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A large-scale model for our universe

Einstein’s key idea

force ̸= gravitation = geometric property of space and time

(M , g) 4-dim. spacetime
= connected time-oriented

Lorentzian manifold

Einstein equations (1915)

Ric− 1
2
R g︸ ︷︷ ︸

curvature

+Λg =
8πG

c4
T︸ ︷︷ ︸

matter
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Important exact solutions

Minkowski
spacetime

g = −dt2 + dx21 + dx22 + dx23

Schwarzschild
spacetime

g = −f (r)dt2 + f (r)−1dr2 + r2gS2

with f (r) = 1 − 2m
r

FLRW spacetimes

g = −dt2 + a(t)2σΣ

with Σ constant curvature 3-space
& 2nd order ODE for a
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Major achievements and problems in mathematical GR

• global geometry and analysis

▶ local and global well-posedness of initial value formulation
(Choquet-Bruhat, Geroch)

▶ positive mass theorem (Schoen–Yau, Witten) and Penrose
inequality (Huisken–Ilmanen, Bray) for initial data sets

▶ global hyperbolicity splitting (Geroch, Bernal–Sánchez)
▶ Lorentzian splitting theorems (Eschenburg, Galloway, Bartnik)

• black holes

▶ singularity theorems (Penrose, Hawking)
▶ black hole formation from gravitational collapse (Christ.)
▶ uniqueness and stability (Dafermos et al, Hintz–Vasy)
▶ cosmic censorship conjectures (Penrose, Christodoulou)

• two-body problem and gravitational waves

▶ asymptotic structure at null infinity (Penrose)
▶ numerical relativity for predictions and analysis

• connections to quantum theory

▶ black hole thermodynamics (Beckenstein, Hawking et al)
▶ entropy generalizing energy conditions using optimal

transportion (McCann) and synthetic approaches to spacetimes
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1. Realistic matter models are not smooth

Perfect fluids Tµν = (ρ+ p)uµuν + pgµν are used in astrophysics

in models of stars and planets (fluid/gas balls) and clusters (dust)

• matter-vacuum boundaries ⇝ e.g. g only Lipschitz

• formation of shock waves (grav. collapse) ⇝ BV regularity
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2. Problems with large curvature and loss of predictability

curvature scalars blow up ⇒ g cannot be C 2 extended

Black hole interior

• Schwarzschild is C 0-inextendible (Hawking, Sbierski 2018)

• generic black hole interiors are (not uniquely?) C 0-extendible
beyond Cauchy horizon (Dafermos–Luk 2025) but likely
C 0,1
loc -inextendible (Sbierski 2024+)

Big bang

• C 2-inextendibility for scalar fields (Fournodavlos et al 2023,
Oude Groeninger–Petersen–Ringström 2023+)

• closely related to stable big bang formation

• C 0-(in)extendibility for FLRW etc. (Galloway–Ling 2017,
Sbierksi 2023+, Graf–van den Beld-Serrano 2024+)
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3. Asymptotic behavior depends on regularity

Annegret Burtscher 9 / 33

Problem at future null infinity I +

regularity at I + ↭ decay of geometry

• assume ∃ of smooth conformal compactifications (Penrose)

⇝ ”peeling” of Weyl tensor ⇝ interpret grav. wave signals

• PDE theory: not achieved for physical systems! (observable)

timex
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Problem at future null infinity I +

regularity at I + ↭ decay of geometry

• assume ∃ of smooth conformal compactifications (Penrose)
⇝ ”peeling” of Weyl tensor: along light rays, as s → ∞,

W = W (N)s−1 +W (III )s−2 +W (II )s−3 +W (I )s−4 + O(s−5)

⇝ interpret grav. wave signals

• PDE theory: not achieved for physical systems! (observable)

timex
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4. Problem of motion for massive particles

Annegret Burtscher 10 / 33

Massless ”test” particles

• move along geodesics in background spacetime

• approximate motions for extreme 2-body systems (sun–earth)

• not suitable for general 2-body systems (black holes colliding)

Massive particles

• heavily interact with and change spacetime geometry

• early approaches to describe all matter by δ’s and use second
Bianchi identity 0 = ∇G = ∇T to model motion
(Einstein–Infeld–Hoffmann 1940s) ⇝ leads to inconsistencies

