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Preface

Sophus Lie (1842-1899) was a Norwegian mathematician, who created an
algebraic language (Lie algebras) to deal with the notion of continuous sym-
metry (Lie groups). Let us consider GLn(R) as an open subset of Matn(R),
which we identify with the Cartesian product of n2 copies of R. A linear Lie
group G is by definition a closed subgroup G ⊂ GLn(R) for some n ∈ N. Ex-
amples of linear Lie groups are GLn(R), SLn(R), SOn(R), GLn(C), SLn(C),
SUn(C) with these last three closed subgroups of GL2n(R).

Let us be given a linear Lie group G ⊂ GLn(R). A smooth curve in G
through the identity element is a smooth map (−ε, ε) → G, denoted t �→ g(t),
for some ε > 0 and g(0) is equal to the identity of G. For n a positive integer
we can stretch such a smooth curve by a factor n, defined by t �→ g(t/n)n.
Because G is a closed subgroup of GLn(R) the limit for n → ∞ exists, and
can be shown to be of the form t �→ exp(tx) for some x ∈ Matn(R). In fact
x equals the velocity vector of the original curve t → G at time t = 0. The
Lie algebra g of the linear Lie group G ⊂ GLn(R) is by definition the set of
all such velocity vectors x ∈ Matn(R). It is clear that g is invariant under
scalar multiplication. Just rescale the time of the defining curve, and use the
chain rule. It is also clear that g is invariant under addition of two elements.
Just consider the product of the two curves, and use the Leibniz product
rule. Hence g is a linear subspace of Matn(R).

For x, y ∈ Matn(R) we define the commutator bracket by [x, y] = xy−yx.
It is straightforward to check that the commutator bracket is antisymmetric

[y, x] = −[x, y]

and satisfies the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ Matn(R). A bilinear form [·, ·] on a vector space with these
two properties is called a Lie bracket, and a(n abstract) Lie algebra is a vector
space equiped with a Lie bracket. For example Matn(R) is a Lie algebra with
respect to the commutator bracket.

We claim that [x, y] ∈ g for all x, y ∈ g. Consider therefore the following
curve through the identity element of G defined for positive time by

[0, ε) � t �→ g(t) = exp(t1/2x)exp(t1/2y)exp(−t1/2x)exp(−t1/2y) ,
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and for negative time by

(−ε, 0] � t �→ g(−t)−1 .

One can show that t �→ g(t) is a smooth curve in G (just expand g(t) in
a power series of t) with velocity vector at time t = 0 equal to [x, y] ∈ g.
Therefore [x, y] ∈ g for all x, y ∈ g. Hence g becomes a Lie algebra relative
to the Lie bracket [·, ·].

The Lie algebra g of a linear Lie group G ⊂ GLn(R) only sees an in-
finitesimal neighborhood of the identity element e ∈ G. In particular G and
the connected component G◦ of the identity have the same lie algebra g. It
is a truely remarkable fact the the Lie algebra captures most of the structure
of a connected linear Lie group. In these lectures we forget the linear Lie
group G altogether, and only work with the Lie algebra g.
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1 Associative algebras and Lie algebras

Unless otherwise stated all vector spaces are defined over the field C of com-
plex numbers. This text is about algebra, and if we use the word Hilbert space
we usually shall mean pre Hilbert space, that is a suitable dense subspace
of the Hilbert space completion. Likewise we write B(H) for the bounded
operators on H, although sometimes operators are also unbounded.

Definition 1.1. An associative algebra A is a vector space with a product
rule A×A → A , (a, b) �→ ab which is associative

(ab)c = a(bc)

and compatible with the vector space structure

(a + b)c = ac + bc , a(b + c) = ab + ac

(λa)b = a(λb) = λ(ab)

for all a, b, c ∈ A and λ ∈ C.
A star structure on A is an antilinear antiinvolution, that is a map A →

A , a �→ a� with
(a + b)� = a� + b� , (λa)� = λa�

(ab)� = b�a� , a�� = a

for all a, b ∈ A and λ ∈ C. An associative algebra together with a star
structure is called a star algebra.

Example 1.2. If V is a vector space then End(V ) = {linear operators on
V} is the standard example of an associative algebra with product rule the
composition of linear operators. If V = H is a Hilbert space with scalar
product 〈·, ·〉 then B(H) = {bounded linear operators on H} is an associative
algebra with star structure a� = a† with the dagger defined by 〈aφ, ψ〉 =
〈φ, a†ψ〉 for all φ, ψ ∈ H.

Example 1.3. If G is a finite group then the space L(G) = {complex valued
functions on G} is an associative algebra with respect to the convolution
product

φ ∗ ψ(x) = |G|−1
∑

y

φ(xy−1)ψ(y) .

The associativety of the convolution product follows easily from the associa-
tivety of the product rule on the group G. A star structure on L(G) is defined
by φ�(x) = φ(x−1). Indeed one easily checks that (φ ∗ ψ)� = ψ� ∗ φ�.
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Example 1.4. On the Hilbert space H = L2(R) the operator p = −i�∂ (with
∂ = d/dx) and the multiplication by x operator q are selfadjoint and satisfy
the Heisenberg commutation relation

[p, q] = −i�

with � > 0. The ”creation” and ”annihilation” operators are defined by

a− = (q − ip)/
√

2 , a+ = (q + ip)/
√

2

and satisfy the commutation relation

[a+, a−] = � .

We have q† = q and p† = p, or equivalently a†
+ = a− and a†

− = a+. The
energy operator

H = (a+a− + a−a+)/2 = (p2 + q2)/2 = a−a+ + �/2

satisfies the commutation rules

[H, a−] = �a− , [H, a+] = −�a+ .

The vector v0(x) = e−x2/2� in H satisfies a+v0 = 0, and is characterized
by this equation upto a scalar multiple. This implies Hv0 = �v0/2. If
we write vn = an

−v0 then the commutation relation [H, a−] = �a− yields
[H, an

−] = n�an
−, which in turn implies that Hvn = �(n + 1/2)vn. So the

eigenvalue spectrum of H is equal to �(N+1/2). This is Dirac’s treatment of
the quantum mechanical harmonic oscillator. The star algebra A with gener-
ators the creation operator a− and the annihilation operator a+ has a vector
space basis am

−an
+ with m,n ∈ N, and is called the oscillator algebra. The

basis am
−an

+ is called in normal ordering, which means creation operators on
the left and annihilation operators on the right.

Definition 1.5. A representation of an associative algebra A on a vector
space V is an associative algebra homomorphism A → End(V ). If V = H is
a Hilbert space then a unitary representation of a star algebra A on H is a
representation of A on H such that the star on A corresponds to the dagger
on B(H).
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Suppose we have a representation of an associative algebra A on a vector
space V . A linear subspace U ⊂ V is called invariant if au ∈ U for all a ∈ A
and u ∈ U . The representation of A on V is called irreducible if the trivial
subspaces 0 and V are the only two invariant linear subspaces. Remark that
by definition the vector space 0 is not irreducible, since there is just one
invariant subspace 0.

Suppose G is a finite group. A unitary representation U : G → U(H)
extends to a unitary representation U : L(G) → B(H) by

U(φ) = |G|−1
∑

x

φ(x)U(x) .

Indeed one easily verifies U(φ ∗ ψ) = U(φ)U(ψ), U(φ�) = U(φ)†. The con-
clusion is that a unitary group representation of G is equivalent to a unitary
associative algebra representation of L(G). However L(G) is more flexible
than G itself, e.g. the center C(G) of (class functions in) L(G) yields inter-
twiners in representation spaces.

Definition 1.6. A Lie algebra g is a vector space equiped with a product rule
x, y ∈ g �→ [x, y] ∈ g which is bilinear

[x + y, z] = [x, z] + [y, z] , [x, y + z] = [x, y] + [x, z]

[λx, y] = [x, λy] = λ[x, y]

and which is a Lie bracket (i.e. antisymmetry and Jacobi identity holds)

[y, x] = −[x, y]

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0

for all x, y, z ∈ g and all scalars λ.

The three Lie algebras (with gln for n by n matrices) with Lie bracket
the commutator bracket of square matrices

sln = {x ∈ gln; tr(x) = 0}

son = {x ∈ gln; xt + x = 0}
sp2n = {x ∈ gl2n; xtJ + Jx = 0}
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are called the special linear algebra, the orthogonal algebra and the symplec-
tic algebra respectively. Together they constitute the classical Lie algebras.
The verification of the Lie algebra properties is outlined in the exercises.
Here J is the 2n by 2n matrix

(
0n −1n

1n 0n

)

so that ω(u, v) = (u, Jv) in the notation of the exercises.
If g0 ⊂ g is a real form (i.e. g = g0 + ig0, g0 ∩ ig0 = 0 and [x, y] ∈ g0 for

x, y ∈ g0) then put
(x + iy)� = −x + iy

for x, y ∈ g0. It is easy to check that that the star operator is an antilinear
antiinvolution on g. Any antilinear antiinvolution of a Lie algebra g arises in
this way for some real form g0 ⊂ g.

An associative algebra A is in a natural way a Lie algebra, with Lie
bracket [x, y] = xy− yx the commutator bracket in A. The antisymmetry of
the Lie bracket is obvious and the Jacobi identity is a matter of spelling out.

A representation of a Lie algebra g on a vector space V is a Lie alge-
bra homomorphism g �→ gl(V ) with gl(V ) = End(V ) as a vector space,
but End(V ) is an associative algebra with respect to composition of linear
operators, whereas gl(V ) is the associated Lie algebra with respect to the
commutator bracket. The concepts of invariant subspace and irreducibility
for a representation of a Lie algebra g on a vector space V are defined in the
same way as for associative algebra representations.

A unitary representation of a real Lie algebra g0 on a Hilbert space H is
a representation of the complexification g = g0 + ig0 on H such that the star
on g corresponds to the dagger in the representation space.

Our goal is to associate to a Lie algebra g in a canonical way an associative
algebra Ug (called the universal enveloping algebra) such that Lie algebra
representations of g on V give rise to associative algebra representations of
Ug on V , and vice versa. The construction of Ug is rather abstract, but in
the end it will pay back greatly, because associative algebra representations
are easier and more fundamental than Lie algebra representations. Indeed
the associativity condition (ab)c = a(bc) is more basic and easier than the
Jacobi identity [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

This correspondence between Lie algebra representations of g and asso-
ciative algebra representations of Ug should be thought of as analogous to

8



the transition from groups representations of a finite group G to associative
algebra representations of the convolution algebra L(G).

Proposition 1.7. Let V be a representation of a Lie algebra g. Suppose
h ∈ g (or h a polynomial expression in some elements of g) is a diagonalisable
operator in V so that

V =
⊕

λ

Ker(h− λ)

algebraically (any v ∈ V is a finite sum v =
∑

λ vλ with hvλ = λvλ). Then
any subrepresentation U of V respects this decomposition so that

U =
⊕

λ

(U ∩Ker(h− λ)) .

Proof. Write u ∈ U as u =
∑

λ uλ with huλ = λuλ. Then hnu =
∑

λ λnuλ lie
in U for all n ∈ N. Using the nonvanishing of a Vandermonde determinant
we can write each uλ as a linear combination of hnu with n ∈ N.

Exercise 1.1. Prove that am
−an

+ with m,n ∈ N is a vector space basis of the
oscillator algebra C[a−, a+] with relation [a+, a−] = �.

Exercise 1.2. Check the relations U(φ ∗ψ) = U(φ)U(ψ), U(φ�) = U(φ)† for
a unitary representation U of a finite group G on a Hilbert space H.

Exercise 1.3. Check that the commutator bracket on an associative algebra
satisfies the Jacobi identity. Conclude that gln is a Lie algebra with Lie
bracket the commutator bracket.

Exercise 1.4. Check that for V a finite dimensional vector space

sl(V ) = {x ∈ gl(V ); tr(x) = 0}
is a Lie subalgebra of gl(V ), called the special linear algebra.

Exercise 1.5. Let V be a finite dimensional vector space with a nondegen-
erate symmetric biliniear form (·, ·). Check that

so(V ) = {x ∈ gl(V ); (xu, v) + (u, xv) = 0 ∀u, v ∈ V }
is a Lie subalgebra of gl(V ). The Lie algebra so(V ) is called the orthogonal
algebra of V with (·, ·).
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Exercise 1.6. Answer the same question as in the previous exercise but with
the form (·, ·) replaced by a symplectic form ω on V , which is a nondegenerate
antisymmetric bilinear form. The Lie algebra

sp(V ) = {x ∈ gl(V ); ω(xu, v) + ω(u, xv) = 0 ∀u, v ∈ V }
is called the symplectic algebra of V with ω.

Exercise 1.7. Check that the Lie algebra sl2(C) of traceless two by two ma-
trices with basis

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)

has commutation relations

[h, e] = 2e , [h, f ] = −2f , [e, f ] = h .

Exercise 1.8. Prove that the antilinear antiinvolution on sl2(C) defined by(
a b
c d

)�

=

(
a c

b d

)

corresponds to the real form su(2) of sl2(C).

Exercise 1.9. Prove that the antilinear antiinvolution on sl2(C) defined by(
a b
c d

)�

=

(
a −c

−b d

)

corresponds to the real form su(1, 1) of sl2(C).

Exercise 1.10. If in the notation of Example 1.4 we define

e = a2
+/2� , h = −(a+a− + a−a+)/2� , f = −a2

−/2�

then verify that the operators {e, h, f} satisfy the commutation relations

[h, e] = 2e , [h, f ] = −2f , [e, f ] = h

of sl2(C). This representation of sl2(C) is called the oscillator representa-
tion. Compute the eigenvalue spectrum of the operator h in the oscillator
representation. Check that e� = −f ,h� = h, f � = −e. Conclude that the
oscillator representation of sl2(C) is unitary for su(1, 1).

Exercise 1.11. Show that the oscillator representation of sl2(C) decomposes
as a direct sum of two irreducible representations. Hint: Use Proposition 1.7.
Explain these two subrepresentations in terms of the original Hilbert space
H = L2(R).
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2 Poisson algebras and universal enveloping

algebras

Suppose U, V are finite dimensional complex vector spaces. Define

U ⊕ V = U × V , U∗ = Hom(U, C) ,

Hom(U, V ) = {linear maps U �→ V } ,

Bil(U ⊕ V,W ) = {bilinear maps U ⊕ V �→ W}
with U ⊕ V the direct sum of U and V , and U∗ the dual vector space of U .
The tensor product U ⊗ V of U and V is defined by the property

Bil(U ⊕ V,W ) = Hom(U ⊗ V,W )

so any bilinear map B on U ⊕ V with values in W factorizes trough U ⊗ V
as a linear map b to W , in a commutative diagram

U ⊕ V
B−→ W⏐⏐�i

⏐⏐�id

U ⊗ V
b−→ W

with B = b ◦ i and i : U ⊕ V −→ U ⊗ V, i(u, v) = u⊗ v the natural bilinear
map.

If {ui} and {vj} are bases of U and V then {ui⊗ vj} is a basis of U ⊗ V .
Hence dim(U ⊗ V ) = dimU · dimV , whereas dim(U ⊕ V ) = dimU + dimV .

Definition 2.1. The tensor algebra on V is equal to TV = ⊕T kV (sum over
k ∈ N) with T 0V = C, T 1V = V, T 2V = V ⊗ V, . . . so T kV = V ⊗ · · · ⊗ V
(with k factors).

The tensor product operation turns TV into an associative algebra

(u1 ⊗ · · · ⊗ uk)⊗ (v1 ⊗ · · · ⊗ vl) = (u1 ⊗ · · · ⊗ uk ⊗ v1 ⊗ · · · ⊗ vl)

so the product is a linear map T kV ⊗T lV → T k+lV . Any linear map π : V →
A with A an associative algebra extends uniquely to an associative algebra
homomorphism Tπ : TV → A by Tπ(v1⊗v2⊗· · ·⊗vk) = π(v1)π(v2) · · · π(vk).
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Let us write

IV = span{TV ⊗ (v1 ⊗ v2 − v2 ⊗ v1)⊗ TV ; v1, v2 ∈ V } .

This is a linear subspace of TV closed under multiplication by arbitrary ten-
sors on the left and on the right (so a two sided ideal of TV). The factor space
SV = TV/IV is called the symmetric algebra of V . The space SV inherits
a natural product rule from TV turning SV in a commutative associative
algebra. The product of s, t ∈ SV is denoted st. If {vi} is a basis of V then

{vi1 ⊗ vi2 ⊗ · · · ⊗ vik ; 1 ≤ i1, · · · , ik ≤ n = dimV }, k ∈ N

is a basis of TV while

{vm1
1 vm2

2 · · · vmn
n ; 0 ≤ m1,m2, · · · ,mn < ∞}

is a basis of SV . Note that

dim(T kV ) = nk , dim(SkV ) =

(
n + k − 1

k

)
.

The symmetric algebra can be canonically identified with the commuta-
tive algebra PV ∗ of polynomial functions on the dual vector space V ∗. The
above basis of SV is just the basis of monomials of PV ∗ relative to a fixed
basis {vi} of V = V ∗∗. This ends our discussion of the linear algebra con-
structions of the tensor algebra TV and the symmetric algebra SV = PV ∗

associated with any vector space V .
Now take V = g to be a Lie algebra with Lie bracket [·, ·]. The Lie bracket

on g extends to a bilinear Poisson bracket on Sg = Pg∗ via the Leibniz rule

{·, ·} : P kg∗ ⊕ P lg∗ → P k+l−1g∗ , {·, ·} = [·, ·] on g⊕ g ,

{r, st} = {r, s}t + s{r, t} , {rs, t} = {r, t}s + r{s, t} ∀ r, s, t ∈ Pg∗ .

Equipped with this Poisson bracket Pg∗ is called the Poisson algebra of g.
It is a graded algebra, i.e. Pg∗ = ⊕P kg∗ and P kg∗P lg∗ ⊂ P k+lg∗. A Poisson
bracket reminds us of classical mechanics. The quantization of the Poisson
algebra Pg∗ will be the universal enveloping algebra.

Let us denote

Jg = span{Tg⊗ (x⊗ y − y ⊗ x− [x, y])⊗ Tg; x, y ∈ g }; .
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This is again a two sided ideal of Tg, and therefore the quotient Ug = Tg/Jg,
called the universal enveloping algebra of g, becomes an associative algebra.
We have natural linear maps i : g ↪→ Tg and j : g → Ug. Note that

j([x, y]) = j(x)j(y)− j(y)j(x) ∀x, y ∈ g

so that under j the Lie bracket becomes the commutator bracket.

Theorem 2.2. Let g be a Lie algebra and j : g → Ug its universal enveloping
algebra. Given an associative algebra A and a linear map π : g → A such
that

π([x, y]) = π(x)π(y)− π(y)π(x) ∀x, y ∈ g

then there exists a unique associative algebra homomorphism Uπ : Ug → A
such that the diagram

g
j−→ Ug⏐⏐�id

⏐⏐�Uπ

g
π−→ A

is commutative. It is common to denote the associative algebra homomor-
phism Uπ also by π, if no confusion arises.

Proof. Any linear map π : g → A extends to a unique associative algebra
homomorphism Tπ : Tg → A by the very definition of the tensor algebra.
By assumption we have

π([x, y]) = π(x)π(y)− π(y)π(x)

and therefore
Tπ(x⊗ y − y ⊗ x− [x, y]) = 0

∀x, y ∈ g, which in turn implies that Tπ(Jg) = 0. Hence Tπ induces an
associative algebra homomorphism Uπ : Ug → A. Since Tπ = π on T 1g = g

we conclude that Tπ◦i = π and Uπ◦j = π. The uniqueness of Uπ is obvious
from Uπ ◦ j = π.

Corollary 2.3. Every Lie algebra representation π of g on a vector space V
yields a unique associative algebra homomorphism Uπ : Ug → End(V ) such
that Uπ ◦ j = π.
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If g is an Abelian Lie algebra then Jg = Ig and Ug = Sg is a commutative
associative algebra. But for g not Abelian the universal enveloping algebra
Ug is a noncommutative associative algebra, which can be thought of as a
quantization of the Poisson algebra Sg = Pg∗. We shall make this phrase
more precise in an exercise of the next section. One should think of the
associative algebra Ug as some universal operator algebra attached to g, in
which associative algebra computations can be universaly performed without
being limited to g with its Lie bracket and nasty Jacobi identity.

