

Nonsmoothness in General Relativity: why and how

Annegret Burtscher

www.math.ru.nl/~burtscher

Radboud University Nijmegen

Women at the Intersection of Mathematics and Theoretical Physics
ICTS Bengaluru, India – 29 December 2025

Outline

Introduction to General Relativity

Occurrences of Nonsmoothness in GR

Lorentzian Approaches to Nonsmoothness

A large-scale model for our universe

Einstein's key idea

force \neq **gravitation** = **geometric** property of space and time

A large-scale model for our universe

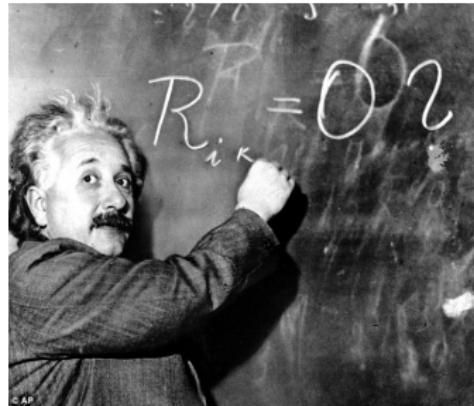
Einstein's key idea

force \neq **gravitation** = **geometric** property of space and time

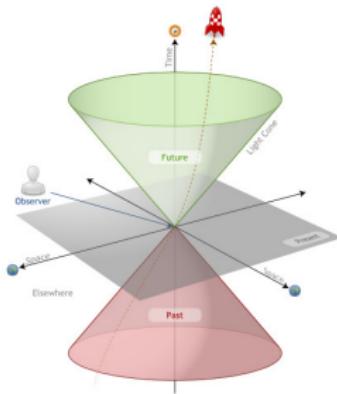
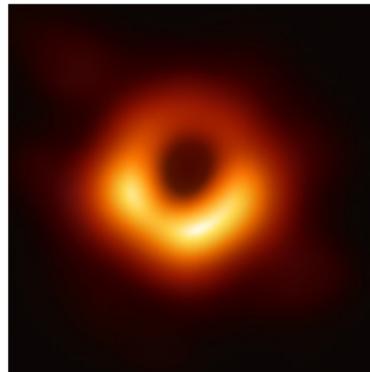
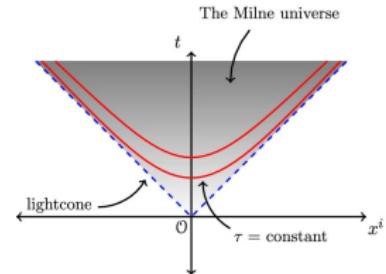
(M, g) 4-dim. **spacetime**
= connected time-oriented
Lorentzian manifold

Einstein equations (1915)

$$\underbrace{\mathbf{Ric} - \frac{1}{2}R\mathbf{g} + \Lambda\mathbf{g}}_{\text{curvature}} = \underbrace{\frac{8\pi G}{c^4}\mathbf{T}}_{\text{matter}}$$



Important exact solutions



Minkowski spacetime

$$g = -dt^2 + dx_1^2 + dx_2^2 + dx_3^2$$

Schwarzschild spacetime

$$g = -f(r)dt^2 + f(r)^{-1}dr^2 + r^2g_{\mathbb{S}^2}$$

$$\text{with } f(r) = 1 - \frac{2m}{r}$$

FLRW spacetimes

$$g = -dt^2 + a(t)^2\sigma_{\Sigma}$$

with Σ constant curvature 3-space
& 2nd order ODE for a

Major achievements and problems in mathematical GR

- **global geometry and analysis**
- **black holes**
- **two-body problem and gravitational waves**
- **connections to quantum theory**

Major achievements and problems in mathematical GR

- **global geometry and analysis**
 - ▶ local and global well-posedness of initial value formulation (Choquet-Bruhat, Geroch)
 - ▶ positive mass theorem (Schoen–Yau, Witten) and Penrose inequality (Huisken–Ilmanen, Bray) for initial data sets
 - ▶ global hyperbolicity splitting (Geroch, Bernal–Sánchez)
 - ▶ Lorentzian splitting theorems (Eschenburg, Galloway, Bartnik)
- **black holes**
- **two-body problem and gravitational waves**
- **connections to quantum theory**

Major achievements and problems in mathematical GR

- **global geometry and analysis**
 - ▶ local and global well-posedness of initial value formulation (Choquet-Bruhat, Geroch)
 - ▶ positive mass theorem (Schoen–Yau, Witten) and Penrose inequality (Huisken–Ilmanen, Bray) for initial data sets
 - ▶ global hyperbolicity splitting (Geroch, Bernal–Sánchez)
 - ▶ Lorentzian splitting theorems (Eschenburg, Galloway, Bartnik)
- **black holes**
 - ▶ singularity theorems (Penrose, Hawking)
 - ▶ black hole formation from gravitational collapse (Christ.)
 - ▶ uniqueness and stability (Dafermos et al, Hintz–Vasy)
 - ▶ cosmic censorship conjectures (Penrose, Christodoulou)
- **two-body problem and gravitational waves**
- **connections to quantum theory**

Major achievements and problems in mathematical GR

- **global geometry and analysis**
 - ▶ local and global well-posedness of initial value formulation (Choquet-Bruhat, Geroch)
 - ▶ positive mass theorem (Schoen–Yau, Witten) and Penrose inequality (Huisken–Ilmanen, Bray) for initial data sets
 - ▶ global hyperbolicity splitting (Geroch, Bernal–Sánchez)
 - ▶ Lorentzian splitting theorems (Eschenburg, Galloway, Bartnik)
- **black holes**
 - ▶ singularity theorems (Penrose, Hawking)
 - ▶ black hole formation from gravitational collapse (Christ.)
 - ▶ uniqueness and stability (Dafermos et al, Hintz–Vasy)
 - ▶ cosmic censorship conjectures (Penrose, Christodoulou)
- **two-body problem and gravitational waves**
 - ▶ asymptotic structure at null infinity (Penrose)
 - ▶ numerical relativity for predictions and analysis
- **connections to quantum theory**

Major achievements and problems in mathematical GR

- **global geometry and analysis**
 - ▶ local and global well-posedness of initial value formulation (Choquet-Bruhat, Geroch)
 - ▶ positive mass theorem (Schoen–Yau, Witten) and Penrose inequality (Huisken–Ilmanen, Bray) for initial data sets
 - ▶ global hyperbolicity splitting (Geroch, Bernal–Sánchez)
 - ▶ Lorentzian splitting theorems (Eschenburg, Galloway, Bartnik)
- **black holes**
 - ▶ singularity theorems (Penrose, Hawking)
 - ▶ black hole formation from gravitational collapse (Christ.)
 - ▶ uniqueness and stability (Dafermos et al, Hintz–Vasy)
 - ▶ cosmic censorship conjectures (Penrose, Christodoulou)
- **two-body problem and gravitational waves**
 - ▶ asymptotic structure at null infinity (Penrose)
 - ▶ numerical relativity for predictions and analysis
- **connections to quantum theory**
 - ▶ black hole thermodynamics (Beckenstein, Hawking et al)
 - ▶ entropy generalizing energy conditions using optimal transport (McCann) and synthetic approaches to spacetimes

