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A large-scale model for our universe

Einstein’s key idea

force # gravitation = geometric property of space and time
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A large-scale model for our universe

Einstein’s key idea
force # gravitation = geometric property of space and time

(M, g) 4-dim. spacetime

= connected time-oriented
Lorentzian manifold

Einstein equations (1915)

G
Ric — 1Rg+Ag — 8”4 T
—_——— C

curvature

matter
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Important exact solutions

Minkowski
spacetime

g= —dt? + dx12 + dx22 + dx%

Annegret Burtscher

Schwarzschild
spacetime

g = —F(r)dt2 + f(r)fldr2 + ngSQ

‘The Milne universe

lightcone _ S\

: i
Ol T = constant b

FLRW spacetimes

g = —di? + a(t)?ox

with ¥ constant curvature 3-space
& 2nd order ODE for a
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Major achievements and problems in mathematical GR

® global geometry and analysis

® black holes

® two-body problem and gravitational waves

® connections to quantum theory
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Major achievements and problems in mathematical GR

® global geometry and analysis
» local and global well-posedness of initial value formulation
(Choquet-Bruhat, Geroch)
> positive mass theorem (Schoen—Yau, Witten) and Penrose
inequality (Huisken—limanen, Bray) for initial data sets
> global hyperbolicity splitting (Geroch, Bernal-Sanchez)
» Lorentzian splitting theorems (Eschenburg, Galloway, Bartnik)
¢ black holes

® two-body problem and gravitational waves

® connections to quantum theory
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Major achievements and problems in mathematical GR

® global geometry and analysis
» local and global well-posedness of initial value formulation
(Choquet-Bruhat, Geroch)
> positive mass theorem (Schoen—Yau, Witten) and Penrose
inequality (Huisken—limanen, Bray) for initial data sets
> global hyperbolicity splitting (Geroch, Bernal-Sanchez)
» Lorentzian splitting theorems (Eschenburg, Galloway, Bartnik)
¢ black holes
> singularity theorems (Penrose, Hawking)
» black hole formation from gravitational collapse (Christ.)
» uniqueness and stability (Dafermos et al, Hintz—Vasy)
» cosmic censorship conjectures (Penrose, Christodoulou)
® two-body problem and gravitational waves
> asymptotic structure at null infinity (Penrose)
> numerical relativity for predictions and analysis
® connections to quantum theory
> black hole thermodynamics (Beckenstein, Hawking et al)
» entropy generalizing energy conditions using optimal
transportion (McCann) and synthetic approaches to spacetimes
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Outline

Occurrences of Nonsmoothness in GR
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1. Realistic matter models are not smooth

Perfect fluids T"" = (p + p)utu” + pg"” are used in astrophysics

in models of stars and planets (fluid/gas balls) and clusters (dust)
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1. Realistic matter models are not smooth

Perfect fluids T"" = (p + p)utu” + pg"” are used in astrophysics

in models of stars and planets (fluid/gas balls) and clusters (dust)

® matter-vacuum boundaries ~~ e.g. g only Lipschitz

e formation of shock waves (grav. collapse) ~~ BV regularity
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2. Problems with large curvature and loss of predictability

curvature scalars blow up = g cannot be C? extended

Black hole interior

Big bang
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2. Problems with large curvature and loss of predictability

curvature scalars blow up = g cannot be C? extended

Black hole interior
® Schwarzschild is C%inextendible (Hawking, Sbierski 2018)

e generic black hole interiors are (not uniquely?) C%-extendible
beyond Cauchy horizon (Dafermos—Luk 2025) but likely
C2 L inextendible (Sbierski 2024+)

loc
Big bang
® C2.inextendibility for scalar fields (Fournodavlos et al 2023,
Oude Groeninger—Petersen—Ringstrom 2023+)
® closely related to stable big bang formation

® CO%(in)extendibility for FLRW etc. (Galloway—Ling 2017,
Sbierksi 2023+, Graf-van den Beld-Serrano 2024+ )
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3. Asymptotic behavior depends on regularity

Problem at future null infinity .7

regularity at .# " «~ decay of geometry
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Problem at future null infinity .7
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e assume 3 of smooth conformal compactifications (Penrose)
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3. Asymptotic behavior depends on regularity

