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STRICT MODULES AND HOMOTOPY MODULES

IN STABLE HOMOTOPY

JAVIER J. GUTIÉRREZ

Abstract
Let R be any associative ring with unit and let HR denote

the corresponding Eilenberg–Mac Lane spectrum. We show
that the category of algebras over the monad X 7→ HR∧X on
the homotopy category of spectra is equivalent to the homo-
topy category associated to a model category of HR-module
spectra, if the ring R is a field or a subring of the rationals,
but not for all rings.

1. Introduction

Classically, ring spectra and module spectra were defined as objects of the stable
homotopy category equipped with suitable structure maps. The stable homotopy
category, as described by Adams in [1], has a smash product which is associative
and commutative up to homotopy. The structure maps that define ring spectra and
module spectra give rise to diagrams that commute up to homotopy. For a given
ring spectrum E, the E-modules in this sense, together with the E-module maps,
form a subcategory which can be seen as the Eilenberg–Moore category associated
with the monad defined by X 7→ E ∧ X, i.e., the category of algebras over this
monad. We call this category the category of homotopy E-modules.

The recent discovery of new structured model categories for stable homotopy,
such as the categories of S-modules [7] or symmetric spectra [9], equipped with
a strictly associative and commutative smash product, allows one to define strict
ring spectra (the monoids in the category) and strict module spectra (modules over
monoids). The structure maps for these objects give rise to diagrams that truly
commute in the model category. Thus, for a strict ring spectrum E, we can as well
consider the homotopy category of strict E-modules, by endowing the category of
strict E-modules with a model structure as in [7] or in [9].

The categories of strict modules have better properties than the categories of
homotopy modules. The fibre of an E-module map of strict E-modules is a strict
E-module, yet this need not be true for homotopy E-modules. The model category
of strict HR-modules is Quillen equivalent to the category Ch(R) of unbounded
chain complexes of R-modules; see [7], [12], [13].

The homotopy category of strict HR-modules is not equivalent to the category
of homotopy HR-modules in general. However, they are equivalent in some special
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cases, for example when R = Z (the homotopy HZ-modules are also called stable
GEMs). We give a sufficient condition for a ring R in order that there is an equiv-
alence between the homotopy category of strict HR-modules and the category of
homotopy HR-modules. This condition is fulfilled by fields and by subrings of Q.

Acknowledgements. I would like to thank my advisor Carles Casacuberta for his
support and encouragement in writing this paper, and also to John Greenlees and
Stephan Schwede for many helpful discussions and suggestions during my stay at
the Isaac Newton Institute in Cambridge in 2002.

2. Monads and Eilenberg–Moore categories

In this section we recall the definition of a monad on a category, and collect
some basic results about Eilenberg–Moore categories. These and other facts about
monads can be found in [3, Ch. 3], [4, Ch. 4] or [11, Ch.VI].

A monad on a category C is a triple T = (T, η, µ) where T : C −→ C is a functor
and η : IdC −→ T and µ : TT −→ T are natural transformations such that the
following diagrams commute:

T
ηT

//

BB
BB

BB
BB

BB
BB

BB
BB

TT

µ

²²

T
Tη

oo

||
||

||
||

||
||

||
||

T

TTT
µT

//

Tµ

²²

TT

µ

²²

TT µ
// T.

Let T = (T, η, µ) be a monad on C. An algebra over T or a T-algebra is a pair
(M,m) where M is an object of C and m : TM −→M is a morphism such that the
following diagrams commute:

M

DD
DD

DD
DD

DD
DD

DD
DD

ηM
// TM

m

²²

M

TTM
µM

//

Tm

²²

TM

m

²²

TM m
// M.

If (N,n) is another T-algebra, then a morphism of T-algebras or a T-morphism
f : (M,m) −→ (N,n) is a morphism f : M −→ N in C such that the following
diagram commutes:

TM
Tf

//

m

²²

TN

n

²²

M
f

// N.

