
LECTURE 5: HIGHER K-THEORY GROUPS

In this lecture we are going to define the higher (negative) K-groups of a space
and see a few properties of them. We have defined K(X) as the group completion
of the abelian monoid of isomorphism classes of vector bundles over X. In fact,
K(X) is K0(X) in an infinite sequence of abelian groups Kn(X) for n ∈ Z. Our
aim is to show see that this sequence defines a cohomology theory in the sense
of Eilenberg–Steenrod. In order to define the higher K-theory groups we need to
introduce first some notation and topological constructions.

5.1. Notation and basic constructions

5.1.1. Let Top denote the category of compact Hausdorff spaces and Top∗ the
category of pointed compact Hausdorff spaces. By Top2 we denote the category of
compact pairs, that is, the objects are pairs of spaces (X,A), where X is compact
Hausdorff and A ⊆ X is closed. There are functors

Top −→ Top2 and Top2 −→ Top∗
X 7−→ (X, ∅) (X,A) 7−→ X/A,

where the basepoint in the quotient X/A is A/A. If A = ∅, then X/∅ = X+ is the
space X with a disjoint basepoint.

5.1.2. In what follows, we will consider complex vector bundles although most of
the theory works the same in the real case. Recall that for a space X in Top we
denote by K(X) the group completion of VectC(X). For a pointed space X in Top∗,

the reduced K-theory group K̃(X) is the kernel of i∗ : K(X)→ K(x0) = Z, where
i∗ is the map induced by the inclusion of the basepoint i : x0 → X. There is a short
exact sequence

0→ ker i∗ = K̃(X) −→ K(X)
i∗−→ K(x0) −→ 0

which has a section c∗ induced by the unique map c : X → x0. So it gives a natural

splitting K(X) ∼= K̃(X)⊕K(x0). We also have that K(X) = K̃(X+) for every X

in Top. Hence K̃ defines a contravariant functor from Top∗ to abelian groups.

For a compact pair (X,A), we define K(X,A) = K̃(X/A). So K(−,−) is a
contravariant functor from Top2 to abelian groups.

5.1.3. Recall that the smash product of two pointed spaces is defined as the quotient
X ∧ Y = X × Y/X ∨ Y , where X ∨ Y = X × {y0} ∪ {x0} × Y is the wedge of X
and Y , that is, the disjoint union glued by the basepoints.

We will use as a model for the nth sphere Sn in Top∗ the space In/∂In, where
I = [0, 1]. There is a homeomorphism Sn ∼= S1 ∧ · · · ∧ S1.

For a pointed space X in Top∗, we define the reduced suspension ΣX as S1 ∧X.
The nth reduced suspension of X is then ΣnX = Sn ∧X.
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5.2. Negative K-groups

We can use the reduced suspension to define the negative K-groups for spaces,
pointed spaces and pairs of spaces.

Definition 5.2.1. Let n ≥ 0. For X in Top∗, we define K̃−n(X) = K̃(ΣnX). If

(X,A) is in Top2, then we define K−n(X,A) = K̃−n(X/A) = K̃(Σn(X/A). Finally,

for X in Top, we define K−n(X) = K−n(X, ∅) = K̃−n(X+) = K̃(Σn(X+)).

Thus, K̃−n(−), K−n(−,−) and K−n(−) are contravariant functors for every
n ≥ 0 from Top∗, Top

2 and Top, respectively, to abelian groups.

5.2.2. Another useful construction is the cone on a space. Given X in Top, we
define the cone on X as the quotient CX = X × I/X × {0}. The cone CX has
a natural basepoint given by X × {0} and thus defines a functor C : Top → Top∗.
The quotient CX/X is called the unreduced suspension of X.

If X is a pointed space, then we have an inclusion Cx0/x0 ∼= I → CX/X and
the quotient space is precisely the reduced suspension ΣX. Since I is a closed
contractible subspace of CX/X we have that VectC(CX/X) ∼= VectC((CX/X)/I).

Hence, K(CX/X) ∼= K(ΣX) and K(CX,X) = K̃(CX/X) ∼= K̃(ΣX).

5.2.3. For a compact pair (X,A) we define X ∪ CA to be the space obtained
by identifying A ⊆ X with A × {1} in CA. There is a natural homeomorphism
X ∪ CA/X ∼= CA/A. Thus, if A is a pointed space we have that

K(X ∪ CA,X) = K̃(CA,A) ∼= K̃(ΣA) = K̃−1(A).