• new approach uses singular timelike boundaries of zero area
with mBray < 0 (B.–Kiessling–Tahvildar-Zadeh 2021)

singular int. boundaries ⇒ g does not extend (smoothly) to ∂M
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Treshold regularity and below

Problem for g below C 1,1

geodesics are badly behaved (e.g., already locally nonunique)

BUT causality theory ok for g ∈ C 0,1
loc (Chrusćiel–Grant, Minguzzi)

Different approaches for nonsmooth g

• sequences of smooth gn → g, possibly in combination with
uniform sectional/Ricci curvature bounds

• distributional curvature used for proving singularity
theorems for g ∈ C 1 (Graf 2020) and below

• metric (measure) spacetimes based on interaction of
causality + topology, together with a distance (and measure)
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Notions of metric spacetimes

All synthetic approaches have in common

instead of Lorentzian manifold (M, g) work with:
causality (≤ and ≪), topology on X , distance(s) d (and curves)

We zoom closer into two of the last approaches based on d being

1 the Lorentzian distance dg

2 the null distance d̂τ

and recall their origin, properties and future

NOT covered in this talk: actual synthetic reformulation

But first: recap of causality theory...
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Recap: Causal character

Let (M, g) be a Lorentzian manifold (without boundary),
convention (−+ · · ·+).

Theorem (Poincaré, Hopf 1926 & Markus 1955)

∃ Lorentzian g ⇐⇒ M noncompact or compact with χ(M) = 0

A tangent vector v ∈ TpM is called

• timelike if g(v , v) < 0,

• spacelike if g(v , v) > 0 or v = 0,

• lightlike if g(v , v) = 0 and v ̸= 0,

• null if g(v , v) = 0,

• causal if timelike or lightlike.
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Recap: Causal relations on spacetimes

Can distinguish past and future globally if ∃T ∈ X(M) timelike.

Definition

spacetime = time-oriented Lorentzian manifold (M, g, [T ])

Then can define v ∈ TpM
future-directed if g(v ,T ) < 0, and

• timelike relation p ≪ q
if ∃ future-directed timelike curve
from p to q

• causal relation p ≤ q
if ∃ future-directed causal curve
from p to q (p < q) or p = q
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Recap: Global hyperbolicity

(M, g) causal if ≤ is antisymmetric
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Recap: Global hyperbolicity

(M, g) globally hyperbolic if causal and
{p ≤ x ≤ q} compact for all p, q ∈ M

⇔ ∃ Cauchy time function τ : M → R
⇔ ∃ Cauchy surface in M
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Distances: ingredients needed for constructing dg and d̂τ

1 a class of curves

2 a length functional

3 a sup or inf

4 ”good” properties and theorems

Annegret Burtscher 17 / 33



Definition of the Lorentzian distance

Let (M, g) be a spacetime.

Lorentzian distance

A∨ . . . class of piecewise smooth future-directed causal paths

Lg (γ) :=
∫ b
a

√
−gγ(t)(γ̇(t), γ̇(t))dt . . . length of γ ∈ A∨

dg (p, q) :=

{
sup{Lg (γ) | γ ∈ A∨ between p and q} p ≤ q

0 p ̸≤ q

Other notations and conventions used:

• dg = τ and called time sep. function in (Kunzinger–Sämann 2018)

• dg = ℓ+ with ℓ(p, q) = −∞ if p ̸≤ q (McCann 2020, . . . )
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Properties of the Lorentzian distance

• dg : M ×M → [0,+∞]

• dg (p, p) = 0 or dg (p, p) = +∞
• dg (p, q) = +∞ ∀p, q ⇐⇒ M is totally viscious

• reverse △-ineq. for p ≤ r ≤ q: dg (p, q) ≥ dg (p, r) + dg (r , q)

• dg is lower semicontinuous

• dg (p, q) > 0 ⇐⇒ p ≪ q

Annegret Burtscher 19 / 33



Special properties for more special (M , g)
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Special properties for more special (M , g)