Given a monad T = (T, η, µ) on a category C, we denote by CT the category
whose objects are the T-algebras and whose morphisms are the T-morphisms. The
category CT is called the Eilenberg–Moore category associated with T.

There is a forgetful functor U : CT −→ C defined by U(M,m) = M and U(f) = f .
This functor is faithful and has a left adjoint F : C −→ CT defined by F (M) =
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(TM,µM ) and F (f) = T (f). This adjunction yields a bijection

CT((TX, µX), (Y,m)) ∼= C(X,Y ) (1)

for any X ∈ C and any T-algebra (Y,m).
Given two monads T = (T, η, µ) and S = (S, η′, µ′) on a category C, a morphism

of monads S −→ T is a natural transformation λ : S −→ T such that the following
diagrams commute:

S
λ

// T

IdC

η′

OO

η

>>||||||||

SS
λλ

//

µ′

²²

TT

µ

²²

S
λ

// T.

Remark 2.1. Any morphism of monads λ : S −→ T yields a faithful functor between
the categories of algebras Q : CT −→ CS, since any T-algebra has an S-algebra
structure via the morphism λ. Thus, Q is defined as Q(M,m) = (M,m ◦ λM ) and
Q(f) = f . There is a commutative diagram

CT

U

²²

Q
// CS

U
}}||

||
||

||

C

where U is the forgetful functor. This shows that the functor Q is faithful.

Example 2.2. Let Ab be the category of abelian groups and let R be a ring with
unit. The functor R ⊗ − : Ab −→ Ab together with the product and the unit of
R is a monad on the category of abelian groups. The Eilenberg–Moore category
associated with this monad is the category of left R-modules.

3. Stable categories of E-modules

In this section we describe, for a ring spectrum E, the category of strict E-
modules and the category of homotopy E-modules as particular cases of Eilenberg–
Moore categories associated with monads. We will work in the category SpΣ of
symmetric spectra [9] as a model category for the stable homotopy category. An
object E of SpΣ is a ring spectrum if it is equipped with two maps µ : E ∧E −→ E
and η : S −→ E, where S is the sphere spectrum, such that the following diagrams
commute:

S ∧E
η∧IdE

//

JJJJJJJJJJ

JJJJJJJJJJ E ∧ E

µ

²²

E ∧ S
IdE∧η
oo

tttttttttt

tttttttttt

E

E ∧E ∧ E
µ∧IdE

//

IdE∧µ

²²

E ∧ E

µ

²²

E ∧ E µ
// E.

(2)

It is said that E is commutative if µ ◦ τ = µ where τ : E ∧E −→ E ∧E is the twist
map. Given a ring spectrum E ∈ SpΣ, an E-module spectrum is a pair (M,m) with
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M ∈ SpΣ and m : E ∧M −→M such that the following diagrams commute:

S ∧M
η∧IdM

//

KKKKKKKKKK

KKKKKKKKKK
E ∧M

m

²²

M

E ∧ E ∧M
µ∧IdM

//

IdE∧m

²²

E ∧M

m

²²

E ∧M m
// M.

(3)

Example 3.1. If R is an associative ring with unit and M is a left R-module, then
the Eilenberg–MacLane spectrum HR is a ring spectrum and the spectrum HM
is an HR-module spectrum. The structure maps of HR and HM come from the
product and the unit of R, and from the structure homomorphism of M as an
R-module.

A map of E-modules or an E-module map f : (M,m) −→ (N,n) is a map
f : M −→ N such that the following diagram commutes:

E ∧M

m

²²

IdE∧f
// E ∧N

n

²²

M
f

// N.