5.3. Exact sequences of K-groups

We want to relate the K-groups of a pair (X,A) with the K-groups of X and A.
We are going to need the following result about “collapsing” vector bundles that
we recall from a previous lecture.

Lemma 5.3.1. If A ⊆ X is a closed subspace, then any trivialization α : E|A ∼= τn
on A of a vector bundle E → X defines a vector bundle E/α → X/A on the
quotient X/A. �

Lemma 5.3.2. Let (X,A) be a compact pair in Top2 and let i : A → X and
j : (X, ∅)→ (X,A) be the canonical inclusions. Then there is an exact sequence

K0(X,A)
j∗−→ K0(X)

i∗−→ K0(A).

Proof. The composition (A, ∅) i→ (X, ∅) j→ (X,A) factors through (A,A). Apply-
ing K0 yields a commutative diagram

K0(X,A)
i∗j∗

//

((

K0(A)

K0(A,A) = K̃0(A/A) = 0, .

77

So, i∗j∗ = 0 and hence Im j∗ ⊆ ker i∗.
To prove the converse, let ξ be any element in ker i∗. We can represent ξ as a

difference [E]−[τn], where E is a vector bundle over X and τn is the trivial bundle of
rank n over X. By assumption i∗(ξ) = 0, which means that i∗(ξ) = [E|A]−[τn] = 0.
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So, [E|A] = [τn] in K0(A). This means that these two bundles become isomorphic
after we sum with a trivial bundle of certain dimension. More precisely, there is an
m ≥ 0 such that

α : (E ⊕ τm)|A ∼= τn ⊕ τm.

So, we have found a vector bundle that is trivial in A. By Lemma 5.3.1 we have a
vector bundle (E ⊗ τm)/α over X/A. Take now η = [(E ⊕ τm)/α]− [τn ⊕ τm] and

observe that η lies in K̃0(X/A) since the rank of (E ⊕ τm)/α in the component of
the basepoint is n+m. Finally,

j∗(η) = [E ⊕ τm]− [τn ⊕ τm] = [E]− [τn] = ξ,

so ker i∗ ⊆ Im j∗. �

Corollary 5.3.3. Let (X,A) be a compact pair in Top2 and A in Top∗. Then,
there is an exact sequence

K0(X,A)
j∗−→ K̃0(X)

i∗−→ K̃0(A).

Proof. We have natural isomorphisms K0(X) ∼= K̃0(X) ⊕ K0(∗) and K0(A) ∼=
K̃0(A)⊕K0(∗) and thus the following commutative diagram

K̃0(X)

��

// K̃0(A)

��

K0(X,A) //

77

K̃0(X)⊕K0(∗) //

��

K̃0(A)⊕K0(∗)

vv

K0(∗),

where the central row and the columns are exact. Now, any element in K0(X,A)

goes to zero in K0(∗) so there is a map K0(X,A)→ K̃0(X) that makes the diagram
commutative. From this it is straightforward to check that the required sequence
is exact. �

Proposition 5.3.4. Let (X,A) be a compact pair of spaces and A in Top∗. Then
there is a natural exact sequence of five terms

K̃−1(X)
i∗−→ K̃−1(A)

δ−→ K0(X,A)
j∗−→ K̃0(X)

i∗−→ K̃0(A).

Proof. We need to check exactness of the three subsequences of three terms. Ex-

actness of K0(X,A)→ K̃0(X)→ K̃0(A) is given by Corollary 5.3.3.

To prove exactness at K̃−1(A) → K0(X,A) → K̃0(X) we consider the pair of
spaces (X ∪ CA,X). Applying Corollary 5.3.3 we get an exact sequence

K0(X ∪ CA,X)
m∗
//

θ ∼=
��

K̃0(X ∪ CA)
k∗ // K̃0(X)

K̃−1(A)
δ // K̃0(X/A).

p∗ ∼=

OO

j∗

88
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Since CA is contractible, the quotient map p : X∪CA→ X/A induces isomorphism

on K̃0 and moreover k∗p∗ = j∗, which follows directly from the commutativity of
the diagram

X
k //

j
''

X ∪ CA

p

��

X ∪ CA/CA ∼= X/A.

We define the connecting homomorphisms δ = (p∗)−1m∗θ−1, where the morphism

θ : K0(X ∪ CA,X)→ K̃−1(A) is the isomorphism described in 5.2.3.

