
LECTURE 10: CW APPROXIMATION AND WHITEHEAD’S THEOREM

In this section we will establish the two important theorems showing up in the title. The
first of them, the theorem on the existence of CW approximations (Theorem 10.7), emphasizes the
importance of CW complexes: up to weak equivalence any space can be replaced by a CW complex.
Thus, if one is only interested in spaces up to this notion of equivalence, then it is enough to deal with
CW complexes. The second theorem, the celebrated Whitehead theorem (Theorem 10.17), tells us
that CW complexes are better behaved than arbitrary spaces in the following sense. The notions of
weak homotopy equivalence and (actual) homotopy equivalence coincide if we only consider maps
between CW complexes.

In both theorems the notion of a weak homotopy equivalence plays a key role so let us begin by
introducing that concept.

Definition 10.1. A map of spaces f : X → Y is a weak homotopy equivalence if the induced maps

f∗ : πk(X,x0) −→ πk(Y, f(x0))

are bijections for all dimensions k and all base points x0 ∈ X.

Note that we insist that we have isomorphisms of homotopy groups for all points x0 ∈ X. If one
weakens this condition by considering a single base point only, then one obtains a different notion
which we do not want to axiomatize here. The good notion is the one given above. Of course, the
motivation for the terminology stems from the first point in the following exercise.

Exercise 10.2.

(i) Let f : X → Y be a homotopy equivalence. Then f is a weak equivalence. (Note that the
functoriality of the homotopy groups does not suffice to solve this part!)

(ii) Let f : X → Y , g : Y → Z be maps of spaces, and let h = gf : X → Z be their composition.
Show that if two of the maps f, g, and h are weak equivalences then so is the third one.

(iii) Two spacesX and Y are called weakly equivalent if there are finitely many weak equivalences

X = X0
// X1 X2
oo // . . . . . . Xn−1oo // Xn = Y

pointing possibly in different directions which ‘connect’ X and Y . Check that this is an
equivalence relation. The equivalence classes with respect to this equivalence relation are
called weak homotopy types.

(iv) More generally, consider a relation R ⊆ S×S. Define explicitly the equivalence relation ∼R
on S generated by R, that is, the smallest equivalence relation which contains R. Relate
this to the previous part of the exercise (ignore set-theoretical issues for this comparison!).

There are the following classes of maps which allow us to measure how far a map is from being
a weak equivalence.

Definition 10.3. Let f : X → Y be a map of spaces and let n ≥ 0. Then f is an n-equivalence if
for all x0 ∈ X the induced map

f∗ : πk(X,x0) −→ πk(Y, f(x0))

is bijective for k ≤ n− 1 and surjective for k = n.
1
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Thus, a map of spaces is a weak equivalence if and only if it is an n-equivalence for all n ≥ 0. An
interesting class of examples for this notion is given by the inclusions which are part of the skeleton
filtration of a CW complex.

Lemma 10.4. Let X be a CW complex and let in : X(n) → X be the inclusion of the n-skeleton.
Then in is an n-equivalence.

Proof. This follows from a repeated application of the cellular approximation theorem. In order
to obtain the surjectivity, consider a class α ∈ πk(X, ∗) which can be represented by a cellular
map Sk → X. Thus, for all k ≤ n, we can find a representative which factors over in : X(n) → X
showing that α lies in the image of in∗ : πk(X(n), ∗)→ πk(X, ∗).

For the injectivity, consider two classes α, β ∈ πk(X(n), ∗) for k < n, and represent them
by cellular maps f : Sk → X(n) and g : Sk → X(n) respectively. By assumption, we can find a
homotopy

H : Sk × I −→ X, H : f ' g.
Since I is compact, the space Sk × I is again a CW complex, and, by the explicit description of
the CW structure, the subspace Sk × ∂I is a subcomplex. Now, the homotopy is a map which is
already cellular on this subcomplex. Thus, an application of the cellular approximation theorem
implies that we can find a cellular map H ′ : Sk×I → X which restricts to f and g on the boundary
components. Thus, this map factors over the inclusion in showing that α = β as intended. �

Exercise 10.5. Let (X,x0) be a pointed, connected space, Y an arbitrary space, and n ≥ 0. Then
a map f : X → Y is an n-equivalence if and only if the induced map

f∗ : πk(X,x0) −→ πk(Y, f(x0))

is bijective for k ≤ n− 1 and surjective for k = n.