(4)

For any ring spectrum (E, η, µ) we can consider the functor E ∧ − : SpΣ −→
SpΣ. This functor sends any X to an E-module spectrum E ∧ X. The natural
transformations η ∧ Id : IdSpΣ −→ E ∧ − and µ ∧ Id : E ∧ E ∧ − −→ E ∧ − form
a monad on the category of symmetric spectra, by the commutativity of (3.1). The
Eilenberg–Moore category associated with the monad (E ∧−, η∧ Id, µ∧ Id) will be
denoted by E-mod and called the category of strict E-modules. By [13], this category
admits a model category structure. If Ho(E-mod) is the corresponding homotopy
category, and M and N are objects in this category, we denote by [M,N ]E-mod the
group of morphisms between M and N in Ho(E-mod). Thus, (1) yields a bijection

E-mod(E ∧M,N) ∼= SpΣ(M,N)

for any E-module spectrum N and anyM . This bijection does not induce a bijection
of homotopy classes of maps in general, as shown in Corollaries 4.5 and 4.6.

Now, for a ring spectrum E ∈ SpΣ, consider the monad (E∧−, η∧ Id, µ∧ Id) on
the homotopy category Ho(SpΣ). The Eilenberg–Moore category associated with
this monad will be called the category of homotopy E-modules, and denoted by
E-hmod. If M and N are objects in E-hmod, we denote by [M,N ]E-hmod the group
of morphisms between them in the Eilenberg–Moore category. If N is a homotopy
E-module and M is any spectrum, then the bijection (1) gives an isomorphism

[E ∧M,N ]E-hmod
∼= [M,N ].

Note that the objects in E-hmod are E-module spectra in the traditional sense,
i.e., endowed with structure maps for which the diagrams (3) and (4) commute up
to homotopy. Thus, every strict E-module is a homotopy E-module.
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4. Homotopy modules and derived categories

The categories E-hmod and Ho(E-mod), defined in the previous section, are
very different in general. In this section we compare these two categories in the case
where E is the ring spectrum HR, for some associative ring R with unit. In what
follows R-modules will be left modules.

The derived category D(R) of the ring R is defined as the homotopy category of
Ch(R), the model category of unbounded chain complexes of R-modules; see [8]. The
weak equivalences are the quasi-isomorphisms, i.e., the maps inducing isomorphisms
in homology. If E is any R-module, we will denote by E[k] the chain complex

· · · −→ 0 −→ 0 −→ E −→ 0 −→ 0 −→ · · ·

where E is located in dimension k. If A and B are two R-modules, then the following
holds:

D(R)(A[0], B[k]) = ExtkR(A,B);

see [14, Ch. 10] for a useful description of the derived category.

The projective dimension pd(A) of an R-module A is the minimum integer n (if
it exists) such that there is a projective resolution of A of length n,

0 −→ Pn −→ Pn−1 −→ · · · −→ P0 −→ A −→ 0.

If no such integer exists, we say that pd(A) =∞. The global dimension of a ring R
is defined as gd(R) = supA∈R-mod{pd(A)}. For example, gd(Z) = 1, gd(Z/p2) =∞
if p is a prime, gd(R[x1, . . . , xn]) = gd(R) + n.

The rings R with gd(R) = 0 are called semisimple. All fields and finite direct
products of fields are semisimple rings. In general, gd(R) = 0 if and only if R is a
finite direct product of matrix rings over division rings, by the Wedderburn–Artin
Theorem; see [2, §13], for example. Thus, if R is commutative, then gd(R) = 0 if
and only if R is a finite direct product of fields.

The groups ExtkR are closely related with the global dimension of the ring R.
A classical theorem in homological algebra states that gd(R) = k if and only if
ExtiR(A,B) = 0 for i > k and all R-modules A and B; see [14].

Proposition 4.1. If gd(R) 6 1, then any chain complex of R-modules

C : · · · −→ Cn
dn−→ Cn−1

dn−1

−→ · · · −→ C0
d0−→ C−1 −→ · · ·

is weakly equivalent, and hence isomorphic in D(R), to ⊕k∈ZHk(C)[k].