Problem at future null infinity .#*
regularity at .# " «~ decay of geometry

e assume 3 of smooth conformal compactifications (Penrose)
~ "peeling” of Weyl tensor: along light rays, as s — oo,

W = W(N)S—l + W(III)S—Z + W(II)S—3 + W(I)S—4 + 0(5—5)

singularity =i0

time

Annegret Burtscher 9/33



3. Asymptotic behavior depends on regularity

Problem at future null infinity .#*
regularity at .# " «~ decay of geometry

e assume 3 of smooth conformal compactifications (Penrose)
~ "peeling” of Weyl tensor ~~ interpret grav. wave signals

singularity =0 it

time

Annegret Burtscher 9/33



3. Asymptotic behavior depends on regularity

Problem at future null infinity .#*

regularity at .# " «~ decay of geometry

e assume 3 of smooth conformal compactifications (Penrose)
~ "peeling” of Weyl tensor ~~ interpret grav. wave signals

® PDE theory: not achieved for physical systems! (observable)

singularity

time
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4. Problem of motion for massive particles

Massless "test” particles
® move along geodesics in background spacetime

® approximate motions for extreme 2-body systems (sun—earth)

A massive object
* curves space

Lighi object moving
on a geodesic

Annegret Burtscher 10 / 33



4. Problem of motion for massive particles

Massless "test” particles
® move along geodesics in background spacetime
® approximate motions for extreme 2-body systems (sun—earth)

® not suitable for general 2-body systems (black holes colliding)

Annegret Burtscher 10 / 33



4. Problem of motion for massive particles

Massless "test” particles
® move along in background spacetime
® approximate motions for extreme 2-body systems (sun—earth)
® not suitable for general 2-body systems (black holes colliding)

Massive particles
® heavily interact with and change spacetime geometry

® carly approaches to describe all matter by é's and use second
Bianchi identity 0 = VG = VT to model motion
(Einstein—Infeld-Hoffmann 1940s) ~~ leads to inconsistencies

® new approach uses singular timelike boundaries of zero area
with mpry < 0 (B.-Kiessling=Tahvildar-Zadeh 2021)

singular int. boundaries = g does not extend (smoothly) to M

Annegret Burtscher
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Outline

Lorentzian Approaches to Nonsmoothness
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Treshold regularity and below

Problem for g below C1

geodesics are badly behaved (e.g., already locally nonunique)

BUT causality theory ok for g € Cl?)’c1 (Chruséiel-Grant, Minguzzi)
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Treshold regularity and below

Problem for g below C1

geodesics are badly behaved (e.g., already locally nonunique)

BUT causality theory ok for g € Cl?)’c1 (Chruséiel-Grant, Minguzzi)

Different approaches for nonsmooth g

® sequences of smooth g, — g, possibly in combination with
uniform sectional /Ricci curvature bounds

e distributional curvature used for proving singularity
theorems for g € C! (Graf 2020) and below

® metric (measure) spacetimes based on interaction of
causality + topology, together with a distance (and measure)
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Notions of metric spacetimes

All synthetic approaches have in common

instead of Lorentzian manifold (M, g) work with:
causality (< and <), topology on X, distance(s) d (and curves)

Annegret Burtscher 13 / 33



Notions of metric spacetimes

All synthetic approaches have in common

instead of Lorentzian manifold (M, g) work with:
causality (< and <), topology on X, distance(s) d (and curves)

We zoom closer into two of the last approaches based on d being
© the Lorentzian distance d,
® the null distance d,

and recall their origin, properties and future
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Notions of metric spacetimes

All synthetic approaches have in common

instead of Lorentzian manifold (M, g) work with:
causality (< and <), topology on X, distance(s) d (and curves)

We zoom closer into two of the last approaches based on d being
© the Lorentzian distance d,
@ the null distance d,

and recall their origin, properties and future
NOT covered in this talk: actual synthetic reformulation

But first: recap of causality theory...
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Recap: Causal character

Let (M, g) be a Lorentzian manifold (without boundary),
convention (— 4 ---+).

Theorem (Poincaré, Hopf 1926 & Markus 1955)
3 Lorentzian g <= M noncompact or compact with x(M) =0
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Recap: Causal character

Let (M, g) be a Lorentzian manifold (without boundary),
convention (— 4 ---+).