1. CW approximation

Let us now show that up to weak equivalence every topological space is a CW complex.

Definition 10.6. A CW approximation of a topological space X is a CW complex K together
with a weak equivalence f : K → X.

Theorem 10.7 (Existence of CW approximations). Every space has a CW approximation.

Proof. Let X be an arbitrary space. We can assume that the space X is path-connected by con-
structing a CW approximation for each path-component separately. It is easy to see that these CW
approximations then assemble to one for the entire space.

We will now give an inductive construction of a CW approximation of X. More precisely, we
will first construct n-equivalences

fn : Kn −→ X, n ≥ 0,

for certain n-dimensional CW complexes Kn and then show that these maps can be assembled to
a CW approximation f : K → X.

In dimension n = 0 we let K0 = ∗ be a single point and let f0 : K0 → X be the inclusion of an
arbitrary point of X which obviously is a 0-equivalence. Let us assume inductively that we have
already constructed an n-equivalence fn : Kn → X with Kn an n-dimensional CW complex. We
will construct the map fn+1 in two steps. First let us take care of the possibly non-trivial kernel

An = ker
(
fn∗ : πn(Kn, ∗) −→ πn(X, ∗)

)
.
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Choose an arbitrary set of generators (aσ)σ∈J′n+1
for the group An. Each generator can be rep-

resented by a map χσ : ∂en+1 → Kn, and by definition of An we can choose homotopies Hn,σ

from fn ◦χσ to a constant map. Now, construct the intermediate space K ′n+1 by attaching (n+ 1)-
cells to Kn as follows:

J ′n+1 × ∂en+1

��

(χσ)σ
// Kn

i′n

��

J ′n+1 × en+1 // K ′n+1

This way we obtain an (n + 1)-dimensional CW complex K ′n+1 such that i′n : Kn → K ′n+1 is
the inclusion of the n-skeleton. Since K ′n+1 is endowed with the quotient topology, it is easy to
see that the homotopies Hn,σ and the map fn together induce a map f ′n+1 : K ′n+1 → X such
that f ′n+1 ◦ i′n = fn. By Lemma 10.4 we know that i′n is an n-equivalence, as is fn by inductive
assumption so that the same is also true for f ′n+1. Moreover, we can use the cellular approximation
theorem to conclude that the induced map

f ′n+1∗ : πn(K ′n+1, ∗) −→ πn(X, ∗)

is also injective. In fact, given an element α′ in the kernel of that map, then there is a cellular
map Sn → K ′n+1 representing that class which hence factors as Sn → Kn → K ′n+1. We leave it to
the reader to conclude from here that α′ is trivial.

We next address the problem that the induced map might not be surjective in dimension n+ 1.
Thus, let us consider the possibly non-trivial cokernel

Bn+1 = coker
(
f ′n+1∗ : πn+1(K ′n+1, ∗) −→ πn+1(X, ∗)

)
and let (bσ)σ∈J′′n+1

be a set of generators of Bn+1. Define Kn+1 to be the wedge

Kn+1 = K ′n+1 ∨
∨

σ∈J′′n+1

Sn+1.

Alternatively, this can also be described as an attachment of (n+ 1)-cells using constant attaching
maps, that is, we have a pushout diagram

J ′′n+1 × ∂en+1

��

(κ∗)
// K ′n+1

i′′n

��

J ′′n+1 × en+1 // Kn+1.