Proof. If gd(R) = 0, then there exists a map p̃k : Hk(C) −→ ker dk ⊂ Ck such that
π◦ p̃k = id, where π denotes the projection ker dk −→ Hk(C), since every R-module
is projective. Hence, for each k ∈ Z we have a map

· · · // Ck // Ck−1 // · · ·

Hk(C)

p̃k

OO

// 0

OO
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and this yields a map of chain complexes φ : ⊕k∈Z Hk(C)[k] −→ C inducing an

isomorphism in homology. For the case gd(R) = 1, let Rk
ik−→ Fk

pk

−→ Hk(C) be a
projective resolution of the k-th homology group Hk(C). Take Ak to be the complex
· · · → 0→ Rk → Fk → 0→ · · · with Fk in dimension k and Rk in dimension k+1.
Now we construct a map from ⊕k∈ZAk to C inducing an isomorphism in homology.
For each k ∈ Z, we have the following diagram:

Ck+1

²²²²

Im dk+1
²²

²²

ker dk

π
²²²²

Rk
//
ik

//

p̃k◦ik

<<yyyyyyyyyyyyyyyyyyyy

∃q̃k

99

Fk pk

// //

∃p̃k

;;

Hk(C).

Since Fk is projective and π is surjective, there exists a map p̃k : Fk −→ ker dk ⊂ Ck
closing the diagram. The map p̃k ◦ ik lifts to Im dk+1 because p̃k ◦ ik ⊂ kerπ =
Im dk+1. Again, Rk is projective and the map Ck+1 → Im dk+1 is surjective, hence
there exists a map q̃k : Rk −→ Ck+1 closing the diagram. For each k ∈ Z, we have
defined maps p̃k and q̃k

· · · // Ck+1 // Ck // · · ·

Rk

q̃k

OO

// Fk

p̃k

OO

and this yields a map φ : ⊕k∈Z Ak −→ C that is a quasi-isomorphism. Since the
complex Ak is quasi-isomorphic to Hk(C)[k], we have that ⊕k∈ZHk(C)[k] and C
are quasi-isomorphic.

Remark 4.2. Note that Proposition 4.1 does not hold if gd(R) > 1. Suppose that
gd(R) = k > 1 and consider a nonzero element ξ in ExtkR(M,N), where M and N
are R-modules. This element ξ can be represented by an extension of modules

0 −→ N −→ Ek −→ · · · −→ E1 −→M −→ 0,

where E1, . . . , Ek are free [10, Corollary III.6.5]. Take now the chain complex

E : · · · −→ 0 −→ Ek −→ Ek−1 −→ · · · −→ E1 −→ 0 −→ · · ·

where E1 is in dimension 0. This complex has homology only in dimensions 0 and k−
1, namely H0(E) = M and Hk−1(E) = N . But if this complex is quasi-isomorphic
to M [0] ⊕N [k − 1] then ξ = 0, because E1, . . . , Ek are free and hence there exists
a quasi-isomorphism from the first complex to the second one, and therefore a
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commutative diagram

N //

∼=

²²

Ek
//

²²

Ek−1
//

²²

· · · // E2 //

²²

E1 //

²²

M

∼=

²²

N
id

// N // 0 // · · · // 0 // M
id

// M.

The following result was first proved in [12]. A recent generalization can be found
in [13].

Theorem 4.3. For any ring R there is a Quillen equivalence between the model cat-
egory of unbounded chain complexes of R-modules and the model category of (strict)
HR-modules. This equivalence induces an equivalence between the homotopy cate-
gories D(R) and Ho(HR-mod) that sends each HR-module M to a chain complex
C such that Hk(C) ∼= πk(M) for every k ∈ Z.

