Q(ζn, α)/Q) as a subgroup of Z/nZ o (Z/nZ)∗.

For computing the subfields of Q(α) we use the Galois correspondence between
subfields of Q(ζn, α) and subgroups of its Galois group over Q. To show that
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Gal(Q(ζn, α)/Q) can be viewed as a subgroup of Z/nZ o (Z/nZ)∗ we define the
map

ρ : Gal(Q(ζn, α)/Q) −→ Z/nZ o (Z/nZ)∗

by ρ(σ) = (k, l) where σ(α) = ζkn · α and σ(ζn) = ζln.
Before we prove that ρ is an injective group homomorphism we recall the group-

operation in the semidirect product Z/nZ o (Z/nZ)∗. Let t, t′ be positive integers
such that t′ | t. The action of (Z/tZ)∗ on Z/t′Z is given by multiplication:

Z/t′Z × (Z/tZ)∗ −→ Z/t′Z

(k, l) 7→ kl.

This action induces the following group operation in Z/t′Z o (Z/tZ)∗: for elements
(k, l) and (k′, l′) ∈ Z/t′Z o (Z/tZ)∗ we have

(k, l)(k′, l′) = (k + lk′, ll′);

the inverse of the element (k, l) is (k, l)−1 = (−l−1k, l−1).

Proposition 80. The map ρ is an injective group homomorphism.

Proof. The map ρ clearly is well-defined. It is injective because an element of
Gal(Q(ζn, α)/Q) is determined by the images of ζn and α. Let σ and τ be elements
of Gal(Q(ζn, α)/Q) with ρ(σ) = (kσ, lσ) and ρ(τ) = (kτ , lτ ). Then we have

στ(ζn) = (ζ lτn )lσ = ζlτ lσn and στ(α) = σ(ζkτ
n · α) = ζ lσkτ+kσ

n · α.

Therefore we have

ρ(στ) = (kσ + lσkτ , lτ lσ) = (kσ, lσ)(kτ , lτ ) ∈ Z/nZ o (Z/nZ)∗,

hence ρ is a homomorphism.

The following lemma shows that the intersection field Q(ζn)∩Q(α) is of the form
Q(αn/r) for some r ∈ N. In corollary 82 we compute the degree of some of the
subextensions of Q(ζn, α) that we use later.

Lemma 81. Let m be a positive integer and let K ⊂ C be a field containing a
primitive m-th root of unity. Let γ be an element of C with γm ∈ K. Then K(γ)
over K is a cyclic Galois extension of degree r for some r dividing m, and we have
γr ∈ K.

Proof. This follows directly from theorem 14, the main theorem of Kummer theory
(cf. [22], Chapter VIII, section 6, theorem 10).

Corollary 82. Let d ∈ Z>0 be minimal such that αd ∈ Q(ζn); then we have
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• [Q(ζn, α) : Q)] = ϕ(n) · d and

• Q(ζn) ∩ Q(α) = Q(αd).

Proof. By lemma 81 we have [Q(ζn, α) : Q(ζn)] = d. As the degree of ζn over Q is
ϕ(n) we have [Q(ζn, α) : Q] = ϕ(n) · d.

Because αd is an element of Q(ζn) the degree of α over Q(ζn)∩Q(α) is at most d.
Denote the degree of Q(ζn) ∩ Q(α) over Q by t. Then we have

[Q(ζn, α) : Q(α)] ≤ [Q(ζn) : Q(ζn) ∩ Q(α)] =
ϕ(n)

t
.

We get the following diagram

Q(ζn, α)

d ≤ϕ(n)/t

Q(ζn)

ϕ(n)/t

Q(α)

≤d

Q(αd) ⊂ Q(ζn) ∩ Q(α)

t

Q.

It follows that all inequalities in the diagram have to be equalities. As the degree
of α over Q(ζn) ∩ Q(α) is d we conclude that Q(αd) equals the intersection field
Q(ζn) ∩ Q(α).

For the rest of this section we fix the following notation. Let r denote the largest
divisor of n with Q(ζn)∩Q(α) = Q(αn/r); for the number d in corollary 82 we have
r = n/d. Let X denote the subgroup of (Z/nZ)∗ for which the image under ρ of
Gal

(

Q(ζn, α)/Q(α)
)

is {0} o X and let G denote the image of the Galois group
Gal(Q(ζn, α)/Q) in Z/nZ o (Z/nZ)∗ under the map ρ.

Now the Galois group of Q(αn/r) over Q is isomorphic to (Z/nZ)∗/X. The action
ofX on Z/nZ induces an action on the subgroup (n/r)Z/nZ ' Z/rZ. By corollary 70
we have µr ⊂ Q(αn/r) ⊂ Q(α). So k ∈ X implies that r divides k − 1. Therefore
the action of X on Z/rZ is trivial. Restricting Gal

(

Q(ζn, α)/Q
)

to Gal(Q(αn/r)/Q)

gives an embedding ρ′ of the group Gal(Q(αn/r)/Q) in Z/rZo(Z/nZ)∗/X such that
the following diagram commutes

Gal
(

Q(ζn, α)/Q
)

ρ

Gal(Q(αn/r)/Q)

ρ′

Z/nZ o (Z/nZ)∗
proj

Z/rZ o (Z/nZ)∗/X.
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Proposition 83. Let G′ be the image of Gal(Q(αn/r)/Q) under ρ′ in Z/rZ o
(Z/nZ)∗/X. Then G is the pre-image of G′ under the projection map proj.

Proof. This simply follows from the degrees of the subextensions of Q(α)/Q. The
number of elements in the kernel of the map proj is #(rZ/nZ oX) = n/r ·#X. By
corollary 82 we have

n/r · #X = [Q(ζn, α) : Q(ζn)] · [Q(ζn) : Q(αn/r)]

= [Q(ζn, α) : Q(αn/r)]

=
#G

#G′ .

The number of elements of the pre-image of G′ equals the number of elements in G,
consequently these groups are equal.

Proposition 84. Let α be a radical satisfying one of the conditions (i), (ii), (iii),
(iv) or (v) of theorem 56. Let k be defined by Dα ∩ µn = µk.

• If α satisfies condition (i) then r is 1 or 2,

• If α satisfies one of the conditions (ii), (iii), (iv) or (v) then r = k and Q(ζn)∩
Q(α) = Q(µr).

Proof. The extension Q(αn/r)/Q is abelian as Q(αn/r) is contained in Q(ζn). There-
fore, by lemma 69, we have µr ·Q∗ = 〈Q∗, α2n/r〉. As µr ·Q∗ ⊂ Dα, we have µr ⊂ µk
and hence r | k. Lemma 77 gives µk · Q∗ = 〈Q∗, α2n/k〉 ⊂ Q(αn/r), as µk ⊂ Dα.
This results in the following chain of field extensions.

Q(αn/r)

Q(α2n/k) = Q(µk)

Q(α2n/r) = Q(µr)

By definition of r every odd divisor of k is also a divisor of r. Thus r | k and k | 2r.
If k is 1 or 2, then clearly r ∈ {1, 2}. If α satisfies condition (ii) then n is odd

and hence Q(αn/r) = Q(α2n/r) = Q(µr) and r equals k. If α satisfies condition (iii)
then k = 4, so r ∈ {2, 4}. As 1 + i ∈ Dα we have Q(αn/4) = Q(αn/2) = Q(i).
Hence r equals k = 4 and Q(αn/r) is Q(µr). If α satisfies condition (iv) then
k = 6, so r ∈ {3, 6}. As ζ3 ∈ Q(αn/3) \ Q, we have Q(αn/6) = Q(αn/3, αn/2) =
Q(ζ3,

√
−3 ) = Q(ζ3). Hence r equals k = 6 and Q(αn/r) is Q(µr). Similarly, if α

satisfies condition (v) then Q(αn/10) = Q(αn/5, αn/2) = Q(ζ5). We therefore have
r = k = 10 and Q(αn/r) = Q(µr).
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Theorem 85. Let α be a radical satisfying one of the conditions (i), (ii), (iii), (iv)
or (v) of theorem 56. With notation as in proposition 83 and for a particular choice
for ζ4, ζ6 and ζ10, we have

G′ =







































the trivial group if r = 1,

{(0, 1), (1, ε)} ⊂ Z/2Z o (Z/nZ)∗/X if r = 2,

{(0, 1), (1,−1)} ⊂ Z/3Z o (Z/3Z)∗ if r = 3,

{(0, 1), (−1,−1)} ⊂ Z/4Z o (Z/4Z)∗ if r = 4,

{(0, 1), (−1,−1)} ⊂ Z/6Z o (Z/6Z)∗ if r = 6,

{(0, 1), (6,−1), (7, 7), (9, 3)} ⊂ Z/10Z o (Z/10Z)∗ if r = 10,

where, for r = 2, the element ε is the non-trivial element of the group (Z/nZ)∗/X.

Proof. If r is 1, then the field Q(αn/r) is Q and its Galois group over Q is trivial,
hence also G′ is trivial.

If r = 2 then the Galois group Gal(Q(αn/r)/Q) has two elements. The non-trivial
element acts non-trivially on αn/r and it is the restriction to Q(αn/r) of an element
of Gal(Q(ζn)/Q) that acts non-trivially on ζn. This gives us G′ = {(0, 1), (1, ε)} ⊂
Z/2Z o (Z/nZ)∗/X, where ε denotes the non-trivial element of (Z/nZ)∗/X.

If r > 2 then by proposition 84, we see that Q(αn/r) equals Q(µr). In these
cases the group (Z/nZ)∗/X is isomorphic to (Z/rZ)∗. Calculating the action of
Gal(Q(αn/r)/Q) on αn/r and on ζr gives the groups listed in the theorem. For
example if r equals 10 then it follows from the fact

√
5 ∈ Dα that αn/2 ∈

√
5 · Q∗.

As Q(αn/10) is abelian corollary 70 gives µ10 ⊂ Q(αn/5) and thus αn/5 ∈ ζk5 ·Q∗ for
some k ∈ {1, 2, 3, 4}. We therefore know that αn/10 is of the form ζ l5

√
5 · c for some

c ∈ Q∗ and for l = 3k mod 5. If, for example, σ is an element of Gal(Q(ζ5)/Q) with
σ(ζ5) = ζ2

5 , then σ(ζ10) = ζ7
10 (as 7 is the unique element t of (Z/10Z)∗ for which t is

2 modulo 5) and σ(
√

5) = 2(ζ5 + ζ−1
5 ) + 1 = 2σ(ζ2

5 + ζ−2
5 ) + 1 = −

√
5. The element

automorphism σ corresponds under ρ to the element (2l+5, 7) ∈ Z/10Z o (Z/10Z)∗

as we have

σ(αn/10) = σ(ζ l5
√

5)c = −ζ2l
5

√
5c = ζ5

10 · ζl5 · ζl5
√

5c = ζ2l+5
10 · ζl5

√
5c = ζ2l+5

10 αn/10.

If we compute the action of each element of Gal(Q(ζ5)/Q) on αn/10 and on ζ10, then
we find the group {(0, 1), (2l + 5, 7), (4l + 5, 3), (6l, 9)}. For the choice l = 1, this
gives the group listed in the theorem.

In the next two sections we finish the proof of theorem 56. We determine the
subgroups of ρ(G) that correspond to the subfields of Q(α). The next lemma gives
the subgroups of ρ(G) that correspond to subfields of Q(α) generated by a power
of α.

Lemma 86. Let d be a divisor of n. Then the ρ-image of the Galois group F =
Gal

(

Q(ζn, α)/Q(αn/d)
)

equals (dZ/nZ o (Z/nZ)∗) ∩G.
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Proof. An element σ of Gal
(

Q(ζn, α)/Q
)

corresponds under ρ to a pair

(k, l) ∈ Z/nZ o (Z/nZ)∗,

with σ(α) = ζknα and σ(ζn) = ζln. We have σ(αn/d) = ζ
nk/d
n αn/d and thus σ ∈ F

holds if and only if d is a divisor of k. That is, the image of F is the intersection
of G and dZ/nZ o (Z/nZ)∗.

2.4 Subgroups

In this section we give a group theoretical theorem that we will use in the next
section to finish the proof of theorem 56.

Lemma 87. Let N be a group and let G be a group acting on N by group homomor-
phisms. For every subgroup H of NoG containing {1}oG we have H = (H∩N)oG.

Proof. Because we have {1}oG ⊂ H it is clear that (H ∩N)oG is contained in H.
Let h be an element of H. Then we have h = n · g for some n ∈ N and some g ∈ G.
As g is an element of H we have n ∈ H ∩N , so H is contained in (H ∩N) oG.

Theorem 88. Let r, n ∈ Z>0 with r | n. Consider the following groups:
Z : a subgroup of (Z/nZ)∗,
X : a subgroup of Z contained in the kernel of the projection map

(Z/nZ)∗ −→ (Z/rZ)∗,
Q : a subgroup of Z/rZ o Z/X isomorphic to Z/X under projection on

the second coordinate,
G : the pre-image of Q under the projection map

π : Z/nZ o Z −→ Z/rZ o Z/X,
H : a subgroup of G containing {0} oX that maps surjectively to Z/X

under π.
These groups give the following commuting diagram

{0} oX ⊂ H ⊂ G ⊂ Z/nZ o Z

Q ⊂ Z/rZ o Z/X

Z/X.

If for all divisors s of r with s 6= 1 we have Q 6⊂ sZ/rZ o Z/X and if for all
f ∈ Z/nZ and all g ∈ Z the condition (f, g) ∈ H implies that (rf, 1) is an element
of H, then we have

H = (dZ/nZ o Z) ∩G
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for some divisor d of n.

Proof. Let H0 be the kernel of the projection map H −→ Z/X. Then clearly we
have {0} oX ⊂ H0 ⊂ rZ/nZ oX. By lemma 87 we therefore see that

H0 = d0Z/nZ oX,

for some divisor d0 of n with r | d0. Let a be an element of Z/nZ such that there
exists some b ∈ Z with (a, b) ∈ H. Then we have by the second condition in the
theorem (ra, 1) ∈ H0 and thus ra is an element of d0Z/nZ. It follows that a is
contained in d0

r Z/nZ. Let d be the integer d0/r. We showed that H is contained
in (dZ/nZ o Z) ∩G. Below we prove that these groups are equal. We consider the
chain of groups

H0 = d0Z/nZ oX ⊂ H ⊂ (dZ/nZ o Z) ∩G ⊂ dZ/nZ o Z.

As we have (dZ/nZ o Z : d0Z/nZ o Z) = d0/d = r we see that the index
(

dZ/nZ o Z : H0

)

equals r · (Z : X) = r · #(Z/X). By definition of H0 we have
(H : H0) = #(Z/X).

To determine the index of (dZ/nZ o Z) ∩ G in dZ/nZ o Z we consider the
projection map Z/nZ o Z −→ Z/rZ o Z/X. As H ⊂ dZ/nZ o Z maps surjectively
to Z/X via Q we have Q ⊂ gcd(r, d)Z/rZ oZ/X. By assumption we therefore have
gcd(r, d) = 1.

G ⊂

∪

Z/nZ o Z

∪

(dZ/nZ o Z) ∩G ⊂ dZ/nZ o Z

Q ⊂ Z/rZ o Z/X

As G is the pre-image of Q also (dZ/nZ o Z) ∩ G is the pre-image of Q under the
surjective projection map dZ/nZ o Z −→ Z/rZ o Z/X. We conclude that

(dZ/nZ o Z : (dZ/nZ o Z) ∩G) = (Z/rZ o Z/X : Q) = r.

Summarising, we showed

(

dZ/nZ o Z : (dZ/nZ o Z) ∩G
)(

H : H0

)

= r · #(Z/X) =
(

dZ/nZ o Z : H0

)

.

We conclude that H is equal to (dZ/nZ o Z) ∩G.
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2.5 Conclusion of the proof

In this section we finish the proof of theorem 56 and prove theorem 57. We apply
theorem 88 to show that all subfields of Q(α) are generated by a power of α if α
satisfies one of the conditions (i), (ii), (iii), (iv) or (v) of theorem 56. We first give
a proposition and some lemmas. In proposition 94 we will use these results to show
that the conditions of theorem 88 are satisfied for the groups that we are interested
in.

Proposition 89. Let Z be a subgroup of (Z/nZ)∗ and let G be a subgroup of Z/nZo
Z consisting of the elements in (A × X) ∪ (B × Y ) for subsets A,B of Z/nZ and
subsets X,Y of Z with

X : a subgroup of Z of index 2,
Y : the complement of X in Z,
A : a subgroup of Z/nZ,
B : some coset of A in Z/nZ.

Let f be an element of Z/nZ and let g be an element of Z. For subgroups H of G
with {0} oX ⊂ H we have the following implication

(f, g) ∈ H ⇒ (kf, 1) ∈ H

for all k in the ideal 〈y + 1: y ∈ Y 〉 ⊂ Z/nZ.

