Global hyperbolicity revisited

Annegret Burtscher (joint with Leonardo García Heveling)

Radboud University Nijmegen

Institute for Mathematics, Astrophysics and Particle Physics (IMAPP)

XI International Meeting on Lorentzian Geometry (GeLoMer) Mérida, Mexico – 30 January 2024

Why (still) talk about global hyperbolicity?

- beautiful and very rich concept
- new foundational results can still be obtained

Annegret Burtscher 2 / 28

Definition(s) of global hyperbolicity

Global hyperbolicity and general relativity

Global hyperbolicity and the null distance

Annegret Burtscher 3 / 28

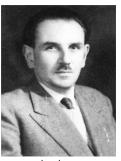
Analytic definition (1952)

Original definition

A spacetime (M, g) is globally hyperbolic if for any points $p, q \in M$ the space of all causal curves joining p and q is compact (in a suitable topology).

First applications:

- uniqueness of solutions to hyperbolic PDEs on a manifold
- Cauchy problem in general relativity



Jean Leray

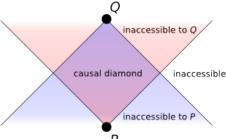
Annegret Burtscher 5 / 28

Geometric version

Modern definition

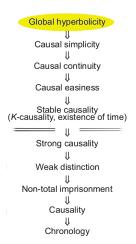
A spacetime (M, g) is **globally hyperbolic** if ...

- strongly causal + all causal diamonds are compact (e.g., Hawking–Ellis 1973)
- causal + all causal diamonds J⁺(p) ∩ J⁻(q) are compact (Bernal–Sánchez 2007)
- noncompact, dim $M \ge 3+$ all causal diamonds are compact (Hounnonkpe–Minguzzi 2019)



Annegret Burtscher P 6 / 28

Basic properties: as (causally) good as it gets



Annegret Burtscher 7 / 28

Basic properties: as long as it gets

Lorentzian distance

 $\begin{array}{l} \mathcal{A}_{\vee} \ \dots \ \text{class of piecewise smooth future-directed causal paths} \\ L_{g}(\gamma) \ := \ \int_{a}^{b} \sqrt{-g_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))} dt \ \dots \ \text{length of} \ \gamma \in \mathcal{A}_{\vee} \\ d_{g}(p,q) \ := \ \begin{cases} \sup\{L_{g}(\gamma) \,|\, \gamma \in \mathcal{A}_{\vee} \ \text{between} \ p \ \text{and} \ q\} & q \in J^{+}(p) \\ 0 & q \not\in J^{+}(p) \end{cases} \end{array}$

For globally hyperbolic spacetimes

- d_g is finite and continuous on $M \times M$
- \exists length-maximizing causal geodesic from p to $q \in J^+(p)$ (Avez 1963, Seifert 1967)

Annegret Burtscher 8 / 28

Importance of global hyperbolicity for GR

Global hyperbolicity is crucial for

• initial value formulation of the Einstein equations:

admissible initial data $(S, h, k) \Rightarrow \exists ! \text{ maximal GH solution } (M, g)$

• singularity theorems of Penrose and Hawking, e.g.,:

GH spacetime with trapping, $Ric \ge 0 \Rightarrow$ geodesically incomplete

• splitting theorems for spacetimes (Eschenburg, Galloway, ...)

Bartnik's splitting conjecture (1988)

GH spacetime with $Ric \geq 0$, geod. compl. $\Longrightarrow (\mathbb{R} \times \mathcal{S}, -d\tau^2 \oplus h)$

• cosmic censorship (no/unstable Cauchy horizons)

Annegret Burtscher 10 / 28

Importance of global hyperbolicity for GR

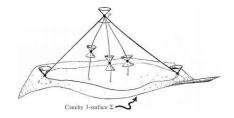
Why is global hyperbolicity relevant for these results?

- causal properties of $g \iff$ topology of M
- ullet allows globalization: local o global

How do we see and use the globalness of global hyperbolicity?

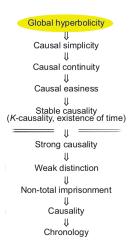
Characterization via

- Cauchy time functions
- Cauchy hypersurfaces
- null distance completeness



Annegret Burtscher 11 / 28

Cauchy time functions



Annegret Burtscher 12 / 28

Cauchy time functions

Global hyperbolicity Causal simplicity Causal continuity Causal easiness Stable causality

K-causality, existence of time) Strong causality Weak distinction Non-total imprisonment Causality Chronology

A function $\tau \colon M \to \mathbb{R}$ is

- **time function** if continuous and $p < q \Longrightarrow \tau(p) < \tau(q)$
- **temporal function** if smooth (or C^1) and $\nabla \tau$ is past-directed timelike

Theorem (Hawking, Bernal-Sánchez)

