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1. Structures on spaces

The space RN has several nice properties that allow to talk about convergence of sequences,
continuity of a function, and di�erentiation of a function, among others. In order to work on
more general spaces and be sure that such properties still hold, it is important to extrapolate
the structures that allow to de�ne such notions and to have results of interest in force. The
property we are interested in is continuity. We will not work on the more general structure
that allows for a de�nition of continuity, namely topological spaces (since there will be next
semester an entire course devoted to that!), but we will focus our attention to spaces with a
richer structure, namely metric ad normed spaces. In order to get to such objects, we will unveil
several structures of RN and investigate their relations.

The notion of continuity you learned in Analysis 1 is based on the convergence of sequences:
a function f : R → R is said to be continuous at a point x̄ ∈ R if

lim
n→∞

f(xn) = f(x̄),

for each sequence (xn)n∈N converging to x̄. That is f transforms converging sequences of the
domain space into converging sequences in the target space. Therefore, in order to generalize
the notion of continuity to more general spaces, we need to generalize the notion of convergence
of sequences. In RN , there is a canonical notion of convergence for sequences. Indeed, we say
that a sequence (xn)n∈N ⊂ RN converges to some x̄ ∈ RN , if

lim
n→∞

∥xn − x̄∥ = 0.

The idea behind such de�nition is that the points xn becomes closer and closer to the point x̄.
We translate this concept in a mathematical form by using the notion of (Euclidean) distance d
between the points xn and x̄. Such distance is the norm of the vector xn − x̄, namely

d(xn, x̄) := ∥xn − x̄∥.
In turn, this is de�ned by using the scalar (or inner) product on RN given by

∥v∥ := ⟨v, v⟩
1
2 :=

(
N∑
i=1

v2i

) 1
2

,

for v = (v1, . . . , vN ) ∈ RN . Therefore, the notion of convergence in RN is based on the
scalar product, which induces a norm, which induces a distance, which we used to translate
mathematically the heuristic concept of coming closer in a quantitative way. Next sections will
give conditions for generalizing these structures.

1.1. Scalar product spaces. In RN it is possible to do geometry. What are the main ingredients
that allow to do that? The answer is: the possibility to sum vectors and to multiply them by
a scalar, and having a notion of angle. The �rst points require to work with a vector space,
while the latter to have a function that, for each pair of vectors, determines a notion of angle
between them. This will be done through the concept of scalar (or inner) product by mimicking
what happens in R2. If we consider a general triangle (see Figure 1), by al-Kashi's Theorem
(the generalization of Pythagorean Theorem also known as the Theorem of cosine) we have that

c2 = a2 + b2 − 2bc · cosα.
By viewing the sides of the triangle as the vectors v, w, and v − w respectively, we get

∥v − w∥2 = ∥v∥2 + ∥w∥2 − 2∥v∥ · ∥w∥ · cosα.
By expanding the square on the left-hand side, and using the fact that

∥z∥2 =
N∑
i=1

z2i , (1.1)
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Figure 1. al-Kashi's Theorem

for all z ∈ RN , the above equality yields

cosα =
1

∥v∥ · ∥w∥

N∑
i=1

viwi. (1.2)

Therefore, taking also into consideration (1.1), we see from (1.2) that the function

(v, w) 7→
N∑
i=1

viwi (1.3)

is the crucial ingredient to de�ne a notion of angle between the vectors v and w. Note that the
de�nition of the cosine between v and w does not change if we multiply those vectors by any
positive real numbers. The Euclidean notion of angle, namely that that you learned in high
school, is based on the quantity (1.3). Therefore, a general notion of angle will depend on a
generalization of this quantity that has to enjoy similar properties as (1.3). The essential ones
are identi�ed in the following de�nition.

De�nition 1.1. Let (X,+, ·) be a vector space over R. A function ⟨·, ·⟩ : X ×X → R is said to
be a (real) scalar (or inner) product if:

(i) Linearity: ⟨λv + µz,w⟩ = λ⟨v, w⟩+ µ⟨z, w⟩, for every v, w, z ∈ X, and λ, µ ∈ R;
(ii) Symmetry: ⟨v, w⟩ = ⟨w, v⟩, for every v, w ∈ X;
(iii) De�niteness: ⟨v, v⟩ ≥ 0 for every v ∈ X, where equality holds if and only if v = 0.

In case the vector space (X,+, ·) is over C, then a function ⟨·, ·⟩ : X ×X → C is said to be a
(complex) scalar (or inner) product if (i), (iii) hold, and property (ii) is replaced by

(ii') ⟨v, w⟩ = ⟨w, v⟩, for every v, w ∈ X,

where λ is the conjugate of λ ∈ C. In either of the above cases, we say that (X, ⟨·, ·⟩) is a scalar
(or inner) product space.

Remark 1.2. Note that scalar products are structures on a vector space (X,+, ·), namely in
an environment where a notion of sum of vectors and of multiplication by a scalar is de�ned.

Moreover, note that (i) and (ii) imply that a scalar product is bilinear, namely, it is linear in
both of its entries.

Remark 1.3. The terminology scalar product means `product among vectors that gives a scalar',
not to be confused with the product of a vector with a scalar (of the underlining �eld). Note
that there is also a notion of vector product, which means `product among vectors that gives a
vector'. You talked about this latter notion in Calculus B when discussing Stokes' Theorem.

Remark 1.4. A scalar product can be seen as a way to de�ne a notion of similarity between
two vectors. Indeed, if v, w ∈ RN both have unit norm, then

⟨v − w, v − w⟩ = 2(1− cosα),

where α is the angle between v and w relative to the scalar product ⟨·, ·⟩. We can see that we can
interpret cosα as a measure of how di�erent v and w are. In particular, if cosα = 1, they are
the same, if cosα = 0 they have nothing to do with each other (namely, they are orthogonal),
while if cosα = −1 they are in completely opposite directions.
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For instance, in statistics, the covariance is, roughly speaking, a measure of the tendency of
two random variables to have a linear dependence. It is possible to see that the covariance is a
scalar product in the space of probabilities.

We now present a series of examples of scalar products on di�erent vector spaces.

Example 1.5 (Euclidean product). The most common example of a scalar product is the
canonical Euclidean scalar product on RN , given by

⟨v, w⟩ :=
N∑
i=1

viwi,

for v, w ∈ RN .

Example 1.6 (Generalization of the Euclidean product). Let A be an N × N matrix, and
consider the function

⟨v, w⟩A :=
N∑

i,j=1

aijviwj = ⟨w, (Av)⟩, (1.4)

for v, w ∈ RN . Assume that A is symmetric, and positive de�nite. Namely aij = aji for all
i, j = 1, . . . , N , and ⟨vT , (Av)⟩ ≥ 0 for all v ∈ RN , where ⟨·, ·, ⟩ is the Euclidean scalar product
de�ned in the previous example. Then, the above function de�ned in (1.4) is a scalar product
on RN (prove it!). Note that the standard Euclidean product corresponds to taking A to be the
identity matrix. When are two vectors orthogonal with respect to the scalar product ⟨·, ·⟩A?

Example 1.7 (The l2 scalar product). Consider the space X = l2 of sequences (an)n∈N such
that ∑

n∈N
|an|2 <∞.

By using the inequality (prove it!)

(a+ b)2 ≤ 2(a2 + b2),

it is possible to see that X is a vector space. For a := (an)n∈N, and b := (bn)n∈N ∈ l2, de�ne

⟨a, b⟩l2 :=
∑
n∈N

anbn.

Then, this function de�nes a scalar product on X (check it!).

Example 1.8 (The L2 scalar product). Consider the space X of functions f : (0, 1) → R that
are continuous and such that � 1

0
|f(x)|2 dx <∞.

It is possible to see that it is a vector space (actually for more general functions than just
continuous, and in general dimension). For f, g ∈ X de�ne

⟨f, g⟩L2 :=

� 1

0
f(x)g(x)dx.

Then, this is a scalar product on X (check it!).

As we said at the beginning, scalar product spaces are environments where it is possible to do
geometry like in RN . In particular, in a scalar product space (X, ⟨·, ·⟩), the following identities
hold (see Figure 2):

• The Pythagorean Theorem:

⟨v − w, v − w⟩ = ⟨v, v⟩+ ⟨w,w⟩, (1.5)

for all v, w ∈ X such that ⟨v, w⟩ = 0;
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Figure 2. Two equalities that hold in scalar product spaces: the Pythagorean
Theorem (on the left), and the parallelogram law (on the right).

• The parallelogram law :

2⟨v, v⟩+ 2⟨w,w⟩ = ⟨v + w, v + w⟩+ ⟨v − w, v − w⟩, (1.6)

for all v, w ∈ X.

It is also possible to de�ne the notion of orthogonal projection of a vector w on a vector v ̸= 0
as

Πv(w) :=
⟨v, w⟩
⟨v, v⟩

v. (1.7)

In turns, this allows to introduce the notion of orthogonal decomposition:

w = Πv(w) + z,

where z ∈ X is de�ned by the above identity. Note that ⟨z, v⟩ = 0. In particular, by using the
Pythagorean Theorem (see (1.5)), we get that

⟨w,w⟩ = ⟨Πv(w),Πv(w)⟩+ ⟨z, z⟩. (1.8)

This orthogonal decomposition allows to prove an important property of inner products, the so
called Cauchy-Schwarz inequality.

Proposition 1.9. Let (X, ⟨·, ·⟩) be an scalar product space. Then, for all v, w ∈ X, the Cauchy-
Schwarz inequality holds:

|⟨v, w⟩|2 ≤ ⟨v, v⟩ · ⟨w,w⟩,
and equality holds if and only if w = λv, for some λ ∈ R.

Proof. If v = 0 or w = 0, the inequality is trivial. Therefore, assume v, w ̸= 0, and write (see
(1.7))

w = Πv(w) + z.

Using (1.8), we get

⟨w,w⟩ = ⟨Πv(w),Πv(w)⟩+ ⟨z, z⟩ = ⟨v, w⟩2

⟨v, v⟩
+ ⟨z, z⟩ ≥ ⟨v, w⟩2

⟨v, v⟩
,

where the last inequality follows from the fact that ⟨z, z⟩ ≥ 0. This proves the desired inequality.
Note that z = 0 if and only if w = λv for some λ ∈ R. This concludes the proof. □

Remark 1.10. In in�nite dimensional vector spaces, the usual notion of a basis is basically
useless. In order to construct a good substitute, the idea is to �nd a dense family of vectors that
are orthonormal with respect to a given scalar product. In the case of the Lebesgue space L2

(see Example 2.13), the scalar product introduced in Example 1.8 is the most commonly used.
The study of such topic lies within the realm of Fourier Series, and it will be covered in the
course Introduction to Fourier series.
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1.2. Normed spaces. We now turn our attention to a more general structure on vector spaces.
We want to de�ne a notion of length of a vector. Such a notion has to be consistent with the
idea we have in mind of length: it has to be non-negative, zero only for the null vector, positively
homogeneous, and it has to satisfy the triangle inequality. Namely, the length of a composite
path is no more than the sum of the lengths of each part of the path.

De�nition 1.11. Let (X,+, ·) be a vector space over R. A function ∥ · ∥ : X → R is called a
norm on X if:

(i) Triangle inequality: ∥v + w∥ ≤ ∥v∥+ ∥w∥ for all v, w ∈ X;
(ii) Homogeneity: ∥λv∥ = |λ| ∥v∥, for all v ∈ X, and λ ∈ R;
(iii) De�niteness: ∥v∥ ≥ 0 for all v ∈ X, and equality holds if and only if v = 0.

We now present a series of examples of norms on di�erent vector spaces.

Example 1.12 (p-Minkowski norms in RN ). Let X = RN , and consider, for p ∈ [1,∞), the
function

∥v∥p :=

(
N∑
i=1

vpi

) 1
p

.

Then, ∥ · ∥p is a norm on RN , called the p-Minkowski norm. For p = 1 it is also known as the
taxicab norm, or Manhattan distance. To understand why, draw the unit ball of the norm ∥ · ∥1.
For p = 2, it is the usual Euclidean norm. Question: is the above function a norm, when p < 1?
If yes, prove it, if not show what property fails. [Hint: draw the set {x ∈ R2 : ∥x∥p ≤ 1}].

There is a natural relation between these norms (prove it!): if 1 ≤ p < q <∞, then

∥v∥q ≤ ∥v∥p,

for all v ∈ RN . Moreover, it is possible to de�ne a similar norm also for p = ∞. Indeed, for
v ∈ RN , de�ne

∥v∥∞ := max{v1, . . . , vN}.
Then, ∥ · ∥∞ is a norm on RN (check it!) called the in�nite (or maximum) norm. Moreover, it
holds that (prove it!)

lim
p→∞

∥v∥p = ∥v∥∞

for all v ∈ RN .

Example 1.13 (p-Minkowski norms for sequences). For p ∈ [1,∞), let X = lp of sequences
(an)n∈N such that ∑

n∈N
|an|p <∞.

By using the inequality (prove it!)

(|a|+ |b|)p ≤ 2p−1(|a|p + |b|p), (1.9)

it is possible to see that lp is a vector space. Moreover, for a = (an)n∈N the function

∥a∥lp :=

(∑
n∈N

|an|p
) 1

p

is a norm on lp. This fact is not trivial to prove. The di�cult property to check, for p ∈ (1,∞),
is the triangle inequality, also known as the Minkowski inequality.

Example 1.14 (p-Minkowski norms for functions). For p ∈ [1,∞), let Xp be the set of
continuous functions f : (0, 1) → R such that� 1

0
|f(x)|p dx <∞.
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By using (1.9), it is possible to see that Xp is a vector space. De�ne the function

∥f∥Lp :=

(� 1

0
|f(x)|p dx

) 1
p

,

for f ∈ Xp. Then, ∥ · ∥Lp is a norm on Xp. As for the case of sequences, the di�cult property to
check, for p ∈ (1,∞), is the triangle inequality, known as the Minkowski inequality. The reason
why it has the same name as the one in the previous example, is because, by using notions that
you will learn in Measure Theory, it is possible to see a series as the integration of the sequence
(an)n∈N, which is nothing but a function a : N → R, with respect to a certain measure. The
Minkowski inequality holds indeed for more general measures than the one used to compute
Riemann integrals.

Finally, for p = ∞, it is possible to de�ne a similar norm. Let X∞ be the space of continuous
functions f : (0, 1) → R such that

∥f∥∞ := inf{c ≥ 0 : |f(x)| ≤ c,∀x ∈ (0, 1)} <∞.

Then, it is possible to see that X∞ is a vector space, and that ∥ · ∥∞ is a norm on it. Moreover,
X∞ ⊂ Xp for all p ∈ [1,∞), and

lim
p→∞

∥f∥p = ∥f∥∞,

for all f ∈ X∞.

Example 1.15 (Supremum (or uniform) norm). Let X ⊂ RN be a set. Consider the space
B(X) of bounded scalar functions on X. Then, the function

∥f∥C0(X) := sup
X

|f |

for f ∈ B(X) is a norm on B(X), called the supremum (or uniform) norm. It is also denoted
by ∥ · ∥∞, since it coincides with the norm on L∞ de�ned in the previous example. Note that if
X is compact, then the supremum is attained (see Theorem 3.15).

Example 1.16 (Operator norm). Let L(RN ;RM ) be the space of linear maps between RN and
RM . It is easy to see that it is a vector space under the natural notion of sum of operators, and
multiplication with a scalar. For L ∈ L(RN ;RM ), we de�ne the function

∥L∥L(RN ;RM ) := sup{∥L(v)∥RM : ∥v∥ ≤ 1} = sup

{
∥L(v)∥RM

∥v∥RN

: v ̸= 0

}
,

where the last equality follows by the linearity of L. Then, ∥·∥L(RN ;RM ) is a norm on L(RN ;RM ).
The study of linear operators in in�nite dimensional vector spaces has a lot of interest and

applications. For instance, Quantum Mechanics can be introduced by using the notions of linear
operators between a certain class of in�nite dimensional vectors spaces (called Hilbert spaces),
and the notion of projections. Moreover, in the 20th century, mathematicians started looking
at linear Partial Di�erential Equations (you can get acquaintance with PDEs in Introduction
to Partial Di�erential Equations), as linear operators, rather than pointwise equalities (this
modern view will be presented in a forthcoming Master course on Sobolev spaces and PDEs).
The basics for the study of in�nite dimensional vector spaces and linear operators between them
will be covered in Introduction to Functional Analysis.

Remark 1.17. It seems quite natural that the norm of a vector is non-negative, and that the
only vector with zero norm is the null vector. However, generalization of the notion of norm are
needed in many applications. In particular, when the triangle inequality is generalized to

∥v + w∥ ≤ K(∥v∥+ ∥w∥)

or all v, w ∈ X, for some K > 0, we talk of a quasi-norm. An example is the generalization of
the p-Minkowski norm to the case p ∈ (0, 1).
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Moreover, when the de�nitenss is weakened to

∥v∥ ≥ 0

for all v ∈ X, we talk about a semi-norm. An example is given by

f 7→ ∥f ′∥C0((0,1)),

for functions f ∈ C1((0, 1)).

What is the relation between scalar product spaces and normed spaces? Next result shows
that a scalar product induces a norm.

Lemma 1.18. Let (X, ⟨·, ·⟩) be an scalar product space. Then, the function

∥v∥ := ⟨v, v⟩
1
2 (1.10)

is a norm on X.

The proof is left as an exercise for the reader.

Remark 1.19. In an inner product space X, the Cauchy-Schwarz inequality (see Proposition
1.9) writes as

|⟨v, w⟩| ≤ ∥v∥ · ∥w∥,
for all v, w ∈ X.

Do all norms come from a scalar product, by using the natural relation (1.10)? The answer is
no. Indeed, for p ̸= 2, the p-Minkowski norm on RN does not come from a scalar product (see
(1.6)), since it does not satisfy the parallelogram law (see (1.6)) (Prove it!).

Now the questions is if it is possible to give a characterization of norms that come from a
scalar product. It turns out that the parallelogram law is both a necessary and a su�cient
condition for a norm to come from a scalar product.

Proposition 1.20. Let (X, ∥ · ∥) be a normed space. If the parallelogram law (see (1.6)) holds,
then there exists a scalar product that induces that norm. In particular, the scalar product is
given by

⟨v, w⟩ := ∥v + w∥2 − ∥v − w∥2

4
, (1.11)

for all v, w ∈ X.

Proof. Step 1. We claim that, for each x, y ∈ X, it holds that

⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩.
Indeed, from the parallelogram law (see (1.6)) we get that

2∥x+ z∥2 + 2∥y∥2 = ∥x+ y + z∥2 + ∥x− y + z∥2,
from which we get

∥x+ y + z∥2 = 2∥x+ z∥2 + 2∥y∥2 − ∥x− y + z∥2 = 2∥y + z∥2 + 2∥x∥2 − ∥y − x+ z∥2,
where the last inequality follows from interchanging the role of x and y. By summing the above
two equalities, we get

2∥x+ y + z∥2 = 2∥x+ z∥2 + 2∥y + z∥2 + 2∥y∥2 + 2∥x∥2 − ∥y − x+ z∥2 − ∥x− y + z∥2, (1.12)
and, by using −z instead of z, also

2∥x+ y − z∥2 = 2∥x− z∥2 + 2∥y − z∥2 + 2∥y∥2 + 2∥x∥2 − ∥y − x− z∥2 − ∥x− y − z∥2. (1.13)
Thus, from (1.12) and (1.13) we get

⟨x+ y, z⟩ = ∥x+ y + z∥2 − ∥x+ y − z∥2

4

=
1

4

(
∥x+ z∥2 − ∥x− z∥2

)
+

1

4

(
∥y + z∥2 − ∥y − z∥2

)
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= ⟨x, z⟩+ ⟨y, z⟩,

as desired.

Step 2. From step 1 and using induction, we get that

⟨λx, y⟩ = λ⟨x, y⟩, (1.14)

for all x, y ∈ X, and λ ∈ N. Moreover, since

⟨−x, y⟩ = −⟨x, y⟩,

we get that (1.14) holds also for all λ ∈ Z. Now, let λ = p
q , for p, q ∈ Z \ {0}. Consider the

vector v := x
q . Then,

⟨p
q
x, y⟩ = p⟨x

q
, y⟩ = p⟨v, y⟩ = p

q
q⟨v, y⟩ = p

q
⟨qv, y⟩ = p

q
⟨x, y⟩,

which gives ⟨λx, y⟩ = λ⟨x, y⟩. Finally, for λ ∈ R, we argue by continuity. Namely, since the
continuous map

t 7→ 1

t
⟨tx, y⟩

coincides with the constant map ⟨x, y⟩ for all t ∈ Q, we conclude since two continuous maps
that are equal on a dense set, are equal everywhere. □

Finally, we would like to give a geometric characterization of a norm. We start with the
following question: can two di�erent norms have the same unit ball? The answer is no: a norm
is completely determined by its unit ball. Indeed, let (X, ∥ · ∥) be a normed space, and de�ne its
unit ball

B∥·∥ := {x ∈ X : ∥x∥ < 1}.
It is easy to see that if two norms have the same unit ball, then the two norms coincide (prove
it!). Therefore, de�ning a norm is equivalent to specifying its unit ball, namely a set. This raises
the question: what sets can be the unit ball of a norm? First of all, we identify some properties
of unit balls of norms.

Lemma 1.21. Let (X, ∥·∥) be a normed space. Then B∥·∥ is convex, and symmetric with respect
to the origin. That is, if

λx+ (1− λ)y ∈ B1,

for all x, y ∈ B1 and λ ∈ [0, 1], and

x ∈ B1 ⇔ −x ∈ B1,

respectively.

Proof. Exercise for the reader. Note that convexity is related to the triangle inequality, while
symmetry to homogeneity and de�niteness, which imply

∥λv∥ = |λ|∥v∥,

for all v ∈ X, and λ ∈ R. □

The question is now: are the above properties also su�cient for a set E ⊂ X to be the unit
ball of some norm? We will give an answer to this question only for X = RN . In particular, in
RN we know what a closed set is.

Proposition 1.22. Let E ⊂ RN be a bounded convex closed set (with respect to the Euclidean
topology) that is symmetric with respect to the origin, and that is not contained in any k-
dimensional linear space, with k ≤ N − 1. Then, there exists a unique norm on RN having
E as the closure of its unit ball.
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Figure 3. The construction of the norm of the vector v on the left. The proof
of the triangle inequality on the right.

Proof. The idea of the proof is the following: let v ∈ RN . Consider, R+v, the half-line in the
direction of v, namely

R+v := {tv : t ≥ 0}.
The assumption that E is not contained in any k-dimensional linear space with k ≤ N − 1,
together with the convexity of E and the fact that it is closed, ensures that (see Figure 3)

R+v ∩ E = {tv : t ∈ [0, a]}, (1.15)

for some a > 0. In particular, if ∥ · ∥ is the norm whose unit ball is E, then we must have
∥av∥ = 1. Thus, de�ning

∥v∥ =
1

a
,

is the only way for the function ∥ · ∥ (that we need to prove to be a norm), to have E as its unit
ball.

We formalize this idea mathematically as follows: for v ∈ RN de�ne

∥v∥ := min
{
t > 0 :

v

t
∈ E

}
. (1.16)

Note that, thanks to (1.15), we have that

R+v ∩ E =

{
v

t
: t ∈

[
1

a
,∞
]}

,

and our de�nition of the norm of v is 1/a.

Step 1: Homogeneity. Let v ∈ RN and λ > 0. Then

∥λv∥ = min

{
t > 0 :

λv

t
∈ E

}
= λmin

{
s > 0 :

v

s
∈ E

}
= λ∥v∥,

where in the second equality we used the change of variable s = t
λ . This proves that ∥λv∥ = λ∥v∥.

By symmetry of E, this is true also for λ < 0.

Step 2: De�niteness. It is clear that ∥v∥ ≥ 0 for all v ∈ RN . Moreover, ∥v∥ < ∞, since E is
not contained in any k-dimensional linear space with k ≤ N − 1. Moreover, since E is bounded,
we have that, if v ̸= 0, there exists t > 0 such that v

t ̸∈ E, and thus ∥v∥ > 0.

Step 3: Triangle inequality. Let v, w ∈ RN \ {0}. Then, by the de�nition of the norm (see
(1.16)), and the fact that E is closed, we have that

v

∥v∥
∈ E,

w

∥w∥
∈ E.
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By the convexity of E, we get that

v + w

∥v∥+ ∥w∥
=

∥v∥
∥v∥+ ∥w∥

v

∥v∥
+

∥w∥
∥v∥+ ∥w∥

w

∥w∥
∈ E,

which gives the triangle inequality.

Step 4: Compatibility. Finally, we prove that E is the unit ball of the norm ∥ · ∥. We start by
proving that E ⊂ B∥·∥. Let v ∈ E. Then

min
{
t > 0 :

v

t
∈ E

}
≤ 1,

and thus ∥v∥ ≤ 1. To prove the opposite inclusion, let w ∈ RN such that ∥w∥ ≤ 1. By using
the de�nition of the norm, we get that

min
{
t > 0 :

w

t
∈ E

}
≤ 1,

which implies that w ∈ E.

Step 5: Uniqueness. Uniqueness of the norm having E has the unit ball follows from
homogeneity. □

Example 1.23 (Crystalline norms). A class of sets that satisfy the assumptions of Proposition
1.22 is that of convex polygons in R2. The norms they generate are called crystalline norms, and
they have applications in materials science, for instance, in relation of the formation of crystals.
The reason why such norms are important is because they favor certain directions more than
other, and this dependence is piecewise constant.

1.3. Metric spaces. Finally, we consider an even more general structure on sets, one that
allows to de�ne the notion of distance between two points.

De�nition 1.24. Let X be a set. A function d : X ×X → [0,∞) satisfying

(i) Symmetry: d(x, y) = d(y, x), for all x, y ∈ X;
(ii) Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X
(iii) De�niteness: d(x, y) = 0 if and only if x = y,

is said to be a distance (or a metric) on X.

Remark 1.25. Note that a distance can be de�ned on a set ! Indeed, we do not need any
underlining linear structure on X.

Since a distance is de�ned on a set, this allows to de�ne it on more general ambient spaces
than those seen in the previous sections. We now present some interesting examples.

Example 1.26 (Hamming distance). For X = RN , consider the function d : RN × RN → N
given by

d(x, y) := #{i ∈ {1, . . . , N} : xi ̸= yi},
namely the number of di�erent entries of the vectors x, y ∈ RN . Then, it is a distance (prove
it!) called Hamming distance, used in information theory to determine how many substitutions
one has to do to transform one string of characters into another.

Example 1.27 (Distance on graphs). Let X be a connected graph, namely a set of vertexes
{p1, . . . , pk} and edges between them. We assume that for each pair of vertexes there is a path of
edges connecting them. We de�ne the distance between two vertices as the length of a shortest
path between them.

Example 1.28 (2-Wasserstein distance on empirical measures). The objects we are interested
in here are k indistinguishable particles in RN . We want to de�ne a notion of distance from
two of such objects. One way to do it, is to consider the best labeling of the particles that
gives the smallest sum of the Euclidean distance between particles with the same label. Namely,
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Figure 4. An example of a set, B, with small L1, but large Hausdor� distance,
from a set A.

we consider the family Sk of all possible permutations of k elements, and, for two sets X :=
{x1, . . . , xk}, and Y := {y1, . . . , yk} of k indistinguishable particles, we de�ne

d(X,Y ) := min

{
k∑

i=1

|xi − yσ(i)|2 : σ ∈ Sk

} 1
2

.

Such distance is called the 2-Wasserstein distance, and it is used in the �eld of Optimal Transport.

How to quantify how two sets are far apart from each other? We will see two ways to do it.

Example 1.29 (L1 distance on sets). The idea is to identify a set E ⊂ RN with its characteristic
function 1E de�ned as

1E(x) :=

{
1 if x ∈ E,
0 else.

The L1 norm between two sets E,F ⊂ RN is de�ned as

∥A−B∥L1 := ∥1A − 1B∥L1(RN ) = |A△B|,

where A△B := (A \B)∪ (B \A) is the symmetric di�erence between E and F . Namely, the L1

norm measures the volume of the non-overlapping region of E and F .
Suppose we are now interested in how two shapes are di�erent, but up to rigid motions. It

is possible to modify such a norm to obtain a distance that is invariant under rigid motions as
follows:

d(A,B) := inf{∥R(A)−B∥L1 : R : RN → RN is a rigid motion }.

Example 1.30 (Hausdor� distance). Let X be the family of all compact sets of RN . De�ne
the function

(A,B) 7→ max { sup{ d(x, Y ) : x ∈ X}, sup{ d(X, y) : y ∈ Y } } ,

for all A,B ∈ X, where, given a point p ∈ RN and a set E ⊂ RN , we de�ne

d(p,E) := inf{∥p− e∥ : e ∈ E}.

Then, it is a distance known as the Hausdor� distance, and it measures the maximum distance
needed to go from the point of A which is farthest away from B to B itself (or viceversa).

This distance is stronger than the L1 distance. Indeed, two sets have arbitrarily small L1

distance and arbitrarily large Hausdor� distance. For instance, the set B in Figure 4 has small
L1 distance from A, but a large Hausdor� distance from A.

Next result shows that a norm induces a distance.
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Lemma 1.31. Let (X, ∥ · ∥) be an normed space. Then, the function d∥·∥ : X ×X → R given
by

d∥·∥(x, y) := ∥x− y∥
is a distance on X.

The proof is left as an exercise for the reader.

Remark 1.32. Note that the above result implies that all of the example of scalar product
spaces, and metric spaces given in the previous sections are also examples of metric spaces.

In particular, the metric on the space of bounded functions induced by the supremum norm
(see Example 1.15) is called the uniform metric.

Do all distances on vector spaces come from a norm? The answer is no. Indeed, consider the
function d : R× R → [0,∞) given by

d(x, y) :=

{
0 if x = y,
1 else.

(1.17)

Then, d is a distance (prove it!), but it cannot come from a norm. Indeed, if by absurd there
was a norm ∥ · ∥ on R inducing the above distance, namely such that

d(x, y) = ∥x− y∥.
Then, by taking |λ| ≠ 1 and x ̸= y, we would have

1 = d(λx, λy) = ∥λx− λy∥ = |λ|∥x− y∥ = |λ| d(x, y) = |λ|,
which is a contradiction with the choice of λ.

There is a simple way to characterize distances on a vector space that come from a norm.

Proposition 1.33. Let (X, d) be a metric space, and assume that X is a vector space. Then,
the distance d comes from a norm if and only if it is homogeneous and translation invariant.
Namely, if for all x, y, z ∈ X and λ ∈ R it holds

d(λx, λy) = |λ|d(x, y),
and

d(x+ z, y + z) = d(x, y),

respectively.

The proof is left as an exercise for the reader.

Remark 1.34. If (X, d) is a metric space, and A ⊂ X is any subset, then (A, d) is also a metric
space. This is something that you cannot do with a norm, since you need to ask the subset A
to have a linear structure in order to obtain a metric. As an example, consider X = R3, and
A = S2, the unit sphere. Then, the Euclidean norm restricted to S2 is not a norm on S2. On
the other hand, if we consider the distance induced by the Euclidean metric, then its restriction
to S2 is a metric on S2.

Example 1.35. Let X = S2 be the unit sphere in R3. Given two points p, q ∈ S2, we de�ne

d(p, q) := inf

{� 1

0
|γ′(t)| dt : γ : [0, 1] → S2 di�erentiable and s.t. γ(0) = p, γ(1) = q

}
.

Then, d is a distance on S2. Note that this is an example of a distance that is induced by a
notion of length of curves.

Remark 1.36. We would like to stress again that a metric, and therefore a norm, is a way to
understand a particular relation between objects in a set. Di�erent metrics, or norms, on the
same space correspond to di�erent points of view on the same class of objects. For instance, on
the space X = C1((0, 1)) we can consider the norms

∥f∥C0 , ∥f∥C1 := ∥f∥C0 + ∥f ′∥C0 .
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Take, for n ∈ N \ {0}, the function fn : [0, 1] → R given by

fn(x) :=


nx if x ∈

[
0, 1

n2

]
,

−nx+ 2
n if x ∈

[
1
n2 ,

2
n2

]
,

0 if x ∈
[

2
n2 , 1

]
,

Then

∥fn∥C0 =
1

n
, ∥fn∥C1 = n.

Thus, for increasing values of n, the C0 norm of fn vanishes, while its C1 norm blows up.

1.4. Topological spaces. In this section, we brie�y mention the idea of the notion of topological
spaces. Deeper investigations on this topic will be undertaken in the next semester's course
Topology. We started by trying to understand what are the key ingredients needed to talk about
convergence of sequences, in order to extend such notion to more general spaces, and, in turn,
also the notion of continuity of functions. In a metric space, it is possible to de�ne a notion
of convergence based on the distance d. Such notion of convergence is quantitative, namely we
want the number d(xn, x̄) to go to zero, in order to say that xn is closer and closer to x̄. If we
drop the requirement of having a quantitative knowledge of how close two points are, we can
generalize by noting that d(xn, x̄) < r, for some r > 0, is equivalent to say that xn ∈ B(x̄, r).
In particular, the condition

lim
n→∞

d(xn, x̄) = 0

is equivalent to require that
xn ∈ B(x̄, r),

for all n ≥ n̄, for some n̄ ∈ N. Therefore, it is possible to use balls to de�ne the notion of being
arbitrarily close to a point x̄. Note that, since open sets are unions of balls, all of the above are
equivalent to require that, for each open set U ⊂ RN that contains x̄, there exists n̄ ∈ N such
that

xn ∈ U

for all n ≥ n̄. This allows to generalize the notion of convergence by considering a set X, and a
family of open sets (Oi)i ∈ I satisfying similar properties to those that open sets in RN enjoy:
the family (Oi)i ∈ I is closed under arbitrary union, �nite intersection, it contains the empty set
and the entire space X. This is the notion of topological space. Fine properties will be studied
in the course Topology, next semester. For what concerns us, we will de�ne several notions that
we will need in two ways: a sequential way, and a topological way. In metric spaces, we will
prove that the two notions coincide, but sometimes it will be useful to use one or the other. The
reason why in metric spaces (or, more in general, in nice topological spaces) the sequential and
the topological notion coincide, is because in a metric spaces (X,d) we have, for each x ∈ X,
a countable sequence of balls (B(x, 1/i))i∈N\{0}. This allows to consider such family instead of

the uncountable family of open sets containing the point x. In particular, since a sequence is a
countable object, we can relate sequences with this family of balls.

Finally, a comment on topological spaces. You might think that, if you are interested in
Analysis, you won't need such abstract and complicated notion of topological spaces, since
the good old RN is good enough. Unfortunately (or, better, fortunately!), you couldn't be more
wrong! Modern (and even the not so modern) directions of research and applications in (applied)
analysis, engineering, machine learning, use topological spaces, where the topology used does
not come from a norm! And this is not because mathematicians like to make things complicated:
it's the way we understand/investigate the world around us that requires us to work with such
mathematical structures.
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2. Convergence of sequences and compactness

We have now introduced the structures that allow us to talk about convergence of sequences.
This notion will depend on the metric we choose: di�erent metrics will give di�erent notions of
convergence.

2.1. Convergence of sequences in metric spaces. When talking about sequences, there are
two main notations in use: {an}n∈N, and (an)n∈N. From the technical point of view, the latter is
the correct one, since a sequence in X is a function N → X, and therefore we can identify it with
a vector (an)n∈N = (a1, a2, . . . , an, . . . ) with countably many entries. On the other hand, the
notation {an}n∈N refers to a set whose elements are a1, a2, . . . , an, . . . . In this case, the order of
the elements is not taken into account, and that is the issue with that notation. The advantage
of the latter notation, is that it is possible to write {an}n∈N ⊂ X instead of writing `let (an)n∈N
be a sequence in X'. In (modern, or classical) literature, both notations are in use.

De�nition 2.1. Let (X, d) be a metric space, (an)n∈N a sequence, and a ∈ X. If

lim
n→∞

d(an, a) = 0, (2.1)

we say that the sequence converges to a with respect to the metric d, or in the metric d. In this

case, we write an → a with respect to (w.r.t.) d, or an
d→ a, or

lim
n→∞

an = a,

if the metric has been speci�ed.

Remark 2.2. In a normed space, condition (2.1) writes as

lim
n→∞

∥an − a∥ = 0,

while in a scalar product space

lim
n→∞

⟨an − a, an − a⟩ = 0.

Note that this latter expression expands as

lim
n→∞

[
∥an∥2 + ∥a∥2 − 2⟨an, a⟩

]
= 0.

A �rst property of a limit of a sequence in a metric space is that it is unique.

Lemma 2.3. Let (an)n∈N be a sequence on a metric space converging to some a ∈ X. If the
same sequence converges to b ∈ X, then a = b.

The proof is left as an exercise for the reader.

Remark 2.4. The above result seems trivial, but it is, in general, not true on topological spaces.

We now investigate the relation of sequences and subsequences with respect to convergence.
A subsequence is an increasing selection of elements of the original subsequence. Namely, a
subsequence of (an)n∈N is (ani)i∈N, where i 7→ ni is increasing.

Lemma 2.5. Let (an)n∈N be a sequence on a metric space (X, d) converging to some a ∈ X in
the metric d. Then, every subsequence (ani)i∈N converges to a.

The proof is left as an exercise for the reader.
The question is now: is it true that if a sequence (an)n∈N is such that there exists a ∈ X for

which every subsequence converges to a, then the entire sequence converges to a as well? The
answer is yes, and the proof is easy. A more useful property is a version of the above claim with
a weaker assumption.

Proposition 2.6 (Urysohn property). Let (an)n∈N be a sequence in a metric space satisfying
the following property: there exists a ∈ X such that every subsequence (ank

)k∈N has a further
subsequence converging to a. Then, the entire sequence converges to a.
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Figure 5. The idea of the de�nition of a Cauchy sequence: elements gets closer
and closer to each other.

Proof. Assume by contradiction that the sequence (an)n∈N does not converge to a ∈ X. Then,
there exists ε > 0 and a subsequence (ank

)k∈N such that

d(ank
, a) > ε,

for all k ∈ N. This is a contradiction, since from such a subsequence we cannot extract any
further subsequence converging to a. □

We would like to understand the behaviour of converging sequences. Heuristically, if a
sequence converges to a limit, then all of its elements become closer and closer to each other.
We formalize this idea as follows (see Figure 5).

De�nition 2.7. A sequence (an)n∈N in a metric space is said to be a Cauchy sequence if for
every ε > 0 there exists n̄ ∈ N such that

d(an, am) < ε,

for all n,m ≥ n̄.

Remark 2.8. Note that the index n̄ ∈ N depends on ε. Smaller ε's will give larger n̄'s.

As expected, converging sequences are Cauchy sequences.

Lemma 2.9. Let (an)n∈N be a converging sequence in a metric space. Then it is a Cauchy
sequence.

The proof is left as an exercise for the reader.
For Cauchy sequences, it is su�cient to check the convergence to a limit of a subsequence in

order to deduce the convergence of the entire sequence.

Lemma 2.10. Let (an)n∈N be a Cauchy sequence in a metric space such that there exists a
converging subsequence. Then, the entire sequence is converging.

Proof. Let (ani)i∈N be the converging subsequence, and let a ∈ X be its limit. We want to prove
that

lim
n→∞

d(an, a) = 0.

For, we will show that for every given ε > 0, we can �nd n ∈ N such that

d(an, a) < ε, (2.2)

for all n ≥ n. Fix ε > 0. Since (ani)i∈N converges to a, there exists i0 ∈ N such that

d(ani , a) <
ε

2
, (2.3)
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Figure 6. The C1 approximation of the absolute value.

for all i ≥ i0. Moreover, since (an)n∈N is a Cauchy sequence, let n0 ∈ N be such that

d(an, am) <
ε

2
,

for all n,m ≥ n0. Let n := max{nio , n0}. Therefore, if n ≥ n, by the triangle inequality and
using (2.2) and (2.3) we get

d(an, a) ≤ d(an, ani) + d(ani , a) <
ε

2
+
ε

2
= ε.

This concludes the proof. □

Intuitively, we would expect also the opposite to hold, since if all elements of a sequence
become closer and closer, then the sequence must converge to some limiting point. This poses
the question: do all Cauchy sequences converge to a limit? The answer is no! For instance,
consider the set X := R2 \ {0} endowed with the Euclidean metric Then, the sequence (an)n∈N
de�ned as

an :=

(
1

n+ 1
, 0

)
is a Cauchy sequence, but does not have a limit in X. The problem is that the expected limiting
point does not belong to X. This suggests to give a name to those metric spaces in which
Cauchy sequences admit a limit.

De�nition 2.11. A metric space where all Cauchy sequences admit a limit is called complete.
A normed space where all Cauchy sequences admit a limit is called a Banach space. An inner
product space where all Cauchy sequences admits a limit is called an Hilbert space.

How does a metric space which is not complete look like? Well, we might think about it
as having holes. This can be seen by considering the example above, the punctured R2, where
the missing point is evident, but it can be more subtle, especially in in�nite dimensional vector
spaces. For instance, consider the space C1([−1, 1]) endowed with the C0 norm (see Example
1.15). Then, the sequence (fn)n∈N given by (see Figure 6)

fn(x) :=

√
x2 +

1

n

is a Cauchy sequence, but does not admit a limit in C1([−1, 1]). This is because the expected
limiting object, namely f(x) := |x|, is not in the space X. Even more dramatically, each
continuous function on [−1, 1] can be approximated uniformly by a sequence of smooth functions
(by using, for instance, the technique of convolution).

In this case, it is possible to �ll the holes, by simply considering the space C0([−1, 1]). The
same idea is behind the notion of closure of a space with respect to a distance. Note that if we
took the C1 norm (see Remark 1.36), the space C1([−1, 1]) would have no holes. This is another
example that illustrates how a metric on a space determines its properties, namely how we look
at the space itself.
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De�nition 2.12. Let (X, d) be a metric space, and let Y ⊂ X. We de�ne the closure of Y in
X with respect to the metric d, by

Y
d
:= {a ∈ X : ∃ (an)n∈N ⊂ Y s.t. an

d→ a}.

Example 2.13 (Lp spaces). For p ∈ [1,∞), consider the space Xp and the norm ∥ · ∥Lp de�ned
in Example 1.14. Is the space (Xp, ∥ · ∥Lp) a Banach space? The answer is no. Indeed, consider
the sequence (fn)n∈N in Xp given by

fn(x) :=


1 if x ∈

[
0, 12
]
,

−nx+ n
2 + 1 if x ∈

[
1
2 ,

1
2 + 1

n

]
,

0 if x ∈
[
1
2 + 1

n , 1
]
.

Then, for n,m ∈ N (without loss of generality we can assume m > n) we have

∥fn − fm∥p =
� 1

2
+ 1

n

1/2
|fn(x)− fm(x)|p dx ≤

� 1
2
+ 1

n

1/2
|fn(x)|p dx ≤ 1

n
,

where in the �rst inequality we used the fact that fm ≤ fn, where the second follows from
|fn(x)| ≤ 1 for all n ∈ N and x ∈ [0, 1]. Therefore, (fn)n∈N is a Cauchy sequence, but (fn)n∈N
does not have a limit in Xp. Indeed, it should be the function f : [0, 1] → R given by

f(x) :=

 1 if x ∈
[
0, 12
]
,

0 if x ∈
[
1
2 , 1
]
,

(2.4)

Since f is not continuous, it does not belong to Xp. This raises the question of what is the
closure of Xp in the Lp-norm? The resulting space is called Lebesgue space Lp, and it is the
space of measurable1 functions with �nite p-moment. We will encounter this space later in the
course.

Example 2.14 (Sobolev spaces). For p ∈ [1,∞), let Zp be the space of C1 functions f :
(−1, 1) → R such that

∥f∥W 1,p :=

[� 1

−1
|f(x)|p dx+

� 1

−1
|f ′(x)|p dx

] 1
p

<∞.

The function ∥ · ∥W 1,p is a norm, called the Sobolev norm. Is Zp complete in this norm? The
answer is no. Indeed, consider the sequence of functions (fn)n∈N given by

fn(x) :=

√
x2 +

1

n
.

Then, it is easy to see that

lim
n→∞

∥fn − f∥W 1,p = 0,

where f(x) := |x|, but f does not belong to Zp. The completion of Zp is the Sobolev norm is
denoted byW 1,p((0, 1)), and it is called the Sobolev space. More interesting examples of functions
that are in higher dimension, where everywhere unbounded functions belong to Sobolev spaces.
Such spaces are nowadays used in several branches of Analysis and Engineering. In particular,
they are the modern space used to study PDEs, both from an analytical and numerical point
of view. You can discover more in the Master course on Sobolev spaces and PDEs, and in the
Bachelor course Numerical Methods for PDEs, respectively.

1Here we are a bit unprecise in the meaning of measurability of a function. The correct notion to consider is
that of Lebesgue measurability, that will be introduced later in the course.
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Example 2.15 (Functions vanishing at in�nity). Consider the space Cc(RN ) of continuous
functions f : RN → R such that, for each of them, there exists r > 0 (not the same for all of
functions in Cc(RN )) for which f ≡ 0 outside B(0, r). The space Cc(RN ) is called the space of
functions with compact support. We endow the space Cc(RN ) with the supremum norm. Is the
space complete? The answer is no! The closure of the space Cc(RN ) in the supremum norm is
denoted by C0(RN ) and is called the space of functions vanishing at in�nity. It is possible to
see that a function f : RN → R belongs to C0(RN ) if and only if, for each ε > 0, there exists
r > 0 such that |f(x)| < ε for all x ∈ RN with |x| > r.

Remark 2.16. Note that the closure of the same space with respect to di�erent metrics will
give di�erent objects. For instance, the closure of C0([0, 1]) with respect to the C0 norm will be
C0([0, 1]) itself (we will prove it in a couple of classes), while its closure with respect to the Lp

norm W 1,p, for some p ∈ [1,∞) will be a larger space. For instance, the function f de�ned in
(2.4) is in Lp([0, 1]) \ C0([0, 1]).

It is indeed the combination of the space X and the metric d that determines whether or not
the space is complete.

2.2. Compactness in metric spaces. Not all sequences converge to a limit. Not even all
sequences admit a converging subsequence. A question is whether there are su�cient conditions
ensuring the existence of a converging subsequence. This will depend on a property of the region
of the space the sequence is in.

De�nition 2.17. Let (X, d) be a metric space. We say that a setK ⊂ X is sequentially compact
if every sequence (an)n∈N with an ∈ K has a subsequence converging to some a ∈ K.

We now want to investigate properties of compact sets. We will prove that, in a metric space,
sequentially compact sets are bounded, closed, and complete.

De�nition 2.18. Let (X, d) be a metric space, and E ⊂ X. We say that E is bounded if

diam(E) := sup{d(x, y) : x, y ∈ E} <∞.

The above quantity is called the diameter of E.

Lemma 2.19. A sequentially compact set in a metric space is bounded.

Proof. Let E ⊂ X be sequentially compact. Assume by contradiction that it is not bounded.
We will construct a sequence (an)n∈N with no converging subsequence. This sequence will be
constructed inductively. Let a1 ∈ E. Then, since we are assuming E to be not bounded, there
exists a2 ∈ E with

d(a1, a2) ≥ 1.

Now, suppose we have constructed a1, . . . , an. We choose an+1 ∈ E such that

d(an+1, ai) ≥ 1, for all i ∈ {1, . . . , n}.
We repeat this process for every n ∈ N. Note that

d(ai, aj) ≥ 1, for all i ̸= j ∈ N. (2.5)

Now, the sequence (an)n∈N does not have any converging subsequence. Indeed, if (ani)i∈N was
a converging subsequence, then by Lemma 2.9 it would be a Cauchy sequence. This is in
contradiction with (2.5). Therefore, the assumption that E is not bounded is absurd. □

Lemma 2.20. A sequentially compact set in a metric space is complete.

The proof is left as an exercise for the reader.

De�nition 2.21. A set C ⊂ X is said to be sequentially closed if a sequence (an)n∈N, with
an ∈ C, converges to some a ∈ X, then a ∈ C.

Lemma 2.22. A sequentially compact set in a metric space is sequentially closed.
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The proof is left as an exercise for the reader.
We now want to understand, if the sequentially closed bounded sets are sequentially compact,

since the former two are usually easier to verify than the latter. It turns out that this is the case
for �nite dimensional vector spaces.