Theorem (Poincaré, Hopf 1926 & Markus 1955)
3 Lorentzian g <= M noncompact or compact with x(M) =0

timelike . A tangent vector v € T,M is called

¢ timelike if g(v,v) <0,

spacelike if g(v,v) >0or v =0,
lightlike if g(v,v) =0 and v # 0,
null if g(v,v) =0,

causal if timelike or lightlike.
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Recap: Causal relations on spacetimes

Can distinguish past and future globally if 37 € X(M) timelike.

spacetime = time-oriented Lorentzian manifold (M, g,[T])

Annegret Burtscher 15 / 33



Recap: Causal relations on spacetimes

Can distinguish past and future globally if 37 € X(M) timelike.

spacetime = time-oriented Lorentzian manifold (M, g,[T])

: A Then can define v € T,M
future-directed if g(v, T) <0, and

® timelike relation p < ¢
if 3 future-directed timelike curve
from p to g

® causal relation p < g
if 3 future-directed causal curve

fromptog(p<qg)orp=gq

Annegret Burtscher 15 / 33



Recap: Global hyperbolicity

Global hyperbolicity

Causal simplicity

U

Causal continuity

U

Causal easiness

(M, g) causal if < is antisymmetric

Stable causality
(K-causality, existence of time)

U

Strong causality

U

Weak distinction

Non-total imprisonment
Causality

U
Chronology
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Recap: Global hyperbolicity

Global hyperbolicity

Causal simplicity (M, g) globally hyperbolic if causal and
U {p < x < g} compact for all p,g € M

Causal continuity

U

Causal easiness

Stable causality
(K-causality, existence of time)

U

Strong causality

U

Weak distinction

Non-total imprisonment
Causality

U
Chronology

Annegret Burtscher 16 / 33



Recap: Global hyperbolicity

Global hyperbolicity

Causal simplicity (M, g) globally hyperbolic if causal and
U {p < x < g} compact for all p,g € M

Causal continuity

U

Causal easiness

Stable causality
(K-causality, existence of time)

U

Strong causality

U

Weak distinction

Vo < 3 Cauchy time function 7: M — R
Non-total imprisonment

< 3 Cauchy surface in M
Causality

U
Chronology
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Distances: ingredients needed for constructing d, and d.

@ a class of curves
® a length functional
® a sup orinf

O "good" properties and theorems
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Definition of the Lorentzian distance

Let (M, g) be a spacetime.

Lorentzian distance

Ay ... class of piecewise smooth future-directed causal paths
b : .
Lg(v) = J! \/—gv(t)('y(t),’y(t))dt ... length of 7 € Ay

sup{Lg(y) |7 € Ay between pand q} p<gq
ds(p. q) := {0 ) ’ nZa
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Definition of the Lorentzian distance

Let (M, g) be a spacetime.

Lorentzian distance

Ay ... class of piecewise smooth future-directed causal paths
b : .
Lg(v) = J! \/—gv(t)('y(t),’y(t))dt ... length of v € Ay

sup{Lg(v) |7 € Ay between pand q} p<gq
(p.) :={ thetlve A }

0 p%q

Other notations and conventions used:
® d, = 7 and called time sep. function in (Kunzinger-Sdmann 2018)

® d, = (" with {(p, q) = —oc0 if p £ g (McCann 2020, ...)
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Properties of the Lorentzian distance

® dy: M x M —[0,+o0]

® dg(p,p) =0 or dg(p, p) = +o0

® dg(p,q) = 400 Vp,q <= M is totally viscious

* reverse A-ineq. for p < r < q: dg(p, q) > dg(p, r) + dg(r, q)
® d, is lower semicontinuous

® dg(p,q) >0+=p<gq

Annegret Burtscher 19 / 33



Special properties for more special (M, g)

Global hyperbolicity

Causal simplicity

U

Causal continuity
U

Causal easiness

U

Stable causality
(K-causality, existence of time)

U

Strong causality

U
(WeaK)distinction

Non-total imprisonment
Causality

Chronology
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Special properties for more special (M, g)

For distinguishing spacetimes

D strongly causal spacetimes

D globally hyperbolic spacetimes
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Special properties for more special (M, g)

For distinguishing spacetimes
e future/past “balls” BZ(p) form subbasis for manifold topology
® d, continuous = (M, g) causally continuous