For the moment Ug is a rather unapproachable abstract object. A fun-
damental theorem about the structure of Ug is the Poincaré-Birkhof-Witt
Theorem, which gives a vector space basis for Ug from a vector space ba-
sis of g. The idea behind the PBW Theorem is reminiscent to the normal
ordering basis for the oscillator algebra.

Exercise 2.1. Check that the Heisenberg algebra a with basis {p, q, z} given
by

p =

⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠ , q =

⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠ , z =

⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠

is a Lie algebra with commutation relations

[p, q] = z , [z, p] = [z, q] = 0 .

Exercise 2.2. In the new basis {a−, a+, z} of the Heisenberg algebra a given
by

a− = (q − ip)/
√

2 , a+ = (q + ip)/
√

2

the commutation relations become

[a+, a−] = iz , [z, a−] = [z, a+] = 0 .

Exercise 2.3. Show that for any Lie algebra g the Poisson bracket on Sg =
Pg∗ is a Lie bracket.

Exercise 2.4. Let g be a Lie algebra with a real form g0 ⊂ g. Prove that the
associated antilinear antiinvolution of g extends in a unique way to a star
structure on Ug.
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3 The Poincaré-Birkhof-Witt Theorem

Let g be a Lie algebra of dimension n with a basis x1, · · · , xn. The tensor
algebra Tg = ⊕T dg is a graded algebra with corresponding basis of T dg given
by

{xi1 ⊗ xi2 ⊗ · · · ⊗ xid ; 1 ≤ i1, · · · , id ≤ n = dimV }, d ∈ N .

The symmetric algebra Sg = ⊕Sdg = Tg/Ig = Pg∗ is also graded with
degree d part P dg∗ = T dg/Idg with

Idg = Ig ∩ T dg =
⊕

k+l=d−2

⊕
i<j

{T kg⊗ (xi ⊗ xj − xj ⊗ xi)⊗ T lg} .

In turn this implies that Sdg has basis

{xi1xi2 · · · xid ; 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n} .

The universal enveloping algebra Ug = Tg/Jg is no longer graded because
the ideal Jg, defined by

Jg =
⊕
i<j

{Tg⊗ (xi ⊗ xj − xj ⊗ xi − [xi, xj])⊗ Tg} ,

is no longer homogeneous. What remains is a filtration Ug = ∪Udg with

Tdg =
⊕
k≤d

T kg tensors of degree ≤ d ,

Jdg =
⊕

k+l=d−2

⊕
i<j

{Tkg⊗ (xi ⊗ xj − xj ⊗ xi − [xi, xj])⊗ Tlg} ,

Udg = Tdg/Jdg , Jdg = Jg ∩ Tdg .

Clearly multiplication in Ug defines a linear map Udg⊗ Ueg �→ Ud+eg.

Definition 3.1. The excess e of a basis vector xi1 ⊗ · · ·⊗xid of T dg is given
by

e =# {(p, q); p < q, ip > iq}
We write eT dg = span{xi1⊗· · ·⊗xid ; excess = e} and eTg = ⊕d

eT dg. A
monomial xi1⊗· · ·⊗xid has excess equal to 0 if and only if i1 ≤ i2 ≤ · · · ≤ id in
which case we also speak of a standard monomial. The standard monomials
in the basis of 0T descend to the basis {xi1xi2 · · ·xid} of Sg = Tg/Ig. In
other words Tg = 0Tg⊕ Ig, i.e. Tg = 0Tg + Ig and 0Tg ∩ Ig = 0.

A similar result holds for Ug = Tg/Jg, and is called the PBW theorem.

15



Theorem 3.2. We have Tg = 0Tg⊕ Jg.

Proof. We will first show that Tg = 0Tg + Jg.
Consider a monomial xi1 ⊗ · · · ⊗ xid ∈ eT dg of degree d and excess e. We

shall prove that xi1 ⊗ · · · ⊗ xid ∈ 0Tg + Jg by induction on the degree d and
the excess e. If d = 0 then e = 0, and there is nothing to prove. Likewise if
d ≥ 0 and e = 0 then xi1 ⊗ · · · ⊗ xid ∈ 0Tg ⊂ 0Tg + Jg. Now suppose that
e ≥ 1. Then we write (with say ip > ip+1)

xi1 ⊗ · · · ⊗ xid = xi1 ⊗ · · · ⊗ xip ⊗ xip+1 ⊗ · · · ⊗ xid =

xi1 ⊗ · · · ⊗ xip+1 ⊗ xip ⊗ · · · ⊗ xid + xi1 ⊗ · · · ⊗ [xip , xip+1 ]⊗ · · · ⊗ xid+

xi1 ⊗ · · · ⊗ (xip ⊗ xip+1 − xip+1 ⊗ xip − [xip , xip+1 ])⊗ · · · ⊗ xid

which lies in 0Tg+Jg, because the first term has degree d and excess (e−1),
the second term has degree (d− 1), while the third term lies in Jg.

The second claim 0Tg ∩ Jg = 0 is proved by a similar induction, but the
details are more complicated.

Lemma 3.3. There exists a (unique) linear map L : Tg �→ Tg such that L
is the identity on 0Tg and (in case ip > ip+1)

L(xi1 ⊗ · · · ⊗ xip ⊗ xip+1 ⊗ · · · ⊗ xid) =

L(xi1 ⊗ · · · ⊗ xip+1 ⊗ xip ⊗ · · · ⊗ xid) + L(xi1 ⊗ · · · ⊗ [xip , xip+1 ]⊗ · · · ⊗ xid) .

We shall refer to this formula as the ordering formula. Note that the
ordering formula amounts to

L(xi1 ⊗ · · · ⊗ (xip ⊗ xip+1 − xip+1 ⊗ xip − [xip , xip+1 ])⊗ · · · ⊗ xid)

so that L = 0 on Jg. Hence 0Tg∩Jg ⊂ Ker(L−1)∩Ker(L) = 0. Therefore
the second claim is a direct consequence of the existence of the linear map L
of the lemma.

Proof. We prove the lemma by a double induction on the degree d and the
excess e. The problem is to define L on the monomial basis xi1 ⊗ · · · ⊗ xid of
eT dg. If e = 0 then L(xi1 ⊗ · · · ⊗ xid) = xi1 ⊗ · · · ⊗ xid by assumption. Now
suppose e ≥ 1. If we have initially (with say ip > ip+1 and iq > iq+1)

I = L(xi1 ⊗ · · · ⊗ xip ⊗ xip+1 ⊗ · · · ⊗ xiq ⊗ xiq+1 · · · ⊗ xid)
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and then rewrite it using the the ordering formula of the lemma as a linear
combination (involving the structure constants of g for the given basis) of
the image under L of monomials of lower excess or degree. However the
rewriting can be done using the ordering formula at place (p, p + 1) or at
place (q, q + 1). We have to check that the outcome is the same.

In the first case we assume that p + 1 < q. Let the final expression F be
obtained from I by using the ordering formula at place (p, p + 1), and let F ′

be obtained from I by using the ordering formula at place (q, q + 1). Then
we get F = F ′ by using the above lemma for F at place (q, q + 1) and for
F ′ at place (p, p + 1), which is allowed by induction on the excess and the
degree. Explicitly

F = L(xi1 ⊗ · · · ⊗ xip+1 ⊗ xip ⊗ · · · ⊗ xiq ⊗ xiq+1 · · · ⊗ xid)

+ L(xi1 ⊗ · · · ⊗ [xip , xip+1 ]⊗ · · · ⊗ xiq ⊗ xiq+1 · · · ⊗ xid)

which can be rewritten as

F = L(xi1 ⊗ · · · ⊗ xip+1 ⊗ xip ⊗ · · · ⊗ xiq+1 ⊗ xiq · · · ⊗ xid)

+ L(xi1 ⊗ · · · ⊗ xip+1 ⊗ xip ⊗ · · · ⊗ [xiq , xiq+1 ] · · · ⊗ xid)

+ L(xi1 ⊗ · · · ⊗ [xip , xip+1 ]⊗ · · · ⊗ xiq+1 ⊗ xiq · · · ⊗ xid)

+ L(xi1 ⊗ · · · ⊗ [xip , xip+1 ]⊗ · · · ⊗ [xiq , xiq+1 ] · · · ⊗ xid) .

The outcome has a symmetric role in p and q, and hence F = F ′.
In the second case we assume that p + 1 = q. Our initial expression is

I = L(xi1 ⊗ · · · ⊗ xip ⊗ xip+1 ⊗ xip+2 ⊗ · · · ⊗ xid)

or more simply (but without loss of generality)

I = L(xi1 ⊗ xi2 ⊗ xi3)

with i1 > i2 > i3. So we have

F = L(xi2 ⊗ xi1 ⊗ xi3) + L([xi1 , xi2 ]⊗ xi3) =

L(xi2 ⊗ xi3 ⊗ xi1) + L(xi2 ⊗ [xi1 , xi3 ]) + L([xi1 , xi2 ]⊗ xi3) =

L(xi3 ⊗ xi2 ⊗ xi1) + L([xi2 , xi3 ]⊗ xi1) + L(xi2 ⊗ [xi1 , xi3 ]) + L([xi1 , xi2 ]⊗ xi3)

17



and similarly

F ′ = L(xi1 ⊗ xi3 ⊗ xi2) + L(xi1 ⊗ [xi2 , xi3 ]) =

L(xi3 ⊗ xi1 ⊗ xi2) + L([xi1 , xi3 ]⊗ xi2) + L(xi1 ⊗ [xi2 , xi3 ]) =

L(xi3 ⊗ xi2 ⊗ xi1)+L(xi3 ⊗ [xi1 , xi2 ])+L([xi1 , xi3 ]⊗ xi2)+L(xi1 ⊗ [xi2 , xi3 ]) .

Hence we find

F − F ′ = L([xi2 , xi3 ]⊗ xi1 − xi1 ⊗ [xi2 , xi3 ]) +

L(xi2 ⊗ [xi1 , xi3 ]− [xi1 , xi3 ]⊗ xi2) + L([xi1 , xi2 ]⊗ xi3 − xi3 ⊗ [xi1 , xi2 ])

= L([[xi2 , xi3 ], xi1 ] + [xi2 , [xi1 , xi3 ]] + [[xi1 , xi2 ], xi3 ])

= L([[xi2 , xi3 ], xi1 ] + [[xi3 , xi1 ], xi2 ] + [[xi1 , xi2 ], xi3 ]) = L(0) = 0

by the antisymmetry of the bracket and the Jacobi identity. This concludes
the proof that F = F ′ in the second case, and finishes the proof of the
lemma.

As mentioned before the ordering formula of the lemma has the theorem
as immediate consequence. This finishes the proof of the PBW theorem.

Corollary 3.4. Given a basis x1, · · · , xn of g the universal enveloping algebra
Ug has PBW basis

{xi1xi2 · · ·xid ; 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n = dimV, d ∈ N} ,

or equivalently

{xm1
1 xm2

2 · · ·xmn
n ; 0 ≤ m1,m2 · · · ,mn < ∞} .

Corollary 3.5. The natural map j : g → Ug is an injection. From now on
we write x �→ x for the canonical injection g → Ug.

This corollary justifies the terminology universal enveloping algebra for
Ug, since it is truely an enveloping associative algebra of g. Moreover Ug is
generated as an associative algebra by g. Finally it is universal with respect
to these two properties.
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Exercise 3.1. Let a be the Heisenberg algebra with basis a−, a+, z and com-
mutation relations [a+, a−] = iz, [z, a+] = [z, a−] = 0. Prove that the algebra
Ua/Ua(z + i�) becomes the associative algebra A with generators a− and
a+ and with relation [a+, a−] = �. So the normal ordering basis am

−an
+ with

m,n ∈ N of A is nothing but the PBW basis of Ua/Ua(z + i�).

Exercise 3.2. Show that the natural linear bijection Tdg/Td−1g → T dg in-
duces a linear bijection Udg/Ud−1g → Sdg that is compatible with the multi-
plication in Ug and Sg. Show that the Poisson bracket {·, ·}

Sdg⊗ Sd′g → Sd+d′−1g

amounts to

Udg/Ud−1g⊗ Ud′g/Ud′−1g → Ud+d′−1g/Ud+d′−2g

sending u ⊗ v to uv − vu (multiplication in Ug). The conclusion is that
the Poisson bracket is the leading term of the commutator bracket. This
is entirely analoguous to the way classical mechanics can be obtained from
quantum mechanics as the classical limit.
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4 The Lie algebra sl2 and its Verma represen-

tations

The Lie algebra sl2 has Chevalley basis

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)

with commutation relations

[h, e] = 2e , [h, f ] = −2f , [e, f ] = h .

The universal enveloping algebra Usl2 has the associated PBW basis f ihjek

for i, j, k ∈ N.

Lemma 4.1. In Usl2 the following relations hold

1. [h, fk+1] = −2(k + 1)fk+1

2. [e, fk+1] = (k + 1)fk(h− k)

for all k ∈ N.

Proof. The proof of the first formula goes by induction on k ∈ N. The case
k = 0 is clear, since [h, f ] = −2f . Now for k ≥ 1 we have

[h, fk+1] = [h, ffk] = [h, f ]fk + f [h, fk] = −2ffk − 2kffk = −2(k + 1)fk+1

which proves the first formula.
Likewise the proof of the second formula goes by induction on k ∈ N.

The case k = 0 is clear, since [e, f ] = h. Now for k ≥ 1 we have

[e, fk+1] = [e, f ]fk + f [e, fk] = hfk + kffk−1(h− (k − 1))

by using the induction hypothesis. Using the first formula we get

[e, fk+1] = [h, fk]+ fkh+kfk(h− (k− 1)) = −2kfk + fkh+kfk(h− (k− 1))

and therefore

[e, fk+1] = (k + 1)fkh− fk(2k + k(k − 1)) = (k + 1)fk(h− k)

which proves the second formula.

20



The universal enveloping algebra Usl2 has a natural (associative algebra)
representation on the infinite dimensional vector space Usl2 by left multipli-
cation. For λ ∈ C the linear subspace

J(λ) = Usl2(h− λ) + (Usl2)e

is clearly an invariant linear subspace, and hence the quotient

M(λ) = Usl2/J(λ)

also becomes an associative algebra representation space of Usl2, called the
Verma representation of Usl2 with parameter λ ∈ C. By restriction from
Usl2 to sl2 the Verma representation M(λ) can be equally well considered as
a Lie algebra representation of sl2.

Lemma 4.2. The Verma representation M(λ) of sl2 has basis vk = fk+J(λ)
for k ∈ N, and the generators {e, h, f} act on this basis as

hvk = (λ− 2k)vk , evk = k(λ− (k − 1))vk−1 , fvk = vk+1

with v−1 = 0. The operator h in M(λ) is diagonal in the basis vk for k ∈ N.
The operators e and f in M(λ) are called ”ladder” operators.

Proof. The PBW basis vector f ihjek can be reduced modulo J(λ) to a mul-
tiple of f i. Hence vk, k ∈ N span M(λ), and vk �= 0 ∀k ∈ N.

By definition v0 = 1 + J(λ), hence

hv0 ≡ h = λ + (h− λ) ≡ λ ≡ λv0

with ≡ denoting equality modulo J(λ). Moreover

hvk = hfkv0 = [h, fk]v0 + fkhv0 = −2kfkv0 + λfkv0 = (λ− 2k)vk

and therefore vk, k ∈ N is a basis of M(λ). Clearly

ev0 ≡ e ≡ 0

so that

evk = efkv0 = [e, fk]v0 + fkev0 = k(λ− (k − 1))vk−1 .

The last formula fvk = vk+1 is trivial.
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Definition 4.3. The eigenvalues of the operator h in a representation space
of sl2 are called the ”weights” of that representation. For example, the weights
of the Verma representation M(λ) are {λ − 2k; k ∈ N} and the parameter
λ ∈ C is therefore called the ”highest weight” of M(λ).

Lemma 4.4. A linear subspace of M(λ) that is invariant under h is the
linear span of some of the vk. A nonzero linear subspace of M(λ) that is
invariant under h and f is the linear span of the vk for k ≥ k0, for some
k0 ∈ N.

Proof. The first statement follows from Proposition 1.7, and the second state-
ment is obvious from the first statement.

Corollary 4.5. A nontrivial (distinct from 0 and the full space) linear sub-
space of M(λ) that is invariant under sl2 exists if an only if evk0 = 0
for some k0 ≥ 1, i.e. λ = n ∈ N and k0 = (n + 1). In this case we
have M(−n− 2) ↪→ M(n) with irreducible quotient representation L(n) =
M(n)/M(−n− 2) of dimension (n + 1), and weights {n, n− 2, · · · ,−n}.

We shall denote by L(λ) the irreducible quotient of M(λ). In other words
L(λ) = M(n)/M(−n− 2) if λ = n ∈ N while L(λ) = M(λ) if λ /∈ N.

We have seen that sl2(C) has two real forms su(2) and su(1, 1) with cor-
responding antilinear antiinvolutions

h� = h , e� = f , f� = e

h� = h , e� = −f , f� = −e

respectively. A Hermitian form 〈·, ·〉 on V assigns to each pair u, v ∈ V a
complex number 〈u, v〉 which is linear in u ∈ V and antilinear in v ∈ V . We
do not require the Hermitian form to be unitary (which means 〈v, v〉 positive
for all v �= 0), and even the kernel of the Hermitian form (which consists of
all u ∈ V with 〈u, v〉 = 0 for all v ∈ V ) might be a nonzero linear subspace.
Now let V also be a representation space for sl2. The Hermitian form 〈·, ·〉
is called invariant for sl2 with respect to the given star structure if

〈xu, v〉 = 〈u, x�v〉 ∀u, v ∈ V , ∀x ∈ sl2 .

In particular for V = M(λ) an invariant Hermitian form 〈·, ·〉 satisfies

(λ− 2k)〈vk, vl〉 = 〈hvk, vl〉 = 〈vk, hvl〉 = (λ− 2l)〈vk, vl〉
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and hence ((λ−λ)− 2(k− l))〈vk, vl〉 = 0. Since (λ−λ) ∈ iR and (k− l) ∈ Z

we get 〈vk, vl〉 = 0 if k �= l. Furthermore we find

〈vk+1, vk+1〉 = 〈vk+1, fvk〉 = ±〈evk+1, vk〉 = ±(k + 1)(λ− k)〈vk, vk〉
with ± = + for su(2) and ± = − for su(1, 1).

Theorem 4.6. The irreducible representation L(λ) of sl2 is unitary for su(2)
if and only if λ = n ∈ N, i.e. L(λ = n) has finite dimension (n + 1).

Proof. We may assume that 〈v0, v0〉 is positive. If λ = n ∈ N then in M(n)
we see that

〈vk, vk〉 = (k!)2

(
n

k

)
〈v0, v0〉

is positive for 0 ≤ k ≤ n, while 〈vk+1, vk+1〉 = 0 ∀k ≥ n. Hence the kernel
of the invariant Hermitian form on M(n) is exactly equal to the maximal
proper subrepresentation M(−n − 2), and the invariant Hermitian form on
M(n) descends to an invariant unitary structure on L(n). If λ /∈ N then
M(λ) = L(λ) is a unitary representation if and only if (λ − k) > 0 ∀k ∈ N.
These inequalities have no solution.

All unitary representations L(n) for n ∈ N of su(2) can be integrated to
unitary representations of the group SU(2). In fact these are all the unitary
irreducible representations of SU(2).

Theorem 4.7. The irreducible representation L(λ) of sl2 is unitary for
su(1, 1) if and only if λ ≤ 0.

Proof. Assume that 〈v0, v0〉 is positive. Like in the above proof we get

〈vk, vk〉 = (k!)2(−1)k

(
λ

k

)
〈v0, v0〉 .

Clearly 〈v1, v1〉 = (−λ)〈v0, v0〉 to be nonnegative is a necessary condition
for unitarity of L(λ) is that , i.e. λ ≤ 0. If λ = 0 then L(0) is the one
dimensional trivial representation, which is always unitary. If λ < 0 then
L(λ) = M(λ) is indeed unitary since −(λ− k) > 0 ∀k ∈ N.