The objects of the category HR-hmod are precisely the stable R-GEMs and have
been studied in [6, Section 5]. Recall that a spectrum E ∈ Ho(SpΣ) is a stable R-
GEM if E ' ∨k∈ZΣ

kHAk where each Ak is an R-module. In the case R = Z, by
[6, Proposition 5.3], any HZ-module is isomorphic in HZ-hmod to ∨k∈ZΣ

kHAk,
where Ak

∼= πk(M). Hence, if M,N ∈ HZ-hmod, and M ' ∨k∈ZΣ
kHAk and

N ' ∨j∈ZΣ
jHBj , then

[M,N ]HZ-hmod =
∏

k∈Z

∏

j∈Z

[HAk,Σ
j−kHBj ]HZ-hmod (5)

since the natural map ∨k∈ZΣ
kHAk −→

∏
k∈Z

ΣkHAk is an equivalence in this
particular case. Thus, the study of morphisms in HZ-hmod amounts to the study
of [HA,ΣkHB]HZ-hmod. These abelian groups have already been described in [6,
Section 5], as follows:

Proposition 4.4. For all abelian groups A and B, the following holds:

[HA,HB]HZ-hmod
∼= Hom(A,B),

[HA,ΣHB]HZ-hmod
∼= Ext(A,B), and

[HA,ΣkHB]HZ-hmod = 0 if k 6= 0, 1.

Proof. The left adjoint of the monad given by HZ ∧ − yields an isomorphism
[MA,ΣkHB] ∼= [HA,ΣkHB]HZ-hmod because HA ' HZ ∧MA where MA denotes
a Moore spectrum for the abelian group A; see [1]. Now use the exact sequence

0→ Ext(A, πk+1X)→ [ΣkMA,X]→ Hom(A, πkX)→ 0

in the case X = HB.

Corollary 4.5. Given any ring R and R-modules A and B, if k 6= 0, 1, then
[HA,ΣkHB]HR-hmod = 0.

Proof. The inclusion Z ↪→ R provides a natural transformation HZ∧− −→ HR∧−
and a morphism of monads. The result follows from Remark 2.1.
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Corollary 4.6. There is no equivalence of categories between the categories Ho(HR-mod)
and HR-hmod if gd(R) > 1.

Proof. Suppose that there exists an equivalence between the categories HR-hmod
and Ho(HR-mod). Then for any R-modules A, B and any k ∈ Z, we have that

[HA,ΣkHB]HR-hmod
∼= [HA,ΣkHB]HR-mod = ExtkR(A,B)

by Theorem 4.3. But [HA,ΣkHB]HR-hmod = 0 for k 6= 0, 1 by Corollary 4.5, and
this is a contradiction since gd(R) > 1.

We will now discuss [HA,ΣkHB]HR-hmod in the cases k = 0 and k = 1, for any
ring R. The following proposition generalizes Proposition 4.4 for any ring R in the
case k = 0.

Proposition 4.7. For any ring R and all R-modules A and B, the correspondence
f 7→ π0(f) yields a natural isomorphism

[HA,HB]HR-hmod
∼= HomR(A,B).

Proof. Let f : HA −→ HB be any map. Recall that HA and HB are HR-modules
because A and B are R-modules. The map f will be a map in HR-hmod if the
diagram

HR ∧HA
IdHR∧f

//

mHA

²²

HR ∧HB

mHB

²²

HA
f

// HB

commutes up to homotopy. We can define a map Φ: [HA,HB] −→ [HR∧HA,HB]
by Φ(f) = f ◦mHA−mHB ◦ (IdHR ∧ f). Then f is a map in HR-hmod if and only
if f ∈ kerΦ. But [HA,HB] ∼= Hom(A,B) and [HR ∧HA,HB] ∼= Hom(R⊗ A,B).
The map f is in kerΦ if and only if f(ra) = rf(a) for all r ∈ R and a ∈ A, and this
is the same as stating that f ∈ HomR(A,B).

