Introduction to Computational Stochastic PDEs, CUP, 2014

Here are the typos/errors that we know about in the first edition. Detailed corrections to MATLAB codes are given on-line. Let us know if you find anymore. September 23, 2017.

Chapter 1. p17 In Definition 1.60, the Hilbert-Schmidt norm should be defined as

$$||L||_{\mathrm{HS}(U,H)} := \left(\sum_{j=1}^{\infty} ||L\phi_j||^2\right)^{1/2},$$

(the norm on the right is the one in H not in U).

- **p21** Lemma 1.78 (Dini's lemma) requires additionally the assumption that f is continuous (to guarantee that $f(x) f_n(x) \ge \epsilon$ for the limit point x). In the application of Dini's lemma for the proof of Theorem 1.80 (Mercer's theorem), this holds true for g(x) = G(x, x).
- Chapter 2. p42 Figure 2.1 is misprinted.
 - **p56** In the first displayed equation of the proof, the first term in the integrand should be $p(x)(e(x)')^2$ (the e(x) has one too many dashes).
 - **p79** The right-hand side of (2.109) should be $c_1|\hat{u} I_h\hat{u}|_{H^2(\Delta_*)}^2$.

Assumption 2.64 in general can only be verified for constant boundary data g; H^2 -regularity results usually include an extra term on the right-hands side to account for $g \neq 0$ — see (Renardy and Rogers, 2004, Theorem 8.53) or (McLean, 2000, Theorem 4.10).

- Chapter 3. p116 meshgrid is misused in Example 3.40 and Algorithm 3.6. See exa_3.40.m.
 - p132 Following the comment on p487 below, the last line of the proof should be

$$||u(t_n) - \tilde{u}_n|| \le E \exp(Ln\Delta t).$$

- Chapter 4. **p159** Nensen's inequality → Jensen's inequality (in proof of T4.58 (iii)).
 - **p179** Bayes' theorem is due to the Reverend Thomas Bayes and the apostrophe is written after and not, as in Exercise 4.11, before the s. In the same exercise, $p_{X,Y}$ is incorrectly defined and it should be

$$\mathbb{P}(X = x_k, Y = y_i) = P_{X,Y}(k, j)$$

(interchange j and k).

- Chapter 5. p185 In the second displayed equation on the left-hand side, delete the comma.
- Chapter 6. **p291** In Algorithm 7.10 (turn_band_wm.m), f should be an even function of s (missing modulus).

Chapter 7.

Chapter 8.

Chapter 9.

Chapter 10. **p442–469** meshgrid is misused in Examples 10.12 and 10.40 and in Algorithms 10.5 and 10.10. See exa_10.40.m.

Appendix.

p487 The discrete Gronwall inequality (Lemma A.14) is incorrect. It should either be

Lemma. Consider $z_n \ge 0$ such that $z_n \le a + bz_{n-1}$ for n = 1, 2, ... and $a, b \ge 0$. If b = 1, then $z_n \le z_0 + na$. If $b \ne 1$, then

$$z_n \le b^n z_0 + \frac{a}{1-b} (1-b^n).$$

or

Lemma. Consider $z_n \ge 0$ such that

$$z_n \le a + b \sum_{k=0}^{n-1} z_k, \quad \text{for } n = 0, 1, 2, \dots$$
 (*)

and constants $a, b \ge 0$. Then, $z_n \le a(1+b)^n \le a \exp(bn)$.

The first lemma is (Stuart and Humphries, 1997, Theorem 1.1.12).

To prove the second lemma, notice it is true for n = 0. Assume it is true for z_0, \ldots, z_{n-1} . Then,

$$z_n \le a + b \sum_{k=0}^{n-1} z_k \quad \text{by } (*)$$

$$\le a + b \sum_{k=0}^{n-1} a(1+b)^k \quad \text{by the induction assumption}$$

$$= a + ab \frac{1 - (1+b)^n}{1 - (1+b)} \quad \text{by the geometric sum formula}$$

$$= a + ab \frac{1 - (1+b)^n}{-b} = a + a((1+b)^n - 1) = a(1+b)^n.$$

Therefore, $z_n \le a(1+b)^n$ for all $n=0,1,2,\ldots$ by induction. Finally, $z_n \le a \exp(bn)$ as $1+x \le \exp(x)$ for $x \ge 0$. The second lemma can be used in the proof of Theorems 3.55 and 10.34.