Proof. We use the group action in Z/nZ o Z, as described in section 2.3.
First assume that f is an element of Z/nZ and that g is an element of Z with

(f, g) in H ∩ A × X. As X is a subgroup of Z we have x−1 ∈ X for all x ∈ X.
Therefore we have for all k ∈ N

(kf, 1) =
(

(f, g)(0, g−1)
)k ∈ H.

Now assume that f is an element of Z/nZ and that g is an element of Z with
(f, g) in H ∩ B × Y . As X is a subgroup of Z of index 2 and X ∪ Y equals Z the
element z−1y is contained in X for all y, z ∈ Y . Therefore we see that

(f, y) = (f, g)(0, g−1y) ∈ H for all y ∈ Y.

Squaring this element shows that
(

(1 + y)f, y2
)

∈ H for all y ∈ Y . As y2 is an
element of X we see that

(

(1 + y)f, 1
)

=
(

(1 + y)f, y2
)

(0, y−2) ∈ H for all y ∈ Y.

Let k be an element of 〈y+ 1: y ∈ Y 〉. Then there are elements yi ∈ Y and integers
ci with k =

∑

i ci(yi + 1). As
(

(1 + y)f, 1
)

is contained in A×X for all y in Y , we
have

(kf, 1) =
∑

i

(

(1 + yi)f, 1)
ci ∈ H,

also in this case.
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Lemma 90. Let p be a prime number and let t be a positive integer. Let X be
a subgroup of (Z/ptZ)∗ of index 2 and let Y be its complement. Then the ideal
〈y+1: y ∈ Y 〉 in Z/ptZ is the ideal generated by 2 if and only if one of the following
conditions holds:

• p is greater than 3,

• p is 2 or 3 and X is not equal to the kernel of the projection map
(Z/ptZ)∗ −→ (Z/mZ)∗, where m = 4 if p is 2 and m = 3 if p is 3.

Proof. The ideal 〈y + 1: y ∈ Y 〉 is of the form psZ/ptZ for some 0 ≤ s ≤ t. The
number of elements of Y is ϕ(pt)/2. The number of elements of psZ/ptZ is pt/ps.
Therefore, for all primes p > 3, we see that

#〈y + 1: y ∈ Y 〉 ≥ #Y > #(pZ/ptZ)

and hence in these cases the ideal 〈y + 1: y ∈ Y 〉 must equal the full ring Z/ptZ =
2Z/ptZ.

If p is 3 we have #Y = ϕ(pt)/2 = 2pt−1/2 = pt−1 = #(pZ/ptZ). We conclude
that 〈y+1: y ∈ Y 〉 is 3Z/3tZ if Y equals {y ∈ (Z/3tZ)∗ with y = 2 mod 3} and that
〈y + 1: y ∈ Y 〉 equals Z/3tZ = 2Z/3tZ if there is some y ∈ Y with y = 1 mod 3.

If p is 2 clearly we have 〈y + 1: y ∈ Y 〉 ⊂ 2Z/2tZ. In this case it holds that
#Y = ϕ(pt)/2 = 2t−1/2 = #(4Z/2tZ). The ideal 〈y + 1: y ∈ Y 〉 is 4Z/2tZ if Y
equals {y ∈ (Z/2tZ)∗ with y = 3 mod 4} and 〈y + 1: y ∈ Y 〉 equals 2Z/2tZ if there
is some y ∈ Y with y = 1 mod 4.

Lemma 91. Let n ∈ Z>0 and let X be a subgroup of index 2 of (Z/nZ)∗ such that
the group X is not equal to the kernel of the projection map (Z/nZ)∗ −→ (Z/mZ)∗

for any element m ∈ {3, 4} dividing n. Let Y be the complement of X in (Z/nZ)∗.
Then the ideal 〈y + 1: y ∈ Y 〉 in Z/nZ is the ideal generated by 2.

Proof. For all divisors d of n we define the projection map ϕd : (Z/nZ)∗ −→ (Z/dZ)∗.
As X is a subgroup of index 2 of (Z/nZ)∗ the group ϕd(X) is a subgroup of index at
most 2 in (Z/dZ)∗ and #ϕd(X) = #ϕd(Y ) for all divisors d of n. Let n = pr11 · · · prs

s

be the prime factorisation of n. By lemma 90 the element 2 is in the image of
〈y + 1: y ∈ Y 〉 under the map ϕpri

i
for all i. The Chinese remainder theorem

now tells us that 2 is contained in 〈y + 1: y ∈ Y 〉. If n is odd, it follows that
〈y + 1: y ∈ Y 〉 is Z/nZ = 2Z/nZ. If n is even all elements of Y are odd, hence we
have 2 ∈ 〈y+ 1: y ∈ Y 〉 ⊂ 2Z/nZ. We conclude that also in this case 〈y+ 1: y ∈ Y 〉
is 2Z/nZ.

Lemma 92. Let r be a divisor of n and suppose that r is even if n is even. Let Y
be the pre-image of −1 under the projection map (Z/nZ)∗ −→ (Z/rZ)∗. Then the
ideal 〈y + 1: y ∈ Y 〉 ⊂ Z/nZ equals rZ/nZ.
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Proof. Let p be a prime and assume that n = pk and r = pl for integers k, l with
l ≤ k.

If l 6= 0 then Y is the set −1+〈pl〉 ⊂ (Z/nZ)∗, so pl is an element of 〈y+1: y ∈ Y 〉
and it follows 〈y + 1: y ∈ Y 〉 = rZ/nZ.

Now consider the case that l is 0. By assumption p is odd and as the pre-image of
−1 is the group (Z/nZ)∗ we have 1 ∈ Y . Therefore 2 is an element of 〈y+1: y ∈ Y 〉
and as gcd(2, p) = 1 the ideal 〈y + 1: y ∈ Y 〉 equals rZ/nZ.

So the lemma holds for n a prime power. For general n, we first determine the
prime factorisation of n = pr11 · · · prk

k . As the projection of 〈y + 1: y ∈ Y 〉 in Z/pri
i Z

is rZ/pri
i Z for all i we have 〈y + 1: y ∈ Y 〉 = rZ/nZ by the Chinese remainder

theorem.

Lemma 93. Let n be a positive integer with 10 | n and 4 - n. Let G be the pre-image
of the group {(0, 1), (6,−1), (7, 7), (9, 3)} ⊂ Z/10Z o (Z/10Z)∗ under the projection

Z/nZ o (Z/nZ)∗ −→ Z/10Z o (Z/10Z)∗.

Let π be the projection map (Z/nZ)∗ −→ (Z/10Z)∗ and define X = π−1(1).
Let f be an element of Z/10Z and let g be an element of (Z/nZ)∗. Then for all

subgroups H of G containing {0} oX we have the implication

(f, g) ∈ H ⇒ (10f, 1) ∈ H.

Proof. Define one more projection map p : Z/nZ −→ Z/10Z and define subsets of
(Z/nZ)∗ by Y = π−1(−1), U = π−1(7) and V = π−1(3) and subsets of Z/nZ by
A = p−1(0), B = p−1(6), C = p−1(7) and D = p−1(9). Then G is the group given
by the elements

(A×X) ∪ (B × Y ) ∪ (C × U) ∪ (D × V ) in Z/nZ o (Z/nZ)∗.

Let H be a subgroup of G with {0} o X ⊂ H. Let f be an element of Z/10Z
and let g be an element of (Z/10Z)∗ such that (f, g) is contained in H. As before
(proposition 89) one shows that (f, g) in (A×X) implies

(kf, 1) =
(

(f, g)(0, g−1)
)k ∈ H

for all integers k, and (f, g) in (B × Y ) implies

((1 + y)f, 1) =
(

(f, g)(0, yg−1)
)2

(0, y−2) ∈ H

for all y ∈ Y and thus (kf, 1) in H for all k ∈ 〈y + 1: y ∈ Y 〉.
Now assume that (f, g) is contained in H ∩ (C×U). First we remark that for all

u ∈ U we have g−1u ∈ X. Therefore we have

(f, u) = (f, g)(0, g−1u) ∈ H for all u ∈ U.
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Then also (f, u)2 =
(

(1 + u)f, u2) is an element of H ∩ (B × Y ) and by multiplying

by (0, yu−2) ∈ A × X we have
(

(1 + u)f, y) ∈ H for all y ∈ Y and for all u ∈ U .
Squaring this element gives

(

(1 + u)(1 + y)f, 1) =
(

(1 + u)f, y)2(0, y−2) ∈ H for all u ∈ U and for all y ∈ Y,

hence (kf, 1) is an element of H for all k in 〈(1 + u)(1 + y) : u ∈ U, y ∈ Y 〉. In
lemma 92 we saw that 〈y + 1: y ∈ Y 〉 equals 10Z/nZ. Similarly one shows that U
equals the set {u ∈ (Z/nZ)∗ with u = 7 mod 10} and therefore 〈u + 1: u ∈ U〉 is
2Z/nZ. Because 4 is not a divisor of n we have

〈(1 + u)(1 + y) : u ∈ U, y ∈ Y 〉 = 20Z/nZ = 10Z/nZ.

The implication
(f, g) ∈ H ∩ (C × U) ⇒ (kf, 1) ∈ H,

for all k in 〈y + 1: y ∈ Y 〉 = 10Z/nZ follows. The proof for elements (f, g) of
H ∩ (D×V ) is exactly the same as the proof for (f, g) in H ∩ (C×U). We conclude
that for all f ∈ Z/nZ and all g ∈ (Z/nZ)∗ with (f, g) ∈ H we have (kf, 1) ∈ H for
all k in 〈y + 1: y ∈ Y 〉.

Before we conclude the proof of theorem 56 in the following proposition we fix
three homomorphisms. Let ρ : Gal(Q(ζn, α) : Q) −→ Z/nZ o (Z/nZ)∗ be the map
that we introduced in section 2.3. Denote by π be the composition of the map ρ and
the projection Z/nZ o (Z/nZ)∗ −→ (Z/nZ)∗ and let, as in section 2.3,

ρ′ : Gal(Q(αn/r) : Q) −→ Z/rZ o (Z/nZ)∗/π
(

Gal(Q(ζn, α)/Q(α))
)

be the composite of ρ and the projection

Z/nZ o (Z/nZ)∗ −→ Z/rZ o (Z/nZ)∗/π
(

Gal(Q(ζn, α)/Q(α))
)

.

Proposition 94. Let α ∈ C be a radical over Q with n ∈ Z>0 minimal such that
αn ∈ Q. Let Dα be the group 〈Q∗, α〉.

If α satisfies one of the following conditions

(i) Dα ∩ µn ⊂ µ2 and we have 6 - n or
√
−3 /∈ Dα,

(ii) Dα ∩ µn = µ3,

(iii) Dα ∩ µn = µ4 and 1 + i ∈ Dα,

(iv) Dα ∩ µn = µ6 and
√
−3 ∈ Dα,

(v) Dα ∩ µn = µ10 and both 4 - n and
√

5 ∈ Dα,

then every subfield of Q(α)/Q is of the form Q(αd) for some positive divisor d of n.
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Proof. Let α be a radical satisfying one of the conditions (i), (ii), (iii), (iv) or (v).
Let K be a subfield of Q(α) and let HK be the image of the group Gal(Q(ζn, α)/K)
under ρ. Let r, as before, denote the maximal positive divisor of n with Q(ζn) ∩
Q(α) = Q(αn/r).

We consider three cases: first we suppose thatK contains the field Q(αn/r). Then
we consider the case that the intersection K∩Q(αn/r) is Q. Finally we suppose that
K ∩ Q(αn/r) is a field not equal to Q(αn/r) or Q. In each of these cases we prove
that HK is a group of the form

(

dZ/nZ o (Z/nZ)∗
)

∩ ρ
(

Gal(Q(ζn, α)/Q)
)

,

for some divisor d of n. It follows by lemma 86 that all subfields of Q(α) are generated
by a power of α.

Suppose that K is a subfield of Q(α) containing Q(αn/r). Let X be the group
π
(

Gal(Q(ζn, α)/Q(α))
)

. As Q(αn/r) is a subfield of K we have

Gal
(

Q(ζn, α)/K
)

⊂ Gal
(

Q(ζn, α)/Q(αn/r)
)

.

By Galois theory the group Gal
(

Q(ζn)/Q(αn/r)
)

is isomorphic to a subgroup X of

(Z/nZ)∗. As Q(ζn) ∩K equals Q(ζn) ∩ Q(α) = Q(αn/r) the inclusion

ρ
(

Gal
(

Q(ζn, α)/K
))

⊂ Z/nZ oX

holds; suppose (a, y) ∈ ρ
(

Gal(Q(ζn, α)/K)
)

with y ∈ (Z/nZ)∗ \X then (a, y) does
not fix Q(ζn) ∩ Q(α) and we have a contradiction with Q(ζn) ∩ Q(α) ⊂ K. As K is
a subfield of Q(α) it follows

{0} oX ⊂ HK ⊂ Z/nZ oX.

By lemma 87 we see that HK is of the form dZ/nZ o X for some divisor d of n.
As the group Gal

(

Q(ζn, α)/Q(αn/r)
)

fixes the field Q(αn/r) = Q(ζn)∩Q(α) and as

n/r ∈ dZ/nZ since Q(αn/r) is contained in K, we see that for this particular choice
of d we have

(

dZ/nZ o (Z/nZ)∗
)

∩G = dZ/nZ oX.

By lemma 86 we conclude that K equals Q(αn/d) for some divisor d of n. This
completes the proof for subfields K of Q(α) containing Q(αn/r).

If r equals 1, then for every subfield K of Q(α) we have Q(αn/r) ⊂ K. For the
rest of the proof we assume that r > 1 holds.

Suppose thatK is a subfield of Q(α) withK∩Q(αn/r) = Q. We apply theorem 88
with the groups

Z = (Z/nZ)∗ ' Gal(Q(ζn)/Q),

X = π
(

Gal
(

Q(ζn, α)/Q(α)
))

⊂ Z,

Q = ρ′
(

Gal(Q(αn/r)/Q)
)

⊂ Z/rZ o Z/X,

G = ρ
(

Gal(Q(ζn, α)/Q)
)

⊂ Z/nZ o (Z/nZ)∗.
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First we check that the groups above satisfy the conditions of theorem 88. By
definition of the map ρ′ we see that Q is isomorphic to Z/X and that G is the pre-
image of Q under the projection map Z/nZo(Z/nZ)∗ −→ Z/rZoZ/X. theorem 85
shows that there does not exist a divisor s > 1 of r such that Q is contained in
sZ/rZ oZ/X. As K ∩Q(αn/r) equals Q the group HK maps surjectively to Z/X =
π
(

Gal(Q(αn/r)/Q)
)

.
Now let f be an element of Z/nZ and let g be an element of (Z/nZ)∗ with

(f, g) ∈ HK . Assume that α satisfies condition (i). As r > 1 holds, the intersection
Q(ζn) ∩ Q(α) is of degree 2 over Q. By proposition 83 the group G is of the form
(A ×X) ∪ (B × Y ), with A,B,X, Y as in proposition 89. The group X is not the
kernel of the projection map (Z/nZ)∗ −→ (Z/3Z)∗ as otherwise we would have µ3 ⊂
Q(ζn, α)X = Q(α), which implies that µ3 is contained in Q(ζn)∩Q(α) = Q(αn/r) and
thus by lemma 69 we would have µ3 ⊂ Dα ∩ µn. As µ4 is not contained in Dα ∩ µn,
also X is not the kernel of the projection map (Z/nZ)∗ −→ (Z/4Z)∗. Therefore we
can apply lemma 91 and we see that 〈y + 1: y ∈ Y 〉 is 2Z/nZ and proposition 89
proves that (rf, 1) ∈ HK . Assume that α satisfies one of the conditions (ii), (iii)
or (iv). By proposition 84 we have Q(ζn) ∩ Q(α) = Q(ζr). Also in this case G is
of the form (A × X) ∪ (B × Y ), with A,B,X, Y as in proposition 89, where X is
isomorphic to Gal(Q(ζn, α)/Q(α)). The group X is isomorphic to rZ/nZ and the
set Y , by theorem 84, is {y ∈ (Z/nZ)∗ with y = −1 mod r}. By lemma 92 we have
(rf, 1) ∈ HK as r is even if n is even. If α satisfies condition (v), then lemma 93
shows (rf, 1) ∈ HK .

We conclude that all conditions in theorem 88 are satisfied and thus HK is of the
form (dZ/nZ o (Z/nZ)∗) ∩G for some divisor d of n. By lemma 86, we see that K
is of the form Q(αd) for some divisor d of n. This completes the proof for subfields
K of Q(α) with K ∩ Q(αn/r) = Q.