In both descriptions (using the usual homeomorphism en+1/∂en+1 ∼= ∂en+2 in the second one),
the generators bσ together with the map f ′n+1 can be assembled to define a map fn+1 : Kn+1 → X
which satisfies fn+1 ◦ i′′n = f ′n+1 : K ′n+1 → X and hence

fn+1 ◦ in = fn : Kn −→ X,

where in = i′′n ◦ i′n : Kn → K ′n+1 → Kn+1. We leave it to the reader to check that fn+1 is an (n+1)-
equivalence.

Thus, we have constructed n-dimensional CW complexes Kn together with n-equivalences fn
and inclusions in : Kn → Kn+1 which are compatible with the n-equivalences. Let us denote by K
the union

⋃
nKn endowed with the weak topology. Then it is easy to see that K is a CW complex
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(with a single 0-cell and the set of n-cells given by Jn = J ′n t J ′′n for n ≥ 1) such that its n-skeleton
is given by K(n) = Kn. The maps fn induce a unique map f : K → X such that f|Kn = fn. The
final claim is that f is a weak equivalence which we also leave to the reader (a further application
of the cellular approximation theorem!). �

Exercise 10.8. Conclude the proof of Theorem 10.7 by establishing the following three steps (we
use the notation of the proof):

(i) The map f ′n+1∗ : πn(K ′n+1, ∗)→ πn(X, ∗) is injective (and hence a bijection).
(ii) The map fn+1 : Kn+1 → X constructed in the induction step is an (n+ 1)-equivalence.
(iii) The map f : K → X is a weak equivalence.

Remark 10.9. We thus showed that every space is up to weak homotopy equivalence a CW
complex. One might wonder if there is a functorial way of doing this. The first step would consist
of the following problem. Let X → Y be a map of spaces and let K → X and L → Y be CW
approximations of X and Y respectively. Can we then find a map K → L such that the following
diagram commutes:

K //

∃?
��

X

��

L // Y

The first partially affirmative answer to this question (which lies only slightly beyond the scope of
this course) is the following: we can always achieve this if we only insist that the square commutes
up to homotopy, that is, if we are asking for the existence of such a map such that both compositions
are homotopic.

The second affirmative answer is even more positive. A construction of such a functorial CW
approximation can be given using ‘simplicial methods’. Given a space X one would consider all
maps ∆n → X for the various n ≥ 0 where ∆n is the geometric n-simplex, i.e., the convex hull of
the n + 1 standard basis vectors of Rn+1. For each n, one can single out a suitable subset Jn ⊆
homTop(∆

n, X) such that these sets serve as index sets for a suitable CW complex. It can then be
shown that these CW complexes are part of functorial CW approximation.

The ‘simplicial methods’ alluded to in the second affirmative answer are very powerful and show
up in many areas of mathematics. In particular, the so-called simplicial sets –introduced in the
1950’s– provide an interesting, purely combinatorial approach to homotopy theory whose impor-
tance in modern homotopy theory (and in other areas of mathematics) can hardly be overestimated.

The mapping cylinder construction allowed us in a previous lecture to show that every map can
be factored into a cofibration followed by a strong deformation retraction. We would like to have
a refinement of this result for the case of a cellular map between CW complexes. Recall that the
mapping cylinder Mf of a map f is given by the following pushout construction:

X
f

//

i1

��

Y

��

X × I // Mf

Proposition 10.10. The mapping cylinderMf of a cellular map f : X → Y is again a CW complex
which contains both X and Y as subcomplexes.
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Proof. We will not give a proof of this result but instead refer the reader to the book ‘Cellular
structures in topology’ by Rudolf Fritsch and Renzo Piccinini. �

With this preparation we now obtain the following refinement of the factorization result.

Corollary 10.11. Any cellular map can be factored as the inclusion of a CW subcomplex followed
by a strong deformation retraction.

2. Whitehead’s theorem

A space is path-connected if any two points can be connected by a path, that is, if π0 applied
to the space gives us a one-point set. Similarly, a space is called simply connected, if it is path-
connected and has a trivial fundamental group (by the action of the fundamental groupoid it is not
important which base point we consider). Let us generalize these definitions to higher dimensions.