D strongly causal spacetimes

® d, is locally finite, and continuous in a neighborhood of AM
(Beem—Ehrlich 1979)

D globally hyperbolic spacetimes

® d, is finite and continuous on M x M
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e future/past “balls” BZ(p) form subbasis for manifold topology
® d, continuous = (M, g) causally continuous

D strongly causal spacetimes
® d, is locally finite, and continuous in a neighborhood of AM
(Beem—Ehrlich 1979)
* ©: (M,g) — (M, g) distance homothetic/preserving
= smooth homothety/isometry ©*g = cg (Beem 1978)

D globally hyperbolic spacetimes
® d, is finite and continuous on M x M

® 7 length-maximizing causal geodesic from p to q € J™(p)
(Avez 1963, Seifert 1967)
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Special properties for more special (M, g)

For distinguishing spacetimes
e future/past “balls” BZ(p) form subbasis for manifold topology
® d, continuous = (M, g) causally continuous

D strongly causal spacetimes
® d, is locally finite, and continuous in a neighborhood of AM
(Beem—Ehrlich 1979)
* ©: (M,g) — (M, g) distance homothetic/preserving
= smooth homothety/isometry ©*g = cg (Beem 1978)

D globally hyperbolic spacetimes
® d, is finite and continuous on M x M

® 7 length-maximizing causal geodesic from p to q € J™(p)
(Avez 1963, Seifert 1967)

® (M, dg) timelike Cauchy complete < (M, dg) finitely compact
(Beem 1976)
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Overview of properties d,

Lorentzian distance dg

»
metric

finite & continuous == if glob. hyp.
Hopf—Rinow type result 1 if glob. hyp.
good with lengths and g |‘

good with lower curvature bounds |‘ sectional
I‘ Ricci

For synthetic d; framework, see work of Alexander, Beran, Braun, B.,
Calisti, Cavalletti, Ebrahimi, Garcia-Heveling, Gigli, Graf, Grant, Ketterer,
Kunzinger, McCann, Minguzzi, Mondino, Ohanyan, Rott, Samann, Solis,
Soultanis, Steinbauer, Suhr ...
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Recap: time and functions

(M, g) stably causal if (unique) smallest

Global hyperbolicity transitive closed relation containing < is

U . .
Causal simplicity antisymmetric
U
Causal continuity < 3 time function 7: M — R
U (Hawking 1968, Minguzzi 2009)

Causal easiness

Stable causality
(K-causality, existence of time)

U

Strong causality

U

Weak distinction

Non-total imprisonment

Causality

U
Chronology
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Recap: time functions

A function 7: M = R is

e isotone/causal function if p < g = 7(p) < 7(q)
(eg, 7T=1lorT=0)

e time function if continuous and p < g = 7(p) < 7(q)
(3 < (M, g) stably causal; Hawking 1968, Minguzzi 2009)
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Recap: time functions

A function 7: M — R is

e isotone/causal function if p < g = 7(p) < 7(q)
(eg, 7T=1lorT=0)

e time function if continuous and p < g = 7(p) < 7(q)
(3 < (M, g) stably causal; Hawking 1968, Minguzzi 2009)

O temporal function if C! and V7 past-directed timelike
(3 < (M, g) stably causal; Bernal-Sanchez 2005;
weak version: causal locally Lipschitzi, B.—G.-H. 2024)

Remember also: time C isotone

Annegret Burtscher
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Recap: time functions

A function 7: M — R is

2

U

U

isotone/causal function if p < g = 7(p) < 7(q)
(eg, 7T=1lorT=0)

rushing function if p < g = 7(q) — 7(p) > dg(p, q)
(3 = dj finite)

time function if continuous and p < ¢ = 7(p) < 7(q)
(3 < (M, g) stably causal; Hawking 1968, Minguzzi 2009)

temporal function if C' and V7 past-directed timelike

(3 < (M, g) stably causal; Bernal-Sanchez 2005;

weak version: causal locally Lipschitzi, B.—G.-H. 2024)
steep function if C! and g(Vr,V7) < -1

(3 <= (M, g) < LN*1 isometrically; Miiller-Sanchez 2011)

Remember also: time C isotone, steep C rushing
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Definition of the null distance

Let (M, g) be a spacetime

Null distance (Sormani-Vega 2016)

B ... class of piecewise causal paths
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Definition of the null distance
Let (M, g) be a spacetime with time function 7.