All unitary representations L(−n) for n ∈ N of su(1, 1) can be integrated
(after a Hilbert space completion) to unitary representations of the group
SU(1, 1). For n < −1 these representations are so called ”discrete series”
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representations of SU(1, 1), because all the matrix coëfficients are square in-
tegrable with respect to a biinvariant measure on SU(1, 1). These (and their
lowest weight companions in the first exercise below) are not all the unitary
irreducible representations of SU(1, 1). The family of unitary representa-
tions of su(1, 1) described in the above theorem is ususally referred to as the
analytic continuation of the discrete series representations of SU(1, 1).

Exercise 4.1. The Verma representations M(λ) of sl2 are sometimes called
the highest weight Verma representations to distinguish them from the lowest
weight Verma representations M ′(λ) = Usl2/J

′(λ) defined by

J ′(λ) = Usl2(h− λ) + Usl2f .

Sow that for n ∈ N the irreducible quotient L′(−n) has finite dimension
(n + 1), and is unitary for su(2). Show that L(n) and L′(−n) are equiva-
lent representations. Show that the irreducible quotient L′(λ) is unitary for
su(1, 1) in case λ ≥ 0.

Exercise 4.2. Write formally exp(x) =
∑

n≥0 xn/n! for the exponential
series.

1. Show that exp(x)exp(y) = exp(x + y) if xy = yx.

2. Deduce that exp(x) is invertible with inverse exp(−x).

3. Show that exp(e) is a well defined operator in the Verma representation
M(λ) of sl2.

4. Show that exp(f) is a well defined operator in the finite dimensional
representation L(n), n ∈ N of sl2.

5. Show that in the adjoint representation ad : sl2 → End(sl2), ad(x)y =
[x, y] the operator s = exp(e)exp(−f)exp(e) satisfies

sh = −h , se = −f , sf = −e .

6. Show that (exp(x))y(exp(−x)) = exp(ad(x))y in any representation
space of a Lie algebra g.

7. Conclude that for a finite dimensional representation sl2 → End(L(n))
the operator s is well defined, and maps vectors of weight k to vectors
of weight −k.
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5 Lie algebra representations via linear alge-

bra constructions

Suppose g is a Lie algebra, and U, V,W, · · · are representation spaces for g.
The tensor product U ⊗ V becomes a representation space for g by defining

x(u⊗ v) = (xu)⊗ v + u⊗ (xv) ∀ x ∈ g, ∀ u ∈ U, ∀ v ∈ V

because [x, y](u⊗ v) = x(y(u⊗ v))− y(x(u⊗ v)) by a straightforward com-
putation. Likewise the dual vector space U∗ = Hom(U, C) becomes a repre-
sentation space for g by defining

xf(u) = −f(xu) ,

and more generally the vector space Hom(U, V ) becomes a representation
space for g by defining

xf(u) = x(f(u))− f(xu) .

The tensor algebra TV = ⊕T kV is also in a natural way a representation
space for g, and the subspaces

IV = span{TV ⊗ (v1 ⊗ v2 − v2 ⊗ v1)⊗ TV ; v1, v2 ∈ V } ,

JV = span{TV ⊗ (v1 ⊗ v2 + v2 ⊗ v1)⊗ TV ; v1, v2 ∈ V }
are easily seen to be invariant linear subspaces for g. Hence the quotient
spaces SV = TV/IV (the symmetric algebra on V ) and AV = TV/JV
(the antisymmetric algebra on V ) become in this way natural representation
spaces of g. Written out explicitly in a basis {vi} of V we have for the
symmetric algebra

x(vm1
1 vm2

2 · · · vmn
n ) = m1v

m1−1
1 (xv1)v

m2
2 · · · vmn

n +

m2v
m1
1 vm2−1

2 (xv2) · · · vmn
n + · · ·+ mnv

m1
1 vm2

2 · · · vmn−1
n (xvn)

and for the antisymmetric algebra (with the product denoted by ∧)

x(vi1 ∧ vi2 ∧ · · · ∧ vik) = (xvi1) ∧ vi2 ∧ · · · ∧ vik−

vi1 ∧ (xvi2) ∧ · · · ∧ vik + · · ·+ (−1)k+1vi1 ∧ vi2 ∧ · · · ∧ (xvik)
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which are called the Leibniz product rules. If the dimension of V is equal to
n then the dimension of SkV is equal to

(
n+k−1

k

)
while the dimension of AkV

is equal to
(

n
k

)
. In particular SV is infinite dimensional (if n �= 0) while the

dimension of AV is equal to 2n.
We write V g = {v ∈ V ; xv = 0 ∀ x ∈ g} for the space of invariants in V .

In the particular case of Hom(U, V ) the linear operators in Hom(U, V )g are
called intertwiners. If A ∈ Hom(U, V )g is in addition a bijection then we say
that U and V are equivalent representations, and we denote U ∼= V . Here is
Schur’s Lemma, which is easy and fundamental!

Lemma 5.1. If U and V are irreducible finite dimensional representations
of g then the space Hom(U, V )g of intertwiners has dimension 1 if U ∼= V
and dimension 0 otherwise.

Proof. Suppose A ∈ Hom(U, V )g is a nonzero intertwiner. Then the kernel
of A is a proper invariant subspace of U , hence equal to 0. Likewise the
image of A is a nonzero invariant subspace of V , hence equal to V . Hence
A �= 0 is equivalent to A being a bijection, which in turn is equivalent to
U ∼= V . Therefore for nonequivalent U and V we get Hom(U, V )g = 0.

Now suppose that U and V are equivalent, and fix a nonzero (hence
bijective) intertwiner A ∈ Hom(U, V )g. For any B ∈ Hom(U, V )g we see
BA−1 ∈ End(V )g is a selfintertwiner on V . Pick an eigenvalue λ of BA−1

(which is always possible because V is finite dimensional by assumption).
Hence the selfintertwiner (BA−1−λ) ∈ End(V )g has a nonzero kernel, which
by irreducibility of V implies that (BA−1 − λ) = 0, or equivalently B =
λA. The conclusion is that for U and V equivalent the intertwiner space
Hom(U, V )g is one dimensional.

Suppose g0 is a real form of the Lie algebra g with corresponding antilinear
antiinvolution (x + iy)� = −x + iy for x, y ∈ g0. If U, V,W, · · · are unitary
representations of g then the tensor product U ⊗ V and the dual space V ∗

carry natural Hermitian inner products, defined by

〈u⊗ v, u′ ⊗ v′〉 = 〈u, u′〉〈v, v′〉 , 〈f, g〉 =
∑

f(vi)g(vi)

with {vi} an orthonormal basis of V . It is easy to check that U ⊗ V and V ∗

become unitary representations of g. Likewise the vector space Hom(U, V ),
the tensor algebra TV , the symmetric algebra SV and the antisymmetric
algebra AV all become unitary representations of g.
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Theorem 5.2. A finite dimensional unitary representation V of a Lie alge-
bra g with star operation x �→ x� is completely reducible, in the sense that
V can be written as a direct sum of irreducible subrepresentations. If each
unitary irreducible representation of g occurs with multiplicity at most one
then we say that the representation is multiplicity free.

Proof. If U ⊂ V is an invariant linear subspace for g then the orthogonal
complement U⊥ = {v ∈ V ; 〈u, v〉 = 0 ∀u ∈ U} is easily seen to be invariant
as well, and V = U ⊕ U⊥. A required orthogonal direct sum decomposition
of V into irreducible subrepresentations can be found by induction on the
dimension of V .

Remark that the above proof does not come with an algorithm how to
find a direct sum decomposition into irreducibles. In actual examples finding
an explicit decomposition of a unitary representation into irreducible subrep-
resentations can be an outstandingly complicated task!

An important remark is that constructions of linear algebra with uni-
tary representations of g with star structure x �→ x� produce again unitary
representations. The proof is easy and given as an exercise.

A last remark is that the decomposition of V as a direct sum of irreducible
subrepresentations is in general not unique. However what is unique is the
direct sum decomposition

V = V g⊕ gV

with V g the direct sum of all the trivial subrepresentations and gV the direct
sum of all the nontrivial subrepresentations. The selfadjoint projection oper-
ator R ∈ End(V ) with image V g and with kernel gV is called the Reynolds
operator. Clearly R ∈ End(V )g.

Corollary 5.3. If V is a finite dimensional unitary representation of g then
the the tensor algebra TV and the symmetric algebra SV = PV ∗ are com-
pletely reducible.

Proof. Since TV = ⊕T kV and SV = ⊕SkV are direct sum decompositions
with finite dimensional components invariant under g this follows indeed from
the previous theorem.

Lemma 5.4. In the notation of the above corollary the Reynolds operator
R on SV = PV ∗ satisfies R(fg) = fR(g) for all f ∈ (SV )g and g ∈ SV .
Moreover the Reynolds operator can not raise the degree.
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Proof. Observe that multiplication by f ∈ (SV )g preserves both (SV )g and
g(SV ). If we write g = Rg + (g − Rg) then fg = fRg + f(g − Rg) with
fRg ∈ (SV )g and f(g − Rg) ∈ g(SV ). Hence R(fg) = fR(g) for all f ∈
(SV )g and g ∈ SV .

Example 5.5. The standard representation of sl2 on C
2 is by definition

unitary for su(2). The representation space Sn(C2) has dimension (n + 1)
with basis xn−mym for m = 0, 1, · · · , n. The Chevalley basis {e, h, f} acts in
this representation space via the first order differential operators

e = x∂/∂y , f = y∂/∂x , h = [e, f ] = x∂/∂x− y∂/∂y .

The representation Sn(C2) of sl2 is called the degree n binary forms repre-
sentation. The monomial xn is the (up to a multiplicative constant unique)
highest weight vector of weight n, and therefore Sn(C2) is equivalent to L(n).
Now the corollary implies that L(n) ∼= Sn(C2) is also unitary for su(2). This
proof is a quick alternative for Theorem 4.6. Proving unitarity of a given
representation via constructions of linear algebra somehow not only proves
but also explains why the given representation is unitary.

Example 5.6. The decomposition of L(m)⊗L(n) into irreducible subrepre-
sentations is multiplicity free and given by the Clebsch-Gordan rule

L(m)⊗ L(n) ∼= L(m + n)⊕ L(m + n− 2)⊕ · · · ⊕ L(|m− n|) .

By Theorem 5.2 we can write L(m)⊗L(n) as a direct sum over k ∈ N of the
L(k) with certain multiplicities mk ∈ N. The weights of L(m)⊗L(n) are on
the one hand (as a set with multiplicities) equal to

{i + j; |i| ≤ m, |j| ≤ n, (n− i) ∈ 2N, (m− j) ∈ 2N}
and on the other hand equal to the union over k ∈ N of {k, k − 2, · · · ,−k},
counted with multiplicity mk. A bit of combinatorial puzzling gives the above
Clebsch-Gordan rule.

Example 5.7. A special case of the Clebsch-Gordan rule gives

L(n)⊗ L(n) = L(2n)⊕ L(2n− 2) · · · ⊕ L(2)⊕ L(0) .

Note that the occurence of L(0) with multiplicity one is also clear from Schur’s
Lemma. On the other hand we also have the decomposition in symmetric and
antisymmetric tensors

L(n)⊗ L(n) = S2(L(n))⊕ A2(L(n)) ,
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and one can ask how the two decompositions match? The answer to this
question is

S2(L(n)) = L(2n)⊕ L(2n− 4)⊕ · · · ,

A2(L(n)) = L(2n− 2)⊕ L(2n− 6)⊕ · · · .

One can mimic the argument of the previous example. Indeed the weights of
S2(L(n)) are given by (as a set with multiplicities)

{i + j; |i| ≤ m, |j| ≤ n, (n− i) ∈ 2N, (m− j) ∈ 2N, i ≤ j} ,

while the weights of A2(L(n)) are given by (as a set with multiplicities)

{i + j; |i| ≤ m, |j| ≤ n, (n− i) ∈ 2N, (m− j) ∈ 2N, i < j} .

We leave the combinatorial details to the reader.

If V is a representation of g then the vectorspace SV g is in fact a sub-
algebra of SV , called the algebra of invariants for g. Indeed if f, g ∈ SV g

then fg ∈ SV g by the Leibniz product rule. The next theorem is one of the
fundamental results of invariant theory due to Hilbert and Weyl.

Theorem 5.8. If V is a finite dimensional unitary representation of a Lie
algebra g with a star structure then the algebra of invariants (SV )g is a
finitely generated algebra.

Proof. The theorem will follow from the Hilbert basis theorem. Let V be a
finite dimensional vector space. An ideal I ⊂ SV is a vector subspace with
the property that fg ∈ I for all f ∈ I, g ∈ SV . The Hilbert basis theorem
says that any ideal I in SV is finitely generated, so

I = f1SV + f2SV + · · ·+ fnSV

for some f1, f2 · · · , fn ∈ I. The proof of the Hilbert basis theorem can be
found in any text book on (commutative) algebra.

We shall apply the Hilbert basis theorem to the homogeneous ideal gen-
erated by (SV )g

+, consisting of all homogeneous invariants of positive degree.
Suppose f1, f2 · · · fn ∈ (SV )g

+ are homogeneous ideal generators of degree
1 ≤ d1 ≤ d2 ≤ · · · ≤ dn. Let f ∈ (SV )g

+ be a homogeneous invariant of
degree d ≥ 1. We shall prove that f ∈ C[f1, f2, · · · , fn] by induction on the
degree d.
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Write f = f1g1 + f2g2 + · · ·+ fngn with g1, g2, · · · , gn ∈ SV homogeneous
of degree strictly smaller than d. Application of the Reynolds operator and
using Lemma 5.4 gives

f = R(f) = f1R(g1) + f2R(g2) + · · ·+ fnR(gn)

and because R(g1), R(g2), · · · , R(gn) ∈ (SV )g are all homogeneous of degree
strictly smaller than d the theorem follows from the induction hypothesis.

Example 5.9. The algebra of invariants S(L(n))sl2 for degree n binary forms
has a (upto multiplicative scalar unique) generator f2 in degree 2 if n ≥ 2 is
even, and has no generator in degree 2 if n ≥ 2 is odd. This is clear from
Example 5.7. In the special case of the adjoint representation L(2) = sl2 one
can show that S(L(2))sl2 is isomorphic to C[f2].

Example 5.10. In the next section we will show that the algebra of invariants
S(L(4))sl2 for degree 4 binary forms is isomorphic to C[f2, f3] with generators
f2 in degree 2 and f3 in degree 3.

Describing in an explicit way generators (and relations) for the algebra of
invariants SV g is an extremely hard problem. Even in the case of invariants
S(L(n))sl2 of sl2 for degree n binary forms the problem is still hopeless, and
even with the help of modern computers beyond comprehension for say n
greater than 10.

Exercise 5.1. Show that the linear isomorphism of vector spaces

U∗ ⊗ V → Hom(U, V ), f ⊗ v �→ {u �→ f(u)v}

is a natural isomorphism of representation spaces for the Lie algebra g.

Exercise 5.2. If U and V are unitary representations of g then check that
U ⊗ V and V ∗ are unitary representations of g as well.

Exercise 5.3. Show that the Chevalley basis {e, h, f} of sl2 acting in the
representation space Sn(C2) with basis xn−mym for m = 0, 1, · · · , n via the
first order differential operators

e = x∂/∂y , f = y∂/∂x , h = [e, f ] = x∂/∂x− y∂/∂y

defines a representation of sl2.
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Exercise 5.4. Show that the degree 2 invariant in S(sl2)
sl2 is given by the

expression h2 + 4ef .

Exercise 5.5. Show that the Casimir operator C = h2 +2ef +2fe is central
in Usl2. By Schur’s Lemma the Casimir operator C acts in L(n) as a scalar
operator. Rewriting C = h2 +2h+4fe check that this scalar equals n2 +2n =
(n + 1)2 − 1.

Exercise 5.6. Show that the Casimir operator C in a unitary representation
V of su2 is selfadjoint. The eigenspace decomposition V = ⊕V (n) with
V (n) = Ker(C − (n2 + 2n)) is called the direct sum decomposition of V
in isotypical components. Apparently the direct sum decomposition of V in
irreducible components is not unique, but the direct sum decomposition of V
in isotypical components (so we take irreducible components of the same type
together) is unique by the above argument.

Exercise 5.7. Suppse we have given a representation of sl2 on a finite di-
mensional Hilbert space V that is unitary for su2. The eigenvalues of h on
V are called the weights of V . Suppose k ∈ Z occurs as weight of V with
multiplicity mk ∈ N.

1. Show that m−k = mk for all k ∈ Z.

2. Show that m0 ≥ m2 ≥ m4 ≥ · · · and m1 ≥ m3 ≥ m5 ≥ · · · . The first
and second items together are rephrased by saying that the multiplicities
of the even weights and of the odd weights form so called palindromic
sequences.

3. Suppose all weights of V are even and m0 = 5,m2 = 3,m4 = 3,m8 =
2,m12 = 1,m14 = 0. Describe the decomposition of V into irreducible
components.

4. Suppose all weights of V are odd and m5 = 4,m7 = 1 and the dimension
of V is equal to 28. Describe the decomposition of V into irreducible
components. These data do not quite suffice for a unique solution, but
there are two possibilities.
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6 Formal characters

Suppose we have an Abelian Lie algebra h and a representation h → gl(V )
of h on a vector space V . For μ ∈ h∗ we shall write

Vμ = {v ∈ V ; hv = μ(h)v ∀h ∈ h}
for the linear subspace of vectors of weight μ, and we shall call Vμ the weight
space of weight μ. All weights μ with Vμ �= 0 are called the weights of the
given representation. We say that the representation is h-diagonalizable if

V =
⊕

μ

Vμ ,

and h-admissable if in addition all weights spaces are finite dimensional. For
example, Verma representations for sl2 restricted to h = Ch are h-admissable.
If h0 is a real form of h, then any finite dimensional representation of h that
is unitary for h0 is indeed h-diagonalizable. Moreover all weights of such a
unitary representation are real, i.e. satisfy μ� = μ.

Suppose we have given a basis h = {h1, · · · , hn} of h. This allows us to
identify h∗ with C

n via μ �→ (μ(h1), · · · , μ(hn)). A vector μ ∈ h∗ is called
h-integral if μ maps into Z

n.
Suppose we have given a Lie algebra g with a fixed Abelian subalgebra

h, together with a fixed basis h = {h1, · · · , hn} of h. Suppose we have given
a representation g → gl(V ), that is h-admissable and h-integral, in the sense
that all weights of V are h-integral. Under these assumptions we can define
the formal charachter by

charV (g,h,q) = trV (qh) = trV (qh1
1 · · · qhn

n )

which lies in Z[[q±1]] = Z[[q±1
1 , · · · , q±1

n ]]. Clearly the familiar relations of
characters for the dual representation

charV ∗(g,h,q) = charV (g,h,q−1) ,

and for the tensor product of two representations

charU⊗V (g,h,q) = charU(g,h,q)charV (g,h,q)

do hold, like in the case of finite groups. However the multiplication in
Z[[q±1]] is not well defined, and one should either restrict to Z[q±1] for finite
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dimensional representations, or possibly work with Z[q±1]] and Z[[q±1] for
Verma representations and their duals.

For example, for g = sl2 with h = Ch we have for n ∈ Z

charM(n)(sl2, h, q1/2) = qn/2/(1− q−1) ∈ Z[q1/2, q−1/2]] ,

which in turn implies for n ∈ N

charL(n)(sl2, h, q1/2) = charM(n)(sl2, h, q1/2)− charM(−n−2)(sl2, h, q1/2) .

Therefore we find

charL(n)(sl2, h, q1/2) = (qn/2 − q−(n+2)/2)/(1− q−1) =

(q(n+1)/2 − q−(n+1)/2)/(q1/2 − q−1/2) ∈ Z[q1/2, q−1/2] ,

which is called the Weyl character formula for sl2. Observe that

charL(n)(sl2, h, q1/2 = 1) = (n + 1) ,

which is the dimension of L(n) as should.
For f(q) ∈ Z[q±1] written out in multiindex notation f(q) =

∑
m amqm

we denote the constant term by CTq(f(q)) = a0. The ring of Laurent poly-
nomials Z[q±1] with integral coëfficients has a natural star structure defined
by f �(q) = f(q−1). The finite dimensional irreducible characters of sl2 are
invariant under this star structure on Z[q1/2, q−1/2], which is a reflection of
the fact that the representations L(n) are selfdual. The bilinear form

〈f, g〉 = CTq(f(q)g�(q))

is an inner product on Z[q±1]. The Schur orthonormality relations for an
Abelian Lie algebra h with fixed basis h are really trivial, and take the
following form.