If α satisfies one of the conditions (i), (ii), (iii) or (iv) we have either Q(αn/r) ⊂ K
or K∩Q(αn/r) = Q because [Q(αn/r) : Q] = 2. It remains to show that K∩Q(αn/r)
is unequal to both Q and Q(αn/r) which can only happen if α satisfies condition (v).
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Assume that α satisfies condition (v) and let K be a subfield of Q(α) with
K ∩Q(αn/r) not equal to both Q or Q(αn/r) = Q(ζ5). Then we have K ∩Q(αn/r) =
Q(

√
5 ). Consider the following diagram.

Q(ζn, α)

Q(ζn) Q(α)

Q(ζn) ∩ Q(α) = Q(ζ5)

Q(
√

5 )

We apply theorem 88 with

Z ' Gal
(

Q(ζn)/Q(
√

5 )
)

,

X = π(Gal
(

Q(ζn, α)/Q(α)
)

⊂ Z

Q = ρ′
(

Gal(Q(αn/10)/Q(
√

5 ))
)

,

G = ρ
(

Gal(Q(ζn, α)/Q(
√

5 ))
)

⊂ Z/nZ o (Z/nZ)∗

By definition of ρ′ the group Q is a subgroup of Z/10Z o (Z/nZ)∗/X. One easily
checks that the ρ′-image of Gal(Q(αn/10)/Q(

√
5 )) is contained in Z/10ZoZ/X. We

will consider Q as a subgroup of Z/10Z o Z/X.
Similarly as before Z, X, Q and G satisfy the definitions in theorem 88 and HK

is a subgroup of G containing {0} o X that surjects to Z/X. By lemma 93 we see
that (f, g) ∈ HK implies that (10f, 1) ∈ HK for all f ∈ Z/nZ and all g ∈ Z. It
follows from theorem 88 that HK equals (dZ/nZ o (Z/nZ)∗) ∩G for some divisor d
of n in this last case as well. We can literally copy the proof of lemma 86 to show
that this group corresponds to the field Q(αn/d). So, also all subfields K of Q(α)/Q
with K∩Q(αn/r) not equal to both Q or Q(αn/r) are generated by a power of α.

Theorem 57 now easily follows:

Proof. The map ψα is surjective if and only if α satisfies one of the conditions (i),
(ii), (iii), (iv) or (v) of theorem 56. In each of these cases we decide whether or not
ψα is also injective.

Suppose that α satisfies condition (i). As Dα ∩ µn is contained in µ2 it follows
by minimality of n from lemma 68 that we have [Q(α) : Q] = n. For all divisors d
of n we have [Q(αn/d) : Q] = d, therefore ψα is injective.
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Suppose that α satisfies condition (ii). By corollary 82 the degree [Q(α) : Q] is
2n/3. We easily derive that [Q(αd) : Q] is n/d if ζ3 is not contained in Q(αd) and
that [Q(αd) : Q] is 2n/(3d) if ζ3 is an element of Q(αd). Let d, t ∈ Z>0 such that
Q(αd) = Q(αt). If ζ3 is an element of Q(αd) then we have 2n/3d = 2n/3t and thus
d equals t. If ζ3 is not contained in Q(αd) then n/t = n/d and also in this case we
have d = t. Hence the map ψα is injective.

Suppose that α satisfies condition (iii). Then we have the equality Q(αn/4) =
Q(αn/2) = Q(i), hence ψα is not injective.

Suppose that α satisfies condition (iv). Then the fields Q(αn/2) and Q(αn/3)
both equal Q(ζ3). We conclude that ψα is not injective.

Suppose that α satisfies condition (v). Then the elements αn/5 and αn/10 both
generate the field Q(ζ5), and also in this case ψα is not injective.
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Chapter 3

Ramanujan’s nested radicals

An application of the theory from the previous chapters can be found in denesting
radicals. Let K be a field of characteristic 0 and let K̄ be the algebraic closure
of K. An element α ∈ K̄ can be represented by a radical expression if and only if
the Galois group of the normal closure of K(α) over K is solvable ([22], chapter VI,
theorem 7.2).

First we give some definitions.

Definition 95. Let K be a field and K̄ some fixed algebraic closure of K. We
denote by K(0) the field K itself and inductively define the fields K(k) for k ≥ 1 as

K({α ∈ K̄ with αn ∈ K(k−1) for some n ∈ Z>0}).

Definition 96. Let K be a field and let K̄ be some fixed algebraic closure of K.
We call α ∈ K̄ a nested radical if there exists some t ∈ N with α ∈ K(t).

Definition 97. A nested radical is of nesting depth n ∈ N over a field K if n is the
smallest integer for which this nested radical is contained in K (n).

Let K be a number field. The nesting depth of α in K̄ is computable [7], although
computing it is not easy in general. Susan Landau [20] gave an algorithm that
constructs, for an element α ∈ K̄ with finite nesting depth, a representation of α
in K(r) with r ≤ 1 + nesting depth(α).

In this chapter we study nested radicals of the special form
√

3
√
α+ 3

√

β ∈ Q(2)

for rationals α and β and give a necessary and sufficient condition for
√

3
√
α+ 3

√
β

to be denestable; that is, we show under what conditions
√

3
√
α+ 3

√
β has nesting

depth smaller than 2.
We prove the following theorem.

57
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Theorem 98. Let α, β be elements of Q∗ such that β/α is not a cube in Q. Then
the following three statements are equivalent.

(1) The nested radical
√

3
√
α+ 3

√
β is contained in Q(1).

(2) The polynomial t4 + 4t3 + 8 βα t− 4 βα ∈ Q[t] has a rational root.

(3) There exist integers m,n such that β
α = (4m+n)n3

4(m−2n)m3 holds.

Radicals are often not unambiguously defined; the expression 3
√

2, for example,
can denote three different elements of C . In this chapter we will consider nested
radicals defined over Q and only take square roots and cube roots of real numbers.
We fix the values for these expressions in C according to the following rules. Given
a real number α, the expression 3

√
α will represent the unique real cube root of α.

When α is a positive real number then
√
α represents the positive square root of α.

By i we denote a fixed primitive fourth root of unity in C . If α is a negative real
number then

√
α represents i · √−α.

3.1 The problem and its history

As for many subjects in number theory the history of denesting nested radicals leads
us to Srinivasa Ramanujan (1887-1920). One of the questions he sent to the Journal
of the Indian Mathematical Society was Question 525 [28]:

Shew how to find the square roots of surds of the form 3
√
A + 3

√
B and

hence prove that

(i)

√

3
√

5 − 3
√

4 = 1
3

(

3
√

2 +
3
√

20 − 3
√

25
)

,

(ii)

√

3
√

28 − 3
√

27 = 1
3

(

3
√

98 − 3
√

28 − 1
)

.

In one of his notebooks [1], chapter 22, entry 23, we can find the theorem this
question must have been based upon.

Theorem 99. If m,n are arbitrary, then

√

m 3
√

4(m− 2n) + n 3
√

4m+ n

= ± 1
3

(

3
√

(4m+ n)2 + 3
√

4(m− 2n)(4m+ n) − 3
√

2(m− 2n)2
)

. (3.1)

Remark: In the examples in Ramanujan’s notebook the theorem is only applied for
integers m and n. We will consider rationals m,n, as we study denestability over
the field Q.
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It is easy to verify that equation (3.1) holds for real numbers m and n by squaring
both sides, but it is much harder to understand why it holds. However, for integers
α and β with

√

3
√
α+ 3

√
β contained in Q(1) it is not clear at all whether or not there

exist integers m and n as given in the theorem.
In section 3.3 we show that radicals of the form

√

3
√
α+ 3

√
β, for rational numbers

α and β with β/α /∈ Q3, are contained in Q(1) if and only if the polynomial

Fβ/α = t4 + 4t3 + 8
β

α
t− 4

β

α

has a rational root. Given α and β such that Fβ/α has a rational root we express
√

3
√
α+ 3

√
β in terms of this root. At the beginning of section 3.4 we prove that

Fβ/α has a rational root if and only if there exist integers m,n such that

β

α
=

(4m+ n)n3

4(m− 2n)m3
.

Note that for rational numbers α and β with β/α a cube in Q the nested radical
√

3
√
α+ 3

√
β is always contained in Q(1): there exist c ∈ Q with c3 = β/α and d ∈ C

with d6 = α such that we have
√

3
√
α+ 3

√
β = ±d

√
1 + c. Theorem 98 therefore

shows the generality of Ramanujan’s formula.

Example 100. If the quotient β/α is a cube, then the statements (2) and (3) in
theorem 98 are still equivalent, but the statements (1) and (2) are not equivalent. As
remarked above for β/α ∈ Q∗3 statement (1) holds. However, if we have β/α = 1,
then the polynomial t4 +4t3 +8 βα t− 4 βα = (t2 +2)(t2 +4t− 2) has no rational roots.

There also exist α and β with β/α ∈ Q∗3 for which statement (2) does hold. For
example if

β

α
=

−73

29
=

(4 · −2 + 7)73

4(−2 − 2 · 7)(−2)3

the polynomial t4 + 4t3 + 8 βα t− 4 βα has two rational roots: −7/4 and −7/2.

At the end of section 3.4 we work out some examples and show, for integers α
and β, that it is not possible in general to find integers m and n such that

α = 4(m− 2n)m3 and β = (4m+ n)n3

although there do exist m and n such that β/α equals (4m+ n)n3/(4(m− 2n)m3).

3.2 Denesting condition

In this section we show that a nested radical of the form
√
δ for some δ in Q( 3

√
γ )

with γ ∈ Q\Q∗3 is contained in Q(1) if and only if there exist f ∈ Q∗ and e ∈ Q( 3
√
γ )

such that δ equals f · e2.



60 CHAPTER 3. RAMANUJAN’S NESTED RADICALS

We use the following notation. If K/Q is a field extension then Knorm denotes
the normal closure of K over Q. If G is a group then G′ denotes the commutator
subgroup of G and G′′ denotes the group (G′)′ and, as in chapter 2, we denote a
primitive n-th root of unity by ζn.

Lemma 101. Let γ be an element of Q \Q3, let δ be an element of Q( 3
√
γ ) \Q and

let K be the field Q(δ)norm = Q(δ, ζ3). Let G be the group Gal(Q(
√
δ )norm/Q) and

let δ1 = δ, δ2, δ3 be the conjugates of δ in K/Q. Then the following implication holds

G′′ = {1} =⇒ δ2 · δ3 ∈ K∗2.

Proof. Suppose that δ2 · δ3 is not a square in K. Then K(
√
δ2 · δ3 ) is an extension

of degree 2 over K. As δ1, δ2 and δ3 are conjugates, also δ1 · δ2 and δ1 · δ3 are non-
squares in K. It follows that

√
δ1 · δ2 is not contained in K(

√
δ2 · δ3 ) as otherwise,

by corollary 18, we have δ1 · δ3 ∈ K2.
Define L as the field K(

√
δ2 · δ3,

√
δ1 · δ2 ). We saw above that [L : K] equals 4

and we get the following chain of field extensions

L

V4

K

S3

Q.

This gives a contradiction with G′′ = {1} as we will see below.
Suppose that G′′ equals {1}. First we remark that L is contained in Q(

√
δ )norm.

Therefore we have Gal(L/Q)′′ ⊂ G′′ = {1}. There is an exact sequence

0 Gal(L/K) Gal(L/Q) Gal(K/Q) 0 .

As Gal(L/K) ' V4 is abelian, this gives an action of Gal(K/Q) ' S3 on Gal(L/K)
defined by the map

Gal(L/K) × Gal(K/Q) −→ Gal(L/K)

sending (v, σ) to τvτ−1 ∈ Gal(L/K) where τ is an element of Gal(L/Q) with τ|K = σ.
We remark that Gal(L/K) is the group {1, ρ1, ρ2, ρ1ρ2}, where ρ1 and ρ2 are

defined by

ρ1 :
√

δ2 · δ3 7→ −
√

δ2 · δ3 ρ2 :
√

δ2 · δ3 7→
√

δ2 · δ3
√

δ1 · δ2 7→
√

δ1 · δ2
√

δ1 · δ2 7→ −
√

δ1 · δ2
√

δ1 · δ3 7→ −
√

δ1 · δ3,
√

δ1 · δ3 7→ −
√

δ1 · δ3.
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The isomorphism from Gal(K/Q) to S3 is given by the action of Gal(K/Q) on the
set of points δ1, δ2, δ3. Denote by π the map from Gal(L/Q) to Gal(K/Q) in the
exact sequence above. When a, b and c in Gal(L/Q) are lifts under π of the maps
corresponding to the elements (12), (23) and (13) in S3 then we have

aρ2a
−1ρ−1

2 = ρ1

b(ρ1ρ2)b
−1(ρ1ρ2)

−1 = ρ2

cρ1c
−1ρ−1

1 = ρ1ρ2

and thus Gal(L/K) is contained in Gal(L/Q)′. As (123) equals (13)(23)(13)(23)
we see that the element d = cbc−1b−1 ∈ Gal(L/Q)′ is a lift under π of (123). As
Gal(L/Q)′ is abelian and Gal(L/K) is contained in Gal(L/Q)′ we have dvd−1v−1 = 1
for all v ∈ Gal(L/K). This gives a contradiction as dρ1d

−1(
√
δ2 · δ3 ) equals

√
δ2 · δ3.

We conclude that δ2 · δ3 is a square in K.

Theorem 102. Let γ be an element of Q \ Q3 and let δ be an element of Q( 3
√
γ ).

Denote by G the Galois group of the normal closure of Q(
√
δ ) over Q. Then the

following are equivalent:

(1) The element
√
δ is contained in Q(1).

(2) The group G′′ is {1}.
(3) There exist f ∈ Q∗ and e ∈ Q(δ) such that δ = f · e2.

Proof. Implication (3) ⇒ (1) is trivial.
If
√
δ is an element of Q(1) then there exist α1, . . . , αk ∈ C and a positive integer n

with αni ∈ Q for all i such that
√
δ is contained in Q(ζn, α1, . . . , αk). Let L denote the

field Q(ζn, α1, . . . , αk). As both L/Q(ζn) and Q(ζn)/Q are abelian extensions, the
second derived subgroup Gal(L/Q)′′ of Gal(L/Q) is trivial. Now the normal closure
of Q(

√
δ ) over Q is contained in L and hence also the second derived subgroup of

its Galois group is trivial.
If δ is a rational number then implication (2) ⇒ (3) is trivial. Assume that δ is

not contained in Q and let K be Q(δ, ζ3). Assume that G′′ is {1}. Let δ1 = δ, δ2, δ3
be the conjugates of δ in K. In the previous lemma we showed that δ2 · δ3 ∈ K2.
Now let η be an element of K with η2 = δ2 · δ3.

Suppose that η is not contained in Q(δ). As δ2 · δ3 is an element of Q(δ) and K
is Q(δ,

√
−3 ) we see by corollary 18 that δ2 · δ3 equals −3 · θ2 for some θ in Q(δ). It

follows
N

Q(δ)
Q (η)2 = N

Q(δ)
Q (δ2) ·NQ(δ)

Q (δ3) = −27 ·NQ(δ)
Q (θ)2.

As we have −27 /∈ Q2 this gives a contradiction, so η is an element of Q(δ). We have

δ =
δ1 · δ2 · δ3
δ2 · δ3

= N
Q(δ)
Q (δ) · η−2

and take f = N
Q(δ)
Q (δ) and e = η−1.
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3.3 A special polynomial

Given the nested radical
√

3
√
α+ 3

√
β we define a polynomial Fβ/α depending on α

and β.

Definition 103. Let α, β be elements of Q∗. The polynomial Fβ/α ∈ Q[t] is defined
by

Fβ/α = t4 + 4t3 + 8
β

α
t− 4

β

α
.

In this section we show that
√

3
√
α+ 3

√
β is contained in Q(1) if and only if the

polynomial Fβ/α has a rational root. In the previous section we saw that the radical

√

3
√
α+ 3

√

β = ±
√

3
√
α ·
√

1 + 3
√

β/α

is contained in Q(1) if and only if there exist f ∈ Q∗ and e ∈ Q( 3
√

β/α ) such that

1 + 3
√

β/α = f · e2. In theorem 104 we write e on the basis 1, 3
√

β/α, 3
√

β/α
2

of

Q( 3
√

β/α ) as a vector space over Q and compare the coefficients in the resulting
equation to obtain Fβ/α. At the end of the section we provide some examples.

Theorem 104. Let α, β be elements of Q∗ such that β/α is not a cube in Q. The
nested radical

√

3
√
α+ 3

√

β

is contained in Q(1) if and only if the polynomial Fβ/α has a root in Q.

Proof. The radical
√

3
√
α+ 3

√
β is contained in Q(1) if and only if

√

1 + 3
√

β/α is

contained in Q(1). By theorem 102, this holds if and only if there exist f ∈ Q and
x, y, z ∈ Q with

1 + 3
√

β/α = f

(

x+ y 3
√

β/α+ z
3

√

(β/α)
2

)2

.