Definition 10.12. A space X is n-connected if πk(X,x0) ∼= ∗ for all k ≤ n and all x0 ∈ X.

There is also a variant for pairs of spaces (X,A). Given an arbitrary point a0 ∈ A we gave a
definition of πn(X,A, a0) = πn(X,A) in the case that n ≥ 1. For n ≥ 2 these are naturally groups
which are abelian if n ≥ 3. In fact, the definition of the underlying pointed set of πn(X,A) was as
the set of homotopy classes of maps of triples

πn(X,A) = [(In, ∂In, Jn−1), (X,A, a0)]

where Jn−1 = In−1 × {0} ∪ ∂In−1 × I ⊆ ∂In ⊆ In. There are homeomorphisms In/Jn−1 ∼= Dn

and ∂In/Jn−1 ∼= Sn−1, and using these it is easy to show that we have natural bijections

πn(X,A) ∼= [(Dn, Sn−1, ∗), (X,A, a0)].

Motivated by the long exact homotopy sequence of a pointed pair, let us say that π0(X,A) ∼= ∗
if the map π0(A, a0) → π0(X, a0) is surjective, i.e., if each path-component of X has a non-trivial
intersection with A.

Definition 10.13. A pair of spaces (X,A) is n-connected if πk(X,A, a0) ∼= ∗ for all k ≤ n and for
all a0 ∈ A.

We leave it as an exercise to establish the equivalence of the following statements.

Exercise 10.14. Let (X,A) be a pair of spaces and let n ≥ 0. Then the following are equivalent:

(i) Every map (Dn, Sn−1)→ (X,A) is homotopic relative to Sn−1 to a map Dn → A.
(ii) Every map (Dn, Sn−1)→ (X,A) is homotopic through such maps to a map Dn → A.
(iii) Every map (Dn, Sn−1)→ (X,A) is homotopic through such maps to a constant map.
(iv) We have πn(X,A, a0) = πn(X,A) ∼= 0 for all a0 ∈ A.

This exercise is the basic building block for the following lemma which in turn is the key step
towards Whitehead’s theorem.

Lemma 10.15. Let (X,A) be a relative CW complex and let (Y,B) be a pair of spaces with B 6=
∅ and such that πn(Y,B) = 0 for all dimensions such that X − A has n-cells. Then any map
f : (X,A)→ (Y,B) is homotopic relative A to a map with image in B.

Proof. By assumption we have a filtration of X,

A = X(−1) ⊆ X(0) ⊆ X(1) ⊆ . . . ⊆ X,
such that the following two properties are satisfied:
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(i) The space X(n) is obtained from X(n−1) by attaching n-cells for n ≥ 0.
(ii) The space X is the union

⋃
n≥−1X

(n) endowed with the weak topology and hence comes,

in particular, with continuous inclusions in : X(n) → X.

The plan is to inductively construct intermediate maps gn : X → Y such that gn(X(n)) ⊆ B and
homotopies Hn : gn ' gn−1 relative to X(n−1). We will then show how to conclude from here.
By assumption the restriction f−1 : A = X(−1) → Y already satisfies f−1(A) ⊆ B so that we set
g−1 = f−1.

Now let us assume inductively that maps gk and homotopies Hk have already been constructed
for k < n and let X − A have n-cells (otherwise the induction step is trivial) which we then index
by a set Jn. For each σ ∈ Jn, let χσ : en → X be an attaching map of the cell so that the square
on the left is a pushout diagram:

Jn × ∂en

��

(χσ)
// X(n−1)

��

gn−1
// B

��

Jn × en
(χσ)

// X(n)
gn−1

// Y

Now, each characteristic map induces an element gn−1 ◦ χσ : (en, ∂en)→ (Y,B). Since by assump-

tion πn(Y,B) ∼= 0 we can use Exercise 10.14 to obtain a homotopy H̃n,σ : en × I → Y relative ∂en

from gn−1 ◦ χσ : en → Y to a map g̃n,σ which factors as en → B → Y . These homotopies together
with the constant homotopy of gn−1 can be assembled to define a homotopy

H̃n : X(n) × I → Y : gn−1 ' gn relative to X(n−1) with gn(X(n)) ⊆ B.