Theorem 2.23 (Bolzano-Weierstraÿ Theorem). A set K ⊂ RN is sequentially compact if and
only if it is bounded and sequentially closed.

Proof. Step 1. Let us prove that a sequentially compact setK ⊂ RN is bounded and sequentially
closed. Thanks to Lemma 2.19 we get that K is bounded. To prove that it is sequentially closed,
let (an)n∈N with an ∈ K converging to some a ∈ X. Since K is sequentially compact, we get
that there exists a subsequence (ani)i∈N converging to some b ∈ K. Therefore, by Lemma 2.3
a = b, and a ∈ K.

Step 2. Let K ⊂ RN be a sequentially closed bounded set. Let (an)n∈N be a sequence in
K. The idea is the following. You know from Analysis 1, that a sequence (xn)n∈N of elements
of R has a converging subsequence (since you can extract a monotone sequence). Thus, by
arguing componentwise, we can extract a �nite number of subsequences ensuring the desired
convergence.

We will construct a subsequence of indexes (ni)i∈N such that

lim
i→∞

ani = a,

for some a ∈ K, as follows. Let (n1i )i∈N be a subsequence of indexes such that there exist a1 ∈ R
with

lim
i→∞

a1n1
i
= a1, (2.6)

where a1
n1
i
is the �rst component of the vector an1

i
. Then, from the sequence of indexes (n1i )i∈N

it is possible to extract a subsequence, that for the sake of notation2 we will denote by (n2i )i∈N,
such that

lim
i→∞

a2n2
i
= a2,

for some a2 ∈ R. Note that, since (n2i )i∈N is a subsequence of (n1i )i∈N, from (2.6) we get that

lim
i→∞

a1n2
i
= a1.

Arguing N times in a similar way, we �nd a sequence of indexes (nNi )i∈N, and a
1, . . . , aN ∈ R

such that

lim
i→∞

ak
nN
i
= ak,

for all k ∈ {1, . . . , N}. De�ning a := (a1, . . . , aN ) ∈ RN , and setting ni := nNi for all i ∈ N, we
get that

lim
i→∞

ani = a,

as desired. □

Remark 2.24. Note that the proof we used to prove the Bolzano-Weierstraÿ Theorem does not
hold in in�nite dimensional vector spaces with a basis that is more than countable. Such vector
spaces are, however, the interesting and useful ones.

Remark 2.25. Let (X, ∥ · ∥) be a normed space. Is the closed unit ball

{x ∈ X : ∥x∥ ≤ 1}

2Otherwise we would have had to denote it by nij .
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sequentially compact? The answer is, in general, no. Indeed, consider the space X = C0([0, 1])
endowed with the C0 norm, and the sequence (fn)n∈N given by

fn(x) :=



1 if x ∈
[
0, 1

2(n+1)

]
,

−2n(n+ 1)x+ (n+ 1) if x ∈
[

1
2(n+1) ,

1
2n

]
,

0 if x ∈
[

1
2n , 1

]
.

Then ∥fn∥C0 = 1 for all n ∈ N, and

∥fn − fm∥C0 = 1,

for all n ̸= m. Therefore, there cannot be any converging subsequence.
This might seem quite surprising, since we expect the closed unit ball to be the stereotypical

example of compact set. This is the case for �nite dimensional vector spaces (see Theorem
2.23). Nevertheless, in�nite dimensional vector spaces are more complicated objects, where our
�nite-dimensional fails, and we need to appeal to the power of mathematics. This is quite an
issue when we have a sequence of objects (an)n∈N with uniformly bounded norm, and we would
like, up to a subsequence, to claim that it has a limit. To �x such an issue, mathematicians
developed the notion of weak convergence, which is related to the continuity of scalar linear maps
de�ned on the space.

Finally, we introduce the topological notion of compactness, and we show that, in metric
space, it coincides with that of sequential compactness.

De�nition 2.26. Let X be a set, B ⊂ X. A family of sets (Ai)i∈I ⊂ X, where I is any set of
indexes, such that

B ⊂
⋃
i∈I

Ai

is said to cover B.

De�nition 2.27. Let (X, d) be a metric space. For x ∈ X, and r > 0, the set

B(x, r) := {y ∈ X : d(y, x) < r},

is called the (open) ball of center x and radius r.

De�nition 2.28. Let (X, d) be a metric space. We say that a set K ⊂ X is compact if, for
every family (Ai)i∈I of open balls that covers K, it is possible to extract a �nite subfamily
Ai1 , . . . , Aik that covers K.

Remark 2.29. Note that the set of indexes I can be more than countable.

Lemma 2.30. A compact set in a metric space is complete.

The proof is left as an exercise to the reader.

An important property of spaces is the possibility to approximate every element of the space
by using a �xed countable family of objects. The reason why we want to do it with at most
countably many objects is because that is the practical limit of human operations: you do one
thing, then another, then another, and so on, and they can be at most countably many. Moreover,
this is also what (standard) computers can handle: �nite number of operations. Therefore, if we
know that in countably many steps we can converge to any object of our space, in a large, but
�nite number of steps, we can approximate any object with any degree of accuracy we want.

De�nition 2.31. Let (X, d) be a metric space. A set A ⊂ X is said to be dense if every point
x ∈ X is the limit of a sequence (ai)i∈N ⊂ A.
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Remark 2.32. As for other notions like compactness and continuity, there is a topological and
a sequential notion of closure of a set A ⊂ X. The topological notion is the following: the set
Ā ⊂ X is the smallest closed set that contains A. The sequential notion is the following: the set
Ā ⊂ X is the set of all limiting points of sequences in A. If X is a metric space, the two notions
coincide. Try to prove it!

De�nition 2.33. Let (X, d) be a metric space. A subset A ⊂ X is called separable if there
exists a countable set {ai}i∈N ⊂ A that is dense in A.

Lemma 2.34. A compact set in a metric space is separable.

Proof. Let K ⊂ X be a compact set. We will construct a dense set {xi}i∈N ⊂ K as follows: for
each k ∈ N\{0}, we will construct a �nite sequence of points yk1 , . . . , y

k
nk

∈ K such that, for each
x ∈ K, there exists one of them whose distance from x is less than 1/k. The set {xi}i∈N ⊂ K
will then be the union of all of these points:

{xi}i∈N :=
∞⋃
k=1

{
yk1 , . . . , y

k
nk

}
.

By construction, this set is countable, and dense in K.
So, �x k ∈ N \ {0}, and consider the coverings of K given by(

B

(
x,

1

k

))
x∈K

.

Since K is compact, there exists �nitely many points yk1 , . . . , y
k
nk

∈ K such that

K ⊂
nk⋃
i=1

B

(
yki ,

1

k

)
.

These points satisfy the property claimed above. □

In a metric spaces, compactness is equivalent to sequential compactness. This will turn out
to be useful for arguments that we will use later in the course.

Theorem 2.35. Let (X, d) be a metric space. Then, a set K ⊂ X is sequentially compact if
and only if it is compact.

Proof. Step 1. Assume K ⊂ X is compact. Assume by contradiction that it is not sequentially
compact. We will construct a covering that does not admit any �nite subcovering as follows.
Let (ai)i∈N ⊂ K be a sequence that does not admit any converging subsequence.

We �rst claim that, for each x ∈ X, it is possible to �nd r(x) > 0 such that the ball B(x, r(x))
contains only a �nite number of elements of (ai)i∈N. Indeed, if there was a point x ∈ X for which
B(x, 1/n) contains in�nitely many elements of the sequence (ai)i∈N, for all n ∈ N \ {0}, then,
by selecting an element ain from each of such intersections, we would get that the subsequence
(ain)n∈N converges to x.

Now, by compactness, from the covering (B(x, r(x)))x∈X we can extract a �nite subcovering
B(x1, r(x1)), . . . , B(xk, r(xk)) of K. Since, by construction, each ball B(xi, r(xi)) intersects only
�nitely many elements of the sequence (ai)i∈N, also

k⋃
i=1

B(xi, r(xi))

intersects only a �nite number of ai's. Since (ai)i∈N ⊂ K, this is a contradiction with the fact
that B(x1, r(x1)), . . . , B(xk, r(xk)) covers K.

Step 2. Assume K ⊂ X is sequentially compact. Let (Ai)i∈I be an open covering of K, where
I is in�nite. Assume that it does not admit any �nite subcover. The idea is to understand when
this is possible, and to get a contradiction. It turns out that not admitting a �nite covering is
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possible only in two cases: the open set case, and the unbounded set case. Think about the sets
(0, 1), and (0,+∞), respectively. Both will be incompatible with the sequential compactness of
the set. To identify which case we are in, we look at the size of elements in the covering around
points of the set. If the size is shrinking, we are in the �rst case, while if it is constant, we are
in the second. Note that the two cases are not mutually exclusive.

For each x ∈ X, let

r(x) := sup{r > 0 : B(x, r) ⊂ Ai, for some i ∈ I}.

Note that r(x) ∈ (0,+∞], since there exists at least a set Ai that contains x. De�ne

r := inf{r(x) : x ∈ X}.

We distinguish two cases: r = 0 (the open set case), and the case r > 0 (the unbounded set
case). In the former, it is possible to �nd a sequence (xn)n∈N\{0} such that r(xn) < 1/n for all
n ∈ N\{0}. Since K is sequentially compact, up to a subsequence (that, for the sake of notation
we do not relabel), we have that xn → x, for some x ∈ K. Then, there exists n0 ∈ N such that

xn ∈ B

(
x,
r(x)

2

)
,

for all n ≥ n0. Thus, r(xn) ≥ r(x)/2 for all n ≥ n0. This contradicts the assumption r = 0.
Next, assume r > 0. Let x1 ∈ K. Then, since by assumption B(x1, r/2) does not cover the

entire K, it is possible to �nd x2 ∈ K \B(x1, r/2). We now �nd, for each k ∈ N, a point

xk ∈ K \
k−1⋃
i=1

B

(
xi,

r

2

)
.

This, the sequence (xk)k∈N is such that d(xi, xj) ≥ r, for all i ̸= j ∈ N. Thus, it cannot admit
any converging subsequence, contradicting the sequential compactness of K.

Therefore, we get a contradiction in both cases, and therefore the absurd assumption cannot
hold. This concludes the proof. □

Corollary 2.36. A compact set in a metric space is complete, bounded, and sequentially closed.

Corollary 2.37. A sequentially compact set in a metric space is separable.

2.3. Comparison of metrics and norms. The notion of convergence gives a way to understand
a space with respect to the metric d, and to compare two metrics on the same space. Heuristically,
since metrics are a way to give a notion of convergence, two metrics d1 and d2 are equivalent if
a sequence converge to a certain limit with respect to d1 if and only if it converges to the same
limit with respect to d2.

De�nition 2.38. We say that two metrics d1 and d2 on a set X are equivalent if, for every
x ∈ X there exist α, β > 0 such that

α d1(x, y) ≤ d2(x, y) ≤ β d1(x, y),

for all y ∈ X. If the constants α and β are independent of x ∈ X, we say that the metrics d1
and d2 are strongly equivalent.

Remark 2.39. For normed spaces, the condition for strong equivalence of the metric induced
by the norm writes as

α∥x∥1 ≤ ∥x∥2 ≤ β∥x∥1,
for all x ∈ X.

An important result is that all norms are equivalent on �nite dimensional vector spaces.

Theorem 2.40. All norms on RN are strongly equivalent.
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Proof. Let ∥ · ∥1, and ∥ · ∥2 be two norms on RN . Let

B1 := {x ∈ RN : ∥x∥1 ≤ 1}.
Then, by using the homogeneity of the norm, we get that B1 is bounded in the ∥ · ∥2 norm.
Moreover, B1 is closed in the Euclidean topology. Therefore, by Theorem 2.23 we get that
B1 is sequentially compact with respect to ∥ · ∥2. Finally, using the fact that the continuous
function f(x) := ∥x∥2 (see Lemma 3.8 and Remark 3.9) admits a minimum and a maximum on
B1 (thanks to Theorem 3.15), we get that there exists 0 < α ≤ β <∞ such that

α ≤ ∥x∥2 ≤ β,

for all x ∈ B1. By using the homogeneity of the norm, we conclude. □

Remark 2.41. The above result does not hold in in�nite dimensional vector spaces. An example
(prove it!) is given by the C0 and the C1 norms on C1([0, 1]).

Remark 2.42. A similar results does not hold for metrics. Even in �nite dimensional vector
spaces, not all metrics are equivalent. For instance, in R, consider the distances

d1(x, y) :=

{
0 if x = y,
1 else,

d2(x, y) := |x− y|.

Then, the two metrics are not equivalent (prove it!).



26 RICCARDO CRISTOFERI

3. Continuous functions

Continuity, despite being a nowadays common notion, is not a trivial notion at all. Indeed,
historically, it took a while for mathematicians to develop the correct notion of continuity. In
particular, before the 20th century, the mathematical community had only a vague notion of
continuity, mostly based on the Greek notion of continuous variations. In particular, mathematicians
in the 18th century and beginning of the 19th century used in�nitesimal analysis (nowadays
called non-standard analysis, made rigorous by Robinson in the 60s). Mathematicians like
Hermann Grassmann (in his Ausdehnugslehre - �rst edition 1844, second edition 1862), and
Augustin-Louis Cauchy (in his Course d'analyse of 1821) proved theorems regarding the continuity
of separately continuous and of linearly continuous functions. A function f : R2 → R is said
to be separately continuous at a point x0 ∈ R2 if it is continuous along lines parallel to the
orthogonal axes, while it is said to be linearly continuous if it continuous on every line passing
by x0. Already in 1870 Thomae presented a counterexample to the above claims in the case
of separately continuous when standard analysis due to Heine, that considered the function
f : R2 → R given by

f(x, y) :=


sin

(
4 arctan

x

y

)
if y ̸= 0,

0 else.

Moreover, in the case of linearly continuous, the counterexample is the one given by Peano in
1884 (presented in his treatise on calculus of 1884): consider the function f : R2 → R given by

f(x, y) :=


xy2

x2 + y4
if (x, y) ̸= (0, 0),

0 else.

Then, f is continuous along every line passing through the origin, but it is not continuous.
All of the above examples, forced mathematicians (in particular analysts) to adopt more rigor

in their investigations. It is indeed at the beginning of last century, that a huge work was done
in order to lay down solid foundations for mathematics based on set theory. You will see the
outcome of such enterprise in the course Logic. Using that work, Peano was able to provide the
�rst axiomatization of natural numbers and to give the modern de�nition of vector spaces.

In this chapter, we will focus on continuous maps between metric spaces. Continuous functions
form one of the easiest examples of a class of functions enjoying some regularity properties.
In particular, they are extremely useful in the study of properties of metric spaces. We will
also investigate two notions of convergence of sequences of continuous functions, pointwise and
uniform convergence, as well as their relation, and the properties of limits of sequences with
respect to each of the two notions of convergence.

3.1. Continuity in metric spaces. As for closedness and compactness, there is a sequential
and a topological notion of convergence. In metric spaces, we will show that they coincide.

De�nition 3.1. Let f : X → Y be a function between two metric spaces (X, d1) and (Y, d2).
Let x̄ ∈ X. We say that f is continuous at x̄ with respect to the metrics d1 and d2, if for each
ε > 0 there exists δ > 0 such that

d2 (f(x), f(x̄)) < ε

for all x ∈ X with d1(x, x̄) < δ. If a function is continuous at each point, we say that it is
continuous.
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De�nition 3.2. Let f : X → Y be a function between two metric spaces (X, d1) and (Y, d2).
Let x̄ ∈ X. We say that f is sequentially continuous at x̄ with respect to the metrics d1 and
d2, if for any sequence (xn)n∈N in X with limn→∞ xn = x̄ it holds

lim
n→∞

f(xn) = f(x̄).

If a function is sequentially continuous at each point x ∈ X, we say that it is sequentially
continuous in X.

Remark 3.3. Note that the condition for sequential continuity of a function f : X → Y at a
point x̄ ∈ X writes as

lim
n→∞

d1(xn, x̄) = 0 ⇒ lim
n→∞

d2 (f(xn), f(x̄)) = 0,

for all sequences (xn)n∈N in X. Equivalently,

lim
n→∞

f(xn) = f
(
lim
n→∞

xn

)
,

for any converging sequence (xn)n∈N.

Remark 3.4. Unless otherwise speci�ed, Euclidean spaces are always endowed with the Euclidean
metric.

Remark 3.5. Whether or not a function f : X → Y is continuous depends on both of the metrics
d1 and d2. Di�erent choices of metric might change the fact that a function is continuous or
not. For instance, consider the function f : R → R given by

f(x) :=

{
1 if x = 0,
0 else.

Then, f is continuous if in the domain we consider the metric d de�ned in (1.17), but it is not
continuous if we consider the Euclidean metric.

Remark 3.6. Also the set where the function is de�ned in�uences whether or not a function is
continuous. For instance, the function f : [0, 1] → R de�ned as

f(x) := 1Q∩[0,1](x) :=

{
1 if x ∈ Q,
0 else,

is continuous on the set Q ∩ [0, 1], continuous on the set [0, 1] \Q, but not continuous on [0, 1].

In general topological spaces the two notions are di�erent; in particular, continuity is stronger
than sequential continuity. Next result will show that in metric spaces the two notion of
convergence coincide.

Theorem 3.7. A function f : X → Y between two metric spaces (X, d1), and (Y, d2) is
continuous at a point x̄ ∈ X if and only if it is sequentially continuous at x̄.

Proof. Step 1. Assume that f is continuous at x̄ ∈ X. Fix ε > 0. By continuity of f , there
exists δ > 0 such that

d2 (f(x), f(x̄)) < ε, (3.1)

for all x ∈ X with
d1(x, x̄) < δ. (3.2)

Let (xn)n∈N be a sequence X with limn→∞ xn = x̄, namely such that

lim
n→∞

d1(xn, x̄) = 0. (3.3)

From (3.3) we get that there exists n̄ ∈ N such that

d1(xn, x̄) < δ,

for all n ≥ n̄. Therefore, for all n ≥ n̄ we get

d2 (f(xn), f(x̄)) < ε.
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This proves that
lim
n→∞

f(xn) = f(x̄),

thus that f is sequentially continuous at x̄.

Step 2. Assume that f is sequentially continuous. Assume by contradiction that it is not
continuous. In particular, this implies that there exists ε > 0 with the following property: for
each n ∈ N, there exists xn ∈ X with

d1(xn, x̄) <
1

n
, d2 (f(xn), f(x̄)) > ε.

Therefore, the sequence (xn)n∈N converges to x̄, but the sequence (f(xn))n∈N does not converge
to f(x̄). This contradicts the sequential continuity of f . □

An example of continuous map in a metric space is the distance from a �xed point.

Lemma 3.8. Let (X, d) be a metric space, and x̄ ∈ X. Then, the function f : X → [0,∞)
given by

f(x) := d(x, x̄)

is continuous.

The proof is left as an exercise for the reader.

Remark 3.9. For a normed space (X, ∥ · ∥), the above results says the the map

x 7→ ∥x∥
is continuous in the metric induced by the norm. Similarly, for an inner product space (X, ⟨·, ·⟩),
we get that, for any �xed v ∈ V , the map

w 7→ ⟨v, w⟩
is continuous in the metric induced by the inner product.

Level sets, as well as sub and sup-level sets of continuous functions enjoy nice properties.

Lemma 3.10. Let (X, d1), (Y, d2) be metric spaces, and let f : X → Y be continuous. Then,
for each y ∈ Y , the level set

{x ∈ X : f(x) = y}
is sequentially closed. Moreover, if Y = R, and d2 is the Euclidean metric, then the sub and
sup-level sets

{x ∈ X : f(x) < y}, {x ∈ X : f(x) > y}
are open.

Remark 3.11. The above properties are not true if the function is not continuous. Can you
�nd counterexamples?

If more metric spaces are involved, it is useful to obtain the continuity of the composition of
functions by the continuity of each function.

Lemma 3.12. Let (X, d1), (Y, d2), and (Z, d3) be metric spaces. Let f : X → Y , and g : Y →
Z be continuous functions. Then, the composition g ◦ f : X → Z is continuous.

The proof is left as an exercise to the reader.

Remark 3.13. Note that the opposite is not true: if g◦f is continuous, then we cannot conclude
anything about the continuity of neither f , nor g (Find an example!).

An important property of continuity is that it preserves compactness.

Proposition 3.14. Let f : X → Y be a continuous functions between two metric spaces (X, d1),
and (Y, d2). Let K ⊂ X be a compact set. Then, f(K) ⊂ Y is compact.
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Proof. Recall that, by Theorem 2.35, compactness is equivalent to sequential compactness. Let
(yn)n∈N be a sequence in f(K). For each n ∈ N, let xn ∈ K such that f(xn) = yn. Note that
we are not claiming uniqueness of such points xn's, since we do not know whether or not the
function f is injective. Then, by the compactness of K, there exist a subsequence (xni)i∈N and
x̄ ∈ K such that

lim
i→∞

xni = x̄.

By the sequential continuity of f , we get that

lim
i→∞

f(xni) = f(x̄).

This proves that the subsequence (yni)i∈N converges to the point ȳ ∈ K, where ȳ := f(x̄). □

As a corollary of the previous result, we get that a scalar function on a compact set achieves
its maximum and its minimum. This result is very useful in Analysis.

Theorem 3.15 (Weierstraÿ Theorem). Let f : X → R be a continuous function, and let K ⊂ X
be a compact set. Then, f achieves its minimum and its maximum on K.

Proof. By using Proposition 3.14, we get that f(K) is sequentially compact. Then, from
Theorem 2.23, we know that f(K) is bounded and sequentially closed. Therefore,

m := min{x ∈ R : x ∈ f(K)}, M := max{x ∈ R : x ∈ f(K)},

are well de�ned. Indeed, since f(K) is bounded, we get

−∞ < inf{x ∈ R : x ∈ f(K)} ≤ sup{x ∈ R : x ∈ f(K)} < +∞.

Moreover, in�mum and supremum are attained because f(K) is sequentially closed. Thus, there
exist x, y ∈ K such that f(x) = m, and f(y) = M . These are the point of minimum and
maximum of f on K respectively. □

Remark 3.16. It is easy to see that the above result does not hold if both the continuity of f
and the compactness of K are not in force.

We now introduce a stronger notion of continuity.

De�nition 3.17. Let f : X → Y be a function between two metric space (X, d1) and (Y, d2).
We say that f is uniformly continuous if for every ε > 0 there exists δ > 0 such that

d2 (f(x), f(y)) < ε,

for all x, y ∈ X with d1(x, y) < δ.

Remark 3.18. The di�erence with the notion of continuity is that, for each ε > 0, the number
δ > 0 is the same for all x ∈ X, while for continuity it might depend on the point x ∈ X.

In particular, a uniformly continuous function is continuous. The opposite is not true. Indeed,
consider the function f(x) := x2 for x ∈ R. Then, f is continuous, but not uniformly continuous.

Example 3.19. The function f(x) := sin(x), for x ∈ R, is uniformly continuous. Is the function
x 7→

√
x uniformly continuous in [0, 1]?

We now investigate the relation between the two notions of continuity. We have already seen
examples of continuous functions that are not uniformly continuous. For instance, the function
f(x) := x2 for x ∈ R. The issue with such example, is that the so called modulus of continuity
of f (namely the δ related to the ε in the de�nition of continuity) becomes larger and larger as
|x| → ∞. Next result will show that this is the only case where things can go wrong. Indeed,
on compact sets, continuity is equivalent to uniform continuity.

Proposition 3.20. Let (X, d1) and (Y, d2) be two metric spaces, and let K ⊂ X be a compact
set. Then, f : K → Y is continuous if and only if it is uniformly continuous.
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Figure 7. The function f : (0, 1)2 → R of the example: it becomes less and less
continuous as y → 0.

Proof. Since uniformly continuous functions are continuous, we only need to prove the opposite
implication. Let f : K → Y be a continuous function. Assume by contradiction that f is not
uniformly continuous. Then, there exists ε > 0 and, for each n ∈ N \ {0}, points xn, yn ∈ K
with

d1(xn, yn) <
1

n
(3.4)

and

d2 (f(xn), f(yn)) > ε. (3.5)

Consider the sequences (xn)n∈N and (yn)n∈N. Then, since K is compact, and hence sequentially
compact (see Theorem 2.35), it is possible to extract a subsequence (why the same?) of indexes
(ni)i∈N, and �nd point x̄, ȳ ∈ K such that

lim
i→∞

xni = x̄, lim
i→∞

yni = ȳ.

By using (3.4) we get that x̄ = ȳ. By continuity of f , this implies that

lim
i→∞

f(xni) = f(x̄) = f(ȳ) = lim
i→∞

f(yni).

This is in contradiction with (3.5). □

We now want to investigate if, given a continuous function f : A → Y , where A is a subset
of the metric space X, it is possible to extend it to a continuous function de�ned in the whole
space X. In general, this is not possible! Indeed, consider the function f : (0, 1)2 → R de�ned
as (see Figure 7)

f(x, y) :=



1 if x ∈
(
0, 12
)
,

−x
y
+ 1 +

1

2y
if x ∈

[
1
2 ,

1
2 + y

)
,

0 if x ∈
[
1
2 + y, 1

)
.

What goes wrong is that the function becomes less and less continuous close to the boundary
of A. Technically speaking, consider, for each y ∈ (0, 1), the restrictions x 7→ f(x, y). Such a
function is continuous. Thus, for each ε > 0, there exists δ(y) > 0 such that

|x1 − x2| < δ(y) ⇒ |f(x1)− f(x2)| < ε.

Note that we stress the dependence of such continuity parameter δ(y) on y. The issue is that
δ(y) → 0 as y → 0.
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In order to avoid such a pathology, we can require the function f to be uniformly continuous
on A.

Proposition 3.21. Let (X, d1), and (Y, d2) be metric spaces, and let A ⊂ X. Let f : A → Y

be a uniformly continuous map. Then, there exists a uniformly continuous function f̃ : A → Y

such that f̃ = f on A. The map f̃ is unique.

The proof is left as an exercise for the reader.
What about functions f : A → Y that are only continuous? Is there the chance to extend

them to a continuous function de�ned in the entire space? Let us consider two examples. Let
f(x) : (0, 1) → R given by f(x) := x−1. It is easy to see that there is no way to extend it in
a continuous way to [0, 1]. What makes it impossible to extend f , is that f blows up when it
approaches the boundary of the set A.

Another example is the function f : (0, 1) → R given by f(x) := sin(1/x). In this case, the
function f oscillates too much close to the boundary of A.

The examples above show that if the set A is not closed, then there might be issue with
having a continuous extension. A remarkable result, is that it is possible though to extend in
a continuous way a continuous function de�ned on a closed set, at least when the target space
is R. Usually, this results is presented directly on topological spaces, and its proof requires �ne
arguments in topology (the so called Urysohn's lemma). You will see such a proof in the course
Topology next semester.

In metric spaces, there are more direct constructions for such extension. In particular, in 1907
Lebesgue provided an extension of a continuous function de�ned on a closed subset of R2, while
in 1905 Tietze extended such a result to the case of a general metric space. Nowadays there are
several proofs of such a result, as well as several variants.

Theorem 3.22 (Tietze extension theorem). Let (X, d) be a metric space, and let C ⊂ X be a
sequentially closed set. Let f : C → R be a continuous map. Then, there exists a continuous

function f̃ : X → R such that f̃ = f on C.

(Sketch of the proof). We present here some de�nitions of the extension, leaving the (sometimes
not trivial) details to the reader.

The extension provided by Tietze is the following: for each x ∈ X \ C, de�ne

f̃(x) := sup
y∈C

f(y)

(1 + [ d(x, y)]2)
1

dist(x,C)

,

where dist(x,C) > 0 denotes the distance of the point x from the set C, de�ned as

dist(x,C) := inf{d(x, y) : y ∈ C}.

Hausdor�, in 1919 gave an easier version of the extension, by considering the function

f̃(x) := inf
y∈C

[
f(y) +

d(y, x)

dist(y, C)
− 1

]
.

Riesz, for functions f : C → [1, 2], used the function

f̃(x) := sup
y∈C

f(y)
dist(y, C)

d(y, x)
,

while Dieudonnè in 1960 proposed the function

f̃(x) := inf
y∈C

f(y)
d(y, x)

dist(y, C)
.

All of the above de�nitions might made you think "How did these people come up with such
functions?". Try to draw a �gure of what is going on in the case X = R2, and this might give
you a better idea of what is going on. □
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By combining the above two results, it is possible to provide a continuous extension of a
uniformly continuous function de�ned on any subset A.

Corollary 3.23. Let (X, d) be a metric space, and let A ⊂ X. Let f : A → R be a uniformly

continuous map. Then, there exists a continuous function f̃ : X → R such that f̃ = f on A.

Remark 3.24. Note that the extension provided by the above corollary is only continuous.
We cannot make sure that it is uniformly continuous. Can you �nd an example of a uniformly
continuous function f : A → R, for some subset A of a metric space X, such that it cannot be
extended to a uniformly continuous function to the whole space X?

Finally, we investigate properties of continuous functions with values in a normed spaces,
since the linear structure allows us to add functions. Moreover, if the target space is R, there
are other natural operations among functions that maintain continuity.

Proposition 3.25. Let (X, d) be a metric space, and let (Y, ∥ · ∥) be a normed vector space. Let
f, g : X → Y be continuous functions. Then, the function f + g is continuous.

Moreover, if Y = R, and λ ∈ R, also the functions

fg,
f

g
, λf

are continuous, where they are de�ned.

The proof of the above result is left to the reader.

Remark 3.26. The above operations among functions are �nite operations. What about the
following case: consider a family of functions (fi)i∈N from a metric space (X, d), to R, where I
is any set of indexes (even more than countable). Are the functions F,G : X → Y de�ned as

F (x) := inf
i∈I

fi(x), G(x) := sup
i∈I

fi(x)

continuous? What about the case where I = N, and we consider the function

H(x) :=
∑
i∈N

fi(x),

Is that continuous?

3.2. Pointwise and uniform convergence. There are several notion of convergence for functions,
each more suitable for the particular situation under investigation. Here we study two important
basic notions of convergence for functions in a metric space: pointwise and uniform convergence.
The former is easy to check, but not powerful enough to ensure continuity of the limit of
a sequence of continuous functions. For this reason, we need the latter, stronger, type of
convergence.

De�nition 3.27. For each n ∈ N, let fn : X → Y be a function between two metric spaces,
and let f : X → Y . We say that the sequence (fn)n∈N converges pointwise to f if

lim
n→∞

fn(x) = f(x),

for each x ∈ X.

Remark 3.28. The condition for pointwise converges writes as follows: for each x ∈ X, and
for each ε > 0, there exists n̄ ∈ N such that

d2 (fn(x), f(x)) < ε,

for all n ≥ n̄.

Example 3.29. Let fn : (0,+∞) → R be de�ned as fn(x) := e−nx. Then, fn converges
pointwise to the function f ≡ 0.
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Figure 8. On the left: a sequence of functions (fn)n∈N converging uniformly to
f will all have to lie inside the green region, for large enough n's. On the right:
a sequence converging pointwise, but not uniformly.

De�nition 3.30. For each n ∈ N, let fn : X → Y be a function between two metric spaces, and
let f : X → Y . We say that the sequence (fn)n∈N converges uniformly to f if for each ε > 0,
there exists n̄ ∈ N such that

d2 (fn(x), f(x)) < ε,

for all x ∈ X and n ≥ n̄.

Example 3.31. Let fn : R → R be de�ned as fn(x) :=
1
n sin(x). Then, fn converges uniformly

to the function f ≡ 0.

Remark 3.32. Uniform convergece implies pointwise convergence, but the opposite is false.
Indeed, consider the sequence (fn)n∈N de�ned in Example 3.29: it is converging pointwise, but
not uniformly to the function f ≡ 0 (prove it!).

The di�erence between pointwise and uniform convergence is the following. Assume the
sequence (fn)n∈N to converge pointwise to f . Fix x ∈ X. Then, for each ε > 0 there exists
n̄ ∈ N such that

d2(fn(x), f(x)) < ε (3.6)

for all n ≥ n̄. This threshold n̄ might change for point to point. In particular,

sup
x∈X

{ n̄ ∈ N : (3.6) holds for all n ≥ n̄ } (3.7)

might be in�nite. If, for each ε > 0, the quantity in (3.7) is not in�nite, namely if it is possible
to �nd a uniform threshold for all points x ∈ X and all errors ε > 0, then the convergence is
uniform (see Figure 8).

The notion of uniform convergence has been designed to preserve continuity.

Theorem 3.33. Let (fn)n∈N be a sequence of functions converging uniformly to a function f .
Let x̄ ∈ X. If each fn is continuous at x̄, then also f is continuous at x̄. In particular, if each
fn is continuous, then also f is continuous.

Proof. In order to prove that f is continuous, we argue as follows. Let x̄ ∈ X, and let ε > 0.
By the uniform convergence of (fn)n∈N to f , there exists n̄ ∈ N such that

d2(fn(x), f(x)) <
ε

3
, (3.8)

for all x ∈ X, and n ≥ n̄. Fix n ≥ n̄. By continuity of fn, there exists δ > 0 such that

d2 (fn(x), fn(x̄)) <
ε

3
, (3.9)

for each x ∈ X with d1(x, x̄) < δ. Therefore, from (3.8), (3.9), and by using the triangle
inequality, we get

d2 (f(x), f(x̄)) ≤ d2 (f(x), fn(x)) + d2 (fn(x), fn(x̄)) + d2 (fn(x̄), f(x̄))

≤ ε

3
+
ε

3
+
ε

3
= ε,
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for all x ∈ X with d1(x, x̄) < δ. This proves that f is continuous at x̄. □

Remark 3.34. The pointwise limit of a sequence of continuous functions is not necessarily
continuous. Indeed, consider the sequence

fn(x) :=


1 if x ∈

[
0, 12
]
,

nx− n
2 + 1 if x ∈

[
1
2 ,

1
2 + 1

n

]
,

0 if x ∈
[
1
2 + 1

n , 1
]
.

Then, (fn)n∈N converges pointwise to the discontinuous function f : [0, 1] → R given by

f(x) :=

 1 if x ∈
[
0, 12
]
,

0 if x ∈
(
1
2 , 1
]
,

Note that a sequence of functions that are not continuous can converge to a continuous
function. For instance, consider the sequence fn : R → R given by

fn(x) :=


0 if x ≤ 0,

1
n if x > 0.

Then, despite each fn not being continuous, the sequence (fn)n∈N converges uniformly to the
continuous function f ≡ 0.

Moreover, uniform convergence to a continuous function allows to take the limit in a sequence
of functions and a sequence of points at the same time.

Proposition 3.35. Let (fn)n∈N be a sequence of functions from two metric spaces (X, d1) and
(Y, d2) converging uniformly to a continuous f : X → Y . Then,

lim
n→∞

fn(xn) = f(x̄),

for any sequence (xn)n∈N ⊂ X with limn→∞ xn = x̄.

The proof will be given as an exercise in the homework.

Remark 3.36. The above result is not true for sequences converging pointwise but not uniformly.
Can you �nd a counterexample?

We now relate the notion of uniform convergence to convergence in the supremum norm.

De�nition 3.37. Let (X, d1) and (Y, d2) be two metric spaces. On the space of functions
f : X → Y , we de�ne the uniform metric d∞ induced by d2 as

d∞(f, g) := sup
x∈X

d2(f(x), g(x)),

for f, g : X → Y .

Remark 3.38. Note that the norm in the domain space does not in�uence the supremum norm.
Moreover, this de�nition of supremum norm extends that given in Example 1.15.

Proposition 3.39. Let (fn)n∈N be a sequence of functions from two metric spaces (X, d1) and
(Y, d2), and f : X → Y . Then (fn)n∈N converges to f uniformly if and only if it converges to f
in the supremum norm.

The proof is left as an exercise for the reader.

Remark 3.40. It can be shown that there exists a topology that induce the pointwise convergence.
See Exercise 14.4.4 in the book Analysis 2 by Terence Tao. Take a look at the �le uploaded on
Brightspace.
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Finally, we consider the special case of scalar continuous functions, namely functions f : X →
R. In this case, the fact that the target space R has an order, allows to talk about monotone
sequences of functions.

De�nition 3.41. Let (fn)n∈N be a sequence of functions fn : X → R, where (X, d) is a metric
space. We say that the sequence is increasing if, for all x ∈ X, it holds

fn(x) ≤ fn+1(x),

for all n ∈ N. We say that the function is strictly increasing, if the above inequality is strict.
Moreover, we say that the sequence is decreasing if, for all x ∈ X, it holds

fn(x) ≥ fn+1(x),

for all n ∈ N. We say that the function is strictly decreasing, if the above inequality is strict.
Finally, we say that the sequence is monotone if it is either monotone increasing or monotone

decreasing.

A useful result, is that, for monotone sequences, pointwise convergence to a continuous
function is actually a uniform convergence.

Theorem 3.42 (Dini's Theorem). Let (fn)n∈N be a monotone sequence of continuous functions
fn : K → R, where (X, d) is a metric space, and K ⊂ X is compact. Assume that (fn)n∈N
converges pointwise to a continuous function f : K → R. Then, the convergence is uniform.

Proof. Without loss of generality, we can assume that the sequence is monotonically increasing.
Assume by contradiction that the convergence is not uniform. Then, there exist ε > 0, an
increasing sequence of indexes (ni)i∈N, and a sequence of points (xi)i∈N such that

f(xi)− fni(xni) > ε (3.10)

for all i ∈ N. Note that the above quantity is positive because the sequence is monotone. Since
K is sequentially compact, up to extracting a subsequence (that we do not relabel), there exists
x̄ ∈ K such that xni → x̄. Since f is continuous, there exists δ1 > 0 such that

|f(y)− f(x̄)| < ε

2
, (3.11)

for all y ∈ K with d(y, x̄) < δ1. Moreover, by using the pointwise convergence of (fn)n ∈ N to
f together with the monotonicity of the sequence, we get that there exists n̄ ∈ N such that

f(x̄)− fn(x̄) <
ε

2
, (3.12)

for all n ≥ n̄. Since fn̄ is continuous, there exists δ2 > 0 such that

|fn̄(y)− fn̄(x̄)| <
ε

2
, (3.13)

for all y ∈ K with d(y, x̄) < δ2. In particular, by using (3.11), (3.12), (3.13), and the fact that
the sequence is monotone, we get that

f(y)− fn(y) < ε, (3.14)

for all n ≥ n̄, and all y ∈ K with d(y, x̄) < δ, where δ := min{δ1, δ2}. This is in contradiction
with (3.10), for i large enough. □

Remark 3.43. The above result is not true if we drop the assumption of continuity, either for
the functions in the sequence, or for the limiting function. Indeed, for each n ∈ N \ {0} consider
the function fn : [−1, 1] → R de�ned as fn := 1[1/n,1]. Then, the monotone sequence (fn)n∈N
converges pointwise, but not uniformly, to the function f := 1[0,1].

Moreover, it is possible to construct a sequence of continuous functions converging pointwise,
but not uniformly, to the function f .
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Finally, also the compactness of the domain of the function is crucial for the validity of the
result. To see that, consider the functions fn : (0, 1) → R de�ned as

fn(x) :=

{
nx if x ∈

(
0, 1n

)
,

1 else.

Then, the monotone sequence (fn)n∈N converges pointwise, but not uniformly, to the function
f := 1(0,1).

Finally, we recall that uniform convergence allows to pass to the limit in integrals and
derivatives.

Proposition 3.44. Let (fn)n∈N be a sequence of scalar continuous functions on [0, 1] converging
uniformly to f . Then,

lim
n→∞

� 1

0
fn(x) dx =

� 1

0
f(x) dx.

The proof of the above result was presented in Analysis 1.

Proposition 3.45. Let (fn)n∈N be a sequence of scalar di�erentiable functions on [0, 1] converging
pointwise to f , and such that the sequence (f ′n)n converges uniformly to g. Then, f is di�erentiable,
and f ′ = g.

Try to prove the above proposition.

Remark 3.46. The above results do not hold if the sequence converges only pointwise, but not
uniformly. Find counterexamples!
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4. The space of continuous functions

In this section we study an important example of a functional space: the space of bounded
continuous functions. This is an important example of functional space, namely a space of
functions satisfying certain properties. Functional spaces are ubiquitous in almost all areas of
modern mathematics: Lipschitz space to Hölder space, Sobolev space, functions with bounded
variations, to mention some. These are where old and new problems in mathematics and physics
found the proper framework to be stated and solved, from PDEs, to machine learning, from
minimization problems, to quantum mechanics. We will investigate three main properties of
the space of bounded continuous functions: completeness, characterization of compact sets, and
density of a special class of functions (polynomial functions). For the latter two properties, we
will restrict our attention to the case of scalar functions, to focus on the main ideas without
getting lost in technical details.

4.1. Completeness. We start by investigating the space of bounded functions.

De�nition 4.1. Let (X, d1) and (Y, d2) be metric spaces. We de�ne the set of bounded functions
as

B(X,Y ) := {f : X → Y : diam(f(X)) <∞},
When the target space is R with the Euclidean metric, we will simply denote the space by B(X).

Remark 4.2. Note that f ∈ B(X,Y ) if and only if, for �xed y ∈ Y , there exists R > 0 such
that

d2(f(x), y) < R,

for all x ∈ X.

Remark 4.3. Note that functions in B(X,Y ) are not necessarily continuous. Moreover, it
is easy to see that B(X,Y ) is closed with respect to the uniform convergence. Namely, if
(fn)n∈N ⊂ B(X,Y ) converges uniformly to a function f : X → Y , then f ∈ B(X,Y ). Is
B(X,Y ) also closed with respect to the pointwise convergence?

As a �rst result, we show that the space of bounded functions is complete with respect to the
supremum norm.

Proposition 4.4. Let (X, d1) be a metric space, and let (Y, d2) be a complete metric space.
Then, the space B(X,Y ) is a complete metric space with respect to the supremum norm.

Proof. Let (fn)n∈N be a Cauchy sequence in B(X,Y ) with respect to the supremum norm (see
De�nition 3.37). Fix ε > 0. Then, there exists n̄ ∈ N such that

d2 (fn(x), fm(x)) < ε. (4.1)

for all x ∈ X, and all n,m ≥ n̄. From (4.1) we get that, for each x ∈ X, the sequence (fn(x))n∈N
is a Cauchy sequence. Since Y is complete, the sequence admits a limit, denoted by f(x). This
de�nes a function f : X → Y .

We now claim that (fn)n∈N converges uniformly to f . Fix ε > 0. By using (4.1) we get that
there exists n̄ ∈ N such that

d2 (fn(x), fm(x)) < ε,

for all x ∈ X, and all n,m ≥ n̄. Thus, by sending n,m→ ∞ in the above equation, we get

d2 (f(x), f(x)) < ε,

for all x ∈ X.
Finally, to prove that f is bounded, we argue as follows. Since fn̄ is bounded, it follows that,

�xed y ∈ Y , there exist M > 0 such that

d2(fn(x), y) ≤M, (4.2)

for all x ∈ X. Thanks to (4.2), we have that f ∈ B(X,Y ). □
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Remark 4.5. If Y is a vector space, then also B(X,Y ) is.

We now investigate two families of continuous functions.

De�nition 4.6. Let (X, d1) and (Y, d2) be metric spaces. We de�ne

C0(X,Y ) := {f : X → Y : f is continuous },
and

C0
b (X,Y ) := {f ∈ B(X,Y ) : f is continuous }.

In case the target space is R with the Euclidean metric, we denote the above spaces by C0(X)
and C0

b (X) respectively.

Remark 4.7. In general, C0
b (X,Y ) is a proper subset of C0(X,Y ). If X is compact, then

C0
b (X,Y ) = C0(X,Y ).

By using Theorem 3.33 and a similar argument as those used in the proof of Proposition 4.4,
we get that both spaces are closed with respect to the uniform convergence. Moreover, they are
also complete.

Proposition 4.8. Let (X, d1) be a metric space, and let (Y, d2) be a complete metric space.
Then, the space C0(X,Y ), and the space C0

b (X,Y ) are complete with respect to the supremum
norm.

Proof. Let (fn)n∈N be a Cauchy sequence in C0
b (X,Y ). Thanks to Proposition 4.4 we know that

it converges in the supremum norm to a function f ∈ Cb(X;Y ). Thanks to Theorem 3.7, we
know that f is continuous. This concludes the proof. A similar argument proves the result for
C0(X,Y ). □

4.2. Characterization of compact sets: the Ascoli-Arzelà Theorem. As we have seen,
compact sets play an important role in metric spaces and for continuous functions between
them. We now investigate a characterization of sequentially compact sets in C0

b (X) known as

the Ascoli-Arzelà Theorem3. The importance of the Ascoli-Arzelà Theorem is that it ensure
that, up to a subsequence, a sequence of equibounded and equicontinuous functions converge
to a limiting function. As an application of such result, we will sketch the proof of the Peano
Theorem on the existence of solutions to an Ordinary Di�erential Equation.

For, we need to introduce three notions.

De�nition 4.9. Let (X, d1), and (Y, d2) be two metric spaces, and let F ⊂ C0(X,Y ). We say
that the family F is equicontinuous if, for every ε > 0, there exists δ > 0 such that

d2 (f(x), f(y)) < ε,

for all x, y ∈ X with d1(x, y) < δ, and all f ∈ F .

Remark 4.10. The above de�nition means that all functions in an equicontinuous family have
the same modulus of continuity. A modulus of continuity for a function f : X → Y between two
metric spaces (X, d1) and (Y, d2) is a monotone function ω : [0,∞) → (0,∞), such that

d2 (f(x), f(y)) ≤ ω ( d1(x, y)) ,

for all x, y ∈ X.

De�nition 4.11. Let (X, d1) and (Y, d2) be two metric spaces, and let F ⊂ C0(X,Y ). Let
F ⊂ C0(X,Y ). We say that the family F is equibounded if there exists D <∞ such that

diam (f(X)) ≤ D,

for all f ∈ F .

3It might seem strange that the names are not in alphabetical order. The reason is that, in Italian (since
both mathematicians are Italians), Arzelà-Ascoli sounds very strange, since accents tend to go at the end of the
composite word.
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We are now in position to prove one of the main results of this section. The su�cient condition
for compactness was established by Ascoli in 1884, while Arzelà in 1895 proved also the necessity.
Both of these results were for compact intervals of R. The generalization to family of functions
on compact metric spaces was obtained by Fréchet in 1906. As anticipated above, we will restrict
our attention to the case of scalar functions, in order to grasp better the ideas behind the result.

Theorem 4.12 (Ascoli-Arzelà Theorem). Let (X, d) be a compact metric space. Let F ⊂ C0(X)
be a closed set with respect to the uniform convergence. Then, F is compact in the uniform norm
if and only if F is equibounded and equicontinuous.

Proof. Necessity. Assume the family F to be compact with respect to the uniform convergence.
Then, it is left as an exercise for the reader to check that it is equibounded and equicontinuous.

Su�ciency. Assume that F is equibounded and equicontinuous. Since (C0(X), ∥ · ∥C0) is a
metric space, we show that the family F is sequentially compact. Let (fn)n∈N be a sequence of
functions in F . We want to prove that it is possible to extract a subsequence (fnk

)k∈N such that
fnk

→ f uniformly, Note that, by using the fact that F is closed, we get that f ∈ F . The idea of
the proof is the following: given a point x ∈ X, we can extract a subsequence (fnk

)k∈N such that
(fnk

(x))k∈N converges to some value f(x) ∈ R. The problem is that the subsequence (nk)k∈N
might depend on the point x ∈ X. Thus, if the metric space X has more than countably many
points, we cannot just conclude by using a diagonal argument. This is where the assumption of
equicontinuity of the family F , together with the separability of X, comes to the rescue. Given
a dense set (xi)i∈N of X, by a diagonal argument we can extract a subsequence (nk)k∈N such
that

lim
k→∞

fnk
(xi) = f(xi)

for all i ∈ N, where f(xi) ∈ R. The function f is de�ned only on the set {xi}i∈N. It is possible
to see that it is uniformly continuous. Thus, we can uniquely extend it to a continuous function
de�ned on the entire space X. By using the compactness of the space X, such convergence will
turn out to be uniform. Let us now use this idea to get the rigorous proof.