Outline

Introduction to General Relativity

Occurrences of Nonsmoothness in GR

Lorentzian Approaches to Nonsmoothness

1. Realistic matter models are not smooth

Perfect fluids $T^{\mu\nu} = (\rho + p)u^\mu u^\nu + pg^{\mu\nu}$ are used in astrophysics

in models of stars and planets (fluid/gas balls) and clusters (dust)

1. Realistic matter models are not smooth

Perfect fluids $T^{\mu\nu} = (\rho + p)u^\mu u^\nu + pg^{\mu\nu}$ are used in astrophysics

in models of stars and planets (fluid/gas balls) and clusters (dust)

- matter-vacuum **boundaries** \rightsquigarrow e.g. **g** only Lipschitz
- formation of **shock waves** (grav. collapse) \rightsquigarrow BV regularity

2. Problems with large curvature and loss of predictability

curvature scalars blow up $\Rightarrow \mathbf{g}$ cannot be C^2 extended

Black hole interior

Big bang

2. Problems with large curvature and loss of predictability

curvature scalars blow up $\Rightarrow \mathbf{g}$ cannot be C^2 extended

Black hole interior

- Schwarzschild is C^0 -inextendible (Hawking, Sbierski 2018)
- generic black hole interiors are (not uniquely?) C^0 -extendible beyond Cauchy horizon (Dafermos–Luk 2025) but likely $C_{\text{loc}}^{0,1}$ -inextendible (Sbierski 2024+)

Big bang

- C^2 -inextendibility for scalar fields (Fournodavlos et al 2023, Oude Groeninger–Petersen–Ringström 2023+)
- closely related to stable big bang formation
- C^0 -(in)extendibility for FLRW etc. (Galloway–Ling 2017, Sbierski 2023+, Graf–van den Beld–Serrano 2024+)

3. Asymptotic behavior depends on regularity

Problem at future null infinity \mathcal{I}^+

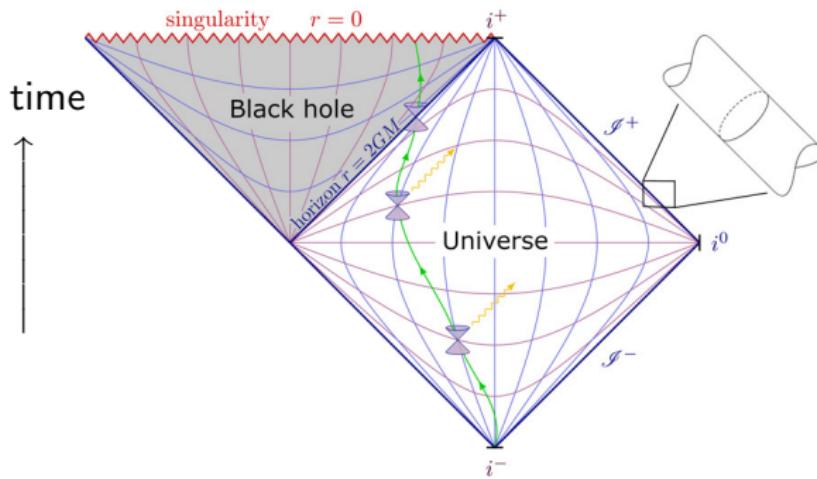
regularity at $\mathcal{I}^+ \rightsquigarrow$ decay of geometry

3. Asymptotic behavior depends on regularity

Problem at future null infinity \mathcal{I}^+

regularity at $\mathcal{I}^+ \rightsquigarrow$ decay of geometry

- assume \exists of **smooth conformal compactifications** (Penrose)



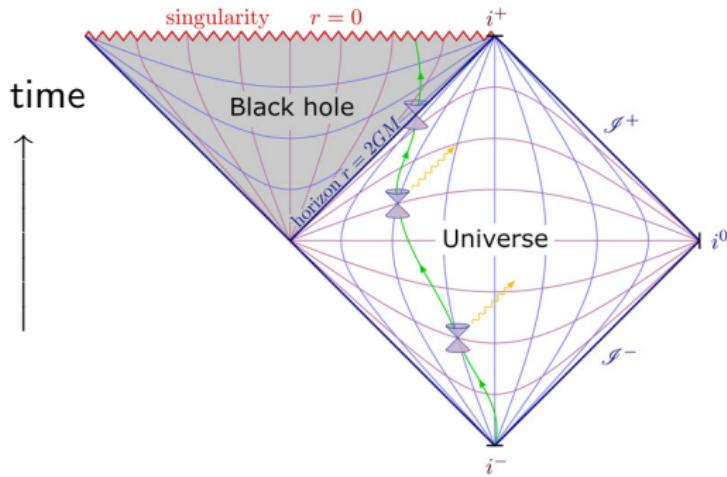
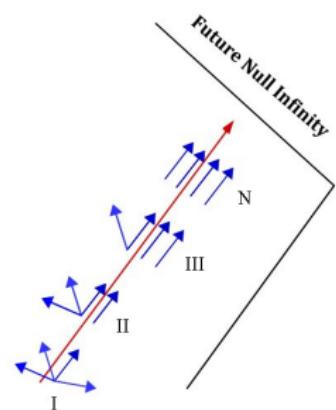
3. Asymptotic behavior depends on regularity

Problem at future null infinity \mathcal{I}^+

regularity at $\mathcal{I}^+ \iff$ decay of geometry

- assume \exists of **smooth conformal compactifications** (Penrose)
 \rightsquigarrow "peeling" of Weyl tensor: along **light rays**, as $s \rightarrow \infty$,

$$\mathbf{W} = W^{(N)}s^{-1} + W^{(III)}s^{-2} + W^{(II)}s^{-3} + W^{(I)}s^{-4} + O(s^{-5})$$

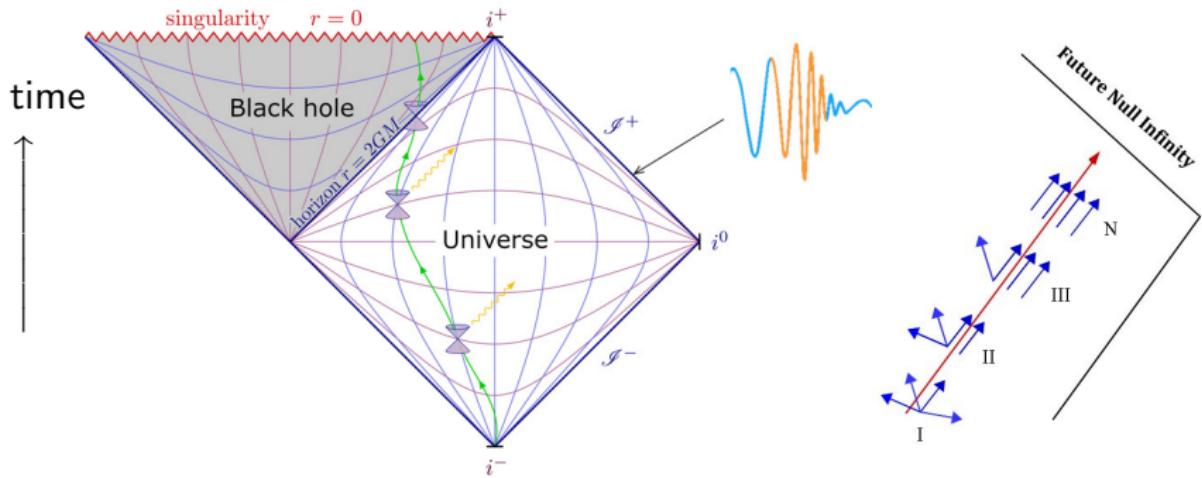


3. Asymptotic behavior depends on regularity

Problem at future null infinity \mathcal{I}^+

regularity at $\mathcal{I}^+ \rightsquigarrow$ decay of geometry

- assume \exists of **smooth conformal compactifications** (Penrose)
 \rightsquigarrow "peeling" of Weyl tensor \rightsquigarrow interpret grav. wave signals