For distinguishing spacetimes

• future/past “balls” B±
ε (p) form subbasis for manifold topology

• dg continuous ⇒ (M, g) causally continuous

⊇ strongly causal spacetimes

• dg is locally finite, and continuous in a neighborhood of △M
(Beem–Ehrlich 1979)

• φ : (M, g) → (M̃, g̃) distance homothetic/preserving
⇒ smooth homothety/isometry φ∗g̃ = cg (Beem 1978)

⊇ globally hyperbolic spacetimes

• dg is finite and continuous on M ×M

• ∃ length-maximizing causal geodesic from p to q ∈ J+(p)
(Avez 1963, Seifert 1967)

• (M, dg ) timelike Cauchy complete ⇔ (M, dg ) finitely compact
(Beem 1976)
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Overview of properties dg

Lorentzian distance dg

metric

finite & continuous if glob. hyp.

Hopf–Rinow type result if glob. hyp.

good with lengths and g

good with lower curvature bounds sectional

Ricci

For synthetic dg framework, see work of Alexander, Beran, Braun, B.,
Calisti, Cavalletti, Ebrahimi, Garćıa-Heveling, Gigli, Graf, Grant, Ketterer,
Kunzinger, McCann, Minguzzi, Mondino, Ohanyan, Rott, Sämann, Solis,
Soultanis, Steinbauer, Suhr . . .
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Recap: time and functions

(M, g) stably causal if (unique) smallest
transitive closed relation containing ≤ is
antisymmetric

⇔ ∃ time function τ : M → R
(Hawking 1968, Minguzzi 2009)
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Recap: time functions

A function τ : M → R is

• isotone/causal function if p ≤ q ⇒ τ(p) ≤ τ(q)
(e.g., τ ≡ 1 or τ ≡ 0)

⊇ rushing function if p ≪ q ⇒ τ(q)− τ(p) ≥ dg (p, q)
(∃ =⇒ dg finite)

• time function if continuous and p < q ⇒ τ(p) < τ(q)

(∃ ⇐⇒ (M, g) stably causal; Hawking 1968, Minguzzi 2009)

⊇ temporal function if C 1 and ∇τ past-directed timelike
(∃ ⇔ (M, g) stably causal; Bernal–Sánchez 2005;
weak version: causal locally Lipschitz±, B.–G.-H. 2024)

⊇ steep function if C 1 and g(∇τ,∇τ) ≤ −1
(∃ ⇐⇒ (M, g) ↪→ LN+1 isometrically; Müller–Sanchez 2011)

Remember also: time ⊆ isotone, steep ⊆ rushing
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⊇ steep function if C 1 and g(∇τ,∇τ) ≤ −1
(∃ ⇐⇒ (M, g) ↪→ LN+1 isometrically; Müller–Sanchez 2011)

Remember also: time ⊆ isotone

, steep ⊆ rushing
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Recap: time functions
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Definition of the null distance

Let (M, g) be a spacetime

with time function τ .

Null distance (Sormani–Vega 2016)

B . . . class of piecewise causal paths

L̂τ (β) =
∑k

i=1 |τ(β(si ))− τ(β(si−1))| . . . null length of β ∈ B
d̂τ (p, q) = inf{L̂τ (β) | β ∈ B from p to q}
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Properties of the null distance

• d̂τ is finite (and bounded on causal diamonds)

• d̂τ is conformally invariant and scales with τ

• d̂τ is symmetric

• d̂τ satisfies the △-inequality

• d̂τ is not necessarily positive definite (e.g., τ = t3 in LN+1)

Theorem (Sormani–Vega 2016

, Allen–B. 2022

)

τ nice (e.g., weak temporal) time function
=⇒ d̂τ is

length

metric that induces manifold topology
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When does the null distance encodes causality?

By definition also: p ≤ q =⇒ d̂τ (p, q) = τ(q)− τ(p)

What about the converse?
When is p ≤ q ⇐⇒ d̂τ (p, q) = τ(q)− τ(p) possible?