Since the metric space X is compact, it is separable (see Lemma 2.34. Let (xi)i∈N be a dense
set in X. Since F is equibounded, there exists D <∞ such that

|fn(xi)| ≤ D, (4.3)

for all i ∈ N and n ∈ N.

Step 1. We will construct a subsequence of indexes (nk)k∈N such that

∃ lim
k→∞

fnk
(xi)

for all i ∈ N by using a diagonal argument as follows. By (4.3), we get that

{fn(x1)}n∈N ⊂ [−D,D].

Thus, from the Bolzano Weierstraÿ Theorem (see Theorem 2.23) applied to the set [−D,D] ⊂ R,
we can �nd a subsequence of indexes (n1k)k∈N, and a point y1 ∈ [−D,D], such that

lim
k→∞

fn1
k
(x1) = y1. (4.4)

Now, consider the sequence {fn1
k
(x2)}k∈N. As before, from (n1k)k∈N it is possible to extract a

further subsequence (n2k)k∈N such that

lim
k→∞

fn2
k
(x2) = y2, (4.5)

for some y2 ∈ [−D,D]. Note that, since (n2k)k∈N is a subsequence of (n1k)k∈N , we get that

lim
k→∞

fn2
k
(x1) = y1.
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Namely, extracting further subsequence does not invalidate the convergence of the previous
steps. We now repeat the same argument for i ∈ {3, 4, . . . }. Since we do this countably many
times, by using a diagonal argument, we obtain a subsequence of indexes (nk)k∈N, and points
{yi}i∈N ⊂ [−D,D] such that

lim
k→∞

fnk
(xi) = yi, (4.6)

for all i ∈ N.

Step 2. We now de�ne the limiting function f : X → R as follows. In step 1 we constructed
the values of f on the dense set (xi)i∈N. We then de�ne the function f : X → R as follows: for
x ∈ X, we set

f(x) := lim
j→∞

yij , (4.7)

where (xij )j∈N is a sequence of points in the dense set {xi}i∈N converging to x, and the yij 's are
de�ned in (??). We will prove the followings:

(1) f is well de�ned;
(2) f(xi) = yi for all i ∈ N.
Warning: it would be tempting to use the identity

f(x) = lim
j→∞

fnkj
(zj),

for any sequence (zj)j∈N converging to x. This is true, but it will follow from the uniform
convergence of (fnk

)k∈N to f and from Proposition 3.35. Therefore, in the following, we cannot
use it (or we would have to prove it �rst).

Let's start with (1). To prove that f is well de�ned, we need to show that the limit exists,
and that it does not depend on the sequence converging to x.

Fix x ∈ X. Let (xij )j∈N be such that xij → x. Then, since by (4.3), the sequence (f(xij ))j∈N
is bounded, we can apply the Bolzano-Weirstraÿ Theorem (see 2.23) and get that there exists a
subsequence (xijr )r∈N such that (yijr )r∈N converges to some point.

We now prove that, if (xip)p∈N and (xiq)q∈N are two sequences converging to x, and such that

yip → y1, yiq → y2, (4.8)

then, y1 = y2. Fix ε > 0. We will show that |y1 − y2| < ε. By using the equicontinuity of the
family F , there exists δ > 0 such that

|fn(s)− fn(t)| < ε, (4.9)

for all s, t ∈ X with d(s, t) < δ, and all n ∈ N. Since the sequences (xip)p∈N and (xiq)q∈N
converge to x, there exist p̄, q̄ ∈ N such that

d(xip , x) <
δ

2
, d(xiq , x) <

δ

2
,

for all p ≥ p̄, and all q ≥ q̄. In particular, d(xnp , xnq) < δ, for all p ≥ p̄, and all q ≥ q̄, and thus,
from (4.9), we get

|fnk
(xip)− fnk

(xiq)| < ε, (4.10)

for all p ≥ p̄, all q ≥ q̄, and all k ∈ N. Thus, using the de�nition of yip and yiq , from (4.10) we
get

|yip − yiq | = lim
k→∞

|fnk
(xip)− fnk

(xiq)| < ε, (4.11)

for all p ≥ p̄, all q ≥ q̄. Therefore, (4.8) and (4.11) yield

|y1 − y2| = lim
p,q→∞

|yip − yiq | < ε.

Since ε > 0 is arbitrary, we conclude that y1 = y2.
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Finally, combining the two claims above, and using the Urysohn property (see Proposition
2.6) we get that f is well de�ned. Indeed, we proved that there exists a value y ∈ R with the
following property: from any sequence (xij )j∈N converging to x, we can extract a subsequence
(xijp )p∈N such that yijp → y as p→ ∞.

Let us now prove (2). Fix xi. Since we just proved that the de�nition of f(x) does not depend
on the sequence converging to x, we can just take the constant xik := xi for each k ∈ N. This
gives that f(xi) = yi.

Step 3. We now prove that f is continuous. Thanks to Theorem 3.7, we can equivalently show
that f is sequentially continuous. Let x ∈ X, and let (zj)j∈N ⊂ X be a sequence converging to
x. We want to prove that

lim
j→∞

f(zj) = f(x). (4.12)

By using the de�nition of f , for each j ∈ N it is possible to �nd a point xij belonging to the
dense set {xi}i∈N such that

d(xij , zj) ≤
1

j
(4.13)

and ∣∣yij − f(zj)
∣∣ ≤ 1

j
. (4.14)

Then, by using the fact that zj converges to x, together with (4.13), we get that xij → x as
j → ∞. Thus, by the de�nition of f(x), we get that

lim
j→∞

yij = f(x). (4.15)

Therefore, from (4.14) we get

|f(zj)− f(x)| ≤
∣∣f(zj)− yij

∣∣+ ∣∣yij − f(x)
∣∣ ≤ 1

j
+
∣∣yij − f(x)

∣∣ .
From (4.15), we get that the right-hand side converges to zero as j → ∞. This yields (4.12).

Step 4. We now prove that (fnk
)k∈N converges to f uniformly. Assume not. Then, there

would exist ε > 0 and points (zk)k∈N such that

|fnk
(zk)− f(zk)| > ε, (4.16)

for all k ∈ N. Since X is compact, and hence, by Theorem 2.35, sequentially compact, there
exists a subsequence (zkj )j∈N and a point x ∈ X such that zkj converges to x.

By using the equicontinuity of the family F , it is possible to �nd δ > 0 such that

|fn(s)− fn(t)| <
ε

3
, (4.17)

for all s, t ∈ X with d(s, t) < δ, and all n ∈ N. For each j ∈ N, by using the density of {xi}i∈N,
we can �nd xkj ∈ {xi}i∈N such that

d(xkj , zkj ) < δ. (4.18)

Thus, (4.18) together with (4.17) yields that

|fnkj
(xkj )− fnkj

(zkj )| <
ε

3
, (4.19)

for all j ∈ N.
Now, by using the continuity of f at x, up to reducing δ > 0, we can also assume that

|f(s)− f(x)| < ε, (4.20)

for all s ∈ X with d(s, x) < δ. Since (zkj )j∈N converges to x, we can �nd j0 ∈ N such that

d(zkj , x) < δ, (4.21)
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Figure 9. The idea behind the strategy of Step 4 of the proof of Theorem 4.12
to show the uniform convergence.

for all j ≥ j0. Thus, from (4.21), and (4.20), we get that

|f(x)− f(zkj )| <
ε

3
, (4.22)

for all j ≥ j0.
Finally, since zkj → x, by using the de�nition of f(x), we get that

lim
j→∞

fnkj
(xnkj

) = f(x).

Therefore, up to increasing j0, we can assume that

|f(x)− fnkj
(xkj )| <

ε

3
, (4.23)

for all j ≥ j0.
We are now ready to conclude. Using (4.19), (4.22), and (4.23), we get (see Figure 9)

|f(zkj )− fnkj
(zkj )| ≤ |f(zkj )− f(x)|+ |f(x)− fnkj

(xkj )|+ |fnkj
(xkj )− fnkj

(zkj )| < ε,

for all j ≥ j0. This is in contradiction with (4.16). Thus, the proof of the theorem is concluded.
□

Remark 4.13. The Ascoli-Arzelà Theorem can be generalized to the case where the target is
a metric space.

All of the assumptions of the Ascoli-Arzelà Theorem are sharp. Namely, if they are not in
force, the result does not hold. Try to �nd a counterexample in the case all assumptions are in
force except one of the followings:

(i) The equiboundeness of the family F ;
(ii) The equicontinuity of the family F ;
(iii) The compactness of the space X.

Remark 4.14. The Ascoli-Arzelà Theorem gives, in particular, su�cient conditions for a
sequence of functions to converge uniformly, up to a subsequence. In practice, the di�cult
part is to check the equicontinuity of the family. Something that comes at handy in this regard
is a particular subspace of C0(X,Y ), known as the space of Lipschitz functions. This is de�ned
as the family of functions f : X → Y such that

[f ]Lip := sup
x ̸=y

d2(f(x), f(y))

d1(x, y)
<∞.

In particular, if a family has a uniform bound on the Lipschitz norm

∥f∥Lip := ∥f∥C0 + [f ]Lip,

then, the family satis�es the su�cient conditions of the Ascoli-Arzelà Theorem. More properties
of the space of Lipschitz functions will be investigated in the exercises.
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As anticipated above, as an application of the Ascoli-Arzelà Theorem, we will sketch the proof
of Peano's Theorem (1890) on the existence of a solution to the initial value problem{

y′(t) = f(t, y(t)),
y(x0) = y0,

(4.24)

The full proof will be given as an exercise (and you will see it again in the course Ordinary
Di�erential Equations). The importance of such a result lies in the weak assumption on the term
f : indeed, in the proof by Picard and Lindelöf, the function f is required to be Lipschitz in the
second variable. This additional assumption gives existence and uniqueness of the solution. On
the other hand, existence of a solution follows from continuity alone of f . In such a case, though,
uniqueness might fail dramatically. The strategy of the proof is based on an approximation
scheme known as forward Euler that is common in Numeric (you will see it in the course
Numerical Methods for ODEs, and in Numerical Methods for PDEs for PDEs).

Theorem 4.15 (Peano's Theorem). Consider the initial value problem (4.24). Assume that
there exists L > 0 such that f is continuous in (x0 − L, x0 + L). Then, there exists ε ∈ (0, L)
and a C1 function y : (x0 − ε, x0 + ε) → R solving (4.24).

(Sketch of the proof). The idea is to construct a sequence (un)n∈N of approximating solutions,
show that they satisfy the assumptions of the Ascoli-Arzelà Theorem, and prove that any limit
solves the initial value problem (4.24). The strategy is based on the discretization of the time
derivative. Namely, for n ∈ N \ {0}, we consider (ti)i∈Z de�ned as

ti := x0 +
i

n
.

Let i0 ∈ N be such that ti0 ∈ (x0 −L, x0 +L), while ti0+1 ̸∈ (x0 −L, x0 +L). Let un0 := y0, and,
for |i| < i0, de�ne recursively

uni+1 := uni +
1

n
f(ti, u

n
i ),

and the function un : (x0 − L/2, x0 + L/2) → R as the linear interpolation of the uni 's. Then,
the sequence (un)n∈N turns out to be equi-Lipschitz. It is possible to show that any limit is a
solution to (4.24). □

Remark 4.16. There is another strategy that requires the validity of the Picard and Lindelöf
Theorem, and it is based on the approximation of the term f by polynomial functions. Such
approximation is possible thanks to Theorem 4.17.

4.3. Separability: the Theorems of Weierstraÿ. Separability of a space is an extremely
important property. Think about the real numbers R. It is separable, and a countable dense
set is given by the rationals Q. These are objects that are simpler than a general real number,
and that can also be implemented on a computer. In the same spirit, having a good countable
dense set on a general space allows to access, with some (hopefully controlled) error, all of the
objects of that space.

In particular, the `analogous' of rational numbers for real valued continuous functions on an
interval is the family of polynomials with rational coe�cients.

We will �rst start with presenting the proof for continuous functions f : [0, 1] → R. In 1885
Weierstraÿ, at the tender age of 70, proved that algebraic polynomials are dense in C([0, 1]), and
that trigonometric polynomials are dense in the subclass of functions in C([0, 1]) with periodic
boundary conditions. With these results, he started the line of research called approximation
theory.

Theorem 4.17 (Weierstraÿ Theorem). Let f : [0, 1] → R be a continuous function, and ε > 0.
Then, there exists a polynomial P : [0, 1] → R such that ∥f − P∥C0 < ε.

Many proofs and generalization of such results are now available. The strategy that we will
follow is that of Lebesgue (in his �rst published paper in 1898, when he was still a 23 year old
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Figure 10. The approximation of a continuous function by a spline.

student), with a bit of Bourbaki4 (in 1949) for the approximation of the absolute value (see
Lemma 4.18).

The idea is the following:

• Step 1: Any continuous function can be approximated uniformly by a spline, namely a
piecewise a�ne function (see Figure 10);

• Step 2: Any spline can be written as a linear combination of a linear function (polynomial
of degree one), and absolute values;

• Step 3: The absolute value can be approximated uniformly by a sequence of polynomials.

Note how ingenious such a proof is: it reduces the problem of approximating any continuous
function, to the problem of approximating a speci�c function, namely the absolute value.

Let us carry on the above strategy. Let f : [0, 1] → R, and ε > 0. Step 1 requires us to �nd a
piecewise a�ne function g : [0, 1] → R such that

∥f − g∥C0 < ε. (4.25)

This is left as an exercise for the reader.
We now write a spline g in a suitable form. The �rst way that comes to your mind to write

a piecewise a�ne function is the following. Let 0 = x0 < x1 < · · · < xk = 1 be the nodes of the
spline. Then,

g(x) = g1(x) +

k−1∑
i=1

[gi+1(x)− gi(x)]h(x− xi), (4.26)

where

gi(x) = g(xi−1) +
x− xi−1

xi − xi+1
(g(xi)− g(xi−1)),

and

h(x) :=

{
1 if x ≥ 0,
0 if x < 0.

It is possible to rewrite (4.26) as

g(x) = ax+ b+

k−1∑
i=1

ci(x− xi)+, (4.27)

for some a, b, ci ∈ R, where

t+ :=

{
t if t ≥ 0,
0 if t < 0.

4Bourbaki is one example where asking Who is Bourbaki? is not correct, while asking What is Bourbaki? is.
Look it up!
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Now, since 2t+ = |t|+ t, it is possible to write (4.27) as

g(x) = Ax+B +
k−1∑
i=1

Ci|x− xi|, (4.28)

for some A,B,Ci ∈ R.
We are now left with the problem of approximating the absolute value with a polynomial.

Here we do not follow what Lebesgue did, but the easier solution found by Bourbaki.

Lemma 4.18. There exists a sequence (Pn)n∈N, where each Pn : [−1, 1] → R is a polynomial,
such that Pn converges uniformly on [−1, 1] to g, where g(t) := |t|.

Proof. The idea of the proof is the following: since |t| =
√
t2, it su�ces to approximate f(t) :=√

t. To do that, we construct the polynomial iteratively, starting with P0 ≡ 0, and adding half of
the distance that separates it from f . In such a way, we get an increasing sequence of functions
that converge pointwise, and hence uniformly by Dini's Theorem, to the desired function. The
problem with this, is that the approximating functions are not polynomials. To �x that, we
consider the distance from P 2

n to f2.
Step 1. Set P0 ≡ 0. De�ne, for n ∈ N \ {0}, Pn inductively as follows:

Pn+1(t) := Pn(t) +
1

2

[
t− P 2

n(t)
]
.

Then, it is easy to see that each Pn is a polynomial.

Step 2. We claim that Pn(t) ≤
√
t for all t ∈ [0, 1], and all n ∈ N. We will prove the claim by

induction on n. For n = 0 it is trivial. Then, assume that the claim is true for n, and write
√
t− Pn+1(t) =

√
t− Pn(t)−

1

2

[
t− P 2

n(t)
]

=
[√

t− Pn(t)
] [

1− 1

2

[√
t+ Pn(t)

]]
. (4.29)

Since we are assuming Pn(t) ≤
√
t, and in particular that Pn(t) ≤ 1, we get that the right-hand

side is non-negative.

Step 3. We claim that Pn ≤ Pn+1 for all n ∈ N. This follows directly from (4.29).

Step 4. We claim that Pn converges to f pointwise. Indeed, from step 3, we get that
√
t− Pn+1(t) = θn(t)

[√
t− Pn(t)

]
,

for some θn(t) ∈ [c, 1), for some c > 0.

Step 5. Finally, we conclude the proof of the lemma, since, by Dini's Theorem (see Theorem
3.42), the pointwise convergence of the monotone sequence (Pn)n∈N is actually uniform. □

Remark 4.19. Why, in the above proof, we approximated
√
t instead of |t| directly?

By using (4.25), (4.28), and Lemma 4.18, we conclude the proof of Theorem 4.17.

We now consider the problem of approximating periodic functions. The proof we present is
due to de la Vallèe Poussin (1919), and it is based on the existence of algebraic polynomials
approximating a continuous function.

Theorem 4.20 (Weierstraÿ Theorem). Let f : [0, 2π] → R be a continuous function with
f(0) = f(2π), and ε > 0. Then, there exists a trigonometric polynomial T : [0, 2π] → R such
that ∥f − T∥C0 < ε.
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Proof. Extend f as a function to the entire R in a 2π periodic way, Namely, with an abuse of
notation, set f(x + 2kπ) := f(x), for all x ∈ [0, 2π], and all k ∈ Z. Fix ε > 0. Consider the
2π-periodic continuous functions

g(x) :=
f(x) + f(−x)

2
, h(x) :=

f(x)− f(−x)
2

sinx.

Set, for x ∈ [−1, 1],

φ(x) := g(arccosx), ψ(x) := h(arccosx).

By Weierstraÿ Theorem 4.17 there exist algebraic polynomial P,Q : [−1, 1] → R such that

∥φ− P∥C0 <
ε

4
, ∥ψ −Q∥C0 <

ε

4
. (4.30)

Since g and h are even, from (4.30) we get

∥g − P ◦ cos ∥C0 <
ε

4
, ∥h−Q ◦ cos ∥C0 <

ε

4
. (4.31)

Using the de�nitions of g and h, together with (4.31), we get

sup
x∈[0,2π]

∥f(x) sin2 x−
[
P (cosx) sin2 x+Q(cosx) sinx

]
∥

= sup
x∈[0,2π]

∥∥∥∥f(x) sin2 x+
f(−x) sin2 x

2
− f(−x) sin2 x

2
−
[
P (cosx) sin2 x+Q(cosx) sinx

]∥∥∥∥
≤ sup

x∈[0,2π]
∥g(x) sin2 x− P (cosx) sin2 x∥+ sup

x∈[0,2π]
∥h(x) sinx−Q(cosx) sinx∥

≤ sup
x∈[0,2π]

∥g(x)− P (cosx)∥+ sup
x∈[0,2π]

∥h(x)−Q(cosx)∥

<
ε

2
. (4.32)

By using the same argument for the function x 7→ f(x + π/2), we �nd algebraic polynomials
R,S : [0, 2π] → R such that

sup
x∈[0,2π]

∥f(x+ π/2) sin2 x−
[
R(cosx) sin2 x+ S(cosx) sinx

]
∥ < ε

2
. (4.33)

Thus, from (4.32) and (4.33) we get that

∥f − T∥C0 < ε,

where T : [0, 2π] → R is the trigonometric polynomial de�ned as

T (x) := P (cosx) sin2 x+Q(cosx) sinx+R(sinx) cos2 x− S(sinx) cosx,

for x ∈ [0, 2π]. □

Remark 4.21. It is possible to prove that the validity of Theorem 4.20 implies the validity of
Theorem 4.17. Namely, the density of algebraic polynomials in the space of continuous functions
is equivalent to the density of trigonometric polynomials in the space of periodic continuous
functions.

Several other proofs were given over the years of Weierstraÿ Approximation Theorem. In
particular, we point out two strategies of proofs. The �rst one is based on convolution: namely
approximation of the identity by polynomials by using singular integrals. The result presented
below, namely the choice of the particular singular kernel, is due to Landau (1908).

Theorem 4.22. Let f ∈ C0([0, 1]). De�ne f̃ : R → R as

f̃(x) :=

 f(x) := f(x)− f(0)− (f(1)− f(0))x if x ∈ [0, 1],

0 else.
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Namely, f̃ vanishes at x = 0 and at x = 1. For each n ∈ N, de�ne

Pn(t) :=

� 1

−1
f̃(x+ t)cn(1− x2)n dx,

where

c−1
n :=

� 1

−1
(1− x2)n dx.

Then, the sequence of polynomials (Pn)n∈N converges to f̃ uniformly on [0, 1].

The other strategy is based on the use of the values of f on rational points: it gives an almost
explicit way to construct the approximating polynomials, as well as error estimated. The result
presented below is due to Bernstein (1913), who used probabilistic arguments to prove it.

Theorem 4.23. Let f ∈ C0([0, 1]). For n ∈ N, de�ne the Bernstein polynomial Bn : [0, 1] → R
as

Bn(x) :=

n∑
j=0

f

(
j

n

)
Cn
j x

j(1− x)n−j ,

where

Cn
j :=

n!

j!(n− j)!
.

Then, the sequence of polynomials (Bn)n∈N converges to f uniformly on [0, 1]. In particular,

∥f −Bn∥C0 ≤ 5

4
ωf

(
1√
n

)
,

for all n ∈ N, where ωf is the modulus of continuity of f , de�ned as follows: for t > 0, ωf (t) is
the greatest δ > 0 such that

|f(x)− f(y)| < t,

for all x, y ∈ [0, 1] with |x− y| < δ.

Finally, approximation results by algebraic polynomials hold also in higher dimension, but
the strategy of the proof is more involved.

4.4. Separability: the Theorem of Stone. We now wonder if the approximation result of
Theorem 4.17 uses in essential way the structure of R or if it can be generalized to metric
spaces. Unfortunately, in a general metric space, we do not have polynomials at our disposal.
Nevertheless, it is possible to obtain an approximation result by using a type of family of
functions that resembles the properties of the family of algebraic polynomials.

De�nition 4.24. A subset A ⊂ C0(X) is called a subalgebra if:

(i) It is a linear space: namely, if f, g ∈ A, and λ, µ ∈ R then λf + µg ∈ A;
(ii) It is closed under multiplication: namely, if f, g ∈ A, then fg ∈ A.

We now look for necessary conditions for an algebra to be dense in C0(X). First of all, we
note that, if we take two points x ̸= y ∈ X, we need to have an element f ∈ A such that

f(x) ̸= f(y).

Moreover, for each x ∈ X there must be at least one element f ∈ A with f(x) ̸= 0. We give
names to these two properties.

De�nition 4.25. Let A be a subalgebra of C0(X). We say that A separates points if, for all
x ̸= y ∈ X, there exists f ∈ A such that

f(x) ̸= f(y).

De�nition 4.26. Let A be a subalgebra of C0(X). We say that A satis�es the non-vanishing
property if, for each x ∈ X, there exists f ∈ A with f(x) ̸= 0.
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It turns out that these two properties ensure density of the subalgebra.

Theorem 4.27 (Stone Theorem). Let A be a subalgebra of C0(X). Then, A is dense in C0(X)
with respect to the uniform norm if and only if it separates points and satis�es the non-vanishing
property.

In order to focus on the main ideas of the proof of Stone Theorem, we �rst isolate two technical
results.

Lemma 4.28. Let A be a subalgebra of C0(X) that separates points. Then, for every x ̸= y ∈ X,
and every a, b ∈ R, there exists f ∈ A such that f(x) = a, and f(y) = b.

Proof. Since A separates points, there exist g ∈ A with g(x) ̸= g(y). Then, de�ne f : X → R
by

f(z) := a+ (b− a)
g(z)− g(x)

g(y)− g(x)
,

for all z ∈ X. Note that, since g(y) ̸= g(x), we have that the denominator is di�erent from zero.
Then, f ∈ C0(X) satis�es the desired property. □

Lemma 4.29. Let A be a subalgebra of C0(X). Then, for each f, g ∈ A, we have that the
functions

max{f, g}, min{f, g}.
are uniform limits of sequences in A.

Proof. Write

max{f, g} =
1

2
(f + g + |f − g|), min{f, g} =

1

2
(f + g − |f − g|).

Therefore, if we prove that, for every h ∈ A, the function |h| is a limit of elements in A, we are
done. For, consider the sequence

un := Pn

(
h2

∥h∥2∞

)
,

where Pn is the polynomial de�ned in Lemma 4.18. Then, by using Lemma 4.18, we get that
the sequence (un)n∈N converges uniformly to |h|. This concludes the proof □

We can now present the proof of Theorem 4.27. Stone �rst proved it in 1937, and it was one
of the �rst examples of the use of algebraic ideas in analysis. The proof we present here is that
that Stone wrote in 1948 and 1962 and bene�ts from suggestions from Kakutani and Chevalley.
It is based on a double compactness argument, that allows to construct a function that satis�es
the upper and the lower bound, respectively.

Proof of Theorem 4.27. Step 1. Assume that the subalgebra A is dense in C0. Then, it is easy
to see that it separates points and satis�es the non-vanishing property.

Step 2. Let f ∈ C0(X), and ε > 0. We claim that there exists a function g ∈ A such that

∥f − g∥C0 < ε.

The idea is to obtain the lower and the upper bound separately, by using for each a compactness
argument.

Step 1. Let x ∈ X. We claim that there exists gx ∈ A such that

gx(x) = f(x), gx(y) ≤ f(y) + ε,

for all y ∈ X. Indeed, since A separates points, for each z ∈ X there exists hz ∈ A such that

hz(x) = f(x), hz(z) = f(z) +
ε

2
.
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Since hz and f are continuous, there exists r(z) > 0 such that

hz(y) ≤ f(y) + ε,

for all y ∈ B(z, r(z)). Then, consider the open cover of X given by (B(z, r(z)))z∈X . Since X is
compact, there exists a �nite subfamily B(z1, r(z1)), . . . , B(zk, r(zk)) that still covers X. De�ne

gx := min{gzi : i = 1, . . . , k}.

By using Lemma 4.29 we get that gx ∈ A. Moreover, by construction, it satis�es the desired
property.

Step 2. For each x ∈ X, let gx be the function given by the previous step. By continuity of
gx and f , there exists s(x) > 0 such that

gx(y) ≥ f(y)− ε,

for all y ∈ B(x, s(x)). As before, consider the open cover of X given by (B(x, s(x)))x∈X . Since
X is compact, there exists a �nite subfamily B(x1, s(x1)), . . . , B(xj , s(xj)) that still covers X.
De�ne

g := max{gxi : i = 1, . . . , j}.
By using Lemma 4.29 we get that g ∈ A. Moreover, by construction, it satis�es the desired
property. □

Corollary 4.30. Let (X, d) be a compact metric space. Then, C0(X) is separable.

Proof. We want to construct a subalgebra A of C0(X) that separates points, and satis�es the
non-vanishing property.

Since X is compact, by Lemma 2.34 we know that there exists a dense set (xn)n∈N. For each
n ∈ N, consider the countable family of balls (B(xn, 1/k))k∈N\{0}. Then, the set(

(B(xn, 1/k))k∈N\{0}
)
n∈N

is countable. We denote if by (Ai)i∈N. For each i ∈ N, de�ne gi : X → R as

gi(x) := dist(x,X \Ai).

Then, each gi is continuous. Consider the countable set

A := {gd11 · · · gdkk : k ∈ N, di ∈ N for all i = 1, . . . , k}.

Then, it is easy to see that A is a subalgebra of C0(X).
We claim that A separates points. Let x ̸= y ∈ X. By de�nition of (Ai)i∈N, there exists Aj

such that x ∈ Aj , y ̸∈ Aj . Therefore, gj(x) ̸= 0, and g(y) = 0. This also proves that A satis�es
the non-vanishing property. Thus, Theorem 4.27 ensures that the countable set A is dense in
C0(X). □

Remark 4.31. Note that B(X), the space of bounded functions, is not separable. Prove it!

Remark 4.32. For continuous functions taking values in C, more assumptions on the algebra
are needed in order for the analogue of the Stone-Weierstraÿ Theorem to hold.

4.5. Nowhere di�erentiable functions. It came as a huge shock for the mathematical community,
when in in the nineteenth century the �rst examples of functions that are nowhere di�erentiable
were constructed. If you think about it, it is easy to accept that there are functions that are not
di�erentiable at �nitely many points, like piecewise a�ne functions. But a function for which
the limit of the di�erent quotient did not exist was something that, today as at that time, has
a bit of surprise in it. In particular, it calls for deep rigorous mathematics to understand the
behavior of such functions, that are nowadays commonly used in Brownian motion, chaos theory,
fractals, among others areas. It seems that Bolzano was the �rst one to gave an example of a
function nowhere di�erentiable in the 1830's.
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Two are the examples that are usually presented today: one by Weierstraÿ (1861), and one
by Takagi (1903). The former is given by

f(x) :=
∞∑
n=0

bn cos(anπx),

for b ∈ (0, 1), a odd, and ab > 1 + 3π/2. The latter by

f(x) :=
∞∑
i=0

g(2ix)

2i
,

where g(x) := dist(x,Z).

Once the existence of a nowhere di�erentiable function is settled, next question is to investigate
how many of such functions there are. It turns out that there are a lot of them (in a topologically
precise sense). To be precise, we say that a set is of �rst category, if it can be written as a
countable union of closed sets each of which does not contain any ball in the uniform metric.
It is a result in topology (called Baire's Category Theorem) that �rst category sets have empty
interior. In particular, they cannot be dense. What can be proved is the following.

Theorem 4.33. The complement in the space of continuous function of the family of nowhere
di�erentiable functions is of �rst category.

Think about the meaning of the above result in light of the approximation results byWeierstraÿ
and Stone.
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5. Differentiation of functions of several variables

The goal of this section is to investigate the local behaviour of functions f : RN → RM . In
particular, we focus on functions that locally behave like a�ne maps. The reason for such a
choice lies on the fact that linear functions can be investigated by the tools of Linear Algebra,
and therefore form a class of easy objects that are well known.

We will introduce the notion of di�erentiability for functions f : RN → RM by mimicking what
you know from the one dimensional case N = 1. In the one dimensional case, di�erentiability is
characterized by the existence of a non-vertical tangent line to the graph of the function. Is it
also the case in higher dimension? Also, for a scalar function of several variables f : RN → R,
it is possible to consider the restriction over a line, namely t 7→ f(x+ tv), or x, v ∈ RN . What
is the relation between the derivatives of such one dimensional restrictions (called directional
derivatives), and the di�erential of the function?

We will challenge a naïve intuition about di�erentials, tangent hyperplanes, and directional
derivatives by showing that rigor in de�nitions and proofs is needed in order to not incur in
contradictions. This is also what happened historically.

We will detail all the proofs for scalar functions, namely functions f : RN → R, since the
general case of f : RN → RM follows easily by arguing component by component.

5.1. Di�erentiability in the one dimensional case N = 1. Here we recall what is done in
the one dimensional case as a motivation for the de�nition of di�erentiability in the case N > 1,
and for the characterizations of such a notion we will investigate. Let Ω ⊂ R be an open interval,
and let x̄ ∈ Ω. We recall that f is said to be di�erentiable at x̄ if the limit

lim
x→x̄

f(x)− f(x̄)

|x− x̄|
(5.1)

exists, and is a real number (namely it is not ±∞). In this case, the limit is denoted by f ′(x̄).
The existence of the limit in (5.1) has a geometrical interpretation: the existence of a non-vertical
tangent line to the graph of f at the point (x̄, f(x̄)) (see Figure 11). Such a tangent line is given
by

Tan(graph(f), (x̄, f(x̄))) := { (v, y) ∈ R× R : y = L[v − x̄] + f(x̄) } , (5.2)

where the linear map L : R → R is de�ned as

L[w] := f ′(x̄)w,

for w ∈ R. In a more geometrical fashion, this can be stated by saying that all tangent vectors
to the graph of f at (x̄, f(x̄)) are multiples of the vector (1, f ′(x̄)) ∈ R× R. Namely, that

lim
k→∞

f(xk)− f(x̄)

λk
= f ′(x̄)v (5.3)

for all sequences (xk)k∈N ⊂ R with xk → x̄, and all in�nitesimal sequences (λk)k∈N such that

lim
k→∞

xk − x̄

λk
= v.

In particular, we say that L is the linear map that best approximates f at x̄ at �rst order,
meaning that

lim
x→x̄

|f(x)− f(x̄)− L[x− x̄]|
|x− x̄|

= 0. (5.4)

The above limit can be also written in the following form

f(x) = f(x̄) + L[x− x̄] + o(|x− x̄|),

little o notation5.

5The little o notation was introduced by Landau.
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Figure 11. The di�erential of a scalar function de�ned on R: it has the geo-
metric meaning of non-vertical tangent line.

5.2. Di�erentiability in the general case N ≥ 1. In the case of several variables, we
introduce the notion of di�erentiability by using the analogous of expression (5.4).

De�nition 5.1. Let Ω ⊂ RN be an open set, and let x̄ ∈ Ω. We say that f : Ω → R is
di�erentiable at x̄ ∈ Ω if there exists a linear map L : RN → R such that

lim
x→x̄

|f(x)− f(x̄)− L[x− x̄]|
∥x− x̄∥

= 0.

In such a case, we call the map L the di�erential of f at x̄, and we denote it by df(x̄).

Remark 5.2. It is easy to see that if a function is di�erentiable at a point, then the di�erential
is unique.

Remark 5.3. Note that we are able to de�ne the di�erential of a function only at an interior
point of the domain, since we need to be able to go in all directions around the point.

Since linear maps L : RN → R are identi�ed, by duality, with a vector w ∈ RN via the
condition

L[v] = ⟨w, v⟩
for all v ∈ RN , we give a special name to the vector identifying the di�erential of a map.

De�nition 5.4. Let Ω ⊂ RN be an open set, and let x̄ ∈ Ω. Let f : Ω → R be di�erentiable at
x̄. We call gradient of f at x̄, and we denote it by ∇f(x̄), the vector w ∈ RN that identi�es the
di�erential df(x̄). Namely6,

df(x̄)[v] = ⟨∇f(x̄), v⟩,
for all v ∈ RN .

Di�erentiable functions are continuous functions with additional regularity properties, as the
following result shows. The proof is left as an exercise to the reader.

Lemma 5.5. Let Ω ⊂ RN be an open set, and let x̄ ∈ Ω. Let f : Ω → R be di�erentiable at x̄.
Then f is continuous at x̄.

We now collect basic algebraic properties of the di�erential. For the sake of notation, we state
them by using the gradient.

Proposition 5.6. Let Ω ⊂ RN be an open set, and let x̄ ∈ Ω. Let f, g : Ω → R be di�erentiable
at x̄. Then, the followings hold:

6Note that here we are using the notation with square brackets only for aesthetical reasons. It is the same as
writing df(x0)(v).
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• Linearity. For each λ, µ ∈ R, the function λf + µg is di�erentiable at x̄, and

∇(λf + µg)(x̄) = λ∇f(x̄) + µ∇g(x̄);

• Leibniz's rule. The function fg is di�erentiable at x̄, and

∇(fg)(x̄) = g(x̄)∇f(x̄) + f(x̄)∇g(x̄).

Moreover, let φ : R → R be di�erentiable at f(x̄). Then φ ◦ f : RN → R is di�erentiable at x̄,
and the following chain rule holds

∇(φ ◦ f)(x̄) = φ′(f(x̄))∇f(x̄).

Finally, let γ : R → RN written as

γ(t) = (γ1(t), . . . , γN (t))

for t ∈ R. Assume that there exists t̄ ∈ R such that γ(t̄) = x̄ and that, for each i = 1, . . . , N ,
the function γi : R → R is di�erentiable at t̄ ∈ R. Then, f ◦ γ : R → R is di�erentiable at t̄, and
the following chain rule holds

(f ◦ γ)′ = ⟨∇f(γ(t̄)), γ′(t̄)⟩,

where γ′(t) = (γ′1(t), . . . , γ
′
N (t)).

Proof. Step 1: Linearity. From the inequality

|(λf + µg)(x)− (λf + µg)(x̄)− (λ∇f(x̄) + µ∇g(x̄)) [x− x̄]|
∥x− x̄∥

≤ |λ| |f(x)− f(x̄)−∇f(x̄)[x− x̄]|
∥x− x̄∥

+ |µ| |g(x)− g(x̄)−∇g(x̄)[x− x̄]|
∥x− x̄∥

,

and by using the di�erentiability of f and g at x̄, we get the desired result.
Step 2: Leibniz's rule. It follows in the same way as for the one dimensional case.
Step 3: Chain rule - First case. Write, for x ∈ RN such that f(x) ̸= f(x̄),

φ ◦ f(x)− φ ◦ f(x̄)
∥x− x̄∥

=
φ(f(x))− φ(f(x̄))

f(x)− f(x̄)

f(x)− f(x̄)

∥x− x̄∥
.

By using the di�erentiability of φ and of f , we get that, in the limit as x → x̄, the right-hand
side converges to φ′(f(x̄))∇f(x̄).

Step 4: Chain rule - Second case. We have that

f(γ(t))− f(γ(t̄))

t− t̄
=
f(γ(t))− f(γ(t̄))− ⟨∇f(x̄), γ(t)− γ(t̄)⟩

|γ(t)− γ(t̄)|
|γ(t)− γ(t̄)|

t− t̄
+⟨∇f(x̄), γ(t)− γ(t̄)

t− t̄
⟩.

Now, the �rst fraction converges to zero as t → t̄, thanks to the di�erentiability of f at x̄.
Moreover, since

lim
t→t̄

γ(t)− γ(t̄)

t− t̄
= γ′(t̄),

we get that the second fraction is bounded uniformly in t close to t̄, and that the last term
converges to

⟨∇f(x̄), γ′(t̄)⟩.

This concludes the proof. □
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Figure 12. The geometric meaning of the directional derivative: it is the deriv-
ative of f at x̄ along the direction v of the one dimensional function t 7→ f(x̄+ tv).

5.3. Partial derivatives. We now turn our attention to the gradient. It encodes all of the
information of the di�erential, and it would then be nice to have a practical way to compute it.
We notice that if f : Ω → R is di�erentiable at x̄, and we take i ∈ {1, . . . , N}, then

lim
k→∞

f(x̄+ tkei)− f(x̄)

tk
= ⟨∇f(x̄), ei⟩, (5.5)

for all in�nitesimal sequences (tk)k∈N. Here e1, . . . , eN denotes the canonical basis of RN . By
using (5.5), we can then compute the components of ∇f(x̄). Geometrically, this corresponds to
looking at f only along the directions ei's, namely to reduce to considering a one dimensional
function. This procedure can be carried out for any vector.

De�nition 5.7. Let Ω ⊂ RN be an open set, and let x̄ ∈ Ω. Let f : Ω → R, and v ∈ RN \ {0}.
We say that f has directional derivatives at x̄ in the direction v if the limit

lim
t→0

f(x̄+ tv)− f(x̄)

t

exists and is �nite. In such a case, it is denoted by ∂f
∂v (x̄), or by ∂vf(x̄).

In case v is one element of the canonical basis of RN , we call the directional derivative a
partial derivative. The partial derivative with respect to ei is usually denoted by ∂if(x̄).

Remark 5.8. Directional derivatives look at the behavior of the function along lines. In
particular, this narrows down the kind of singular behaviors of the function. This is to say,
that the existence of directional derivatives is a very limited information on the behavior of the
function in a neighborhood of a point, since in RN with N > 1, there is a lot of more space
to behave badly, than in just dimension one. This is not surprising, since we already saw in
Chapter 3 that even continuity along straight lines is not su�cient to ensure continuity. We will
soon see better what consequences that has.

Since the operation to compute partial derivatives is to reduce to one dimensional functions,
the following mean value theorem holds. The proof follows directly from the same result in
dimension one.
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Theorem 5.9 (Lagrange's Mean Value Theorem). Let Ω ⊂ RN be an open set, f : Ω → R, and
x, y ∈ Ω. Assume that the segment S := {x + tv : t ∈ [0, 1]} is contained in Ω, and that f has
directional derivatives in the direction v := y − x at all the points of S. Then,

f(y)− f(x) =
∂f

∂v
(z) = ⟨∇f(z), (y − x)⟩,

for some z ∈ S .

We now investigate the relation between the existence of partial derivatives and di�erentiability.
By using the same argument as in (5.5), we obtain that di�erentiability is stronger than admitting
partial derivatives.

Lemma 5.10. Let Ω ⊂ RN be an open set, and let x̄ ∈ Ω. Let f : Ω → R be di�erentiable at
x0. Then, f has directional derivatives at x̄ in every direction v ∈ RN . Moreover, it holds that

∂f

∂v
(x̄) = ⟨∇f(x̄), v⟩,

for all v ∈ RN . Finally, the map

v 7→ ∂f

∂v
(x̄)

is linear.

Proof. Let v ∈ RN \ {0}. We have that

lim
t→0

f(x̄+ tv)− f(x̄)

t
= lim

t→0

f(x̄+ tv)− f(x̄)− ⟨∇f(x̄), (tv)⟩
t

+ ⟨∇f(x̄), v⟩

= ⟨∇f(x̄), v⟩,
where, in the last step, we used the di�erentiability of f at x̄. Thus, we get that

∂f

∂v
(x̄) = ⟨∇f(x̄), v⟩,

for all v ∈ RN . Then, the linearity of the map

v 7→ ∂f

∂v
(x̄) = ⟨∇f(x̄), v⟩

follows from the linearity of the Euclidean scalar product. □

The opposite is not true in general, as the following remarks show.

Remark 5.11. Directional derivatives at a point can exist, but the function might not be
di�erentiable at that point. Indeed, consider the function f : R2 → R de�ned as

f(x, y) := yx
1
3 ,

admits partial derivatives at the origin, but the map is not di�erentiable at that point.

Remark 5.12. Directional derivative at a point in all directions can exist, but the map v 7→ ∂vf
might not be linear. Indeed, consider the function f : R2 → R de�ned as

f(x, y) :=

 x if y = x,

0 else.

Then, f has directional derivative in all directions at the origin, but the map v 7→ ∂f
∂v ((0, 0)) is

not linear.

Remark 5.13. Directional derivative at a point in all directions can exist, the map v 7→ ∂vf can
be linear, but the function is not continuous at a point. Indeed, consider the function f : R2 → R
de�ned as

f(x, y) :=

{
1 if y = x2 ̸= 0,
0 else.
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Figure 13. The geometric idea of the proof of Theorem 5.15: we go from the
point x to the point y by following a path of segments parallel to the orthogonal axes.

Then, f has directional derivatives in all directions at the origin, the map v 7→ ∂f
∂v ((0, 0)) is

linear, but the function is not continuous at the origin.

The reason why directional derivatives give very weaker information on the local behavior of
the function is because we are only looking at the function restricted to lines, and not to the
behavior of the function close to each line, and not even to the relation between the behavior
of the function restricted to lines. This is the di�erence between directional derivatives and
tangent vectors (see De�nition 5.19).

As the previous remarks showed, additional assumptions are required for a function admitting
partial derivatives at a point in order to be di�erentiable at the same.

De�nition 5.14. Let Ω ⊂ RN be an open set, and let f : Ω → R. We say that f is of class C1

in Ω if it has partial derivatives ∂1f(x), . . . , ∂Nf(x) for all x ∈ Ω, and the function

x 7→ ∂if(x)

is continuous, for all i = 1, . . . , N .

The above properties ensures di�erentiability, as the following result shows.

Theorem 5.15. Let Ω ⊂ RN be an open set, and let f : Ω → R be of class C1 on Ω. Then, f
is di�erentiable at each point of Ω. Moreover, it holds that

lim
x ̸=y→x̄

f(y)− f(x)− ⟨∇f(x̄), (y − x)⟩
∥x− y∥

= 0, (5.6)

for all x̄ ∈ Ω.

Proof. Fix x̄ ∈ Ω. We want to prove the validity of (5.6) which, in turn, implies the di�erentiability
of f at x̄. Let

A := x̄+ (−µ, µ)N ,
for some µ > 0 such that A ⊂ Ω. For x, y ∈ A, consider the points z0, . . . , zN ∈ RN de�ned as
(see Figure 13)

z0 := x, zi := x+

i∑
k=1

(⟨(y − x), ek⟩) ek.

Note that zi ∈ A for all i = 0, . . . , N , that zN = y, and that zi → x̄ as x, y → x̄. Moreover, we
can write

⟨∇f(x̄), (y − x)⟩ =
N∑
i=1

(⟨(y − x), ei⟩) ∂if(x̄).
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Figure 14. A di�erentiable function for which (5.6) does not hold.

Now, we notice that, since for each i = 0, . . . , N it holds

zi − zi−1 = (⟨(y − x), ei⟩) ei,
the existence of partial derivatives in the directions e1, . . . , eN at every point of Ω, allows to
apply Theorem 5.9 to get points ξ1, . . . , ξN ∈ A such that

f(zi)− f(zi−1) = (⟨(y − x), ei⟩) ∂if(ξi).
Note that, for each i = 1, . . . , N , it holds that ξi → x̄ as x, y → x̄. We now write

f(y)− f(x)− ⟨∇f(x̄), (y − x)⟩)
∥x− y∥

=
1

∥x− y∥

[
N∑
i=1

( f(zi)− f(zi−1) )−
N∑
i=1

(⟨(y − x), ei⟩) ∂if(x̄)

]

=
1

∥x− y∥

[
N∑
i=1

(⟨(y − x), ei⟩) ∂if(ξi)−
N∑
i=1

(⟨(y − x), ei⟩) ∂if(x̄)

]

=

N∑
i=1

⟨(y − x), ei⟩
∥x− y∥

(∂if(ξi)− ∂if(x̄)) . (5.7)

Note that ∣∣∣∣⟨(y − x), ei⟩
∥x− y∥

∣∣∣∣ ≤ 1.

By letting x, y → x̄ in (5.7), we get that the right-hand side goes to zero, since ξi → x̄, and by
assumption the partial derivatives are continuous. This concludes the proof of the theorem. □

Remark 5.16. Note that there are functions that are di�erentiable in an open set, but not
C1(Find one!).

Moreover, note that we cannot remove the assumption that the partial derivatives exists also
at the point x̄. Indeed, the function

f(x, y) :=


x3y√
x4 + y2

if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

is of class C1 in R2 \ {(0, 0)}, but it is not di�erentiable at the origin (Prove it!).

Remark 5.17. Note that condition (5.6) is stronger than di�erentiability, since both x and y
are free to move. In particular, there are functions that are di�erentiable at x̄ but for which
(5.6) does not hold.
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Figure 15. The idea behind the proof of the Leibniz formula.

For instance, consider the function f : R → R depicted in Figure 14. Then, f is di�erentiable
at the origin, but if we consider the sequences of points

xn :=
1

n
− 1

n3
, yn :=

1

n
,

we have that

lim
n→∞

f(yn)− f(xn)

∥xn − yn∥
=

− 1
n2

1
n3

= −n ̸= 0.

Thus, (5.6) doesn't hold for f .

Finally, we present a formula that will be used later (see Figure 15).

Proposition 5.18 (Leibniz formula). Let ψ : [a, b] × Ω → R be a continuous function, where
Ω ⊂ RN is an open set. Then, the function ϕ : Ω → R de�ned as

ϕ(x) :=

� b

a
ψ(t, x) dt

is continuous. Moreover, let v ∈ RN , and assume that ∂vϕ is continuous on [a, b] × Ω. Then,
Leibniz formula holds:

∂vϕ(x) =

� b

a
∂vψ(t, x) dt.

The proof is left to the reader as an exercise.

5.4. Tangent hyperplane. Finally, we want to investigate the relation between di�erentiability
and the existence of a tangent hyperplane to the graph. First, we need to clarify the notion of
tangent hyperplane.

De�nition 5.19. Let M ≥ 1, E ⊂ RM be a set, and let x̄ ∈ RM . We say that a vector v ∈ RM

is tangent to E at x̄ if there exist (xk)k∈N ⊂ E with xk → x̄, and an in�nitesimal sequence
(λk)k∈N such that

lim
k→∞

xk − x̄

λk
= v.

Moreover, we denote by Tan(E, x̄) the set of all such tangent vectors to E at x̄ (see Figure 16).