Since the inclusion i : X(n) → X is a cofibration, we can find a lift in the following diagram

(gn−1, H̃n) : X × {0} ∪X(n) × I //

��

Y

X × I Hn

;;

Setting gn = Hn(−, 1) : X → Y concludes the inductive step of the construction.
It remains to check that these infinitely many homotopies can be assembled into a single homo-

topy H : X × I → Y . In fact, as the homotopies Hn are relative to X(n−1), it follows that Hk is
stationary on X(n−1) for k ≥ n. Thus, we define H on X(n−1) by first running through H0 at a
double speed, then through H1 at a fourfold speed, etc. We leave it to the reader to check that this
way we obtain a continuous map H : X × I → Y . From the definition it is immediate that H is a
homotopy relative to A and such that H(X, 1) ⊆ B as intended. �

As an immediate consequence of this we collect the following convenient result.

Corollary 10.16. Let (X,A) be a relative CW complex such that the inclusion i : A→ X is a weak
homotopy equivalence. Then i is the inclusion of a strong deformation retract.

Proof. Apply the lemma to the identity morphism of (X,A). �

We can now use this lemma to establish the celebrated ‘Whitehead’s theorem’.
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Theorem 10.17 (Whitehead’s theorem). Let f : X → Y be a weak equivalence between CW com-
plexes X and Y . Then f is a homotopy equivalence. If f is the inclusion of a CW complex, then f
is the inclusion of strong deformation retract.

Proof. We leave it to the reader to reduce to the case of a path-connected CW complex. By the
cellular approximation theorem we can assume that f is a cellular map. Moreover, the mapping
cylinder construction allows us to assume that f = i : X → Y is the inclusion of a subcomplex.
The long exact sequence of homotopy groups of the pair (Y,X) implies that all relative homotopy
groups πn(Y,X) vanish. Thus the previous lemma applied to the identity id : (Y,X) → (Y,X)
implies that id ' i ◦ r relative to X for some map r : Y → X. Thus, this map r satisfies r|X= i,
that is, r ◦ i = idX . It follows that the map i : X → Y is the inclusion of a strong deformation
retract, hence, in particular, a homotopy equivalence. �

Thus, from the knowledge about the behavior of a map at the level of homotopy groups we can
actually construct a map in the converse direction. This indicates that the collection of invariants
given by the homotopy groups at all points is very powerful.

Remark 10.18. Note however that Whitehead’s theorem does not imply that two CW com-
plexes X and Y are homotopy equivalent as soon as the corresponding homotopy groups πn(X)
and πn(Y ) are isomorphic for all n ≥ 0. To put it differently, it does not suffice to have abstract
isomorphisms of these groups. Instead, it is essential that these isomorphisms are —at least in one
direction— induced by an actual map of spaces.

A close inspection of the proof of Theorem 10.7 shows that we also have the following refined
version.

Corollary 10.19. Let X be a n-connected space. Then there is a CW approximation K → X such
that K has a trivial n-skeleton, i.e., such that K(n) = ∗.

A combination of this corollary with Whitehead’s theorem gives the following nice fact.

Corollary 10.20. A n-connected CW complex is homotopy equivalent to a CW complex with
trivial n-skeleton.

In the exercises, you will be asked to proof these two results. Using similar methods as above,
one can also establish the following relative version of Whitehead’s theorem.

Theorem 10.21 (relative version of Whitehead’s theorem). Let f : (X,A) → (Y,B) be a weak
equivalence of relative CW complexes such that f : A → B is a homotopy equivalence. Then
f : (X,A)→ (Y,B) is a homotopy equivalence of pairs.