Exactness at K̃−1(X) → K̃−1(A) → K0(X,A) is a bit more involved. First,
we apply Corollary 5.3.3 to the pair (X ∪ C1A ∪ C2X,X ∪ C1A), where we used
the notation C1 and C2 to distinguish between the two cones. This gives an exact
sequence

K0(X ∪ C1A ∪ C2X,X ∪ C1A) // K̃0(X ∪ C1A ∪ C2X)
∼=

// K̃0(X ∪ C1A)

K̃0(X ∪ C1A ∪ C2X/C2X)

K̃0(X ∪ C1A/X) K̃0(X/A)

p∗ ∼=

OO

K0(X ∪ C1A,X)

θ∼= ��

m∗

DD

K̃−1(A).
δ

??

By using the definition of δ given in the previous step, we can check that the
composition in the square on the right is indeed δ, as required. For the left part of
the diagram we have a square as follows

(5.3.1) K0(X ∪ C1A ∪ C2X,X ∪ C1A) // K̃0(X ∪ C1A ∪ C2X)
∼=

K̃0(X ∪ C1A ∪ C2X/X ∪ C1A) K̃0(C1A/A)
∼=

K̃0(C2X/X)
∼=

K̃−1(A).

K̃−1(X)

66

Now, we would like the dotted arrow that makes the diagram commutative to be
i∗ to conclude the proof. We can see that this is not going to be the case since at
the level of spaces the diagram

X ∪ C1A ∪ C2X
collapse X∪C1A //

collapse C2X

��

C2X/X // ΣX

C1A/A // ΣA

1∧i

55

does not commute. We could try to replace 1∧ i by (1∧ i)◦T , where T : ΣA→ ΣA
is the map that sends (a, t) to (a, 1− t) but the diagram would not commute either.
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However, the diagram with (1 ∧ i) ◦ T commutes up to homotopy, which is enough

for our purposes, since then it will strictly commute when we take K̃0. So we have
the following diagram

X ∪ C1A ∪ C2X
collapse C2X //

collapse X∪C1A

ww

C1A/A // ΣA

T

��

C2X/X

��

C1A ∪ C2A

OO
collapse C2A

55

collapse C1A
//oo C2A/A // ΣA

1∧iooΣX

which induces the following commutative diagram after applying K̃0

K̃0(X ∪ C1A ∪ C2X)

∼=
��

K̃0(C1A/A)
∼=oo

∼=

vv

K̃−1(A)
∼=oo

K̃0(C2X/X)

66

// K̃0(C1A ∪ C2A) K̃0(C2A/A)
∼=oo K̃−1(A)

T∗

OO

∼=oo

K̃−1(X)

∼=

OO

i∗

44

By “inserting” this diagram into diagram (5.3.1), we can check that the latter
commutes if the dotted arrow is T ∗ ◦ i∗. In the exercises we will prove that the map

T ∗ : K̃−1(A) → K̃−1(A) sends every element to its inverse. So in the end, we get
an exact sequence

K̃−1(X)
−i∗−→ K̃−1(A)

δ−→ K0(X,A).

But since −i∗ and i∗ have both the same kernel and the same image, we can replace
−i∗ by i∗ and we still have an exact sequence. This completes the proof. �

Corollary 5.3.5. Let (X,A) be a compact pair and A in Top∗. Then there is a
long exact sequence

· · · −→ K̃−2(X)
i∗−→ K̃−2(A)

δ−→ K−1(X,A)
j∗−→ K̃−1(X)

i∗−→
i∗−→ K̃−1(A)

δ−→ K0(X,A)
j∗−→ K̃0(X)

i∗−→ K̃0(A).

Proof. Replace in the exact sequence of Proposition 5.3.4 the compact pair (X,A)
by (ΣnX,ΣnA) for n = 1, 2, . . . �

Corollary 5.3.6. Let (X,A) be a compact pair. Then there is a long exact sequence

· · · −→ K−2(X)
i∗−→ K−2(A)

δ−→ K−1(X,A)
j∗−→ K−1(X)

i∗−→
i∗−→ K−1(A)

δ−→ K0(X,A)
j∗−→ K0(X)

i∗−→ K0(A).

Proof. The result follows directly by applying Corollary 5.3.5 to the pair (X+, A+)

and using that K̃−n(X+) = K−n(X). �
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