The elements 1, 3
√

β/α and 3
√

(β/α)2 are linearly independent over Q. Therefore
coefficients of like powers on both sides must be equal. This leads to the following
equations:

1

f
= x2 + 2yz

β

α
, (3.2)

0 = y2 + 2xz, (3.3)

1

f
=

β

α
z2 + 2xy. (3.4)
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We may assume that z 6= 0 (since z = 0 implies y = 0 and this gives a contradiction
in (3.4)). Substitution of

x

z
= −1

2

(y

z

)2

,

in (3.2) and (3.4) yields
(y

z

)4

+ 8
β

α

y

z
=

4

f · z2
,

(y

z

)3

=
β

α
− 1

f · z2
.

The combination of the above two equalities leads to the following quartic equation
in y/z

(y

z

)4

+ 4
(y

z

)3

+ 8
β

α

(y

z

)

− 4
β

α
= 0.

So, if
√

3
√
α+ 3

√
β is contained in Q(1) then Fβ/α has a rational root.

For the other implication we assume that a rational root s of Fβ/α is given. We
use the relations

s =
y

z
,

x

z
= −1

2

(y

z

)2

and
(y

z

)3

=
β

α
− 1

f · z2

that we derived above and find
√

3
√
α+ 3

√

β = ±
√

z2 · f · 3
√
α

(

− 1
2

(

y
z

)2
+ y

z
3
√

β/α+
3

√

(β/α)
2

)

= ±
√

z2 · f · 3
√
α

(

− 1
2s

2 + s 3
√

β/α+
3

√

(β/α)
2

)

= ± 1
√

β − s3α

(

− 1
2s

2 3
√
α2 + s 3

√

αβ + 3
√

β2
)

. (3.5)

So
√

3
√
α+ 3

√
β is an element of Q(1) if and only if Fβ/α has a rational root.

Corollary 105. Let α, β be elements of Q∗, such that β/α is not a cube in Q. Then
the nested radical

√

3
√
α+ 3

√

β

is contained in Q(1) if and only if there exists an element s ∈ Q such that

√

3
√
α+ 3

√

β = ± 1√
t

(

− 1
2s

2 3
√
α2 + s 3

√

αβ + 3
√

β2
)

,

where t = β − s3α.

We give some examples.
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Example 106. We compute the rational roots of F−4/5 and F−27/28 to derive the
equalities (i) and (ii) from section 3.1. As we have

F−4/5(−2) = F−27/28(−3) = 0,

we find the equalities

√

3
√

5 − 3
√

4 =
1√
36

(

−2
3
√

25 + 2
3
√

20 + 2
3
√

2
)

= 1
3

(

− 3
√

25 +
3
√

20 +
3
√

2
)

and
√

3
√

28 − 3
√

27 = − 1√
272

(

− 9
2

3
√

282 − 3 3
√
−27 · 28 +

3
√

272
)

= − 1
3

(

− 3
√

98 +
3
√

28 + 1
)

.

Example 107. The nested radicals do not have to be real. For example, when we
take α = −27 and β = 7 we get

√

3
√
α+ 3

√

β =

√

−4
3
√

2 +
3
√

7.

For these α and β we have the polynomial

F−7/27 = t4 + 4t3 − 56

27
t+

28

27
,

with rational root −1/2. Substituting this in equation (3.5) gives

√

−4
3
√

2 +
3
√

7 = ± 1√
7 − 16

(

− 1
8

3
√

214 − 1
2

3
√

−7 · 27 +
3
√

49
)

= ±i · 1
3

(

−2
3
√

4 + 2
3
√

14 +
3
√

49
)

.

Example 108. Until now, we only considered nested radicals for which both α
and β were integers. Now let α = 2 and β = −1/2, then β/α = −1/4. The rational
root of F−1/4 is −1. This leads to the equality

√

3
√

2 − 3
√

1/2 =
1

√

3/2

(

− 1
2

3
√

4 − 3
√
−1 + 3

√

1/4
)

,

which we simplify to

√

3
√

2 − 3
√

1/2 =

√
2√
3

(

1 + 1
2

3
√

2 − 1
2

3
√

4
)

.
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3.4 Comparison to Ramanujan’s method

In this section we derive equation (3.1) from equation (3.5). We show in theorem 109
that integers m and n that satisfy

β

α
=

(4m+ n)n3

4(m− 2n)m3

give a rational root n/m of Fβ/α. Conversely, if s is a rational root of Fβ/α and
s = r/t for integers r and t, then we can take n = r and m = t and the equality
above holds. Theorem 98 follows directly from it. Moreover we show that there are
α, β ∈ Q with

√

3
√
α+ 3

√
β ∈ Q(1) for which there do not exist rational numbers m

and n with α = 4(m− 2n)m3 and β = (4m+ n)n3.

Theorem 109. Let α, β be elements of Q∗ such that β/α is not a cube in Q. Let s
be a rational number. Then s is a root of the polynomial Fβ/α if and only if there
exist integers m,n such that s = n/m with

β

α
=

(4m+ n)n3

4(m− 2n)m3
.

Proof. Let s be a rational root of Fβ/α. Then we have

s4 + 4s3 + 8
β

α
s− 4

β

α
= 0,

so s3(s + 4) equals 4(1 − 2s)β/α. Remark that s 6= 1/2 as Fβ/α(1/2) = 9/16. We
see that s is a rational root of Fβ/α if and only if the equality

β

α
=
s3(s+ 4)

4(1 − 2s)

holds. Writing s = n/m for integers n,m gives

β

α
=

(4m+ n)n3

4(m− 2n)m3

which proves the theorem.

Suppose that there exist integers m and n with Fβ/α(n/m) = 0 and

β

α
=

(4m+ n)n3

4(m− 2n)m3
.
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Then there exists some c ∈ Q∗ with α = c · 4(m− 2n) ·m3 and β = c · (4m+ n) · n3.
We use equation (3.5) to derive equation (3.1); by theorem 109 we have s = n/m.
√

3
√
α+ 3

√

β = ± 1
√

β − s3α

(

− 1
2s

2 3
√
α2 + s 3

√

αβ + 3
√

β2
)

= ± 1√
9 · c · n4

(

− 1
2 · n2

m2 ·m2 3
√

(4(m− 2n))2 · c2

+ n
m · nm 3

√

4(m− 2n)(4m+ n) · c2 + n2 3
√

(4m+ n)2 · c2
)

= ±
3
√
c2

3
√
c

(

− 3
√

2(m− 2n)2 + 3
√

4(m− 2n)(4m+ n)

+ 3
√

(4m+ n)2
)

(3.6)

If we take c = 1 in equation 3.6, this gives equation 3.1 again.

In the case that both α and β are integers the question arises if there always
exist integers m, n such that

β = (4m+ n)n3 and α = 4(m− 2n)m3.

Unfortunately, this is not the case as the examples 111 and 112 show.

Lemma 110. Let α and β be elements of Q∗ and let m and n be integers with

β

α
=

(4m+ n)n3

4(m− 2n)m3
.

Let a and b be coprime integers with β/α = b/a. Then we have both

(

n

gcd(m,n)

)3
∣

∣

∣
4b and

(

m

gcd(m,n)

)3
∣

∣

∣
a.

Proof. Let a and b be coprime integers with β/α = b/a. If we take d = gcd(m,n)
then also the quotient of (4m/d+n/d)(n/d)3 and 4(m/d−2n/d)(m/d)3 equals β/α.
Now replace m by m/d and replace n by n/d. Then gcd(m,n) = 1 and we have

(4m+ n)n3 · a = 4(m− 2n)m3 · b,
where also gcd(a, b) = 1. If p is a prime diving m, then p does not divide (4m+n)n3.
Similarly, if p is a prime dividing n, then p does not divide (m− 2n)m3. Hence m3

is a divisor of a and n3 is a divisor of 4b.

Example 111. Let us look at the nested radical
√

3
√

5 − 3
√

4 from example 106
again. When we take α = −4 and β = 5, we see that for m = n = 1 we have
α = 4(m− 2n)m3 and β = (4m+ n)n3. So, again we find the equality

√

3
√

5 − 3
√

4 = − 1
3

(

3
√

25 − 3
√

20 − 3
√

2
)

.
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However, when we take α = 5 and β = −4, which is a more obvious thing to do,
there do not exist integers, or even rational numbers, m and n with α = 4(m−2n)m3

and β = (4m+ n)n3, although we have

β

α
=

(−4 + 2)23

4(−1 − 4)(−1)3
.

Example 112. Now look at
√

5
3
√

7 − 8.

For this nested radical, for each of the choices α = ±7 · 53 and α = ±83, we are not
able to find integers m,n such that α = (4m+n)n3 and β = 4(m−2n)m3, although
we have

−7 · 53

83
=

(16 + 5)53

4(4 − 10)43
and − 83

7 · 53
=

(−20 + 8)83

4(−5 − 16)(−5)3
.

To give
√

5 3
√

7 − 8 as an element of Q(1), we take α = −83 and β = 7 · 53 and use
the equality

β

α
=

7 · 53

−83
=

(16 + 5)53

4(4 − 10)43
.

As the quotient of α and 4(4 − 10)43 is 3, we see that
√

3
√

3

√

−8 + 5
3
√

7 =

√

4 3
√

4(4 − 10) + 5 3
√

16 + 5.

Using equation (3.6) with c = 1
3 we find

√

8 − 5
3
√

7 =
3
√

3

3
√

3

(

− 3
√

212 + 2
3
√

63 + 2
3
√

9
)

.

Finally, one could wonder, as Ramanujan’s formula (3.1) lacks obvious symmetry,
what happens if the roles of α and β interchange. The answer is that we find the
same simplification, putting p = −n/

√
2 and q = m

√
2. (This explains why in

example 111 we were not able to find integers m and n such that α = 4(m− 2n)m3

and β = (4m+n)n3 for the choice α = 5 and β = −4.) If we define p = −n/
√

2 and
q = m

√
2, it holds that

α = 4(m− 2n)m3 = (4p+ q)q3

β = (4m+ n)n3 = 4(p− 2q)p3.

Since we have

(4m+ n)2 =
(

2
√

2q −
√

2p
)2

= 2(p− 2q)2

2(m− 2n)2 = 2
(

1
2q

2 + 4pq + 8p2
)

= (4p+ q)2

4(m− 2n)(4m+ n) = 4
(

2q2 + 7pq − 4p2
)

= −4(p− 2q)(4p+ q),
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we may replace m and n simply by p and q in the right hand side of Ramanujan’s
formula:

√

3
√

β + 3
√
α = ± 1

3

(

− 3
√

(4p+ q)2 − 3
√

4(p− 2q)(4p+ q) + 3
√

2(p− 2q)2
)

.



Chapter 4

Nested radicals of depth one

Borodin, Fagin, Hopcroft and Tompa [5] gave conditions for the nested radical
√

a+ b
√
r ∈ F (2) to be an element of F (1), for a real field F and a, b, r elements

of F . In the previous chapter we gave conditions for
√

3
√
α+ 3

√
β, with α and β in Q,

to be an element of Q(1) and more generally we proved theorem 102. We would like
to have a general condition for elements of K(2) to be contained in K(1), where K
is a field of characteristic 0.

Richard Zippel [40] formulated the following conjecture for denesting radicals of
nesting depth 2 that consist of one term.

Definition 113. Let K be a field and let L/K be a radical extension. We say
that L/K is a simple radical extension if there is an element γ in L with minimal
polynomial xr − γr for some r ∈ Z>0 such that L = K(γ).

Conjecture 114 (Zippel). Let K be a field of characteristic 0 and let K̄ be a fixed
algebraic closure of K. Let α1, . . . , αk in K̄∗ be such that there exist positive integers
d1, . . . , dk with αd11 , . . . , α

dk

k ∈ K. Define L as the field K(α1, . . . , αk).
Let F be a composite of simple radical extensions over K. Let δ be an element

of L and let n be a positive integer. If n
√
δ is an element of the composite LF ,

then there exist integers s1, . . . , sk and an element w of K such that the product
αs11 · · ·αsk

k · w · δ is an element of L∗n.

In example 117, section 4.1, we show that the conjecture is false. In proving
denesting conditions, most of the difficulties are caused by adjoining roots of unity
in a field extension. In example 117 we consider a field extension generated by
a root of unity in which we find a nested radical of depth 2 over Q that violates
conjecture 114.

So, it is not sufficient that our field extension is a composite of simple radical
extensions; we need something stronger. In this chapter we denote for positive
integers n a primitive n-th root of unity by ζn. Let K be a field of characteristic 0

69
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and let α ∈ K̄ be such that αt ∈ K for some integer t. If the minimal polynomial
of α over K is not of the form xn − αn for some n ∈ Z>0, then K(α) \K contains
roots of unity. In the reformulation of conjecture 114 we therefore give a condition on
the roots of unity in the extension F/K instead of demanding that F is a composite
of simple radical extensions.

If for some odd prime p the root of unity ζp is contained in K, then for all r ∈ Z>0

the extension K(ζpr )/K is cyclic and the minimal polynomial of ζpr is of the form
xn − a for some n ∈ Z>0 and some a ∈ K. So, adjoining a pr-th root of unity to a
field K with ζp ∈ K gives a simple radical extension. The same holds for adjoining
ζ2r for some integer r if i is contained in K. So, if a radical extension is simple,
it is pure (definition 61) as well. For a composite of radical extensions this is not
necessarily true. In section 4.2 we prove Zippel’s conjecture for pure extensions.

Theorem 115. Let K, L and α1, . . . , αk be defined as in conjecture 114.
Assume that L/K is pure. Let n be a positive integer, let δ be an element of L

and let F be a pure radical extension of K with F ⊂ K(1). If we have β ∈ F with
βn = δ, then there exist elements w ∈ K and e ∈ L and integers s1, . . . , sk such
that δ is equal to w · en ·∏i α

si
i .

Another way to make sure that the minimal polynomials of the generating rad-
icals α are of the form xn − αn for some positive integer n is to adjoin all roots of
unity to the ground field. We define K∞ = K(µ(K̄)) for a fixed algebraic closure K̄
of K.

Inspired by Zippel’s idea we formulate for a field K a condition for elements
of K(2) to be contained in K(1).

Theorem 116. Let K, L and α1, . . . , αk be defined as in conjecture 114.
Let δ be an element of L and let n be a positive integer. If there exists a field

F ⊂ K(1) and an element β ∈ F such that βn = δ, then there exist elements
w ∈ K∞ ∩L and e ∈ L and integers s1, . . . , sk such that δ is equal to w · en ·∏i α

si
i .

This theorem we will prove in section 4.3.

4.1 Counterexample to Zippel’s conjecture

In the introduction of this chapter we gave a conjecture due to Richard Zippel. He
gives a condition for the existence of a special kind of denesting of radical expressions
of the form n

√
δ for some n ∈ Z>0 and some δ in K(1). This denesting is required to

be an element of some composite of simple radical extensions.
To construct a counterexample to conjecture 114 we first forget about the con-

dition on the field F . A well known radical equation is

√

1 +
√
−1 = 8

√
−4.
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If we take, in conjecture 114, ground field Q, L = Q(i), δ = 1 + i and n = 2 then
we see that there exists a denesting 8

√
−4 in Q(i) · Q( 8

√
−4 ). But there do not exist

s ∈ Z and w ∈ Q such that

w · is · (1 + i)

is a square in Q(
√
−1 ); the norm of w · is · (1 + i) is 2 · w2 and this is not a square

in Q. So, without the extra condition on F the conjecture does not hold. However,
we can embed Q( 8

√
−4 ) in a composite of simple radical extensions as we will see in

example 117. This directly gives a counterexample to the conjecture itself.

Example 117. Let K = Q, L = Q(i), δ = 1+i, n = 2 and define F = Q( 8
√

2, 8
√
−2 ).

As both Q( 8
√

2 ) and Q( 8
√
−2 ) are simple radical extensions, F is of the form required

in conjecture 114. But similarly as before, there do not exist s ∈ Z and w ∈ Q such
that w · is · (1 + i) is a square in Q(

√
−1 ).

In my opinion, the field F in this example clearly is not of the form that Zippel
had in mind for the conjecture. Probably he wanted his conjecture to give a condition
for denesting nested radicals of depth two consisting of one term without using roots
of unity in the denesting. That is, without using any other roots of unity than those
already contained in the ground field.

4.2 Denesting without roots of unity

In this section we give some condition for denesting without roots of unity. First we
have to define what we mean by this. Assume that K is a field of characteristic zero
and let L be a subfield of K(1) with [L : K] finite. Let δ be some element of L. A
denesting of n

√
δ is a denesting without roots of unity if we can find an element β in

some pure subextension F of K(1)/K with βn = δ.
Below we use theorem 58 to prove a statement for non-Kummer extensions similar

to corollary 18. The only extra condition is that the extension is pure.