Theorem 6.1. The irreducible h-integral characters qm with m ∈ Z
n are

an orthonormal basis of Z[q±1].

This theorem is nothing but the familiar orthonormality relation from the
theory of Fourier series. The Schur orthonormality relations for su2 take the
following form.
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Theorem 6.2. The characters of the finite dimensional irreducible unitary
representations of su2 in Z[q1/2, q−1/2] are orthonormal with respect to the
inner product

〈f, g〉su2 = 〈f(1− q−1), g(1− q−1)〉/2 = CTq(fg�(1− q)(1− q−1))/2

on Z[q1/2, q−1/2].

Indeed, this is obvious from the Weyl character formula for sl2, since

〈charL(m)(q), charL(n)(q)〉su2 =

CTq((q
m/2 − q−(m+2)/2)(q−n/2 − q(n+2)/2))/2

is equal to δmn for all m,n ∈ Z.
We shall illustrate the power of formal characters in the example of the

algebra of invariants V = S(L(4))sl2 for degree 4 binary forms of sl2. In
the basis {x4, x3y, x2y2, xy3, y4} of L(4) the operator h of sl2 has eigenvalues
4, 2, 0,−2,−4. Let d be the identity operator on L(4). The formal charachter
charS(L(4))(p, q) of S(L(4)) is given by

trS(L(4))(p
SdqSh/2) = 1/((1− pq2)(1− pq)(1− p)(1− pq−1)(1− pq−2)) .

We should expand this expression as a power series in p, with coëfficients
Laurent polynomials in q. So we can take 0 < p < 1 and q a complex
number on the unit circle. Using the Schur orthonormality relations for su2

the formal character charV (p) of V = S(L(4))sl2 viewed as a representation
space for Cd becomes

CTq[(1− q)(1− q−1)/((1− pq2)(1− pq)(1− p)(1− pq−1)(1− pq−2))]/2 ,

which is equal to 1/2πi times
∮

[(1− q)(1− q−1)dq/((1− pq2)(1− pq)(1− p)(1− pq−1)(1− pq−2)q)]/2

with
∮

the contour integral over the unit circle. Using the residue theorem
we can rewrite charV (p) as

∑
resq[(1− q)(1− q−1)/((1− pq2)(1− pq)(1− p)(1− pq−1)(1− pq−2)q)]/2

with
∑

the sum over the singular points q inside the unit circle.
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The singular points inside the unit circle are q = 0, p,±p1/2. The residue
at q = 0 becomes

res0[(1− q)(1− q−1)/((1− pq2)(1− pq)(1− p)(1− pq−1)(1− pq−2)q)]/2 =

res0[(1− q)(q − 1)q/((1− pq2)(1− pq)(1− p)(q − p)(q2 − p))]/2 = 0 ,

while the residue at q = p becomes

resp[(1− q)(1− q−1)/((1− pq2)(1− pq)(1− p)(1− pq−1)(1− pq−2)q)]/2 =

resp[(1− q)(1− q−1)/((1− pq2)(1− pq)(1− p)(q − p)(1− pq−2))]/2 =

(1− p)(1− p−1)/(2(1− p3)(1− p2)(1− p)(1− p−1)) = 1/(2(1− p2)(1− p3)) .

Finally we have to compute the residue at q = ±p1/2 of the function

[(1− q)(1− q−1)/((1− pq2)(1− pq)(1− p)(1− pq−1)(1− pq−2)q)]/2 =

[(1− q)(1− q−1)q/((1− pq2)(1− pq)(1− p)(1− pq−1)(q− p1/2)(q + p1/2))]/2.

The residue at q = p1/2 becomes

(1− p1/2)(1− p−1/2)p1/2/(2(1− p2)(1− p3/2)(1− p)(1− p1/2)2p1/2) =

(1− p−1/2)(1 + p3/2)/(4(1− p)(1− p2)(1− p3)) =

(1− p− p−1/2 + p3/2)/(4(1− p)(1− p2)(1− p3)) ,

and likewise the residue at q = −p1/2 becomes

(1− p + p−1/2 − p3/2)/(4(1− p)(1− p2)(1− p3)) .

Summing up the four residues we find

charV (p) = 1/((1− p2)(1− p3)) .

This character formula is in accordance with our claim in Example 5.10.
Indeed we do get nonzero invariants f2 ∈ S2(L(4))sl2 of degree 2 and f3 ∈
S3(L(4))sl2 of degree 3.

The three dimensional linear subspace U of L(4) given by

U = {p(x, y) = (a0x
3 + a2xy2 + a3y

3)y}
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is called the standard slice. Let the group C
× act on U via q · (a0, a2, a3) =

(qa0, q
−1a2, q

−2a3) for all q ∈ C
× and (a0, a2, a3) ∈ U . This action is nothing

but the natural action of the diagonal subgroup (with diagonal entries q1/2

and q−1/2) of SL2(C) on U ⊂ L(4), because the weights of h/2 on U are equal
to 1,−1,−2. Almost all orbits of SL2(C) on L(4) intersect the standard slice
U in exactly one orbit of C

× on U .
The restriction of the invariants f2, f3 to the standard slice U have the

simple form
f2(a0, a2, a3) = a0a2 , f3(a0, a2, a3) = a2

0a3

after a possible rescaling. Hence the invariants f2, f3 are algebraically in-
dependent. The final conclusion is that S(L(4))sl2 = C[f2, f3] as stated in
Example 5.10. If the leading coëfficient a0 of p(x, y) ∈ U is nonzero, then we
can write p(x, y) = a0(x−z1y)(x−z2y)(x−z3y)y for some z1, z2, z3 ∈ C with

z1 + z2 + z3 = 0 , a0(z1z2 + z2z3 + z1z3) = a2 , a0z1z2z3 = −a3 .

The fourth zero of the degree 4 binary form p(x, y) ∈ U is to be thought of
as ∞. In other words the invariants f2, f3 become

f2 = a2
0(z1z2 + z2z3 + z1z3) , f3 = −a3

0z1z2z3

and are essentially the elementary symmetric functions of degree 2 and 3 in
the three roots z1, z2, z3 ∈ C.

A particular degree 6 invariant is the discriminant D whose restriction to
U is given by by

D = −4f 3
2 − 27f 2

3 = a6
0(z1 − z2)

2(z2 − z3)
2(z1 − z3)

2 .

The ”discriminant variety” D = 0 on L(4) consists of those degree 4 binary
forms with a multiple root.

We finish this discussion by describing the orbit structure of PSL2(C) =
SL2(C)/(±e) on the projective space P(L(4)) in geometric terms. There is a
unique closed orbit C consisting of degree 4 binary forms with a quadruple
root. This orbit has dimension one, and is a smooth rational curve of degree
4, in the sense that a generic hyperplane in P(L(4)) intersects C in 4 points.

The tangent bundle TC of C is by definition the union of all tangent
lines to C. It has dimension two, and is a surface of degree 6 in the sense
that a generic plane in P(L(4)) intersects T in 6 points. The surface TC =
C � (TC − C) is singular along the curve C and smooth at TC − C. The
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smooth part TC−C is an orbit of dimension two consisting of degree 4 binary
forms with a triple root. The defining equations for TC are f2 = 0, f3 = 0.

The chordal variety CC consists of all chords of C, so it is the union of all
lines through any two points of C. It has dimension three, and is a threefold
of degree 3 in the sense that a generic line in P(L(4)) intersects T in 3 points.
The threefold CC is singular along the curve C and smooth at CC−C. The
subset CC−TC of CC is an orbit of dimension three. The defining equation
for CC is f3 = 0, and CC is referred to as the ”chordal cubic”.

The Hessian variety H of the chordal cubic CC is a threefold of degree
5, and therefore H = Q ∪ CC with Q the ”invariant quadric”, with defining
equation f2 = 0. A generic line in P(L(4)) intersects H in 5 points, with 2
of them on the quadric Q and the remaining 3 on the cordal cubic CC. The
quadric Q is smooth, and Q − TC consists of one orbit of dimension three.
The intersection Q ∩ CC equals TC, as mentioned above.

The discriminant variety DV with defining equation D = 0 consists of
degree 4 binary forms with a multiple root. It has dimension three, and is
a threefold of degree 6. The discriminant variety DV is smooth outside the
surface C � (DD − C) � (TC − C). This surface has two components, one
is DD and the other is TC. The smooth part DV − (DD ∪ TC) of the
discriminant variety consists of degree 4 binary forms with one double root.
The singular part DD ∪ TC of the discriminant variety consists of degree 4
binary forms, with two double roots DD − C, with a triple root TC − C,
and with a quadruple root C.

It can be shown that all remaining orbits have dimension three, and the
stabilizer in PSL2(C) of any point on such an orbit is the Klein fourgroup
V4. We have discussed above 3 special orbits of dimension three, namely the
open orbit Q − TC in the invariant quadric, the open orbit CC − TC in
the chordal cubic, and the open orbit DV − (DD ∪ TC) in the discriminant
variety. One can check that the stabilizer in PSL2(C) of any point on such
an orbit is isomorphic to the alternating group A4 of order 12, the dihedral
group D4 of order 8, and the cyclic group C2 of order 2 respectively. This
ends our discussion of the invariant theory of degree 4 binary forms.

Exercise 6.1. Check that the relation

−4(z1z2 + z2z3 + z1z3)
3 − 27(z1z2z3)

2 = (z1 − z2)
2(z2 − z3)

2(z1 − z3)
2

holds if (z1 + z2 + z3) = 0. Hint: Check the identity both in case z1 = z2 =
z, z3 = −2z and in case z1 = 1, z2 = 0, z3 = −1, and use the symmetry under
the symmetric group S3.
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Exercise 6.2. Which orbits of PSL2(C) on P(L(4)) do not intersects the
standard slice PU? Answer: The two orbits C and DD − C.

Exercise 6.3. The subset of nonzero binary forms p(x, y) = a0x
n+a1x

n−1y+
· · ·+ any

n in L(n) with a root of multiplicity m ≥ 1 has as standard slice

U = {p(x, y) = (amxn−m + am+2x
n−m−2y2 + · · ·+ any

n−m)ym; am �= 0} .

Each orbit under SL2(C) of such a binary form in L(n) intersects U in an
orbit of C

×. Here C
× acts on U by

q · (am, am+2, · · · , an) = (qn/2−mam, qn/2−m−2am+2, · · · , q−n/2an)

and this is just the action of the diagonal subgroup of SL2(C) on U .
Show that for p ∈ U we have limq→∞ q · p = 0 ⇔ m > n/2. This enables

one to conclude that the orbit under SL2(C) of a nonzero p ∈ L(n) contains
the origin 0 in its closure if and only if p has a root of multiplicity m > n/2.
Such binary forms are called unstable. The complement of the unstable locus
in L(n) is called the set of semistable binary forms. For semistable binary
forms all roots have multiplicity m ≤ n/2. The stable locus consists of those
nonzero binary forms with all roots of multiplicity m < n/2. Semistable but
not stable is called strictly semistable. So we have

P(L(n)) = P(L(n))us � P(L(n))ss , P(L(n))ss = P(L(n))sss � P(L(n))s

as partitions of P(L(n)) invariant under SL2(C). A degree n binary form
is called minimal semistable if it is either stable or strictly semistable with
just two roots of multiplicity m = n/2. Consider stereographic projection of
C ∪ ∞ on the unit sphere S = {u2 + v2 + w2 = 1}. For p ∈ U project the
n roots z1, · · · , zn stereographically on the unit sphere S, to obtain n points
s1, · · · , sn on S among which the north pole occurs with multiplicity m.

Show that for p ∈ U the center of gravity (s1 + · · · + sn)/n lies on the
axis from north to south pole, and p is minimal semistable if and only upto
action of R

× on U the center of gravity (s1 + · · ·+ sn)/n can be taken in the
origin 0. The conclusion is that the minimal semistable locus in P(L(n)) is
represented by those configurations of n points on S with possible collisions
for which the center of gravity lies at the origin.

Exercise 6.4. Let us consider a sharp angled triangle with sides of lengths
2a, 2b, 2c > 0. Fold this triangle along the three midparallels (of lengths a, b, c)
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upwards to form a tetrahedron T with four congruent faces. Indeed all four
faces of T are triangles with lengths of edges equal to a, b, c. Note that each
pair of opposite edges of T has equal length. If the original triangle is right
angled then the tetrahedron T degenerates into a flat figure.

� � �

�

� �

a b

c

Show that the line trough the midpoints of opposite edges of T is perpen-
dicular to both these edges. Conclude that the rotation over π with axis the
line through the midpoints of opposite edges of T lies in the rotation sym-
metry group G(T ) of T . Conclude that G(T ) ∼= V4 in general, except for
the cases a =

√
2b =

√
2c and G(T ) ∼= D4, or a = b = c and G(T ) ∼= A4.

Conclude that the center of gravity of the four vertices of T is equal to the
center of the circumscribed sphere of T .
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7 The bound states for the Kepler problem

In this section we will discuss the Kepler problem from the viewpoint of
both classical mechanics (planetary motion aroun the sun) and quantum
mechanics (the hydrogen atom). Our discussion of the classical mechanics of
the Kepler problem is taken from an article ”Teaching the Kepler laws for
freshmen” by Maris van Haandel and myself from 2008.

We shall use inner products u · v and outer products u× v of vectors u
and v in R

3, the compatibility conditions

u · (v ×w) = (u× v) ·w
u× (v ×w) = (u ·w)v − (u · v)w

and the Leibniz product rules

(u · v)
.
= u̇ · v + u · v̇

(u× v)
.
= u̇× v + u× v̇

without further explanation.
For a central force field F(r) = f(r)r/r the angular momentum vector

L = r×p is conserved by Newton’s law of motion F = ṗ, thereby leading to
Kepler’s second law. For a spherically symmetric central force field F(r) =
f(r)r/r the energy

H = p2/2m + V (r) , V (r) = −
∫

f(r) dr

is conserved as well. These are the general initial remarks.
From now on consider the Kepler problem f(r) = −k/r2 en V (r) = −k/r

with k > 0 a coupling constant. More precisely, we consider the reduced
Kepler problem for the sun S and a planet P with r = rP − rS the relative
position of the planet. Let mS and mP be the masses of the sun S and
the planet P respectively. According to Newton the reduced mass becomes
m = mSmP /(mS +mP ) while the coupling constant is given by k = GmSmP

with G the universal gravitational constant. By conservation of energy the
motion for fixed energy H < 0 is bounded inside a sphere with center 0 and
radius −k/H.

Consider the following picture of the plane perpendicular to L. The circle
C with center 0 and radius −k/H is the boundary of a disc where motion
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with energy H < 0 takes place. Let s = −kr/rH be the projection of r from
the center 0 on this circle C. The line L through r with direction vector p
is the tangent line of the orbit E at position r with velocity v. Let t be the
orthogonal reflection of the point s in the line L. As time varies, the position
vector r moves along the orbit E , and likewise s moves along the circle C. It
is a good question to investigate how the point t moves.

��
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�

�

�
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n

t

p

r

s C
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L
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Theorem 7.1. The point t equals K/mH and therefore is conserved.

Proof. The line N spanned by n = p× L is perpendicular to L. The point
t is obtained from s by subtracting twice the orthogonal projection of s− r
on the line N , and therefore

t = s− 2((s− r) · n)n/n2.

Now
s = −kr/rH

(s− r) · n = −(H + k/r)r · (p× L)/H = −(H + k/r)L2/H

n2 = p2L2 = 2m(H + k/r)L2
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and therefore
t = −kr/rH + n/mH = K/mH

with K = p × L − kmr/r the Lenz vector. The final step K̇ = 0 is derived
by a straightforward computation using the compatibility relations and the
Leibniz product rules for inner and outer products of vectors in R

3.

Corollary 7.2. The orbit E is an ellipse with foci 0 and t, and major axis
equal to 2a = −k/H.

Proof. Indeed we have

|t− r|+ |r− 0| = |s− r|+ |r− 0| = |s− 0| = −k/H.

Hence E is an ellipse with foci 0 and t, and major axis 2a = −k/H.

The conserved vector t = K/mH is a priori well motivated in Euclidean
geometric terms. In most text books on classical mechanics (e.g. H. Gold-
stein, Classical Mechanics) the Lenz vector K is written down, and the mo-
tivation comes only a posteriori from K̇ = 0 as a vector in the direction of
the long axis of the elliptical orbit. The Lenz vector goes already back to
Lagrange in his article ”Théorie des variations séculaires des élements des
planètes” from 1781.

It is easy to check the relations K · L = 0 and K2 = 2mHL2 + k2m2.
Hence besides the familiar conserved quantities angular momentum L and
energy H only the direction of the Lenz vector K is a new independent con-
served quantity. Altogether there are 3 + 1 + 1 = 5 independent conserved
quantities, whose level curves in the phase space R

6 are the Kepler ellipses,
at least for H < 0 corresponding to bounded motion.

We now turn to the quantum mechanics of the Kepler problem. The first
discussion of this question was given by Pauli in an article ”On the hydrogen
spectrum from the standpoint of the new quantum mechanics” from Jan-
uary 1926. Pauli’s solution is a beautiful piece of Lie algebra theory, which
made it difficult to digest for the average physicist of that time, who happily
adopted the shortly after found solution by Schrödinger. The latter method
rewrites the Schrödinger eigenvalue equation in spherical coördinates, and
subsequently consults a book on Special Functions (for Laguerre and Legen-
dre polynomials). This method of Schrödinger is just a lot of calculations.
In the proof by Pauli one has to do also a fair amount of calculations. But
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the proof by Pauli is by far the better, because it explains the natural de-
generation of the hydrogen spectrum, while in the proof by Schrödinger this
spectrum has still accidental degeneration. The hidden conserved Lenz vector
is what is missing in the treatment by Schrödinger.

We consider Pauli’s proof below and the proof above of Kepler’s law of
ellipses as proofs from ”The Book”. This is an expression of the remarkable
mathematician Paul Erdös, who supposed that God has a book in which he
keeps only the most beautiful proofs of mathematical theorems. One of the
joyful parts of mathematics is to strive for proofs from ”The Book”.

We shall only outline the method of Pauli, and leave the proofs of the
formulas to the interested reader. In quantum mechanics the three compo-
nents of the position r and the momentum p are selfadjoint operators on a
Hilbert space H, satisfying the Heisenberg commutation relations

[ri, rj] = [pi, pj] = 0 , [pi, rj] = −i�δij .

We wish to quantize the energy H, the angular momentum L and the Lenz
vector K. For H and L we can just take the classical formulas

H = p2/2m− k/r , L = r× p

but for the Lenz vector K = p× L− kmr/r there is an ambiguity with the
definition of p×L. Indeed, for the first component should we take p2L3−p3L2

or L3p2 − L2p3? For the solution of this ambiguity Pauli chose the average

K = (p× L− L× p)/2− kmr/r ,

which is easily seen to be selfadjoint. The following formulas

[Li, rj] = i�εijkrk , [Li, pj] = i�εijkpk

[Li, Lj] = i�εijkLk , [Li, Kj] = i�εijkKk

mean that r,p,L and K are so called vector operators. Here εijk is the
totally antisymmetic ε-tensor. The conservation of L and K amounts to the
relations

[H,L] = [H,K] = 0 .

The first relation is immediate because H has spherical symmetry, but the
second relation requires some calculation. The following formulas are in
perfect analogy with classical mechanics

L ·K = K · L = 0 ,
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but the formula
K2 = 2mH(L2 + �

2) + k2m2

has a ”quantum correction” compared with the classical formula, vanishing
in the limit for � → 0. Our last formula

[Ki, Kj] = i�εijk(−2mH)Lk

is obtained after a careful calculation.
The sometimes cumbersome calculations behind the above formulas shall

now be rewarded by an elegant and conceptually clear method for finding the
hydrogen spectrum. We wish to compute the dimension of the eigenspace

{ψ ∈ H; Hψ = Eψ}

with a fixed eigenvalue E < 0. If we denote

I = (L + (−2mE)−1/2K)/2 , J = (L− (−2mE)−1/2K)/2

then it is easy to see that I and J satisfy the commutation relations

[Ii, Ij] = i�εijkIk , [Ji, Jj] = i�εijkJk , [Ii, Jj] = 0 .