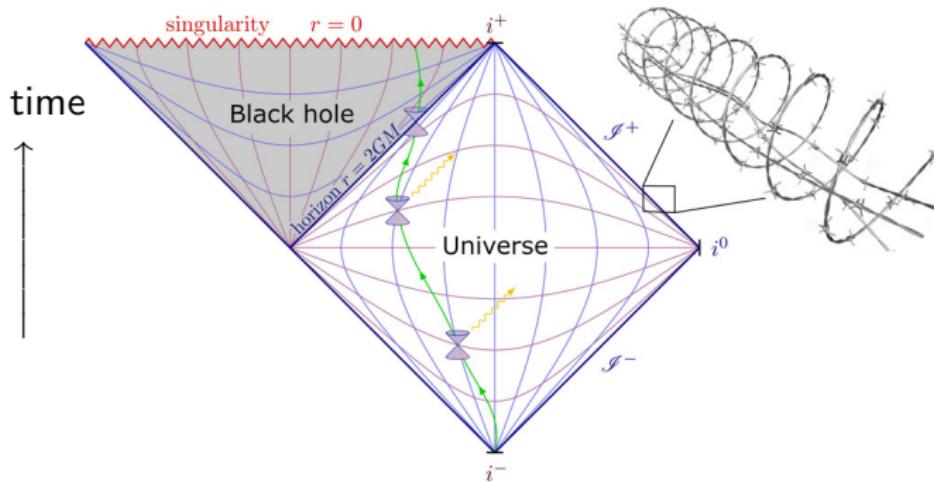


3. Asymptotic behavior depends on regularity

Problem at future null infinity \mathcal{I}^+

regularity at $\mathcal{I}^+ \rightsquigarrow$ decay of geometry

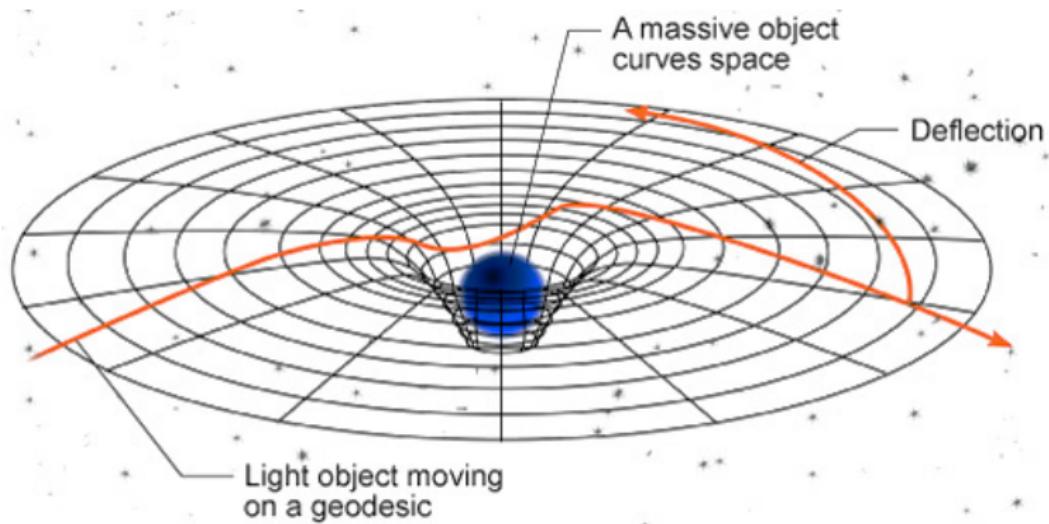
- assume \exists of **smooth conformal compactifications** (Penrose)
 \rightsquigarrow "peeling" of Weyl tensor \rightsquigarrow interpret grav. wave signals
- PDE theory: **not achieved** for physical systems! (observable)



4. Problem of motion for massive particles

Massless "test" particles

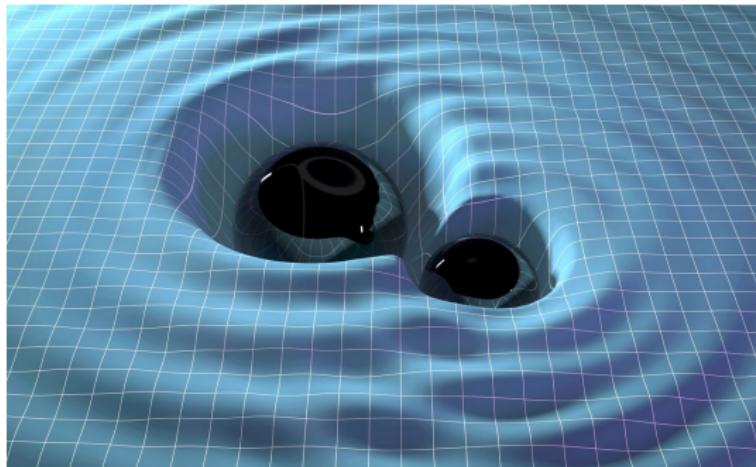
- move along **geodesics** in background spacetime
- approximate motions for extreme 2-body systems (sun–earth)



4. Problem of motion for massive particles

Massless "test" particles

- move along **geodesics** in background spacetime
- approximate motions for extreme 2-body systems (sun–earth)
- not suitable for general 2-body systems (black holes colliding)



4. Problem of motion for massive particles

Massless "test" particles

- move along **geodesics** in background spacetime
- approximate motions for extreme 2-body systems (sun–earth)
- not suitable for general 2-body systems (black holes colliding)

Massive particles

- heavily interact with and **change spacetime geometry**
- early approaches to describe all matter by δ 's and use second Bianchi identity $0 = \nabla \mathbf{G} = \nabla \mathbf{T}$ to model motion
(Einstein–Infeld–Hoffmann 1940s) \rightsquigarrow leads to inconsistencies
- new approach uses singular timelike boundaries of zero area with $m_{\text{Bray}} < 0$ (B.–Kiessling–Tahvildar-Zadeh 2021)

singular int. boundaries $\Rightarrow \mathbf{g}$ does not extend (smoothly) to ∂M