Proposition 118. Let K be a field of characteristic 0 and let K̄ be a fixed alge-
braic closure of K. Let α, α1, . . . αk ∈ K̄∗ be such that there exist natural numbers
n, d1, . . . , dk with αn, αd11 , . . . α

dk

k ∈ K. Let L be the field K(α, α1, . . . αk). If L/K
is a pure extension then α is an element of K

(

α1, . . . , αk
)

if and only if there exist
b ∈ K∗ and l1, . . . lk ∈ N such that α can be written in the form

α = b ·
k
∏

i=1

αlii .

Proof. Take groups C1 = 〈K∗, αi(i ∈ I)〉 and C2 = 〈K∗, α, αi(i ∈ I)〉. Then we
have L = K(C1) = K(C2). As the extension L/K is pure, both C1 and C2 satisfy
the conditions R1 and R2 from theorem 58. We conclude that the index (C1 : K∗)
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equals the index (C2 : K∗). As C1 is contained in C2 the groups are equal. The
element α therefore is contained in C1, hence we have

α = b ·
k
∏

i=1

αlii ,

for an element b of K∗ and integers l1, . . . , lk.
If α is of the above form, then clearly α is an element of K(α1, . . . , αk).

We apply this proposition and the theory of cogalois extensions described in
section 2.1 to prove theorem 115.

Proof. Let β be an element of F with βn = δ. We consider the following diagram

F

L ∩ F

K.

As F/K is a pure extension, both the extensions F/(L∩F ) and (L∩F )/K are pure
as well. As F is a radical extension contained in K(1) there are radicals γ1, . . . , γt
in F and integers n1, . . . , nt with γni

i ∈ K for all i in {1, . . . , t}, such that the γi
generate F over L ∩ F . We apply proposition 118 with ground field L ∩ F and α
equal to β. This gives us an element b ∈ (L ∩ F )∗ and integers l1, . . . , lt with

β = b ·
t
∏

i=1

γlii .

So, there exists some γ in F with γm ∈ K for some positive integer m, such that β
equals b · γ. Raising both sides of the equation to the power n gives δ = bn · γn. As
both δ and b are elements of L∩F , also γn is an element of L∩F . As a subextension
of the pure extension L = K(α1, . . . , αk)/K, by proposition 62, also (L ∩ F )/K is a
radical extension generated by monomials in α1, . . . , αk. We apply proposition 118
again, this time with ground field K and α equal to γn. We find an element c in K∗

and integers s1, . . . , sk with

γn = c ·
k
∏

i=1

αsi
i .

Hence we have

δ = bn · γn = bn · c ·
k
∏

i=1

αsi
i ,

for some b in (L ∩ F )∗ ⊂ L∗, some c ∈ K∗ and integers s1, . . . , sk.
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4.3 Denesting allowing roots of unity

LetK be a field of characteristic 0. Let n be a positive integer and let δ be an element
of K(1). In theorem 116 we give a necessary condition for the nested radical n

√
δ to

be of depth at most one. We first prove this theorem, next we derive some results in
special cases, and finally we give an example that shows that the condition in this
theorem in general is not sufficient.

Proof of theorem 116. Let δ be an element of L and let n be a positive integer.
Assume that there exist some field F ⊂ K(1) and some β in F with βn = δ. Then,
there exists a field L∞ ⊂ L′ ⊂ LK(1) of finite degree over L∞ with β in L′ that is
generated by radicals of depth 1 over K; that is L′ equals L∞(γ1, . . . , γl) for elements
γi ∈ K̄∗ for which there exist positive integers m1, . . . ,ml with γmi

i ∈ K∗ for all i.
Applying corollary 18 with ground field L∞ and α equal to β gives

β ∈ γ · L∞,

for an element γ of K̄∗ satisfying γm ∈ K∗ for some m in Z>0.
We now study the action of elements of Gal

(

L∞(γ )/L
)

on β. A basis of L∞
over K∞ is given by a subset c1, . . . , cs of the basis of the extension L/K. There are
unique a1, . . . , as in K∞ such that we have

β = γ(a1c1 + · · · + ascs).

Let σ be an element of Gal(L∞(γ)/L), then we have

σ(β)

σ(γ)
= σ(a1)c1 + · · ·σ(as)cs.

Because σ(β) equals ζ ·β and σ(γ) is ξ ·γ for roots of unity ζ and ξ there exists some
root of unity ζσ with

σ(a1)c1 + · · · + σ(as)cs = ζσ(a1c1 + · · · + ascs).

As the ci form a basis of L∞ over K∞ we have σ(ai) = ζσ ·ai for all i ∈ {1, 2, . . . , s}.
It follows that the quotient ai/a1 is contained in L for all i. Therefore we have

β ∈ γ · a · L,

where a is contained in K∞ and γ is an element of K̄∗ with γm ∈ K∗ for some
m ∈ Z>0.

Raising to the powers m respectively n shows that (γ · a)m is an element of K∗
∞

and that (γ · a)n is contained in L∗. We apply corollary 18 again, this time with
ground field K∞ and α equal to (γ · a)n. As αm is an element of K∗

∞ we see that

α = w ·
∏

i

αsi
i ,
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holds for certain w ∈ K∗
∞ and s1, . . . sk ∈ N. This gives the following equation

δ = w · en ·
∏

i

αsi
i ,

where we have e ∈ L, w ∈ K∗
∞ and si ∈ N for all i. Because all the other terms are

elements of L it follows that w is contained in L as well.

We now have the following result similar to theorem 102.

Corollary 119. Let K be a field of characteristic 0 and let K̄ be a fixed algebraic
closure of K. Let α1, . . . , αk ∈ K̄ be such that there exist di in Z>0 with αdi

i ∈ K for
all i and let L be K (α1, · · · , αk ). Let δ be an element of L and let n be a positive
integer with gcd(n, di) = 1 for all i ∈ {1, . . . , k}. If there exists a field F ⊂ K(1) and
an element β in F with βn = δ, then there exist w ∈ K∞ ∩ L and e ∈ L such that δ
equals w · en.
Proof. Let δ be an element of L and let n be a positive integer. Assume that there
exist some field F ⊂ K(1) and an element β of F with βn = δ. From the theorem 116
it follows

δ = w · en ·
∏

i

αlii ,

for e ∈ L, w ∈ K∞ and li ∈ N for all i. As we have gcd(n, di) = 1 for all i, there are
l′i ∈ N with nl′i = li mod di. We conclude that there is some w′ ∈ w ·K with

δ = w′ ·
(

e ·
∏

i

α
l′i
i

)n

.

As δ is an element of L and also α1, . . . , αk and e are elements of L, we see that w′

is contained in L as well. We therefore have w′ ∈ K∞ ∩ L.

Let K be a real field of characteristic 0 and let a, b, r be elements of K with√
r /∈ K such that the nested radical

√

a+ b
√
r is real. Borodin et al [5] showed

that the following are equivalent.

• The expression
√

a+ b
√
r is an element of K(1).

• We have 4
√
r
√
s
√

a+ b
√
r ∈ K(

√
r ) or

√
s
√

a+ b
√
r ∈ K(

√
r ) for some s in

K.

• Either
√
a2 − b2r or

√

r(b2r − a2) is an element of K.

Example 120. The radical
√

12 + 5
√

6 is contained in Q(1) because the number
6(52 · 6 − 122) = 36 is a square in Q. To determine w in Q∞ and e in Q(

√
6 ) such

that 12 + 5
√

6 = w · e2 ·
√

6
l
for some l ∈ {0, 1} we remark

12 + 5
√

6 =
√

6(5 + 2
√

6 ).
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If there exist a, b, c in Q with c(a + b
√

6 )2 = 5 + 2
√

6 then a and b satisfy 10ab =
2(a2 + 6b2). For a = 2 and b = 1 this equality holds and indeed we have

12 + 5
√

6 =
1

2
·
√

6 · (2 +
√

6 )2.

This gives
√

12 + 5
√

6 =
4
√

6 · (
√

2 +
√

3 ),

where 4
√

6 is the positive real fourth root of 6.

We see that both in this case and in theorem 102 it holds that not only we have
w ∈ K∞ ∩L but we even have w ∈ K. However, we will not be able to prove that w
is contained in K in general as we saw in example 117.

In some special cases theorem 116 gives a both necessary and sufficient condition
for a nested radical to be of depth one as the following corollary shows.

Lemma 121. Let α1, . . . , αk be elements of R with αdi
i ∈ Q for odd positive integers

d1, . . . , dk and define L = Q (α1, · · · , αk ). Then the intersection L ∩ Q∞ equals Q.

Proof. When we apply the theory of chapter 1 we see

Q∞ ∩ L ⊂ Q(
√
a : a ∈ Q).

From proposition 84 we derive that 2 does not divide [L : Q] and thus we have
L ∩ Q∞ = Q.

Corollary 122. Let α1, . . . , αk be elements of R with αdi
i ∈ Q for odd positive

integers d1, . . . , dk. We define L = Q (α1, · · · , αk ). Let δ be an element of L and
let n be a positive integer, then n

√
δ is contained in Q(1) if and only if there exist

w ∈ Q, e ∈ L and l1, . . . , lk ∈ N such that δ equals w · en ·∏i α
li
i .

That the condition in theorem 116 is not always sufficient we see in the following
example.

Example 123. With notations as in theorem 116, we take K = Q, L = Q(
√

2 ),
δ = 1+

√
2 and n = 3. Let α be an element of R with α3 = 1+

√
2. We show that α is

not contained in Q(1), although we have α3 = w ·en with w = 1+
√

2 ∈ Q(
√

2 )∩Q∞
and e = 1.

First we remark that we cannot use the same strategy we followed in theorem 102.
As 1+

√
2 is the fundamental unit in the ring of integers of Q(

√
2 ) we see that Q(α)/Q

is an extension of degree 6. We have (−1/α)3 = 1 −
√

2 and the normal closure of
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Q(α) over Q is Q(α, ζ3). This gives the following chain of field extensions

Q(α, ζ3)

C3

Q(
√

2, ζ3)

V4

Q.

It immediately follows that Gal(Q(α, ζ3)/Q)′′ is {1}.
Suppose that α is contained in Q(1). Applying corollary 18 with ground field

Q∞ = Q(
√

2 )∞ gives
α ∈ β · Q∞,

for some β ∈ Q̄ with βm ∈ Q for some positive integer m and βd /∈ Q for all divisors d
of m. We assume without loss of generality that β ∈ R and that b = βm > 0.

First we show that m equals 3 or 6. Because α is not an element of Q∞ and α3

is contained in Q∞ we have β /∈ Q∞ and β3 ∈ Q∞. By lemma 68 we have [Q∞(β) :
Q∞] = 3 and therefore [Q(β) : Q(β3)] = 3. As β3 is contained in Q∞ the extension
Q(β3)/Q is abelian and as β3 ∈ R the degree [Q(β3) : Q] is 1 or 2. As b is positive, it
follows from lemma 68 that xm− b is the minimal polynomial of β over Q. Hence m
equals 3 or 6.

We saw above that there exists some w ∈ Q∞ with w3 = (1+
√

2)/β3. As Q(w)/Q
is an abelian extension, the polynomial x3 − w3 is reducible over K = Q(

√
2, β3).

So, there exists some y in K such that y3 equals w3. For this element y3 the norm
in the extension K/Q is a third power in Q. We have

NK
Q

(

y3
)

= NK
Q

(

1 +
√

2

β3

)

= N
Q(β3 )
Q

(

NK
Q(β3)

(

1 +
√

2

β3

))

=















NQ
Q

(−1
b2

)

= −1
b2 if m = 3

N
Q(

√
2 )

Q

(

1+
√

2
β3

)

= 1
b if m = 6 and Q(β3) = Q(

√
2)

N
Q(β3 )
Q

(−1
b

)

= 1
b2 if m = 6 and Q(β3) 6= Q(

√
2).

We conclude b ∈ Q3, but this is a contradiction with the definition of b, so
3
√

1 +
√

2
is not an element of Q(1).



Chapter 5

Rogers-Ramanujan continued

fraction

This chapter consists of a paper co-authored with Alice Gee. It was accepted by the
Ramanujan Journal in May 2001 and can also be found in [10]. The paper, with
some minor corrections, follows after a brief introduction.

In this chapter we determine the class fields generated by singular values of the
famous Rogers-Ramanujan continued fraction and give a method for writing these
values as nested radicals. Where, in chapters 3 and 4, our goal was to construct a
radical expression of minimal nesting depth for a given nested radical, in this chapter
we are satisfied if we can give a radical expression. The elements that we consider are
given by values of analytic functions and we first have to prove that these elements
are nested radicals. It is well known that, for a perfect field K, the element α is a
nested radical over K if the Galois group of K(α)/K is solvable.

In section 5.1 we introduce the Rogers-Ramanujan continued fraction, R, which
is a function on the complex upper half plane. Moreover, we give some history in
constructing nested radicals for special values of this function. In the second section
we give two formulas due to Watson [37] that relate R(z), for some z in the upper
half plane, to the Dedekind η-function

η(z) = e2πiz/24
∞
∏

m=1

(

1 − e2πizn
)

.

This relation we use to prove that R is a modular function of level 5. Moreover, we
show that R generates the field of modular functions of level 5 over Q(ζ5). Let τ be
an element of the upper half plane with [1, τ ] a Z-basis of some imaginary quadratic
order. In section 5.3 we explain, for a modular function h of level N ∈ Z>0, how to
use the structure of the Galois groups in the following chain of fields

Q ⊂ K = Q(τ) ⊂ H ⊂ H(h(τ)),

77
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with H the Hilbert class field of K, to determine a nested radical for h(τ) ∈ R.
In this computation we again use the Dedekind η-function. As all elements that
we compute have minimal polynomial in Z[x] we compute sufficiently accurate real
approximations of its coefficients and round these.

In section 5.4 we restrict to modular functions of level 5 again. We introduce
functions v, w and w̃ with

w(z) =
1

R(z)
−R(z), w̃(z) =

w(z)√
5

and v(z) = w̃(z) +

(

n

5

)

w̃(z)−1,

where
(

n
5

)

denotes the Jacobi symbol (definition 43).
Another way to represent a nested radical is to give its minimal polynomial. It is

clear from the relations above that given a representation for v(z) a representation
for R(z) can easily be derived. As the representations for v(z) are more compact we
provide in section 5.4 a way to calculate the minimal polynomials for the algebraic
integers w̃(τn) and v(τn) where τn is defined by

τn =

{√−n if n 6≡ 3 mod 4
5+

√
−n

2 if n ≡ 3 mod 4.

In the last section we compute nested radicals for the elements v(τn) for 1 ≤ n ≤ 16.
In section 5.3, example 128, we give an extensive explanation how we use Lagrange
resolvents and the Galois action in each of the field extensions in the chain of fields

Q ⊂ Q(τ) ⊂ H ⊂ H(h(τ))

to calculate these expressions.



5.1. INTRODUCTION 79

Singular values of the Rogers-Ramanujan
continued fraction

Abstract Let z ∈ C be imaginary quadratic in the upper half plane. Then the
Rogers-Ramanujan continued fraction evaluated at q = e2πiz is contained in a class
field of Q(z). Ramanujan showed that for certain values of z, one can write these
continued fractions as nested radicals. We use the Shimura reciprocity law to obtain
such nested radicals whenever z is imaginary quadratic.

5.1 Introduction

The Rogers-Ramanujan continued fraction is a holomorphic function on the complex
upper half plane H, given by

R(z) = q
1
5

∞
∏

n=1

(

1 − qn
)(n

5) , with q = e2πiz and z ∈ H. (5.1)

Here
(

n
5

)

denotes the Legendre symbol. The function R owes part of its name to the
expansion

R(z) =
q

1
5

1 +
q

1 +
q2

1 + q3 . . .

(5.2)

as a continued fraction. In their first correspondence of 1913, Ramanujan astonished
Hardy with the assertion

e−
2π
5

1 +
e−2π

1 +
e−4π

1 + e−6π . . .

=

√

5 +
√

5

2
−

√
5 + 1

2
. (5.3)

Hardy was unaware of the product expansion 5.1 that Ramanujan had used to com-
pute identity 5.3, which is none other than the evaluation of R at i. In the same
correspondence, Ramanujan expressed the equality

−R
(

5 + i

2

)

=

√

5 −
√

5

2
−

√
5 − 1

2
(5.4)

with a similar dramatic flair. The radical symbol in 5.3 and 5.4 should be interpreted
as the real positive root on R. Ramanujan communicated radical expressions for
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R
(√

−5
)

and −R
(

5+
√
−5

2

)

in his second letter to Hardy, and several other values of
R at imaginary quadratic arguments are recorded in his notebooks. The other name
connected to the function R is that of L.J. Rogers, who proved the equality of 5.1
and 5.2 in 1894. This was discovered by Ramanujan after his arrival in England.

