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Abstract
We identify a codimension-1 Lipschitz manifold of initial data leading to solutions for the cubic wave equation which re-

main t−
1
2+-close to the selfsimilar attractor

√
2/t and its Lorentz boosts. These global solutions thus exhibit a nondispersive

decay, contrary to small data evolutions that disperse to infinity.

Introduction

Solutions to the cubic focusing wave equation

(−∂2
t + ∆x)v(t, x) + v(t, x)3 = 0, x ∈ R3. (1)

with small initial data exist globally and scatter to zero. On the other hand, large data generically leads to
finite time blowup. The selfsimilar solution v0(t, x) =

√
2/t plays a special role, because it exists globally

for t ≥ 1 and decays in a nondispersive manner.

Main Objectives

1. reveal the role of the selfsimilar solution v0(t, x) =
√

2/t for the Cauchy problem of (1)

2. compare the asymptotic behavior to solutions with small initial data

Methods

The main difficulty arises from the fact that v0 has infinite energy. This problem can be avoided by studying
the Cauchy problem for (1) in hyperboloidal coordinates and by considering a suitable energy space which is
equivalent to H1 × L2(B3) as Banach space.

1 Hyperboloidal foliation

For T ∈ (−∞, 0) we consider spacelike hyperboloidal slices ΣT of the future light cone emanating from the
origin. Each slice ΣT is unbounded and parametrized by the Kelvin transform. Initial data are prescribed
on Σ−1.
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Figure 1: The hyperboloidal foliation (ΣT )T of the future light cone with initial hyperboloid Σ−1.

2 Modulation ansatz

Equation (1) is conformally invariant and we allow for hyperbolic rotations by considering the 3-parameter
family va := Λa(v0), a ∈ R3, generated by Lorentz boosts applied to v0. In similarity coordinates (τ, ξ)
equation (1) is equivalent to an evolution system

∂τΨ(τ ) = LΨ(τ ) + N(Ψ(τ )), (2)

where L is an linear operator and N is nonlinear. Static solutions Ψa correspond to va. We allow for the
rapidity a to depend on τ , with a∞ := limτ→∞ a(τ ) ∈ R3, and with the modulation ansatz

Ψ(τ ) = Ψa(τ ) + Φ(τ )

we arrive at an evolution equation for the perturbation term Φ:

∂τΦ(τ )− LΦ(τ )− L′a∞Φ(τ ) = [L′a(τ ) − L′a∞]Φ(τ ) + Na(τ )(Φ(τ ))− ∂τΨa(τ ). (3)

3 Spectral analysis for the linearized equation

The homogeneous problem of (3) is the linear equation ∂τΦ(τ ) = (L + L′a∞)Φ(τ ). For small |a∞|, the
compact perturbation L + L′a∞ of the operator L generates a strongly continuous 1-parameter semigroup

Sa∞(τ ) on H1 × L2(B3). Perturbation theory allows us to estimate the spectrum, i.e.,

σ(L + L′a∞) ⊆ {z ∈ C | <z < −1
2 + ε} ∪ {0, 1}.

Spectral projections Pa∞,j,Qa∞, P̃a∞ onto the 3- and 1-dimensional eigenspaces of 0 and 1 and the remaining
unbounded part of the spectrum, yield growth estimates for the linearized evolution:

Sa∞(τ )Pa∞,j = Pa∞,j,

Sa∞(τ )Qa∞ = eτQa∞,

‖Sa∞(τ )P̃a∞f‖ . e(−1
2+ε)τ‖P̃a∞f‖, f ∈ H1 × L2(B3).

4 Fixed point arguments for the full nonlinear equation

The right hand side is included by rewriting (3) as an integral equation for given initial value Φ(0) = u, i.e.,

Φ(τ ) = Sa∞(τ )u−
∫ τ

0
Sa∞(τ − σ)

[
(L′a − L′a∞)Φ(σ) + Na(σ)(Φ(σ))− ∂σΨa(σ)

]
dσ

=: Ku(Φ, a)(τ ).
(4)

All terms in the integrand become small and satisfy Lipschitz estimates with respect to Φ and the rapidity
a. By choosing a(τ ) in a suitable way we suppress the instability of Pa∞,j that arises from the Lorentz
symmetry of (1). To isolate the time-translation instability we add a correction term Cu(Φ, a) and first solve
the modified weak equation

Φ(τ ) = Ku(Φ, a)(τ )− Sa∞(τ )Cu(Φ, a) (5)

by contraction arguments. Solutions to (5) with vanishing correction term thus satisfy the original integral
equation (4). The condition Cu(Φ, a) = 0 defines a codimension-1 manifoldM of initial data.

Results

Theorem 1 (Codimension-1 initial data [2]). There exists a codimension-1 Lipschitz manifold M of
initial data in H1 × L2(Σ−1), with (0, 0) ∈M, for which the hyperboloidal initial value problem

(−∂2
t + ∆x)v(t, x) + v(t, x)3 = 0,

v|Σ−1 = v0|Σ−1 + f,

∇nv|Σ−1 = ∇nv0|Σ−1 + g,

with (f, g) ∈M, has a unique solution (in the Duhamel sense) v defined on the future development of
Σ−1. For a unique a ∈ R3 and Lorentz boost va = Λa(v0), and any δ ∈ (0, 1), we have

‖v − va‖L4(t,2t)L4(B(1−δ)t)
. t−

1
2+.

Proceeding along the same lines (without perturbations) yields a decay estimate for small data evolutions.

Theorem 2 (Small initial data [2]). There exists ε > 0 such that the initial value problem

(−∂2
t + ∆x)v(t, x) + v(t, x)3 = 0,

v|Σ−1 = f,

∇nv|Σ−1 = g.

for initial data (f, g) ∈ H1×L2(Σ−1) with ‖(f, g)‖ < ε has a unique global solution v (in the Duhamel
sense) which satisfies, for any δ ∈ (0, 1), the localized Strichartz norms

‖v‖L4(t,2t)L4(B(1−δ)t)
. t−

1
2.

Conclusions

• Solutions to small initial data exhibit dispersive decay (Theorem 2).

• The selfsimilar solution v0(t, x) =
√

2/t and its Lorentz boosts va have constant Strichartz norm, hence
the solutions described in Theorem 1 decay in a nondispersive manner.
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