In other words the six dimensional vector space spanned by the components of
L and K is a Lie algebra isomorphic to sl2⊕sl2 commuting with H. The first
sl2 has basis Ii and the second sl2 has basis Jj. From L� = L,K� = K and
E < 0 we deduce that I� = I,J� = J. In other words the real six dimensional
vector space spanned by the components of L and K (or equivalently spanned
by the components of I and J) becomes identified with isu2 ⊕ isu2.

Assuming that the spectrum has natural degeneration with respect to
angular momentum and Lenz vector we can conclude

{ψ ∈ H; Hψ = Eψ} = L(m)⊗ L(n)

for some m,n ∈ N. Here Ii and Jj work in the first and the second factor of
L(m)⊗ L(n) respectively. Because

2(I2 − J2) = (I + J) · (I− J) + (I− J) · (I + J) =

(−2mE)−1/2(L ·K + K · L) = 0 ,
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and by Exercise 5.5 and Exercise 7.2 below

I2|L(m)⊗L(n) = m(m + 2)�2/4 , J2|L(m)⊗L(n) = n(n + 2)�2/4

we conclude that m = n and

{ψ ∈ H; Hψ = Eψ} = L(n)⊗ L(n)

for some n ∈ N. Finally we shall derive a formula for En as function of n.
Rewriting the above formula K2 = 2mH(L2 + �

2) + k2m2 in the form

L2 + (−2mE)−1K2 + �
2 = −k2m/2E

and because on the space L(n)⊗ L(n)

L2 + (−2mE)−1K2 + �
2 = 2(I2 + J2) + �

2 = n(n + 2)�2 + �
2 = (n + 1)2

�
2

we arrive at
E = En = −k2m/2(n + 1)2

�
2

with n running over the set N. The energy level En has multiplicity (n+1)2.
As a representation for I and J it is irreducible of the form L(n)⊗L(n), but
restricting to the diagonal subalgebra L we have the Clebsch-Gordan rule

L(n)⊗ L(n) = L(0)⊕ L(2)⊕ · · · ⊕ L(2n) .

If we forget the symmetry of the Lenz vector K and take into account only
the spherical symmetry of the angular momentum vector L = I + J the nth

energy level has accidental degeneration of multiplicity (n + 1).

Exercise 7.1. Show that for A,B selfadjoint operators on a Hilbert space H
the operator (AB+BA)/2 is again selfadjoint.

Exercise 7.2. The Pauli spin matrices are defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

so h = σ3, e = (σ1 + iσ2)/2, f = (σ1 − iσ2)/2 gives the relation between the
Chevalley basis and the Pauli matrices. In a unitary representation of su2 the
Pauli matrices act as selfadjoint operators. Check the commutation relations

[σi, σj] = 2iεijkσk

and show that the Casimir operator C = h2+2ef+2fe is equal to σ2
1+σ2

2+σ2
3.

The conclusion is that L2 = �
2C/4, so apart from a factor �

2/4 the Casimir
operator C is just the square length of the the angular momentum vector.
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Exercise 7.3. Show that the Cartesian space R
3 with Lie bracket [·, ·] equal

to the vector product × is a Lie algebra. Show that this Lie algebra g0 is
isomorphic to so3. Show that g0 has a basis ei with [ei, ej] = εijkek.

Exercise 7.4. Suppose we are in the regime where H = E > 0. Show that
L� = L,K� = K implies that I� = J,J� = I. Hence the Casimir operator
I2 + J2 acts on the eigenspace

{ψ ∈ H; Hψ = Eψ}

as a selfadjoint operator. If we assume this eigenspace to be an irreducible
representation of sl2 ⊕ sl2 then the operator I2 + J2 acts by multiplication
with a real number s(s + 2)�2/2 by Schur’s Lemma with s ∈ −1 + iR or
s ∈ R. Because E = −k2m/2(s + 1)2

�
2 > 0 we have s ∈ −1 + iR. The

parametrization of the nonpositive real numbers by (s + 1)2
�

2/2 with s ∈
−1+ iR will become clear in a later section on representations of the Lorentz
algebra so3,1(R).

Exercise 7.5. Suppose g1 and g2 are two Lie algebras. Suppose V1 and V2

are representations of g1 and g2 respectively. We define the outer tensor
product representation V1 � V2 of the direct sum g1 ⊕ g2 as follows: As a
vector space V1 � V2 = V1 ⊗ V2 and the representation is defined by

(x1, x2)(v1 ⊗ v2) = (x1v1)⊗ v2 + v1 ⊗ (x2v2)

for all x1 ∈ g1, x2 ∈ g2, v1 ∈ V1 and v2 ∈ V2. Show that the outer tensor
product is indeed a representation of the direct sum g1 ⊕ g2. Show that the
outer tensor product of two irreducible representations is again irreducible,
and each irredicible representation of the direct sum g1 ⊕ g2 arises this way.
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8 Spinning elementary particles

One can imagine an elementary particle as a small spherically symmetric ball,
so with internal symmetry Lie algebra so3

∼= sl2. This internal symmetry can
be quantized by the unitary irreducible representation L(2s) of dimension
(2s + 1) and highest weight 2s ∈ N. The parameter s ∈ N/2 is called
the spin J of the irreducible representation L(2s) of so3

∼= sl2. The faster
the elementary particle spins the larger the spin quantum number s ∈ N/2.
Hence an elementary particle with spin J = s ∈ N/2 can occupy (2s + 1)
states indexed by a quantum number J3 taken from the set {s, s−1, · · · ,−s},
which is just the set of eigenvalues of the Lie algebra element h/2 from sl2.
So the spin J is an index for the irreducible representation of sl2, while the
spin around the (third) axis J3 is an index for a basis in this representation
space. These notations are fairly standard.

Examples are the Higgs particle with spin 0, the electron with spin 1/2,
the photon with spin 1 or the graviton with spin 2. For example, the electron
with spin 1/2 has two quantum numbers, taken from the set {1/2,−1/2}.
Equivalently an electron has spin up (u ↔ 1/2) or spin down (d ↔ −1/2).
The notion of electron spin was proposed by Goudsmit and Uhlenbeck in
1926, at a time they were still graduate students under Paul Ehrenfest in
Leiden. There are no elementary particles known to exist with spin greater
than 2. Apparently if an elementary particle spins too fast it becomes un-
stable, preventing its existence.

Particles with integral spin are called bosons, and particles with half
integral spin are called fermions. Suppose an elementary particle with spin
s has as state space a Hilbert space H. The ”spin statistics theorem” states
that a system of n such identical particles has as state space the nth symmetric
power Sn(H) or the nth antisymmetric power An(H), depending on whether
the particle has integral spin or half integral spin respectively. An identical
system of n bosons can live happily together in a same state ψn ∈ Sn(H),
but for an identical system of n fermions no two particles can live together
in the same state, because ψ ∧ ψ ∧ ψ3 ∧ · · · ∧ ψn vanishes in An(H). This
is the famous Pauli exclusion principle: two electrons can never occupy the
same state.

The spectrum of the Kepler problem has been computed before using the
angular momentum vector L and the Lenz vector K, which together generate
for negative energy E < 0 a Lie algebra so4. The discrete energy spectrum
is located at En+1 = −1/(n + 1)2 for n ∈ N in suitable units. The (n + 1)st
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energy level is degenerated with multiplicity (n + 1)2, and transforms under
so4

∼= sl2 ⊕ sl2 as the irreducible representation L(n)⊗ L(n). The so3
∼= sl2

corresponding to the angular momentum vector L lies inside sl2 ⊕ sl2 as the
diagonal, and the restriction of L(n)⊗ L(n) to this diagonal is given by the
Clebsch-Gordan rule

L(n)⊗ L(n) = L(0)⊕ L(2)⊕ · · · ⊕ L(2n) .

Therefore the spectrum of the Kepler problem can be pictorially described
by the following figure.

E

0

E1

E2

E3

E4

1s

2s

3s

2p

3p 3d

The shells indicated with an s correspond to the one dimensional irre-
ducible representation L(0). The shells indicated with a p correspond to the
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three dimensional irreducible representation L(2). The shells indicated with
a d correspond to the five dimensional irreducible representation L(4). The
shells indicated with an f correspond to the seven dimensional irreducible
representation L(6), and so on. The elements of the periodic system can
be understood to consist of a nucleus (consisting of protons and neutrons)
surrounded by a cloud of electrons. Let us assume for simplicity that the
electrons only interact with the nucleus, so the mutual interaction among
the electrons is neglected. Then the energy levels of our Kepler problem are
filled with electrons according to Pauli’s exclusion principle from the bottom
up, and for fixed energy first the shell s, subsequently the shell p, then the
shell d, and so on. For example, the hydrogen atom H has one electron in
the shell 1s, leaving one open place in shell 1s. The carbon atom C occurs
in the periodic system on place number 6. The shells 1s, 2s are completely
filled with 2 + 2 = 4 electrons, and the shell 2p is occupied with 2 electrons,
leaving four open places in shell 2p. This is the reason for the existence of
the chemical binding CH4.

In the situation of a constant electric or magnetic field along some axis
the energy levels will split up according to their degeneration, so

s p d

This splitting of spectral lines is called the Stark-Zeeman effect. It is a
consequence of symmetry breaking from so3

∼= sl2 to gl1.
There is also the concept of isospin, that was introduced by Heisenberg in

the thirties. It is usually denoted by I (for the irreducible representation of
sl2) and I3 for an element of the basis of weight vectors in this representation
space. The atomic nucleus consists of protons and neutrons. Heisenberg
proposed to view the proton p and the neutron n as the two states of the
spin 1/2 irreducible representation. A nucleus with k protons and l neutrons
is then viewed as pknl, and therefore the nucleus is considered as a particular
state of one particle with isospin m = (k + l)/2. Given m > 0 there are
(m + 1) possible nuclei with isopspin m ∈ N/2.
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9 Reductive Lie algebras

Suppose we have given a complex Lie algebra g together with a real form g0.
A representation g → End(V ) is called faithful if the only x ∈ g that maps
to 0 in End(V ) is equal to 0 ∈ g.

Definition 9.1. The Lie algebra g is called reductive with compact real form
g0 if there exists a faithful representation g → End(H) on a finite dimen-
sional Hilbert space H that is unitary for g0.

Throughout this section g will be a reductive Lie algebra with compact
real form g0. As before let x �→ x� be the antilinear antiinvolution corre-
sponding to g0. Examples of reductive Lie algebras are gln(C) with compact
real form un(C), or sln(C) with compact real form sun(C), or son(C) with
compact real form son(R). All three examples have a faithful unitary repre-
sentation on C

n with Hermitian form 〈z, w〉 = z1w1 + · · · + znwn for z, w in
C

n.
It is our goal to classify all finite dimensional irreducible representations

of g, that are unitary with respect to the given compact real form g0.

Definition 9.2. A Cartan subalgebra of a reductive Lie algebra g with com-
pact form g0 is a maximal Abelian subalgebra h that is invariant under the
antilinear antiinvolution.

Fix once and for all a Cartan subalgebra h ⊂ g invariant under the star
structure. The dimension of h is called the rank. The standard choice for a
Cartan subalgebra in gln or sln is the linear space h of all diagonal matrices
d in gln or the traceless diagonal matrices d in sln. The standard choice for
a Cartan subalgebra in so2n is given by

h =

{
h =

(
0 −id
id 0

)}

with d ∈ gln a diagonal matrix with diagonal entries d1, · · · , dn. For these
choices of Cartan subalgebras the ranks of gln, sln, so2n are n, n−1, n respec-
tively. Note that in all three cases d� is just complex conjugation on the
components d1, · · · , dn of d.

Suppose we have another finite dimensional representation of g on a Hib-
ert space V , which is unitary with respect to a Hermitian inner product 〈·, ·〉
on V . For μ ∈ h∗ we have called the linear subspace

Vμ = {v ∈ V ; hv = μ(h)v ∀h ∈ h}
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the weight space in V of weight μ relative to h. A standard result in linear
algebra says that eigenvalues of Hermitian operators are real numbers. In
turn this implies that a weight μ of V (with Vμ �= 0) is real in the sense that
μ� = μ. Moreover V = ⊕Vμ is a direct sum of weight spaces, and weight
spaces for different weights are orthogonal. Weights are usually written as
λ, μ, ν, · · · ∈ h∗.

Any Lie algebra g has a natural representation on the vector space g. It
is called the adjoint representation, and is denoted ad : g → End(g), and is
defined by ad(x)y = [x, y] for all x, y ∈ g. This is an easy verification using
the Jacobi identity.

If g is reductive with compact real form g0 and faithful unitary repre-
sentation g → End(H) then the adjoint representation ad : g → End(g)
becomes unitary with respect to the Hermitian trace form

〈x, y〉 = trH(xy�)

on g. Indeed 〈[z, x], y〉 = 〈x, [z�, y]〉 for all x, y, z ∈ g by direct computation.
The symmetric trace form on g is defined by

(x, y) = trH(xy) ,

and the relation between the symmetric and the Hermitian trace form be-
comes

〈x, y〉 = (x, y�) ∀x, y ∈ g .

Both trace forms are nondegenerate on g. The restriction of the Hermitian
trace form 〈·, ·〉 to any linear subspace of g is nondegenerate, which in turn
implies that the restriction of the symmetric trace form (·, ·) to any star in-
variant linear subspace of g is also nondegenerate. For example the restriction
of the symmetric form (·, ·) to h is nondegenerate.

Corollary 9.3. The restriction of the symmetric form (·, ·) to h is nonde-
generate. This gives rise to a linear isomorphism h∗ → h, denoted λ �→ hλ,
via

λ(h) = (hλ, h)

for all h ∈ h. We transport the symmetric form (·, ·) from h to the dual space
h∗ via this linear isomorphism, so (λ, μ) = (hλ, hμ) for all λ, μ ∈ h∗. We also

transport the star structure from h to the dual space h∗ via λ�(h) = λ(h�).
It is easy to check that hλ� = (hλ)

�. We write a = {h ∈ h; h� = h} and
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a∗ = {λ ∈ h∗; λ� = λ}. Both a and a∗ are Euclidean vector spaces with
respect to (·, ·). The weights of any unitary representation are real, so they
are contained in a∗.

Suppose V is a finite dimensional unitary representation of g. The set of
weights of V , viewed as a subset of a∗ with multiplicities (i.e. mμ = dimVμ is
called the multiplicity of the weight μ of V ), is called the weight diagram of V
with respect to h. Clearly the direct sum V1⊕V2 has for weight diagram the
union, while the tensor product V1⊗V2 has for weight diagram the Minkowski
sum of the two weight diagrams.

Lemma 9.4. The symmetric trace form on g satisfies ([x, y], z) = (x, [y, z])
for all x, y, z ∈ g.

Proof. The Hermitian trace form on g satisfies 〈[z, x], y〉 = 〈x, [z�, y]〉, and is
related to the symmetric trace form by (x, y) = 〈x, y�〉. Hence

([x, y], z) = 〈−[y, x], z�〉 = 〈x,−[y�, z�]〉 = (x,−[y�, z�]�) = (x, [y, z])

for all x, y, z ∈ g.

An inner product on g with this property is called associative or invariant.
The zero weight space of the adjoint representation is equal to the centralizer

z = {x ∈ g; [h, x] = 0 ∀h ∈ h}

of h in g. It is clear that z ⊃ h is again invariant under the star structure.

Lemma 9.5. We have z = h.

Proof. Suppose on the contrary that the inclusion h ⊂ z is proper. Because
z� = z we can pick z ∈ z− h with z� = z. Clearly h + Cz is an Abelian sub-
algebra of g invariant under the star structure, contradicting the maximality
of the Cartan subalgebra h. Hence z = h.

Definition 9.6. The set of nonzero weights of the adjoint representation
representation is called the root system of the pair (g, h), and is denoted
R(g, h) ⊂ a∗. Elements of R = R(g, h) are called roots, and usually written
as α, β, γ, · · · ∈ R ⊂ a∗.
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The weight space decomposition of the adjoint representation of g takes
the form

g� h = ⊕gα

with the direct sum over all roots in R. This decomposition is orthogonal
with respect to the Hermitian trace form on g. The nonzero spaces gα are
called the root spaces.

In the example of gln the Cartan subalgebra h was taken to be

{d = diag(d1, · · · , dn)); (d1, · · · , dn) ∈ C
n)} .

The symmetric trace form on h is just the standard inner product (x,y) =
x1y1 + · · · + xnyn. Let us write eij for the matrix with 1 on the place (i, j)
and 0 elsewhere. Clearly [eij, ekl] = δjkeil − δliekj and since d =

∑
dieii we

find
[d, eij] = (di − dj)eij .

The conclusion is that under the identification of a∗ with R
n with canonical

basis {e1, · · · , en} the root sytem R becomes

R = {ei − ej; 1 ≤ i �= j ≤ n} .

For sln the discussion is essentially the same except that a∗ becomes identified
with {x ∈ R

n;
∑

xi = 0}. The root system R of gln was already contained
in this subspace, and becomes also the root system for sln.

An element of the standard Cartan subalgebra in so2n was taken of the
form

h =

(
0 −id
id 0

)

with d ∈ gln a diagonal matrix with diagonal entries d1, · · · , dn. In particular
dt = d. An element x of so2n is an antisymmetric matrix, and hence of the
form

x =

(
a b
c d

)

with a, b, c, d ∈ gln and at = −a, bt = −c, ct = −b, dt = −d. The commutator
[h, x] takes the form

[h, x] = i

(−dc− bd −dd + ad
+da− dd +db + cd

)
,
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and the equation [h, x] = α(d)x becomes

i

(−dc− bd −dd + ad
+da− dd +db + cd

)
=

(
α(d)a α(d)b
α(d)c α(d)d

)
.

This amounts to the three equations

i(dbt − bd) = α(d)a , i(da− dd) = −α(d)bt , i(db− btd) = α(d)d

and we look for solutions α ∈ R with α(d) �= 0. Either bt = b, a = d and the
three equations reduce to the two equations

i[d, b] = α(d)a , i[d, a] = −α(d)b ,

or or bt = −b, a = −d and the three equations reduce to the two equations

i(db + bd) = −α(d)a , i(da + ad) = α(d)b .

In the first case we take a = i(eij − eji), b = (eij + eji) and get the roots
α(d) = (di − dj) for 1 ≤ i �= j ≤ n. These are n(n − 1) roots. In the
second case we take a = i(eij − eji), b = ±(eij − eji) and get the roots
α(d) = ±(di + dj) for 1 ≤ i < j ≤ n. Again these are n(n − 1) roots. The
dimension of so2n is equal to (2n(n− 1) + n) = n(2n− 1) as should.

The symmetric trace form on h is twice the standard inner product on
d ∈ C

n. For this reason we shall renormalize the Hermitian and symmetric
trace form on so2n by dividing by 2. In all three cases gln, sln, so2n the
symmetric trace form on h is now just the standard inner product on d =
(d1, · · · , dn) ∈ C

n. Consider the standard lattice Z
n ⊂ C

n. In the case of
so2n the roots are all norm 2 vectors in Z

n, and in the case of gln and sln the
roots are all norm 2 vectors in Z

n with sum of coordinates equal to 0.
For the rank 2 Lie algebras so4 of dimension 6 and sl3 of dimension 8

we can make Euclidean pictures of the roots (denoted by a �), and of the
weights (denoted by a •) of the defining representation of so4 on C

4 and of
sl3 on C

3.
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For each root we have drawn the line perpendicular to the root. Note
that the pictures are symmetric under the orthogonal reflection with mirror
the perpendicular of a root. The group generated by all these reflections is
called the Weyl group W . For so4 the Weyl group is the dihedral group of
order 4, and its action on a∗ � R

2 is reducible. This comes from the fact
that the adjoint representation of so4 is reducible, with so4 � sl2 ⊕ sl2. For
sl3 the Weyl group is the dihedral group of order 6, and its action on a∗ � R

2

is irreducible. This explains why sl3 is a simple Lie algebra in the sense that
it is not isomorphic to a direct sum of smaller Lie algebras.

We return to the case of a general reductive Lie algebra g with Cartan subal-
gebra h and associative symmetric trace form (·, ·). We have the root space
decomposition of g relative to h

g� h = ⊕gα

with the direct sum over all roots in R.

Lemma 9.7. For x ∈ gα, y ∈ gβ we have [x, y] ∈ gα+β. For x ∈ gα, y ∈ g−α

we have
[x, y] = (x, y)hα

with hα ∈ h dual to α, that is (hα, h) = α(h) for all h ∈ h.