In this paper, we evaluate singular values of the Rogers-Ramanujan continued
fraction. These are the function values of R taken at imaginary quadratic τ ∈ H. As
R is a modular function of level 5 —a classical fact for which we furnish a proof—
these values generate abelian extensions of Q(τ). Exploiting the Galois action given
by the Shimura reciprocity law, we give a method for constructing a nested radical
for R(τ) that works whenever τ is imaginary quadratic. Our systematic approach
extends the results of [2], [6], [13] and [27], which only apply to individual examples.

By way of example, we provide nested radicals for R
(√−n

)

for the integers
n = 1, 2, . . . , 16 with n 6≡ 3 mod 4. Writing down nested radicals for R(τ) becomes
increasingly unwieldy as the discriminant of τ grows, so in the case n ≡ 3 mod 4,

where Q and R( 5+
√
−n

2 ) generate a subfield of Q(R(
√−n )), we evaluate R( 5+

√
−n

2 )
instead of R(

√−n ). In the classical literature, the notation S(z) = −R( 5+z
2 ) is

frequently used.

5.2 The modular function field of level 5

A modular function of level N is a meromorphic function on the extended complex
upper half plane H∪P1(Q) that is invariant under the natural action of the modular
group Γ(N) = Ker[SL2(Z) → SL2(Z/NZ)] of levelN . As such functions are invariant

under z 7→ z +N , they admit a Fourier expansion in the variable q
1
N = e

2πiz
N . The

modular functions of level N with Fourier expansion in Q(ζN )((q
1
N )) form a field

FN , the function field of the modular curve X(N) over Q(ζN ).
The extension FN is Galois over F1 with group GL2(Z/NZ)/{±1}. For a proof,

see [23], page 66, Theorem 3. One can describe the action of GL2(Z/NZ) on FN
explicitly. The group (Z/NZ)∗ acts as a group of automorphisms of FN over F1,

by restricting its natural cyclotomic action on Q(ζN )((q
1
N )). The natural action of

Γ(1) = SL2(Z) on H induces a right action of Γ(1)/Γ(N) = SL2(Z/NZ) on FN which
leaves F1 invariant. The homomorphisms

(Z/NZ)∗ → Gal (FN/F1) and SL2(Z/NZ) → Gal (FN/F1)

can be combined into an action of the semi-direct product

(Z/NZ)∗ n SL2(Z/NZ) ' GL2(Z/NZ)

on FN . For this isomorphism, we identify d ∈ (Z/NZ)∗ with the element
(

1
0

0
d

)

∈
GL2(Z/NZ). The resulting sequence

1 −→ {±1} −→ GL2(Z/NZ) −→ Gal (FN/F1) −→ 1 (5.5)
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is exact.
The modular invariant j generates F1 over Q, and induces the isomorphism

X(1) ' P1(Q). In a similar fashion, the curve X(5) has genus 0, thus its function
field F5 can be generated by a single function over Q(ζ5). The Rogers-Ramanujan
continued fraction R is such a generator. There are several ways to prove this
classical fact. Our proof is based up the following two formulas of Ramanujan proofs
of which were given by Watson [37]

1

R(z)
−R(z) − 1 =

η(z/5)

η(5z)
, (5.6)

1

R5(z)
−R5(z) − 11 =

( η(z)

η(5z)

)6

, (5.7)

which relate R to Dedekind’s η-function

η(z) = q1/24
∞
∏

m=1

(

1 − qn
)

, q1/24 = e2πiz/24.

The above formulas 5.6 and 5.7 will prove useful in section 5.4, where we evaluate
singular values of R. We define functions

h0 =
η ◦
(

1
0

0
5

)

η
and h5 =

√
5 · η ◦

(

5
0

0
1

)

η
,

so that equations 5.6 and 5.7 become

1

R
−R− 1 =

√
5 · h0

h5
, (5.8)

1

R5
−R5 − 11 =

53

h6
5

. (5.9)

We will derive the classical fact that R is modular from the modularity of the func-
tions appearing on the right hand side of 5.8 and 5.9. This is well known for h6

5

([26], page 619), but for lack of a reference in the case of 5.8, we provide a proof that
works in both cases.

In order to compute the action of SL2(Z) on h0 and h5, we begin by observing
that the generating matrices S =

(

0
1

−1
0

)

and T =
(

1
0

1
1

)

of SL2(Z) act on the
Dedekind η-function as

η ◦ S (z) =
√
−iz η(z) and η ◦ T (z) = ζ24η(z) . (5.10)

The radical sign stands for the holomorphic branch of the square root on −iH that
is positive on the real axis. The observation

(

1
0

0
5

)

·S = S·
(

5
0

0
1

)

gives h0 ◦ S = h5.
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with the help of 5.10. Let ∆5 denote the set of 2 × 2 matrices with coefficients in Z
that have determinant 5. The matrices

Mi =
(

1
0
i
5

)

, i = 0, 1, . . . , 4 and M5 =
(

5
0

0
1

)

form a set of representatives for Γ\∆5. For A ∈ SL2(Z) and i ∈ {0, 1, . . . , 5}, we can
find B ∈ SL2(Z) and j ∈ {0, 1, . . . , 5} such that Mi·A = B·Mj holds. We put

h5 =
√

5· η ◦M5

η
and hi =

η ◦Mi

η
for i = 0, 1, . . . , 4. (5.11)

Using 5.10 one computes

















h0

h1

h2

h3

h4

h5

















◦ S =

















h5

ζ−3
24 h4

h3

h2

ζ3
24h1

h0

















and

















h0

h1

h2

h3

h4

h5

















◦ T =

















ζ−1
24 h1

ζ−1
24 h2

ζ−1
24 h3

ζ−1
24 h4

h0

ζ4
24h5

















. (5.12)

Lemma 124. The functions h6
5 and h0/h5 are modular of level 5.

Proof. We will show that each of the functions h6
i and hi/hj with 0 ≤ i, j ≤ 5 are

invariant under the action of Γ(5). From [17] we know that Γ(5) is the normal
closure of 〈T 5〉 in SL2(Z). This means that Γ(5) is generated by matrices of the
form AT 5A−1 with A ∈ SL2(Z). From 5.10 we observe

hi ◦ T 5 = ζ−1
6 · hi for i = 0, 1, . . . , 5 .

For A ∈ SL2(Z) and j ∈ {0, 1, . . . , 5}, the equations 5.12 show that all hj ◦ A are of
the form hj ◦A = ζ· hi for some i ∈ {0, 1, . . . , 5} and some root of unity ζ. Similarly

hj ◦AT 5 = ζ−1
6 · hj ◦A

holds for every A ∈ SL2(Z). Thus h6
i is invariant under AT 5A−1 for all A ∈ SL2(Z),

as well as every quotient hi/hj .
It is easy to check that the Fourier expansions of the functions h6

0, h
6
5, h0/h5 and

h5/h0 are in Q(ζ5)((q
1/5)). Those of the other functions are in Q(ζ20)((q

1/5)).

Lemma 125. The Rogers-Ramanujan continued fraction R is modular of level 5.

Proof. From 5.1 we know that R is holomorphic on H and that its q-expansion is an
element of Q(ζ5)((q

1/5)). Therefore it suffices to show that R ◦AT 5A−1 = R for all
A ∈ SL2(Z). From formula 5.8 one derives

(

X −R
)(

X +
1

R

)

= X2 +
(√

5· h0

h5
+ 1
)

X − 1. (5.13)
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As AT 5A−1 acts trivially on
√

5 h0/h5, it maps R to either R or −1/R. Suppose the
latter to be true. Then R ◦AT 5 = −1/(R ◦A) holds. As the translation T 5 fixes the
cusp i∞, we have

R ◦A(i∞) = R ◦AT 5(i∞) =
−1

R ◦A(i∞)
,

which implies R ◦A(i∞) = ±i. Then formula 5.9 yields

53

(

h5 ◦A(i∞)
)6 =

1

(±i)5 − (±i)5 − 11 = ±2i− 11. (5.14)

On the other hand, we can evaluate h5◦A(i∞) by considering the product expansion
for h5 ◦ A at q = 0. By 5.12, one has h5 ◦ A = ζ· hj for some root of unity ζ and
some j ∈ {0, 1, . . . , 5}. For j = 0, 1, . . . , 4, we compute

hj(i∞) = lim
N→∞

e2πi(
iN+j

5 )

e2πi(iN)
= 0 .

A similar calculation shows that h5 has a pole at i∞. Contradiction with 5.14.

Lemma 126. The minimum polynomial of R5 over F1 = Q(j) is

P (X) = X12 + 1 + (j − 684)(X11 −X) + (55j + 157434)(X10 +X2)

+ (1205j − 12527460)(X9 −X3) + (13090j + 77460495)(X8 +X4)

+ (69585j − 130689144)(X7 −X5) + (134761j − 33211924)X6.

The minimum polynomial of R over Q(j) is P (X5), with P as above.

Proof. Weber shows, [38] page 256, that h2
0 is a zero of X6 + 10X3 − γ2X + 5, with

γ2 a cube root of j. Another zero is h2
5 = (h0 ◦ S)2 because S fixes γ2. We obtain

j =

(

h12
5 + 10h6

5 + 5
)3

h6
5

. (5.15)

Rewriting 5.9 gives the identity

h6
5 =

53·R5

−R10 − 11R5 + 1
.

Substituting the above relation for h6
5 into 5.15, we have

j =

(

1 + 228R5 + 494R10 − 228R15 +R20
)3

(

−R+ 11R6 +R11
)5 , (5.16)
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which readily yields P (R5) = 0, with P as in lemma 126. To see that P is irreducible
in Z[X, j], compose the evaluation map Z[X, j] → Z[X] defined by j 7→ 1 with
reduction modulo 2. We obtain a homomorphism Z[X, j] → F2[X] that sends P to
the cyclotomic polynomial Φ13 ∈ F2[X], which is irreducible because 2 is a primitive
root modulo 13. As P is a monic polynomial in X, we conclude that it is the
minimum polynomial of R5 over Q(j).

In order to see that Q(R) has degree 5·
[

Q(R5) : Q(j)
]

= 60 over Q(j), it suffices

to observe that
(

1
0

1
1

)

∈ SL2(Z), which acts as R(z) 7→ R(z + 1) = ζ5R(z) induces
an automorphism of order five of Q(R) over Q(R5). Thus P (X5) is the minimum
polynomial of R over Q(j).

Theorem 127. The Rogers-Ramanujan continued fraction R generates F5 over
Q(ζ5).

Proof. As R has rational Fourier coefficients, the subfields Q(R) = F1(R) and F1(ζ5)
of F5 are linearly disjoint extensions of F1 having degree 60 and 4, respectively. Their
composite, which has degree 240 = #

(

GL2(Z/5Z)/{±1}
)

over F1 is therefore equal
to F5.

The rational function on the right hand side of 5.16 appears in Klein’s study of
the finite subgroups of Aut(P1(C )). His icosahedral group A5 is isomorphic to
SL2(Z/5Z)/{±1}, and the natural map from P1(C ) to the orbit space of the icosa-
hedral group ramifies above 3 points. The relation 5.16 defines a generator, [15]
page 61 and 65, for the field of functions invariant under the icosahedral group. In
our situation the natural map X(5) → X(1) ramifies over 3 points and the Galois
group of C (R) over C (j) is SL2(Z/5Z)/{±1}.

The subgroups of GL2(Z/5Z)/{±1} that stabilise the functions appearing in the
equations 5.8 and 5.9 are given in the diagram below. The stabilisers of h6

5 and√
5 · h0/h5 in SL2(Z/5Z)/{±1} can be determined using 5.12.
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F5 = Q(R, ζ5)

4

〈( 1
0

0
2 )〉

60
SL2(Z/5Z)/{±1}

Q(R)

2

〈( 2
0

0
3 )〉

5
〈( 1

0
1
1 )〉 Q(

√
5h0

h5
)

Q(R5)

Q(h6
5)

6

Q(j, ζ5)

4

〈( 1
0

0
2 )〉

Q(j)

5.3 Galois theory for singular values of modular

functions

Let O be an imaginary quadratic order having Z-basis [τ, 1]. Define HN = HN,O to
be the field generated over K = Q(τ) by the function values h(τ), where h ranges
over the modular functions in FN that are pole-free at τ . The first main theorem of
complex multiplication [23] states that HN is an abelian extension of K. For N = 1,
the field H1 is the ring class field for O. If O is a maximal quadratic order with
field of fractions K, then HN is the ray class field of conductor N over K, and H1

is the Hilbert class field of K. For ray class fields of non-maximal orders, see for
example [34].

Before we can describe the explicit action of Gal (HN/K) on elements of HN , we
first look at Gal (HN/H1), which fits in a short exact sequence

1 −→ O∗ −→ (O/NO)∗
A−→ Gal (HN/H1) −→ 1.
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In order to describe the Artin map A, we write the elements of O/NO as row vectors
with respect to the Z/NZ-basis [τ, 1]. If τ has minimum polynomial X2 +BX+C ∈
Z[X], define the homomorphism

gτ : (O/NO)∗ → GL2(Z/NZ)
sτ + t 7→

(

t−Bs
s

−Cs
t

)

. (5.17)

The matrix gτ (x) represents multiplication by x on O/NO with respect to the Z/NZ-
basis [τ, 1]. For h ∈ FN , the Shimura reciprocity law [30] gives the action of x ∈
(O/NO)∗ on h(τ) as

(

h(τ)
)x−1

= hgτ (x)(τ). (5.18)

Here gτ (x) ∈ GL2(Z/NZ) acts on h ∈ FN as described in 5.5. Moreover, if h ∈ FN
is a function for which Q(h) ⊂ FN is Galois, then K

(

h(τ)
)

is the fixed field of

{x ∈ (O/NO)∗ | hgτ (x) = h} ⊂ (O/NO)∗. (5.19)

For any h ∈ FN , we aim to compute the conjugates of h(τ) with respect to the
full group Gal (HN/K). In the case N = 1, the Galois group of H1 = K

(

j(τ)
)

over K is isomorphic to the ideal class group C(O) of O. The elements of C(O) can
be represented as primitive quadratic forms [a, b, c] of discriminant D = b2 − 4ac,

where D is the discriminant of O. The Z-module having basis
[

a, −b+
√
D

2

]

is an
O-ideal in the class of [a, b, c], and the class of [a,−b, c] acts on j(τ) as

j(τ)[a,−b,c] = j

(−b+
√
D

2a

)

. (5.20)

In the general case for N > 1, we need the elements of Gal (HN/K) that lift (3.5)
for each representative [a, b, c] in C(O). The formula [9], Theorem 20 produces one
element σ ∈ Gal (HN/K) along with a matrix MN = MN (a, b, c) in GL2(Z/NZ)
such that for all h ∈ FN , the relation

h(τ)σ = hMN

(−b+
√
D

2a

)

(5.21)

holds. The automorphism σ clearly lifts the action in 5.20 to Gal (HN/K) because
MN ∈ GL2(Z/NZ) acts trivially on j ∈ F1. As every automorphism in Gal (HN/K)
is obtained by composing elements of Gal (HN/H1) with one of the coset repre-
sentatives for Gal (H1/K) in 5.21, we can determine the conjugates of h(τ) under
Gal (HN/K) for any h ∈ FN .

Given this explicit action on HN over K we can compute representations for
singular values of modular functions by minimal polynomials as well as radical ex-
pressions over Q.
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The natural way to describe an algebraic number is its minimum polynomial
over Q. Let h ∈ FN be a function for which h(τ) is an algebraic integer. The
conjugates of h(τ) over K can be approximated numerically when the Fourier ex-
pansion for h is known. One expresses each conjugate in the form hM (θ), with
M ∈ GL2(Z/NZ) and θ ∈ K, and then writes M =

(

1
0

0
x

)

·A with x = det(M)
and A ∈ SL2(Z/NZ). After modifying the Fourier coefficients of h with respect to
ζN 7→ ζxN , one evaluates the new expansion at Ã(z), where Ã ∈ SL2(Z) is a lift
of A. We calculate the minimum polynomial f of h(τ) over Q by approximating
the conjugates of h(τ) over K. Adjoining complex conjugates gives a full set of
conjugates over Q. In order to determine the polynomial f ∈ Z[X], we need only to
approximate its coefficients accurate to the nearest integer.

Because H5 is abelian over K, one can also express h(τ) as a nested radical
over Q in the spirit of Ramanujan’s evaluations 5.3 and 5.4. Unlike the minimum
polynomial f , which is unique, many different nested radicals over Q exist that all
represent h(τ). Given any abelian extension H/K of degree greater than 1 and any
w ∈ H, the following standard procedure expresses w as a radical expression over a
field H ′ with the property [H ′ : K] < [H : K]. Applying the procedure recursively
produces a nested radical for w over K.

We choose an automorphism σ ∈ Gal (H/K) of order m > 1 and set H ′ =
Hσ(ζm), where Hσ denotes the fixed field of 〈σ〉. Then H ′/K is an abelian extension
of degree

[H ′ : K] ≤ ϕ(m)· [Hσ : K] < m· [Hσ : K] = [H : Hσ][Hσ : K] = [H : K] .