(M,g) stably causal $\iff \exists$ time/temporal function τ

- level sets $\tau^{-1}(\{s\})$ are acausal
- orthog. decomposition $g = -\alpha d\tilde{\tau}^2 + \bar{g}$ with $\alpha > 0$, \bar{g} positive semi-definite

Annegret Burtscher 13 / 28

Cauchy time functions

Global hyperbolicity Causal simplicity Causal continuity Causal easiness Stable causality (K-causality, existence of time) Strong causality Weak distinction Non-total imprisonment Causality Chronology

Theorem (Geroch 1970, Bernal–Sánchez 2005)

(M,g) globally hyperbolic \iff \exists Cauchy time/temporal function τ

- all level sets $\tau^{-1}(\{s\})$, $s \in \mathbb{R}$, are Cauchy surfaces
- smooth Cauchy splitting $(M,g) \cong (\mathbb{R} \times \mathcal{S}, -\alpha d\tau^2 + \bar{g}_{\tau})$

Annegret Burtscher 14 / 28

Recent extensions

Global hyperbolicity Causal simplicity Causal continuity Causal easiness Stable causality (K-causality, existence of time) Strong causality Weak distinction Non-total imprisonment Causality Chronology

Most of these results have been extended to lower regularity situations ...

- closed cone structures
 (Fathi–Siconolfi 2012, Bernard–Suhr 2018, Minguzzi 2019)
- C⁰ metrics (Sämann 2016, ...)
- Lorentzian length spaces
 (Kunzinger-Sämann 2018,
 Aké Hau-Cabrera Pacheco-Solis 2020,
 B.-García-Heveling 2021, ...)

... and spacetimes with timelike boundaries

• (Solis 2006, Aké–Flores–Sánchez 2021, ...)

Annegret Burtscher 15 / 28

Recent novel time function characterizations

Global hyperbolicity Causal simplicity Causal continuity Causal easiness Stable causality (K-causality, existence of time) Strong causality Weak distinction Non-total imprisonment Causality Chronology

Theorem (Bernard-Suhr 2018)

(M,g) globally hyperbolic \iff \exists completely uniform temporal fct. τ

 ∃ complete Riemannian metric h such that for all causal vectors v

$$d\tau(v) \ge ||v||_h$$

Theorem (B.-García-Heveling 2024)

(M,g) globally hyperbolic \iff \exists time function τ such that the corresp. **null distance** \hat{d}_{τ} is **complete** metric on M

Annegret Burtscher 16 / 28

Metric completeness

Theorem (B.-García-Heveling 2024)

(M,g) globally hyperbolic $\iff \exists$ complete null distance \hat{d}_{τ}

- Extends part of the Riemannian **Hopf–Rinow theorem**:
 - (Σ, σ) is geodesically complete (Σ, σ) is geodesically complete
 - \Leftrightarrow (Σ, d_{σ}) is metrically complete
 - \Leftrightarrow (Σ, d_{σ}) is proper (closed + bounded sets \Rightarrow compact)
- Theorem be extended to proper cone structures and "semi-Riemannian spacetimes" (B. 2023)

What is \hat{d}_{τ} ?

Annegret Burtscher 18 / 28

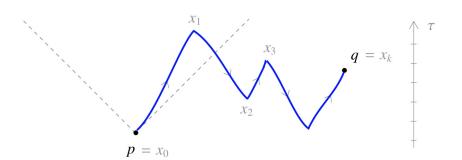
Null distance

Let (M,g) be a spacetime with time function τ .

Null distance (Sormani-Vega 2016)

 ${\cal B}$... class of piecewise causal paths

$$\hat{\mathcal{L}}_{\tau}(\beta) = \sum_{i=1}^{k} |\tau(\beta(s_i)) - \tau(\beta(s_{i-1}))| \dots \text{ null length of } \beta \in \mathcal{B}$$
$$\hat{\mathcal{d}}_{\tau}(p,q) = \inf\{\hat{\mathcal{L}}_{\tau}(\beta) \mid \beta \in \mathcal{B} \text{ from } p \text{ to } q\}$$



Annegret Burtscher 19 / 28

Basic properties of the null distance

- $\hat{d}_{ au}$ is symmetric
- \hat{d}_{τ} satisfies the \triangle -inequality
- \hat{d}_{τ} is <u>not</u> necessarily positive definite (e.g., $\tau(p) := t^3$ in Minkowski space is not)

Theorem (Sormani-Vega 2016)

For sufficiently nice (e.g., temporal, locally anti-Lipschitz) time functions τ the null distance \hat{d}_{τ} is a length **metric** on (M,g).