• locally always true for locally anti-Lipschitz time functions
(Sakovich–Sormani 2023)

• globally only if (M, g) globally hyperbolic and
(B.–Garćıa-Heveling 2024)
▶ all nonemtpy τ -level sets future/past Cauchy
▶ ⇔ all future/past causally complete (Galloway 2024)
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Application: cosmology

Definition (Andersson–Galloway–Howard 1998, Wald–Yip)

Cosmological time function: τc(p) = sup dg (J
−(p), p)

• regular τc are locally anti-Lipschitz

• level sets of τc are future Cauchy

⇒ null distance d̂τc encodes causality globally (B.–G.-H. 2024)
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How much does d̂τ depend on τ?

Similar to Riemannian situation (B. 2015; Hopf–Rinow 1939):

• locally bi-Lipschitz for class of weak temporal functions

Theorem (B.–Garćıa-Heveling 2024)

(M, g , τ) and (M, g̃ , τ̃) spacetimes, K compact
=⇒ ∃C > 1∀p, q ∈ K : 1

C d̂τ (p, q) ≤ d̂τ̃ (p, q) ≤ Cd̂τ (p, q)

Proof idea: use (M, g) conformal to spacetime with steep
temporal function, Wick rotation, and (B. 2015)

• globally there is quite some difference ...

Theorem (B.–Garćıa-Heveling 2024)

∃τ such that (M, d̂τ ) complete ⇐⇒ (M, g) globally hyperbolic
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Sketch of proof

(⇒) globally hyperbolic =⇒ ∃ completely uniformly temporal τ
(Bernard–Suhr 2018), i.e., complete Riemannian metric h s.t.

τ(q)− τ(p) =

∫ 1

0
dτ(γ̇(s))︸ ︷︷ ︸
≥∥γ̇(s)∥h

ds ≥ Lh(γ) ≥ dh(p, q)

=⇒ d̂τ complete (Allen–B. 2022)

(⇐) If d̂τ complete and τ not Cauchy
=⇒ ∃ w.l.o.g. future-directed future-inext. causal curve γ

with lims→∞ τ(γ(s)) < ∞
=⇒ ((τ ◦ γ)(n))n is Cauchy sequence in R and

d̂τ (γ(n), γ(m)) = |τ(γ(m))− τ(γ(n))|
=⇒ (γ(n))n Cauchy sequence in (M, d̂τ ), thus converges
=⇒ γ extendible, contradiction. Thus τ Cauchy.
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Summary: comparison

dg d̂τ

metric

finite & continuous

Hopf–Rinow type result

good with lengths and g

good with lower curvature bounds sectional

Ricci ?

For synthetic d̂τ framework, see work of Allen, Burgos, B., Ebrahimi,
Flores, Galloway, Garćıa-Heveling, Kunzinger, Sakovich, Sánchez,
Sormani, Steinbauer, Vega . . .
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Largely open: connections between dg and d̂τ

When does a sensible d̂τ (and τ) exist in a dg -synthetic theory?

Potential connections to explore:

• rushing functions p ≪ q ⇒ τ(q)− τ(p) ≥ dg (p, q)
(Rennie–Whale 2016, Minguzzi 2019, . . .)

• cosmological time function τc(p) = sup dg (J
−(p), p)

(Andersson–Galloway–Howard 1998, Wald–Yip 1981, . . .)

• cosmological volume function τv (p) = volg (I
−(p))

(Garćıa-Heveling 2024)

• global hyperbolicity

• closed cone structures (M,C ) with nonempty open I± & dg
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Outlook: apply metric perspective in General Relativity

• can adapt tools from metric (measure) geometry originally
deceived in a Euclidean/Riemannian context, including

▶ generalized notions of sectional/Ricci curvature (bounds)
▶ comparison of spaces via (generalized) GH-distance etc.

• important in general relativity because lower Ricci curvature
bounds are linked to energy conditions and entropy
(McCann 2020) and used in singularity theorems
(Cavalletti–Mondino 2024), splitting results (Braun et al
2025), Hawking area theorem (Ketterer 2025) etc.

• (smooth) optimal transport formulation of Einstein eq.
(Mondino–Suhr 2023); ∃ nonsmooth variational approach?

• wider approach to study convergence and stability of
certain classes of spacetimes (Allen–B. 2022, Minguzzi–Suhr
2024, Sakovich–Sormani 2024+, Braun–Sämann 2025+)

• potential further applications: connections to quantum
gravity, simplifications in numerical relativity?
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