We write

w =
1

m

(

h0 + h1 + h2 + · · · + hm−1

)

, (5.22)

where

hi =

m
∑

k=1

ζikm ·w(σk) , i = 0, 1, . . . ,m− 1

are the Lagrange resolvents for w with respect to σ. Note that h0 = TrH/Hσ (w)
is an element of H ′. Every ρ ∈ Gal (H(ζm)/H ′) acts trivially on ζm and as some
σa ∈ 〈σ〉 on H. For i = 1, 2, . . . ,m− 1, we have

hρi =

n
∑

k=1

ζikm ·w(σk+a) = ζ−iam ·hi ,

which means hm1 , h
m
2 , . . . , h

m
m−1 ∈ H ′. As hi = m

√

hmi for the appropriate choice
of the m-th root, equation 5.22 represents w as a radical expression over H ′. The
recursion step is applied to h0, h

m
1 , h

m
2 , . . . , h

m
m−1 ∈ H ′.

Suppose h ∈ FN such that h(τ) is an algebraic integer. In order to apply the
recursive procedure above to h(τ), one needs not only the action of Gal (HN/K),
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but also that of Gal (HN (ζd)/K) for various numbers d > 1. This is obtained by
restricting the action of Gal (HdN/K) to HN (ζd). The elements computed in the
final recursion step are in OK , which is a discrete subgroup of C . An approximation
of their coordinates with respect to a Z-basis for OK , that is accurate to the nearest
integer, produces a nested radical for h(τ) over Q.

The methods above can be extended to arbitrary imaginary quadratic numbers
θ ∈ H that are not necessarily algebraic integers. In order to compute the conjugates
of h(θ) over K = Q(θ) we take an integral basis [τ, 1] for K and write θ = a

dτ + b
d

with a, b, d ∈ Z. One evaluates h ◦
(

a
0
b
d

)

∈ FadN at τ , which is contained in HadN .
Again, 5.18 and 5.21 allow us to calculate the conjugates of h(θ) over K.

Example 128. Define τ6 =
√
−6, we will explain how to compute a nested radical

for v(τ6) where

v =
h0

h5
+
h5

h0
.

Let K denote Q(
√
−24 ) and let H be the Hilbert class field of K. As v ∈ F5 we

find in [9] that the Galois action of H(v(τ6))/H is given by the matrix A =
(

1
1

4
1

)

∈
GL2(Z/5Z)/{±1}. The Galois group of the extension H/K is given by the class
group of K. The tower of field extensions in a diagram:

H
(

v(τ6)
)

H

2 〈σ〉

K = Q(
√
−24 )

2 〈ρ〉

Q

2

If we have Gal(H(v(τ6))/H) = 〈σ〉 then v(τ6)+v(τ6)
σ and

(

v(τ6)−v(τ6)σ
)2 ∈ H.

We determine the conjugates of these elements by the action of Gal(H/K) = 〈ρ〉.
The elements of the class group of K are the classes of the quadratic forms [1, 0, 6]
and [2, 0, 3]. They induce ([9], Theorem 20) matrices I =

(

1
0

0
1

)

and M =
(

2
0

0
1

)

.

Formula 5.21 tells us how to determine
(

v(τ6) + v(τ6)
σ
)ρ

. We find

(

v(τ6) + v(τ6)
σ
)ρ

= (v + vA)(τ6)
[2,0,3] = (vM + vAM )

(−0 +
√
−24

4

)

.

To determine vM and vAM we first write each of the matrices as a product of a matrix
of the form

(

1
0

0
d

)

, where d denotes the determinant, and a matrix in SL2(Z/5Z).
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This gives

M =
(

2
0

0
1

)

=
(

1
0

0
2

)

·
(

2
0

0
3

)

and A ·M =
(

2
2

4
1

)

=
(

1
0

0
4

)

·
(

2
3

4
4

)

.

Then we determine matrices of determinant 1 in GL2(Z) that are representatives for
the matrices in SL2(Z/5Z). They are

(

2
5

5
13

)

and
(

2
3

−1
−1

)

. Then we get

(vM + vAM )
(−0 +

√
−24

4

)

=
(2

5

)

· v
( 1/2 ·

√
−6 + 5

5/2 ·
√
−6 + 13

)

+
(4

5

)

· v
(

√
−6 − 1

3/2 ·
√
−6 − 1

)

,

where ( ·· ) denotes the Jacobi symbol.
Similar computations yield all conjugates of the elements v(τ6) + v(τ6)

σ and
(

v(τ6) − v(τ6)
σ
)2

. Define v1, v2, v3, v4 by

v1 = v(τ6) v3 = −v
(

τ6+5
5/2·τ6+13

)

v2 = −v
(

11·τ6+29
3·τ6+8

)

v4 = v
(

τ6−1
3/2·τ6−1

)

,

then these conjugates are v1 + v2, v3 + v4, v
2
1 − v2

2 and v2
3 − v2

4 in H.
To compute a nested radical for v(τ6) = v1 we determine an accurate approxi-

mation for v1 + v2 + v3 + v4 ∈ OK ∩ R = Z, rounding gives that

v1 + v2 + v3 + v4 = 8.

By approximating we also find

((v1 + v2) − (v3 + v4))
2 = 200 and (v1 + v2) − (v3 + v4) > 0,

(v1 − v2)
2 + (v3 − v4)

2 = 60,

((v1 − v2)
2 − (v3 − v4)

2)2 = 3200 and (v1 − v2)
2 − (v3 − v4)

2 > 0.

Thus we have the equalities

1/2 · (8 +
√

200 ) = v1 + v2

and
1/2 · (60 +

√
3200 ) = (v1 − v2)

2.

From which follows, as v1 − v2 > 0,

v(τ6) = v1 = 1/4 ·
(

8 +
√

200
)

+ 1/2 ·
√

30 + 1/2 ·
√

3200

= 1/2 ·
(

4 + 5
√

2 + 10 ·
√

3 + 2
√

2

)

= 1/2 ·
(

4 + 5
√

2 +
√

10 + 2
√

5
)
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5.4 The ray class field H5

We turn our attention back to the functions of level 5 from section 2. In this section,
we compute some singular values R(τ) of the Rogers-Ramanujan continued fraction.
As the singular values of j are known to be algebraic integers, the same holds true for
R because the polynomial P of lemma 126 has coefficients in Z[j]. We fix O = [τ, 1] to
be an order in some imaginary quadratic number field K. We state a few properties
of R(τ) before computing some examples.

Lemma 129. The class field H5 = H5,O is generated by R(τ) over K.

Proof. As we have F5 = Q(R, ζ5) by Theorem 127, the extension F5/Q(R) is Galois
and we are in the situation for which 5.19 applies. As Q(R) is the subfield of F5

fixed by
{(

1
0

0
d

)

| d ∈ (Z/5Z)∗
}

⊂ GL2(Z/5Z) ,

the class field K
(

R(τ)
)

is the subfield of H5 fixed by

G = {x ∈ (O/5O)∗ | gτ (x) = ±
(

1
0

0
d

)

for some d ∈ (Z/5Z)∗} ⊂ (O/5O)∗ .

From formula 5.17 we see that the only diagonal matrices appearing in the image
gτ [(O/5O)∗] are scalar. We conclude G = {±1} and K

(

R(τ)
)

= H5.

Let w(z) = η( z5 )/η(5z) denote the function that appears on the right hand side
of equation 5.6. Thus we have

1

R(z)
−R(z) − 1 = w(z). (5.23)

Lemma 130. The singular values R(τ) and −1/R(τ) are conjugate over the field
K
(

w(τ)
)

. Furthermore, H5 is generated over K by ζ5 together with w(τ).

Proof. The polynomial

X2 +
(

w(τ) + 1
)

X − 1 ∈ K
(

w(τ)
)

[X] (5.24)

derived from 5.23 has zeroes R(τ) and −1/R(τ). To show that 5.24 is irreducible in
K
(

w(τ)
)

[X] we consider the homomorphism gτ : (O/5O)∗ → GL2(Z/5Z) in 5.17.

By 5.18, the group Gal (H5/H1) contains the automorphism R(τ) 7→ Rgτ (2)(τ). In
order to determine the action action of

gτ (2) =
(

2
0

0
2

)

=
(

1
0

0
4

)(

2
0

0
3

)

∈ GL2(Z/5Z)

on F5, we recall that R and w have rational Fourier coefficients and thus are fixed
by
(

1
0

0
4

)

. Using 5.12 one checks that w is stabilised by
(

2
0

0
3

)

∈ SL2(Z/5Z). Theo-

rem 127 together with equation 5.23 tells us that this matrix
(

2
0

0
3

)

sends R to −1/R,



5.4. THE RAY CLASS FIELD H5 91

so R(τ) and −1/R(τ) are conjugates over K. As K
(

R(τ)
)

= H5 contains ζ5, the
situation R(τ) = −1/R(τ) = ±i is impossible. We conclude that 5.24 is irreducible
in K

(

w(τ)
)

[X].

We have [H5 : K
(

w(τ)
)

] = 2. In fact, K
(

w(τ)
)

is the subfield of H5 fixed
by the subgroup of (O/5O)∗ generated by 2 and the image of O∗. By 5.24 the
action of 2 ∈ (O/5O)∗ on ζ5 ∈ H5 is ζ5 7→ ζ−1

5 . We conclude ζ5 6∈ K
(

w(τ)
)

and

H5 = K
(

w(τ), ζ5
)

.

To determine the minimum polynomial of R(τ) over Q, it is convenient, although
certainly not necessary, to first compute the polynomial for w(τ) and then recover
R(τ) with 5.23. As both values R(τ) and 1/R(τ) are algebraic integers, it follows
that w(τ) is an algebraic integer too. In particular, the method of section 5.4 for

computing f
w(τ)
Q works here.

Working with values of w is easier than working with R directly as there are
only half as many conjugates over K to compute. More importantly, the Dedekind
η-function is implemented in several software packages that quickly compute η(z)
to a high degree of accuracy. These routines make use of SL2(Z)-transformations to
ensure that the imaginary part of z is sufficiently large to guarantee rapid convergence
of the Fourier expansion of η(z). For the expansion 5.1 of the function R(z) such a
standard implementation does not appear to be available.

One obtains the minimal polynomial of R(τ) over Q from f
w(τ)
Q by writing

w =
1 −R−R2

R

using 5.6. Then R(τ) is a zero of the monic polynomial

Xdeg· fw(τ)
Q

(1 −X −X2

X

)

∈ Q[X]

with deg = deg(f
w(τ)
Q ). According to lemma 130, the resulting polynomial is irre-

ducible because its degree is 2 · deg.

An inspection of product expansion 5.1 shows R(z) ∈ R whenever the real part
of z ∈ H is an integer multiple of 5

2 . For the singular arguments

τn =

{√−n if n 6≡ 3 mod 4
5+

√
−n

2 if n ≡ 3 mod 4

the value R(τn) is a real, and its minimum polynomial over K is contained in Z[X]
because complex conjugation acts as

f
R(τn)
K = f

R(τn)
K = f

R(τn)
K .
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Lemma 130 implies that f
R(τ)
Q =

∑2d
i=0 ciX

i is the minimum polynomial for both

R(τ) and −1/R(τ), thus the coefficients satisfy ci = (−1)ic2d−i. For this reason we
only list the first half of the coefficients c2d, c2d−1, . . . , cd in table 1, where we give
the minimum polynomials for R(τn) with 1 ≤ n ≤ 16.

Table 1. The minimum polynomials of R(τn) over Q

n degree first half of coefficients c2d, c2d−1 . . . cd
1 4 1, 2,−6
2 12 1, 6,−1, 0, 50,−14, 16
3 4 1,−3,−1
4 8 1, 14, 22, 22, 30
5 20 1, 10,−90, 280,−730, 1022,−2410, 2540,−3330, 1730,−2006
6 16 1, 28, 140, 60,−365, 264, 482, 340, 2035
7 12 1,−4,−1,−25,−25,−14, 31
8 24 1, 32,−96, 268, 51,−328,−1446,−5112, 996, 3972, 10594, 4208,

−6924
9 16 1, 38,−240,−300,−235,−726, 92,−1840,−675
10 20 1, 60, 360,−120, 120,−1728, 3540, 840, 4320,−7620,−1006
11 8 1,−6,−13,−28, 5
12 24 1, 82, 329,−282,−74, 3672,−3846, 4238, 13521,−9028, 7844,

2408, 43651
13 24 1, 82,−996, 968, 1051, 1422,−96,−24912, 7896, 16722, 28844,

13658,−114024
14 32 1, 116, 614,−3040, 25230, 17988,−103372, 184292, 207725,

−409400,−323390,−129140, 2879690, 3515800,−5057000,
−4838560, 7624315

15 20 1,−15, 60,−270, 720,−1353, 2115,−2610, 2970,−1095, 3119
16 16 1, 148,−670, 240, 1570,−2616, 302, 1180,−1610

A nice way of generating H5 = K(w(τn), ζ5) comes from lemma 130. The subfield
K(w(τn)) of H5 is the fixed field for the subgroup generated by 2 and O∗ in (O/5O)∗.
Because

√
5 is invariant under gτn

(2) =
(

2
0

0
2

)

, we conclude
√

5 ∈ K(w(τn)). Thus
for the function

w̃ =
w√
5

=
h0

h5

we have w̃(τn) ⊂ K(w(τn)) and H5 = K(w̃(τn), ζ5).

Lemma 131. The value w̃(τn) is an algebraic integer. If 5 - n then w̃(τn) is a unit
in H5, the ray class field of conductor 5 over O = [τn, 1].

Proof. Hasse and Deuring, [8] page 43, determine exactly the ideals generated by
singular values of the lattice functions

ϕM (z) =
∆
(

M
(

z
1

))

∆
(

z
1

) ,
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with M a 2×2 matrix having coefficients in Z. Our functions h0 and h5 were defined
in 5.11 as

h0 =
η ◦M0

η
, h5 =

√
5· η ◦M5

η
with M0 =

(

1
0

0
5

)

, M5 =
(

5
0

0
1

)

.

Thus we have

ϕM0

(

z

1

)

= h0(z)
24 and ϕM5

(

z

1

)

= h5(z)
24 ,

and

w̃(τn)
24 =

ϕM0

(

τn

1

)

ϕM5

(

τn

1

) .

If n is not divisible by 5, then

M0

(

τn
1

)

= [τn, 5] and M5

(

τn
1

)

= [5τn, 1]

are both proper ideals of O = [τn, 1]. Deuring’s theorem, [8] page 42, shows that
ϕM0

(

τn

1

)

and ϕM5

(

τn

1

)

are associate elements in the ring of integral algebraic numbers;
one writes

ϕM0

(

τn
1

)

≈ ϕM5

(

τn
1

)

.

It follows that the quotient w̃(τn)
24 is a unit.

If 5 | n but 25 - n, then ϕM0

(

τn

1

)

is again a proper O-ideal. However, the

multiplicator ring for M5

(

τn

1

)

is not O, but [5τn, 1]. Deuring’s formulas, [8] page 43,
yield

ϕM0

(

τn
1

)

≈ 56 in O and ϕM1

(

τn
1

)

≈ 56/5 in [5τn, 1].

We find w̃(τn) ≈ 51/5.

When n is divisible by 25, the multiplicator rings for M0

(

τn

1

)

and M5

(

τn

1

)

are O
and [1, τn/5] respectively. In this case, the formulas, [8] page 43, show that w̃(τn) is
again associated to a positive rational power of 5.

When n ∈ Z is not divisible by 5, the Galois action 5.5 for the matrix gτn
(τn) of

5.17 sends w̃ to
(

n
5

)

· w̃−1. We define

v(τn) = w̃(τn) +

(

n

5

)

w̃(τn)
−1 .
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Clearly we have w̃(τn) = v(τn) when n is divisible by 5. However, if n > 1 with
5 - n then w̃(τn) has degree 2 over v(τn). In these cases the minimum polynomial
for w̃(τn) satisfies

f
w̃(τn)
Q = Xdeg· fv(τn)

Q

(X2 +
(

n
5

)

X

)

with deg = deg(f
v(τn)
Q ). Table 2 lists the minimum polynomials over Q for v(τn) for

1 ≤ n ≤ 16.
Table 2. The minimum polynomials over Q for v(τn)

n degree coefficients
1 1 1, 2
2 3 1,−2, 3,−4
3 1 1, 1
4 2 1,−6, 4
5 10 1,−10, 25,−30, 25,−10, 25, 0, 25, 0, 25
6 4 1,−8,−16, 28, 31
7 3 1, 2, 3, 9
8 6 1,−16, 20,−100, 25,−156,−124
9 4 1,−22, 54, 62,−59
10 10 1,−20,−75,−60,−75,−20,−25, 0,−25, 0,−25
11 2 1, 4,−1
12 6 1,−34,−5,−150,−75,−144,−99
13 6 1,−46, 210,−290, 905,−456, 576
14 8 1,−44,−238, 88, 520,−2508,−4978,−176, 2711
15 10 1, 5, 0, 15, 0, 5,−25, 0,−25, 0,−25
16 4 1,−68, 14, 328,−284

5.5 Nested radicals

In order to obtain nested radicals for R(τn) over Q it suffices to have radicals for
w̃(τn). On the imaginary axis, R(τ) and w(τ) and w̃(τ) take positive real values,
and when Re(τ) = 5

2 , each of the values R(τ) and w(τ) and w̃(τ) are real negative
numbers. As the conjugate of R(τ) over K(w) is −1/R(τ), equation 5.13 gives

R(τ) =







− 1+w(τ)
2 +

√

( 1+w(τ)
2

)2
+ 1 if n 6≡ 3 mod 4

− 1+w(τ)
2 −

√

( 1+w(τ)
2

)2
+ 1 if n ≡ 3 mod 4

where
√· is always the positive square root of a positive real number.