Annegret Burtscher 20 / 2

Basic properties of the null distance

Moreover, the null distance $\hat{d}_{ au}$

- induces the manifold topology
- is conformally invariant
- scales for $\lambda > 0$: $\hat{d}_{\tau} = \lambda \hat{d}_{\tilde{\tau}} \Longleftrightarrow \tau = \lambda \tilde{\tau} + C$
- is bounded on causal diamonds

Annegret Burtscher 21 / 2

How much does \widehat{d}_{τ} depend on au?

Quite similar to Riemannian situation:

- locally bi-Lipschitz for class of "weak temporal" functions (and on compact sets)
- globally there is quite some difference ...
 - ightharpoonup depends on causal properties of (M,g) (step on causal ladder)
 - depends on choice of time function τ (whether it reflects the step on the causal ladder)

Annegret Burtscher 22 / 28

When does the null distance encodes causality?

By definition also:
$$p \leq q \Longrightarrow \hat{d}_{ au}(p,q) = au(q) - au(p)$$

What about the converse? When is
$$p \leq q \iff \hat{d}_{\tau}(p,q) = \tau(q) - \tau(p)$$
 possible?

Initial results:

- + true for warped products $g = -dt^2 + f(t)^2 \sigma$ and $\tau(t, p) = \phi(t)$ with $\phi' > 0$ (Sormani-Vega 2016)
- incompleteness of \hat{d}_{τ} is an obstruction to \Leftarrow

Annegret Burtscher 23 / 28

When the null distance encodes causality

Locally always true:

Theorem (Sakovich–Sormani 2023)

If τ is **locally anti-Lipschitz** then locally around every $p \in M$ there is a neighborhood U such that for all $q \in U$:

$$p \le q \iff \hat{d}_{\tau}(p,q) = \tau(q) - \tau(p)$$

Globally only in special cases:

Theorem (B.-García-Heveling 2024)

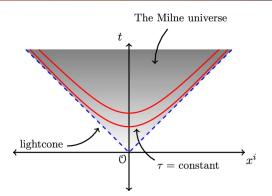
If (M,g) is globally hyperbolic and τ is locally anti-Lipschitz time function whose nonempty **level sets** are (future/past) Cauchy, then for all $p, q \in M$:

$$p < q \iff \hat{d}_{\tau}(p, q) = \tau(q) - \tau(p)$$

• (future/past) causally complete enough (Galloway 2023)

Annegret Burtscher 24 / 28

Application: cosmology



Definition (Andersson-Galloway-Howard 1998, Wald-Yip)

Cosmological time function: $\tau_c(p) = \sup d_g(J^-(p), p)$

- regular τ_c are locally anti-Lipschitz
- level sets of τ_c are future Cauchy
- \Rightarrow null distance \hat{d}_{τ_c} encodes causality globally

Annegret Burtscher 25 / 28

Characterization of global hyperbolicity

Have seen:

(M,g) globally hyperbolic $\Longrightarrow \exists$ globally well-behaved $\hat{d}_{ au}$

Now show also related:

Theorem (B.-García-Heveling 2024)

(M,g) globally hyperbolic $\iff \exists$ complete null distance \hat{d}_{τ}

Annegret Burtscher 26 / 28

Sketch of proof

(⇒) globally hyperbolic $\Longrightarrow \exists$ completely uniformly temporal τ (Bernard–Suhr 2018), i.e., complete Riemannian metric h s.t.

$$au(q) - au(p) = \int_0^1 \underbrace{d au(\dot{\gamma}(s))}_{\geq \|\dot{\gamma}(s)\|_h} ds \geq L_h(\gamma) \geq d_h(p,q)$$

- $\implies \hat{d}_{\tau}$ complete (Allen–B. 2022)
- (\Leftarrow) If $\hat{d}_{ au}$ complete and au not Cauchy
 - \implies \exists w.l.o.g. future-directed future-inext. causal curve γ with $\lim_{s\to\infty} \tau(\gamma(s)) < \infty$
 - \implies $((\tau \circ \gamma)(n))_n$ is Cauchy sequence in \mathbb{R} and $\hat{d}_{\tau}(\gamma(n),\gamma(m)) = |\tau(\gamma(m)) \tau(\gamma(n))|$
 - $\Longrightarrow (\gamma(n))_n$ Cauchy sequence in (M,\hat{d}_{τ}) , thus converges
 - $\Longrightarrow \gamma$ extendible, contradiction. Thus τ Cauchy.

Annegret Burtscher 27 / 28

Summary

Globally hyperbolic spacetimes

- in most cases compact causal diamonds enough to define
- characterization via Cauchy surface crucial for GR
- ullet characterized by \exists completely uniform time function au
- ullet characterized by \exists complete null distance $\hat{d}_{ au}$
- ullet also relevant for nice causal properties of $\hat{d}_{ au}$

Thank you for your attention!

Annegret Burtscher 28 / 28