Outline

Introduction to General Relativity

Occurrences of Nonsmoothness in GR

Lorentzian Approaches to Nonsmoothness

Treshold regularity and below

Problem for \mathbf{g} below $C^{1,1}$

geodesics are badly behaved (e.g., already locally nonunique)

BUT causality theory ok for $\mathbf{g} \in C_{\text{loc}}^{0,1}$ (Chruściel–Grant, Minguzzi)

Treshold regularity and below

Problem for \mathbf{g} below $C^{1,1}$

geodesics are badly behaved (e.g., already locally nonunique)

BUT causality theory ok for $\mathbf{g} \in C_{\text{loc}}^{0,1}$ (Chruściel–Grant, Minguzzi)

Different approaches for nonsmooth \mathbf{g}

- **sequences** of smooth $\mathbf{g}_n \rightarrow \mathbf{g}$, possibly in combination with uniform sectional/Ricci curvature bounds
- **distributional curvature** used for proving singularity theorems for $\mathbf{g} \in C^1$ (Graf 2020) and below
- **metric (measure) spacetimes** based on interaction of causality + topology, together with a distance (and measure)

Notions of metric spacetimes

All synthetic approaches have in common

instead of Lorentzian manifold (M, g) work with:

causality (\leq and \ll), **topology** on X , **distance(s)** d (and curves)

Notions of metric spacetimes

All synthetic approaches have in common

instead of Lorentzian manifold (M, g) work with:

causality (\leq and \ll), **topology** on X , **distance(s)** d (and curves)

We zoom closer into two of the last approaches based on d being

- ① the **Lorentzian distance** d_g
- ② the **null distance** \hat{d}_τ

and recall their origin, properties and future

Notions of metric spacetimes

All synthetic approaches have in common

instead of Lorentzian manifold (M, g) work with:

causality (\leq and \ll), **topology** on X , **distance(s)** d (and curves)

We zoom closer into two of the last approaches based on d being

- ① the **Lorentzian distance** d_g
- ② the **null distance** \hat{d}_τ

and recall their origin, properties and future

NOT covered in this talk: actual synthetic reformulation

Notions of metric spacetimes

All synthetic approaches have in common

instead of Lorentzian manifold (M, g) work with:

causality (\leq and \ll), **topology** on X , **distance(s)** d (and curves)

We zoom closer into two of the last approaches based on d being

- ① the **Lorentzian distance** d_g
- ② the **null distance** \hat{d}_τ

and recall their origin, properties and future

NOT covered in this talk: actual synthetic reformulation

But first: recap of **causality theory**...

Recap: Causal character

Let (M, \mathbf{g}) be a Lorentzian manifold (without boundary), convention $(- + \cdots +)$.

Theorem (Poincaré, Hopf 1926 & Markus 1955)

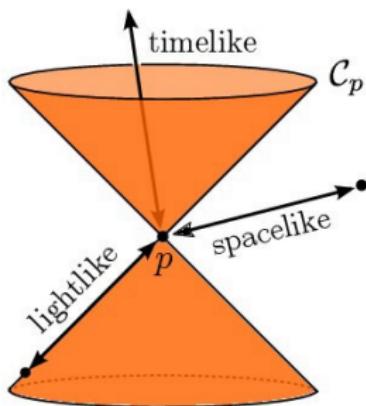
\exists Lorentzian $\mathbf{g} \iff M$ noncompact or compact with $\chi(M) = 0$

Recap: Causal character

Let (M, \mathbf{g}) be a Lorentzian manifold (without boundary), convention $(- + \cdots +)$.

Theorem (Poincaré, Hopf 1926 & Markus 1955)

\exists Lorentzian $\mathbf{g} \iff M$ noncompact or compact with $\chi(M) = 0$



A tangent vector $v \in T_p M$ is called

- **timelike** if $g(v, v) < 0$,
- **spacelike** if $g(v, v) > 0$ or $v = 0$,
- **lightlike** if $g(v, v) = 0$ and $v \neq 0$,
- **null** if $g(v, v) = 0$,
- **causal** if timelike or lightlike.

Recap: Causal relations on spacetimes

Can distinguish past and future globally if $\exists T \in \mathfrak{X}(M)$ timelike.

Definition

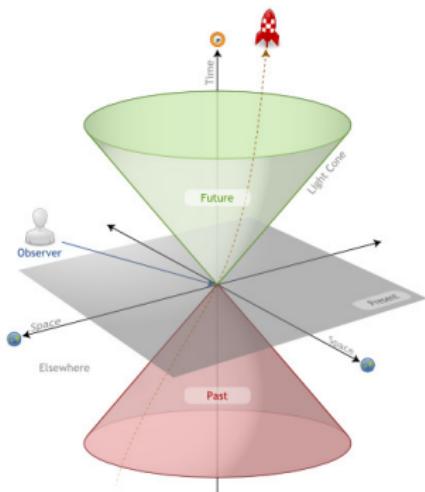
spacetime = time-oriented Lorentzian manifold $(M, \mathbf{g}, [T])$

Recap: Causal relations on spacetimes

Can distinguish past and future globally if $\exists T \in \mathfrak{X}(M)$ timelike.

Definition

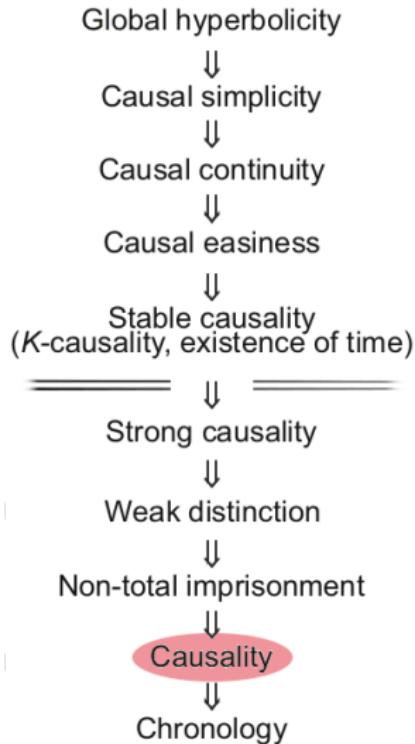
spacetime = time-oriented Lorentzian manifold $(M, \mathbf{g}, [T])$



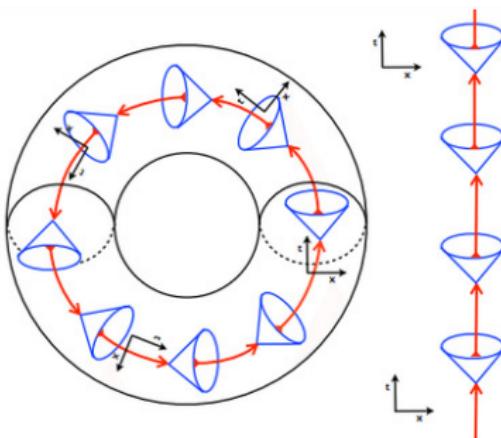
Then can define $v \in T_p M$
future-directed if $g(v, T) < 0$, and