Proof. The first relation is clear since

[h, [x, y]] = [[h, x], y] + [x, [h, y]] = (α(h) + β(h))[x, y]
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for all h ∈ h, x ∈ gα, y ∈ gβ. For the second relation observe that for
x ∈ gα, y ∈ g−α the bracket [x, y] lies in the centralizer z of h in g. Hence
[x, y]− (x, y)hα lies in z = h. Moreover

(h, [x, y]− (x, y)hα) = (h, [x, y])− α(h)[x, y] = ([h, x], y)− α(h)[x, y] = 0

for all h ∈ h. The lemma follows since the symmetric form (·, ·) is nondegen-
erate on h.

Lemma 9.8. Consider the symmetric trace form (·, ·) on the reductive Lie
algebra g. For α, β roots we have gα ⊥ gβ if α + β �= 0, and the bilinear map
(·, ·) : gα × g−α → C gives a nondegenerate pairing.

Proof. Since [gα, gβ] ⊂ gα+β it is clear that elements of gα are nilpotent for
α �= 0. Hence (gα, gβ) = 0 if α + β �= 0. Because (·, ·) is nondegenerate on g

it is also clear that (·, ·) : gα × g−α → C gives a nondegenerate pairing.

Corollary 9.9. For each α ∈ R choose xα ∈ gα, yα ∈ g−α with (xα, yα) =
2/(hα, hα), and put zα = 2hα/(hα, hα). The elements xα, yα, zα satisfy the
commutation relations

[zα, xα] = 2xα , [zα, yα] = −2yα , [xα, yα] = zα

making the vector space sα spanned by xα, yα, zα a Lie algebra isomorphic
to sl2. Finally we can choose xα, yα, zα in such a way that x�

α = yα, y�
α =

xα, z�
α = zα.

For α ∈ R let Vα = (⊕gkα) ⊕ Chα with the direct sum over all nonzero
k ∈ Z. Clearly Vα is a representation space for sα = Cxα+Cyα+Czα, and all
weights are even integers. Because the zero weight space is one dimensional
this representation is irreducible by standard representation theory of sl2.
Hence Vα = sα.

Corollary 9.10. All root spaces gα are one dimensional, and the only roots
that are a multiple of α are ±α.

Suppose V is a finite dimensional representation of g that is unitary for
the compact real form g0. For μ ∈ h∗ a weight of V the subspace ⊕Vμ+kα

with the sum over k ∈ Z is a representation space for sα. In turn this
implies that the weight multiplicities dim Vμ+kα are palindromic. The set of
weights {μ + kα; k ∈ Z, dim Vμ+kα > 0} of V is called the α-ladder through
μ. The palindromic nature of weight multiplicities shows that root ladders
are unbroken.
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Theorem 9.11. The subspace a = {h ∈ h; h� = h} is a real form of the
vector space h. The symmetric trace form (·, ·) is an inner product on a,
turning a into a Euclidean vector space. We have a linear isomorphism
hλ �→ λ from a to a∗, which allows us to transport the inner product from
a to a∗, so (λ, μ) = (hλ, hμ). For α ∈ R let sα : a∗ → a∗ be the orthogonal
reflection with mirror α⊥, so in a formula

sα(λ) = λ− 2(α, λ)α/(α, α)

for all λ ∈ a∗. Then the root system R satisfies the following axioms:

1. The only multiples in R of α ∈ R are ±α.

2. We have sα(β) ∈ R for all α, β ∈ R.

3. We have 2(α, β)/(α, α) ∈ Z.

These three axioms say that R is a root system in the Euclidean space a∗.

Exercise 9.1. Show that the adjoint representation ad : g → gl(g) is indeed
a representation.

Exercise 9.2. Show that for a reductive Lie algebra g with compact real
form g0 and faithful unitary representation g → End(H) on a finite dimen-
sional Hilbert space H the adjoint representation is unitary in the sense that
〈[z, x], y〉 = 〈x, [z�, y]〉 for all x, y, z ∈ g.

Exercise 9.3. In the notation of Corollary 9.3 show that hλ� = (hλ)
�.

Exercise 9.4. A Lie subalgebra n of a Lie algebra g is called normal if
[x, y] ∈ n for all x ∈ g and y ∈ n. A Lie algebra g is called simple if the
only normal subalgebras are the two trivial ones 0 and g itself. Show that a
reductive Lie algebra g is a unique direct sum

g = z⊕ g1 ⊕ · · · ⊕ gn

with z the Abelian center and the gi all simple Lie algebras.

Exercise 9.5. Show that R spans a∗ if and only if the center z of g is zero.

Exercise 9.6. Show that in Corollary 9.9 we can choose xα, yα, zα in such a
way that x�

α = yα, y�
α = xα, z�

α = zα.
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Exercise 9.7. Consider the natural inclusion so2n ↪→ so2n+1 by adding zeros
in the last column and row. Show that the standard Cartan subalgebra h of
s02n is also a Cartan subalgebra for so2n+1. Determine the root system for
so2n+1. Show that for the weights of the defining representation and the root
system of so5 are given by the pictures

�

�

�

�

� ��

�

�

�

�

�

�

α1

α2

respectively. The lines are the mirrors perpendicular to the roots.

Exercise 9.8. Show that the matrices

L1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎟⎠ , L2 =

⎛
⎜⎜⎝

0 0 i 0
0 0 0 0
−i 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , L3 =

⎛
⎜⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

and

K1 =

⎛
⎜⎜⎝

0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0

⎞
⎟⎟⎠ , K2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 i
0 0 0 0
0 i 0 0

⎞
⎟⎟⎠ , K3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 i
0 0 i 0

⎞
⎟⎟⎠

satisfy the commutation relations

[Li, Lj] = iεijkLk , [Li, Kj] = iεijkKk , [Ki, Kj] = −iεijkLk ,

and form a real basis of iso3,1(R), with so3,1(R) the Lorentz algebra defined
by

so3,1(R) = {x ∈ gl4(R); xtI + Ix = 0}
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with I ∈ gl4(R) the diagonal matrix with diagonal entries 1, 1, 1,−1. We
conclude that for the hydrogen atom the coherent positive energy E > 0
eigenspaces for H have natural degeneration according to an irreducible rep-
resentation of the Lorentz algebra.
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10 Triangular decomposition and Verma rep-

resentations

Suppose we have given a reductive Lie algebra g with compact real form g0,
with defining unitary representation g → End(H) and associated symmetric
trace form (·, ·) on g. Suppose we have chosen a Cartan subalgebra h in g

with associated root system R = R(g, h) in the Euclidean space a∗. We shall
assume that the center z of g is zero, or equivalently that the root system R
spans a∗.

Let a∗
◦ be the complement in a∗ of the mirror hyperplanes perpendicular

to the roots. We fix troughout this section a connected component a∗
+ of a∗

◦
and call it the positive Weyl chamber. We have a corresponding partition

R = R+ �R−

into positive roots R+ = {α ∈ R; (α, λ) > 0 ∀λ ∈ a∗
+} and negative roots

R− = {α ∈ R; (α, λ) < 0 ∀λ ∈ a∗
+}. We also write α > 0 if α ∈ R+ and

α < 0 if α ∈ R−. The decomposition

g = n− ⊕ h⊕ n+ , n− = ⊕α<0gα , n+ = ⊕α>0gα

is called the triangular decomposition of g relative to h and a∗
+.

For the example of sln with Cartan subalgebra h of diagonal matrices
identified with {d ∈ C

n; d1 + · · · + dn = 0}, and the mirror complement a∗
◦

identified with {d ∈ R
n; d1 + · · · + dn = 0, di �= dj ∀i �= j} we take for the

standard open Weyl chamber

a∗
+ = {d ∈ R

n; d1 + · · ·+ dn = 0, d1 > · · · > dn} .

The corresponding positive roots have the form

R+ = {α = ei − ej; 1 ≤ i < j ≤ n} .

In turn the triangular decomposition of sln is just the direct sum decompo-
sition in lower triangular matrices, trace zero diagonal matrices and upper
triangular matrices.

Definition 10.1. A positive root α ∈ R+ is called simple if α is not of the
form α = β + γ with β, γ ∈ R+.
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Lemma 10.2. If α, β ∈ R+ are distinct simple roots then (α, β) ≤ 0.

Proof. If (α, β) > 0 then the ladder β + Zα contains the root β − α by
representation theory of sα � sl2. If (β − α) > 0 then β = α + (β − α)
contradicting the simplicity of β, and if (β − α) < 0 then α = (α − β) + β
contradicting the simplicity of α. Hence (α, β) ≤ 0 as stated.

Corollary 10.3. The simple roots in R+ are linearly independent, and each
positive root in R+ is a nonnegative integral linear combination of simple
roots.

Proof. Let {α1, · · · , αn} be the set of simple roots in R+. Suppose x1α1 +
· · ·+ xnαn = 0. Bringing the terms with xi < 0 to the other side gives us∑

yiαi =
∑

ziαi

with yi, zi ≥ 0 and yizi = 0 for all i. Since

(
∑

yiαi,
∑

zjαj) =
∑

yizj(αi, αj) ≤ 0

we conclude that ∑
yiαi =

∑
ziαi = 0 .

Taking the inner product with λ ∈ a∗
+ gives yi = zi = 0 for all i. The second

statement is clear by induction on the height ht(α) =
∑

ki of the positive
root α =

∑
kiαi

The conclusion is that inside the positive roots R+ we have a basis of
simple roots α1, · · · , αn with n equal to the rank of R. Given R+ the basis
of simple roots is canonical up to ordering. It is easy to check that in the
rank two pictures of the previous section {α1, α2} is a basis of simple roots
for a suitably chosen positive Weyl chamber.

Lemma 10.4. The upper triangular subalgebra n+ is generated as a Lie alge-
bra by the root spaces gαi

for i = 1, · · · , n, and likewise the lower triangular
subalgebra n− is generated by the root spaces g−αi

for i = 1, · · · , n.

Proof. If α > 0 is a positive root, which is not simple, then (α, αi) > 0
for some i. If this is not the case then {α, α1, · · · , αn} is an obtuse set in
R+, and hence linearly independent. This is a contradiction with n being
the rank of R. Hence α = αi + (α − αi) and therefore gα = [gαi

, gα−αi
] by

representation theory of si � sl2. The lemma follows by induction on the
height ht(α) =

∑
ki if α =

∑
kiαi.
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Corollary 10.5. We can choose a basis {h1, · · · , hn} of a, and ei ∈ gαi
and

fi ∈ g−αi
such that

[hi, ej] = aijej , [hi, fj] = −aijfj , [ei, fj] = δijhi

with aij = 2(αi, αj)/(αi, αi) ∈ Z the so called Cartan matrix of R. Finally
we can choose this basis such that e�

i = fi, f
�
i = ei, h

�
i = hi.

The Gram matrix (αi, αj) of the basis of simple roots is a positive def-
inite matrix, while the Cartan matrix aij = 2(αi, αj)/(αi, αi) has a 2 for
the diagonal entries and nonpositive integers for the off diagonal entries.
These conditions are very restrictive, and allow for a classification of the
(indecomposable) Cartan matrices. For example in the rank 2 case with say
(α1, α1) ≥ (α2, α2) the possible Cartan matrices are(

2 0
0 2

)
,

(
2 −1
−1 2

)
,

(
2 −1
−2 2

)
,

(
2 −1
−3 2

)
.

Indeed these are the only integral solutions of the equations a11 = a22 = 2,
a11a22 − a12a21 > 0, a21 ≤ a12 ≤ 0 and a12 = 0 ⇔ a21 = 0. The root system
with the most right Cartan matrix has a following Euclidean picture.

�

�

�

�

�

�

�

�

�

�

�

�
α1

α2

As before the roots are denoted by � and the lines are the mirrors perpen-
dicular to the roots. The elements {ei, fi, hi; i = 1, · · · , n} are called the
Chevalley generators. Using the Chevalley generators we are in the situation
to define the Verma representations, and derive their basic properties.
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Definition 10.6. The Weyl group W is the subgroup of the orthogonal group
O(a∗) generated by the simple reflections s1, · · · , sn defined by

si(λ) = λ− 2(λ, αi)αi/(αi, αi)

for λ ∈ a∗.

Lemma 10.7. For each root α ∈ R the orthogonal reflection

sα(λ) = λ− 2(λ, α)α/(α, α)

with mirror the hyperplane α⊥ perpendicular to α lies in the Weyl group W .

�

�

�

0

�α
λ

sα(λ)

α⊥

It is easy to check that swα = wsαw−1 for all w ∈ W and α ∈ R. Indeed
evaluate both expressions on λ ∈ a∗ and check that the outcome is the same.

Proof. Because s−α = sα we may assume that α ∈ R+. The height of
α =

∑
i kiαi ∈ R+ is defined as ht(α) =

∑
i ki ∈ N. We prove the lemma

by induction on the height ht(α). If ht(α) = 1 then α = αi for some i and
sα = si ∈ W . Now suppose α ∈ R+ with ht(α) > 1. Then there exists
an index i with (α, αi) > 0. In turn this implies that β = si(α) has height
strictly smaller than ht(α). Therefore sα = sisβsi lies in W by the induction
hypothesis.

Definition 10.8. If g is a Lie algebra with triangular decomposition

g = n− ⊕ h⊕ n+

with a basis {h1, · · · , hn} of h and Lie algebra generators {e1, · · · , en} for n+

and {f1, · · · , fn} for n− such that

[hi, ej] = aijej , [hi, fj] = −aijfj , [ei, fj] = δijhi ,
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then the Verma representation M(λ) with highest weight λ ∈ h∗ is defined by

M(λ) = Ug/J(λ)

with J(λ) =
∑

h Ug(h− λ(h)) + (Ug)n+ =
∑

i Ug(hi − λ(hi)) +
∑

i (Ug)ei

a left ideal of Ug. It is the universal representation of g with a nonzero
generating highest weight vector v0 = 1 + J(λ) with

hv0 = λ(h)v0 ∀h ∈ h , xv0 = 0 ∀x ∈ n+ .

The Verma representation M(λ) can be viewed as a representation on
a fixed vector space Un− with the representation of n− acting by left mul-
tiplication and extending to a representation of g depending on λ ∈ h∗ in
a polynomial way. The Verma representation M(λ) has a unique maximal
proper subrepresentation, and the quotient L(λ) is the unique irreducible
representation of g with a generating vector (by abuse of notation) denoted
v0 ∈ L(λ) with

hv0 = λ(h)v0 ∀h ∈ h , xv0 = 0 ∀x ∈ n+ .

The vector v0 ∈ L(λ) is called the (up to a constant unique) highest weight
vector of weight λ ∈ h∗. The two basic questions are to characterize those
λ ∈ h∗ for which L(λ) is finite dimensional, and for which L(λ) is unitary
with respect to the given star structure.

Theorem 10.9. The representation L(λ) of g is finite dimensional if and
only if λ(hi) ∈ N for i = 1, · · · , n.

Proof. The vector v0 is a highest weight vector in L(λ) of weight λ ∈ h∗. For
fixed i = 1, · · · , n and k ∈ N the vector fk

i v+ has weight λ − kαi. If L(λ)
is finite dimensional then fki+1

i v+ = 0 while fki
i v+ �= 0 for a unique ki ∈ N.

Hence fki+1
i v+ is a highest weight vector in M(λ), or equivalently fki+1

i v+

is annihilated by ei. It is trivially annihilated by the ej with j �= i. By sl2
representation theory this amounts to λ(hi) = ki for i = 1, · · · , n.

Conversely, suppose λ(hi) ∈ N for i = 1, · · · , n. In turn (using the
PBW theorem) this implies that the operators fi act locally nilpotently on
L(λ). Since the operators ei also act locally nilpotently on L(λ) (even on
M(λ) for any λ ∈ h∗) we conclude using Exercise 4.2 that the operators
si = exp(ei)exp(−fi)exp(ei) are well defined on L(λ) and map L(λ)μ to
L(λ)siμ. Hence the weight multiplicities m(λ)μ, which are by definition the

64



dimensions of the weight spaces L(λ)μ, are invariant under the Weyl group
W as a function of μ ∈ h∗. The weights of M(λ) are contained in the set

{μ ∈ h∗; λ− μ ∈ NR+} ,

�

��
��

��

λ

which in turn implies that the weights of L(λ) are contained in the set

{μ ∈ h∗; λ− w(μ) ∈ NR+,∀ w ∈ W} .

��

��

� �

��
��

��

λs1λ

s2λs1s2λ

s2s1λs1s2s1λ
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But this last set can be shown to be equal to

CH(Wλ) ∩ {μ ∈ h∗; λ− μ ∈ ZR}
with CH(Wλ) denoting the convex hull of the Weyl group orbit Wλ. The
set of points in h∗ given by

CH(Wλ) ∩ {μ ∈ h∗; λ− μ ∈ ZR}
is called the integral convex hull of Wλ. Note that s2s1s2λ = s1s2s1λ.

Definition 10.10. The set Q = ZR of integral linear combinations of roots
is called the root lattice of R. The set of points

P = {λ ∈ h∗; λ(hi) ∈ Z}
is called the weight lattice. Clearly the root lattice Q is a sublattice of the
weight lattice P . The subset of the weight lattice

P+ = {λ ∈ h∗; λ(hi) ∈ N}
is called the integral cone of dominant weights. The cone of dominant weights
is spanned over the natural numbers N by the set of fundamental weights
{�1, · · · , �n} defined by (�i, αj) = δij. So the basis of fundamental weights
and the basis of simple roots are dual bases.

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

α1

α2

�1

�2
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So we can rephrase the above theorem by saying that the irreducible repre-
sentation L(λ) is finite dimensional if and only if λ ∈ P+. The set of weights
of L(λ) is in fact equal to

CH(Wλ) ∩ {μ ∈ h∗; λ− μ ∈ ZR} .

In the above theorem we have shown that the weighths of L(λ) are contained
in the integral convex hull of Wλ. The converse that all points in this integral
convex hull have multiplicity ≥ 1 follows from the palindromic nature of
weight multiplicities along root ladders. Indeed the weights of Wλ have
multiplicity equal to 1, and one proceeds by induction on the dimension of
the faces of the convex hull of Wλ to conclude that all weights in the integral
convex hull of Wλ have multiplicity ≥ 1.

We still have to discuss the question of unitarity for the finite dimensional
irreducible representations L(λ) for λ ∈ P+. It turns out that all irreducible
representations L(λ) for λ ∈ P+ are unitarizable for g0, so they are unitary
with respect to a suitable Hermitian inner product 〈·, ·〉 on L(λ). This is a
general theorem, but the general proof is not so easy. For an easy argument
that works for g = sln and g0 = sun we refer to the exercises.

Exercise 10.1. Check that in the rank two pictures of the previous section
{α1, α2} is a basis of simple roots for a suitably chosen positive Weyl chamber.

Exercise 10.2. Show that for v ∈ M(λ) and x ∈ g the expression xv depends
in a polynomial way on λ ∈ h∗. Hint: For h ∈ h the expression hv varies
linearly with λ ∈ h∗. Analyse the case x = ei and v = fi1fi2 · · · firv0 with
1 ≤ i1, i2, · · · , ir ≤ n.

Exercise 10.3. Suppose that V is a finite dimensional irreducible represen-
tation of g whose weights are contained in λ − NR+ for some λ ∈ P+, and
with the multiplicity of λ equal to 1. Show that V is equivalent to L(λ).

Exercise 10.4. Suppose that for λ, μ ∈ P+ the irreducible finite dimen-
sional representations L(λ), L(μ) are also unitary. Show that the irreducible
representation L(λ + μ) occurs in the decomposition of the tensor product
L(λ) ⊗ L(μ) with multiplicity equal to one. This result is called Cartan’s
Theorem. Conclude that L(λ+μ) is unitary as well. Hint: Show that tensor
product u0 ⊗ v0 of the two highest weight vectors u0 ∈ L(λ) and v0 ∈ L(μ) is
again a highest weight vector of weight λ + μ.
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Exercise 10.5. For the Lie algebra g = sln the standard representation
C

n = L(�1) is unitary for g0 = sun. Check that the kth antisymmetric power
AkL(�1) = L(�k) for k = 1, · · · , n− 1. In turns this implies that L(�k) is
unitary for sun, as a linear algebra construction of a unitary representation.
Using the previous exercise show that all irreducible representations L(λ) for
λ ∈ P+ are unitarizable for sun.
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11 The Lie algebra sl3

In this chapter we shall discuss the finite dimensional unitary representation
theory of the Lie algebra sl3 by using pictures of weight diagrams. With our
standard choice of Cartan subalgebra h the root system R has the following
picture.