Remark 5.20. The tangent cone at the set E at the point x̄ is what directions we see the set
E when we zoom in at the point x̄.
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Figure 16. A set E ⊂ R2 and the tangent cone to it at di�erent points x̄. in the
left, when x̄ is in the interior of E, the tangent cone is the entire space, since E is
locally at x̄ in all directions. In the middle, when the point x̄ belongs to a regular
part of the boundary of E, we just see locally E on one side of the tangent plane
to the boundary of E. On the right, when x̄ is a cusp of the boundary of E, we
see locally E as an half-line.

A simple property of the tangent set is the following.

Lemma 5.21. Let M ≥ 1, E ⊂ RM be a set, and let x̄ ∈ RM . Then Tan(E, x̄) is a cone.
Namely, if v ∈ Tan(E, x̄), then λv ∈ Tan(E, x̄) for all λ ≥ 0.

Proof. Let v ∈ Tan(E, x̄) and λ ≥ 0. Then, by de�nition, there exist (xk)k∈N ⊂ E with xk → x̄,
and an in�nitesimal sequence (λk)k∈N such that

lim
k→∞

xk − x̄

λk
= v.

Then, by setting

µk :=
λk
λ
,

we get that

lim
k→∞

xk − x̄

µk
= λv,

and thus that λv ∈ Tan(E, x̄) as desired. □

Remark 5.22. Roughly speaking, the cone of tangent vectors is what you see when you zoom
in the set E at the point z̄. Note that, for a general set E, there is no reason why such vector
should exist. And even if the tangent cone is not empty, it could be very wild.

We now focus our attention to the case of the tangent cone to a graph. We �rst prove a
characterization of di�erentiability in terms of images of tangent vectors via the di�erential, in
the same spirit as (5.3). In particular, we justify the sentence: the di�erential sends tangent
vectors to tangent vectors, that will be used repetitively.

Theorem 5.23. Let Ω ⊂ RN be an open set, and let x̄ ∈ Ω. Let f : Ω → R, and w ∈ RN .
Then, the followings are equivalent

(i) f is di�erentiable at x̄ and ∇f(x̄) = w;
(ii) For all sequences (xk)k∈N ⊂ R with xk → x̄, and all in�nitesimal sequences (λk)k∈N such

that

lim
k→∞

xk − x̄

λk
= v,

for some v ∈ RN , it holds that

lim
k→∞

f(xk)− f(x̄)

λk
= ⟨w, v⟩.
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Proof. Step 1: (i)⇒(ii). If xk ̸= x̄, write

f(xk)− f(x̄)

λk
=
f(xk)− f(x̄)− ⟨∇f(x̄), (xk − x̄)⟩

∥xk − x̄∥
∥xk − x̄∥

λk
+ ⟨∇f(x̄), xk − x̄

λk
⟩.

If xk = x̄, note that the left-hand side is zero. Let

Z := {k ∈ N : xk = x̄}.

By the di�erentiability of f at x̄, and the fact that, by (ii),

sup
k ̸∈Z

∥xk − x̄∥
λk

<∞,

we get that the �rst term on the right-hand side vanishes in the limit k → ∞. Moreover, by (ii),
we get that the second term on the right-hand side converges to ⟨∇f(x̄), v⟩.

Step 2: (ii)⇒(i). Let (xk)k∈N ⊂ R with xk → x̄. We would like to prove that

lim
k→∞

|f(xk)− f(x̄)− ⟨w, (xk − x̄)⟩|
∥xk − x̄∥

= 0. (5.8)

For, we apply Urysohn's property (see Proposition 2.6) to the sequence(
|f(xk)− f(x̄)− ⟨w, (xk − x̄)⟩|

∥xk − x̄∥

)
k∈N

.

Let (ki)i∈N be a subsequence. Since the sequence of vectors(
xki − x̄

∥xki − x̄∥

)
i∈N

,

is uniformly bounded in norm, by using Bolzano-Weierstraÿ Theorem (see Theorem 2.23) it is
possible to �nd a further subsequence (xkij )j∈N such that

lim
j→∞

xkij − x̄

∥xkij − x̄∥
= v, (5.9)

for some v ∈ RN . Then,

lim
j→∞

|f(xkij )− f(x̄)− ⟨w, (xkij − x̄)⟩|
∥xkij − x̄∥

= lim
j→∞

∣∣∣∣∣f(xkij )− f(x̄)

∥xkij − x̄∥
− ⟨w,

xkij − x̄

∥xkij − x̄∥
⟩

∣∣∣∣∣
= 0. (5.10)

where in the last step we used (5.9) together with the assumption. Since the limit in (5.10) is
independent of the subsequence (ki)i∈N, Urysohn's property yields (5.8) as desired. □

We now show that di�erentiability implies that the tangent cone to a graph is a linear space
of dimension N . The proof follows directly from the de�nition of the tangent cone together with
the characterization of di�erentiability provided in Theorem 5.23.

Lemma 5.24. Let Ω ⊂ RN be an open set, and let x̄ ∈ Ω. Let f : Ω → R be di�erentiable at x̄.
Then, Tan(graph(f), (x̄, f(x̄)) is a linear space of dimension N . In particular,

Tan (graph(f), (x̄, f(x̄)) =

{(
v,
∂f

∂v
(x̄)

)
: v ∈ RN

}
.

In particular, it is the linear space generated by the vectors (ei, ∂eif(x̄)), for i = 1, . . . , N .
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Figure 17. The function f of Remark 5.25: its tangent cone at the origin is
the horizontal plane (depicted in green), and the line along the segment (1, 0, 1)
(depicted in blue).

Remark 5.25. Note that, for a function that is not di�erentiable at a point, the tangent space
at the corresponding point on the graph may fail to be a linear space. Indeed, consider the
function f : (−1, 1)2 → R de�ned as

f(x, y) :=

 x if y = x2,

0 else.

Then, the tangent cone at the graph of f at the origin is the set (see Figure 17)

{(x, y, 0) : (x, y) ∈ R2} ∪ {(x, 0, x) : x > 0},

which is very far from being a linear space.

Remark 5.26. It is possible to use the idea of the previous remark, and make the tangent
cone fail to be a linear space even in a more spectacular way. Indeed, consider the function
f : R2 → R de�ned as

f(x, y) :=


sign(y)θx if |y| = θx2 for some θ ∈ (0, 1],

sign(y)(2− θ)x if |y| = θx2 for some θ ∈ (1, 2],

0 else,

where sign(y) is the sign of y. Then, f is continuous at the origin, that it admits directional

derivatives in all directions, and that the map v 7→ ∂f
∂v ((0, 0)) is linear.

Nevertheless, the tangent space to the graph of f at the origin is given by

{(x, y, 0) : (x, y) ∈ R2} ∪ {(x, 0, z) : |z| ≤ |x|}.

Remark 5.27. In the one dimensional case N = 1, di�erentiability at a point is equivalent
to the existence of a non-vertical tangent line. In the case of several variables, the situation is
more complicated, since the existence of a tangent hyperplane to the graph of a function is not
su�cient to ensure di�erentiability. Indeed, consider the function f : R2 → R de�ned as

f(x, y) :=

{
1 if y = x2 ̸= 0,
0 else.
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Set x̄ := (0, 0). Then it holds (prove it!) that Tan(graph(f), (x̄, f(x̄)) is a linear space of
dimension N , but f cannot be di�erentiable at x̄, since it is not continuous at that point.

We now present a weaker version of the previous result, that will be useful in the following.

Lemma 5.28. Let f : Ω → R, where Ω ⊂ RN is an open set. Fix x̄ ∈ Ω, and v ∈ RN , and
assume that there exists ∂vf(x̄). Then,

(v, ∂vf(x̄)) ∈ Tan(graph(f), (x̄, f(x̄)).

We now provide a characterization of di�erentiability based on three necessary condition that
we derived above (see Lemma 5.5, Lemma 5.10, and Lemma 5.24).

Theorem 5.29. Let f : Ω → R, where Ω ⊂ RN is an open set. Then, f is di�erentiable at
x̄ ∈ Ω if and only if

(i) f is continuous at x̄;

(ii) For each v ∈ RN the directional derivative ∂f
∂v (x̄) exists. Moreover, the map

v 7→ ∂f

∂v
(x̄)

is linear;
(iii) The tangent cone Tan (graph(f), (x̄, f(x̄)) is a linear space of dimension N .

Proof. Step 1: Necessity. Assume f is di�erentiable at x̄. Then, (i), (ii), and (iii) follows from
Lemma 5.5, Lemma 5.10, and Lemma 5.24, respectively.

Step 2: Su�ciency. Assume that f satis�es (i), (ii), and (iii). We divide the argument in
several steps.

Step 2.1. We claim that

Tan (graph(f), (x̄, f(x̄)) =

{(
v,
∂f

∂v
(x̄)

)
: v ∈ RN

}
. (5.11)

Indeed, from (ii) together with Lemma 5.28, we get that the right-hand side is included in the
left-hand side. Since by (ii) we have that the map

v 7→ ∂f

∂v
(x̄)

is linear, we obtain that the right-hand side is a linear space of dimension N and, thanks to (i),
also the left-hand side is, we get also the opposite inequality.

Step 2.2. We claim that there exists a linear map L : RN → R such that{(
v,
∂f

∂v
(x̄)

)
: v ∈ RN

}
= graph(L). (5.12)

Namely, the tangent cone to the graph of f at (x̄, f(x̄) is the graph of the linear function L.
Indeed, from (5.11), we have that the tangent cone to the graph of f at (x̄, f(x̄)) is a non-

vertical hyperplane in RN ×R. Thus, it is the graph of a linear map L : RN → R. In particular,
we have that

L[v] =
N∑
i=1

∂if(x̄)vi,

for all v = (v1, . . . , vN ) ∈ RN .

Step 2.3. We now prove that, given a sequence (xk)k∈N ⊂ Ω converging to x̄, it holds

lim
k→∞

|f(xk)− f(x̄)− L[xk − x̄]|
∥xk − x̄∥

= 0.
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We will do that by showing that, from each of such sequence, we can extract a subsequence such
that the above limit holds. Thus, we conclude that the limit holds for the entire sequence by
using the Urysohn property (see Proposition 2.6).

Since the vectors
xk − x̄

∥xk − x̄∥
have uniformly bounded norm, thanks to the Bolzano-Weierstraÿ Theorem (see Theorem 2.23),
we can extract a subsequence (xki)i∈N such that

lim
i→∞

xki − x̄

∥xki − x̄∥
= v ∈ RN .

We now have two possibilities. Either there exists a further subsequence (not relabeled) such
that

sup
i∈N

|f(xki)− f(x̄)|
∥xki − x̄∥

<∞, (5.13)

or for all possible subsequences, the above quantity is in�nite. In the former case, thanks again
to the Bolzano-Weierstraÿ Theorem (see Theorem 2.23), we can assume that

lim
i→∞

f(xki)− f(x̄)

∥xki − x̄∥
= w ∈ R.

Thus, (v, w) ∈ RN ×R is a tangent vector to the graph of f at the point (x̄, f(x̄)), and by (5.12)
it holds w = L[v]. Therefore,

lim
i→∞

|f(xki)− f(x̄)− L(xki − x̄)|
∥xk − x̄∥

= 0.

In case there is no subsequence for which (5.13) is satis�ed, we argue as follows. By continuity of
f at x̄, the sequence |f(xki)− f(x̄)| is in�nitesimal. Again by the Bolzano-Weierstraÿ Theorem
(see Theorem 2.23), we can assume that

lim
i→∞

f(xki)− f(x̄)

|f(xki)− f(x̄)|
= w ∈ {±1}. (5.14)

Now, by assumption

lim
i→∞

∥xki − x̄∥
|f(xki)− f(x̄)|

= 0.

Thus, by considering the in�nitesimal sequence λi := |f(xki)− f(x̄)|, we get that

(0, w) ∈ Tan (graph(f), (x̄, f(x̄)) .

This gives the desired contradiction. Indeed, by (5.11), we would get

w = L[0].

By the linearity of the map L, we have that L[0] = 0, but, by (5.14), w ̸= 0. This concludes the
proof. □

As it turns out, continuity and the existence of a non vertical tangent hyperplane are su�cient
to ensure di�erentiability.

Proposition 5.30. Let Ω ⊂ RN be an open set, and let x̄ ∈ Ω. Let f : Ω → R be a function that
is continuous at x̄ and such that Tan(graph(f), (x̄, f(x̄)) is the graph of a linear map L : RN → R.
Then, f is di�erentiable at x̄.

The proof of this result follows easily from Theorem 5.29 and is left to the reader.
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5.5. Di�erentiability of functions from RN to RM . The notion of di�erentiability for vector
valued functions mimic that for scalar functions.

De�nition 5.31. Let Ω ⊂ RN be an open set, and let x̄ ∈ Ω. We say that f : Ω → RM is
di�erentiable at x̄ ∈ Ω if there exists a linear map L : RN → RM such that

lim
x→x̄

∥f(x)− f(x̄)− L(x− x̄)∥
∥x− x̄∥

= 0.

In such a case, we call the map L the di�erential of f at x̄, and we denote it by df(x̄).

As for the case of scalar functions, the di�erential can be identi�ed by duality by a matrix.

De�nition 5.32. Let f : Ω → RM be di�erentiable at x ∈ Ω. We denote by Jf(x), and we call
it the Jacobian matrix of f at x, the M ×N matrix de�ned by the relation

df(x̄)[v] = Jf(x)v,

for all v ∈ RN .

The di�erentiability of a vector valued function is equivalent to the di�erentiability of its
components.

Lemma 5.33. Let f : Ω → RM , where Ω ⊂ RN is an open set, and write f = (f1, . . . , fM ).
Then, f is di�erentiable at a point x ∈ Ω if and only if each of its components f1, . . . fM are
di�erentiable at x.

The proof is left as an exercise for the reader.

Remark 5.34. In particular, the above result allows us to write

Jf(x) =


∇f1(x)
∇f2(x)
. . .

∇fM (x)


Namely, the ith row of Jf(x) is ∇fi(x).
Remark 5.35. A di�erence with scalar functions, is that, in general, the Lagranges' Mean
Value Theorem (see Theorem 5.9) is not valid. Indeed, consider the function f : R → R2 given
by f(t) := (cos t, sin t). Then, f(0) = f(2π), but f ′ never vanishes.

The fact is that, for vectorial functions, we cannot make sure that all of the components of
the function obey that Lagranges' Mean Value Theorem at the same point.

As for scalar functions, it is possible to introduce the concept of partial (and directional)
derivative.

De�nition 5.36. Let Ω ⊂ RN be an open set, and let x̄ ∈ Ω. Let f : Ω → RM , and v ∈ RN .
We say that f has directional derivatives at x̄ in the direction v if the limit

lim
t→0

f(x̄+ tv)− f(x̄)

t

exists and is �nite. In such a case, it is denoted by ∂f
∂v (x̄), or by ∂vf(x̄).

In case v is one element of the canonical basis of RN , we call the directional derivative a
partial derivative.

Remark 5.37. Partial derivatives allow to give a di�erent point of view on the Jacobian matrix:

Jf(x) = (∂1f(x) . . . ∂Nf(x))

Namely, the ith column of Jf(x) is ∂if(x).

Finally, despite tangent planes to the graphs of a vector valued function are not easy to
imagine, the analogous of Theorem 5.23 holds. Thus, also for vector value functions, the
di�erential sends tangent vectors to tangent vectors.
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Theorem 5.38. Let Ω ⊂ RN be an open set, and let x̄ ∈ Ω. Let f : Ω → RM , and A be an
M ×N matrix. Then, the followings are equivalent

(i) f is di�erentiable at x̄ and Jf(x̄) = A;
(ii) For all sequences (xk)k∈N ⊂ RN with xk → x̄, and all in�nitesimal sequences (λk)k∈N

such that

lim
k→∞

xk − x̄

λk
= v,

for some v ∈ RN , it holds that

lim
k→∞

f(xk)− f(x̄)

λk
= Av.

The chain rule (see Proposition 5.6) also holds for vector valued di�erentiable functions.

Proposition 5.39. Let f : RN → RM , and g : RM → Rk be functions such that f is
di�erentiable at x̄ ∈ RN , and g is di�erentiable at f(x̄). Then, g ◦ f is di�erentiable at x̄,
and

d(g ◦ f)(x̄)[v] = dg(f(x̄)) [ df(x̄)[v]] ,

for all v ∈ RN . In particular, it holds that

J(g ◦ f)(x̄) = Jg(f(x̄)) Jf(x̄).

To state the Leibniz rule for vector valued functions, we �rst need to introduce a convenient
notation to express the Jacobian matrix of the product between a scalar and a vectorial function.

De�nition 5.40. Let a ∈ RM and b ∈ RN . The tensor product between a and b is the M ×N
matrix a⊗ b de�ned as

(a⊗ b)ij := aibj ,

for i = 1, . . . ,M and j = 1 . . . , N .

Proposition 5.41. Let φ : RN → R and f : RN → RM be di�erentiable functions at a point
x̄ ∈ RN . Then, the function φf : RN → RM is di�erentiable at x̄, and follows

J(φf) = f ⊗∇φ+ φJf.

Remark 5.42. Note that the tensor product is not commutative! In particular, in the above
formula it is important to take f ⊗∇φ and not ∇φ⊗ f !
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6. Vector fields and gradients

Are all vector �elds gradients of scalar functions? Namely, given a vector �eld V : RN → RN ,
is it possible to �nd a function f : RN → R such that V = ∇f?

Note that, for continuous vector �elds V : R → R, the question is trivial (why?).

The answer to the above question is: no, not all vector �elds are gradient vector �elds. In
order to understand what can go wrong, we will consider two examples in R2. The �rst is the
vector �eld V : R2 → R2 de�ned as

V (x, y) := (y2, x2).

We claim that V is not a gradient vector �eld. Indeed, if by absurd there existed a function
f : R2 → R such that V = ∇f , then we would have

∂1f(x, y) = y2 ⇒ f(x, y) = xy2 + g1(y),

and
∂2f(x, y) = x2 ⇒ f(x, y) = yx2 + g2(x),

for some functions g1, g2 : R → R. Clearly, the above two conditions are not compatible with
each other. This is because V does not satisfy an algebraic condition that holds gradient vector
�elds.

The second example we consider is the vector �eld V : R2 \ {0} → R2 de�ned as

V (x, y) :=

(
−y

x2 + y2
,

x

x2 + y2

)
.

We claim that V is not a gradient vector �eld. Indeed, if we assume by contradiction that there
existed a function f : R2 → R such that V = ∇f . Consider the curve γ : [0, 2π] → R2 given by

γ(t) := (cos t, sin t),

and the composite function f ◦ γ. Then, since γ(0) = γ(2π), we would have

0 = f ◦ γ(2π)− f ◦ γ(0) =
� 2π

0
(f ◦ γ)′ dt

=

� 2π

0
⟨∇f(γ(t)), γ′(t)⟩ dt =

� 2π

0
⟨V (γ(t)), γ′(t)⟩ dt =

� 2π

0
1 dt = 2π,

which gives the desired contradiction.
The problem here is that, if you follow a gradient vector �eld along a closed path, you have

to go up as much as you go down. The above computation shows that this is not the case for
the vector �eld V (see Figure 18).

Figure 18. If you follow a gradient vector �eld over a closed path, you cannot
just go up, like the people in the Ascending and Descending illustration by Escher
of 1960. Same ideas were developed by Oscar Reutersvärd.
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Nevertheless, contrary to the previous example, if we consider it in the half space {(x, y) ∈
R2 : y > 0}, we get that V = ∇f , where

f(x, y) := − arctan

(
x

y

)
.

Thus, there is an interaction between the vector �eld and the topology of the domain where we
consider it.

As we will see, these two examples are the prototypes of things that can go wrong when we
try to �nd a primitive to a vector �eld. Nevertheless, we will see that it is always possible to
decompose a vector �eld in a gradient part, and another part. For the case N = 3, we will relate
this latter to the rotation of the vector �eld around points. This is the so called Helmholtz
Decomposition Theorem. Such a result has both an interest in mathematics and in physics.
For the former, it is a way to understand the relation between the family of vector �elds, and
the family of gradients. For the latter, it is related to conservative forces, �uid dynamics, and
electromagnetism. We will talk about these applications at the end of the chapter.

In order to investigate the relation between vector �elds and gradients, we will introduce the
notion of forms: these are objects of extreme importance in several areas of science, like analysis,
geometry, and physics, to mention some.

6.1. Schwarz's Theorem. In order to answer the above question, we �rst derive a necessary
condition that a gradient �eld has to satisfy.

Theorem 6.1 (Schwarz's Theorem). Let f : RN → R be of class C2. Then,

∂2f

∂ei∂ej
(x) =

∂2f

∂ej∂ei
(x),

for all x ∈ RN , and all i, j = 1, . . . , N .

Proof. Without loss of generality, we can assume N = 2, and let x = (a, b). The idea of the
proof is based on the following trivial identity:

f(a+ h, b+ k)− f(a+ h, b) + f(a+ h, b)− f(a, b)

= f(a+ h, b+ k)− f(a, b+ k) + f(a, b+ k)− f(a, b), (6.1)

for h, k ∈ R. Note that the identity holds because, geometrically (see Figure 19), if you make
one step east, one north, one west, and one south, you can back to the same place. This is
because RN is �at !

Figure 19. The geometric idea behind the proof of Schwarz's Theorem.
Following the green path takes you to the same point as following the red path.

Rearranging the terms in (6.1), we obtain

f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)
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= f(a+ h, b+ k)− f(a, b+ k)− f(a+ h, b) + f(a, b). (6.2)

Since f is a C1 function, the idea is to use Lagrange's Mean Value Theorem (see Theorem 5.9)
to rewrite the several di�erences

f(a+ h, b+ k)− f(a+ h, b), f(a, b+ k)− f(a, b),

on the left-hand side, and

f(a+ h, b+ k)− f(a, b+ k), f(a+ h, b)− f(a, b),

on the right-hand side Note that, if we consider them separately, we would obtain di�erent points
where the derivatives are computed. This would make the computations a bit more involved. A
better way to do that, is to see the left hand side as

u(h, k)− u(0, k),

where

u(h, k) := f(a+ h, b+ k)− f(a+ h, b),

and the right-hand side as

v(h, k)− v(h, 0),

where

v(h, k) := f(a+ h, b+ k)− f(a, b+ k).

In such a way, (6.2) becomes

h
[
∂1f(a+ h̃, b+ k)− ∂1f(a+ h̃, b)

]
= k

[
∂2f(a+ h, b+ k̃)− ∂2f(a, b+ k̃)

]
,

for some |h̃| < |h|, and |k̃| < |k|. Using again Lagrange's Mean Value Theorem (see Theorem
5.9), since f is a C2 function, we get

hk ∂2∂1f(a+ h̃, b+ k̄) = kh ∂1∂2f(a+ h̄, b+ k̃),

for some |h̄| < |h|, and |k̄| < |k|. Thus, dividing both sides by hk, we get

∂2∂1f(a+ h̃, b+ k̄) = ∂1∂2f(a+ h̄, b+ k̃).

Thus, by sending h, k → 0, and using the continuity of the second partial derivatives, we get

∂2∂1f(a, b) = ∂1∂2f(a, b).

This concludes the proof of the theorem. □

Remark 6.2. In the above proof, one could ask why introducing the functions u and v to
estimate the di�erence of the f in equation (6.2). Well, try to estimate it in a di�erent way and
see what goes wrong.

Remark 6.3. The continuity of the second order partial derivatives is needed in order for
the above result to be true. Indeed, Peano found the following counterexample. Consider the
function f : R2 → R de�ned as (see Figure 20)

f(x, y) :=


xy(x2 − y2)

x2 + y2
if (x, y) ̸= (0, 0),

0 else,

Then, f is twice di�erentiable, but the second order derivatives are not continuous at the origin.
It is easier to understand the above function in polar coordinates: it writes as

f(r, θ) :=
r sin(4θ)

4
.

Namely, for each �xed r > 0, the function θ 7→ f(r, θ) oscillates in a way that is not possible to
approximate with a parabola (namely by using second derivatives).
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Figure 20. The example by Peano: the function f oscillates around the origin
in such a way that it is not possible to approximate with a parabola (namely by
using second derivatives).

Remark 6.4. Schwarz's Theorem implies that the Hessian matrix, namely the N ×N matrix
of the second order partial derivatives, is symmetric.

6.2. Di�erential forms. We now want to take a di�erent look at the di�erential of a scalar
map. Let f : RN → R be a C1 map. At each point x ∈ RN , the di�erential df(x) is a linear
map from RN → R, namely an element of L(RN ;R) (see Example 1.16). Indeed,

df(x)[v] = ⟨∇f(x), v⟩,

for all v ∈ RN . Therefore, the function

x 7→ df(x)

is a map from RN to the space L(RN ;R). Since the function f is C1, such a map is continuous,
if we equip the target space with the operator norm (see Example 1.16 - Check this fact!). Such
an object is a particular case of what is called a (multilinear) form, and they are fundamental
in Analysis, Geometric Integration Theory, as well as in Geometry, and Physics. This was
pioneered in the work by Grassmann. For the moment, we will only consider the class of forms
to which the di�erential belongs to, namely 1-forms.

De�nition 6.5. A map ω : RN → L(RN ;R) is called a 1-form. The space of 1-forms is denoted
by Λ1(RN ).

Remark 6.6. What we are saying is this. Take a linear map L : RN → R. Then, by duality,
there exists a vector V ∈ RN such that

L[v] = ⟨V, v⟩,

for all v ∈ RN . Now, consider a map L : RN × RN → R such that, for each x ∈ RN , the map

v 7→ L(x, v) = L(x)[v],

is linear. The right-hand side is just a di�erent way to write the same object, where the two
variables, x and v are separated, because they play a di�erent role. Then, by duality as before,
for each x ∈ RN we can �nd a vector V (x) ∈ RN such that

L(x)[v] = ⟨V (x), v⟩,

for all v ∈ RN . This is what a 1-form is!
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Motivated by the previous example, we want to de�ne a standard way to write a 1-form. In
the same way as there is a standard way to write vectors in RN , namely by using the basis
e1, . . . , eN , there are special 1-forms that allow to write all of the others. First, we remark that
the space of 1-forms is a linear vector space.

De�nition 6.7. On Λ1(RN ) we de�ne a natural notion of addition of 1-forms, and of multiplication
of a 1-form with a scalar as follows. Given ω1, ω2 ∈ Λ1(RN ) and λ ∈ R, we de�ne

(ω1 + ω2)(x)[v] := ω1(x)[v] + ω2(x)[v],

and
(λω1)(x)[v] := λω1(x)[v],

for every v ∈ RN , respectively.

Lemma 6.8. The space Λ1(RN ) is a linear vector space, with respect to the notion of addition
and scalar multiplication de�ned above.

We are now in position to de�ne the standard basis of the linear vector space Λ1(Rn).

De�nition 6.9. We de�ne dx1, . . . , dxN ∈ Λ1(RN ) as

dxi(y)[v] := vi,

for y ∈ RN , and i = 1, . . . , N , where v = (v1, . . . , vN ) ∈ RN .

Remark 6.10. Let ω ∈ Λ1(RN ). Then, it is possible to write

ω(x) =

N∑
i=1

ωi(x) dxi,

for ωi : RN → R, for i = 1, . . . , N . In particular, we have that

ω(x)[v] =

N∑
i=1

ωi(x)vi,

for all vectors v ∈ RN , and all x ∈ RN .
By identifying the 1-form ω ∈ Λ1(RN ) with the vector of its coordinates (ω1, . . . , ωN ), that

we will denote with an abuse of notation with ω : RN → RN , we can write

ω(x)[v] = ⟨ω(x), v⟩,
for all v ∈ RN . On the left-hand side, with ω we intend the 1-form, while on the right-hand
side, with ω we intend the vector of its coordinates with respect to the standard basis.

Remark 6.11. In particular, we get that

df(x) =

N∑
i=1

∂if(x) dxi,

for a C1 function f . Note that we omitted the dependence of the dxi's on the space variable
x ∈ RN , since they are constant linear maps. Moreover,

df(x)[v] =

N∑
i=1

∂if(x)vi = ⟨∇f(x), v⟩,

for all v = (v1, . . . , vN ) ∈ RN .

Remark 6.10 allows us to de�ne the notion of regularity of a 1-form by using the regularity
of the coordinates functions.

De�nition 6.12. We say that a 1-form ω ∈ Λ1(RN ) is continuous (or di�erentiable, or C1), if
its coordinates ω1, . . . , ωN : RN → R are continuous (or di�erentiable, or C1).
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Finally, we de�ne the subclass of 1-forms that are gradients.

De�nition 6.13. A 1-form ω ∈ Λ1(RN ) is called exact if there exists f ∈ C1(RN ) such that
ω = df .

6.3. Poincarè Lemma. By using the language of 1-forms, we are in position to prove two
characterizations of gradients vector �elds.

The idea of how to construct the primitive (or potential) in both cases is based on the
Fundamental Theorem of Calculus. The di�erence between the two characterizations is in the
conditions ensuring that the potential is well de�ned.

Assume that f : RN → R is a C1 function. Fix x, y ∈ RN , and consider the function
g : [0, 1] → R de�ned as

g(t) := f(y + t(x− y)).

Then,

f(x)− f(y) = g(1)− g(0) =

� 1

0
g′(t) dt

=

� 1

0
⟨∇f(y + t(x− y)), (x− y)⟩ dt

=

� 1

0
df(y + t(x− y))[x− y] dt.

Now, take a generic 1-form ω ∈ Λ1(RN ). By using the above formula with a �xed y ∈ RN , we
can de�ne

F (x) :=

� 1

0
ω(x+ t(y − x))[y − x] dt.

This will give a function F : RN → R that, hopefully, satis�es dF = ω (we will check this later).
Before worrying about this, we �rst need to check that F is a well de�ned function, namely that
its value does not depend on the choice of the path from y to x. In order to state such property,
we need to introduce the notion of integration of a 1-form along a curve.

De�nition 6.14. Let ω ∈ Λ1(RN ) be continuous and let γ : [0, 1] → RN be a piecewise-C1

curve. We de�ne �
γ
ω :=

� 1

0
ω(γ(t))[γ′(t)] dt.

Similarly, we de�ne the integration over a piecewise C1 curve.

Remark 6.15. In the case ω = df , for a C1 function f : Rn → R, by using the Chain Rule
(see Proposition 5.6) we get (see Figure 21)�

γ
df =

� 1

0
⟨∇f(γ(t)), γ′(t)⟩ dt =

� 1

0
(f ◦ γ)′(t) dt = f(γ(1))− f(γ(0)),

for any piecewise C1 curve γ : [0, 1] → RN .

We are now in position to prove the �rst characterization of gradient vector �elds.

Theorem 6.16. Let ω ∈ Λ1(RN ) be continuous, and let γ, µ : [0, 1] → RN be piecewise C1

curves. The following are equivalent:

(i) If γ(0) = γ(1), then �
γ
ω = 0;

(ii) If γ(0) = µ(0), and γ(1) = µ(1), then�
γ
ω =

�
µ
ω;
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Figure 21. The geometric idea behind the de�nition of the integral of a gradient
along a curve.

(iii) ω is exact; namely there exists f ∈ C1(RN ) such that ω = df .

Proof. Step 1: (i)⇒(ii). The idea is to follow γ forward, and then µ backwards. This will give
a closed path that allows us to use (i). De�ne the curve µ̃ : [0, 1] → RN de�ned as

µ̃(t) := µ(1− t).

Namely, µ̃ is µ traveled backwards. Then, it holds�
µ̃
γ = −

�
µ
γ. (6.3)

Since µ̃(0) = γ(1), and µ̃(1) = γ(0), the curve λ : [0, 1] → RN de�ned as

λ(t) :=

 γ(2t) if t ∈ [0, 1/2],

µ̃(2t− 1) if t ∈ [1/2, 1].

Then, λ satis�es λ(0) = λ(1). Thus, from (i) and (6.3), we get the desired result.

Step 2: (ii)⇒(iii). De�ne the function f : RN → R by

f(x) :=

� 1

0
ω(tx)[x] dt.

Thanks to (ii), the function f is well de�ned. Indeed, its de�nition is independent on the path
taken to from the origin to the point x. We now prove that df = ω. For, we want to show that

∂f

∂v
(x) = ω(x)[v],

for all x ∈ RN and all v ∈ RN . Let h ̸= 0. By using (ii), we can compute the value f(x+hv) by
connecting the point x+ hv with the origin to the point x with a segment, and then connecting
the point x to the origin with another segment. Thus, we get that

f(x+ hv) =

� 1

0
ω(tx)[x] dt+

� 1

0
ω(x+ shv)[hv] ds.

Thus,
f(x+ hv)− f(x)

h
=

� 1

0
ω(x+ shv)[v] ds =

1

h

� h

0
ω(x+ rv)[v] ds, (6.4)

where in the last step we used the change of variables sh = r. Now, �x ε > 0. By using the
continuity of ω (namely the continuity of its components), there exists δ > 0 such that if r ∈ R
is such that |rv| < δ, then

|ω(x)[v]− ω(x+ rv)[v]| < ε. (6.5)

Note that we are considering a �xed vector v ∈ RN . Thus, if

|h| < δ

|v|
,
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we get that∣∣∣∣ 1h
� h

0
ω(x+ rv)[v] ds− ω(x)[v]

∣∣∣∣ = ∣∣∣∣ 1h
� h

0
ω(x+ rv)[v] ds− 1

h

� h

0
ω(x)[v] ds

∣∣∣∣
≤ 1

h

� h

0
|ω(x+ rv)[v]− ω(x)[v] | ds

≤ ε,

where in the last step we used (6.5) to estimate the �rst integral. Thus, since ε > 0 is arbitrary,
we conclude that

lim
h→0

1

h

� h

0
ω(x+ rv)[v] ds = ω(x)[v], (6.6)

Thus, from (6.4) and (6.6) we conclude.

Step 3: (iii)⇒(i). This follows from the computations in Remark 6.15. □

Remark 6.17. The same result holds also if instead of having ω de�ned in the whole RN , it is
de�ned only on an open set Ω ⊂ RN .

We now have a characterization of 1-forms that are gradients. The problem is that the above
conditions are not that easy to check. We would like to have a more manageable condition that
characterizes exactness of a 1-form. For, we would like to use the algebraic condition given by
Schwarz's Theorem (see Theorem 6.1).

De�nition 6.18. We say that a C1 1-form ω ∈ Λ1(RN ) is closed, if

∂iωj = ∂jωi,

where ω = (ω1, . . . , ωN ) with respect to the basis ( dx1, . . . dxN ).

We now want to understand what is the issue in proving that a closed form ω ∈ Λ1(Ω) is
exact in an entire open set Ω. To start with, let us notice that if two functions f, g : RN → R
are such that

ω = ∇f, ω = ∇g,
then, f = g + c, for some c ∈ R. Assume that Ω is connected (namely, it is just one piece).
Thus, since two potentials di�ers by a constant, the problem of passing from the local exactness
of ω to its global exactness is a matter of matching constants of the local potentials. This is an
issue that involves the topology of the set Ω. We will present the proof for a subclass of open
sets for which the full characterization of exactness given by the Poincaré Lemma holds. This
is for simplicity of exposition.

In order to present the result for forms de�ned on a subset of RN , to carry out all of the above
constructions, we need to make sure that it is possible to connect each point in our set with a
base point. This will restrict the type of domains that we will consider.

De�nition 6.19. A set Ω ⊂ RN is called star-shaped, if there exists a point x ∈ Ω such that
(see Figure 22)

tx+ (1− t)y ∈ Ω,

for all y ∈ Ω and t ∈ [0, 1].

We can now prove the characterization we wanted.

Theorem 6.20 (Poincaré Lemma). Let Ω ⊂ RN be a star-shaped domain, and let ω ∈ Λ1(Ω)
be of class C1. Then, ω is exact if and only if it is closed.

Proof. Step 1. Assume ω is exact. Then, by Schwarz Theorem (see Theorem 6.1), it is closed.
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Figure 22. A star-shaped set on the left, and a non star-shaped set on the right

Step 2. Assume ω is closed. De�ne

f(x) :=

� 1

0
ω(tx)[x] dt.

We need to check that ω = df . As we did in the proof of Theorem 6.16, this will be achieved
by showing that

∂if(x) = ωi(x),

for all x ∈ RN and all i = 1, . . . , N . By using Leibniz formula (see Proposition 5.18), we have
that

∂if(x) = ∂i

� 1

0

N∑
j=1

ωj(tx)xj dt

=

� 1

0

N∑
j=1

∂i[ωj(tx)xj ] dt

=

� 1

0

ωi(tx) +

N∑
j=1

t∂iωj(tx)xj

 dt
=

� 1

0

ωi(tx) +

N∑
j=1

t∂jωi(tx)xj

 dt
=

� 1

0
∂t(tωi(tx)) dt

= ωi(x),

where in the fourth step we used the fact that ∂iωj(tx) = ∂jωi(tx) for all j = 1, . . . , N , since ω
is closed. This concludes the proof of the theorem. □

Remark 6.21. Poincaré Lemma holds for more general domains. Indeed, it is also valid for
domains without holes. The precise notion that you will see in Topology. This gives yet another
link between Analysis and Topology: the validity of Poincaré Lemma depends on topological
properties of domain we consider.

As a corollary, we get that a closed 1-form is locally exact.

Corollary 6.22. Let ω ∈ Λ1(Ω) be a closed C1 1-form, where Ω ⊂ RN is an open set. Then, ω
is locally exact. Namely, for each x ∈ Ω, there exists a radius r > 0 and a function f : RN → R
such that ω = ∇f in B(x, r).
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6.4. Helmholtz Decomposition Theorem. Poincaré Lemma ensures that a closed 1-form in
a star-shaped domain is the gradient of a function. Since the viceversa is also true, this is a
characterization of C1 vector �elds that are gradients of a C2 function. What about regular
vector �elds that are not closed? Can we say something about their structure?

The answer is in the computations we did before.

Proposition 6.23. Let ω ∈ Λ1(RN ) be of class C1. Then, there exists a function f ∈ C2(RN ),
and a vector �eld V ∈ C1(RN ;RN ) such that

ω = ∇f + V.

Note that we are identifying a 1-form with its coordinates. In particular, if ω is closed, then
V = 0.

Proof. De�ne

f(x) :=

� 1

0
ω(tx)[x] dt.

Then, for i = 1, . . . , N , we get the de�nition of Vi by looking at the di�erence between ∂if and
ωi.

∂if(x) = ∂i

� 1

0

N∑
j=1

ωj(tx)xj dt =

� 1

0

N∑
j=1

∂i[ωj(tx)xj ] dt

=

� 1

0

ωi(tx) +
N∑
j=1

t∂iωj(tx)xj

 dt
=

� 1

0

ωi(tx) +
N∑
j=1

t∂jωi(tx)xj

 dt+ � 1

0
t

N∑
j=1

[ ∂iωj(tx)xj − ∂jωi(tx)xj ] dt

=

� 1

0
∂t(tωi(tx)) dt+

� 1

0
t

N∑
j=1

[ ∂iωj(tx)xj − ∂jωi(tx)xj ] dt

= ωi(x) +

� 1

0
t

N∑
j=1

[ ∂iωj(tx)xj − ∂jωi(tx)xj ] dt,

Thus, by de�ning

Vi :=

� 1

0
t

N∑
j=1

[ ∂jωi(tx)xj − ∂iωj(tx)xj ] dt,

we get the desired result. □

Remark 6.24. In a way, we see that the vector �eld V measures how much ω is not exact.
There is a theoretical way to write the above formula, by using the notion of 2-forms, but we
will not do it in here.

What is surprising, is that, for dimension N = 3 (and only for this dimension), the above
vector �eld V can be written as the curl of another vector �eld.

De�nition 6.25. Let V : R3 → R3 be a C1 vector �eld. We de�ne its curl, curl(V ) : R3 → R3,
as

curl(V ) := (∂2V3 − ∂3V2, ∂3V1 − ∂1V3, ∂1V2 − ∂2V1).

An alternative notion for the curl of V is ∇× V .

Remark 6.26. Two important vector identities are the following:

(i) Let f ∈ C2(RN ). Then,
curl(∇f) = 0;
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(ii) Let V : R3 → R3 be a C2 vector �eld. Then,

div(curl(V )) = 0.

What is the geometrical meaning of these identities?

The result by Helmholtz requires some regularity of the bounded domain we are in, or requires
some integrability conditions of the coordinates of ω is we consider the entire space R3. we will
state the result by using directly a vector �eld F : R3 → R3, that we identify with a 1-form
ω ∈ Λ1(RN0.

Theorem 6.27 (Helmholtz decomposition Theorem). Let Ω ⊂ R3 be an open set, and let
F : Ω → R3 be a C2 vector �eld. If Ω is bounded, we assume its boundary ∂S to be a regular
surface. If Ω is unbounded (in particular, if Ω = R3), we assume that there exists R > 0 and
C > 0 such that

|F (x)| ≤ C

|x|
,

for all |x| > R. Then, there exist φ ∈ C3(Ω), and W ∈ C3(R3;R3) such that F = ∇φ+ curlW .

Remark 6.28. Helmholtz Decomposition Theorem has plenty of applications in physics, oceanology,
geophysics, weather modeling, and computer graphics, since it allows to understand properties
of a vector �eld like its vorticity (its curl) and incompressibility (its divergence).

Remark 6.29. With similar ideas, it is possible to study the topology of a set, by studying
analytical properties of di�erential operators on the set. This brought to the development
of the Hodge Decomposition Theorem, that can be seen as a generalization of the Helmholtz
Decomposition Theorem (see Theorem 6.27).
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7. Inverse Function Theorem

What type of information about the local behavior of a function can we get from properties
of the di�erential at a point? This is the main question of this chapter. The basic idea can be
understood in the one dimensional scalar case. Consider a C1 map f : R → R, and let x̄ ∈ R be
a point such that f ′(x̄) ̸= 0. By looking at Figure 23, it is geometrically clear that f is locally
invertible at x̄. Namely, that there exists δ > 0 such that f : (x̄ − δ, x̄ + δ) → R admits an
inverse.

Figure 23. The geometric idea behind the inversion function theorem in the
one dimensional scalar case.

Since

f(x) = f(x̄) + f ′(x̄)(x− x̄) + o(|x− x̄|),
we can write

x = x̄+
f(x)− f(x̄)− o(|x− x̄|)

f ′(x̄)
= x̄+ (f ′(x̄))−1[f(x)− f(x̄)− o(|x− x̄|)].

Note that this expression is not explicit, since the error o(|x − x̄|) is not explicit, in general.
Nevertheless, in many cases, it is enough to know that such inverse exists.

It is less clear, at least geometrically, that also the inverse is of class C1. This will require
more delicate investigations that will be carried out in this chapter, and that will also allow to
treat the general dimension case.

In particular, we will investigate what can be said when the di�erential is injective at a point,
when it is surjective, and how to combine the information we get from these two conditions to
obtain a global characterization of a class of maps called di�eomorphisms, as well as a local one.
This latter bears the name of Inverse Function Theorem. A di�eomorphisms is a C1 bijection
with C1 inverse. In particular, it is a map that preserves the di�erential structure of sets.

In order to undertake such investigation, we �rst need to better understand the role of the
di�erential as a map that sends tangent vectors to tangent vectors. This will be done in the �rst
section.

7.1. The di�erential as a tangent application. We want to study the behavior of the
di�erential on tangent cones. First, we prove that a tangent cone to a set is sent by the di�erential
inside the tangent cone of the image of the set.
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Figure 24. Two examples where the inclusion (7.1) is strict. In tangent cone of
the image at f(x̄) is depicted in red.

Proposition 7.1. Let Ω ⊂ RN be an open set, and let f : Ω → RM be di�erentiable at a point
x̄ ∈ Ω. Then,

df(x̄) [Tan(S, x̄)] ⊂ Tan(f(S), f(x̄)), (7.1)

for any set S ⊂ Ω.

Proof. Let v ∈ Tan(S, x̄). Then, by de�nition of tangent cone, there exist (xn)n∈N ⊂ S and
(λn)n∈N ⊂ (0, 1) with

xn → x̄, λn → 0,
xn − x̄

λn
→ v,

as n → ∞. Since f is continuous at x̄, we have that limn→∞ f(xn) = f(x̄). Therefore, thanks
to Theorem 5.38, we get that

f(xn)− f(x̄)

λn
→ df(x̄)[v].

This concludes the proof. □

Remark 7.2. The above inclusion might be strict (see Figure 24). For example, consider the
map f : [0, 2π] → R2 given by

f(t) := (cos t, sin t).

Then, the tangent cone of S1 at (1, 0) is the vertical line {x = 1}. Since
Tan([0, 2π], 0) = {t ≥ 0},

we get that
df(x̄) [Tan(S, x̄)] = {x = 0, y ≥ 0} ⊂ Tan(f(S), f(x̄)),

with proper inclusion. What makes the inequality strict is that half of the tangent cone of f(S)
comes from the image of the tangent cone at t = 0, while the other half comes from the image
of the tangent cone at t = 2π. This is because the same point in the image can be reached from
two di�erent points in the domain.

We therefore introduce the class of functions such that this pathology is avoided.

De�nition 7.3. A map f : RN → RM is said to be a homeomorphism on a set S ⊂ RN , if it is
continuous, and with a continuous inverse. Namely, if

xn → x̄ ⇔ f(xn) → f(x̄),

for all (xn)n∈N ⊂ S, and x̄ ∈ S.

Remark 7.4. Note that being a homeomorphism is stronger than having an inverse, since we
are requiring this latter to be continuous. Can you �nd an example of a continuous function
with a non continuous inverse?
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Example 7.5. Consider the map f : R2 → R2 de�ned as

f(x) :=
|x|

∥x∥∞
x

where |x| denotes the Euclidean norm of x, and ∥x∥∞ is the ∞-Minkowski norm of x (see
Example 1.12). Then, f is a homeomorphism (check it!). In particular,

f(B(0, 1)) = (−1, 1)2.

Namely, f is a homeomorphism between the unit circle and the unit square with sides parallel
to the axes.

Remark 7.6. Another example when the inequality in (7.1) is strict is the following. Consider
the map f : R → R de�ned as

f(t) := t3.

Then, f ′(0) = 0, but Tan(f(R), f(0)) = R. What makes the inequality strict in this case is that
the di�erential of f at x̄ is not injective.

Remark 7.7. Note that none of the two above conditions, namely being a homeomorphism or
having injective di�erential, is su�cient by itself to ensure equality in (7.1).

7.2. When the di�erential is injective. We now want to understand what properties a
function enjoys when the di�erential at a point is injective.

We start by showing that if the di�erential is injective, then the function is locally injective.
We will prove something more, namely we will get an explicit modulus of continuity of the
inverse.

Proposition 7.8. Let Ω ⊂ RN be an open set, and let f : Ω → RM be di�erentiable at a point
x̄ ∈ Ω. Assume that the di�erential df(x̄) is injective on a linear subspace V ⊂ RN . Then, the
map f restricted to x̄+ V is locally injective. Namely, there exists δ > 0 such that

δ∥x− x̄∥ ≤ ∥f(x)− f(x̄)∥, (7.2)

for all x ∈ B(x̄, δ) ∩ (x̄+ V ). Moreover, if f is C1 in a neighborhood of x̄, it holds

δ∥x− y∥ ≤ ∥f(x)− f(y)∥, (7.3)

for all x, y ∈ B(x̄, δ) ∩ (x̄+ V ).

Proof. We prove the �rst claim. The second follows by using a similar argument. The idea of
the proof is geometrically clear: if there was a sequence of points (xn)n∈N approaching x̄ with
f(xn) = f(x̄), then the directional derivative of f along the direction identi�ed by any limit of

xn − x̄

∥xn − x̄∥
will be zero. Since that direction is not zero, this is in contradiction with the injectivity of
df(x̄). Let's write mathematically this idea.