- **timelike relation** $p \ll q$
if \exists future-directed timelike curve
from p to q
- **causal relation** $p \leq q$
if \exists future-directed causal curve
from p to q ($p < q$) or $p = q$

Recap: Global hyperbolicity



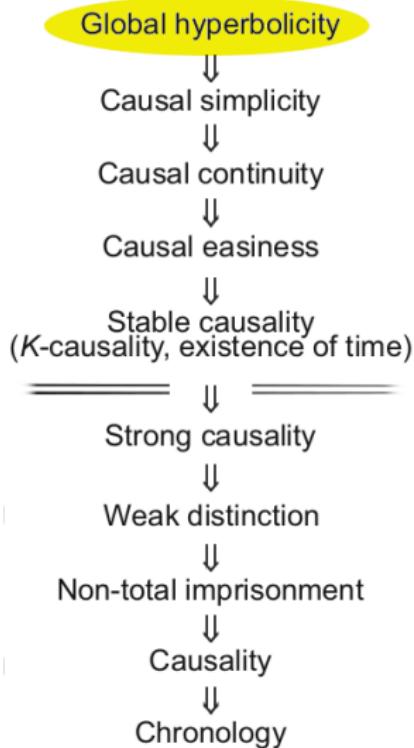
(M, g) **causal** if \leq is antisymmetric



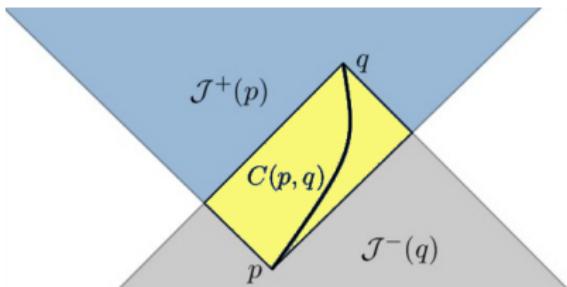
Recap: Global hyperbolicity



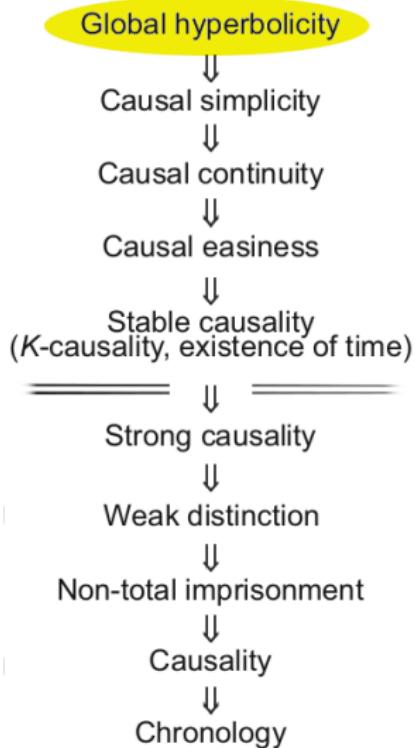
Recap: Global hyperbolicity



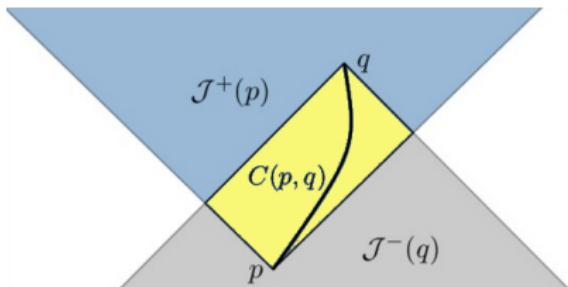
(M, g) **globally hyperbolic** if causal and $\{p \leq x \leq q\}$ compact for all $p, q \in M$



Recap: Global hyperbolicity



(M, g) **globally hyperbolic** if causal and $\{p \leq x \leq q\}$ compact for all $p, q \in M$



$\Leftrightarrow \exists$ Cauchy time function $\tau: M \rightarrow \mathbb{R}$
 $\Leftrightarrow \exists$ Cauchy surface in M

Distances: ingredients needed for constructing d_g and \hat{d}_τ

- ① a class of curves
- ② a length functional
- ③ a sup or inf
- ④ "good" properties and theorems

Definition of the Lorentzian distance

Let (M, \mathbf{g}) be a spacetime.

Lorentzian distance

\mathcal{A}_V ... class of piecewise smooth future-directed causal paths

$$L_g(\gamma) := \int_a^b \sqrt{-g_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))} dt \dots \text{length of } \gamma \in \mathcal{A}_V$$

$$d_g(p, q) := \begin{cases} \sup\{L_g(\gamma) \mid \gamma \in \mathcal{A}_V \text{ between } p \text{ and } q\} & p \leq q \\ 0 & p \not\leq q \end{cases}$$

Definition of the Lorentzian distance

Let (M, \mathbf{g}) be a spacetime.

Lorentzian distance

\mathcal{A}_V ... class of piecewise smooth future-directed causal paths

$$L_g(\gamma) := \int_a^b \sqrt{-g_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))} dt \dots \text{length of } \gamma \in \mathcal{A}_V$$

$$d_g(p, q) := \begin{cases} \sup\{L_g(\gamma) \mid \gamma \in \mathcal{A}_V \text{ between } p \text{ and } q\} & p \leq q \\ 0 & p \not\leq q \end{cases}$$

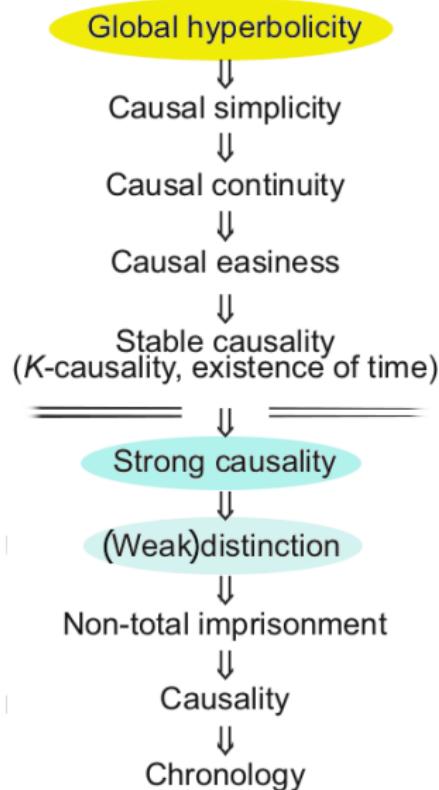
Other notations and conventions used:

- $d_g = \tau$ and called time sep. function in (Kunzinger–Sämann 2018)
- $d_g = \ell^+$ with $\ell(p, q) = -\infty$ if $p \not\leq q$ (McCann 2020, ...)