Null distance (Sormani-Vega 2016)

B ... class of piecewise causal paths
L(8) =S4 17(B(s1)) — 7(B(si-1))| - .. null length of 8 € B
d (p,q) =inf{L.(B)| B € B from p to q}

X1

Annegret Burtscher 25 /33



Properties of the null distance

>

e d; is finite (and bounded on causal diamonds)

>

° is conformally invariant and scales with 7

>

® d, is symmetric

>

® d, satisfies the A-inequality

>

® d, is not necessarily positive definite (e.g., 7 = t3 in LN*1)
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e d; is finite (and bounded on causal diamonds)

>

° is conformally invariant and scales with

>

® d, is symmetric

>

® d, satisfies the A-inequality

e d, is not necessarily positive definite (e.g., 7 = t3 in LN*1)
Theorem (Sormani-Vega 2016 )
T nice (e.g., weak temporal) time function
= d: is metric that induces manifold topology

Annegret Burtscher 26 / 33



Properties of the null distance

e d; is finite (and bounded on causal diamonds)

° is conformally invariant and scales with

® d, is symmetric

® d, satisfies the A-inequality

® d, is not necessarily positive definite (e.g., 7 = t3 in LN*1)

Theorem (Sormani-Vega 2016, Allen-B. 2022)

T nice (e.g., weak temporal) time function
= d; is length metric that induces manifold topology

Annegret Burtscher 26 / 33



When does the null distance encodes causality?

By definition also: p < g = d,(p, q) = 7(q) — 7(p)

Annegret Burtscher 27 / 33



When does the null distance encodes causality?

By definition also: p < g = C7¢(P7 q) =7(q) — 7(p)

What about the converse?
When is p < g <= d;(p,q) = 7(q) — 7(p) possible?

® |ocally always true for locally anti-Lipschitz time functions
(Sakovich-Sormani 2023)

e globally only if (M, g) globally hyperbolic and
(B.—Garcia-Heveling 2024)

» all nonemtpy 7-level sets future/past Cauchy
» & all future/past causally complete (Galloway 2024)

Annegret Burtscher 27 / 33



Application: cosmology

The Milne universe

~
A Y
_ lightcone -/ N

RIERY n5

T = constant

Definition (Andersson—Galloway—Howard 1998, Wald-Yip)

Cosmological time function: 7c(p) = sup dg(J~(p), p)

® regular 7. are locally anti-Lipschitz
® level sets of 7. are future Cauchy
= null distance d. encodes causality globally (B.—G.-H. 2024)

Annegret Burtscher 28 /33



How much does d. depend on 77

Similar to Riemannian situation (B. 2015; Hopf—Rinow 1939):

¢ locally bi-Lipschitz for class of weak temporal functions

® globally there is quite some difference ...
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How much does d depend on 77

Similar to Riemannian situation (B. 2015; Hopf—Rinow 1939):

¢ locally bi-Lipschitz for class of weak temporal functions

Theorem (B.—Garcia-Heveling 2024)

(M,g,7) and (M, g,7) spacetimes, K compact
—>3C > 1Vp,q € K : £d:(p,q) < dz(p, q) < Cd-(p, q)

Proof idea: use (M, g) conformal to spacetime with steep
temporal function, Wick rotation, and (B. 2015)

® globally there is quite some difference ...
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How much does d depend on 77

Similar to Riemannian situation (B. 2015; Hopf—Rinow 1939):

¢ locally bi-Lipschitz for class of weak temporal functions

Theorem (B.—Garcia-Heveling 2024)

(M,g,7) and (M, g,7) spacetimes, K compact
—>3C > 1Vp,q € K : £d:(p,q) < dz(p, q) < Cd-(p, q)

Proof idea: use (M, g) conformal to spacetime with steep
temporal function, Wick rotation, and (B. 2015)

® globally there is quite some difference ...

Theorem (B.—Garcia-Heveling 2024)
37 such that (M, c?T) complete <= (M, g) globally hyperbolic
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Sketch of proof

(=) globally hyperbolic = 3 completely uniformly temporal 7
(Bernard-Suhr 2018), i.e., complete Riemannian metric h s.t.