Assume by contradiction that the result is not true. Then, there would exist a sequence
(xn)n∈N ⊂ RN with

xn ∈ B

(
x̄,

1

n

)
∩ (x̄+ V )

such that
∥f(xn)− f(x̄)∥

∥xn − x̄∥
<

1

n
. (7.4)

We now continue the argument with a typical shortcut that is commonly used in modern
mathematics: instead of writing explicitly the subsequence that will give us the desired contradiction,
we will just write as follows. Up to a subsequence, we can assume that

xn − x̄

∥xn − x̄∥
→ v, (7.5)
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for some v ∈ SN−1 := ∂B(0, 1). Note that, since the argument proceeds by contradiction, there
is no need to specify the subsequence that we use, nor to make sure that the conclusion is
independent of the chosen subsequence. This is why we can use such shortcut and have a lighter
notation.

Let us continue with the proof. By de�nition of di�erentiability (or by Theorem 5.23), together
with (7.4), and (7.5), we would get that

0 = lim
n→∞

∥f(xn)− f(x̄)∥
∥xn − x̄∥

= lim
n→∞

df(x̄)

[
xn − x̄

∥xn − x̄∥

]
= df(x̄)[v].

But df(x̄)[v] ̸= 0, since v ̸= 0, and df(x̄) is injective. This gives the desired contradiction. □

Remark 7.9. Is the opposite true? Namely, if the function is injective, can we conclude that
the di�erential is injective?

Remark 7.10. The above proposition provides a quantitative version of the statement: the
injectivity of the di�erential at a point implies that the function is locally injective around that
point. In particular, note that (7.2) writes as

∥f−1(p)− f−1(x̄)∥ ≤ 1

δ
∥p− x̄∥,

for all p ∈ f(B(x̄, δ) ∩ V ). This proves that the inverse function is continuous, and with an
explicit form of the modulus of continuity. Moreover, (7.3) writes as

∥f−1(p)− f−1(q)∥ ≤ 1

δ
∥p− q∥,

for all p ∈ f(B(x̄, δ) ∩ V ). This implies that (see Remark 4.14)

[f−1]Lip ≤ 1

δ
.

Note that, from this, we cannot conclude that, in general, f−1 is di�erentiable at f−1(x̄). We
will see that, thanks to Theorem 7.17, this is though the case when N =M , and V = RN .

We now continue the investigation initiated in the previous section, by showing that the above
ones are the only cases where things can go wrong for having the equality case in Proposition
7.1. Namely, that for a homeomorphism with injective di�erential at a point x̄, the di�erential
maps the tangent cone of any set S at x̄ onto the tangent cone of f(S) at f(x̄), and that any
element of this latter is the image of a tangent vector to S at x̄.

Proposition 7.11. Let Ω ⊂ RN be an open set, and let f : Ω → RM be di�erentiable at a point
x̄ ∈ Ω, with df(x̄) injective. Moreover, assume that f is a homeomorphism at S ⊂ Ω. Then

df(x̄) [Tan(S, x̄)] = Tan(f(S), f(x̄)),

Proof. Thanks to Proposition 7.1, we just need to prove the inclusion ⊃. For, let (xn)n∈N ⊂ S,
(λn)n∈N ⊂ (0, 1), and w ∈ RM be such that

f(xn) → f(x̄), λn → 0,
f(xn)− f(x̄)

λn
→ w,

as n→ ∞. We claim that there exists v ∈ RN such that
xn − x̄

λn
→ v, df(x̄)[v] = w.

Note that the di�culty here lies in the fact that, by setting

vn :=
xn − x̄

λn
,

it is not clear a-priori that the vectors vn have uniformly bounded norm. Indeed, if that was the
case, we could just conclude by extracting a converging subsequence and using the linearity of
the di�erential to prove that each subsequence converges to the same vector v.
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Figure 25. The geometric idea behind the proof of Proposition 7.12
.

First of all, we note that, if xn = x̄ for in�nitely many indexes n's, then it follows that w = 0,
and that v = 0 (Fill in the details yourself!).

Therefore, we can assume that there exists n̄ ∈ N such that xn ̸= x̄ for all n ≥ n̄. Write

df(x̄)

[
xn − x̄

λn

]
=
f(xn)− f(x̄)

λn

− f(xn)− f(x̄)− df(x̄)[xn − x̄]

∥xn − x̄∥
∥xn − x̄∥

∥f(xn)− f(x̄)∥
∥f(xn)− f(x̄)∥

λn
. (7.6)

Now, the �rst term converges to w by assumption. The second converges to zero by di�erentiability,
and the latter is bounded by assumption. In order to estimate the previous to last term, we use
Proposition 7.8 to get a δ > 0 such that

δ∥xn − x̄∥ ≤ ∥f(xn)− f(x̄)∥,

for all xn ∈ B(x̄, δ). Thus, from (7.6) we get that

lim
n→∞

df(x̄)

[
xn − x̄

λn

]
= w.

Thus, w is the limit of a sequence of images of vectors via the map df(x̄). Since the image of
the linear map df(x̄) is a closed set, there exists v ∈ RN such that

df(x̄)[v] = w.

The continuity and the injectivity of df(x̄) then imply that

xn − x̄

λn
→ v,

as desired. □

7.3. When the di�erential is surjective. When the di�erential of a map f : RN → RN

is surjective at a point x̄, it means that, locally, the map sends points in all directions. In
particular, this means that the image is open. We can prove this statement in a quantitative
way, and also for maps f : RN → RM , with a general dimension M .

Proposition 7.12. Let Ω ⊂ RN be an open set, and let f : Ω → RM be di�erentiable at a point
x̄ ∈ Ω, with df(x̄) surjective. Then, the image of f is locally open. Namely, there exists δ > 0
such that

B(f(x̄), δ2/2) ⊂ f(B(x̄, δ)).
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Proof. Since df(x̄) is surjective, we get that M ≤ N . Moreover, there exists a linear subspace
V ⊂ RN of dimension M where df(x̄) is injective. Thus, from Proposition 7.8, we get the
existence of a δ > 0 such that

δ∥x− x̄∥ ≤ ∥f(x)− f(x̄)∥, (7.7)

for all x ∈ B(x̄, δ) ∩ (x̄ + V ). Note that we consider the closure of the ball, since the map f is
continuous. We claim that this δ > 0 does the job. Let y ∈ B(f(x̄), δ2/2). We will show that
there exists x0 ∈ B(x̄, δ) such that f(x0) = y. Note that we are not claiming any uniqueness of
such a point. Let x0 ∈ RN be such that

∥f(x0)− y∥ = min
{
∥f(x)− y∥ : x ∈ B(x̄, δ) ∩ (x̄+ V )

}
.

Note that such a point exists thanks to Weierstraÿ Theorem (see Theorem 3.15). Indeed, the

function x 7→ ∥f(x)−y∥ is continuous, and the set B(x̄, δ)∩(x̄+V ) is compact, since it is closed
and bounded (see Bolzano-Weierstraÿ Theorem 2.23).

First of all, we show that x0 ∈ B(x̄, δ) ∩ (x̄+ V ). Indeed, from (7.7), we have that

δ∥x0 − x̄∥ ≤ ∥f(x̄)− f(x0)∥ ≤ ∥f(x̄)− y∥+ ∥y − f(x0)∥
≤ 2∥f(x̄)− y∥ < δ2, (7.8)

where the previous to last step follows from the choice of x0, while last step from the fact that
y ∈ B(f(x̄), δ2/2).

We claim that f(x0) = y. Assume not. Then, w := y − f(x0) ̸= 0. Thus, by the de�nition of
x0, we have that

B(y, |w|) ∩ f (B(x̄, δ) ∩ (x̄+ V )) = ∅.
In particular, this implies that (see Figure 25)

w ̸∈ Tan (f (B(x̄, δ) ∩ (x̄+ V )) , f(x̄)) . (7.9)

On the other hand, since (7.7) implies that f is a homeomorphism on B(x̄, δ)∩ (x̄+ V ), we can
apply Proposition 7.11 to get that

Tan (f (B(x̄, δ) ∩ (x̄+ V )) , f(x̄)) = df(x̄) [Tan(B(x̄, δ) ∩ (x̄+ V ), x̄)] .

Since x̄ is an internal point to B(x̄, δ), we have that

Tan(B(x̄, δ) ∩ (x̄+ V )) = V,

which has dimension M . Thus, by using the fact that df(x̄) is surjective, we get that

Tan (f (B(x̄, δ) ∩ (x̄+ V )) , f(x̄)) = RM .

This is in contradiction with (7.9). □

7.4. Di�eomorphisms. We now want to study a class of regular transformation of an object
into another. Since there is no di�erentiability requirement, an homeomorphism does not have
to maintain the di�erential structure of a set. Namely, if f : RN → RN is a homeomorphism,
and we consider a set E ⊂ RN , we have no control on the relation between the tangent cone to
E at a point x ∈ RN , and the tangent cone to f(E) at f(x). In particular, homeomorphisms
can regularize a set, or (equivalently), add singularities to it. For instance, the homeomorphism
considered in Example 7.5 transforms a square into a circle. But the former has corner, while
the latter does not!

In order to get information about the tangent cone to a set that are properly mapped
by the di�erential to the tangent cone to the image of the set, we introduce a subclass of
homeomorphisms. The idea is to require that both f and all of its �rst order derivatives to be
homeomorphisms.

De�nition 7.13. Let Ω ⊂ RN be an open set. A function f : Ω → RN is said to be a
di�eomorphism on Ω, if it is a homeomorphism of class C1 from Ω to f(Ω), and also f−1 :
f(Ω) → RN is of class C1.
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Remark 7.14. Note that, for di�eomorphisms, the domain and the target have the same
dimension N . Moreover, note that we talk about di�eomorphisms on open sets, since we need
to have the di�erential de�ned.

We �rst investigate properties of di�eomorphisms.

Proposition 7.15. Let Ω ⊂ RN be an open set, and let f : Ω → RN be a di�eomorphism.
Then:

(i) f is a homeomorphism;
(ii) For all x ∈ Ω

det(Jf(x)) ̸= 0;

(iii) For all x ∈ Ω

J(f−1)(f(x)) = [Jf(x)]−1;

(iv) For all x ∈ Ω and S ⊂ Ω, it holds that

Tan(f(S), f(x)) = df(x)[Tan(S, x)].

In particular, if Tan(S, x) is a vector space, also Tan(f(S), f(x)) is.

Proof. Proof of (i). It follows directly from the de�nition of di�eomorphism.

Proof of (ii) and (iii). Fix x ∈ Ω. By using the identity f−1(f(x)) = x, and the fact that
both f and f−1 are di�erentiable at x and f(x) respectively, we get that

J(f−1)(f(x)) = [Jf(x)]−1,

and

det(Jf(x)) det(Jf−1(f(x))) = 1,

proving what we wanted.

Proof of (iv). From (ii) we get that df(x) is injective for all x ∈ Ω. Thus, from Proposition
7.11 we get the desired conclusion. □

We are now in position to prove an important characterization of di�eomorphisms.

Theorem 7.16. Let Ω ⊂ RN be an open set, and let f : Ω → RN . Then, f is a di�eomorphism
in Ω if and only if

(i) f is of class C1 in Ω;
(ii) f is injective in Ω;
(iii) For all x ∈ Ω, det(Jf(x)) ̸= 0

Proof. Thanks to Proposition 7.15 we just need to prove that (i), (ii), and (iii) are su�cient in
order for f to be a di�eomorphism.

Step 1. We claim that f(Ω) is open. Indeed, since det(Jf(x)) ̸= 0, the di�erential df(x) is
surjective at each point x ∈ Ω. Thus, the conclusion follows from Proposition 7.12.

Step 2. We claim that f is a homeomorphism. Indeed, f is continuous because it is
di�erentiable at each point. Moreover, f−1 is well de�ned in f(Ω), because by assumption
f is injective in Ω. To prove that f−1 is continuous, we reason as follows. Since det(Jf(x)) ̸= 0,
the di�erential df(x) is injective at each point x ∈ Ω. Fix x ∈ Ω. From Proposition 7.8 we get
that there exists δ > 0 such that

δ∥x− y∥ ≤ ∥f(x)− f(y)∥,

for all y ∈ B(x, δ). This writes as

δ∥f−1(p)− f−1(q)∥ ≤ ∥p− q∥,
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for all p, q ∈ f(B(x, δ)). This proves the continuity of f−1.

Step 3. We claim that f−1 is di�erentiable in f(Ω). Indeed, note that, by step 1, f is a
homeomorphism, and by assumption the di�erential df(x) is injective at all points x ∈ Ω. We
want to use the characterization of di�erentiability provided by Theorem 5.38 to conclude that
f−1 is di�erentiable. For, �x ȳ ∈ RN . We want to prove that there exists an N ×N matrix A
with the following property: for any (yn)n∈N ⊂ f(Ω0 with yn → ȳ, and any (λn)n∈N ⊂ (0, 1)
with λn → 0 such that

lim
n→∞

yn − ȳ

λn
= w. (7.10)

it holds

lim
n→∞

f−1(yn)− f−1(ȳ)

λn
= A[w]. (7.11)

Then, by Theorem 5.38 we get that f−1 is di�erentiable, and d(f−1)(ȳ) = A.
Since f is a homeomorphism, for each n ∈ N there exists xn ∈ RN such that yn = f(xn), and

a point x̄ ∈ RN such that f(x̄) = ȳ. Moreover xn → x̄. Therefore, (7.10) writes as

lim
n→∞

f(xn)− f(x̄)

λn
= w, (7.12)

while (7.11) writes as

lim
n→∞

xn − x̄

λn
= A[w]. (7.13)

Since f(x̄) is injective, we can use Proposition 7.8 to get δ > 0 such that

δ∥x− x̄∥ ≤ ∥f(x)− f(x̄)∥,
for all x ∈ B(x̄, δ). Since xn → x̄, let n̄ ∈ N be such that xn ∈ B(x̄, δ) for all n ≥ n̄. Thus

δ∥xn − x̄∥ ≤ ∥f(xn)− f(x̄)∥, (7.14)

for all n ≥ n̄. Note that, without loss of generality, we can assume yn ̸= ȳ for all n ∈ N. Indeed,
if yn = ȳ for in�nitely many indexes n's, then we would get w = 0, and thus there is nothing to
prove, since this would mean, by injectivity of f that xn = x̄ for all n ∈ N. Thus, (7.13) would
hold for any matrix A. So, assume yn ̸= ȳ for all n ∈ N. Write

df(x̄)

[
xn − x̄

λn

]
=
f(xn)− f(x̄)

λn

− f(xn)− f(x̄)− df(x̄)[xn − x̄]

∥xn − x̄∥
∥xn − x̄∥

∥f(xn)− f(x̄)∥
∥f(xn)− f(x̄)∥

λn
.

Note that, thanks to (7.12) and (7.14), from the above writing we get that

lim
n→∞

df(x̄)

[
xn − x̄

λn

]
= w.

Since the image of a linear transformation is a (sequentially) closed space (see De�nition 2.21),
we get that there exists a vector v ∈ RN such that

df(x̄)[v] = w. (7.15)

By using (iii) we get that Jf(x̄) is an invertible matrix, and de�ne

A := [ Jf(x̄) ]−1 .

Therefore, by applying A to both sides of (7.15),we get

v = A[w].

Thus, the matrix A satis�es (7.13), which proves that f−1 is di�erentiable. Moreover, we proved
that

Jf−1(f(x̄)) = [ Jf(x̄) ]−1 .
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Step 4. Finally, we claim that f−1 is of class C1. Indeed, from the equality

J(f−1)(f(x)) = [Jf(x)]−1,

we just need to prove that the map x 7→ [Jf(x)]−1 is continuous. Note that

[Jf(x)]−1 =
[cof(Jf(x))]T

det(Jf(x))
,

where cof(Jf(x)) is the cofactor matrix of Jf(x). Since this latter is a polynomial in the
∂ifj 's, and these latter are continuous because by assumption f is C1, we conclude that also
x 7→ J(f−1)(f(x)) is continuous. □

As a corollary, we get a local characterization of di�eomorphisms, known as the Inverse
Function Theorem. This is an important result because it allows to get local information on the
behavior of a function by having a pointwise information on its di�erential. In particular, it is
a local version of Theorem 7.16, that does not require to check whether or not the function is
injective. Note that a drawback of all of the theorems presented is that the neighborhood in
which everything works (namely, the radius of the ball where we get the inverse of the function)
is not explicit! This is usually not a problem for many applications.

Theorem 7.17 (Inverse Function Theorem). Let Ω ⊂ RN be an open set, and let f : Ω → RN

be a function of class C1. Assume that x̄ ∈ Ω is such that

det(Jf(x̄)) ̸= 0.

Then, there exists r > 0 such that f restricted to B(x̄, r) is a di�eomorphism.

Proof. Since the function f is of class C1, the function

x 7→ det(Jf(x))

is continuous. Thus, there exists r1 > 0 such that

det(Jf(x)) ̸= 0

for all x ∈ B(x̄, r1). Moreover, since df(x̄) is injective, from we get that there exists δ > 0 and
r2 > 0 such that

δ∥x− x̄∥ ≤ ∥f(x)− f(x̄)∥,
for all x ∈ B(x̄, r2). In particular, this implies that f is injective in B(x̄, r2). Set r := min{r1, r2}.
Then, f is a C1 map that is injective in B(x̄, r) and with det(Jf(x)) ̸= 0 for all x ∈ B(x̄, r).
the result then follows from Theorem 7.16. □

Remark 7.18. Note that the assumption of f being C1 is necessary for Theorem 7.17 to hold.
Indeed, the function f : R → R de�ned as

f(x) :=


x

2
+ x2 sin

1

x
if x ̸= 0,

0 else,

is such that f ∈ C1(R \ {0}), but f ̸∈ C1(R), and it is not locally injective around x = 0.

Example 7.19. Theorem 7.17 is very useful when using change of coordinates. Indeed, when
you have to compute an integral, or rewrite a di�erential equation by using di�erent coordinates,
you need to make sure that the map that you use to go from one set of coordinates to the other
is a di�eomorphism.

A change of coordinates that is widely used when the equation or integral that you are
studying has a rotational symmetry is that of spherical coordinates (also called polar coordinates
in dimension N = 2). They write in a complicated way for higher dimension. Thus, for the goal
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of illustrating an example, we will only consider the case N = 2. In this case, we consider the
map f : R2 → R2 de�ned as

f(r, θ) := (r cos θ, r sin θ).

It is possible to see that f is a di�eomorphism from A to B, where

A := (0,+∞)× (0, 2π), B := R2 \ {(x, y) ∈ R2 : x ≥ 0, y = 0}.
Indeed, f is of class C1, it is injective (this is the reason why we consider the set A), and

Jf(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ

)
,

and thus det(Jf(r, θ)) = r ̸= 0 on A.

We conclude by stating a result saying that there cannot be di�eomorphisms between spaces
of di�erent dimensions.

Corollary 7.20. Let f : RN → RM be a C1 map. IfM < N , then f cannot be a di�eomorphism,
not even locally. Indeed, f cannot be locally injective.

On the other hand, if M > N , then it might be that f is a di�eomorphism from RN onto
f(RN ) ⊂ RM .

Remark 7.21. A similar result holds for homeomorphisms: if f : RN → RM is a homeomorphism,
then N = M . To prove such a result, you need tools from Topology that you'll learn next se-
mester.

On the other hand, if no regularity is required on the map f : RN → RM , then f can be a
bijection for any N,M ∈ N \ {0}. This was a result that shocked mathematicians. Indeed, this
was a question that puzzled George Cantor: every person he talked to, was surprised about the
question, since it was evident that to identify a point in RM you need M coordinates, while
to determine a point on [0, 1] you just need one. Therefore, it is evident that there cannot be
a bijection between the two sets. However, Cantor was not satis�ed with a justi�cation that
relied on the evidence of such a fact. He then proved that such a bijection always exist (with
an astonishingly simple proof!) that he wrote on 25 June 1877 to Richard Dedekind to get
feedback. Four days after, having gotten not reply yet (yes, he was a bit anxious!), he wrote
again to Dedekind writing7 a sentence that became famous:

"Je le vois, mais je ne le crois pas." ["I see it, but I don't believe it."]

This result called, once again, for a better foundation of Analysis, and for the need of rigorous
proofs when dealing with mathematical objects with in�nitely many points.

Moreover, the above result means that the number of points in [0, 1] is the same as the
number of points in any RM . As surprising as such result might seem at �rst sight (and even
after years!), this means that, when dealing with sets with in�nitely many points, our intuition
can be misleading. Moreover, we get that the number of points is not really a good measure of
the size of an object! We will see a proper de�nition of length, area, volume, and their higher
dimensional versions in the last section devoted to Measure Theory.

7Note that the letter was in German, but this sentence was in French
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8. Implicit Function Theorem

The goal of this section is to study the shape of the set of solutions of a system of equations.
Namely, given C1 functions Φi : RN → R, for i = 1, . . . , k, with8 k ≤ N , we consider the system

Φ1(x) = 0,
Φ2(x) = 0,
...
Φk(x) = 0.

(8.1)

We want to understand properties of the set

S := {x ∈ RN : Φi(x) = 0 for all i = 1, . . . , k}

of its solutions. Note that, geometrically, the set S is the intersection of the sets

Si := {x ∈ RN : Φi(x) = 0},

for i = 1, . . . , k. For instance, if we consider the case of N = 3, k = 2, and

Φ1(x, y, z) = x2 + y2 + z2 − 1, Φ2(x, y, z) = 3x2 + 4y2 + 9z2 − 1,

we want to understand the intersection of a sphere and an ellipsoid in R3. Note that, if we want
to describe analytically the union of S1 and S2, we could do it as follows:

T := {x ∈ RN : Φ1(x)Φ2(x) = 0}.

Indeed, Φ1(x)Φ2(x) = 0 if at least one of the two equations Φ1(x) = 0 or Φ2(x) = 0 is satis�ed.

Let us start by reviewing a known case. Assume that all of the functions Φi's (also called
constraints) are linear. Thus, for i = 1, . . . , k, we can write

Φi(x) = ⟨vi, x⟩,

for some vi ∈ RN . Then, you know from Linear Algebra that each of the sets Si's is an
hyperplane, and that the set S is a linear subspace of RN . Moreover, the dimension of the linear
space S is N − d, where d is the number of independent vectors in the set {v1, . . . , vk}.

When the functions are not linear, things are more complicated. We mention that the case of
the Φi's being polynomials is studied in the branch of Mathematics called Algebraic Geometry,
also for more general ambient spaces than RN . Let us try to get some heuristics for what we
expect to happen in the general case of non-linear constraints. Consider the following example:
N = 2, k = 1, and Φ1 : R2 → R de�ned as

Φ1(x, y) := x2 + y2 − 1.

Then, we know that S is the unit circle centered at the origin. In particular, we have that

(i) S is a one dimensional object;
(ii) S has a tangent line at all of its points;
(iii) It is possible to locally see S as the graph of a function de�ned over one of the two

coordinate axes. This means that it is possible, for points (x, y) ∈ S to locally express
one of the two coordinates in terms of the other;

(iv) It is possible to locally see S as the graph of a function de�ned over its tangent line.

Does the same happen in the general case? Consider a general dimension N , and general
k constraints. Let x̄ ∈ S. We want to understand the behavior of S around x̄. Since, for all
i = 1, . . . , k,

Φi(x) = Φi(x̄) + ⟨∇Φi(x̄), (x− x̄)⟩+ o(∥x− x̄∥),

8Note that, when the number k of equations is higher than the dimension N of the space, the system (8.1)
does not have, in general, a solution.
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we would expect S to look like (at �rst order) the set of solutions to the linearization of the
system (8.1), namely, close to the a�ne space given by the set of solutions to the system

⟨∇Φ1(x̄), (x− x̄)⟩+Φ1(x̄) = 0,
⟨∇Φ2(x̄), (x− x̄)⟩+Φ2(x̄) = 0,
...
⟨∇Φk(x̄), (x− x̄)⟩+Φk(x̄) = 0.

(8.2)

Thus, we expect S to locally look like an a�ne space. In particular, this means that S can locally
be written as a graph of a function de�ned on the a�ne subspace determined by (8.2). Namely,
it is possible, for points x ∈ S to express some of the coordinates in terms of the other. Sets
that can be locally described as the solutions to a system of equations are called submanifolds.

The path we will use to prove rigorously the above result is by establishing the so called
Implicit Function Theorem (see Theorem 8.1), which states that it is possible to express some
of the coordinates of points x ∈ S in terms of the other coordinates.

Before continuing with the rigorous mathematics, let's see what can go wrong with the
heuristics detailed above. Consider the case of a single equation, Φ1 : R2 → R de�ned as

Φ1(x) := x2 − y2.

Then, the set S is the union of the two lines {y = x} and {y = −x}. This set has a singularity at
the point (0, 0), since it is not possible to represent S as the graph of a function, or, equivalently,
the tangent cone to the set S at the origin is not a one dimensional linear space. The problem of
the point (0, 0) is that ∇Φ1(0, 0) = (0, 0). Thus, the gradient does not give us any information
on the local behavior of the function Φ1, and, in turn, no local information on the shape of the
set S. This is where the previous heuristics fails.

Another example, that generalized the one above, where things go wrong is the following.
Consider the constraints Φ1,Φ2 : R3 → R de�ned as

Φ1(x, y, z) := x2 + y2 − 1, Φ2(x, y, z) := x2 + z2 − 1.

Then, the set S is the intersection of two cylinders. To understand what happens, we rewrite
the constraints in the following way:

S = {(x, y, z) ∈ R3 : x2 + y2 − 1 = 0, z2 − y2 = 0}.
In this way, it is easier to see that S is the union of two one-dimensional ellipses. Indeed, from
Φ1(x, y, z) = 0 we get x2 = 1− y2; by substituting this in the expression for Φ2, we get

0 = z2 − y2 = (z − y)(z + y).

Thus, we see that points in S are points (x, y, z) ∈ R3 for which Φ1(x, y, z) = 0 and either z = y
or z = −y. This means that S = S1 ∪ S2, where

S1 := {(x, y, z) ∈ R3 : Φ1(x, y, z) = 0, z = y},
S2 := {(x, y, z) ∈ R3 : Φ1(x, y, z) = 0, z = −y}.

Since the set := {(x, y, z) ∈ R3 .Φ1(x, y, z) = 0} is a cylinder, the sets S1 and S2 are one-
dimensional ellipses, being the intersection of a cylinder and a plane.

Now, the set S has two singular points, (±1, 0, 0). What goes wrong at these points? Well,
let us look at the gradients of the constraints. We have

∇Φ1(x, y, z) = (2x, 2y, 0), ∇Φ2(x, y, z) = (2x, 0, 2z).

The two gradients fail to be linearly independent for points (x, y, z) ∈ R3 such that y = z = 0.
Of these points, those that belong to the set S are (±1, 0, 0). This re�ects on the fact that, at
those points, the gradients only provide us with just one information at the singular points. This
allows the set S to behave wildly, and this is exactly what happens: there are two independent
directions that are tangent to S at the singular points, despite the fact that we expect S to be
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one dimensional, since we have two equations in R3.

Therefore, by using the information given by the gradients of the constraints, we will be able
to locally describe the set of solutions far from the singularities. The study of the behavior
of the set S at a singular point is extremely delicate, and goes way beyond the scope of the
course. The only information we can provide is that the set of singular points is contained (note
that it might be a strict inclusion!) in the set where the gradients are not linearly independent.
Unfortunately, this information is very weak to extract any useful insight on the local behavior
of S at a singular point.

Before stating the main result of this section, we need to work a bit on the notation. We �rst
rewrite the system (8.1) as a single equation as follows: let f : RN → Rk be de�ned as

f(x) := (Φ1(x), . . . ,Φk(x)) .

Moreover, since we want to ask the gradients of the constraints to be linearly independent, we
naturally9 require k ≤ N . Thus, we can write the domain RN of the function f as

RN−k × Rk,

and denote variables as (x, y) ∈ RN−k × Rk, namely

x = (x1, . . . , xN−k) ∈ RN−k, y = (y1, . . . , yk) ∈ Rk.

Then, we need some notation for the Jacobian matrix of f to separate the two sets of variables.
We write

Jf =

 ∂x1f1 · · · ∂xN−k
f1 ∂y1f1 · · · ∂ykf1

... · · ·
...

... · · ·
...

∂x1fk · · · ∂xN−k
fk ∂y1fk · · · ∂ykfk

 =
(

∂(f1,···fk)
∂x1···∂xN−k

∂(f1,···fk)
∂y1...∂yk

)
.

Note that the matrix (
∂(f1,···fk)
∂y1...∂yk

)
.

is a k × k matrix. We will prove the result for a general level set c ∈ Rk of f .
We are now in position to prove the Implicit Function Theorem10. Actually, the proof will

give us a stronger result: namely we will be able to get a local linearization of RN−k × Rk by
using a foliation by the level sets of the function f .

Theorem 8.1 (Implicit Function Theorem). Let f : RN−k × Rk → Rk be a C1 function. Let
(x̄, ȳ) ∈ RN−k × Rk be such that f(x̄, ȳ) = c, for some c ∈ Rk, and

det
(

∂(f1,···fk)
∂y1...∂yk

(x̄, ȳ)
)
̸= 0. (8.3)

Namely, the vectors  ∂y1f1(x̄, ȳ)
...

∂y1fk(x̄, ȳ)

 , . . . ,

 ∂ykf1(x̄, ȳ)
...

∂ykfk(x̄, ȳ)


are linearly independent. Then, there exist open sets X ⊂ RN−k, Y ⊂ Rk, and a C1 function
g : X → Y such that x̄ ∈ X, ȳ ∈ Y and

{f = c} ∩ (X × Y ) = {(x, g(x)) : x ∈ X}.

9Note that, when the number k of equations is higher than then dimension N of the space, the system (8.1)
does not have, in general, a solution.

10Ulisse Dini generalized the result by Augustin-Louis Cauchy to the case of a function of several variables.
This is the reason why, in Italy, the Implicit Function Theorem is known as (one of) the Dini's Theorem(s).
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Proof. We start by explaining the idea of the proof with an example. Consider the function
f : R2 × R → R given by

f(x1, x2, y1) = x21 + x22 + y21,

and the point P = (x̄1, x̄2, ȳ1) = (0, 0, 1) ∈ {f = 1}. Note that, in this example, c = 1. We have
that

Jf(x1, x2, y1) = (2x1, 2x2, 2y1).

In particular, condition (8.3) writes as

2ȳ1 ̸= 0. (8.4)

We have that {f = 1} is a sphere of radius 1. Moreover, for every c ∈ (−ε,+ε), for |ε| < 1,
we have that the set {f = c} is a sphere. In particular, we know that we can locally around P
describe every set {f = c} as the graph of a function g that depends on the �rst two coordinates
x1, x2 and on the level c. Namely, we can foliate the space R2 × R around the point P by the
level sets of the function f , and we can linearize this neighborhood by using the map g. To be
more precise, we consider the function F : [−1, 1]2 × R → [−1, 1]2 × [−ε, ε] de�ned as

F (x1, x2, y1) := (x1, x2, f(x1, x2, y1)).

Note that the codomain of F is a rectangle. This means that we are linearizing a neighborhood
of R3 around P . By using (8.4), we get that

detJF (x1, x2, y1) = ∂y1f(x1, x2, y1) = 2y1 ̸= 0,

for (x1, x2, y1) close to P . Since F is of class C1 and clearly injective, by using the Inverse
Function Theorem (see Theorem 7.17), we get that the map F is a di�eomorphism, and thus we
can use it as a change of coordinates. In particular, the inverse of the last component of F will
give us the desired inverse function g. In this case, we know that we can write {f = c} around
P as the graph of the map

φ(x1, x2, c) :=
√
c− x21 − x22,

and that the function we want corresponds to the function φ at the level c = 1. Namely, the
implicit function we were looking for is given by

g(x1, x2) = φ(x1, x2, 1) =
√

1− x21 − x22.

Note that φ is the inverse of the last component of F .

Let us now use this strategy for the general case. Since f is of class C1, we have that

(x, y) 7→ det
(

∂(f1,···fk)
∂y1...∂yk

(x, y)
)

is continuous, being a polynomial function of the partial derivatives. Therefore, by using (8.3)
together with the continuity of the determinant, there exist an open neighborhood A ⊂ RN−k

of x̄, and an open neighborhood B ⊂ Rk of ȳ such that

det
(

∂(f1,···fk)
∂y1...∂yk

(x, y)
)
̸= 0,

for all (x, y) ∈ A×B. De�ne the function F : A×B → RN−k × Rk as

F (x, y) := (x, f(x, y)).

We claim there exist open sets X ⊂ A, and Y ⊂ B such that F : X × Y → RN−k × Rk is a
di�eomorphism. Indeed,

det(JF (x, y)) = det


IdN−k 0

∂(f1,···fk)
∂x1···∂xN−k

(x, y) ∂(f1,···fk)
∂y1...∂yk

(x, y)

 = det
(

∂(f1,···fk)
∂y1...∂yk

(x, y)
)
̸= 0,



ANALYSIS 2 91

for all (x, y) ∈ X×Y . Here IdN−k denotes the (N−k)×(N−k)-identity matrix. Therefore, from
the Inverse Function Theorem (see Theorem 7.17), we get that there exist open sets X ⊂ A,
and Y ⊂ B such that F : X × Y → RN−k × Rk is a di�eomorphism. In particular, there exists
its inverse h : F (X × Y ) → X × Y , and it is of class C1. Note that the inverse is of the form

h(x, y) = (x, φ(x, y)),

for some C1 function φ : X × Y → Y . As discussed above, we are interested in the level set c
of the function f . This is why we de�ne g : X → Y as

g(x) := φ(x, c).

First of all, we note that the function g is of class C1 We now have to check that {f = c} is
locally the graph of the function g. Namely, we have to make sure that

f(x, g(x)) = c,

for all x ∈ X. Let π : X × Y → Y be the projection on the second coordinate, namely
π(x, y) := y. Note that we can write f = π ◦ F . We have that

f(x, g(x)) = f(x, φ(x, c))

= (f ◦ h)(x, c)
= ((π ◦ F ) ◦ h)(x, c)
= (π ◦ (F ◦ h))(x, c)
= π(x, c)

= c,

where in the previous to last step we used the fact that F ◦h is the identity. This concludes the
proof of the theorem. □

Remark 8.2. Note that, by the way we de�ned it, the function g : X → Y is an homeomorphism.
Moreover, the vectors

∂x1g(x̄), . . . , ∂xN−k
g(x̄)

are linearly independent. Thus, g plays the role of the local parametrization of the set S of
solutions to the systems of equations. Indeed, we can express every point in

{f = c} ∩ (X × Y )

in a unique way as (x, g(x)), for some parameter x ∈ X. In this case, the parameter is given by
the �rst N − k coordinates of the point (x, y) ∈ {f = c}.

Remark 8.3 (The gradient of the implicit function). The implicit function provided by the
above theorem is di�erentiable. Can we compute its gradient? Recall that f : RN−k×Rk → Rk,
and that g : X → Y , with X ⊂ RN−k, and Y ⊂ Rk. For any i = 1, . . . , k, and j = 1, . . . , N − k,
consider the equality

fi(x, g(x)) = 0.

We can di�erentiate both sides of it with respect to xj . By using the chain rule (see Proposition
5.39), we get

∂xjfi(x, g(x)) +
k∑

r=1

∂yrfi(x, g(x))∂xjgr(x) = 0. (8.5)

Thus, we get a system of k(N − k) a�ne equations in k(N − k) unknowns ∂1g(x), . . . , ∂kg(x).
Note that it is possible to write the system of equations (8.5) as follows:(

∂(f1, · · · fk)
∂y1 . . . ∂yk

(x, g(x))

)
· Jg(x) = −

(
∂(f1, · · · fk)
∂x1 · · · ∂xN−k

(x, g(x))

)
.
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Thus, by assumption (8.3), we get that the system admits a unique solution, given by

Jg(x) = −
(
∂(f1, · · · fk)
∂y1 . . . ∂yk

(x, g(x))

)−1

·
(

∂(f1, · · · fk)
∂x1 · · · ∂xN−k

(x, g(x))

)
.

Note that the expressions for the partial derivatives ∂jgr(x) are written in terms of g(x) itself,
so in an implicit form. This is unavoidable. Sometimes, these expressions can be made explicit.

Example 8.4. Let us consider the following example: let N = 2, k = 1, and Φ1 : R2 → R given
by

Φ1(x1, x2) := x21 + x22 − 1.

Then, f : R×R → R is Φ1 itself, where we now denote x2 by y1 (this is a choice; of course, you
can choose to invert the �rst variable as well.). Since

∂x1f(x1, x2) = 2x1, ∂x2f(x1, x2) = 2x2,

we get that it is possible to apply the Implicit Function Theorem (see Theorem 8.1) at every
point

(x1, y1) ∈ S \ {(±1, 0)},
At such a point, we get that there exists a C1 function g : X → R, for a certain interval X
containing the point x1, such that

f (x1, g(x1)) = 0.

Thus, by taking the derivative with respect to x1, we get

0 = ∂x1f (x1, g(x1)) + ∂y1f (x1, g(x1)) g
′(x1) = 2x1 + 2g(x1)g

′(x1),

from which we get

g′(x1) = − x1
g(x1)

.

This is the implicit expression for the gradient of g. You can solve it explicitly by using the
theory of Ordinary Di�erential Equations, and get that

g(x1) = ± x1√
1− x21

,

and choose the sign of g in accordance with the position of the point (x1, y1) where you initially
wanted to locally describe S.

We now show that the Implicit and the Inverse Function Theorem are equivalent.

Proposition 8.5. The Implicit Function Theorem (see Theorem 8.1) and the Inverse Function
Theorem (see Theorem 7.17) are equivalent.

Proof. The proof of the Implicit Function Theorem (see Theorem 8.1) used the Inverse Function
Theorem (Theorem 7.17). On the other hand, if we assume the Implicit Function Theorem to
hold, then it is possible to prove the Inverse Function Theorem as follows: let h : RN → RN be
a function of class C1. Assume that x̄ ∈ Ω is such that det(Jh(x̄)) ̸= 0. Take k = N , and let
f : RN × RN → RN de�ned as

f(x, y) := h(x)− y.

Then, f satis�es the assumption of the Implicit Function Theorem. Indeed,

Jf(x, y) = (Jh(x, y) − Id) .

Thus, since det(−Id) ̸= 0, it is possible to write the variables y in terms of the variable x; but
this is of no interest for us, since we simply get y = h(x). What is interesting, is that, since

det(Jh(x̄)) ̸= 0,

it is locally possible to write the variable x in terms of the variable y. More precisely, there exist
open sets X,Y ⊂ RN with x̄ ∈ X, and h(x̄) ∈ Y , and a C1 function g : X → Y such that

f (g(y), y) = 0,
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for all y ∈ Y . Namely, h(g(y)) = y for all y ∈ Y . Thus, g is the inverse function we were looking
for. □
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9. Analysis on submanifolds

9.1. Submanifolds in RN . Let us consider an example that will illustrate the geometric
meaning of the main results that will be presented in this section. Consider the unit circle
in R2 centered at the origin. What we know is the following:

(i) Around each point it is possible to describe the circle as the set of solutions to a system
of equations (actually, in this case, just one equation, and the same equation works for
all the points in the circle);

(ii) Around each point it is possible to locally �attened the circle;
(iii) It is possible to describe the circle by using polar coordinates; namely, the circle is a

one-dimensional object;
(iv) Around each point, it is possible to describe the circle as a graph over one of the

coordinate axes;
(v) At each point it has a tangent line.

We want to study objects that are like the circle. Namely, sets that can be locally �attened
like a space Rd, that can be locally described by using d parameters, that can be locally described
as the set of solutions to a system of N − d equations, or by a graph over some coordinate axes,
and that possess a tangent space that is a linear space at each point. All such properties are all
connected with each other, and all follow from the Implicit Function Theorem (see Theorem 8.1),
the Inverse Function Theorem (see Theorem 7.17) together with properties of the di�erential of
a di�eomorphism (see Proposition 7.15(iv)).

De�nition 9.1. Let S ⊂ RN , and x̄ ∈ S. We say that S is a submanifold (of class C1) of
dimension d at x̄ if and only if there exist an open set U ⊂ RN with x̄ ∈ U , and C1 functions
Φ1, . . . ,ΦN−d : U → R such that

S ∩ U = {x ∈ U : Φ1(x) = 0, . . . ,ΦN−d(x) = 0} ,

and such that

∇Φ1(x), . . . ,∇ΦN−d(x)

are linearly independent for all x ∈ U .

Remark 9.2. Note that it is possible to check the condition of linear independence of the
gradients only at the point x̄. Indeed, suppose that the set S is locally described in an open
neighborhood U ⊂ RN of x̄ as the set of solutions to a system of equations as in the de�nition
above. Assume that

∇Φ1(x̄), . . . ,∇ΦN−d(x̄)

are linearly independent . Then, by the continuity of the gradients, we get that there exists an
open set A ⊂ RN with x̄ ∈ A such that the gradients

∇Φ1(x), . . . ,∇ΦN−d(x)

are linearly independent for all x ∈ A. Thus, by taking U ′ := U ∩ A, we get that S is a
d-dimensional submanifold at the point x̄.

Example 9.3. Let's consider the unit sphere of RN centered at the origin. We claim that S is
a submanifold of dimension d = N − 1 at each of its points. Indeed, it is possible to describe

S = {x ∈ RN : ∥x∥2 = 1}.

Since the function Φ1(x) := ∥x∥2 − 1 is a C1 function, and

∇Φ1(x) = 2x ̸= 0,

for all x ∈ S, we have the desired result.
Note that, in this case, we do not need an open set set U to localize the description of S as

the set of solutions to an equation.
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Example 9.4. Let S be the boundary of the square of side 2 in R2 centered at the origin. We
claim that S is a submanifold of dimension 1 at all of its points, except at the corners. Indeed,
let x̄ = (x̄1, x̄2) ∈ S. Assume that it is a point on one of the horizontal sides, but not a vertex.
The case where it is a point on the vertical sides is treated similarly. Consider the open set
U := B(x, r), where r := 1− |x̄1|. De�ne the function Φ1 : R2 → R as

Φ1(x1, x2) := 1− |x2|2.
Then, we have that

S ∩ U = {(x1, x2) ∈ U : Φ1(x1, x2) = 0}.
Moreover, thanks to the assumption on the point x̄ and on the set U , we also have that

∇Φ1(x1, x2) = −2x2 ̸= 0,

and thus the desired result follows.

Remark 9.5. Note that the property of being a submanifold is local, not pointwise. Indeed, let
S be a submanifold of dimension d at the point x̄ ∈ S. Then, there exists an open set U ⊂ RN

containing x̄ such that S is a submanifold of class d at all points x ∈ S ∩ U .
On the other hand, as we have seen in the previous examples, the set of points where a set S

is not a submanifold, can also be closed (in the precious example, the four corners of the square).

Remark 9.6. A trivial case of a submanifold, is when d = N : these are open sets of RN . We
are not interested in such a case. In particular, we only care about submanifolds of dimension
d = 0, 1, 2, . . . , N − 1. Note that, in the case d = 0, the set S is made by isolated points (prove
it!).

Remark 9.7. In particular, a submanifold of dimension d in RN is locally the intersection of
N − d submanifolds of dimension N − 1.

By using the same argument, we obtain that the intersection of a d1-dimensional submanifold
S1 and a d2-dimensional submanifold S2 of RN is a11 2N − (d1 + d2) submanifold in all of the
points where the gradients of the functions describing locally S1 and S2 around the intersection
point are linearly independent.

As an example, consider the intersection of two spheres S1 and S2 in RN . We can describe
them as

Si :=
{
x ∈ RN : ∥(x− Pi)∥ − ri = 0

}
.

for some Pi ∈ RN , and some ri > 0. At points at which they are not tangent (and those are the
points at which the gradients of the functions describing them are not linearly independent),
the set S1 ∩ S2 is a submanifold of dimension N − 2, and it is given by

S1 ∩ S2 =
{
x ∈ RN : ∥(x− P1)∥ − r1 = 0, ∥(x− P2)∥ − r2 = 0

}
.

You can check that this is an (N − 2)-dimensional sphere in RN .

Remark 9.8. In case the functions Φi's describing locally the set S are of class Cr, for r ≥ 1,
we say that the submanifold is a submanifold of class Cr. We usually omit this speci�cation in
the case r = 1.

Remark 9.9. The reason why the terminology we use for S is submanifold and not just
manifold, is because we are looking at S as an object contained in RN . This latter plays the
role of what is called a manifold. In the course Manifolds, you'll develop the general theory for
abstract manifolds. This goes beyond the scope of this course, since it requires a higher level of
abstraction. Here, we would like just to mention some results that could be of interest for the
curious reader. When you'll study manifolds, you'll see that the set

S := {(x, y) ∈ R2 : y − |x| = 0}
is a manifold, but not a submanifold of R2 at the origin (since it has a corner at that point).

11Note that a submanifold of dimension d in RN is locally described by a set of N − d equations.
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Finally, it is worth mention a very important result, the Nash's embedding theorem, stating
that every abstract manifold can be embedded (namely, it is di�eomorphic) to a submanifold of
RN . On the one hand, this result says that all abstract notions can be reduced to known cases;
on the other hand, this does not diminish the importance of abstract manifolds, since they are
able to provide a structure of sets in very general situations.

Remark 9.10. Note the following: consider the set

S := {x ∈ RN : ∥x∥ < 1}.

Then, S is an open set, and thus, thanks to Remark 9.6 above, it is a submanifold of RN of
dimension N . Its topological boundary ∂S is

∂S =
{
x ∈ RN : ∥x∥ = 1

}
.

By using similar computations to those of Example 9.3, we have that ∂S is a submanifold of R3

of dimension d = 2. Moreover, its topological boundary is empty. In particular, these are the
sets for which you know how to apply theorems that you saw in Calculus, such as the Divergence
Theorem, and the Gauss-Green Theorem.

The above mentioned situation is typical for submanifolds that are regular enough: the
submanifold S with dimension d has a topological boundary ∂S that is a submanifold of
dimension d − 1, and its topological boundary is empty. You'll study the general setup for
such situation in the course Manifold.

An important example of submanifolds are graphs of C1 functions f : RN → RM .

Proposition 9.11. Let f : RN → RM be a function of class C1. Then,

graph(f) :=
{
(x, f(x)) ∈ RN × RM

}
is a submanifold of RN+M of dimension N at each of its points.

Proof. Denote by (x, y) a point in RN × RM , and, for i = 1, . . . ,M , denote by fi(x) the ith

component of f(x). De�ne, for i = 1, . . . ,M , the function Φi : RN × RM → R as

Φi(x, y) := yi − fi(x).

Then, each Φi is a function of class C1, and

graph(f) = {(x, y) ∈ RN × RM : Φ1(x, y) = 0, . . . ,ΦM (x, y) = 0}.

Moreover, at each point (x, y) ∈ RN × RM , we have that

∇Φi(x, y) = −(∇fi(x), ei),

where ei is the i
th vector of the canonical bases of RM . Thus, the vectors

∇Φ1(x, y), . . . ,∇ΦM (x, y)

are linearly independent at all points (x, y) ∈ RN × RM . This proves the desired result. □

As mentioned at the beginning of this section, S being a submanifold means that it can be
locally �attened to a space Rd. In particular, we have the following rewriting of the de�nition
of a manifold.

Proposition 9.12. Let S ⊂ RN , and let x̄ ∈ S. Then, S is a d-dimensional submanifold of RN

at the point x̄ if and only if it is possible to �nd an open set U ⊂ RN with x̄ ∈ U , and a C1

di�eomorphism φ : U → RN such that

φ (S ∩ U) = A× {0},

where A ⊂ Rd is an open set, and 0 ∈ RN−d.
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Proof. Step 1. Let S be a d-dimensional submanifold of RN at the point x̄. By de�nition, we
can �nd an open set U ⊂ RN with x̄ ∈ U , and C1 functions Φ1, . . . ,ΦN−d : U → R such that

S ∩ U = {x ∈ U : Φ1(x) = 0, . . . ,ΦN−d(x) = 0} ,
and such that

∇Φ1(x̄), . . . ,∇ΦN−d(x̄)

are linearly independent. Consider the matrix ∇Φ1(x̄)
...

∇ΦN−d(x̄)

 .

This is a (N−d)×N matrix. Without loss of generality (namely, up to renaming the coordinates),
we can assume that the last (N−d) columns are linearly independent. Now, write a point x ∈ RN

as
x = (x1, . . . , xd, xd+1, . . . xN ) =: (x′, x′′) ∈ Rd × RN−d.

Thus, we can write the above matrix as follows ∇Φ1(x̄)
...