Properties of the Lorentzian distance

- $d_g: M \times M \rightarrow [0, +\infty]$
- $d_g(p, p) = 0$ or $d_g(p, p) = +\infty$
- $d_g(p, q) = +\infty \forall p, q \iff M \text{ is totally viscous}$
- reverse \triangle -ineq. for $p \leq r \leq q$: $d_g(p, q) \geq d_g(p, r) + d_g(r, q)$
- d_g is lower semicontinuous
- $d_g(p, q) > 0 \iff p \ll q$

Special properties for more special (M, g)



Special properties for more special (M, g)

For **distinguishing** spacetimes

◻ **strongly causal** spacetimes

◻ **globally hyperbolic** spacetimes

Special properties for more special (M, g)

For **distinguishing spacetimes**

- future/past “balls” $B_\varepsilon^\pm(p)$ form subbasis for manifold topology
- d_g continuous $\Rightarrow (M, g)$ causally continuous

◻ **strongly causal spacetimes**

- d_g is locally finite, and continuous in a neighborhood of ΔM (Beem–Ehrlich 1979)

◻ **globally hyperbolic spacetimes**

- d_g is finite and continuous on $M \times M$

Special properties for more special (M, g)

For **distinguishing spacetimes**

- future/past “balls” $B_\varepsilon^\pm(p)$ form subbasis for manifold topology
- d_g continuous $\Rightarrow (M, g)$ causally continuous

◻ **strongly causal spacetimes**

- d_g is locally finite, and continuous in a neighborhood of ΔM (Beem–Ehrlich 1979)
- $\varphi: (M, g) \rightarrow (\tilde{M}, \tilde{g})$ distance homothetic/preserving
 \Rightarrow smooth homothety/isometry $\varphi^* \tilde{g} = cg$ (Beem 1978)

◻ **globally hyperbolic spacetimes**

- d_g is finite and continuous on $M \times M$
- \exists length-maximizing causal geodesic from p to $q \in J^+(p)$ (Avez 1963, Seifert 1967)

Special properties for more special (M, g)

For **distinguishing spacetimes**

- future/past “balls” $B_\varepsilon^\pm(p)$ form subbasis for manifold topology
- d_g continuous $\Rightarrow (M, g)$ causally continuous

◻ **strongly causal spacetimes**

- d_g is locally finite, and continuous in a neighborhood of ΔM (Beem–Ehrlich 1979)
- $\varphi: (M, g) \rightarrow (\tilde{M}, \tilde{g})$ distance homothetic/preserving
 \Rightarrow smooth homothety/isometry $\varphi^* \tilde{g} = cg$ (Beem 1978)

◻ **globally hyperbolic spacetimes**

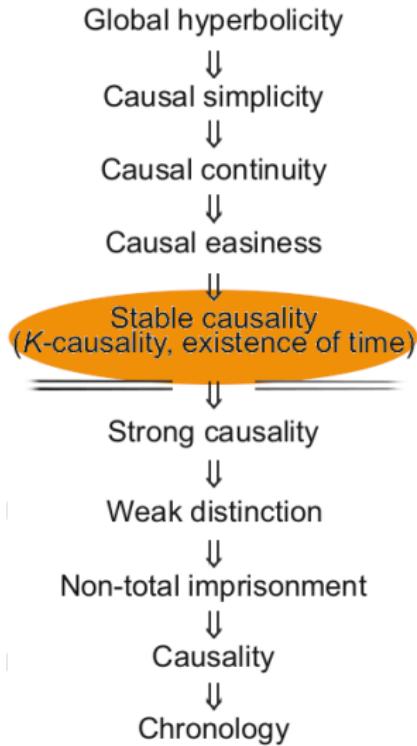
- d_g is finite and continuous on $M \times M$
- \exists length-maximizing causal geodesic from p to $q \in J^+(p)$ (Avez 1963, Seifert 1967)
- (M, d_g) timelike Cauchy complete $\Leftrightarrow (M, d_g)$ finitely compact (Beem 1976)

Overview of properties d_g

	Lorentzian distance d_g
metric	
finite & continuous	if glob. hyp.
Hopf–Rinow type result	if glob. hyp.
good with lengths and g	
good with lower curvature bounds	sectional Ricci

For synthetic d_g framework, see work of Alexander, Beran, Braun, B., Calisti, Cavalletti, Ebrahimi, García-Heveling, Gigli, Graf, Grant, Ketterer, Kunzinger, McCann, Minguzzi, Mondino, Ohanyan, Rott, Sämann, Solis, Soultanis, Steinbauer, Suhr ...

Recap: time and functions



(M, g) **stably causal** if (unique) smallest transitive closed relation containing \leq is antisymmetric

$\Leftrightarrow \exists$ time function $\tau: M \rightarrow \mathbb{R}$
(Hawking 1968, Minguzzi 2009)

Recap: time functions

A function $\tau: M \rightarrow \mathbb{R}$ is

- **isotone/causal function** if $p \leq q \Rightarrow \tau(p) \leq \tau(q)$
(e.g., $\tau \equiv 1$ or $\tau \equiv 0$)

- **time function** if continuous and $p < q \Rightarrow \tau(p) < \tau(q)$

$(\exists \iff (M, g) \text{ stably causal; Hawking 1968, Minguzzi 2009})$

Recap: time functions

A function $\tau: M \rightarrow \mathbb{R}$ is

- **isotone/causal function** if $p \leq q \Rightarrow \tau(p) \leq \tau(q)$
(e.g., $\tau \equiv 1$ or $\tau \equiv 0$)

- **time function** if continuous and $p < q \Rightarrow \tau(p) < \tau(q)$

$(\exists \iff (M, g) \text{ stably causal; Hawking 1968, Minguzzi 2009})$

▷ **temporal function** if C^1 and $\nabla \tau$ past-directed timelike

$(\exists \iff (M, g) \text{ stably causal; Bernal-Sánchez 2005; weak version: causal locally Lipschitz}^{\pm}, \text{ B.-G.-H. 2024})$

Remember also: time \subseteq isotone

Recap: time functions

A function $\tau: M \rightarrow \mathbb{R}$ is

- **isotone/causal function** if $p \leq q \Rightarrow \tau(p) \leq \tau(q)$

(e.g., $\tau \equiv 1$ or $\tau \equiv 0$)

- **rushing function** if $p \ll q \Rightarrow \tau(q) - \tau(p) \geq d_g(p, q)$

($\exists \Rightarrow d_g$ finite)

- **time function** if continuous and $p < q \Rightarrow \tau(p) < \tau(q)$

($\exists \Leftrightarrow (M, g)$ stably causal; Hawking 1968, Minguzzi 2009)

- **temporal function** if C^1 and $\nabla \tau$ past-directed timelike

($\exists \Leftrightarrow (M, g)$ stably causal; Bernal–Sánchez 2005;
weak version: causal locally Lipschitz $^\pm$, B.–G.–H. 2024)

- **steep function** if C^1 and $g(\nabla \tau, \nabla \tau) \leq -1$

($\exists \Leftrightarrow (M, g) \hookrightarrow \mathbb{L}^{N+1}$ isometrically; Müller–Sanchez 2011)