The case k = 1 is more involved. Although we can give a description of
[HA,ΣHB]HR-hmod as the kernel of a map Φ: [HA,ΣHB] −→ [HR ∧ HA,ΣHB],
as in the proof of Proposition 4.7, and

[HA,ΣHB] ∼= Ext(A,B) and [HR ∧HA,ΣHB] ∼= Ext(R⊗A,B),

it turns out that [HA,ΣHB]HR-hmod 6∼= ExtR(A,B) in general. Indeed, suppose that
[HA,ΣHB]HR-hmod

∼= ExtR(A,B). Then, by Remark 2.1 and Proposition 4.4, there
would be an injective map

ExtR(A,B) // // Ext(A,B)

for any ring R and all R-modules A and B, and this is not true. The following
counterexample for a ring R of global dimension one was pointed out to us by
Jérôme Scherer.
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Example 4.8. Let R = Q[x], A = Q[x]/(xn) and B = Q. Then ExtR(A,B) 6= 0
because the exact sequence

Q // // Q[x]/(xn+1) // // Q[x]/(xn)

does not split. If this splitting did exist, then xn = 0 in Q[x]/(xn+1), which is a
contradiction. On the other hand, Ext(A,B) = 0 as abelian groups because Q is
divisible.

Note that this example shows that, for the ring R = Q[x], which has global
dimension 1, there is no possible equivalence of categories between Ho(HR-mod)
and HR-hmod.

5. An equivalence of categories

In this section we study for which rings R there is an equivalence of categories
between Ho(HR-mod) and HR-hmod. As we have seen, Corollary 4.6 states that
there is no possible equivalence if gd(R) > 1. But not all rings of global dimension
one yield such an equivalence, as illustrated by Example 4.8. However, as we next
show, the equivalence holds if the ring R is a field or R is a subring of the rationals.

Proposition 5.3 of [6] can be extended to the case of HR-modules when R is a
field or R is a torsion free solid ring. For these rings, equality (5) also holds if one
replaces Z by R. If R is a field, then every R-module splits as a direct sum of copies
of R, and hence

[HA,ΣHB]HR-hmod
∼= [∨iHR,ΣHB]HR-hmod

∼=
∏

i

[S,ΣHB] = 0.

A ring R is solid if the multiplication induces an isomorphism R ⊗ R ∼= R, where
the tensor product is over Z. Solid rings were introduced in [5]. If R is solid, then in
particular R ⊗ A ∼= A whenever A is an R-module. This implies that, if R is solid,
then

HomR(A,B) ∼= Hom(A,B) and ExtR(A,B) ∼= Ext(A,B).

If R is torsion-free, then HR ∧MA ' H(R ⊗ A) for any R-module A. If a ring R
satisfies these two conditions, then [HA,ΣHB]HR-hmod = ExtR(A,B).

Lemma 5.1. If R is a torsion-free solid ring of global dimension one, then R is a
subring of the rationals.

Proof. This follows from the classification of solid rings (see [5]).

Theorem 5.2. If R is a field or R is a subring of the rationals, then there is an
equivalence of categories between Ho(HR-mod) and HR-hmod.

Proof. We construct a functor Φ: HR-hmod −→ D(R) that is an equivalence of
categories. It will be enough to define the functor on objects of the form ΣiHA, since
any M ∈ HR-hmod is isomorphic to ∨k∈ZΣ

kHAk in HR-hmod, and on morphisms
of the form f : HA −→ ΣkHB in the cases k = 0 and k = 1, by equality (5). If
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φ is an equivalence of categories, Ho(HR-mod) ' HR-hmod by Theorem 4.3. We
consider separately the case of a field and of a subring of the rationals.

If R is a field, then gd(R) = 0 and hence ExtR(A,B) = 0. We define Φ(ΣkHA) =
A[k] and, thus, if M ∈ HR-hmod is such that M ' ∨k∈ZΣ

kHAk, then Φ(M) =
⊕k∈ZAk[k]. Thus, for a map f : HA −→ HB we define Φ(f) = π0(f), the cor-
responding map between A[0] and B[0]. Now, Φ is a functor and it is full and
faithful. Moreover, every object in D(R) lies in the image of Φ up to isomorphism
by Proposition 4.1, so it is an equivalence of categories.