∇ΦN−d(x̄)

 =
(

∂(Φ1,···ΦN−d)
∂x1···∂xd

(x̄)
∂(Φ1,···ΦN−d)
∂xd+1···∂xN

(x̄)
)

=
(

∂(Φ1,···Φd)
∂x′ (x̄)

∂(Φ1,···ΦN−d)
∂x′′ (x̄)

)
.

By what we said above, the (N − d)× (N − d) matrix(
∂(Φ1, · · ·ΦN−d)

∂x′′
(x̄)

)
has linearly independent columns, and thus

det

(
∂(Φ1, · · ·ΦN−d)

∂x′′
(x̄)

)
̸= 0.

De�ne the function φ : Rd × RN−d → RN as

φ(x′, x′′) := (x′,Φ1(x), . . . ,ΦN−d(x)).

Then, φ is a function of class C1, and

φ (S ∩ U) = A× {0},
where A is the projection of the open set U on the �rst d coordinates. Moreover,

det(Jφ)(x̄) = det


Idd 0

∂(Φ1,···ΦN−d)
∂x′ (x̄)

∂(Φ1,···ΦN−d)
∂x′′ (x̄)


= det

(
∂(Φ1,···ΦN−d)

∂x′′ (x̄)
)

̸= 0.

Thus, from the Inverse Function Theorem (see Theorem 7.17), we get that φ is locally a
di�eomorphism, as desired.

Step 2. Assume that S is locally described as

φ (S ∩ U) = A× {0},
where A ⊂ Rd is an open set, 0 ∈ RN−d, and φ : RN → RN is a di�eomorphism. Then, for each
i = 1, . . . , N − d, de�ne the function Φi : RN → R as the (d+ i)th component of the function φ.
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Then, each Φi is of class C
1, and the gradients ∇Φ1(x), . . . ,∇ΦN−d(x) are linearly independent

for all x ∈ U , since φ is a di�eomorphism. This gives the desired result. □

Remark 9.13. The above result clari�es what we mean by `a submanifold can be locally �attened
to look like a linear space Rd'.

As we saw in the introduction of this section, locally, the unit circle S ⊂ R2 centered at the
origin can also be given by using parametrization. Namely

S = {(cos θ, sin θ) : θ ∈ (θ0, θ1)},
for some 0 < θ0 < θ1 < 2π. We would like to show that this is the case for any submanifold;
namely, we now provide a characterization of submanifolds by using a local parametrization.

Proposition 9.14. Let S ⊂ RN , and x̄ ∈ S. Then, S is a submanifold of dimension d at x̄ if
and only if there exist an open set U ⊂ RN with x̄ ∈ U , an open set A ⊂ Rd with λ̄ ∈ A, such
that

S ∩ U = Ψ(A),

where Ψ : A→ RN is a C1 function such that:

(i) Ψ is an homeomorphism;
(ii) ∂1Ψ(λ̄), . . . , ∂dΨ(λ̄) are linearly independent;

and Ψ(λ̄) = x̄.

Proof. Step 1. Assume S is a submanifold of RN of dimension d at the point x̄. De�ne the
function f : Rd × RN−d → RN−d as

f(x) := (Φ1(x), . . . ,ΦN−d(x)) .

Arguing as in the proof of Proposition 9.12, we can assume that

det
(

∂(f1,···fN−d)
∂x′′ (x̄)

)
̸= 0.

Thus, the function f satis�es by using the Implicit Function Theorem (see Theorem 8.1).
Therefore, there exist open sets A ⊂ Rd, and B ⊂ RN−d, a C1 function Φ : A × {0} (note
that in the theorem this function is called g, and the sets A and B are x and Y respectively),
where 0 ∈ RN−d such that (see Remark 8.2)

(i) Ψ is a homeomorphism;
(ii) the vectors

∂x1Ψ(λ̄), . . . , ∂xd
Ψ(λ̄)

are linearly independent, where x̄ = Ψ(λ̄);
(iii) S ∩ (A×B) = Ψ(A).

This is the parametrization we wanted.

Step 2. Assume that Ψ : A→ RN is a function satisfying the assumptions stated in the result.
in particular, we get that the N × d matrix

JΨ(λ̄)

has rank d. Without loss of generality (namely, up to renaming the coordinates), we can assume
that the �rst d columns are linearly independent. Write a point x ∈ RN as

x = (x′, x′′) ∈ Rd × RN−d,

and de�ne α : A→ Rd and β : A→ RN−d by

Ψ(λ) = (α(λ), β(λ)).

Namely, α(λ) and β(λ) are the �rst d and the last N − d coordinates of Ψ(λ) respectively.
Thanks to what we assumed above on the columns of JΨ(λ̄), we have that

detJα(λ̄) ̸= 0.
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Thus, by using the Inverse Function Theorem (see Theorem 7.17), we have that α is locally a
di�eomorphism. Set U := α(Rd), which is an open set. De�ne the function f : U → RN as

f(x) := β(α−1(x)).

Then, f is a function of class C1, and that

S ∩ U = graph(f) ∩ U.
By using Proposition 9.11, we get that S is a submanifold of dimension d at x̄, as desired. □

Remark 9.15. The above result justi�es the terminology `a submanifold S of dimension d.'.
Indeed, the dimension refers to the linear dimension, namely the number of coordinates we need
in order to move on the set S.

Remark 9.16. Note, however, that when a set S is given in a parametric form, it is more
di�cult to check whether or not it is a submanifold, compared to when a set S is given as
the set of solutions to a system of equations. Indeed, in the latter case we need to check (see
Proposition 9.12) that the gradients of the constraints are linearly independent at a point. This
is a local condition, and it requires the computation of N − d gradients, and Linear Algebra.
On the other hand, if the set S is given in a parametric form, other than the local condition of
having the partial derivatives that are linear independent at a speci�c point, you need to check
that the parametrizing function Ψ is invertible (in particular, injective), and the the inverse is
continuous. To understand the di�culty, consider the case of the set S de�ned as

S :=
{
(16 (sin(θ))3 , 16 cos(θ)− 5 cos(2θ)− 2 cos(3θ)− cos(4θ) : θ ∈ (−π, π))

}
.

Try to prove that S is a submanifold at all of its points, except two singular points.

We now investigate the tangent space to a submanifold. There are two equivalent ways to
compute the tangent space to a submanifold at a point, depending on the given local description
of the submanifold. If this is given as the set of solutions to a system of equations, the tangent
space is given by the vectors that are tangent to all gradients of the functions in the system.

Proposition 9.17. Let S ⊂ RN be a submanifold of dimension d at a point x̄. Let U ⊂ RN be
an open neighborhood of x̄, and write

S ∩ U = {x ∈ A : Φi(x) = 0, for all i = 1, . . . , N − d},
for some C1 functions Φi : RN → R. Then,

Tan(S, x̄) = { v ∈ RN : ⟨∇Φi(x̄), v⟩ = 0, for all i = 1, . . . , N − d }.
In particular, Tan(S, x̄) is a linear space of dimension d.

Remark 9.18. Note that the previous result is saying that a submanifold S of dimension d in
RN is locally the intersection of N − d submanifolds Si of class N − 1 (see Remark 9.7), and
also the tangent space to S at a point x̄ is the intersection of the tangent spaces at the Si's at
the point x̄, and that it is a linear space itself.

Example 9.19. Consider the set

S := {(x, y, z) ∈ R3 : x2 + y2 + z2 − 1 = 0}.
Then, S is a submanifold of dimension d = 2 at each of its points. By using Proposition 9.17,
we get that the tangent space to S at the point (x, y, z) ∈ S is given by

Tan(S, (x, y, z)) = {v = (vx, vy, vz) ∈ R3 : 2xvx + 2yvy + 2zvz = 0}.

Remark 9.20. When it is di�cult to explicitly compute the gradient of the functions Φi's, we
can use an equivalent way to identify the tangent space to the submanifold at a point. We know
that Tan(S, x̄) is a d dimensional linear subspace of RN . To identify the vectors v ∈ RN that
belong to Tan(S, x̄) we argue as follows: consider the curve γ : [−1, 1] → RN given by

γ(t) := x̄+ tv.
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Then, the above result states that v ∈ Tan(S, x̄) if and only if

∂vΦi(x̄) = 0,

for all i = 1, . . . , N − d. Namely, if the curve satis�es the system of equation at �rst order.
Despite being equivalent, sometimes this point of view is more natural for certain situations, as
the example below shows.

Example 9.21. Consider the case where S is the set of N ×N matrices A with determinant 1.
Thus, the set S is the zero level set of the function

Φ1(A) := det(A)− 1.

Then, it is di�cult to compute the gradient of the function Φ1. Nevertheless, we know (it was
done in an exercise of the homework) that

∂BΦ1(A) =
N∑
i=1

det(AiBi),

where the matrix AiBi is the matrix A with its ith column substituted by the ith column of B.

If the submanifold is locally given as a parametrization, the tangent space is given by the
directional derivatives of the parametrization function.

Proposition 9.22. Let S ⊂ RN be a submanifold of dimension d at a point x̄. Let U ⊂ RN is
an open neighborhood of x̄, and write

S ∩ U = Ψ(A),

where A ⊂ Rd is an open set, and Ψ : A→ RN is a C1 function such that:

(i) Ψ is an homeomorphism,
(ii) ∂1Ψ(λ̄), . . . , ∂dΨ(λ̄) are linearly independent, where Ψ(λ̄) = x̄.

Then,

Tan(S, x̄) =
{
∂vΨ(λ̄) : v ∈ Rd

}
.

In particular, Tan(S, x̄) is a linear space of dimension d.

The proof is left as an exercise to the reader.

Example 9.23. Consider the set

S := {(sin θ cosφ, sin θ sinφ, cos θ) ∈ R3 : θ, φ ∈ (0, π/2)}.
Then, the function Ψ : (0, π/2)2 → R3 given by

Ψ(θ, φ) := (sin θ cosφ, sin θ sinφ, cos θ)

satis�es the assumption of Proposition 9.14; thus, we get that S is a submanifold of dimension
d = 2 at each of its points. Moreover, by using Proposition 9.22, we get that the tangent space
to S at a point (x, y, z) = Ψ(θ̄, φ̄) ∈ S is given by

Tan(S, (x, y, z)) = {∂vΨ(θ̄, φ̄) : v = (vx, vy) ∈ R2}.
We would like to write in a more explicit form the right-hand side. Since

∂vΨ(θ̄, φ̄) = JΨ(θ̄, φ̄) · vT ,
and

JΨ(θ̄, φ̄) =

 cos θ̄ cos φ̄ cos θ̄ cos φ̄
− sin θ̄ sin φ̄ sin θ̄ cos φ̄
− sin θ̄ 0


we get that Tan(S, (x, y, z)) is given by{

(vx cos θ̄ cos φ̄+ vy cos θ̄ cos φ̄,−vx sin θ̄ sin φ̄+ vy sin θ̄ cos φ̄,−vx sin θ̄) : vx, vy ∈ R
}
.
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Remark 9.24. There are two other equivalent ways to compute the tangent space to a submanifold
at a point, depending on the given local description of the submanifold. We recall that the
tangent space to a submanifold of dimension k is a linear space of dimension d.

Assume the submanifold to be locally described by linearization, namely by using the di�eomorphism
given by Proposition 9.12. Namely, if S is a d-dimensional submanifold of RN at the point x̄,
and U ⊂ RN is an open set with x̄ ∈ U , and φ : RN → RN is a C1 di�eomorphism such that

φ (S ∩ U) = A× {0},

where A ⊂ Rd is an open set. Then,

Tan(S, x̄) = ( dφ(x̄))−1 [Rd × {0}].

Now, assume the submanifold to be locally parametrized by a function Ψ : Rd → RN satisfying
the assumptions in Proposition 9.14. Then, in order to compute ∂vΨ(λ̄), where v ∈ Rd, we can
take a C1 curve γ : [−1, 1] → Rd such that

γ(0) = λ̄, γ′(0) = v.

Then, the curve Ψ ◦ γ : [−1, 1] → S is of class C1 and, by using the chain rule (see Proposition
5.39), we get that

∂vΨ(λ̄) = (Ψ(γ))′ (0).

Thus, if we take v1, . . . , vd ∈ Rd that are linearly independent, and C1 curves γi : [−1, 1] → Rd,
for i = 1, . . . , d, such that

γi(0) = λ̄, γ′i(0) = vi,

we get that Tan(S, x̄) is the linear space generated by the vectors (Ψ(γ1))
′ (0), . . . , (Ψ(γd))

′ (0).

Finally, we study submanifold in RN of dimensions N − 1, and their relation to graphs of C1

functions, both over the coordinate axes, and over the tangent space to the submanifold.
What the Implicit Function Theorem yields, is that also the opposite is true: submanifold of

RN of dimension N − 1 are locally the graph of a function over the coordinate axes.

Proposition 9.25. Let S ⊂ RN be a submanifold of RN of dimension N −1 at the point x̄ ∈ S.
Then, there exist an open set U ⊂ RN with x̄ ∈ U , and (up to reshu�ing the coordinates) a
function f : RN−1 → R such that

S ∩ U = {(x′, f(x′)) : x′ ∈ A},

for some open set A ⊂ RN−1.

Remark 9.26. Note that a set described as the graph of a function f : RN → RM is a special
case of a parametrization Ψ : RN → RN+M given by

Ψ(x) := (x, f(x)),

where the �rst N coordinates are precisely the parameters. On the other hand, a set described
in a parametric way is not always the graph of a function, as the example below shows.

We now prove a modi�ed version of the above results, that states that, locally, (N − 1)-
dimensional submanifolds in RN can be seen as graphs over their tangent hyperplane. This is
useful when dealing with local properties of a manifold.

Proposition 9.27. Let S ⊂ RN be a submanifold of dimension N−1 at the point x̄. Let ν ∈ RN

be a unit normal vector to Tan(S, x̄). Then, there exists an open set U ⊂ RN containing x̄, and
a C1 function h : x̄+Tan(S, x̄) → R such that

S ∩ U = {π(x) + h(π(x))ν : x ∈ S ∩ U } ,

where π : RN → (x̄+Tan(S, x̄)) is the orthogonal projection on x̄+Tan(S, x̄).
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For lower dimensional submanifold, it is in general not possible to write them as graphs over
their tangent space. The reason being that there are too many directions that are orthogonal
to the tangent space. Think, for example, to the one-dimensional submanifold given by

S := {(cos t, sin t, t) : t ∈ (0, 1)}.
Nevertheless, it is possible to prove that, locally, the submanifold intersects a normal direction
in just one point.

Proposition 9.28. Let S ⊂ RN be a submanifold of dimension d at the point x̄. Let V ⊂ RN

be a linear space such that
V ∩ Tan(S, x̄) = {0}.

Then, that there exists an open set A ⊂ RN containing x̄ such that

x− y ̸∈ V,

for all x ̸= y ∈ S ∩A.

The proof is left as an exercise to the reader.

9.2. Critical points on submanifolds: Lagrange multipliers. We now want to consider
the minimization (or the maximization) of a function over a submanifold. Namely, we are given
a C1 function f : RN → R, and a d-dimensional submanifold S ⊂ RN , and we want to study
the problem

min{f(x) : x ∈ S}. (9.1)

This is called constrained optimization, since the set S plays the role of the constraints we impose
on our variables x ∈ RN . What we would like to do is to derive some �rst order necessary
conditions for minimum points of f over S. First, consider the unconstrained minimization
problem, namely if S was the entire RN . Assume that there exists a point x̄ ∈ RN of minimum.
Namely,

f(x̄) ≤ f(x), (9.2)

for all x ∈ RN . Then, you know that
∇f(x̄) = 0. (9.3)

The above condition is extremely useful in order to identify the point x̄, because it turns condition
(9.2), which is an inequality to be tested over all points of RN , into an equation, namely (9.3).
Of course, you know that (9.3) is only necessary, but not su�cient for minimality, in that a
solution of (9.3) is not necessarily a minimum of f . Indeed, think about the function f : R → R
given by f(x) := x3.

We now want to derive a similar condition in the case of the constrained minimization
problem (9.1). We will indeed derive a condition that works for general sets S, not necessarily
submanifolds, and then we'll deduce a stronger condition in the case S is a submanifold. The
idea is simple, and comes from the way condition (9.3) is derived: if x̄ ∈ S is a point of local
minimum, then if I move along a tangent direction to S at x̄, the function f cannot decrease.
Namely, take v ∈ Tan(S, x̄); let (xn)n∈N ⊂ S, and (λn)n∈N ⊂ (0, 1) be such that λn → 0 and

xn − x̄

λn
→ v.

Then, since
f(x̄) ≤ f(xn),

and λn > 0, we get

0 ≤ f(xn)− f(x̄)

λn
.

Thanks to Theorem 5.23, we get that the right-hand side converges to ∂vf(x̄). Note that we did
not use any structure of S in order to deduce the above condition. Namely, we get the following
result
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Lemma 9.29. Let f : RN → R be of class C1, and let S ⊂ RN be a set. Assume that x̄ ∈ S is
a point of (local) minimum of f over S. Then,

⟨∇f(x̄), v⟩ ≥ 0,

for all v ∈ Tan(S, x̄).

This is the mathematical writing of the sentence `if I move along a tangent direction to S at
x̄, the function f cannot decrease', that we wrote above.

Remark 9.30. Note that Lemma 9.29 allows us to deduce condition (9.3). Indeed, since the
problem is unconstrained, namely S = RN , we have that Tan(S, x̄) = RN . Thus,

⟨∇f(x̄), v⟩ ≥ 0,

for all v ∈ RN . This implies that ∇f(x̄) = 0 (prove it!).

Let us now consider the case of a d-dimensional submanifold S ⊂ RN . The �rst order necessary
condition that we obtain is called Lagrange multipliers rule.

Theorem 9.31 (Lagrange multipliers). Let f : RN → R, and let S ⊂ RN be a d-dimensional
submanifold. Write

S =
{
x ∈ RN : Φ1(x) = · · · = ΦN−d(x) = 0

}
,

for some C1 functions Φi : RN → R, for i = 1, . . . , N − d. Assume that x̄ ∈ S is a point of
(local) minimum of f over S. Then,

∇f(x̄) =
N−d∑
i=1

λi∇Φi(x̄),

for some coe�cients λ1, . . . , λN−d ∈ R.

Proof. By using Lemma 9.29, we have that

⟨∇f(x̄), v⟩ ≥ 0, (9.4)

for all v ∈ Tan(S, x̄). Now, since Tan(S, x̄) is a linear space, we have that v ∈ Tan(S, x̄) satis�es
(9.4), then also −v does. Thus, from (9.4) we get that

⟨∇f(x̄), v⟩ = 0,

for all v ∈ Tan(S, x̄). This means that ∇f(x̄) lies in the orthogonal space to Tan(S, x̄). We now
want to describe such orthogonal space. By using Proposition 9.17 we know that

Tan(S, x̄) = { v ∈ RN : ⟨∇Φi(x̄), v⟩ = 0, for all i = 1, . . . , N − d }.
Therefore, the orthogonal space to Tan(S, x̄) is generated by the vectors∇Φ1(x̄), . . . ,∇ΦN−d(x̄).
This concludes the proof of the theorem. □

Remark 9.32. Note that above result does not provide the existence of a minimum point! This
is something that you have to prove separately (typically, by using Weierstraÿ Theorem 3.15
and the compactness of the set S, or of the sub-level sets of the function f).

Remark 9.33. Of course, the result holds also in the case where the submanifold S is locally
described by a set of equations. The choice of writing the result as above is only for the sake of
notation.

Remark 9.34. The same result holds also for a point x̄ ∈ S of (local) maximum of f over S.

Example 9.35. Let us consider the function f : R3 → R given by f(x, y, z) := x2 − 2y + z2,
and let S be the unit sphere centered at the origin, namely

S := {(x, y, z) ∈ R3 : Φ(x, y, z) = 0},
where Φ(x, y, z) := x2 + y2 + z2 − 1. Then, we know that (at least) a minimum point of f over
S exists, since f is continuous, and S is compact. We would like to �nd such points (note that
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we do not know whether there is one or more than one). By using Theorem 9.31, we know that
minimum points are solutions to the equation

∇f(x, y, z) = λ∇Φ(x, y, z).

This condition writes explicitly as

(2x,−2, 2z) = λ(2x, 2y, 2z), (9.5)

which is a system of three equations in four unknowns (x, y, z, and λ). Actually, we have a
fourth equation, given by the fact that the point (x, y, z) has to be in S, namely it has to satisfy
Φ(x, y, z) = 0. Thus, we have to solve the system

2x = 2λx
−2 = 2λy
2z = 2λz
x2 + y2 + z2 − 1 = 0.

(9.6)

First of all, we note that (9.5) implies that λ cannot be zero. Therefore, from the second equation
in (9.6) we get that

y = − 1

λ
. (9.7)

If both x and z are zero, from the last equation in (9.6) we get that y = ±1, and thus, from
(9.7) we obtain two solutions

P1 = (0, 1, 0), λ = −1, (9.8)

P2 = (0,−1, 0), λ = 1, (9.9)

On the other hand, if either x or z are not zero, from either the �rst or the third equation in
(9.6) we get that λ = 1, and thus y = −1. From the fourth equation in (9.6) this would imply
that both x and z are zero, which is a contradiction. Thus, the two solutions to the system (9.6)
are given by (9.8) and (9.9).

Since we know that there exists at least a minimum point, it has to be one of the two above.
Note that, since we also know that the function f has a maximum over S, and that also for
points of (local) maximum the Lagrange multipliers conditions is valid, we have that there is
only a point a minimum of f over S, and only one point of maximum of f over S, and they
are (0, 1, 0) and (0,−1, 0). To tell which is which, we just compute f at those two points, and
compare the values. We have that

f(P1) = −2, f(P2) = 2.

Thus, P1 is the point of minimum of f over S, and P2 is the point of maximum of f over S.

Remark 9.36. In previous example, you could have started using another method to �nd the
minimum of f on S. Since x2 + y2 + z2 = 1, we know that x2 + z2 = 1 − y2. By substituting
this in the expression of f , we get the function

g(y) := 1− y2 − 2y.

One could think that by studying the minimum of such function. The problem is that this
function is unbounded, and thus the in�mum is −∞!!! But we know that f has a �nite minimum
over S. The power of Theorem 9.31 lies in giving a condition also in cases where the above
substitution, even if in theory possible, cannot be explicitly written, or, even if it can be explicitly
written, gives rise to an unbounded function.

Remark 9.37. Note that the system that we have to solve when looking for critical points of a
C1 function on a d-dimensional submanifold, is a system of 2N − d equations (N given by the
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�rst condition, and N − d by the vanishing of the constraints Φi's) in 2N − d unknowns (N are
the coordinates of the gradient of f , and N − d the coe�cients λi's), which writes as

∇f(x̄) =
∑N−d

i=1 λi∇Φi(x̄)
Φ1(x̄) = 0
...
ΦN−d(x̄) = 0,

where the �rst condition is actually N equations. Note that, in the case S is compact, the above
system always have at least two solutions: one identifying a point of maximum of f over S, and
one identifying a point of minimum of f over S.

Remark 9.38. We now would like to give a geometric interpretation of the Lagrange multipliers.
The gradient ∇f(x) of a function f : RN → R at a point x ∈ RN , if not null, points at the
direction of maximal increase of the function f . Indeed, among all unit vectors v ∈ SN−1,we
have that

∂vf(x) = ⟨∇f(x), v⟩ ≤ |∇f(x)|,
where the last inequality follows from the Cauchy-Schwarz inequality (see Proposition 1.9). By
taking

w :=
∇f(x)
|∇f(x)|

,

we have that that inequality becomes an equality. Thus, the direction w is the one that maximizes
the growth of f at the point x. In particular, if we consider a direction v ∈ RN such that

⟨v,∇f(x)⟩ ≥ 0,

we have that f is locally increasing if we move along the direction v. Similarly, we can say that
if we consider a direction v ∈ RN such that

⟨v,∇f(x)⟩ ≤ 0,

we have that f is locally decreasing if we move along the direction v. Note that, if f is locally
increasing in a direction v, then f is locally decreasing in the direction −v, and viceversa.

Now, let us consider a submanifold S, locally described by one C1 equation

S =
{
x ∈ RN : Φ1(x) = 0

}
.

Namely, S is the zero level set of the function Φ1. Let x̄ ∈ S be a point of minimum for f over
S. We know from Proposition 9.17 that

Tan(S, x̄) = { v ∈ RN : ⟨∇Φ1(x̄), v⟩ = 0 }.
at all points x̄ ∈ S. Thus, locally - and up to a translation -, the set S looks like the linear set
of vectors that are orthogonal to ∇Φ1(x̄)'s. Therefore, if ∇Φ1(x̄) and ∇f(x̄) were not linearly
dependent, then we could �nd a vector v ∈ Tan(S, x̄) such that

⟨v,∇f(x̄)⟩ < 0.

Thus, f would locally decrease if we move along a direction v; this means that we could �nd
points x ∈ S close to x̄ with

f(x) < f(x̄),

contradicting the minimality of the point x̄ for f over S.
The same argument gives the similar geometric interpretation also in the case where S is

locally described by the intersection of the zero level sets of N − d equations.
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10. The Darboux-Riemann integral and the Peano-Jordan content

What is the Riemann integral? What type of functions are Riemann integrable? For what
functions do the Fundamental Theorem of Calculus hold? These are the questions that troubled
mathematicians for about a century, before being completely understood at the beginning of
the 20th century. It is a story of struggles, �ghts, and failed attempts that eventually led to the
beautiful and powerful theory of Lebesgue integration that is used nowadays. But let's start
from the beginning.

10.1. The problems of the Cauchy-Riemann integration. The development of Calculus
led to the notion of the derivative of a function. This allowed to consider di�erential equations
that model physical phenomena, and to study such situations by using mathematical tools. This
was one of the most important revolutions for human kind. At that time, though, things were
not really clear. First of all, the notion of function was really vague. Every mathematician had
a di�erent notion, that was not clearly stated, if not by sentences like `a function is given by a
single equation'. By this, they meant that it is possible to write an explicit expression of the
function by using a single expression. For instance,

f(x) := x2 + 1

was a (continuous) function, while

f(x) :=

{
x if x ≤ 0,
x2 if x > 0,

was either not a function, or considered as a discontinuous function (note that, by using the
modern notion of continuity, such function is continuous). In particular, this meant that a very
limited class of functions were those considered by mathematicians at that time. Thus, when in
1829 Dirichlet introduced the function

f(x) :=

{
1 if x ∈ Q,
0 if x ∈ R \Q, (10.1)

mathematicians were really puzzled of whether to consider this strange object a function or not.
Indeed, it is not possible to write it as a single equation. Moreover, the Dirichlet function is
discontinuous at every point ! Is it then an object worth considering or not? This problem is
intimately connected with the representation of functions: how is it possible to write a generic
function? This was one of the main problems of interest of the 19th century after Joseph Fourier
published his Théorie analytique de la chaleur (Analytic theory of heat) in 1822, where he
established a Partial Di�erential Equation governing heat di�usion and used in�nite series of
trigonometric functions to solve it. Are these latter functions? Are the computations used by
Fourier (or, later, by Lagrange), where the equality� ∑

n∈N
fn(x) dx =

∑
n∈N

�
fn(x) dx

is repeatedly used, justi�ed?
To answer these questions, we �rst have to understand what the meaning of�

f(x) dx

is. At that time, it was meant as the antiderivative of f . Namely, it was the function F such
that F ′ = f (this is the Fundamental Theorem of Calculus). How to construct such a function?
Well, �rst of all, assume that it exists! We follow the work of Augustin Cauchy of his Course
d'analyse (Course of Analysis) of 1821 (culmination of his e�orts from 1814). Let us take an
interval [a, b] ⊂ R, and a partition

a = x0 < x1 < · · · < xN = b
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of it. Then, we can say that

f(xi) = F ′(xi) ∼
F (xi)− F (xi−1)

xi − xi−1
,

from which we deduce that

F (xi) ∼ F (xi−1) + f(xi)(xi − xi−1).

By using the same argument to write F (xi−1), and thus F (xi−2), . . . F (x0), we get that

F (xi) ∼
i∑

j=1

F (xj−1) +
i∑

j=1

f(xj)(xj − xj−1).

Now, the �rst sum is just a constant, and we will call it C. Thus, up to a constant, we have that

F (xi) ∼
i∑

j=1

f(xj)(xj − xj−1). (10.2)

Note that, by using the fact that F ′ is continuous, since f is, it is possible to use the exact
writing

f(xi) = F ′(ξi) =
F (xi)− F (xi−1)

xi − xi−1
,

for some ξi ∈ (xi−1, xi). The expression that we then obtain for F is

F (xi) =
i∑

j=1

f(ξj)(xj − xj−1), (10.3)

for ξi ∈ (xi−1, xi). The sum on the right-hand side of either (10.2) or (10.3) is called Cauchy-
Riemann sum.

De�nition 10.1. A function f : [a, b] → R is said to be Cauchy-Riemann integrable if the
Cauchy-Riemann sums converge as the maximum length of a subinterval (xi−1, xi) goes to zero.

Cauchy proved that, for a continuous function f , the Cauchy-Riemann sum converges. This
was a revolutionary proof at that time, since it used the re�nement of a partition, that you have
seen in Analysis 1. Moreover, he proved that F ′ = f , and that, if G is a function such that
G′ = f , then G = C + F , for some constant C ∈ R. Finally, he proved conditions for the term
by term integration �

[a,b]

∑
n∈N

fn(x) dx =
∑
n∈N

�
[a,b]

fn(x) dx

to hold. Note that all the functions involved have to be continuous: not only each fn, but also
the function

∑
n∈N fn. The theory developed by Cauchy is great, but not powerful enough to

treat general discontinuous functions.

Riemann, in his habilitation thesis of 1854 studied the problem of representation of a function
by trigonometric functions, and investigated conditions under which the Cauchy-Riemann sum
converge, without having to assume f continuous. We will state the result in the following
section (see Theorem 10.43), since we �rst need to introduce a new notion.

Riemann showed an example of a discontinuous function that is Riemann integrable. For
x ∈ R, let I(x) ∈ Z be the closest integer to x. Consider the function

g(x) :=

 x− I(x) if x ̸= n/2, with n odd,

0 else.

De�ne

f(x) :=
∑
n≥1

g(nx)

n2
.
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Then, it is possible to show that f is well de�ned (namely, the series converges12 for all x ∈ R).
Moreover, f is discontinuous at all points x ∈ R of the form

x =
m

2n
,

with m,n ∈ Z co-prime (namely, with no common divisor, other than ±1). Finally, this function
is Riemann integrable!

Another example of a function that is discontinuous at countably many points, but still
Riemann integrable was given by Thomae in 1875, as a modi�cation of the Dirichlet function
(10.1): let f : [0, 1] → R be de�ned as

f(x) :=


1

q
if x =

p

q
with p, q co-prime,

0 else.

(10.4)

Thus, there are functions with countably many discontinuities that are Riemann integrable.

This looks promising for the Riemann integral. Nevertheless, there are still some drawbacks.
First of all, the function (10.1) is not Riemann integrable. This is a problem, because we
heuristically expect the following. Let {qn}n≥1 be an enumeration of the rational numbers in
[0, 1]. Consider the function g0 ≡ 0. Then, g0 is clearly Riemann integrable, and�

[0,1]
g0(x) dx = 0.

Then, consider the function

g1(x) :=

{
1 if x = q1,
0 else.

Then, g1 is clearly Riemann integrable, and�
[0,1]

g1(x) dx = 0.

We now de�ne gn+1 as follows:

gn+1(x) :=

{
1 if x = qn+1,
gn(x) else.

Namely, gn+1 has just one more point where it is one, with respect to gn. Then, gn+1 is clearly
Riemann integrable, and �

[0,1]
gn+1(x) dx = 0.

The function (10.1) introduced by Dirichlet is just the limit of these functions gn. Why would it
not be Riemann integrable? What fails? Well, what happens is that the only result for Riemann
integrability of a sequence of functions is the following:

Theorem 10.2. Let (fn)n∈N be a sequence of functions fn : [a, b] → R which is Riemann
integrable. Assume that fn → f uniformly. Then, f is Riemann integrable, and

lim
n→∞

�
[a,b]

fn(x) dx =

�
[a,b]

f(x) dx.

Remark 10.3. What makes the above result weak is the requirement of uniform convergence.
Indeed, consider the sequence of functions fn : (0, 1) → R de�ned as

fn(x) := xn.

12Indeed, the nth term of the series is bounded by 1/n2.
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Then, fn → f pointwise, where f ≡ 0. We have that f is Riemann integrable, and that

lim
n→∞

�
(0,1)

fn(x) dx =

�
(0,1)

f(x) dx.

Unfortunately, we cannot infer the Riemann integrability of f , neither the limit above from the
previous theorem, since the convergence of the fn's is not uniform.

Remark 10.4. Also the function (10.4) can be obtained as pointwise limit of a sequence of
Riemann integrable functions as we did above for the function (10.1). Also in this case, its
Riemann integrability cannot be deduced from the theorem above.

This is the same issue in justifying rigorously the�
[a,b]

∑
n∈N

fn(x) dx =
∑
n∈N

�
[a,b]

fn(x) dx

used in Fourier series. Indeed, ∑
n∈N

fn(x) = lim
k→∞

gk :=

k∑
n=1

fn.

Thus, if the series converges uniformly, we have that the series is Riemann integrable and that
it is possible to exchange the series and the integral. Unfortunately, uniform convergence is not
always (basically, never!) true.

10.2. The Peano-Jordan content. The �rst breakthrough in developing a more powerful
theory of integration was to see the integral of a function f : RN → R as the signed area/volume
under the graph. This, of course, requires the notion of area/volume of a set. We will see
that it is precisely in the de�nition of the area used that all the issues of the Riemann integral
are contained, and it is precisely by modifying the idea of area that the powerful Lebesgue
integration was born.

Let us start with a consideration. Whatever reasonable notion of area/volume13 we assign to
a set E ⊂ RN , the following has to be true:

The volume of a rectangle R := [a1, b1]× · · · × [aN , bN ]
is (b1 − a1)(b2 − a2) . . . (bN − aN ).

The question is how to extend the notion of volume to the case of a general set E. It is in
the way the extension is done, that two important notions were developed: the Peano-Jordan
content, and the Lebesgue measure. In this section we will discuss the former, while the latter
in the following section.

What Peano and Jordan did (in 1887 and 1892, respectively, and independently) is to use an
idea similar to the exhaustion method of Archimedes: approximate a set from inside and from
outside with union of rectangles. If the two processes lead to the same number, that will be the
number assigned to the set. There are cases, though, where the two processes lead to di�erent
numbers. In these cases, we won't be able to assign a number to the set.

De�nition 10.5. A set R ⊂ RN is called a pluri-rectangle if it is possible to write it as

R =

k⋃
i=1

Ri,

where each Ri ⊂ RN is a rectangle.

Remark 10.6. Note that we are using closed rectangles.

13We will work in an arbitrary dimension, while the terminology area and volume refer to the two and three
dimensional case, respectively.



110 RICCARDO CRISTOFERI

Remark 10.7. Note that the writing of a pluri-rectangle is not unique. Nevertheless, it is
always possible to write (again, not in a unique way!) a pluri-rectangle as a �nite union of
rectangles with pairwise disjoint interiors.

Remark 10.8. Note that a pluri-rectangle can have multiple connected components.

Simple (but extremely tedious to prove!) properties of pluri-rectangle are the followings

Lemma 10.9. Let R1, . . . , Rm ⊂ RN be pluri-rectangles. Then,
m⋃
i=1

Ri

m⋂
i=1

Ri

are also pluri-rectangles.

Remark 10.10. Note that countable union of pluri-rectangles might fail to be a pluri-rectangle.
Indeed, every open set of RN can be written as countable union of rectangles.

De�nition 10.11. Let R ⊂ RN be a rectangle

R = [a1, b1]× · · · × [aN , bN ],

with 0 < ai < bi for all i = 1, . . . , N . We de�ne the Peano-Jordan content of R as

PJ (R) := (b1 − a1)(b2 − a2) . . . (bN − aN ),

De�nition 10.12. Let R ⊂ RN be a pluri-rectangle. Write R as

R =
k⋃

i=1

Ri

where the Ri's have pairwise disjoint interiors. We de�ne the Peano-Jordan content of R as

PJ (R) :=
k∑

i=1

PJ (Ri).

Remark 10.13. It is easy to check that the above is a well-de�ned number. Namely, it does
not depend on the way we write the pluri-rectangle R as the union of disjoint rectangles.

It is now time to de�ne how to extend the Peano-Jordan content to more general sets.

De�nition 10.14. Let E ⊂ RN . We de�ne the inner Peano-Jordan content of E as

PJ −(E) := sup {PJ (R) : R ⊂ E,R pluri-rectangle } ,
and the outer Peano-Jordan content of E as

PJ +(E) := inf {PJ (R) : E ⊂ R,R pluri-rectangle } .
If

PJ −(E) = PJ +(E),

we say that E is Peano-Jordan measurable, and we denote the common value by PJ (E).

Remark 10.15. First of all, we note that the de�nition of the Peano-Jordan content given in
De�nition 10.14 is consistent with those given in De�nitions 10.11 and 10.12 for rectangles and
pluri-rectangles respectively. Indeed, if R ⊂ RN is a rectangle, it holds that

PJ (R) = sup{PJ (S) : S ⊂ R,S pluri-rectangle} = inf {PJ (S) : R ⊂ S, S pluri-rectangle } .
The same is true in the case R is a pluri-rectangle.

It is possible to see that we can equivalently de�ne the Peano-Jordan content by using grids.
The idea is to consider �ner and �ner grids of cubes, and, at each scale, to identify the inner
and the outer Peano-Jordan content of a set by counting how many cubes are inside and how
many cubes intersect the set, respectively. We make this more precise.
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De�nition 10.16. Let r > 0. We de�ne the r-grid G(r) as
G(r) := {Q(zi, r) : zi ∈ rZ } ,

where, for x ∈ RN , and r > 0,

Q(x, r) := {y ∈ RN : |xi − yi| < r/2 for all i = 1, . . . , N}
denotes the open cube centered at x with sides of length r parallel to the orthogonal axes.

Proposition 10.17. Let E ⊂ RN . It holds that

PJ −(E) = sup
r>0

rN# { i ∈ N : Q(zi, r) ⊂ E, Q(zi, r) ∈ G(r) } ,

and
PJ +(E) = inf

r>0
rN# { i ∈ N : Q(zi, r) ∩ E ̸= ∅, Q(zi, r) ∈ G(r) }

The proof is left as an exercise to the reader.

We now state some basic properties of Peano-Jordan measurable sets. The proofs are left as
exercises to the reader.

Lemma 10.18. Let E ⊂ RN . Then,

(i) PJ −(E) = 0 if and only if E has empty interior;
(ii) Assume that PJ +(E) <∞. Then, E is bounded;
(iii) PJ +(E) = PJ +(E).

The Peano-Jordan content is �nitely additive on pairwise disjoint sets.

Lemma 10.19. Let E1, . . . , Em ⊂ RN be Peano-Jordan measurable sets. Then,
m⋃
i=1

Ei

m⋂
i=1

Ei

are also Peano-Jordan measurable. Moreover, if E1, . . . , Em ⊂ RN are pairwise disjoint, then

PJ

(
m⋃
i=1

Ei

)
=

m∑
i=1

PJ (Ei).

Remark 10.20. Note that neither the inner, nor the outer Peano-Jordan content are �nitely
additive. Indeed, consider the sets E1 := Q ∩ [0, 1], and E2 := [0, 1] \Q. Then,

PJ −(E1) = PJ −(E2) = 0, PJ −(E1 ∪ E2) = 1.

and
PJ +(E1) = PJ +(E2) = PJ +(E1 ∪ E2) = 1,

even if E1 and E2 are disjoint.

An important example of a set with Peano-Jordan measure zero is the graph of a continuous
function over a compact set.

Proposition 10.21. Let f : RN → R be a continuous function. Then,

PJ ({(x, f(x)) : x ∈ K }) = 0,

for all compact sets K ⊂ RN .

The proof is left to the reader. Finally, we give a characterization of Peano-Jordan measurability.

Theorem 10.22. Let E ⊂ RN be a bounded set. Then,

PJ +(E)− PJ −(E) = PJ +(∂E).

In particular, E is Peano-Jordan measurable if and only if PJ +(∂E) = 0.
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Proof. Step 1. We prove that

PJ +(E)− PJ −(E) ≥ PJ +(∂E).

Fix ε > 0. Let R1, R2 be pluri-rectangles such that

R1 ⊂ E, PJ −(E)− ε ≤ PJ (R1), (10.5)

E ⊂ R2, PJ +(E) + ε ≥ PJ (R2). (10.6)

Let R := R2 \ R1. Then, by Lemma 10.9, R is a pluri-rectangle, and ∂E ⊂ R. Therefore, by
using the de�nition of PJ +(∂E) we have that

PJ +(∂E) ≤ PJ (R) = PJ (R2)− PJ (R1) ≤ PJ +(E)− PJ −(E) + 2ε,

where in the second step we used Lemma 10.19 while last step follows from (10.5), and (10.6).
Since ε > 0 is arbitrary, we get the desired conclusion.

Step 2. We now prove that

PJ +(E)− PJ −(E) ≤ PJ +(∂E). (10.7)

Fix ε > 0. By using Proposition 10.17, we can �nd r > 0 such that

PJ +(∂E) + ε ≥ rN# { i ∈ N : Q(zi, r) ∩ ∂E ̸= ∅, Q(zi, r) ∈ G(r) } .
Note that if a cube Q(zi, r) ∈ G(r) is such that Q(zi, r) ∩ E ̸= ∅, then either Q(zi, r) ∩ ∂E ̸= ∅,
or Q(zi, r) ⊂ E. Therefore,

# { i ∈ N : Q(zi, r) ∩ E ̸= ∅, Q(zi, r) ∈ G(r) }
= # { i ∈ N : Q(zi, r) ⊂ E ̸= ∅, Q(zi, r) ∈ G(r) }

+# { i ∈ N : Q(zi, r) ∩ ∂E ̸= ∅, Q(zi, r) ∈ G(r) } . (10.8)

Thus, from (10.7) (10.8), we get that

PJ +(∂E) + ε ≥ rN# { i ∈ N : Q(zi, r) ∩ ∂E ̸= ∅, Q(zi, r) ∈ G(r) }
= rN# { i ∈ N : Q(zi, r) ∩ E ̸= ∅, Q(zi, r) ∈ G(r) }

− rN# { i ∈ N : Q(zi, r) ⊂ E ̸= ∅, Q(zi, r) ∈ G(r) }
≥ PJ +(E)− PJ −(E).

Since ε > 0 is arbitrary, we get the desired conclusion. □

We now see some examples.

Example 10.23. Let E be the unit ball of R2 centered at the origin. Then, E is Peano-Jordan
measurable. Indeed, it is easy to see that PJ +(∂E) = 0. Thus, the result follows from Theorem
10.22. Moreover, we have that PJ (E) = π.

Example 10.24. Let E := N. Then, E is not Peano-Jordan measurable, since it is not bounded
(see Lemma 10.18).

Example 10.25. Let E := {1/n : n ≥ 1}. Then, E is Peano-Jordan measurable, and PJ (E) =
0 (prove it!).

Example 10.26. Let E := Q ∩ [0, 1]. Then, E is not Peano-Jordan measurable. Indeed,
PJ +(∂E) = PJ +([0, 1]) ̸= 0, and thus the result follows from Theorem 10.22.

Remark 10.27. The above three examples show something very important. All of the sets
considered are countable. In the �rst and in the latter case, the set is not Peano-Jordan
measurable, while in the second it is, and the Peano-Jordan content is zero. Note that, since a
countable set E ⊂ RN has empty interior, thanks to Lemma 10.18, we get that PJ −(E) = 0.
Therefore, if the set E is dense or unbounded, then it is not Peano-Jordan measurable. Otherwise
it is, and PJ (E) = 0. Thus, the topological property of being dense or not determines, for a
countable set whether it is Peano-Jordan measurable or not.
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Remark 10.28. Another important fact about the Peano-Jordan content, that Examples 10.24
and 10.26 show, is that countable union of Peano-Jordan measurable sets might fail to be Peano-
Jordan measurable.

10.3. The Darboux-Riemann integral. We now give a de�nition of the integral as the area
under the graph, by following the same idea of the inner and outer Peano-Jordan content. This
is what Darboux did in 1875. The idea is to de�ne the Darboux integral for piecewise constant
functions, and then to extend it to more general functions by using similar notions to the inner
and the outer Peano-Jordan content.

We will then show the connection of this Darboux integral with the Riemann integral, and
with the Jordan content of the sub-graph. Note that the sets where we are integrating our
function are rectangles. This will be extended later to more general sets. Thus, in this section,
D ⊂ RN will always denote a rectangle.

De�nition 10.29. Let f : D → R. We say that f is a piecewise-constant function if

f(x) =

k∑
i=1

ci1Ei(x), (10.9)

for some ci ∈ R, and some rectangles E1, . . . , Ek ⊂ RN with pairwise disjoint interiors, such
that E1 ∪ · · · ∪ Ek = D.

De�nition 10.30. Let f : D → R be a piecewise-constant function as in (10.9). We de�ne its
Darboux integral of f on D as

�
D
f(x) dx :=

k∑
i=1

ciPJ (Ei).

Remark 10.31. Note that the de�nition of the Darboux integral of a piecewise constant function
is independent of the way the function is written. Moreover, we have that if f : D → R is
piecewise constant, then �

D
f(x) dx :=

k∑
i=1

aiPJ (Ai).

for any writing

f(x) =

m∑
i=1

ai1Ai(x),

where A1, . . . , Am are rectangles, even if not with pairwise disjoint interiors.

De�nition 10.32. Let f : D → R be a function, where D ⊂ RN is a rectangle. Then, we de�ne
the lower Darboux integral as�

D
f(x) dx := sup

{�
D
g(x) dx : g ≤ f, g piecewise constant

}
,

and the upper Darboux integral as�
D
f(x) dx := inf

{�
D
g(x) dx : g ≥ f, g piecewise constant

}
If the two values coincide, we denote the common value by�

D
f(x) dx,

and we say that f is Darboux integrable.

Remark 10.33. Note that we are not assuming any continuity on f .
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The reason why we didn't use the same symbol for the Darboux integral and for the Riemann
integral, is because they are the same! Indeed, it is possible to see that the de�nition of Darboux
integral is equivalent to the de�nition of Riemann integral14 as the limit of the Cauchy-Riemann
sums.

Theorem 10.34. Let f : D → R. Then, f is Cauchy-Riemann integrable if and only if it is
Darboux integrable. In such a case, the values of the two integrals coincide.

Remark 10.35. The advantage of the Darboux de�nition lies in its simplicity for computations
and proofs. In the following, we will just say that a function is Riemann integrable.

Next, we state that the notion of Darboux integral is the same as that obtained by considering
Riemann sums, namely by restricting the class of simple functions we consider. The proof is
immediate from the de�nition of Darboux lower and upper integrals.

Theorem 10.36. Let f : D → R be a function. Let R denote the family of �nite partitions of
D into pairwise disjoint rectangles. Then,

�
D
f(x) dx = sup

{
k∑

i=1

miPJ (Ri) : (Ri)
k
i=1 ∈ R, mi := inf

Ri

f

}
,

and �
D
f(x) dx = inf

{
k∑

i=1

MiPJ (Ri) : (Ri)
k
i=1 ∈ R, Mi := sup

Ri

f

}
In particular, f is Riemann integrable, if and only if, for every ε > 0 it is possible to �nd
(Ri)

k
i=1 ∈ R such that

k∑
i=1

|Mi −mi|PJ (Ri) < ε.

Remark 10.37. What the above result says is that, given a partition (Ri)
k
i=1 ∈ R, the best you

can do for the lower and the upper Darboux integral is to take the in�mum and the supremum
of f in Ri, respectively.

As anticipated at the beginning of this section, the de�nition of the Darboux integral makes
it easier to see that the Riemann integral of a function is the signed Peano-Jordan content of its
subgraph.