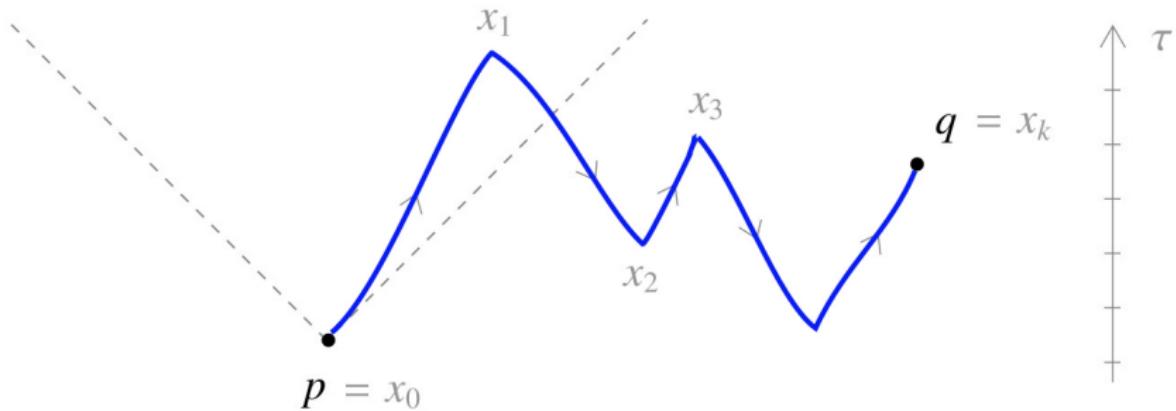
Remember also: time \subseteq isotone, steep \subseteq rushing

Definition of the null distance

Let (M, g) be a spacetime

Null distance (Sormani–Vega 2016)

\mathcal{B} ... class of piecewise causal paths



Definition of the null distance

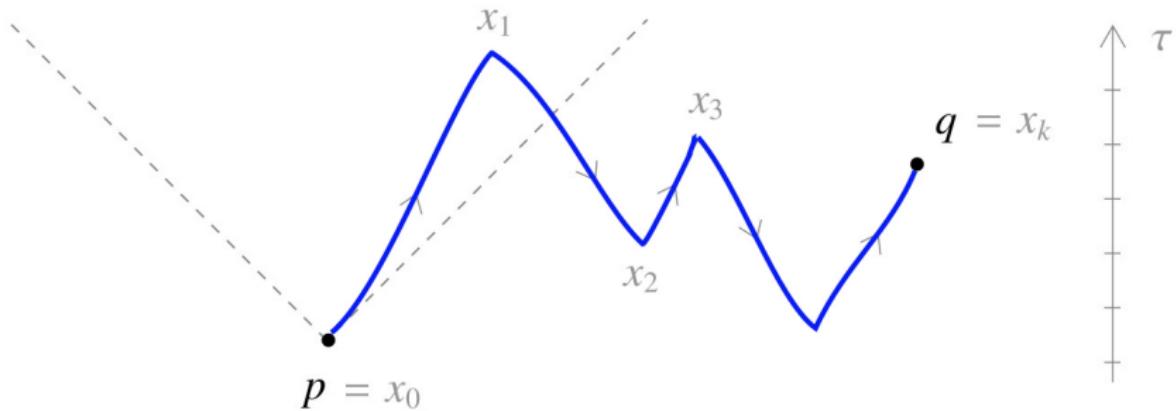
Let (M, g) be a spacetime with time function τ .

Null distance (Sormani–Vega 2016)

\mathcal{B} ... class of piecewise causal paths

$\hat{L}_\tau(\beta) = \sum_{i=1}^k |\tau(\beta(s_i)) - \tau(\beta(s_{i-1}))|$... null length of $\beta \in \mathcal{B}$

$\hat{d}_\tau(p, q) = \inf\{\hat{L}_\tau(\beta) \mid \beta \in \mathcal{B} \text{ from } p \text{ to } q\}$



Properties of the null distance

- \hat{d}_τ is finite (and bounded on causal diamonds)
- \hat{d}_τ is conformally invariant and scales with τ
- \hat{d}_τ is symmetric
- \hat{d}_τ satisfies the \triangle -inequality
- \hat{d}_τ is not necessarily positive definite (e.g., $\tau = t^3$ in \mathbb{L}^{N+1})

Properties of the null distance

- \hat{d}_τ is finite (and bounded on causal diamonds)
- \hat{d}_τ is conformally invariant and scales with τ
- \hat{d}_τ is symmetric
- \hat{d}_τ satisfies the \triangle -inequality
- \hat{d}_τ is not necessarily positive definite (e.g., $\tau = t^3$ in \mathbb{L}^{N+1})

Theorem (Sormani–Vega 2016)

τ nice (e.g., weak temporal) time function

$\implies \hat{d}_\tau$ is **metric** that induces manifold topology

Properties of the null distance

- \hat{d}_τ is finite (and bounded on causal diamonds)
- \hat{d}_τ is conformally invariant and scales with τ
- \hat{d}_τ is symmetric
- \hat{d}_τ satisfies the \triangle -inequality
- \hat{d}_τ is not necessarily positive definite (e.g., $\tau = t^3$ in \mathbb{L}^{N+1})

Theorem (Sormani–Vega 2016, Allen–B. 2022)

τ nice (e.g., weak temporal) time function

$\implies \hat{d}_\tau$ is **length metric** that induces manifold topology

When does the null distance encodes causality?

By definition also: $p \leq q \implies \hat{d}_\tau(p, q) = \tau(q) - \tau(p)$

What about the converse?

When is $p \leq q \iff \hat{d}_\tau(p, q) = \tau(q) - \tau(p)$ possible?

When does the null distance encodes causality?

By definition also: $p \leq q \implies \hat{d}_\tau(p, q) = \tau(q) - \tau(p)$

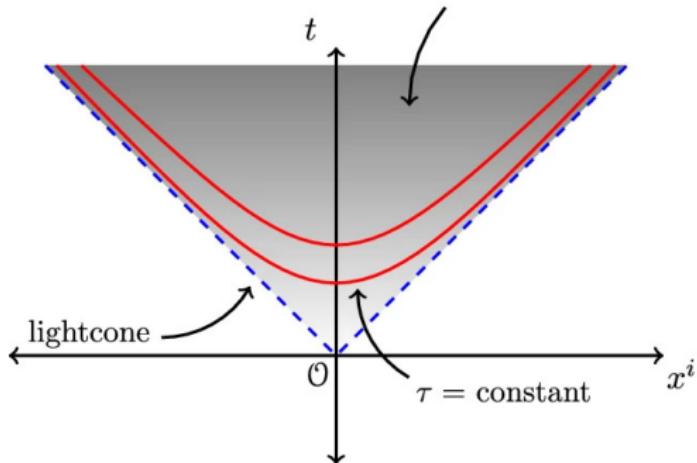
What about the converse?

When is $p \leq q \iff \hat{d}_\tau(p, q) = \tau(q) - \tau(p)$ possible?

- **locally always** true for locally anti-Lipschitz time functions (Sakovich–Sormani 2023)
- **globally** only if (M, g) globally hyperbolic and (B.–García-Heveling 2024)
 - ▶ all nonempty τ -level sets future/past Cauchy
 - ▶ \iff all future/past causally complete (Galloway 2024)

Application: cosmology

The Milne universe



Definition (Andersson–Galloway–Howard 1998, Wald–Yip)

Cosmological time function: $\tau_c(p) = \sup d_g(J^-(p), p)$

- regular τ_c are locally anti-Lipschitz
- level sets of τ_c are future Cauchy

⇒ null distance \hat{d}_{τ_c} encodes causality globally (B.–G.–H. 2024)

How much does \hat{d}_τ depend on τ ?