1
(q) — 7(p) = /0 dr(3(s)) ds > Ly(7) > du(p, q)

>[5l
— d, complete (Allen-B. 2022)

(<) If d- complete and 7 not Cauchy
—> J w.l.o.g. future-directed future-inext. causal curve v
with lims_ 7(7(s)) < o0
= ((7 ©¥)(n))x is Cauchy sequence in R and

d:(v(n),v(m)) = |7(v(m)) = 7(3(n))|

= (v(n))n Cauchy sequence in (M, d;), thus converges
— v extendible, contradiction. Thus 7 Cauchy. O

Annegret Burtscher 30 /33



Summary: comparison

A

d.

metric

i

finite & continuous

i

Hopf-Rinow type result

s s 8

il

good with lengths and g

i

ﬁ

good with lower curvature bounds

l‘ sectional
l‘ Ricci

a

7

For synthetic (:77. framework, see work of Allen, Burgos, B., Ebrahimi,
Flores, Galloway, Garcia-Heveling, Kunzinger, Sakovich, Sanchez,

Sormani, Steinbauer, Vega ...

Annegret Burtscher
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Largely open: connections between d, and d,

When does a sensible d, (and 7) exist in a dg-synthetic theory?

Potential connections to explore:

® rushing functions p < g = 7(q) — 7(p) > dg(p, q)
(Rennie-Whale 2016, Minguzzi 2019, ...)

® cosmological time function 7c(p) = sup dg(J~(p), p)
(Andersson—Galloway—Howard 1998, Wald-Yip 1981, ...)

® cosmological volume function 7,(p) = volg(/~(p))
(Garcia-Heveling 2024)

® global hyperbolicity
® closed cone structures (M, C) with nonempty open I+ & d,

Annegret Burtscher
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Outlook: apply metric perspective in General Relativity
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Outlook: apply metric perspective in General Relativity

® can adapt tools from metric (measure) geometry originally
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® can adapt tools from metric (measure) geometry originally
deceived in a Euclidean/Riemannian context, including

> generalized notions of sectional /Ricci curvature (bounds)

® important in general relativity because lower Ricci curvature
bounds are linked to energy conditions and entropy
(McCann 2020) and used in singularity theorems
(Cavalletti-Mondino 2024), splitting results (Braun et al
2025), Hawking area theorem (Ketterer 2025) etc.

® (smooth) optimal transport formulation of Einstein eq.
(Mondino—Suhr 2023); 3 nonsmooth variational approach?
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Outlook: apply metric perspective in General Relativity

® can adapt tools from metric (measure) geometry originally
deceived in a Euclidean/Riemannian context, including

> generalized notions of sectional /Ricci curvature (bounds)
> comparison of spaces via (generalized) GH-distance etc.
® important in general relativity because lower Ricci curvature
bounds are linked to energy conditions and entropy
(McCann 2020) and used in singularity theorems
(Cavalletti-Mondino 2024), splitting results (Braun et al
2025), Hawking area theorem (Ketterer 2025) etc.

® (smooth) optimal transport formulation of Einstein eq.
(Mondino—Suhr 2023); 3 nonsmooth variational approach?

® wider approach to study convergence and stability of
certain classes of spacetimes (Allen-B. 2022, Minguzzi—Suhr
2024, Sakovich-Sormani 2024+, Braun—-Samann 2025+ )
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Outlook: apply metric perspective in General Relativity

can adapt tools from metric (measure) geometry originally
deceived in a Euclidean/Riemannian context, including

> generalized notions of sectional /Ricci curvature (bounds)

> comparison of spaces via (generalized) GH-distance etc.
important in general relativity because lower Ricci curvature
bounds are linked to energy conditions and entropy
(McCann 2020) and used in singularity theorems
(Cavalletti-Mondino 2024), splitting results (Braun et al
2025), Hawking area theorem (Ketterer 2025) etc.

(smooth) optimal transport formulation of Einstein eq.
(Mondino—Suhr 2023); 3 nonsmooth variational approach?
wider approach to study convergence and stability of

certain classes of spacetimes (Allen-B. 2022, Minguzzi—Suhr
2024, Sakovich-Sormani 2024+, Braun—-Samann 2025+ )

potential further applications: connections to quantum
gravity, simplifications in numerical relativity?
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