�

�

�

�

�

�
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α2

�1
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We have the positive roots R+ = {α1, α2, α1 + α2}, the simple roots {α1, α2}
and the fundamental weights {�1, �2} satisfying

�1 = (2α1 + α2)/3 , �2 = (α1 + 2α2)/3 ,

α1 = 2�1 −�2 , α2 = −�1 + 2�2 .

The cone of dominant integral weights becomes P+ = N�1 + N�2. For
λ = l1�1 + l2�2 ∈ P+ we write L(λ) = L(l1, l2). With this notation the one
dimensional trivial representation becomes L(0, 0).

The standard three dimensional irreducible representation L(1, 0) has a
basis {x, y, z} of weights �1, �1−α1, �1−α1−α2 respectively. It is evidently
unitary for su3. The dual representation L(1, 0)∗ of L(1, 0) has dual basis
{ξ, η, ζ} of weights −�1,−�1 + α1,−�1 + α1 + α2 respectively, which in
reversed order are equal to �2, �2 − α2, �2 − α1 − α2. Therefore L(0, 1) =
L(1, 0)∗ is unitary as well.
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The nth symmetric power Sn(L(1, 0)) has as basis {xiyjzk; i, j, k ∈ N, i +
j + k = n}, so the weights are the integral convex hull of the triangle with
vertices {n�1, n(�1 − α1), n(�1 − α1 − α2)}, all with multiplicity one. In
turn this implies that Sn(L(1, 0)) = L(n, 0) has dimension (n + 2)(n + 1)/2.
Likewise the nth symmetric power Sn(L(0, 1)) has as basis {ξiηjζk; i, j, k ∈
N, i + j + k = n}, so the weights are the integral convex hull of the triangle
with vertices {n�2, n(�2 − α2), n(�2 − α1 − α2)}, all with multiplicity one.
Hence Sn(L(0, 1)) = L(0, n) has dimension (n + 2)(n + 1)/2 as well. Clearly
both these symmetric powers are also unitary, being realized as a construction
of linear algebra of unitary representations.

Using Cartan’s Theorem (the last exercise of the previous chapter) we
conclude that L(l1, l2) for l1, l2 ∈ N occurs as a multiplicity one constituent
of the tensor product L(l1, 0) ⊗ L(0, l2), and therefore is always a unitary
irreducible finite dimensional representation. So we have shown that all finite
dimensional irreducible representations of sl3 are unitary.

In order to understand the weight diagram of L(l1, l2) we derive an explicit
tensor product decomposition, which allows proofs by induction on l1 + l2.

Theorem 11.1. If both integers l1, l2 are at least 1 then

L(1, 0)⊗ L(l1, l2) = L(l1 + 1, l2)⊕ L(l1 − 1, l2 + 1)⊕ L(l1, l2 − 1)

is a multiplicity free direct sum decomposition.

Proof. Let us introduce a partial ordering ≤ on the weight lattice P = Z�1+
Z�2 by

μ ≤ λ ⇔ (λ− μ) ∈ Nα1 + Nα2 .

Indeed, one easily checks that the relation ≤ is a partial ordering, i.e. μ ≤
λ, ν ≤ μ ⇒ ν ≤ λ and μ ≤ λ, λ ≤ μ ⇒ λ = μ. For example, the weights of
L(λ) are all smaller or equal to λ in this partial ordering.

We claim that for λ = l1�1 + l2�2 with l1, l2 both at least 1 the weights

λ, λ− α1, λ− α2, λ− α1 − α2

of L(λ) have multiplicities 1, 1, 1, 2 respectively. We prove this by induction
on l1 + l2. If l1 = l2 = 1 then L(1, 1) is the adjoint representation. All roots
are weights of multiplicity 1 while 0 is a weight of multipicity 2. Hence the
induction hypothesis holds if l1 + l2 = 2. Now suppose l ≥ 2 and the claim
holds for all integers l1, l2 ≥ 1 with l1 + l2 ≤ l. Then the weights

�1 + λ,�1 + λ− α1, �1 + λ− α2, �1 + λ− α1 − α2
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of the tensor product L(1, 0)⊗L(l1, l2) have multiplicities 1, 2 = 1+1, 1, 4 =
2 + 1 + 1 respectively. In turn this implies

L(1, 0)⊗ L(l1, l2) = L(l1 + 1, l2)⊕ L(l1 − 1, l2 + 1)⊕ L(l1, l2 − 1)⊕ · · ·

with · · · denoting representations with highest weight smaller in our partial
ordering. In addition this completes the inductive proof of the claim that
the multiplicities of the weights

λ, λ− α1, λ− α2, λ− α1 − α2

of the irreducible representation L(λ) = L(l1, l2) with l1, l2 ≥ 1 are equal to
1, 1, 1, 2 respectively.

Here are some pictures of (pieces of) weight diagrams together with their
weight multiplicities
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that illustrate a pictorial proof of the decomposition

L(1, 0)⊗ L(l1, l2) = L(l1 + 1, l2)⊕ L(l1 − 1, l2 + 1)⊕ L(l1, l2 − 1)⊕ · · ·

of the tensor product in irreducible components.
In order to finish the proof of the theorem we have to eliminate these · · · .

Let us write [L(λ) ⊗ L(μ) : L(ν)] ∈ N for the multiplicity with which L(ν)
occurs in the tensor product L(λ) ⊗ L(μ). Using Schur’s Lemma one can
show that

[L(�1)⊗ L(λ) : L(μ)] = [L(�2)⊗ L(μ) : L(λ)]

is equal to 0 unless λ ≤ (�2 + μ) ⇔ ((λ + �1)− (α1 + α2)) ≤ μ. Drawing a
picture illustrates that the · · · are eliminated.
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Corollary 11.2. The dimension of the unitary irreducible representation
L(λ) = L(l1, l2) is equal to (l1 + 1)(l2 + 1)(l1 + l2 + 2)/2 for all l1, l2 ∈ N.

Proof. The proof is by induction on the natural number l1 + l2. We have
already seen that the formula is correct if either l1 = 0 or l2 = 0 or for the
adjoint representation with l1 = l2 = 1. Using that

L(l1 + 1, l2) = L(1, 0)⊗ L(l1, l2)� L(l1 − 1, l2 + 1)� L(l1, l2 − 1)

for l1, l2 ≥ 1 we obtain for the dimension of L(l1 + 1, l2) the formula

(3(l1 + 1)(l2 + 1)− l1(l2 + 2))(l1 + l2 + 2)/2− (l1 + 1)l2(l1 + l2 + 1)/2

which by a direct calculation equals (l1 + 2)(l2 + 1)(l1 + l2 + 3)/2.

Corollary 11.3. The multiplicities of the weights of the irreducible repre-
sentation L(λ) = L(l1, l2) are 1 in the outer hexagonal shell, and increase
steadily by 1 if we pass from outer hexagonal shell to inner shell, untill the
shells become triangles after which the multiplicity stabilizes.
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In the figure we have drawn the weights of the irreducible representation
L(3, 6). The number of weights in the hexagonal shells is subsequently equal
to 3(3 + 6), 3(2 + 5), 3(1 + 4) and inside the triangle is equal to 10, making
up for dimension 27 + 42 + 45 + 40 which is equal to 154 = 4× 7× 11/2 as
should.

Proof. If l1 = 0 or l2 = 0 then the outer shell is already a triangle, and
all weights have multiplicity 1 in accordance with Sn(L(1, 0)) = L(n, 0) or
Sn(L(0, 1)) = L(0, n). Now use the inductive formula

L(l1 + 1, l2) = L(1, 0)⊗ L(l1, l2)� L(l1 − 1, l2 + 1)� L(l1, l2 − 1)

of Theorem 11.1. We leave the details to the reader.

The Lie algebra sl3 has a subalgebra gl1 ⊕ sl2 consisting of the standard
Cartan subalgebra h and the two root spaces corresponding to ±α2. For
λ = (l1�1 + l2�2) ∈ P+ the restriction of an irreducible representation L(λ)
of sl3 to this subalgebra gl1⊕sl2 decomposes as a multiplicity free direct sum
of (l1 + 1)(l2 + 1) irreducible representations with highest weights from the
integral parallellogram

CH(λ, λ− l1α1, λ− (l1 + l2)α1 − l2α2, λ− l2α1 − l2α2) ∩ {λ + Q}
with Q = Zα1 + Zα2 the root lattice. As before the abbreviation CH stands
for convex hull. Here is a figure for λ = 3�1 + 6�2.
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We have only drawn the mirror corresponding to the root α2 of the subalge-
bra. This picture is easily obtained from the previous one by representation
theory of sl2. The decomposition into unitary irreducible representations
of the restriction of an irreducible unitary representation to a subalgebra is
called a branching rule. Explicit branching rules are important for symmetry
breaking.

Exercise 11.1. Show that in the proof of Theorem 11.1 we have

[L(�1)⊗ L(λ) : L(μ)] = [L(�2)⊗ L(μ) : L(λ)]

using Schur’s Lemma.

Exercise 11.2. Check that

(3(l1 + 1)(l2 + 1)− l1(l2 + 2))(l1 + l2 + 2)/2− (l1 + 1)l2(l1 + l2 + 1)/2

is equal to (l1 + 2)(l2 + 1)(l1 + l2 + 3)/2.

Exercise 11.3. Show that the tensor product decomposition

L(1, 0)⊗ L(l1, l2) = L(l1 + 1, l2)⊕ L(l1 − 1, l2 + 1)⊕ L(l1, l2 − 1)

remains valid for all l1, l2 ∈ N if we denote L(−1, n) = L(n,−1) = 0 for
n = −1, 0, 1, 2, · · · .
Exercise 11.4. Show that for integers n1 ≥ n2 ≥ 1 we have the decomposi-
tion in irreducible components

L(n1, 0)⊗ L(n2, 0) = ⊕L(n1 + n2 − 2k, k)

with the direct sum over integers k from 0 to n2. Hint: Use representation
theory of the sl2 corresponding to the roots ±α1 to show an inclusion ⊃.
Subsequently derive the equality = using the dimension formula for L(λ).
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12 Quarks

We have seen that for each pair (l1, l2) ∈ N
2 there exists an irreducible repre-

sentation L(l1, l2) of sl3 with highest weight λ = l1�1 + l2�2 ∈ P+. Moreover
the representation L(l1, l2) is unitary for su3. The irreducible representa-
tion L(0, 0) is the trivial one dimensional representation. The irreducible
representation L(1, 0) is the standard three dimensional representation with
weights �1, �1−α1, �1−α1−α2. The irreducible representation L(0, 1) is the
dual of the standard reprsentation, and has weights �2, �2−α2, �2−α1−α2.
The irreducible representation L(1, 1) is the adjoint representation of dimen-
sion eight. The six roots are the multiplicity one weights, and the zero weight
has multiplicity two.

Theorem 12.1. We have the decompositions in irreducible subrepresenta-
tions

L(1, 0)⊗3 = L(3, 0)⊕ 2L(1, 1)⊕ L(0, 0)

L(1, 0)⊗ L(0, 1) = L(1, 1)⊕ L(0, 0)

for the Lie algebra sl3.

Proof. This can be derived using Theorem 11.1. The details of this deriva-
tion are left to the reader. A direct pictorial proof with weight multiplicity
diagrams goes along the following lines. For the first relation we get
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Likewise for the second relation
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This completes the proof of the theorem.

In order to go from the mathematics of weight diagrams of unitary irre-
ducible representations of su3 to the physics of elementary particles we have
to switch coordinates. A weight vector λ ∈ P is written as

λ = l1�1 + l2�2 = I3α1 + Y (3�2/2) .

Y = 2

Y = 1

Y = 0

Y = −1

Y = −2

I3 = 2I3 = 1I3 = 0I3 = −1I3 = −2

��

��

��

�

�
0 α1

α2

3�2/2

The numbers l1, l2 ∈ Z are the coefficients of λ relative to the basis of fun-
damental weights {�1, �2}. The numbers

I3 ∈ Z/2 , Y ∈ Z/3

are the coefficients of the weight λ relative to the orthogonal basis {α1, 3�2/2},
and are called ”isospin around the axis” and ”hypercharge” respectively.
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With our normalisation of the inner product the square norms of these ba-
sis vectors are given by (α1, α1) = 2 and (3�2/2, 3�2/2) = 3/2. Since
2�1 = α1 + �2 we get

I3 = l1/2 , Y = (l1 + 2l2)/3

for isospin around the axis and hypercharge in terms of l1, l2 ∈ Z. Note that
for λ in the weight lattice P = Z�1 + Z�2 the hypercharge Y takes integral
values exactly on the root lattice Q = Zα1 + Zα2.

Since 1960 a whole zoo of new elementary particles were found in collider
experiments. The lightest of these new particles were the spin 0 mesons

K+, K0, π+, π0, η, π−, K
0
, K−

and the spin 1 mesons

K∗+, K∗0, ρ+, ρ0, ω, ρ−, K
∗0

, K∗−

with isospin around the axis and hypercharge according to the similar octet
diagrams below.

Y = 1

Y = 0

Y = −1

I3 = 1I3 = 0I3 = −1

π+π0, ηπ−

K+K0

K
0K−

I3 = 1I3 = 0I3 = −1

ρ+ρ0, ωρ−

K∗+K∗0

K
∗0K∗−

In addition there were found a singlet spin 0 meson η′ and a singlet spin 1
meson φ. The word singlet means that they satisfied I3 = Y = 0.

More strange particles were found with similar patterns. There are the
heavier spin 1/2 baryons

p, n, Σ+, Σ0, Λ, Σ−, Ξ0, Ξ−
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with isospin around the axis and hypercharge according to the octet diagram
below.

Y = 1

Y = 0

Y = −1

I3 = 1I3 = 0I3 = −1

Σ+Σ0, ΛΣ−

pn

Ξ0Ξ−

In addition there were also found the heavier spin 3/2 baryons

Δ++, Δ+, Δ0, Δ−, Σ∗+, Σ∗0, Σ∗−, Ξ∗0, Ξ∗−, Ω−

which have isospin around the axis and hypercharge according to the decuplet
diagram below.

Y = 1

Y = 0

Y = −1

Y = −2

I3 = 1I3 = 0I3 = −1

Σ∗+Σ∗0Σ∗−

Δ++Δ+Δ0Δ−

Ξ∗0Ξ∗−

Ω−
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All these particles with the exception of the proton and neutron have a very
short lifetime of a minuscule (yet observable) fraction of a second. The
lifetime of the neutron is about 103 seconds, and the proton is stable.

When Gell-Mann first discussed the above relation between the weight
diagrams for sl3 and the singlet, octet and decuplet diagrams of mesons and
baryons, the Ω− had not yet been observed. On the basis of these weight
diagrams Gell-Mann was able to predict not only the existence of Ω−, but
also its mass. It turned out that the experimentally found masses (in MeV)
were

MΔ = 1230 , MΣ� = 1385 , MΞ� = 1530

and so the spacings between the masses in the rows are nearly equal, and
about 150. This led Gell-Mann to the prediction of the Ω− with mass about
1680. Shortly after the Ω− was found with a mass of 1672 MeV. This was
convincing evidence on the su3 symmetry behind the multiplet diagrams of
the hadrons. The word hadron stands for either meson or baryon.

The next step taken by Gell-Mann was the hypothesis that all hadrons
discussed so far are not yet elementary particles, but compositions of smaller
objects, which he called quarks and antiquarks. Quarks and antiquarks are
postulated to have spin 1/2. Presumably there are 3 quarks with the names
up, down and strange, and abbreviated u, d, s. The corresponding antiquarks
are denoted u, d, s. The quarks have isospin around the axis and hypercharge
according to the triplet weight diagram, and the antiquarks likewise according
to the dual triplet weight diagram below.

ud

s

u d

s

So the u and d have I3 = 1/2, the s and the s have I3 = 0, and the d and
u have I3 = −1/2. Similarly the s has Y = 2/3, the u and d have Y = 1/3,
the u and d have Y = −1/3, and the s has Y = −2/3.

The basic axiom underlying the quark formalism was postulated by Gell-
Mann in the following way. The only way quarks and antiquarks can bind
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together into a bound hadron state, is either a triplet of quarks or a pair of
a quark and an antiquark. A pair of quark and antiquark can bind into a
meson of spin 0 or spin 1. A triplet of quarks can bind together into a baryon
of spin 1/2 or spin 3/2. The tensor product decompositions of Theorem 12.1,
and in particular the underlying pictures of weight diagrams in the proof of
that theorem, can now be matched with the formation of hadrons out of
quarks and antiquarks. The conclusion is the following matching for the spin
0 mesons

K+, K0, π+, π−, K
0
, K−

us, ds, ud, du, sd, su

and the spin 1 mesons

K∗+, K∗0, ρ+, ρ−, K
∗0

, K∗−

us, ds, ud, du, sd, su

for the quark-antiquark combinations. The spin 0 mesons π0, η and η′ are
linear combinations of uu, dd, ss, and the same is true for the spin 1 mesons
ρ0, ω and φ. Similarly we get for the spin 1/2 baryons

p, n, Σ+, Σ0, Λ, Σ−, Ξ0, Ξ−

uud, udd, uus, uds(twice), dds, uss, dss

and for the spin 3/2 baryons

Δ++, Δ+, Δ0, Δ−, Σ∗+, Σ∗0, Σ∗−, Ξ∗0, Ξ∗−, Ω−

uuu, uud, udd, ddd, uus, uds, dds, uss, dss, sss

for the triple quark combinations.
The combination of three u quarks into Δ++ = uuu conflicts the Pauli

exclusion principle: At least two identical half integral spin particles can not
occupy the same state. To fix this all quarks were postulated to have three
colours, say red, green and blue. This breaks the symmetry, and so three u
quarks, one in red, one in green and one in blue, can combine into a particle
Δ++ = uuu. The ”visible” particles made out of three quarks are the white
ones, being made up of all three colours. Likewise the ”visible” particles
made out of a quark and an antiquark of the same colour are the black ones,
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with no colour. Gell-Mann was awarded the Nobel prize of physics in 1969
for his work on elementary particles.

From the seventies on with experiments in stronger colliders much more
new particles were found. The ultimate idea behind this zoo of particles was
the hypothesis of three families of quarks, which go under the names up and
down, strange and charm, bottom and top. The abreviations are u and d,
s and c, b and t respectively. Their masses are in this order 5 and 10, 200
and 1300, 4500 and 175000 MeV. The heaviest top quark was observed at
Fermilab (near Chicago) in 1995. All six quarks (and their antiquarks) have
spin 1/2. The charges of the quarks u and d, c and s, t and b are 2/3 and
−1/3, in this order. There are six more spin 1/2 elementary particles, the so
called leptons. To each family of two quarks there are associated two leptons.
To the u and d family there are associated the electron e and the e-neutrino
νe, to the c and s family there are associated the muon μ and the μ-neutrino
νμ, and to the t and b family there are associated the tau τ and the τ -neutrino
ντ . The three families of two quarks, each with their associated two leptons,
form the sector of the spin 1/2 elementary particles of the so called Standard
Model.

For further reading about the Standard Model we refer the reader to two
text books, one written by the mathematician Shlomo Sternberg, Group The-
ory and Physics from 1994, and the other written by the physicist Howard
Georgi, Lie Algebras in Particle Physics from 1999. Many historical com-
ments can be found in the beautiful book of Martinus Veldman, Facts and
Mysteries in Elementary Particle Physics from 2003. All three books make
a fairly complementary reading of the story.
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13 Spherical harmonics

Fix a positive integer n. Let us denote by

P = P (Rn) = C[x1, · · · , xn]

the commutative algebra of complex valued polynomial functions on R
n. It

is a representation space for the orthogonal Lie algebra son acting by the
linear first order differential operators

xi∂j − xj∂i

with ∂i standing for ∂/∂xi. Of course, there are also compatible representa-
tions of the Lie groups On and SOn on P .