Similar to Riemannian situation (B. 2015; Hopf–Rinow 1939):

- **locally bi-Lipschitz** for class of weak temporal functions
- **globally** there is quite some difference ...

How much does \hat{d}_τ depend on τ ?

Similar to Riemannian situation (B. 2015; Hopf–Rinow 1939):

- **locally bi-Lipschitz** for class of weak temporal functions

Theorem (B.–García-Heveling 2024)

(M, g, τ) and $(M, \tilde{g}, \tilde{\tau})$ spacetimes, K compact

$$\implies \exists C > 1 \forall p, q \in K : \frac{1}{C} \hat{d}_\tau(p, q) \leq \hat{d}_{\tilde{\tau}}(p, q) \leq C \hat{d}_\tau(p, q)$$

Proof idea: use (M, g) conformal to spacetime with steep temporal function, Wick rotation, and (B. 2015)

- **globally** there is quite some difference ...

How much does \hat{d}_τ depend on τ ?

Similar to Riemannian situation (B. 2015; Hopf–Rinow 1939):

- **locally bi-Lipschitz** for class of weak temporal functions

Theorem (B.–García-Heveling 2024)

(M, g, τ) and $(M, \tilde{g}, \tilde{\tau})$ spacetimes, K compact

$$\implies \exists C > 1 \forall p, q \in K : \frac{1}{C} \hat{d}_\tau(p, q) \leq \hat{d}_{\tilde{\tau}}(p, q) \leq C \hat{d}_\tau(p, q)$$

Proof idea: use (M, g) conformal to spacetime with steep temporal function, Wick rotation, and (B. 2015)

- **globally** there is quite some difference ...

Theorem (B.–García-Heveling 2024)

$\exists \tau$ such that (M, \hat{d}_τ) complete $\iff (M, g)$ globally hyperbolic

Sketch of proof

(\Rightarrow) globally hyperbolic $\implies \exists$ completely uniformly temporal τ
(Bernard–Suhr 2018), i.e., complete Riemannian metric h s.t.

$$\tau(q) - \tau(p) = \int_0^1 \underbrace{d\tau(\dot{\gamma}(s))}_{\geq \|\dot{\gamma}(s)\|_h} ds \geq L_h(\gamma) \geq d_h(p, q)$$

$\implies \hat{d}_\tau$ complete (Allen–B. 2022)

(\Leftarrow) If \hat{d}_τ complete and τ not Cauchy
 $\implies \exists$ w.l.o.g. future-directed future-inext. causal curve γ
with $\lim_{s \rightarrow \infty} \tau(\gamma(s)) < \infty$
 $\implies ((\tau \circ \gamma)(n))_n$ is Cauchy sequence in \mathbb{R} and
 $\hat{d}_\tau(\gamma(n), \gamma(m)) = |\tau(\gamma(m)) - \tau(\gamma(n))|$
 $\implies (\gamma(n))_n$ Cauchy sequence in (M, \hat{d}_τ) , thus converges
 $\implies \gamma$ extendible, contradiction. Thus τ Cauchy. □

Summary: comparison

	d_g	\hat{d}_τ
metric		
finite & continuous		
Hopf–Rinow type result		
good with lengths and g		
good with lower curvature bounds	sectional	
	Ricci	?

For synthetic \hat{d}_τ framework, see work of Allen, Burgos, B., Ebrahimi, Flores, Galloway, García-Heveling, Kunzinger, Sakovich, Sánchez, Sormani, Steinbauer, Vega ...

Largely open: connections between d_g and \hat{d}_τ

When does a sensible \hat{d}_τ (and τ) exist in a d_g -synthetic theory?

Potential connections to explore:

- rushing functions $p \ll q \Rightarrow \tau(q) - \tau(p) \geq d_g(p, q)$
(Rennie–Whale 2016, Minguzzi 2019, ...)
- cosmological time function $\tau_c(p) = \sup d_g(J^-(p), p)$
(Andersson–Galloway–Howard 1998, Wald–Yip 1981, ...)
- cosmological volume function $\tau_v(p) = \text{vol}_g(I^-(p))$
(García-Heveling 2024)
- global hyperbolicity
- closed cone structures (M, C) with nonempty open I^\pm & d_g

Outlook: apply metric perspective in General Relativity

Outlook: apply metric perspective in General Relativity

- can adapt tools from **metric (measure) geometry** originally developed in a Euclidean/Riemannian context, including

Outlook: apply metric perspective in General Relativity

- can adapt tools from **metric (measure) geometry** originally developed in a Euclidean/Riemannian context, including
 - ▶ generalized notions of sectional/Ricci curvature (bounds)
- important in **general relativity** because lower Ricci curvature bounds are linked to **energy conditions** and **entropy** (McCann 2020) and used in singularity theorems (Cavalletti–Mondino 2024), splitting results (Braun et al 2025), Hawking area theorem (Ketterer 2025) etc.
- (smooth) optimal transport formulation of Einstein eq. (Mondino–Suhr 2023); \exists nonsmooth variational approach?

Outlook: apply metric perspective in General Relativity

- can adapt tools from **metric (measure) geometry** originally developed in a Euclidean/Riemannian context, including
 - ▶ generalized notions of sectional/Ricci curvature (bounds)
 - ▶ comparison of spaces via (generalized) GH-distance etc.
- important in **general relativity** because lower Ricci curvature bounds are linked to **energy conditions** and **entropy** (McCann 2020) and used in singularity theorems (Cavalletti–Mondino 2024), splitting results (Braun et al 2025), Hawking area theorem (Ketterer 2025) etc.
- (smooth) optimal transport formulation of Einstein eq. (Mondino–Suhr 2023); \exists nonsmooth variational approach?
- wider approach to study **convergence and stability** of certain classes of spacetimes (Allen–B. 2022, Minguzzi–Suhr 2024, Sakovich–Sormani 2024+, Braun–Sämann 2025+)

Outlook: apply metric perspective in General Relativity

- can adapt tools from **metric (measure) geometry** originally developed in a Euclidean/Riemannian context, including
 - ▶ generalized notions of sectional/Ricci curvature (bounds)
 - ▶ comparison of spaces via (generalized) GH-distance etc.
- important in **general relativity** because lower Ricci curvature bounds are linked to **energy conditions** and **entropy** (McCann 2020) and used in singularity theorems (Cavalletti–Mondino 2024), splitting results (Braun et al 2025), Hawking area theorem (Ketterer 2025) etc.
- (smooth) optimal transport formulation of Einstein eq. (Mondino–Suhr 2023); \exists nonsmooth variational approach?
- wider approach to study **convergence and stability** of certain classes of spacetimes (Allen–B. 2022, Minguzzi–Suhr 2024, Sakovich–Sormani 2024+, Braun–Sämann 2025+)
- potential further applications: connections to **quantum gravity**, simplifications in **numerical relativity**?