If R is a subring of Q, we define Φ(ΣkHA) = Pk(A) where Pk(A) is the complex

· · · −→ 0 −→ Rk −→ Fk −→ 0 −→ · · ·

with Fk in dimension k, and Rk → Fk → A is a projective resolution of A. If M '
∨k∈ZΣ

kHAk, then Φ(M) = ⊕k∈ZPk(Ak). A map f ∈ [HA,HB]HR-hmod corresponds

to a morphism of R-modules from A to B and hence lifts to a map f̃ between the
projective resolutions of A and B

RA
//

²²

FA

²²

RB
// FB .

This yields a map from the complex P0(A) = Φ(HA) to P0(B) = Φ(HB). We

define Φ(f) = f̃ .
Similarly, a map g ∈ [HA,ΣHB]HR-hmod lifts to a map g̃ between the complexes

P0(A) = Φ(HA) and P1(B) = Φ(ΣHB),

RA
//

²²

FA

RB
// FB .

We define Φ(g) = g̃. The Yoneda product

ExtiR(B,C)⊗ ExtjR(A,B)
Y
−→ Exti+jR (A,C)

makes Φ a functor. This functor is full and faithful by Proposition 4.7 and because
[HA,ΣHB]HR-hmod = ExtR(A,B). By Proposition 4.1, every object in D(R) lies in
the image of Φ up to isomorphism, so it is an equivalence of categories.

References

[1] J. F. Adams, Stable Homotopy and Generalised Homology. Chicago Lectures
in Mathematics. University of Chicago Press, Chicago, London, 1974.

[2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules. Graduate
Texts in Mathematics, vol. 13. Springer-Verlag, New York, 1974.

[3] M. Barr and C. Wells, Toposes, Triples and Theories. Grundlehren der math-
ematischen Wissenschaften, Band 278. Springer-Verlag, New York, 1985.



Homology, Homotopy and Applications, vol. (), 11

[4] F. Borceux, Handbook of Categorical Algebra. Basic Category Theory. En-
cyclopedia of Mathematics and its Applications, 50. Cambridge University
Press, Cambridge, 1994.

[5] A. K. Bousfield and D. M. Kan, The core of a ring. J. Pure Appl. Algebra 2
(1972), pp. 73–81.

[6] C. Casacuberta J. J. Gutiérrez, Homotopical localizations of module spectra.
To appear in Trans. Amer. Math. Soc..

[7] A. D. Elmendorf, I. Kriz, M. A. Mandell J. P. May, Rings, Modules, and Al-
gebras in Stable Homotopy Theory. Mathematical Surveys and Monographs,
47. Amer. Math. Soc., Providence, 1997.

[8] M. Hovey,Model Categories.Mathematical Surveys and Monographs, vol. 63.
Amer. Math. Soc., Providence, 1999.

[9] M. Hovey, B. Shipley J. Smith, Symmetric spectra. J. Amer. Math. Soc. 13
(2000), no. 1, pp. 149–208.

[10] S. Mac Lane, Homology. Die Grundlehren der mathematischen Wis-
senschaften, Band 114. Springer-Verlag, New York, 1971

[11] S. Mac Lane, Categories for the Working Mathematician. Graduate Texts in
Mathematics, Vol. 5. Springer-Verlag, New York, 1971.

[12] A. Robinson, The extraordinary derived category. Math. Z. 96 (1987), no. 2,
pp. 231–238.

[13] S. Schwede B. Shipley, Stable model categories are categories of modules.
Topology 42 (2003), no. 1, pp. 103–153.

[14] C. A. Weibel, An Introduction to Homological Algebra. Cambridge Studies
in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge,
1994.

Javier J. Gutiérrez javier.gutierrez@ub.edu
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