Theorem 10.38. Let f : D → R. Then, f is Riemann integrable if and only if the sets

E+ := {(x, y) ∈ D × [0,∞) : 0 ≤ y ≤ f(x)},

and

E− := {(x, y) ∈ D × (−∞, 0] : f(x) ≤ y ≤ 0}
are Peano-Jordan measurable. In this case, it holds�

D
f(x) dx = PJ (E+)− PJ (E−).

10.4. Lebesgue's characterization of Riemann integrability. Finally, we discuss a result
of fundamental importance for Riemann integration: the Lebesgue's characterization of Riemann
integrable functions. The idea is the following: thanks to Theorem 10.36, we have that the lower
and the upper Darboux integral have a chance to coincide, if the supremum and the in�mum of
f on Ri are close enough. This does not have to happen in all Ri's, but on su�ciently many.
We now give the de�nitions needed to make the above heuristics clear.

14Note that the de�nition of Cauchy-Riemann integrability we gave, De�nition 10.1 can be generalized to
higher dimension.
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De�nition 10.39. Let f : D → R. We de�ne the oscillation of f at the point x ∈ D as

ωf (x) := inf
r>0

{ sup |f(y)− f(z)| : y, z ∈ B(x, r) } .

We prove two important properties of the oscillation. The �rst one says that the notion of
oscillation is a pointwise notion.

Lemma 10.40. Let f : D → R. Then,

ωf (x) = lim
r→0

∣∣∣∣∣ supB(x,r)
f − inf

B(x,r)
f

∣∣∣∣∣ .
The proof is left as an exercise to the reader.

De�nition 10.41. Let f : R→ R, and ε > 0. Denote by

Ω(f, ε) := {x ∈ D : ωf (x) ≥ ε } .

The second properties concerns the sup and sub level sets of the oscillation.

Lemma 10.42. Let f : D → R, and ε > 0. Then, the set Ω(f, ε) is closed.

Proof. We will show that the set

D \ Ω(f, ε) = {x ∈ D : ωf (x) < ε }

is open. Let x ∈ D be such that ωf (x) < ε. Then, thanks to Lemma 10.40, there exists r > 0
such that ∣∣∣∣∣ supB(x,r)

f − inf
B(x,r)

f

∣∣∣∣∣ < ε.

Thus, for every y, z ∈ B(x, r), it holds

|f(y)− f(z)| < ε. (10.10)

We claim that B(x, r) ⊂ { p ∈ D : ωf (p) < ε }. Fix y ∈ B(x, r), and let r0 := r−∥y−x∥. Then,
from (10.10) we get that ∣∣∣∣∣ sup

B(y,r0)
f − inf

B(y,r0)
f

∣∣∣∣∣ < ε.

Since

sup
B(y,s)

f ≤ sup
B(y,r0)

f, inf
B(y,s)

f ≥ inf
B(y,r0)

f,

for all s ≤ r0, we infer that∣∣∣∣∣ supB(y,s)
f − inf

B(y,s)
f

∣∣∣∣∣ ≤
∣∣∣∣∣ sup
B(y,r0)

f − inf
B(y,r0)

f

∣∣∣∣∣ < ε,

for all s ≤ r0. Thus, by using again Lemma 10.40, we get that y ∈
{
x ∈ RN : ωf (x) < ε

}
.

This concludes the proof. □

We are now in position to prove the main result of this section. It is a characterization of
Riemann integrability based on the size of the sets where the oscillations of f is large.

Theorem 10.43 (Lebesgue's characterization of Riemann integrability). Let f : D → R. Then,
f is Riemann integrable if and only if it is bounded and PJ +(Ω(f, ε)) = 0, for all ε > 0.

Proof. Step 1. Assume that f is Riemann integrable. Without loss of generality, we can assume
f ≥ 0. Then, it is easy to see that f is bounded. We now prove that PJ +(Ω(f, ε)) = 0, for all
ε > 0. Assume by contradiction that there exists ε > 0 such that

PJ +(Ω(f, ε)) = δ > 0.
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We want to show that, given any partition (Ri)
k
i=1 ∈ R,

k∑
i=1

MiPJ (Ri)−
k∑

i=1

miPJ (Ri) ≥ εδ.

Here, mi := infRi f , and Mi := supRi
f . Thanks to Theorem 10.36, this implies that f is not

Riemann integrable, contradicting our assumption.
First of all, since by our absurd hypothesis PJ +(Ω(f, ε)) > 0, there exists δ > 0 such that,

for any R ∈ R with Ω(f, ε) ⊂ R, it holds

PJ +(R) ≥ δ. (10.11)

Let (Ri)
k
i=1 ∈ R, and assume that, up to renaming the indexes,

Ω(f, ε) ⊂
m⋃
i=1

Ri, (10.12)

for some m ≤ k. Then, recalling that f ≥ 0, we get

k∑
i=1

MiPJ (Ri)−
k∑

i=1

miPJ (Ri) =

k∑
i=1

[
sup
Ri

f − inf
Ri

f

]
PJ (Ri)

≥
m∑
i=1

[
sup
Ri

f − inf
Ri

f

]
PJ (Ri)

≥ ε

m∑
i=1

PJ (Ri)

≥ εδ,

where in the last step we used (10.12) together with (10.11). This gives the desired contradiction.

Step 2. Assume that

0 ≤ f ≤M, (10.13)

for some M < ∞, and that PJ +(Ω(f, ε)) = 0 for all ε > 0. Fix ε > 0. Then, it is possible to
�nd R ∈ R such that

Ω(f, ε) ⊂ R̊, PJ (R) < ε, (10.14)

where R̊ denotes the interior of R. Let

S := D \ R̊.

Then, S is compact, and, by using (10.14), we have that

S ⊂ {x ∈ D : ωf (x) < ε}.

Thanks to Lemma 10.42, since the set on the right-hand side is open, for each x ∈ S it is possible
to �nd r(x) > 0 such that the open cube Q(x, r(x)) centered at x, with sides of length r(x)
parallel to the orthogonal axes, such that

Q(x, r(x)) ⊂ {x ∈ D : ωf (x) < ε}. (10.15)

Therefore, the family

{Q(x, r(x))}x∈S
is an open covering of the set S. Since S is compact, by using Theorem 2.35, it is possible to �nd
a �nite family that covers S, say Q(x1, r(x1)), . . . , Q(xk, r(xk)). Since it is possible to write a
�nite union of cubes as a disjoint union of rectangles, we can assume, without loss of generality
(in order not to use a heavy notation), that

Q(x1, r(x1)), . . . , Q(xk, r(xk))
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are pluri-rectangles with pairwise disjoint interior. Consider the partition of D given by

R̃, Q(x1, r(x1)), . . . , Q(xk, r(xk)),

where

R̃ := R \
k⋃

i=1

Q(xi, r(xi)).

By using (10.15), we get that[
sup
R̃

f − inf
R̃
f

]
PJ (R̃) +

k∑
i=1

[Mi −mi]PJ (Q(xi, r(xi)))

≤MPJ (R) + ε
k∑

i=1

PJ (Q(xi, r(xi)))

≤Mε+ εPJ (D),

where in the last step we used (10.13) to bound the �rst term, and (10.14) to bound the second.
Since ε > 0 is arbitrary, we conclude that f is Riemann integrable thanks to Theorem 10.36. □

Remark 10.44. In particular, what the above result says, is that it is the size of the set where
the oscillation is large that determines whether a function is integrable or not. We will see in
the next chapter how to relate such information to another notion of size of the discontinuity
set of f .

Finally, we extend the integral of a function to a general domain E ⊂ RN .

De�nition 10.45. Let E ⊂ RN be a bounded set, and let D ⊂ RN be a rectangle such that

Ē ⊂ D. We say that a function f : E → R is Riemann integrable, if the function f̃ : D → R
de�ned as

f̃(x) :=

{
f(x) if x ∈ E,
0 else,

is Riemann integrable.

As a consequence of Theorem 10.43, we have the following characterization of functions that
are Riemann integrable over a general set.

Corollary 10.46. Let E ⊂ RN be a bounded set. Then, a function f : E → R is Riemann

integrable if and only if it is bounded, and PJ +(Ω(f̃ , ε)) = 0, for all ε > 0.

We now have a complete characterization of Riemann integrable functions, and the relation of
the Cauchy-Darboux-Riemann integral with the Peano-Jordan measure of the subgraph of the
function. The question is: how is it possible to develop a new theory of integration that allows
to treat more general functions, like (10.1), and that requires less strict assumptions for having
the identity

lim
n→∞

�
D
fn(x) dx =

�
D
f(x) dx

in force?
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11. Lebesgue measure

In this section we present one of the most important cornerstone of modern mathematics: the
Lebesgue measure. This was developed by Lebesgue in his PhD thesis of 1901 with the goal of
building a theory of integration that is able to overcome the di�culties of the Cauchy-Darboux-
Riemann integral (task that was completed in 1902). This work, together with those of Borel,
Carathéodory, Luzin, and Radon laid the foundations of Measure Theory, that you will develop
more in details in the homonym course.

To understand the idea behind the outer Lebesgue measure, consider the following example.
Let fn : (0, 1) → R be de�ned as fn(x) := xn. As we have seen in Remark 10.3, the sequence
{fn}n∈N converges pointwise to the function f ≡ 0. Since the convergence is only pointwise, by
the sole knowledge that each fn is a Riemann integrable function, we cannot conclude that f
is Riemann integrable. How would we prove that f is Riemann integrable? Well, we need to
bound from above and from below f with two piece-wise constant functions whose integrals are
su�ciently close to each other. An idea to do that is the following: Since all functions fn's are
bounded by one, we can consider the sets

En
k,i :=

{
x ∈ (0, 1) :

i

k
≤ fn(x) <

i+ 1

k

}
,

for all k ≥ 1, and i = 0, . . . , k − 1. Note that each set En
k,i is Peano-Jordan measurable. Let

gn, hn : (0, 1) → R be the piecewise constant functions de�ned as

gn(x) =
i

k
, hn(x) =

i+ 1

k
, on En

k,i.

Then, by de�nition, gn ≤ fn ≤ hn. Moreover,�
(0,1)

gn(x) dx ≤
�
(0,1)

fn(x) dx ≤
�
(0,1)

hn(x) dx,

and �
(0,1)

hn(x) dx−
�
(0,1)

gn(x) dx ≤ 1

k
.

We would expect that the limiting function f would be bounded above and below by the limits
g and h of gn, and hn, respectively. These limiting functions would, hopefully, be de�ned as

g(x) =
i

k
, h(x) =

i+ 1

k
, on Ek,i,

where Ek,i is the limit of the sequence of sets {En
k,i}n∈N. The question is then: what is the limit

of the Peano-Jordan measurable sets En
k,i? Is it a set Ek,i Peano-Jordan measurable? The issue

is that we are dealing with a sequence of Peano-Jordan measurable sets. The limiting set is
not ensured to be Peano-Jordan measurable, even in the special case above where the sets En

k,i

are decreasing (or increasing). The problem is that the Peano-Jordan content, being de�ned by
using �nite partitions outside and inside a set, does not behave well with respect to sequences of
sets, and, in particular, with respect to the countable union or intersection of measurable sets.

11.1. De�nition and relation to the Peano-Jordan content. The idea of Lebesgue is to
allow for a general covering of a set by countably many cubes (or rectangles).

De�nition 11.1. Let E ⊂ RN . We de�ne the outer Lebesgue measure of E as

LN (E) := inf

{ ∞∑
i=0

rNi : E ⊂
∞⋃
i=0

Q(xi, ri), xi ∈ RN , ri ≥ 0

}
.

Remark 11.2. The fact that, in the above de�nition, we can allow some of the ri's to be zero,
simply means that we can also take a �nite covering of E. Note that the cubes need not to
be disjoint. Moreover, in the de�nition, we can also use rectangles, or pluri-rectangles. This is
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because every rectangle and pluri-rectangle can be written as a �nite union of cubes, while a
cube is a special case of a rectangle or of a pluri-rectangle.

First of all, we note that the outer Lebesgue measure is consistent with the basic notion of
measure for rectangles.

Lemma 11.3. Let R ⊂ RN be the rectangle

R = (a1, b1)× · · · × (aN , bN ).

Then, LN (R) = LN (R) = PJ (R) = (b1 − a1) · · · (bN − aN ).

The proof is left as an exercise to the reader. Note that the inequality

LN (R) ≤ (b1 − a1) · · · (bN − aN )

follows from the de�nition of the outer Lebesgue measure. To prove the other inequality, it has
to be shown that, given any covering {Q(xi, ri)}i∈N of R, it holds

∞∑
i=0

rNi ≤ (b1 − a1) · · · (bN − aN ).

This requires a bit of care.
By using the same ideas, we get the following result.

Lemma 11.4. Let R,S ⊂ RN be two rectangles (open, closed, or anything in between). Then,

LN (R) = LN (R ∩ S) + LN (R \ S).

The outer Lebesgue measure satis�es some basic properties that will be useful later.

Lemma 11.5. The followings hold:

(i) LN (∅) = 0;
(ii) If E ⊂ F , then, LN (E) ≤ LN (F );
(iii) For any {En}n∈N ⊂ RN , it holds

LN

( ∞⋃
n=0

En

)
≤

∞∑
n=0

LN (En);

(iv) LN (x+ E) = LN (E), for all x ∈ RN , and all E ⊂ RN .

Remark 11.6. Properties (ii), (iii), and (iv) are called monotonicity and the countable sub-
additivity, and translation invariance, respectively. Note that, by combining (iii) with (ii), we
get

LN (E1 ∪ · · · ∪ Ek) ≤ LN (E1) + · · ·+ LN (Ek),

for all E1, . . . , Ek ⊂ RN .

By using Lemma 11.3 together with Lemma 11.5(ii), it is possible to compute the outer
Lebesgue measure of a countable union of cubes with pairwise disjoint interiors15.

Lemma 11.7. It holds

LN

(⋃
i∈N

Q(zi, ri)

)
= LN

(⋃
i∈N

Q(zi, ri)

)
=
∑
i∈N

LN (Q(zi, ri)) =
∑
i∈N

rNi ,

whenever the cubes Q(zi, ri) have pairwise disjoint interiors.

15Sets {Ai}i∈N are called pairwise disjoint if Ai ∩Aj = ∅ for any i ̸= j. Note that this is stronger than asking
for the sets to be disjoint, which means that ∩i∈NAi = ∅.
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Proof. Let

E :=
⋃
i∈N

Q(zi, ri).

By countable sub-additivity (see Lemma 11.5(iii)), we get that

LN (E) ≤
∑
i∈N

LN (Q(zi, ri)) =
∑
i∈N

rNi ,

where the last step follows from Lemma 11.3. Now, since for every n ∈ N
n⋃

i=1

Q(zi, ri) ⊂ E,

using again monotonicity, we get that
n∑

i=1

rNi = LN

(
n⋃

i=1

Q(zi, ri)

)
≤ LN (E).

By taking the limit as n → ∞, we get the opposite inequality. The same proof also holds for
the case where we take the closed cubes. □

We now investigate the relation between the outer Lebesgue measure and the Peano-Jordan
content. First of all, you might wonder why one is called Peano-Jordan content, while the
other Lebesgue outer measure. The reason is that the latter is not what mathematicians call an
measure, and not even what is called an outer measure: those are functions de�ned on P(X) and
on a subfamily of it, respectively, satisfying certain properties, that the Peano-Jordan content
does not obey.

Remark 11.8. Another di�erence, is that unbounded sets can have �nite outer Lebesgue
measure. Indeed, it is possible to prove that the unbounded set

E :=
⋃
n≥1

(
n− 1

2n2
, n+

1

2n2

)
is such that LN (E) = π2/6.

As for the Peano-Jordan content, one would expect to have a de�nition of inner Lebesgue
measure of a set E, by using countable cubes contained in the interior of E. Contrary to the
outer Lebesgue measure, allowing countably many cubes does not change anything for the inner
Peano-Jordan content. This is because of the following result.

Lemma 11.9. Let E ⊂ RN be an open set. Then, E can be written as a countable union of
closed cubes with pairwise disjoint interiors.

Proof. The idea is to consider union of diadic cubes, namely a particular sequence for r-grids
(see De�nition 10.16). We will write

E =
⋃
n∈N

Un, (11.1)

where each Un is a countable union of closed cubes with pairwise disjoint interiors. To de�ne
the sets Un's, we proceed as follows. Let

I0 := {i ∈ N : Q (zi, 1) ⊂ E, zi ∈ Z} ,
and let

U0 :=
⋃
i∈I0

Q (zi, 1)

For each n ∈ N \ {0}, de�ne recursively the sets In, and Un as follows:

In :=

{
i ∈ N : Q

(
zi,

1

2n

)
⊂ (E \ Ůn−1), zi ∈

1

2n
Z

}
,
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and let

Un :=
⋃
i∈In

Q

(
zi,

1

2n

)
.

We now claim that (11.1) holds. Note that, by de�nition, the inclusion ⊃ is in force. To prove
the opposite, we argue as follows. Since E is open, for each x ∈ E there exists r > 0 such that
Q(x, r) ⊂ E. In particular, there exists n ∈ N, such that

x ∈ Q

(
zi,

1

n

)
⊂ E.

for some zi ∈ 1
nZ. Therefore, either i ∈ In, and thus in Un, or, if i ̸∈ In, contained in some Um,

for m < n.
Finally, note that

Q

(
zi,

1

2n

)
∩Q

(
zj ,

1

2n

)
= ∅,

for all n ∈ N, and all i ̸= j ∈ In. Moreover, if m ̸= n, then,

Q

(
zi,

1

2n

)
∩Q

(
zj ,

1

2m

)
= ∅,

for all i ∈ In, and all j ∈ Im. Thus, all cubes in (11.1) have pairwise disjoint interiors. □

Remark 11.10. As a consequence of the previous result, we have that

PJ −(E) = sup

{ ∞∑
i=0

rNi :
∞⋃
i=0

Q(xi, ri) ⊂ E, xi ∈ RN , ri ≥ 0

}
,

for all sets E ⊂ RN .

Remark 11.11. Note that we are using closed cubes in Lemma 11.9. Therefore, the unit cube
Q = (0, 1)N requires countably many cubes to be written in such a way.

Remark 11.12. There is, however, a notion of inner Lebesgue measure, that can be used to
de�ne the notion of Lebesgue measurable sets. It reads as follows: let E ⊂ RN be a bounded
set, and let R ⊂ RN be a rectangle containing E. We de�ne the inner Lebesgue measure of E
as

LN (R)− LN (R \ E).

It can be shown that this de�nition does not depend on the containing rectangle R. Since the
notion of measurability by using this concept of inner Lebesgue measure is not intuitive, we will
not discuss it further.

We then show that the Lebesgue outer measure extends the notion of the Peano-Jordan
content, and we investigate the relation among the two notions.

Theorem 11.13. Let E ⊂ RN be bounded. Then,

PJ −(E) = LN (E̊), PJ +(E) = LN (E).

In particular, if E is Peano-Jordan measurable, then PJ (E) = LN (E) = LN (E̊) = LN (E).

Proof. Step 1. We prove that PJ −(E) = LN (E̊). First of all, note that, by de�nition, and by
using Lemma 11.5(ii), we get

PJ −(E) ≤ LN (E̊).

To prove the opposite inequality, by using Lemma 11.9, we have that it is possible to write

E̊ =
∞⋃
i=0

Q(xi, ri),
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where the cubes Q(xi, ri) have pairwise disjoint interior. For each n ∈ N let

Rn :=

n⋃
i=0

Q(xi, ri).

Then, by using Lemma 11.7, we get

LN (Rn) =
n∑

i=0

rNi ,

Moreover,

PJ −(E̊) ≥
n∑

i=0

rNi ,

for all n ∈ N. Therefore,

PJ −(E̊) ≥
∞∑
i=0

rNi = LN (E̊),

where in the last step we used Lemma 11.7 again. This concludes this step.

Step 2. We now prove that PJ +(E) = LN (E). First, we show that PJ +(E) ≤ LN (E). First
of all, note that since E is bounded, LN (E) <∞. Let ε > 0, and let

{Q(xi, ri)}i∈N
be such that

LN (E) + ε ≥
∞∑
i=0

rNi .

Since E is compact, it is possible to cover is with a �nite number of the open cubes Q(xi, ri)'s.
Up to renaming the sets, we can assume that

E ⊂
k⋃

i=0

Q(xi, ri), (11.2)

for some k ∈ N. Therefore, from the de�nition of PJ +(Ē) we get

PJ +(E) ≤ PJ +(E) ≤
k∑

i=0

rNi ≤
∞∑
i=0

rNi ≤ LN (E) + ε,

where in the last step we used (11.2). Since ε > 0 is arbitrary, we get the desired inequality.
Then, we show that PJ +(E) ≥ LN (E). This follows directly from the de�nition, since for

the outer Lebesgue measure we are allowed to take countably many cubes.

Step 3. The last claim of the result follows from the de�nition of Peano-Jordan measurability,
and the previous two steps. □

11.2. Measurable sets. We now investigate how the outer Lebesgue measure behaves with
respect to union of sets. This is where things become tricky. A property that we expect to be
true is for the Lebesgue measure to be �nitely additive: let E,F ⊂ RN be disjoint. Then,

LN (E ∪ F ) = LN (E) + LN (F ). (11.3)

Note that, by sub-additivity (see Lemma 11.5 (ii)), the inequality

LN (E ∪ F ) ≤ LN (E) + LN (F )

is always true. Surprisingly, the opposite inequality

LN (E ∪ F ) ≥ LN (E) + LN (F )
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might fail to be true! The fact that it is possible to construct sets for which the above, apparently
innocent, equality does not hold, was �rst discovered by Vitali in 1905 for the case N = 1 (see
Theorem 11.38). The construction was later extended to the case of a general dimension. The
problem is the following: if we want (11.3) in force, we need to separate E and F in such a way
that countable coverings of the two do not interact. This is possible if the sets are far apart
from each other.

Proposition 11.14. Let E,F ⊂ RN be such that

d(E,F ) := inf{ ∥x− y∥ : x ∈ E, y ∈ F } > 0.

Then, LN (E ∪ F ) = LN (E) + LN (F ).

The proof is left as an exercise to the reader. Nevertheless, if E and F are a general pair of
disjoint sets, it can happen that they are so intertwined that every covering for E interacts with
every covering of F . Thus, we will always have overlaps when considering E ∪ F . This might
causes LN (E ∪ F ) to be strictly smaller than LN (E) + LN (F ). What to do then? Well, the
solution is the following: let us just restrict the outer Lebesgue measure to sets that behave in a
good way. This de�nes a notion, called measurability. It is nowadays common to write condition
(11.3) in an equivalent way that does not involve the requirement to take a set F that is disjoint
from E.

De�nition 11.15. A set E ⊂ RN is called Lebesgue measurable (or LN -measurable) if

LN (F ) = LN (F \ E) + LN (E ∩ F ),
for all sets F ⊂ RN .

Remark 11.16. Note that E ⊂ RN is LN -measurable if and only if RN \E is LN -measurable.

De�nition 11.17. The outer Lebesgue measure restricted to the family of Lebesgue measurable
sets is called Lebesgue measure.

First of all, we show that the de�nition of measurability above is equivalent to a stronger
version of (11.3).

Lemma 11.18. Let E ⊂ RN . Then, E is Lebesgue measurable if and only if

LN (G ∪ F ) = LN (G) + LN (F ),

for all G ⊂ E, and all F ⊂ RN with E ∩ F = ∅.

Proof. Step 1. Assume E to be Lebesgue measurable. Let G ⊂ E, and F ⊂ RN with E∩F = ∅.
Then, de�ne H := G ∪ F . By de�nition of measurability, we get that

LN (G ∪ F ) = LN (H) = LN (H ∩ E) + LN (H \ E) = LN (G) + LN (F ).

Step 2. Assume the additivity condition to hold. Let A ⊂ RN . De�ne

G := A ∩ E, F := A \ E.
Then, G and F satis�es the assumptions, and therefore

LN (A) = LN (G ∪ F ) = LN (G) + LN (F ) = LN (A ∩ E) + LN (A \ E).

This concludes the proof. □

Next, we show that the family of LN -measurable sets behaves nicely with respect to countable
Boolean operations: indeed, it is closed under complement, countable union, and, in turn, also
under countable intersection.

Proposition 11.19. The followings hold:

(i) ∅, and RN are Lebesgue measurable;
(ii) If E,F ⊂ RN are Lebesgue measurable, then also E \ F is;
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(iii) If (Ei)i∈N ⊂ RN is a sequence of Lebesgue measurable sets, then⋃
i∈N

Ei,
⋂
i∈N

Ei,

are also Lebesgue measurable;
(iv) If E ⊂ RN is Lebesgue measurable, then x+ E is Lebesgue measurable, for all x ∈ RN .

Proof. Step 1. It is easy to see that ∅ is Lebesgue measurable, and that, E is Lebesgue measurable
if and only if RN \ E is. Moreover, also (iv) is easy to verify.

Step 2. Let E,F ⊂ RN be Lebesgue measurable. To prove that E \F is Lebesgue measurable,
let G ⊂ RN . Then,

LN (G) = LN (G ∩ F ) + LN (G \ F )
= LN (G ∩ F ) + LN ((G \ F ) ∩ E) + LN ((G \ F ) \ E)

=
[
LN (G ∩ F ) + LN ((G \ F ) \ E)

]
+ LN ((G \ F ) ∩ E)

=
[
LN ((G \ (E \ F )) ∩ F ) + LN ((G \ (E \ F )) \ F )

]
+ LN (G ∩ (E \ F ))

= LN (G \ (E \ F )) + LN (G ∩ (E \ F )),
where we have used the set equalities

G ∩ F = (G \ (E \ F )) ∩ F, (G \ F ) \ E = (G \ (E \ F )) \ F ).
This proves that E \ F is Lebesgue measurable.

Step 3. Let (Ei)i∈N be a sequence of Lebesgue measurable sets. We �rst assume {Ei}i∈N to
be pairwise disjoint. Set

U :=
⋃
i∈N

Ei.

Let A ⊂ RN . We want to prove that

LN (A) ≥ LN (A ∩ U) + LN (A \ U). (11.4)

Let

Un :=

n⋃
i=0

Ei.

We claim that Un is Lebesgue measurable. In particular, we claim that

LN (A) ≥
n∑

i=0

LN (A ∩ Ei) + LN (A \ Un), (11.5)

for all n ∈ N, and all A ⊂ RN . This allows to obtain (11.4). Indeed, since

A \ U ⊂ A \ Un,

from sub-additivity (see Lemma 11.5 (ii)) we get

LN (A \ U) ≤ LN (A \ Un),

for all n ∈ N. Therefore, from (11.5), we get

LN (A) ≥
∞∑
i=0

LN (A ∩ Ei) + LN (A \ U) ≥ LN (A ∩ U) + LN (A \ U),

where last inequality follows from countable sub-additivity (see Lemma 11.5 (iii)), since

A ∩ U ⊂
⋃
i∈N

(A ∩ Ei).
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Thus, we are left with proving (11.4). We prove (11.4) by induction on n ∈ N. For n = 1 it
follows from the measurability of E1. Assume that (11.4) holds for n ∈ N.] Then, by using the
measurability of En+1, and then that of Un, we get

LN (A) = LN (A ∩ En+1) + LN (A \ En+1)

= LN (A ∩ En+1) + LN ((A \ En+1) ∩ Un) + LN ((A \ En+1) \ Un)

= LN (A ∩ En+1) + LN ((A \ En+1) ∩ Un) + LN (A \ Un+1)

= LN (A ∩ En+1) + LN (A ∩ Un) + LN (A \ Un+1) , (11.6)

where, in the previous to last step, we used the de�nition of Un+1 to get that

(A \ En+1) \ Un = A \ Un+1,

while last step follows from the identity

(A \ En+1) ∩ Un = A ∩ Un,

since the sets Ei's are pairwise disjoint. Now, by using the set A∩Un in (11.5) instead of A, we
get

LN (A ∩ Un) ≥
n∑

i=0

LN (A ∩ Ei), (11.7)

since A ∩ Un = A ∩ Ei, and (A ∩ Un) \ Un = ∅. Thus, from (11.6) and (11.7), we get

LN (A) ≥ LN (A ∩ En+1) +

n∑
i=0

LN (A ∩ Ei) + LN (A \ Un+1)

=
n+1∑
i=0

LN (A ∩ Ei) + LN (A \ Un+1) .

This concludes the proof of this step.

Step 4. Assume that (Ei)i∈N ⊂ RN is a sequence of measurable sets. For each i ∈ N \ {0}, we
can de�ne

Ẽi := Ei \
i−1⋃
j=1

Ej .

Note that by Step 2, each Ẽi is Lebesgue measurable. Since⋃
i∈N

Ei =
⋃
i∈N

Ẽi,

we conclude from step 3 that their union is Lebesgue measurable.

Step 5. Finally, we use Morgan's law to write⋂
i∈N

Ei = RN \
⋃
i∈N

(RN \ Ei).

Since in the previous steps we established that each set in the union on the right-hand side is
Lebesgue measurable, we also get that ⋂

i∈N
Ei

is Lebesgue measurable. □

Remark 11.20. Note that the family of Peano-Jordan measurable sets is closed under �nite
union and �nite intersection, but not under countable union or intersection. Moreover, it is
closed under complement with respect to a bounded rectangle R, not with respect to the entire
space RN (since Peano-Jordan measurable sets must be bounded).
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Families of sets that are closed under complement, countable union, and countable intersection
are well studied in mathematics.

De�nition 11.21. A family of sets A ⊂ P(RN ) is called a σ-algebra if

(i) ∅ ∈ A;
(ii) If E ∈ A, then RN \ E ∈ A;
(iii) If (Ei)i∈N ⊂ A, then

∞⋃
i=0

Ei ∈ A.

Remark 11.22. Note that, if A ⊂ P(RN ) is a σ-algebra, then
∞⋂
i=0

Ei = RN \
⋃
i∈N

(RN \ Ei) ∈ A.

whenever (Ei)i∈N ⊂ A.

Remark 11.23. Proposition 11.19 states that Lebesgue measurable sets are a σ-algebra.

So far, the only two examples of Lebesgue measurable sets are the empty set and the entire
space. Not that many! Luckily, we can prove that a rectangle is Lebesgue measurable, and, by
using previous results, obtain that many sets are indeed Lebesgue measurable.

Lemma 11.24. Let R ⊂ RN be a rectangle. Then, R is Lebesgue measurable.

Proof. The idea is the following: a rectangle R ⊂ RN has a very nice structure, in the following
sense: let F ⊂ RN be any set, and consider the two sets R ∩ F and F \ R. If {Qi}i∈N is a
covering with open cubes of F , it is possible to obtain coverings of R∩F and F \R, respectively
by intersecting the cubes Qi's with R and with RN \ R, respectively. This allows to show that
the outer Lebesgue measure of F can be obtained as the sum of the outer Lebesgue measures of
R ∩ F and F \R. Let us make this heuristics more precise.

We need to prove the inequality

LN (F ) ≥ LN (R ∩ F ) + LN (F \R).
Fix ε > 0, and let {Q(xi, ri)}i∈N be a covering of F with open cubes such that

LN (F ) + ε ≥
∑
i∈N

rNi . (11.8)

For each i ∈ N, let
Ai := Qi ∩R, Bi := Qi \R.

Then, by using Lemma 11.4, we get that

LN (Ai) + LN (Bi) = LN (Qi) = rNi ,

where last equality follows from Lemma 11.3. Note that

F ∩R ⊂
⋃
i∈N

Ai, F \R ⊂
⋃
i∈N

Bi. (11.9)

The technical issue here is that the sets Ai are not necessarily open. To overcome this, we

consider an open pluri-rectangle Ãi ⊃ Ai, with

LN (Ãi) ≤ LN (Ai) +
ε

2i
. (11.10)

Therefore, by using (11.8), we get

LN (F ) + ε ≥
∑
i∈N

rNi
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=
∑
i∈N

LN (Ãi) +
∑
i∈N

LN (Bi)

≥
∑
i∈N

LN (Ai)− ε+
∑
i∈N

LN (Bi)

= LN

(⋃
i∈N

Ai

)
− ε+ LN

(⋃
i∈N

Bi

)
≥ LN (F ∩R) + LN (F \R)− ε,

where in the second inequality we used (11.10), while the third inequality follows from sub-
additivity and (11.9). Since ε > 0 is arbitrary, we conclude. □

As a consequence of the above result, we have that the family of Lebesgue measurable sets
contains many sets.

De�nition 11.25. A set E ⊂ RN is said to be a Borel set if it can be written as countable
union and countable intersection of open sets.

Lemma 11.26. Borel sets are Lebesgue measurable.

Proof. Lemma 11.24 gives us the Lebesgue measurability of rectangles (open, closed, or anything
in between). Since by Lemma 11.9 every open set is a countable union of closed cubes, by using
Proposition 11.19(iii), we get that every open set is Lebesgue measurable. By using 11.19(i), we
get that every closed set is Lebesgue measurable. Thus, from 11.19(iii) again, we get that every
countable union of countable intersection of open and closed sets is Lebesgue measurable. □

Remark 11.27. There are sets that are Lebesgue measurable, but not Borel. Their construction
is a bit involved.

Moreover, it is easy to see that the following holds.

Lemma 11.28. Peano-Jordan measurable sets are Lebesgue measurable.

11.3. Negligible sets. Another class of sets of interest that is Lebesgue measurable is that of
sets with zero outer Lebesgue measure.

De�nition 11.29. We say that a set E ⊂ RN is LN -negligible (or negligible with respect to the
Lebesgue measure) if LN (E) = 0.

There is an easy way to determine whether a set is negligible.

Lemma 11.30. Let E ⊂ RN . Then, followings are equivalent

(i) For every ε > 0, there exists {Ei}i∈N ⊂ RN such that

E ⊂
∞⋃
i=0

Ei, LN

( ∞⋃
i=0

Ei

)
< ε,

(ii) E is LN -negligible.

Lemma 11.31. Let E ⊂ RN be LN -negligible. Then, E is LN -measurable.

The proofs are left as an exercise to the reader. We now introduce some terminology that will
be useful later.

De�nition 11.32. We say that a property holds for LN -almost every x ∈ RN (LN -a.e. in RN )
if it holds for all x ∈ RN \N , where N ⊂ RN is LN -negligible.
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Figure 26. The limiting sets for increasing (left) and decreasing (right)
sequences of sets.

11.4. Operations on measurable sets. In this section we investigate how the Lebesgue
measure behaves with respect to limiting operations on Lebesgue measurable sets. Namely, we
want to understand what happens when we take monotone sequences of sets: for such a sequence
it is possible to de�ne a notion of limiting set. Indeed, if the sequence of sets {Ei}i∈N ⊂ RN is
increasing, namely Ei ⊂ Ei+1 for all i ∈ N, then the limiting set can be written as (see Figure
26 on the left) ⋃

i∈N
Ei.

Note that, for each n ∈ N, by the monotonicity of the sequence, it holds that
n⋃

i=1

Ei = En.

We would like to understand the relation between the two measures

LN (En), LN

( ∞⋃
i=0

Ei

)
.

We would expect the �rst to converge to the latter. This is indeed the case if all the sets Ei's
are Lebesgue measurable.

In a similar way, if we have a decreasing sequence {Ei}i∈N ⊂ RN , namely Ei+1 ⊂ Ei for all
i ∈ N, then the limiting set can be written as (see Figure 26 on the right)⋂

i∈N
Ei.

Note that, for each n ∈ N, by the monotonicity of the sequence, it holds that
n⋂

i=1

Ei = En.

We would like to understand the relation between the two measures

LN (En), LN

( ∞⋂
i=0

Ei

)
.

We would expect the �rst to converge to the latter. Also for this case, this is indeed true if all
the sets Ei's are Lebesgue measurable.

In order to prove these two claims, we need to establish two properties of the Lebesgue measure
on Lebesgue measurable sets: it is countably additive on sequences of pairwise disjoint sets (note
that measurability is for �nitely many sets), and it behaves nicely with respect to set di�erence.

Proposition 11.33. Let {Ei}i∈N ⊂ RN be LN -measurable sets. Then:
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(i) If the Ei's are pairwise disjoint, then

LN

( ∞⋃
i=0

Ei

)
=

∞∑
i=0

LN (Ei);

(ii) If Ei ⊂ Ej, then LN (Ei) = LN (Ej)− LN (Ej \ Ei);
(iii) If E0 ⊂ E1 ⊂ E2 ⊂ . . . , then

lim
i→∞

LN (Ei) = LN

( ∞⋃
i=0

Ei

)
;

(iv) If E0 ⊃ E1 ⊃ E2 ⊃ . . . and LN (E0) <∞, then

lim
i→∞

LN (Ei) = LN

( ∞⋂
i=0

Ei

)
.

Proof. First of all, note that all sets in the formulas are Lebesgue measurable, thanks to
Proposition 11.19.

Step 1. We prove (i). In step 3 of the proof of Lemma 11.19 we proved that (see (11.5))

LN (A) ≥
n∑

i=0

LN

(
A ∩

n⋃
i=0

Ei

)
+ LN

(
A \

n⋃
i=0

Ei

)
,

for all n ∈ N, and all A ⊂ RN . By taking A = ∪∞
i=0Ei sending n→ ∞, we get

LN

( ∞⋃
i=0

Ei

)
≥

∞∑
i=0

LN (Ei).

The other inequality follows from the sub-additivity.

Step 2. We prove (ii). This follows directly from the measurability of Ej , by taking A = Ei.

Step 3. We prove (iii). Let F0 := E0, and, for each i ∈ N \ {0}, let

Fi := Ei \ Ei−1.

Note that
∞⋃
i=0

Ei =
∞⋃
i=0

Fi. (11.11)

Then, since the sequence {Ei}i∈N is increasing, we have that the sets Fi's are pairwise disjoint.
Therefore, from step 1, we get

LN

( ∞⋃
i=0

Ei

)
= LN

( ∞⋃
i=0

Fi

)
=

∞∑
i=0

LN (Fi) = LN (E0) +
∞∑
i=1

[LN (Ei)− LN (Ei−i)],

where in the last step we used step (ii) together with (11.11). Now, note that, for each n ∈ N,

LN (E0) +
n∑

i=1

[LN (Ei)− LN (Ei−i)] = LN (En).

Therefore,

LN

( ∞⋃
i=0

Ei

)
= lim

n→∞
LN (En),

as desired.
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Step 4. We prove (iv). For each i ∈ N, let
Fi := E0 \ Ei.

Note that ⋃
i∈N

Fi = E0 \
⋂
i∈N

Ei, (11.12)

and that ∩i∈NEi is Lebesgue measurable (see Proposition 11.19 (iii)). Moreover, since each Ei

is Lebesgue measurable, we have that each Fi is Lebesgue measurable, and that, thanks to step
2, that

LN (Fi) = LN (E0)− LN (Ei). (11.13)

Using the fact that {Ei}i∈N is a decreasing sequence, we get that {Fi}i∈N is an increasing
sequence. Therefore, from step 3 we get

LN

(⋃
i∈N

Fi

)
= lim

i→∞
LN (Fi). (11.14)

We now write the left-hand side and the right-hand side. From (11.12), we get

LN

(⋃
i∈N

Fi

)
= LN

(
E0 \

⋂
i∈N

Ei

)
= LN (E0)− LN

(⋂
i∈N

Ei

)
,

where in the last step we used step 2. Now we write the right-hand side. From (11.13), together
with the assumption that LN (E0) <∞, we have

lim
i→∞

LN (Fi) = LN (E0)− lim
i→∞

LN (Ei).

Thus, (11.14) writes as

LN (E0)− LN

( ∞⋂
i=1

Ei

)
= LN (E0)− lim

i→∞
LN (Ei).

Again by using the assumption that LN (E0) <∞, we conclude. □

Remark 11.34. Note that in both cases on the right-hand side we have the measure of the
limiting set. In the second case the assumption LN (E1) < ∞ is crucial. Indeed, consider the
decreasing sequence of sets Ei := (i,∞). Then LN (Ei) = ∞ for each i ∈ N, but

LN

(⋂
i∈N

Ei

)
= 0,

since
⋂

i∈NEi = ∅.

Remark 11.35. In particular, from Proposition 11.33(i), by using the fact that LN ({x}) = 0,
for all x ∈ RN , we get that LN (QN ) = 0.

Remark 11.36. Note that countably additivity is the best we can hope for in order to get
something that makes sense. Indeed, if we were to ask for

LN

(⋃
i∈I

Ei

)
=
∑
i∈I

LN (Ei) (11.15)

for any family of indexes I, even more than countable, we would have something nonsense.
Indeed, consider the unit cube Q = (0, 1)2 in the plane. From (11.15), we would get

1 = L2(Q) = L2

⋃
x∈Q

{x}

 =
∑
x∈Q

L2({x}) = 0,

where the last equality follows from the fact that point x ∈ Q has zero area.
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11.5. Non-measurable sets. In the previous section we introduced the notion of Lebesgue
measurable sets, and proved that the Lebesgue measure behaves well with respect to set operations
on this class. The question is now: is there any set that is not Lebesgue measurable? The answer
depends on whether or not the Axiom of Choice is accepted. Indeed, it was proved by Solovay
in 1970 that only by using the Zermelo-Fraenkel (choice) of axioms for set theory (ZFC), but
not the Axiom of Choice, all sets are Lebesgue measurable. On the other hand, if we use ZFC
together with the Axiom of Choice, it is possible to construct several examples of sets that are
not Lebesgue measurable. The �rst was obtained by Vitali in 1905.

De�nition 11.37 (Axiom of Choice). The Axiom of Choice claims the following: given any
family of sets {Eα}α (even more than countable!), there exists a set E which has exactly an
element from each of the sets Eα.

Theorem 11.38 (Vitali's Theorem). There exists a set E ⊂ [0, 1] that is not Lebesgue measurable.

Proof. On [0, 1] consider the equivalence relation ∼ de�ned as follows

x ∼ y ⇔ x− y ∈ Q.

Then, thanks to the Axiom of Choice, it is possible to construct a set E by picking an element
from each equivalent class of [0, 1]/ ∼. We note two properties of the set E. First of all, since
E contains an element from each equivalent class of [0, 1]/ ∼, given any x ∈ [0, 1], there exist
q ∈ Q ∩ [−1, 1] and y ∈ E such that x+ q = y. This means that

[0, 1] ⊂
⋃

q∈Q∩[−1,1]

(q + E) ⊂ [−1, 2]. (11.16)

where the inclusion on the right follows from the fact that E ⊂ [0, 1].
We claim that E is not Lebesgue measurable. Indeed, assume by contradiction that it is.

Then, by using Proposition 11.19(iv), we have that q + E is Lebesgue measurable, and, by
translation invariance (see Lemma11.5(iv)), we have that

L1(q + E) = L1(E),

for all q ∈ Q. Therefore, since q + E ∩ s+ E = ∅ if q ̸= s, from Proposition 11.33(i), we have

L1

 ⋃
q∈Q∩[−1,1]

(q + E)

 =
∑

q∈Q∩[−1,1]

L1(q + E) =
∑

q∈Q∩[−1,1]

L1(E). (11.17)

Now, from the �rst inclusion in (11.16), together with monotonicity (see Lemma 11.5(i)) we get
that

L1(E) ≥ L1([0, 1]) = 1.

Thus, from (11.17), we get that

L1

 ⋃
q∈Q∩[−1,1]

(q + E)

 = +∞.

This is in contradiction with the second inclusion in (11.16), since it implies that

L1

 ⋃
q∈Q∩[−1,1]

(q + E)

 ≤ L1([−1, 2]) = 3.

This gives the desired contradiction. □

The essence of the above construction is that the set E is so intertwined, that it is not possible
to compute the Lebesgue measure of it as the sum of the Lebesgue measure of two disjoint pieces.
By using the above result, it is possible to obtain the following.
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Lemma 11.39. Let E ⊂ RN be a set with LN (E) > 0. Then, there exists F ⊂ E such that F
is not Lebesgue measurable.

Remark 11.40. In particular, the above example shows that it is not possible to extend the
Lebesgue measure to all sets of RN in a way that preserves both countably additivity and
translation invariance. It is nevertheless possible to extend the Lebesgue measure to all sets
in such a way that �nitely additivity holds (but not translation invariance). Finally, whether
or not it is possible to extend the Lebesgue measure to all sets in such a way that translation
invariance holds, is something that is not decidable by using ZFC.

Even more surprisingly, we can even ask ourselves what happens if also consider isometries:
does the Lebesgue measure behave nicely with respect to isometries on all sets? The answer is
no! And in this case we have a mind-blowing example of how badly things can be! This is the
so called Banach-Tarski paradox of 1924.

Theorem 11.41 (Banach-Tarski's paradox). Let E ⊂ R3 be the unit ball. Then. there exist
disjoint sets E1, E2, E3, E4, E5 ⊂ E, with

E =

5⋃
i=1

Ei,

with the following property: it is possible to translate and rotate each Ei to obtain a set Fi ⊂ R3,
such that

L3(F1 ∪ F2 ∪ F3) = L3(F4 ∪ F5) = L3(E).

11.6. Vitali's characterization of Riemann integrability.

Theorem 11.42 (Vitali's Theorem). Let D ⊂ RN be a rectangle. A function f : D → RM is
Riemann integrable if and only if the set of discontinuities of f has Lebesgue measure zero.

Proof. By Theorem 10.43, we have that f is Riemann integrable if and only if PJ +(Ω(f, ε)) = 0,
for all ε > 0, where

Ω(f, ε) := {x ∈ D : ωf (x) ≥ ε } ,
and the oscillation of f at x is given by

ωf (x) := inf
r>0

{ sup |f(y)− f(z)| : y, z ∈ B(x, r) } .

By Lemma 10.42, the set Ω(f, ε) is closed, and thus, by Lemma 11.26, Lebesgue measurable.
Moreover, note that the set S of discontinuities of f can be written as

S =
⋂

n∈N\{0}

Ω(f, 1/n), (11.18)

and that the sequence of sets {Ω(f, 1/n)}n∈N\{0} is increasing.
We are now in position to prove the result. Assume that f is Riemann integrable. Then,

PJ +(Ω(f, 1/n)) = 0, for all n ∈ N \ {0}. Since

LN (Ω(f, 1/n)) ≤ PJ +(Ω(f, 1/n)),

we get that

LN (Ω(f, 1/n)) = 0,

for all n ∈ N \ {0}. Thus, from(11.18) together with Proposition 11.19, we get that LN (S) = 0.
Assume now that LN (S) = 0. Since, for all n ∈ N \ {0}, Ω(f, 1/n) ⊂ S, we get that

LN (Ω(f, 1/n)) = 0. Since Ω(f, 1/n) ⊂ D, and thus it is bounded, by Theorem 11.13, we get
that

PJ +(Ω(f, 1/n)) = LN (Ω(f, 1/n)) = 0,

where we used the fact that Ω(f, 1/n) is closed. Thus, from Theorem 10.43 we get that f is
Riemann integrable. □
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Remark 11.43. In particular, Theorem 11.42 together with Remark 11.35 implies that the
Dirichlet function (10.1) is not Riemann integrable because its set of discontinuities is [0, 1], and
it is not negligible with respect to the Lebesgue measure.
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12. Lebesgue integration

Nature laughs at the di�culty of integration.
Pier-Simon Laplace

The Cauchy-Darboux-Riemann notion of integration can be seen as a geometric notion based
on the Peano-Jordan content. Indeed, we have seen in Theorem10.38 that a function f : D → R,
where D ⊂ RN is a rectangle, is Riemann integrable if and only if the sets

E+ := {(x, y) ∈ D × [0,∞) : 0 ≤ y ≤ f(x)},
and

E− := {(x, y) ∈ D × (−∞, 0] : f(x) ≤ y ≤ 0}
are Peano-Jordan measurable. In this case, it holds�

D
f(x) dx = PJ (E+)− PJ (E−).

This means that the Riemann integral is the area/volume under the graph, where the area/volume
is computed by using the Peano-Jordan content. We have also seen that (see Theorem 10.43
f is Riemann integrable if and only if it is bounded and PJ +(Ω(f, ε)) = 0, for all ε > 0. We
recall that

Ω(f, ε) := {x ∈ D : ωf (x) ≥ ε } .
where, for x ∈ D, the oscillation of f at x is de�ned as

ωf (x) = lim
r→0

∣∣∣∣∣ supB(x,r)
f − inf

B(x,r)
f

∣∣∣∣∣ .
We now want to comment on this condition and to understand how to change the de�nition of
the integral in such a way to overcome the limitation of the Riemann integration. The reason
why the above characterization of Riemann integrability holds is the following: the Riemann
integral is de�ned by using approximation by piecewise constant function. In order for this
approximation to work, up to a small set (namely, of a set of Peano-Jordan measure zero), we
need f to be continuous in most of D. This is because the piecewise constant functions used in
the approximation are de�ned as follows:

(i) First, we consider a partition of the domain D;
(ii) Then, we assign values on each component of partition.