When n > 1 and 5 - n, the algebraic number w̃(τn) has degree 2 over Q(v(τn)).
As the absolute value of w̃(τn) satisfies |w̃(τn)| > 2 when n > 1, one recovers w̃(τn)
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from v(τn) as

2w̃(τn) =







v(τn) +
√

v(τn)2 − 4
(

n
5

)

if n 6≡ 3 mod 4

v(τn) −
√

v(τn)2 − 4
(

n
5

)

if n ≡ 3 mod 4 .

Note that the radicands above are positive real numbers. This is obvious for
(

n
5

)

=

−1. When
(

n
5

)

= 1, we have |v(τn)| = |w̃(τn) + 1/w̃(τn)| > 2. One easily recovers

R(τn) from
√

5· w̃(τn) = w(τn). In the case n is divisible by 5, one simply has
v(τn) = w̃(τn).

Below, we give nested radicals for v(τn) with 1 ≤ n ≤ 16, computed as in
example 128. In many cases the radicals below have undergone some cosmetic mod-
ifications made by factorising elements in real quadratic orders of class number one.
Every root appearing in our examples should be interpreted as the real positive root
of its real positive argument. Our computation v(τ1) = 2 for example, leads to
w̃(

√
−1) = 1 and w(

√
−1) =

√
5, which gives Ramanujan’s formula 5.3. The value

v(τ3) also gives a trivial extension of Q.

v(τ1) = 2

v(τ3) = −1

For n = 4, 6, 9, 11, 14, 16 the degree [Q(v(τn)) : Q] is a power of 2. In these cases we
opt for a tower of quadratic extensions in solving for v(τn).

v(τ4) = 3 +
√

5

v(τ6) = 1
2

(

4 + 5
√

2 +
√

10 + 2
√

5
)

v(τ9) = 1
2

(

11 + 5
√

3 + 3
√

5 + 3
√

15
)

v(τ11) = −2 −
√

5

v(τ14) = ( 1+
√

2
2 )2

(

6 +
√

2 + 5

√

−2 + 4
√

2

+ 2

√

5
(

21 − 10
√

2 + (15 − 2
√

2)

√

−11 + 8
√

2
)

)

v(τ16) = 1
2

(

34 + 25
√

2 + 11
√

10 + 14
√

5
)

.

For n ≡ ±2 mod 5, the group (O/5O)∗ is cyclic of order 24. If the discriminant D
of O = [τn, 1] satisfies D < −4, then v(τn) generates a degree 3 extension over the
ring class field HO. In the examples below, we choose the field tower HO(v(τn)) ⊃
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HO ⊇ Q(
√−n) to solve for v(τn).

v(τ2) = 1
3

(

2 +
3

√

35 + 15
√

6 − 3

√

−35 + 15
√

6
)

v(τ7) = 1
6

(

− 4 +
3

√

20(−41 + 9
√

21 ) − 3

√

20(41 + 9
√

21 )
)

v(τ8) = 1
3

(

8 + 5
√

2 +
3

√

5
2

(

782 + 565
√

2 + 3

√

6(7771 + 5490
√

2 )
)

+
3

√

5
2

(

782 + 565
√

2 − 3

√

6(7771 + 5490
√

2 )
)

)

v(τ12) = 1
3

(

17 + 10
√

3 + 4
3

√

260 + 150
√

3 +
3

√

23975 + 13875
√

3
)

v(τ13) = 1
3

(

23 + 5
√

13 +
3

√

5
2

(

14123 + 3905
√

13 + 9

√

274434 + 76110
√

13
)

+
3

√

5
2

(

14123 + 3905
√

13 − 9

√

274434 + 76110
√

13
)

)

When n is divisible by 5, the value of v at τn generates a field extension of degree 5
over the ring class field for O = [τn, 1]. In applying the algorithm of section 3, our
first step solves for v(τn) over HO.

v(τ5) = 1 + 1√
5

(

5
√
a1 + 5

√
a2 + 5

√
a3 + 5

√
a4

)

, where

a1, a2 = 10
(

55 + 25
√

5 ±
√

5050 + 2258
√

5
)

a3, a4 = 5
2

(

55 + 25
√

5 ±
√

50 + 22
√

5
)

v(τ10) = 1√
5

(

5 + 2
√

5 + 5
√
a1 + 5

√
a2 + 5

√
a3 + 5

√
a4

)

, where

a1, a2 = 20
(

5(3 +
√

5 )(16 +
√

5 )(9 + 4
√

5 ) ± 51
(1 +

√
5

2

)6
√

2(5 + 2
√

5 )
)

a3, a4 = 5
(

5
(1 +

√
5

2

)12

(22 − 3
√

5 ) ± 3
(1 +

√
5

2

)6
√

2(5 + 2
√

5 )
)

v(τ15) = − 1
5

(

1
2 (5 + 5

√
5) + 5

√
a1 + 5

√
a2 + 5

√
a3 + 5

√
a4

)

, where

a1, a2 = 125
4

(

5(25 + 13
√

5 ) ± 14

√

15
2 (25 + 11

√
5 )
)

a3, a4 = 125
4

(

5(15 + 7
√

5 ) ± 2

√

15
2 (25 + 11

√
5 )
)
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Samenvatting

Wiskundigen gebruiken computeralgebrapakketten om lastig rekenwerk voor hen
op te knappen. Kenmerkend voor deze pakketten is dat ze symbolisch kunnen
rekenen. Een getal als

√
2 wordt niet afgerond op een aantal decimalen, maar wordt

weergegeven als een symbool waarvan de computer weet dat het in het kwadraat
gelijk aan 2 is. Dit heeft het grote voordeel dat je exacte berekeningen kunt doen.
Helaas kleven hier bij berekeningen met wortels ook wel nadelen aan. Er zijn bij-
voorbeeld twee getallen die in het kwadraat 2 opleveren:

√
2 en −

√
2. Algebräısch

gezien zijn ze ononderscheidbaar, beide hebben minimumpolynoom x2 − 2. Wil je
toch specifiek voor een van deze getallen je berekening doen, dan zul je naast de sym-
bolische weergave ook een numerieke benadering bij moeten houden. Verder kan het
rekenen met wortels nodeloos ingewikkelde termen opleveren. Neem nu bijvoorbeeld
het getal

A =
3

√√
5 + 2 − 3

√√
5 − 2.

We bedoelen hier, zoals gebruikelijk, met
√

5 de positieve reële wortel uit het getal 5;
ook de twee derdemachtswortels geven hier de unieke reële derdemachtswortel uit de
getallen

√
5 ± 2 aan. Ook in de andere voorbeelden in deze samenvatting zullen we

alleen de positieve reële wortels uit positieve reële getallen beschouwen. Als je A
numeriek benadert lijkt het wel heel veel op het getal 1:

3

√√
5 + 2 − 3

√√
5 − 2 = 1.618033988 . . .− 0.618033988 . . . .

Met behulp van symbolisch rekenen kun je laten zien dat A een nulpunt is van het
polynoom x3 + 3x− 4, dat gelijk is aan (x− 1)(x2 + x+ 4). Het enige reële nulpunt
van dit polynoom is 1, dus geldt A = 1.

Graag zou je hebben dat de computer voor je controleert of de uitdrukking een-
voudiger geschreven kan worden. De eerste vraag die hierbij beantwoord moet
worden is wat je onder een zo eenvoudig mogelijke uitdrukking verstaat. In het
verleden hebben verschillende wiskundigen voorbeelden gegeven van gelijkheden van
worteluitdrukkingen ([1], [5], [20], [21], [28], [40]). Zo is de volgende gelijkheid van
Richard Zippel ([40]) afkomstig

6

√

7
3
√

20 − 19 = 3
√

5/3 − 3
√

2/3.

101



102

In de uitdrukking aan de rechterkant van het gelijkteken staan minder worteltekens
onder elkaar dan in de uitdrukking aan de linkerkant van het gelijkteken; we zullen
een worteluitdrukking eenvoudig noemen als er weinig worteltekens onder elkaar
staan. We definiëren de worteldiepte van een getal α als het minimum van dit
aantal onder elkaar staande worteltekens voor alle worteluitdrukkingen voor α. Zo

is dus de worteldiepte van het getal
6
√

7 3
√

20 − 19 gelijk aan 1: omdat 3
√

20 niet
rationaal is hebben we minstens 1 wortelteken nodig en hierboven zagen we al dat
je dit getal in een uitdrukking zonder geneste wortels weer kunt geven.

Susan Landau ([20]) gaf, gebruikmakend van Galoistheorie, een methode om een
worteluitdrukking W te berekenen voor een getal van worteldiepte r ∈ N, zodat
in W ten hoogste r + 1 worteltekens onder elkaar staan.

In specifieke gevallen kun je ook eenvoudige algoritmen geven die een uitdrukking
van minimale worteldiepte opleveren. Dit is wat we in het derde en vierde hoofdstuk
van dit proefschrift doen voor uitdrukkingen van worteldiepte 2 die uit een enkele
term bestaan.

Laat α en β gehele getallen zijn en definieer B =
√

3
√
α+ 3

√
β. In hoofdstuk 3

laten we, met behulp van de Galoisgroep van de normale afsluiting van Q(B) over Q,
zien dat B te vereenvoudigen is dan en slechts dan als 3

√
α + 3

√
β gelijk is aan het

produkt van een kwadraat in Q( 3
√
α, 3

√
β ) en een eenvoudige factor. Daarmee bewij-

zen we dat B te vereenvoudigen is dan en slechts dan als óf β/α een derdemacht is
óf er gehele getallen m en n zijn met

β

α
=

(4m+ n)n3

4(m− 2n)m3
.

Als zulke m en n bestaan geven we een formule die ons de vereenvoudiging geeft. Zo
vinden we voor m = n = 1 bijvoorbeeld

√

3
√

5 − 3
√

4 = 1
3 (

3
√

2 +
3
√

20 − 3
√

25 ).

Algemener definiëren we voor een lichaam K van karakteristiek 0 het lichaam van
alle getallen die met worteldiepte 1 over K geschreven kunnen worden:

K(1) = K({α ∈ K̄ met αn ∈ K zekere n ∈ Z>0}).

Laat L een deellichaam van K(1) zijn. We beschouwen elementen van de vorm n
√
δ,

met δ in L \K. We laten zien dat ook in dit geval n
√
δ ∈ K(1) impliceert dat δ een

n-de macht in L is vermenigvuldigd met een eenvoudige factor. Zo laten we ook zien

dat
3
√

1 +
√

2 geen element is van K(1): het element 1 +
√

2 is niet te schrijven als
een kwadraat in Q(

√
2 ) maal een eenvoudige factor.

Ook de gelijkheid van Zippel geldt omdat 7 3
√

20− 19 ‘bijna een zesde macht is in
het lichaam Q( 3

√
20 )’; er geldt

7
3
√

20 − 19 =
1

144

(

3
√

20 − 2
)6
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en we hebben

6

√

1

144

(

3
√

20 − 2
)

= 3
√

1/12
(

3
√

20 − 3
√

8
)

= 3
√

5/3 − 3
√

2/3.

Dit ‘bijna-n-de macht zijn van een worteluitdrukking’ is een voorwaarde voor
vereenvoudiging die intüıtief voor de hand ligt. We leiden deze af met behulp van
Galoistheorie voor radicaaluitbreidingen. In de eerste twee hoofdstukken van dit
proefschrift bestuderen we Galoisgroepen van dit soort uitbreidingen. Laat L over K
een lichaamsuitbreiding zijn voortgebracht door n-de machtswortels uit elementen
van K voor een zeker positief geheel getal n. Als het grondlichaam K een primitieve
n-de eenheidswortel bevat, dan heet de uitbreiding een Kummeruitbreiding. Zo is
bijvoorbeeld Q(

√
3,
√

5 ) een Kummeruitbreiding voor n = 2 omdat Q de primitieve
2-de eenheidswortel −1 bevat. Als we nu W definiëren als de multiplicatieve groep
〈Q∗,

√
3,
√

5〉, dan wordt elk tussenlichaam van Q(
√

3,
√

5 ) voortgebracht door een
ondergroep W ′ van W . De tussenlichamen van Q(

√
3,
√

5 ) zijn dus

Q, Q(
√

3 ), Q(
√

5 ), Q(
√

15 ) and Q(
√

3,
√

5 ).

In het algemene geval hebben we een grondlichaam K, met ζn ∈ K voor een
primitieve n-de eenheidswortel ζn. Het lichaam L is van de vorm K(α1, α2, . . .) voor
αi ∈ K̄ met αni ∈ K en W is 〈K∗, α1, α2, . . .〉. We leiden voor δ ∈ K af dat n

√
δ in L

is bevat dan en slechts dan als δ een element van W is.
We bepalen ook de Galoisgroep van uitbreidingen van de vorm

L = K({α ∈ K̄ met αn ∈ K voor zekere n ∈ I}),

waarbij I een deelverzameling is van Z>0 zodat ζn ∈ K voor alle n ∈ I.
Verder bestuderen we de situatie waar het grondlichaam de vereiste eenheids-

wortels uit Kummertheorie niet bevat. In dit geval schrijven we de Galoisgroep als
een semidirekt produkt van twee groepen, een ‘Kummerachtige’ groep en de Galois-
groep van de uitbreiding voortgebracht door de eenheidswortels uit de verzameling
{α ∈ K̄∗ : αn ∈ K voor zekere n ∈ I}.

Wanneer het grondlichaam de vereiste eenheidswortels niet bevat blijk je ook
tussenlichamen te kunnen krijgen die niet voortgebracht worden door een onder-
groep van de voortbrengende radicalen W . Laat bijvoorbeeld ζ7 een primitieve 7-de
eenheidswortel zijn. Het lichaam Q(ζ7) heeft twee niet-triviale tussenlichamen, die
geen van beide door een macht van ζ7 voortgebracht worden. Toch zijn er ook uit-
breidingen, zoals Q(α)/Q met α4 = −3, waarbij zo’n eenheidswortel niet in het
grondlichaam zit en toch alle deellichamen van de verwachte vorm zijn.

In het tweede hoofdstuk bestuderen we het eenvoudigste geval dat op kan treden:
we nemen K gelijk aan Q en beschouwen een uitbreiding voortgebracht door één
radicaal α. We karakteriseren de radicalen α waarvoor alle tussenlichamen van
Q(α) voortgebracht worden door een ondergroep van 〈Q∗, α〉.
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Tot nog toe hebben we het vooral gehad over het vereenvoudigen van worteluit-
drukkingen. Echter, het is ook goed mogelijk dat je een getal op een andere wijze
gegeven hebt en dat je bijvoorbeeld uit een stelling weet dat er een worteluitdrukking
voor gegeven kan worden. Een voorbeeld is dat je het getal gegeven hebt als nulpunt
van een oplosbare veelterm. In hoofdstuk 5 kijken we naar zo’n situatie. We bepalen
worteluitdrukkingen voor singuliere waarden van de Rogers-Ramanujan kettingbreuk

R(z) = q
1
5

∞
∏

n=1

(

1 − qn
)(n

5);

hierbij is z een element uit het complexe bovenhalfvlak, q is e2πiz en
(

n
5

)

is een
Legendre symbool. We bewijzen dat voor τ een voortbrenger van een orde in een ima-
ginair kwadratisch lichaam geldt dat R(τ) met een worteluitdrukking weergegeven
kan worden. We beschrijven een algemene methode om zo’n worteluitdrukking te
bepalen door weer de bijbehorende lichaamsuitbreiding en Galoisgroep uit te reke-
nen en deze te gebruiken om een worteluitdrukking te construeren. We geven zo’n
uitdrukking voor R(τn), met

τn =

{√−n indien n 6≡ 3 mod 4
5+

√
−n

2 indien n ≡ 3 mod 4

voor 1 ≤ n ≤ 16.
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