Note that P is a unitary representation of son and likewise of On and
SOn. Indeed P is obtained as a linear algebra construction from the stan-
dard (unitary) representation on the space of linear functions on R

n. More
concretely, the Hermitian inner product on P is obtained from

〈p1, p2〉 =

∫
p1(x)p2(x)dμ(x)

with μ the Euclidean volume element on the unit sphere Sn−1 in R
n given by

Sn−1 = {x ∈ R
n; x2 = 1} .

The Euler operator, the Lapace operator and the square length operator

E =
∑

xi∂i , Δ =
∑

∂2
i , x2 =

∑
x2

i

all act on P , and commute with the actions of son, On and SOn. Let us write
Pm = ker(E −m) for the space of homogeneous polynomials of degree m.
Clearly P = ⊕Pm.

Lemma 13.1. As operators on P we have [Δ, x2] = 4E + 2n.

Proof. Indeed we have
[∂i, x

2
i ] = 2xi

and therefore also

[∂2
i , x

2
i ] = ∂i2xi + 2xi∂i = 4xi∂i + 2

which gives the desired formula.
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Corollary 13.2. The linear operators e = −Δ/2, h = −(E +n/2), f = x2/2
satisfy the usual commutation relations of sl2.

So we get a representation of son ⊕ sl2 on the polynomial space P . We
denote H = ker(Δ) for the space of harmonic polynomials, and also Hm =
H ∩ Pm for the space of harmonic polynomials of degree m. Because Δ :
Pm → P (m−2) we get H = ⊕Hm.

Lemma 13.3. We have Hm ∩ x2P (m−2) = 0.

Proof. Write p ∈ Hm, p �= 0 in the form p = x2kq with k ∈ N maximal. Let
us assume that k ≥ 1. Then we have (using the familiar relation [e, fk] =
kfk−1(h− k + 1) of sl2)

0 = Δp = −2k+1efkq = −2k+1(fkeq + kfk−1(h− k + 1)q)

= x2kΔq + 2k(2m− 4k + n + 2k − 2)x2k−2q .

Since m ≥ 2k and k, n ≥ 1 imply that 2k(2m−4k+n+2k−2) > 0 we conclude
that q is divisible by x2. This contradicts the maximality assumption of
k ≥ 1, and therefore k = 0.

We have Δ : Pm → P (m−2) with kernel equal to Hm. Hence by standard
linear algebra we get

dim(Hm) + dim(P (m−2)) ≥ dim(Pm) ,

while by the above lemma

dim(Hm) + dim(P (m−2)) ≤ dim(Pm) .

We therefore have proven the following result.

Theorem 13.4. We have the direct sum decomposition Pm = Hm⊕x2P (m−2)

and the Laplace operator Δ : Pm → P (m−2) is onto.

Corollary 13.5. The dimension of Hm is given by the formula

dim(Hm) =
(m + n− 3)!

(n− 2)!m!
(2m + n− 2)

and so for fixed dimension n it is a polynomial in m of degree (n − 2) with
leading coefficient equal to 2.
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Proof. Indeed we have

dim(Hm) =

(
m + n− 1

n− 1

)
−

(
m + n− 3

n− 1

)
=

(m + n− 1)!

(n− 1)!m!
− (m + n− 3)!

(n− 1)!(m− 2)!
=

(m + n− 3)!

(n− 1)!m!
{(m + n− 1)(m + n− 2)−m(m− 1)} =

(m + n− 3)!

(n− 1)!m!
(n− 1)(2m + n− 2) =

(m + n− 3)!

(n− 2)!m!
(2m + n− 2) .

Example 13.6. For n = 1 we have dim(H0) = dim(H1) = 1 and Hm = 0
for m ≥ 2. For n = 2 we have dim(H0) = 1 while dim(Hm) = 2 for m ≥ 1.
In this case Hm is spanned by the functions (x1+ix2)

m, (x1−ix2)
m. For n = 3

we have dim(Hm) = 2m + 1, while for n = 4 we have dim(Hm) = (m + 1)2.
For n ≥ 3 we have dim(Hm) < dim(H(m+1)) for all m ∈ N.

Since the action of the orthogonal group On on P commutes with the
action of the sl2 spanned by e, h, f the space Hm of harmonic polynomials
becomes a representation space for On.

Theorem 13.7. If nonzero the space Hm is an irreducible representation of
the group On.

Let On−1 be the stabilizer in On of the north pole (0, 0, · · · , 0, 1). Consider
the space of zonal polynomials

Z(Rn) = P (Rn)On−1 = C[x2
1 + · · ·+ x2

n−1, xn]

on R
n. Averaging over the compact group On−1 gives a surjective mapping

Pm → Zm, that commutes with Δ : Zm → Z(m−2). Because

dim(Zm) = 1 (n = 1), dim(Zm) = [m/2] + 1 (n ≥ 2)

we arrive at
dim(Hm ∩ Zm) = 1

at least if Hm �= 0. In terms of representation theory this says that the space
Hm, at least if nonzero, as a representation space of On−1 contains the trivial
representation with multiplicity one.
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Lemma 13.8. Every nonzero invariant subspace of Hm contains Hm ∩Zm.

Proof. Suppose V ⊂ Hm is a nonzero subspace, that is invariant under On.
If 0 �= p ∈ V then there exists a ∈ On with ap(0, 0, · · · , 0, 1) �= 0. Averaging
ap over On−1 gives a zonal harmonic polynomial, which is nonzero at the
point (0, 0, · · · , 0, 1), and therefore the one dimensional space Hm ∩ Zm is
contained in V .

Now we can finish the proof of the above theorem. Suppose that Hm is
a reducible representation of On, say Hm = V1 ⊕ V2 is a direct sum of two
nonzero invariant subspaces. Then

(Hm ∩ Zm) ⊂ (V1 ∩ V2) = {0}
contradicting that dim(Hm ∩ Zm) = 1.

Remark 13.9. Under the assumption n ≥ 3 one can show with similar
arguments that Hm is irreducible as a representation of SOn or equivalently
of son. However for n = 2 we get

Hm = C(x1 + ix2)
m ⊕ C(x1 − ix2)

m

as a direct sum of two irreducible representations for SO2.

Remark 13.10. From the above theorem it follows that the restriction from
R

n to Sn−1 induces an injection Hm ↪→ C∞(Sn−1). Indeed, the kernel of this
restriction map would be a proper invariant subspace of Hm, and hence it is
zero. In spherical coordinates the Laplace operator Δ = ΔRn takes the form

ΔRn =
d2

dr2
+ (n− 1)

1

r

d

dr
+

1

r2
ΔSn−1

with ΔSn−1 the Laplacian on the unit sphere Sn−1. A harmonic polynomial
h ∈ Hm gives via restriction to Sn−1 an eigenfunction of ΔSn−1 with eigen-
value −m(m + n− 2). The conclusion is that

C∞(Sn−1) � ⊕Hm

which is the development of smooth functions on Sn−1 in spherical harmonics.
It is the spectral resolution of the Laplacian on Sn−1, and is a higher dimen-
sional analogue of the expansion of a smooth function on S1 in a Fourier
series.
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Exercise 13.1. Show that as a representation of son ⊕ sl2 we have the de-
composition

P = ⊕[Hm ⊗M(−(m + n/2))]

with M(s) the Verma representation of sl2 with highest weight s.

Exercise 13.2. Check that the restriction of a harmonic polynomial h ∈ Hm

to the unit sphere Sn−1 is an eigenfunction of the spherical Laplacian ΔSn−1

with eigenvalue −m(m + n− 2).

Exercise 13.3. There exists a unique zonal harmonic polynomial, that is
homogeneous of degree m and takes the value 1 at the point (0, 0, · · · , 0, 1).
Its restriction to the unit sphere Sn−1 is a polynomial function of the height
z = xn only, and as such is called the Gegenbauer polynomial of degree m.
Show that the Gegenbauer polynomials are orthogonal on the interval [−1, 1]
with respect to the measure (1− z2)(n−3)/2dz. In case n = 3 the Gegenbauer
polynomials are also called the Legendre polynomials.
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14 Spherical representations of the Lorentz

group

For a homogeneous polynomial p ∈ Pm of degree m there exist homogeneous
polynomials p+ ∈ Hm and p− ∈ P (m−2) with

p = p+ + x2p−

and such a decomposition is unique. Observe that this decomposition com-
mutes with the representation of the Lie group On and its Lie algebra son on
the vector space Pm. This is the content of Theorem 13.4.

Lemma 14.1. If p ∈ Pm with Δ2(p) = 0 then p− = Δ(p)
4(m−2)+2n

.

Proof. Suppose p ∈ Pm with Δ2(p) = 0. Let us compute

Δ(x2Δ(p)) = (4E + 2n)Δ(p) + x2Δ2(p) = (4(m− 2) + 2n)Δ(p) ,

and therefore

Δ(p− x2Δ(p)

4(m− 2) + 2n
) = Δ(p)−Δ(p) = 0 .

Hence p = p+ + x2p− with p+ ∈ Hm and p− = Δ(p)/(4(m− 2) + 2n).

Corollary 14.2. If h ∈ Hm then (xih)− = (2m− 2 + n)−1∂i(h) ∈ H(m−1).

Proof. Apply the above lemma with p = xih. Let us compute

Δ(xih) = [Δ, xi](h) + xiΔ(h) = 2∂i(h)

which in turn implies that Δ2(xih) = 2Δ(∂i(h)) = 2∂i(Δ(h)) = 0, as re-
quired. Moreover we see that

(xih)− = (4(m− 1) + 2n)−1Δ(xih) = (2m− 2 + n)−1∂i(h)

using the above lemma. Finally note that ∂i(h) is harmonic if h is harmonic.
Indeed the Laplacian Δ and the derivative ∂i commute, as do all constant
coefficients linear differential operators.

Lemma 14.3. For h ∈ Hm, k ∈ H(m+1) we get 〈(xih)+, k〉 = 〈h, (xik)−〉
with 〈·, ·〉 the Hermitian inner product on P as defined in the previous section
(namely by integrating over the unit sphere).
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Proof. For f, g ∈ C∞(Sn−1) � ⊕Hm we have

〈f, g〉 =

∫
Sn−1

f(x)g(x)dμ(x)

with μ the Euclidean measure on Sn−1. Moreover

〈xif, g〉 = 〈f, xig〉

since xi is real valued on Sn−1. Now take for f the restriction of h ∈ Hm and
for g the restriction of k ∈ H(m+1) to the unit sphere Sn−1. Then we arrive
at

〈(xih)+, k〉 = 〈xih, k〉 = 〈h, xik〉 = 〈h, (xik)−〉
since the restriction to Sn−1 of two homogeneous harmonic polynomials of
different degrees are orthogonal.

Corollary 14.4. The linear maps Tm
± : H1 ⊗Hm → H(m±1) defined by

Tm
± (l ⊗ h) = (lh)±

are intertwining operators for the action of On and son. Moreover Tm
± is

surjective for all m ∈ N.

Proof. Clearly Tm
± : H1 ⊗Hm → H(m±1) are intertwining operators because

the decomposition in Theorem13.4 commutes with the action of On and son.
Since the range of the intertwining operators Tm

± is an irreducible representa-
tion (for (m±1) ∈ N) the surjectivety is equivalent with being a nonzero map,
by Schur’s Lemma. But being a nonzero map under the given conditions is
easily checked, and left to the reader.

This ends our discussion of the theory of spherical harmonics on R
n. We

shall now apply this theory for the construction of a one parameter family
of representation of the Lorentz group and Lorentz algebra. Subsequently
we shall analyze the question of unitarity for this family, by infinitesimal
methods (so using the Lie algebra rather than the Lie group).

Consider R
n,1 = {(x, y); x = (x1, · · · , xn) ∈ R

n, y ∈ R}, so as a vector
space it is just R

n+1, but with Lorentz square length

(x, y)2 = x2 − y2
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with x2 and y2 the Euclidean square lengths on R
n and R respectively. The

Lorentz group G = On,1(R) has Lie algebra g = son,1 with decomposition

g = k⊕ p

with k = son the Lie algebra of K = On(R) × O1(R), and p the orthogonal
complement with respect to the trace form on g derived from the standard
representation of g on C

n,1. The group K is a so called maximal compact
subgroup of G. The real Lorentz algebra son,1(R) consists of the real matrices
in son,1, and is spanned over R by the vector fields

xi∂j − xj∂i , xi∂ + y∂i

in k and p respectively. Here ∂i stands for ∂/∂xi, while ∂ stands for ∂/∂y.
The forward light cone L+ is defined by

L+ = {(x, y) ∈ R
n,1; x2 = y2, y > 0} .

Its symmetry group G+ = O+
n,1(R) is an index 2 subgroup of On,1(R). Note

that G+ has still two connected components, which are distinguished by the
sign of the determinant, and so G◦ = SO+

n,1(R) is the connected symmetry
group of L+ with Lie algebra g = son,1 � son+1. The next lemma is obvious.

Lemma 14.5. The map L+ � (x, y) �→ (x/y, y) ∈ Sn−1 × R+ induces a
diffeomorphism (a bijective map, both smooth and the inverse smooth) of L+

onto Sn−1 × R+.

Definition 14.6. Let s ∈ C be a complex parameter. The vector space of
smooth complex valued functions on the forward light cone L+ that are homo-
geneous of degree −s is denoted by Ss = Ss(L

+), and viewed as a representa-
tion space of the proper Lorentz group O◦

n,1 and the corresponding Lorentz Lie
algebra son,1, is called the spherical principal series representation with spec-
tral parameter s. Note that by the above lemma and the theory of spherical
harmonics we have the isomorphism

Ss = Ss(L
+) � ⊕Hm(Rn)y−(s+m) .

Note that the restriction of the spherical principal series representation
to the Lie subalgebra k = son of the Lorentz algebra g = son,1 decomposes
in a multiplicity free way as

Ss|k = ⊕Hm(Rn) .
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In particular the action of k on Ss is independent of the parameter s ∈ C.
Indeed the Lie algebra k has basis xi∂j − xj∂i and therefore only acts on
h ∈ Hm(Rn) and not on the factor y−(s+m). However the action of p = g� k

does depend on s, since p has basis xi∂ + y∂i with ∂ = ∂/∂y.

Theorem 14.7. The action of p on the spherical principal series Ss is given
by

(xi∂ + y∂i)(h(x)y−(s+m)) =

−(m + s)(xih(x))+y−(s+m+1) + (m− s + n− 2)(xih(x))−y−(s+m−1) ,

or written in an equivalent way we find for all z ∈ p that

z(h(x)y−(s+m)) =

−(m + s)Tm
+ (z ⊗ h(x))y−(s+m+1) + (m− s + n− 2)Tm

− (z ⊗ h(x))y−(s+m−1) .

This theorem is an immediate consequence of Corollary 14.2. Note that
the dependence of the spherical principal series representation of g = son,1

on the parameter s ∈ C is explicit, and in fact quite manageable.

Corollary 14.8. The spherical principal series representation Ss of son,1 is
reducible if s = −m or s = (m + n − 2) for some m ∈ N, and irreducible
otherwise. For s = −m ∈ −N the representation Ss has a finite dimensional
subrepresentation equal to Hm(Rn,1), while for s = (m + n− 2) with m ∈ N

we get an infinite dimensional subrepresentation with a finite dimensional
quotient isomorphic to Hm(Rn,1).

For which values of the parameter s ∈ C is the spherical principal se-
ries Ss as a representation of the real Lorentz algebra son,1(R) unitarizable?
The word unitarizable means unitary with respect to some Hermitian inner
product. Suppose there exists a Hermitian from

Hs = ⊕ cm(s)〈·, ·〉m
with 〈·, ·〉m the standard Hermitian form on Hm(Rn) which is unitary for the
representation of k = son, and with cm(s) suitable real numbers depending
on m ∈ N, s ∈ C.

The form Hs is invariant for son,1(R) if and only if for all z = xi∂ + y∂i

and for all h ∈ Hm, k ∈ H(m+1) we have

Hs(z(h(x)y−(s+m)), k(x)y−(s+m+1))+Hs(h(x)y−(s+m), z(k(x)y−(s+m+1))) = 0 ,
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which in turn amounts to

cm+1(s)(m+s)〈(xih(x))+, k(x)〉+cm(s)(m−s+n−1)〈h(x), (xik(x))−〉 = 0 .

Using Lemma 14.3 we arrive at the following result.

Theorem 14.9. The spherical principal series Ss is a irreducible Hermitian
representation of the real Lorentz algebra son,1(R) if and only if the equation

cm+1(s)(m + s) + cm(s)(m− s + n− 1) = 0

has a solution cm(s) ∈ R
× = {c ∈ R; c �= 0} for all m ∈ N.

Corollary 14.10. The spherical principal series Ss is a irreducible unitary
representation of the real Lorentz algebra son,1(R) if and only if

cm+1(s)(m + s) + cm(s)(m− s + n− 1) = 0

has a solution cm(s) ∈ R+ = {c ∈ R; c > 0} for all m ∈ N. In turn this
condition is equivalent to  (s) = (n− 1)/2 or 0 < s < (n− 1).

Proof. Observe that s and (−s + n− 1) are mirror images of one another in
the line  (s) = (n−1)/2. Hence the ratio (m+s)/(m−s+n−1) is positive
for all m ∈ N if and only either this ratio equals 1 and  (s) = (n − 1)/2 or
this ratio lies in R+ − {1} and 0 < s < (n − 1), s �= (n − 1)/2. This easily
follows since the points s and (−s + n− 1) in the complex plane are mirror
images with the line  (s) = (n− 1)/2 as mirror.

� � � � � � � �

��

 s = 0

 s = (n− 1)/2

 s = (n− 1)

s−s + n− 1

−1−2−3 n
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For  (s) = (n−1)/2 the unitary spherical principal series Ss is called the
tempered spherical principal series, while for 0 < s < (n− 1), s �= (n− 1)/2
the unitary spherical principal series Ss is called the complementary spherical
principal series.

The methods of this section can be extended to some other groups, like
the complex Lorentz group Un,1. For further details we refer to the article by
Roger Howe and Eng-Chye Tan in the Bulletin of the American Mathematical
Society, Volume 28, January 1993.

Exercise 14.1. In the notation of Exercise 9.8 show that the quadratic ex-
pression (called the Casimir operator of so3,1)

C = (K2
1 + K2

2 + K2
3)− (L2

1 + L2
2 + L2

3)

lies in the center of the universal enveloping algebra Uso3,1 of the Lorentz
algebra. In turn this implies by Schur’s Lemma that C acts in an irreducible
representation space by some scalar. Check that the scalar by which C acts
in the spherical principal series Ss equals −s(s− 2). Hint: We have

L1 = i(x2∂3 − x3∂2), · · · , K1 = i(x1∂ − y∂1), · · ·
in the usual cyclic notation. Now check that Cϕs = −s(s − 2)ϕs with
ϕs(x, y) = y−s as vector in Ss. The vector ϕs ∈ Ss is called spherical be-
cause (L2

1 + L2
2 + L2

3)ϕs = 0. Finally observe that (Uso3,1)ϕs equals all of
Ss.

Exercise 14.2. In the notation of the previous exercise let us replace

Li �→ �Li, Ki �→ �
√

2mEKi

with �,m,E all three positive parameters. Check that the new elements Li, Ki

satisfy the commutation relations

[Li, Lj] = i�εijkLk , [Li, Kj] = i�εijkKk , [Ki, Kj] = −i�εijk(2mE)Lk

which we recognize from our discussion of the quantization of the Kepler
problem (equivalently from our discussion of the computation of the spectrum
of the hydrogen atom). Using the previous exercise show that the operator

(2mE)−1K2 − L2

acts on the spherical principal series Ss by multiplication with the scalar
−�

2s(s− 2).
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Exercise 14.3. In our discussion of the quantization of the Kepler problem
we have seen the key identity

K2 = 2mH(L2 + �
2) + k2m2 ,

which we can also write as

H = k2m/2(K2/(2mH)− L2 − �
2) .

Show that for positive energie H = E > 0 the coherent eigenstate of the
hydrogen atom is degenerated according to the spherical principal series Ss of
so3,1 with energy E = Es given by

E = Es = −k2m/2(s− 1)2
�

2

which in turn implies that the tempered spherical principal series occurs in the
continuous spectrum of the hydrogen atom, while the complementary spherical
principal series is absent. What is the meaning for physics of the comple-
mentary series?

Exercise 14.4. Analyse in case of reducibility of the spherical principal series
Ss the unitarity of the sub and quotient representations of Ss.
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