For a generic function f : D → R, there is no reason why such piecewise constant functions
should give a good approximation from above and from below of the function itself. How to
then build a piecewise constant function that is a good approximation of a given f? Well, we
just change the order in which we construct such a piecewise constant function: namely, we �rst
select the values that we want to assign (step (ii)), and then we understand on which set to
assign the value (step (i)).

Namely, we �rst partition the target space R into intervals [yi, yi+1), for i ∈ N. Then, we
consider the pre-images of each of those intervals

Ei := f−1([yi, yi+1)).

We de�ne piecewise constant functions g, h : D → R as follows

g(x) = yi on Ei, h(x) = yi+1 on Ei.

Thus, we have g ≤ f ≤ h, and the idea is to use these type of piecewise constant functions to
de�ne the lower and the upper integral. The integral of such a piecewise constant function will
be �

D
g(x) dx =

∑
i∈N

yiLN (Ei),

�
D
g(x) dx =

∑
i∈N

yi+1LN (Ei).
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Figure 27. The paradigm shift from the Riemann integral (on the top) and the
Lebesgue's one (on the bottom). For the Riemann integral, we �rst partition the
domain into set E1, . . . , Ek, and then we assign values on each of those sets. For
the Lebesgue integral, instead, we �rst partition the target space into intervals
[yiyi+1), and the pre-images of each of those intervals will be the set where we
de�ne the piecewise constant function to be yi. For instance, in the �gure on the
right, the set E2 (depicted in orange) is the set where f is in between y2 and y3,
and the piecewise constant function is y2.

So far, it seems that no condition is needed on the function f . Nevertheless, there is a questions
of the quantity above to be well de�ned that requires a bit of care. Indeed, let us suppose that
we write a piecewise constant function in two ways

f(x) =
k∑

i=1

1Ei(x)yi =
m∑
j=1

1Fj (x)zj .

We would of course like to have

k∑
i=1

yiLN (Ei) =
m∑
i=j

zjLN (Fj) ,



136 RICCARDO CRISTOFERI

for any choice of the sets Fj 's. This is precisely equivalent to require that the sets Ei's are
LN -measurable. Thus, for the above strategy to de�ne the integral to work, we need to make
sure that each of the sets

Ei = f−1([yi, yi+1))

is Lebesgue measurable. This gives the notion of Lebesgue measurable functions.

12.1. Lebesgue measurable functions. The theory of Lebesgue is powerful enough also to
treat functions that take the value ±∞. In the following, we will use the following notation

R := R ∪ {±∞}.
We introduce the concept of Lebesgue measurable function.

De�nition 12.1. A function f : RN → R is said to be Lebesgue measurable if

f−1 ((a,+∞)) := {x ∈ RM : f(x) ∈ (a,+∞)}
is Lebesgue measurable, for all a ∈ R.

Remark 12.2. Note that, given a set E ⊂ RN , the function 1E is Lebesgue measurable if and
only if E is Lebesgue measurable.

Exercise 12.3. For each a ∈ R, write the set f−1 ((a,+∞)) for the following functions:

(i) f : R → R de�ned as f(x) := x2;
(ii) f : R2 → R de�ned as f(x, y) := xy;
(iii) The Dirichlet function f : R → R de�ned as f(x) := 1Q;
(iv) The function f := 1(0,1);
(v) The function f := 1[0,1].

Are those sets Lebesgue measurable?

First of all, we show some equivalent conditions for a function to be Lebesgue measurable.

Lemma 12.4. Let f : RN → R. Then, followings are equivalent:

(i) f is Lebesgue measurable;
(ii) f−1 ([a,+∞)) is Lebesgue measurable, for all a ∈ R;
(iii) f−1 ((−∞, a)) is Lebesgue measurable, for all a ∈ R;
(iv) f−1 ((−∞, a]) is Lebesgue measurable, for all a ∈ R;
(v) f−1(B) is Lebesgue measurable, for all Borel sets B ⊂ R, and f−1({+∞}), f−1({−∞})

are Lebesgue measurable.

The proof is left as an exercise to the reader, since it boils down to write each of the sets in an
equivalent condition as a countable union or countable intersection of sets of another condition,
and use the properties of Lebesgue measurable sets (see Proposition 11.19) and of the Lebesgue
measure on them (see Proposition 11.33).

Remark 12.5. We want to draw a parallelism between the de�nition of a Lebesgue measurable
function and that of a continuous function. We have seen in Lemma 3.10 that for a continuous
function f : RN → R, the sets

f−1 ((a,+∞))

are open, for all a ∈ R. It is possible to prove that this property characterizes continuity. Thus,
Lebesgue measurable functions are functions for which we relax the constrain of what kind of
regularity we ask for the sets f−1 ((a,+∞)).

As a consequence of the above remark, we get that.

Lemma 12.6. Let f : RN → R be a continuous function. Then, f is Lebesgue measurable.

Moreover, we have another class of functions for which it is easy to prove that they are
Lebesgue measurable.
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Lemma 12.7. A monotone function f : R → R is Lebesgue measurable.

Proof. Assume f is increasing. Let a ∈ R. Then, the set f−1((−∞, a)) is either empty, or of the
form (−∞, b) or (−∞, b], for some b ∈ R. All of these sets are Lebesgue measurable. □

So far, we only know that continuous and monotone functions are Lebesgue measurable.
Given a function f , obtained by performing countably many operations with functions fn's, we
would like to infer that, if each of the functions fn's is Lebesgue measurable, also f is Lebesgue
measurable. This is what we are going to prove now.

De�nition 12.8. Let f, g : RN → R. We de�ne max{f, g},min{f, g} : RN → R as

max{f, g}(x) := max{f(x), g(x)},
min{f, g}(x) := min{f(x), g(x)}.

Remark 12.9. An alternative notation (inspired by Logic) for the max and the min between
two functions is the following

max{f, g} = f ∨ g, min{f, g} = f ∧ g.
The symbols ∧ is called AND, while the symbol ∨ is called OR. The reason for the notation is
the following: if you assign the value 1 at a statement S1 if the statement S2 is true, and the
value 0 if the sentence is false, then the statement

S1 and S2,

is true if both S1 and S2 are true. Thus, the value we assign to such a statement is the minimum
between the values assigned to the statements S1 and S2. Moreover, if we consider the statement

S1 or S2

we get that it is true if at least one of the statements S1 and S2 is true. Thus, the value we
assign to such a statement is the maximum between the values assigned to the statements S1
and S2.

De�nition 12.10. Let (fn)n∈N be functions fn : RN → R. We de�ne the functions

sup
n∈N

fn, inf
n∈N

fn : RN → R

as
sup
n∈N

fn(x) := sup{fn(x) : n ∈ N},

and
inf
n∈N

fn(x) := inf{fn(x) : n ∈ N}.

Moreover, we de�ne lim infn→∞ fn, lim supn→∞ fn : RN → R as

lim sup
n→∞

fn(x) := lim sup
n→∞

(fn(x))n∈N := inf
i→∞

sup
j≥i

fi(x),

and
lim inf
n→∞

fn(x) := lim inf
n→∞

(fn(x))n∈N := sup
i→∞

inf
j≥i

fi(x).

De�nition 12.11. Given a function f : RN → R, we de�ne its positive and negative part as

f+ := max{f, 0}, f− := max{−f, 0} ,
respectively.

Remark 12.12. Note that f+, f− ≥ 0, and that f = f+ − f−, |f | = f+ + f−.

Proposition 12.13. Let f, g : RN → R be Lebesgue measurable functions. Then, the functions

|f |, f+, f−, f + g, fg, max{f, g}, min{f, g}
are Lebesgue measurable.
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Proof. Step 1. We �rst prove that f + g is Lebesgue measurable. Let a ∈ R. If x ∈ R is such
that f(x)+ g(x) > a, then, there exists q ∈ Q such that f(x)+ g(x) > q > a. Therefore, we can
write

(f + g)−1((a,+∞)) =
⋃

r+s>a
r,s∈Q

[
f−1((r,+∞)) ∩ g−1((s,+∞))

]
.

By the Lebesgue measurability of f and g, we get that

f−1((r,+∞)), g−1((s,+∞))

are Lebesgue measurable for each r, s ∈ Q. Thus, by using the properties of intersection
and countable union of Lebesgue measurable sets (see Proposition 11.19(iii)), we get that
(f + g)−1((a,+∞)) is Lebesgue measurable.

Step 2. Now we prove that, if f is Lebesgue measurable, also f2 is. This follows by writing,
for a ≥ 0

(f2)−1((a,∞)) = f−1(a
1
2 ,+∞),

while for a < 0 it holds (f2)−1((a,∞)) = RN .

Step 3. We now prove that fg is Lebesgue measurable. This follows from the writing

fg =
(f + g)2 − f2 − g2

2
,

together with step 1, 2.

Step 4. Now, we prove that f+ and f− are measurable. Indeed,

f+(x) = f(x)1E+ , f−(x) = −f(x)1E−

where E+ := {x ∈ RN : f(x) ≥ 0}, and E− := {x ∈ RN : f(x) ≥ 0}. These two sets are
Lebesgue measurable, and thus also 1E+ and 1E− .

Step 5. Finally

|f | = f+ + f−, max{f, g} = (f − g)+ + g, min{f, g} = −(f − g)− + g.

Thus, by using the previous steps, they are all Lebesgue measurable. □

Proposition 12.14. Let (fn)n∈N be Lebesgue measurable functions. Then, the functions

sup
n∈N

fn, inf
n∈N

fn, lim inf
n→∞

fn, lim sup
n→∞

fn

are Lebesgue measurable.

Proof. By using the writings(
sup
n∈N

fn

)−1

((a,+∞)) =
⋃
n∈N

f−1
n ((a,+∞)),

(
inf
n∈N

fn

)−1

((a,+∞)) =
⋂
n∈N

f−1
n ((a,+∞)),

for all a ∈ R, we get that supn∈N fn and infn∈N fn are Lebesgue measurable. Moreover, by
de�nition,

lim sup
n→∞

fn = inf
i→∞

sup
j≥i

fi(x),

and
lim inf
n→∞

fn = sup
i→∞

inf
j≥i

fi(x),

and thus are Lebesgue measurable. □
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Other operations with Lebesgue measurable functions require a bit more care, in particular the
composition of functions. What can be surprising at �rst (but clear if you look at the de�nition!),
is that the composition of Lebesgue measurable functions is not necessarily Lebesgue measurable!
Indeed, let f : RN → R, and g : R → R be two Lebesgue measurable functions. We wonder
whether or not the composition g ◦ f : RN → R is Lebesgue measurable. Let's take a ∈ R, and
consider the set

(g ◦ f)−1((a,+∞)) = {x ∈ RN : (g ◦ f)(x) > a} = f−1(g−1((a,+∞))).

Now, we know that g−1((a,+∞)) is Lebesgue measurable, thanks to the Lebesgue measurability
of g. But we do not know anything about f−1(g−1((a,+∞))), since g−1((a,+∞)) might not
be a Borel set (see Remark 11.27), and thus the Lebesgue measurability of f gives no condition
on the regularity of the set f−1(g−1((a,+∞))). Nevertheless, by using the above argument,
together with the discussion of the characterization of continuity in Remark 12.5, we get the
following result.

Lemma 12.15. Let g : RN → R be a continuous function, and let f : R → R be a Lebesgue
measurable function. Then, g ◦ f is Lebesgue measurable.

Moreover, not only sub, super, and level sets of a Lebesgue measurable functions are measurable,
but also when comparing two Lebesgue measurable functions.

Lemma 12.16. Let f, g : RN → R be Lebesgue measurable functions. Then, the sets

{x ∈ RN : f(x) > g(x)}, {x ∈ RN : f(x) ≥ g(x)}, {x ∈ RN : f(x) = g(x)}
are Lebesgue measurable.

We now study an important class of LN -measurable functions, that will later be used to de�ne
the Lebesgue integral.

De�nition 12.17. We say that an LN -measurable function f : RN → R is simple if its image
is �nite. Namely, if it is possible to write

f(x) =

k∑
i=0

1Ei(x)yi

for all x ∈ RN , where Ei ⊂ RN , and yi ∈ R, for all i = 1, . . . , k.

Remark 12.18. Note that, in the de�nition, we are not requiring the sets Ei's to be pairwise
disjoint. Nevertheless, it is always possible to write a simple function f : RN → R as

f(x) =
k∑

i=0

1Fi(x)zi,

where the sets Fi's are pairwise disjoint (prove it!).

Remark 12.19. Note that simple functions have only �nite values, namely ±∞ are not allowed!

It is possible to characterize Lebesgue measurable functions as pointwise limit of simple
functions.

Lemma 12.20. Let f : RN → R. Then, f is Lebesgue measurable if and only if there exists a
sequence of simple functions (fn)n∈N such that fn → f pointwise.

In particular, if f ≥ 0, it is possible to construct the sequence in such a way that

0 ≤ f1 ≤ f2,≤ · · · ≤ f.

Finally, note that the convergence is uniform on every set where f is bounded from above.

The proof is left as an exercise to the reader, since the strategy is already presented in the
heuristic argument at the beginning of this chapter.
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12.2. The Lebesgue integral for LN -measurable functions. In this section we make rigorous
the heuristic we made at the introduction of this lecture. There is here an asymmetry with the
theory of Riemann integration: it is possible to de�ne the Lebesgue integral also for functions
that are not Lebesgue measurable. This will be done by approximating it from above and
from below by (countably-simple) LN -measurable functions. For LN -measurable functions this
procedure is equivalent to a simpler de�nition. Thus, in this section we will only consider
LN -measurable functions, while in next section we extend the notion of integral to non LN -
measurable functions.

The de�nition of the Lebesgue integral for LN -measurable functions is by approximating from
below with countably-simple functions.

De�nition 12.21 (Integral of a positive simple function). Let f : RN → [0,+∞] be a simple
function

f(x) =
k∑

i=0

1Ei(x)yi .

We de�ne the Lebesgue integral of f as
�
RN

f(x) dLN (x) :=

k∑
i=0

LN (Ei)yi,

with the convention that if yi = 0 and LN (Ei) = ∞, then yiLN (Ei) = 0.

Remark 12.22. Note that the LN -measurability of the simple function (that holds by de�nition!)
is needed in order to have a well-de�ned object. Indeed, if we write a simple function f in two
di�erent ways,

f(x) =
k∑

i=1

1Ei(x)yi =
m∑
j=1

1Fj (x)zj ,

then, we would like the integral to be well de�ned. Namely, that

k∑
i=1

LN (Ei)yi =
m∑
i=j

LN (Fj)zj ,

for any choice of the sets Fj 's. This requirement is equivalent to having the sets Ei's LN -
measurable.

Remark 12.23. An important fact to highlight is that the Riemann and the Lebesgue integral
coincide on the class of functions that are piecewise constant in the sense of De�nition 10.29.

De�nition 12.24 (Integral of a positive function). Let f : RN → [0,∞] be LN -measurable. We
de�ne the Lebesgue integral of f as�

RN

f(x) dLN (x) := sup

{�
RN

g(x) dLN (x) : g simple, g ≤ f LN − a.e.

}
.

Remark 12.25. Note that we could have given an equivalent de�nition by requiring that g ≤ f
everywhere. Indeed, since f ≥ 0, given a simple function g : RN → [0,∞) such that g ≤ f
LN -a.e., we can construct a simple function g̃ : RN → [0,∞) such that

g ≤ f everywhere,

�
RN

g(x)LN (x) =

�
RN

g̃(x)LN (x).

Indeed, set g̃ := g1N , where

N := {x ∈ RN : g(x) > f(x)}.
By assumption, LN (N) = 0. Thus, by Lemma 11.31, N is Lebesgue measurable, and thus g̃ is
a simple function satisfying the required properties.
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First of all, note that this de�nition is compatible with that previously given for countably-
simple functions. The proof is left as an exercise to the reader.

Lemma 12.26. Let f : RN → [0,+∞] be a simple function

f(x) =

k∑
i=0

1Ei(x)yi.

Then,
k∑

i=0

LN (Ei)yi = sup

{�
RN

g(x) dLN (x) : g simple, g ≤ f LN − a.e.

}
.

We now extend the de�nition of the Lebesgue integral to a generic LN -measurable function.

De�nition 12.27 (Integral of a generic LN -measurable function). Let f : RN → R be an
LN -measurable function. Assume that�

RN

f+ dLN (x) <∞, or

�
RN

f− dLN (x) <∞ . (12.1)

We de�ne the Lebesgue integral of f as�
RN

f(x) dLN (x) :=

�
RN

f+(x) dLN (x)−
�
RN

f−(x) dLN (x).

A function satisfying condition (12.1) is called integrable.

Remark 12.28. Assumption (12.1) is in order to avoid +∞−∞ in the de�nition of the integral.

Finally, we de�ne the Lebesgue integral of an LN -measurable function over a generic LN -
measurable set.

De�nition 12.29. Let f : RN → R be an LN -measurable function, and let E ⊂ RN be
LN -measurable. We de�ne�

E
f(x) dLN (x) :=

�
RN

1E(x)f(x) dLN (x).

Note that the function on the right-hand side is LN -measurable.

Remark 12.30. In the following we will write the results by considering LN -measurable functions
f : RN → R integrated in the entire space RN . Thanks to the above de�nition, the results hold
true also when integrating over a measurable set E ⊂ RN .

We now start investigating several properties of the Lebesgue integral. First of all, we state
that the Lebesgue integral extends the notion of the Riemann integral. The proof of this result
requires theorems that will be proved next class, and therefore we will postpone it.

Theorem 12.31. Let f : R → R be Riemann integrable, where R ⊂ RN is a rectangle. Then,
f is Lebesgue integrable, and the two integrals coincide.

An important property is that the Lebesgue integral does not see the di�erence of two
functions on LN -negligible sets. The proof follows directly from the de�nition of the Lebesgue
integral, since we are requiring the simple functions to approximate from below LN -almost
everywhere.

Lemma 12.32. Let E ⊂ RN be an LN -negligible set, and let f : RN → R be a Lebesgue
measurable function. Then, �

E
f(x) dLN (x) = 0.

In particular, if g : RN → R is an LN -measurable function such that

LN
(
{x ∈ RN : f(x) ̸= g(x)}

)
= 0,
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then, �
RN

f(x) dLN (x) =

�
RN

g(x) dLN (x).

In the same spirit, it is possible to prove (left as an exercise to the reader), that a non-negative
Lebesgue measurable function with zero integral must be zero LN -almost everywhere.

Lemma 12.33. Let f : RN → [0,∞] be a Lebesgue measurable function such that�
RN

f(x) dLN (x) = 0.

Then, f(x) = 0 for LN -almost every x ∈ RN .

The Lebesgue integral satis�es some basic properties of monotonicity and homogeneity. The
proof follows directly from the de�nition.

Lemma 12.34. Let f, g : RN → R be LN -integrable. Then,�
RN

af(x) dLN (x) = a

�
RN

f(x) dLN (x),

for all a ∈ R. Moreover, if f ≤ g LN -a.e., then�
RN

f(x) dLN (x) ≤
�
RN

g(x) dLN (x), .

Finally, if A ⊂ B are two Lebesgue measurable sets, and f ≥ 0, then�
A
f(x) dLN (x) ≤

�
B
f(x) dLN (x).

Now, we consider what happens to the Lebesgue integral of a monotone sequence of simple
functions converging to a limiting function (see Lemma 12.20). Such a result will later be
extended to a general sequence of monotone functions (this is indeed called the Lebesgue Monotone
Convergence Theorem, see Theorem 13.4). The reason why we use this path is because it allows
to see the proof of such result in two di�erent ways.

Proposition 12.35. Let f : RN → [0,+∞] be a Lebesgue measurable, and let (fn)n∈N be a
sequence of simple functions such that fn → f pointwise. Then,

lim
n→∞

�
RN

fn(x) dLN (x) =

�
RN

f(x) dLN (x).

Proof. First of all, note that since the sequence fn is increasing, then, by using the monotonicity
of the Lebesgue integral (see Lemma 12.34), we get that�

RN

fn+1(x) dLN (x) ≥
�
RN

fn(x) dLN (x),

for all n ∈ N. Therefore, the limit

lim
n→∞

�
RN

fn(x) dLN (x) = sup
n∈N

�
RN

fn(x) dLN (x)

exists.
Since fn ≤ f for all n ∈ N, by using again the monotonicity of the Lebesgue integral (see

Lemma 12.34), we get that

lim
n→∞

�
RN

fn(x) dLN (x) =

�
RN

f(x) dLN (x).

To prove the opposite inequality, the idea is the following. Let g : RN → R be a simple function
with g ≤ f , whose Lebesgue integral is close to the Lebesgue integral of f (in case this latter is
+∞, we mean that it is very large). Since (fn)n∈N converges to f pointwise, for n large enough,
we expect fn ≥ g. Since this happens for all such functions g, we get the desired inequality. The
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only technical issue to take care of, is that it might be that g = f on some regions, and thus,
it might be that fn < g in that region. Thus, we need to lower a bit g, in order to avoid such
situation.

Fix λ ∈ (0, 1). Let g : RN → R be a simple function

g(x) =

k∑
i=1

1Ei(x)yi,

with g ≤ f . For m ∈ N, we want to consider the sets where λg ≤ fm, namely

Fm := {x ∈ RN : λg(x) ≤ fm(x)}.
Note that the set Fm is Lebesgue measurable, thanks to Lemma 12.16. Set

gm :=
k∑

i=1

1Ei∩Fm(x)λyi.

Note that, since the sequence (fn)n∈N is increasing, we have that gm ≤ fn, for all n ≥ m. In
particular, by using the monotonicity of the Lebesgue integral (see Lemma 12.34), we get that�

RN

gm(x) dLN (x) ≤ lim
n→∞

�
RN

fn(x) dLN (x). (12.2)

Now, we note that, for m large enough, the set Ei∩Fm ̸= ∅, for all i = 1, . . . , k. This is where we
use the fact that g ≤ f , that λ ∈ (0, 1), and that fn is increasing to f . Moreover, the sequence of
Lebesgue measurable sets Ei∩Fm is increasing to the set Ei, for each i = 1, . . . , k. In particular,
thanks to Proposition 11.33(ii), it holds

lim
m→∞

LN (Ei ∩ Fm) = LN (Ei). (12.3)

Therefore, by using the homogeneity of the Lebesgue integral (see Lemma 12.34), we obtain

λ

�
RN

g(x) dLN (x) =

�
RN

λg(x) dLN (x)

=

k∑
i=1

λyiLN (Ei)

= lim
m→∞

k∑
i=1

λyiLN (Ei ∩ Fm)

= lim
m→∞

�
RN

gm(x) dLN (x)

≤ lim
n→∞

�
RN

fn(x) dLN (x),

where in the third equality we used (12.3), while last equality follows from (12.2). Now, since
λ ∈ (0, 1) is arbitrary, by taking the limit as λ→ 1 we get�

RN

g(x) dLN (x) ≤ lim
n→∞

�
RN

fn(x) dLN (x),

for all simple function g : RN → R with g ≤ f . Thus, the result follows from the de�nition of
the Lebesgue integral of f . □

Remark 12.36. Note that the core strategy of the proof of the above result is to reduce to the
case of a increasing sequence of Lebesgue measurable sets, and use the monotonicity properties
of the Lebesgue measure.

We are now in position to prove that the Lebesgue integral is linear. We �rst establish the
result for non-negative functions, since for general functions we might get into trouble with
+∞−∞.
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Lemma 12.37. Let f, g : RN → [0,+∞] be LN -measurable function. Then,�
RN

[f(x) + g(x)] dLN (x) =

�
RN

f(x) dLN (x) +

�
RN

g(x) dLN (x).

Proof. Step 1. Assume f and g are both simple functions

f(x) =
k∑

i=1

1Ei(x)yi, g(x) =
k∑

i=1

1Fi(x)zi.

Note that there is no loss of generality in assuming that the number of sets is the same. Then,

f(x) + g(x) =
k∑

i=1

1Ei(x)(yi + zi).

Therefore, we get that
�
RN

[f(x) + g(x)] dLN (x) =

k∑
i=1

LN (Ei)(yi + zi)

=
k∑

i=1

LN (Ei)yi +
k∑

i=1

LN (Ei)zi

=

�
RN

f(x) dLN (x) +

�
RN

g(x) dLN (x).

Step 2. In the general case, we use Lemma 12.20 to �nd increasing sequences (fn)n∈N and
(gn)n∈N of non-negative simple functions such that fn → f and gn → g. Note that {fn+gn}n∈N
is an increasing sequence of non-negative simple functions such that fn + gn → f + g. Then,
from step 1, for each n ∈ N, we get that�

RN

[fn(x) + gn(x)] dLN (x) =

�
RN

fn(x) dLN (x) +

�
RN

gn(x) dLN (x).

Thus, by using Proposition 12.35, we take the limit on both sides, and get the desired result. □

We now want to focus on those functions for which the Lebesgue integral is �nite.

De�nition 12.38. We say that an LN -integrable function f : RN → R belongs to the Lebesgue
space L1(RN ), if�

RN

|f(x)| dLN (x) =

�
RN

f+(x) dLN (x) +

�
RN

f−(x) dLN (x) <∞.

In such a case, we say that f is absolutely Lebesgue integrable.

Remark 12.39. Note that this de�nition is similar to that given for series: a converging series,
and an absolute converging series. This is not accidental: indeed, by the theory of abstract
integration that you'll see in Measure Theory, it is possible to see a series as an integral with
respect to a certain measure!

Lemma 12.40. Let f : RN → R be such that f ∈ L1(RN ). Then,

LN
(
{x ∈ RN : f(x) ∈ {±∞}}

)
= 0.

Namely, f is �nite LN -almost everywhere.

Moreover, it is possible to extend the linearity of the Lebesgue integral to the case of general
Lebesgue measurable functions f, g : RN → R, provided one of the two is absolutely Lebesgue
integrable.

Lemma 12.41. Let f, g : RN → R be LN -measurable function, and assume f ∈ L1(RN ). Then,�
RN

[f(x) + g(x)] dLN (x) =

�
RN

f(x) dLN (x) +

�
RN

g(x) dLN (x).
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The proof is left as an exercise to the reader.

The Lebesgue integral satis�es a sort of continuum version of the triangle inequality.

Lemma 12.42. Let f : RN → R be LN -measurable. Then,∣∣∣∣�
RN

f(x) dLN (x)

∣∣∣∣ ≤ �
RN

|f(x)| dLN (x).

Proof. We have that∣∣∣∣�
RN

f(x) dLN (x)

∣∣∣∣ = ∣∣∣∣ �
RN

f+(x) dLN (x)−
�
RN

f−(x) dLN (x)

∣∣∣∣
≤
�
RN

f+(x) dLN (x) +

�
RN

f−(x) dLN (x)

=

�
RN

|f(x)| dLN (x),

where in the second step we used the inequality |a− b| ≤ a+ b, for a, b ≥ 0. □

12.3. The Lebesgue integral for general functions. Finally, we extend the notion of Lebesgue
integral to functions that are not necessarily LN -integrable. In this case, we need to approximate
from above and from below the function with countably-simple functions.

De�nition 12.43. Let f : RN → R. We de�ne the lower Lebesgue integral as�
∗ RN

f(x) dLN (x) := sup

{�
RN

g(x) dLN (x) : g simple, g ≤ f LN − a.e.

}
.

Moreover, we de�ne the upper Lebesgue integral as� ∗

RN

f(x) dLN (x) := inf

{�
RN

g(x) dLN (x) : g simple, g ≥ f LN − a.e.

}
.

We say that f is Lebesgue integrable if the lower and the upper Lebesgue integrals coincide. In
this case, we denote the common value by�

RN

f(x) dLN (x).

The above de�nition is consistent with that given for Lebesgue measurable functions. The
proof of this statement requires technical results that will be proved next class, and therefore it
will be postponed.

Lemma 12.44. Let f : RN → R be Lebesgue measurable. Then,�
∗ RN

f(x) dLN (x) =

� ∗

RN

f(x) dLN (x).

The same result holds for functions that are non-negative (and not necessarily Lebesgue
measurable).

Lemma 12.45. Let f : RN → [0,+∞]. Then,�
∗ RN

f(x) dLN (x) =

� ∗

RN

f(x) dLN (x).

Proof. If �
∗ RN

f(x) dLN (x) = +∞,

then also � ∗

RN

f(x) dLN (x) = +∞,
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and the result trivially holds.
Therefore, assume the lower Lebesgue integral to be �nite. In particular, we have that

LN
(
{x ∈ RN : f(x) = +∞}

)
= 0.

Let t > 1, and consider the countably simple function

gt(x) :=
∑
k∈Z

tk1Ek
(x).

where, for each k ∈ Z, we set

Ek :=
{
x ∈ RN : tk ≤ f(x) < tk+1

}
.

By de�nition, we have that
gt ≤ f < tgt.

Therefore, by monotonicity of the lower and the upper Lebesgue integral, we get that�
∗ RN

f(x) dLN (x) ≤
�
∗ RN

tgt(x) dLN (x) = t

�
∗ RN

gt(x) dLN (x) ≤ t

� ∗

RN

f(x) dLN (x),

where in the last inequality we used the de�nition of the lower integral. Since t > 1 is arbitrary,
by sending t→ 1 in the above chain of inequalities we obtain that�

∗ RN

f(x) dLN (x) ≤
� ∗

RN

f(x) dLN (x).

This concludes the proof, since the other inequality holds by de�nition. □

Remark 12.46. What prevents us from extending the above result to a generic (namely, not
necessarily Lebesgue measurable) function f : RN → R is that we do not know whether or not
the sets

{f ≥ 0}, {f < 0}
are Lebesgue measurable.

We now have extended the Riemann integral to a wider class of functions by using the Lebesgue
integral. This enjoys several properties that are extremely useful when dealing with problems in
Analysis. We will see next class how to use these properties to prove important results relating
the limit of the integral of a sequence of functions, with the integral of the limit of the sequence
of functions.

Lebesgue laughs at the di�culty of integration.
Nature
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13. Limiting theorems

As we saw, one of the main issues of the Riemann integral was the lack of good behavior with
respect to sequences of functions converging pointwise. We already saw in Proposition 12.35
that the Lebesgue integral does not have such an issue when considering an increasing sequence
of simple functions. In this section, we investigate deeper the relation between�

RN

f(x) dLN (x),

�
RN

fn(x) dLN (x),

where f is the liminf, the limsup, or the limit of the sequence (fn)n∈N. First of all, we want to
see when things go wrong. There are three cases where the above two objects are not related by
an equality (in the limit). Considering such situations, will allow us to understand what result
to expect in a general case, and what additional assumptions to ask on the sequence (fn)n∈N in
order to get equality.

Consider the following sequences of functions fn, gn, hn : R → [0,∞) de�ned as

fn := 1[n,n+1], gn :=
1

n
1[0,n], hn := n1(0,1/n).

All three functions converge to f ≡ 0 pointwise. In particular, gn converges to f uniformly.
Nevertheless, we have that�

RN

fn(x) dLN (x) =

�
RN

gn(x) dLN (x) =

�
RN

hn(x) dLN (x) = 1,

for all n ∈ N. Therefore, since �
RN

f(x) dLN (x) = 0.,

there is a loss of mass in the limit. What is it due to? Well, in the �rst case, it is because the
mass goes to in�nity horizontally. In the second case, because it spreads out horizontally, while
in the latter case because it concentrates to a single point. Therefore, it seems that, for a general
sequence of non-negative functions (fn)n∈N, we could only expect�

RN

f(x) dLN (x) ≤ lim inf
n→∞

�
RN

fn(x) dLN (x).

This is indeed the case. The result is called Fatou's Lemma (see Theorem 13.1). There are two
ways to avoid the loss of mass. One is to have an increasing sequence of functions(see Theorem
13.4). The other is to ask the sequence to be bounded from above by an integrable function (see
Theorem 13.6). These two results are known as Lebesgue Monotone Convergence, and Lebesgue
Dominated Convergence Theorem, respectively.

Before proving the three results, we would like to comment that it is possible to start from
any of them, and then prove the other two, in any order. We choose to start from the Fatou's
lemma, that allows to get the Lebesgue Monotone and Dominated Convergence Theorems as
simple consequences.

13.1. Fatou's Lemma. We start by investigating the case of a general sequence of functions,
for which the pointwise limit does not need to exist. Nevertheless, we can get bounds for the
asymptotic behavior of the the sequence of integrals.

Theorem 13.1 (Fatou's lemma). Let (fn)n∈N be a sequence of LN -measurable functions. If
fn ≥ g for all n ∈ N, where g ∈ L1(RN ), then�

RN

lim inf
n→∞

fn(x) dLN (x) ≤ lim inf
n→∞

�
RN

fn(x) dLN (x) .

If fn ≤ g for all n ∈ N, where g ∈ L1(RN ), then

lim sup
n→∞

�
RN

fn(x) dLN (x) ≤
�
RN

lim sup
n→∞

fn(x) dLN (x).
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Proof. The strategy we use is the same as that employed in the proof of Proposition 12.35:
to consider simple functions, and to reduce to the case of a monotone sequence of Lebesgue
measurable sets. We only prove the �rst part, for

f := lim inf
n→∞

fn.

The other case follows by using the result for the liminf applied to the sequence of functions
(g − fn)n∈N.

For each n ∈ N, let f̃n := fn − g. Note that f̃n ≥ 0, and that

f̃ := lim inf
n→∞

f̃n = lim inf
n→∞

fn − g = f − g.

Now, by de�nition we have that

lim inf
n→∞

f̃n(x) = sup
n∈N

inf
k≥n

f̃k(x).

For each n ∈ N, de�ne φn := infk≥n f̃k. Then, the sequence (φn)n∈N is increasing, and converging

to f̃ . Fix λ ∈ (0, 1). Let h : RN → R be a simple function

h(x) =
k∑

i=1

1Ei(x)yi,

with 0 ≤ h ≤ f̃ . Then, by using the fact that f̃ ≥ 0, we get that λh ≤ f̃ , with equality if and
only if they are both zero. For m ∈ N, set

Fm := {x ∈ RN : λh(x) ≤ φm(x)}.
Note that the set Fm is Lebesgue measurable thanks to Lemma 12.16. Since the sequence

(φn)n∈N is increasing, we get that φn ≥ λh on Fm, for all n ≥ m. Moreover, since λh ≤ f̃ , we
get that (Fm)m∈N is increasing to RN . Set

hm :=
k∑

i=1

1Ei∩Fm(x)λyi.

Note that hm ≤ φ, for all n ≥ m. In particular, by using the monotonicity of the Lebesgue
integral (see Lemma 12.34), we get that�

RN

hm(x) dLN (x) ≤ lim inf
n→∞

�
RN

φn(x) dLN (x). (13.1)

and that, for each n ∈ N,

lim inf
n→∞

�
RN

φn(x) dLN (x) ≤ lim inf
n→∞

�
RN

f̃n(x) dLN (x). (13.2)

This last inequality follows from the de�nition of the function φn, since it is the in�mum of a

tail of the f̃k. Moreover, the sequence of Lebesgue measurable sets Ei ∩ Fm is increasing to the
set Ei, for each i = 1, . . . , k. In particular, thanks to Proposition 11.33(ii), it holds

lim
m→∞

LN (Ei ∩ Fm) = LN (Ei). (13.3)

Therefore, by using (13.3), we obtain

λ

�
RN

h(x) dLN (x) =

�
RN

λh(x) dLN (x)

=

k∑
i=1

λyiLN (Ei)

= lim
m→∞

k∑
i=1

λyiLN (Ei ∩ Fm)
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= lim
m→∞

�
RN

hm(x) dLN (x)

≤ lim inf
n→∞

�
RN

φn(x) dLN (x)

≤ lim inf
n→∞

�
RN

f̃n(x) dLN (x),

where the previous to last equality follows from (13.1), while last step from (13.2). Now, since
λ ∈ (0, 1) is arbitrary, by taking the limit as λ→ 1 we get�

RN

h(x) dLN (x) ≤ lim inf
n→∞

�
RN

f̃n(x) dLN (x)

= lim inf
n→∞

�
RN

fn(x) dLN (x)−
�
RN

g(x) dLN (x),

where last step follows from the linearity of the integral. This inequality holds for all simple

function h : RN → R with 0 ≤ h ≤ f̃ . Thus, from the de�nition of the Lebesgue integral of f̃ ,
together with Lemma 12.41, we get�

RN

f(x) dLN (x)−
�
RN

g(x) dLN (x) =

�
RN

f̃(x) dLN (x)

≤ lim inf
n→∞

�
RN

fn(x) dLN (x)−
�
RN

g(x) dLN (x).

Since g ∈ L1(RN ), by simplifying the same terms on both sides, we get the desired result. □

Remark 13.2. It could be that the above inequalities are strict even if limn→∞ fn exists, as it
was shown in the introduction.

Remark 13.3. In particular, if (fn)n∈N is a sequence of LN -measurable functions such that
g ≤ fn ≤ h, for some g, h ∈ L1(RN ), then�

RN

lim inf
n→∞

fn(x) dLN (x) ≤ lim inf
n→∞

�
RN

fn(x) dLN (x)

≤ lim sup
n→∞

�
RN

fn(x) dLN (x) ≤
�
RN

lim sup
n→∞

fn(x) dLN (x).

This means that the sequence �
RN

fn(x) dLN (x)

has bounds from below and from above given by the integrals of lim infn→∞ fn and lim supn→∞ fn,
respectively.

13.2. Lebesgue Monotone Convergence Theorem. A special case of sequences, is that of a
monotone sequence. In such a case, the pointwise limit limn→∞ fn(x) exists for all (or LN -almost
all) x ∈ RN .

Theorem 13.4 (Lebesgue's Monotone Convergence Theorem). Let (fn)n∈N be an increasing
sequence of LN -measurable functions such that fn ≥ g, for some g ∈ L1(RN ). Then,

lim
n→∞

�
RN

fn(x) dLN (x) =

�
RN

lim
n→∞

fn(x) dLN (x).

The same result holds in the case of a decreasing sequence (fn)n∈N of LN -measurable functions
such that fn ≤ g for some g ∈ L1(RN ).

Proof. Assume that the sequence (fn)n∈N is increasing. The case where the sequence is decreasing
follows by using similar arguments.
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We �rst prove that

lim
n→∞

�
RN

fn(x) dLN (x) ≤
�
RN

lim
n→∞

fn(x) dLN (x).

First of all, note that, since the sequence (fn)n∈N is increasing, we get that the limit

lim
n→∞

fn = sup
n∈N

fn, (13.4)

exists, as well as the limit

lim
n→∞

�
RN

fn(x) dLN (x) = sup
n∈N

�
RN

fn(x) dLN (x). (13.5)

Then, since

fm ≤ lim
n→∞

fn = sup
n∈N

fn,

for all n ∈ N, by using the monotonicity of the Lebesgue integral, we get that�
RN

fm(x) dLN (x) ≤
�
RN

lim
n→∞

fn(x) dLN (x),

for each m ∈ N. Thus,

lim
n→∞

�
RN

fn(x) dLN (x) ≤
�
RN

lim
n→∞

fn(x) dLN (x).

To prove the other inequality, we reason as follows. The assumption fn ≥ g with g ∈ L1(RN )
ensures that we can apply the �rst part of Fatou's Lemma, yielding�

RN

lim
n→∞

fn(x) dLN (x) =

�
RN

lim inf
n→∞

fn(x) dLN (x)

≤ lim inf
n→∞

�
RN

fn(x) dLN (x)

= lim
n→∞

�
RN

fn(x) dLN (x),

where the �rst equality follows from (13.4), while last by (13.5). This concludes the proof of the
theorem. □

An important application of Lebesgue's Monotone Convergence Theorem is to series of functions.

Corollary 13.5. Let (fn)n∈N be an increasing sequence of LN -measurable functions fn : RN →
[0,+∞). Then, �

RN

∑
n∈N

fn(x) dLN (x) =
∑
n∈N

�
RN

fn(x) dLN (x).

The proof is left as an exercise to the reader.

13.3. Lebesgue Dominated Convergence Theorem. Finally, if the pointwise limit of a
sequence of functions is known, but the sequence is not monotone, we wonder whether or not
this translates into convergence of the integrals of that sequence. Next important result gives a
positive answer under very mild assumptions.

Theorem 13.6 (Lebesgue's Dominated Convergence Theorem). Let (fn)n∈N be a sequence of
LN -measurable functions such that

fn(x) → f(x)

for LN -almost every x ∈ RN . Assume that

|fn(x)| ≤ g(x)
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for LN -almost every x ∈ RN , where g ∈ L1(RN ). Then, f ∈ L1(RN ), and

lim
n→∞

�
RN

|fn(x)− f(x)| dLN (x) = 0.

In particular,

lim
n→∞

�
RN

fn(x) dLN (x) =

�
RN

f(x) dLN (x).

Proof. The proof of the last fact is already contained in Remark 13.3 since, by assumption
−g ≤ fn ≤ g. On the other hand, we want to prove something more. The idea is to apply the
same argument to the sequence of functions hn := 2g − |fn − f |. Note that, by assumption,
0 ≤ hn ≤ 2g, and that hn → 2g pointwise LN -almost everywhere. Therefore, by Remark 13.3,
we get that

�
RN

2g(x) dLN (x) = lim
n→∞

�
RN

hn(x) dLN (x)

= lim
n→∞

�
RN

[2g(x)− |fn(x)− f(x)|] dLN (x)

= lim
n→∞

[�
RN

2g(x)−
�
RN

|fn(x)− f(x)| dLN (x)

]
=

�
RN

2g(x) dLN (x)− lim
n→∞

�
RN

|fn(x)− f(x)| dLN (x),

where in the third step we used the linearity of the integral, since 2g ∈ L1(RN ) (see Lemma
12.41). This gives the desired result, since the term on the left-hand side is �nite, and thus we
can simplify it with that on the right-hand side. □

Remark 13.7. Note that if (fn)n∈N is a sequence of Lebesgue measurable functions, the fact
that

lim
n→∞

�
RN

fn(x) dLN (x) =

�
RN

f(x) dLN (x)

does not imply that

lim
n→∞

�
RN

|fn(x)− f(x)| dLN (x) = 0,

not even if fn → f pointwise. Find a counterexample!

Remark 13.8. What the above theorem is saying is that the pointwise convergence of a sequence
of Lebesgue measurable functions uniformly bounded by an L1 function implies that the sequence
actually converge in the L1 norm (the 1-Minkowski norm for functions, see Example 1.13).

In view of the Fatou's Lemma, and the Lebesgue Dominated Convergence Theorem, it is
interesting to understand how to quantify the loss of mass.

Lemma 13.9. Let (fn)n∈N be a sequence of functions fn ∈ L1(RN ) with fn ≥ g LN -almost
everywhere for all n ∈ N, where g ∈ L1(RN ). Assume that fn → f pointwise LN -almost
everywhere, where f ∈ L1(RN ). Then,

lim
n→∞

[�
RN

fn(x) dLN (x)−
�
RN

f(x) dLN (x)−
�
RN

|fn(x)− f(x)| dLN (x)

]
= 0.

The proof is left as an exercise to the reader.
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13.4. Lebesgue integral as extension of the Riemann integral. We now have the technical
tools to prove that the Lebesgue integral extends the Riemann integral.

Proof of Theorem 12.31. By assumption, the function f : R→ R is Riemann integrable. Therefore,
it is possible to �nd an increasing sequence of functions (ln)n∈N, and a decreasing sequence of
functions (un)n∈N, with ln ≤ f ≤ un, each un and each ln are constants on pluri-rectangles, and

lim
n→∞

�
R
un(x) dx = lim

n→∞

�
R
ln(x) dx =

�
R
f(x) dx, (13.6)

where the integrals are the Riemann integrals (note the notation dx). Each function un and ln
is Lebesgue measurable. Let

u := inf
n∈N

un, l := sup
n∈N

ln.

By using Proposition 12.14, we get that u and l are Lebesgue measurable. Since the sequence
(un − ln)n∈N is decreasing, by using the Monotone Convergence Theorem (see Theorem 13.4),
we get that �

R
(u(x)− l(x)) dLN (x) = lim

n→∞

�
R
(un(x)− ln(x)) dLN (x)

= lim
n→∞

�
R
(un(x)− ln(x)) dx

= 0,

where the second step follows from the fact that the Riemann and the Lebesgue integral coincides
for functions that are constants on pluri-rectangles, while last equality follows from (13.6). Since
u−l ≥ 0, by Lemma 12.33 we get that u(x) = l(x) for LN -almost every x ∈ R. Since ln ≤ f ≤ un,
this implies that u(x) = l(x) = f(x) for LN -almost every x ∈ R. Thus, f is Lebesgue measurable,
since it coincides LN -almost everywhere with a Lebesgue measurable function. Thus, using again
Theorem 13.4, we get�

R
f(x) dLN (x) = lim

n→∞

�
R
un(x) dLN (x) = lim

n→∞

�
R
un(x) dx =

�
R
f(x) dx,

where last equality follows from (13.6). □

Remark 13.10. We recall that a function that is Lebesgue integrable is not necessarily Riemann
integrable (as an example, the Dirichlet function).

We end this section with a question. As we saw in Chapter 10, the Riemann integral was
originally introduced as the anti-derivative. Then, Darboux gave it a geometric interpretation,
that allowed to extend the Riemann integral to functions de�ned on higher dimensional spaces.
Moreover, that was the turning point in order to understand how to better extended the
elementary notion of area/volume to build a geometric theory of integration that overcomes
the limitations of the Riemann integral when dealing with limits of sequences of functions. Now
is the question: what happened to the idea of the integral as anti-derivative? Namely, does the
Fundamental Theorem of Calculus holds for the Lebesgue integral? So, is it true that

lim
h→0

1

h

�
[a,x0+h]

f(x) dL1(x) = f(x0), (13.7)

whenever f : R → R is Lebesgue integrable? Well, that for sure does not hold for all points!
Indeed, consider the function f := [0, 1], and x0 = 0. Then, the above limit does not exist, since
for h < 0 the above quantity is zero, while for h > 0 it is one. Even more dramatically, assume
that we can �nd a function f : R → R and a point x0 such that (13.7) holds. Then, by Lemma
12.32, we know that, if we change f on a set of measure zero, the integral does not change. In
particular, let

g(x) :=

{
f(x) if x ̸= x0,
y0 if x = x0,
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where y0 ̸= f(x0). Then,

f(x0) = lim
h→0

1

h

�
[a,x0+h]

f(x) dL1(x) = lim
h→0

1

h

�
[a,x0+h]

g(x) dL1(x) ̸= g(x0).

Thus, the choice of a function that is equal LN -almost everywhere to f might change the validity
of (13.7). This is something really annoying, since the left-hand side of (13.7) would be the same.
Therefore, it seems that everything is lost, since it is not even possible to talk about the pointwise
value of a function f ∈ L1(R).

Luckily for us, Lebesgue comes to the rescue once again! The results can be interpreted both
as a Fundamental Theorem of Calculus in the case of f : R → R, as well as a way to de�ne the
pointwise value of a function f ∈ RN → R for LN -almost every point.

Theorem 13.11 (Lebesgue Di�erentiation Theorem). Let f ∈ L1(RN ). Then, the limit

lim
r→0

1

LN (B(x, r))

�
B(x,r)

f(y) dLN (y) = f(x), (13.8)

for LN -almost every x ∈ RN .

The proof of such a result requires sophisticated techniques that are beyond the scope of the
course.

Remark 13.12. Note that the right-hand side of (13.8) is the average of f in the ball B(x, r).
The Lebesgue Di�erentiation Theorem says that the pointwise average exists for LN -almost
every x ∈ RN , and that it is equal to the value of the function at that point. Since the left-hand
side is the same for any g ∈ L1(RN ) with g = f LN -almost everywhere, this is a way to de�ne
the pointwise value of f LN -almost everywhere. Namely, we have a good representative of f
that behaves well with respect to pointwise averages.
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