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Preface

The year 1687 can be seen as the year of the ”Radical Enlightment” of the
natural sciences. In this year the Philosophiae Naturalis Principia Math-
ematica (Mathematical Principles of Natural Philosophy) written by Isaac
Newton appeared in print. Newton developped a piece of mathematics for
describing the concept of motion of a point r in space. Using the language of
differential calculus (in a hidden way) the notions velocity v and acceleration
a were defined. Subsequenty Newton introduced two basic laws

F = ma , F = −kr/r3

called the law of motion and the law of gravitation. The law of motion states
that the acceleration of the moving point is proportional to the given force
field, while the law of gravitation states that the gravitational field of the
sun attracts a planet with a force proportional to the inverse square of the
distance between the sun and the planet.

On the basis of these two simple laws Newton was able to derive, by
purely mathematical reasoning, the three Kepler laws of planetary motion.
Since Newton people have been amazed by the power of mathematics for
understanding the natural sciences. In a famous article of 1960 the physics
Nobel laureate Eugene Wigner pronounced his wonder about ”the unreason-
able effectiveness of mathematics for the natural sciences”.

The reasoning of Newton was highly interwoven with ancient Euclidean
geometry, a subject he mastered with great perfection. After Newton there
came a period of more and more algebraic reasoning with coordinates in
the spirit of Descartes. The algebraic approach culminated in the hands of
Lagrange in 1788 in the classic text book ”Mécanique Analytique”, in which
the author in his preface proudly states that his book contains no pictures
at all. On the contrary, Newton uses at almost every page in the Principia a
picture to enlighten his geometric reasoning.

What is better and more powerful for modern mathematics: is it either
algebra or is it geometry? Algebra gives us the tools and geometry gives
the insights. A famous quotation of Hermann Weyl says: ”In these days
the angel of topology and the devil of abstract algebra fight for the soul
of every individual discipline of mathematics.” Clearly the modern answer
to the above question is that the combination of algebra and geometry is
optimal. It is not ”either ... or” but ”both ... and”. Having expressed this
point clearly I would like to add that in the teaching of mathematics pictures
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are extremely helpful. In that spirit this text is written with an abundance
of pictures.

My interest in this subject arose from teaching during several years master
classes for high school students in their final grade. During six Wednesday
afternoons the students would come to our university for lecture and exercise
classes, and in the last afternoon we were able to explain the derivation of
Kepler’s ellipse law from Newton’s laws of motion and gravitation using our
geometric construction of the other focus of the elliptical orbit. The present
notes are an extended version our original lecture material aiming at freshmen
students in mathematics or physics at the university level.

In these lecture notes we put ample emphasis on historical developments,
notably the work of Ptolemeus, Copernicus, Kepler, Galilei and Newton.
Hence we ourselves may repeat Newton’s famous phrase ”Pygmaei gigantum
humeris impositi plusquam ipsi gigantes vident” (If we have seen further it is
by standing on the shoulders of giants). For people interested in the history
of our subject the novel of Arthur Koestler entitled ”The Sleepwalkers” is
highly recommanded. In particular I enjoyed reading the stories of his true
hero Johannes Kepler.

Many people have been helpful in the preparation of these notes, and
I like to express my sincere thanks. Maris van Haandel and Leon van den
Broek for the collaboration in the master classes for high school students.
Hans Duistermaat and Henk Barendregt for their suggestions to read the
original texts of Newton and Copernicus respectively. Paul Wormer for many
stimulating discussions on the subject. Last but not least the high school
and freshmen students for their attention and patience. It became truely a
subject I loved to teach.

These notes are dedicated to the memory of my parents, Tom Heckman
and Joop Timmers, with love and gratitude.
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1 The Scalar Product

It was an excellent idea of the French mathematician René Descartes in
his book Géometrie from 1637 to describe a point u of space by a triple
(u1, u2, u3) of real numbers u1, u2, u3. We call u1, u2, u3 the first, second
and third coordinates of the point u = (u1, u2, u3) and the collection of
all such points is called the Cartesian space R

3. We have a distinguished
point 0 = (0, 0, 0) which is called the origin of R3. A point u in R

3 is also
called a vector but the geometric concept of vector is slightly different. It
is a directed radius with begin point the origin 0 and end point u. In the
language of vectors the origin 0 is also called the zero vector. In printed text
it is the standard custom to denote vectors u in Cartesian space in boldface,
while in handwritten text one writes either u or ~u.

Likewise, the Cartesian plane R
2 consists of points u = (u1, u2) with two

coordinates u1, u2 and a distinguished point 0 = (0, 0) called the origin of
R

2. The approach of Descartes allows geometric reasoning to be replaced
by algebraic manipulations. However it is our goal to bring the geometric
reasoning underlying the algebra as much as possible to the forefront. For
that reason we shall make pictures a valuable tool in our exposition. However
pictures will be always in the Cartesian plane R2 leaving the analogies in R

3

to the imagination of the reader. We might in the guiding text discuss the
situation for the space R

3.

b

b

b

b
u = (u1, u2)

0 = (0, 0) (u1, 0)

(0, u2)

In the Cartesian space R3 we define the operations of vector addition and
scalar multiplication by the formulas

u+ v = (u1, u2, u3) + (v1, v2, v3) = (u1 + v1, u2 + v2, u3 + v3)

λu = λ(u1, u2, u3) = (λu1, λu2, λu3)
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so just coordinatewise addition and coordinatewise scalar multiplication. The
word scalar is synonymous with real number, which explains the terminolgy.
The geometric meaning of addition with a point u is a translation over the
corresponding vector u, while the geometric meaning of scalar multiplication
by λ is a homothety (central similarity with center the origin) with factor λ.

It is easy to check using the usual properties of real numbers that the
relations

(u+ v) +w = u+ (v +w) , u+ 0 = 0 + u = u

λ(µu) = (λµ)u , λu+ µu = (λ+ µ)u , λ(u+ v) = λu+ λv

u+ v = v + u

hold. We write −u = (−1)u and u−v = u+(−v). Hence u−u = (1−1)u =
0 for all u in R

3. If v 6= 0 then all scalar multiples λv, with λ running over
R, form the line through 0 and v. We denote this line by Rv and call it the
support of v. Likewise u+ Rv is the line trough u parallel to v.

b

b b

0

v
u

Rv

u+ Rv

b

b

b

b

0

u

v

u+ v

Note that 0, u, u+v, v are the vertices of a parallellogram. Whenever there
is no use in drawing the coordinate axes they are left out from the pictures.

Definition 1.1. For u = (u1, u2, u3) and v = (v1, v2, v3) points in Cartesian
space R

3 the real number

u · v = u1v1 + u2v2 + u3v3

is called the scalar product of u and v. The scalar product of points in the
Cartesian plane is defined similarly.
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The scalar product is bilinear and symmetric, by which we mean

(u+ v) ·w = u ·w + v ·w , (λu) · v = λ(u · v)
u · (v +w) = u · v + u ·w , u · (λv) = λ(u · v)

v · u = u · v

for all points u,v,w in R
3 and all scalars λ in R. These properties follow

easily from the definition. Moreover

u · u = u21 + u22 + u23 ≥ 0

and u · u = 0 is equivalent with u = 0. We denote

u = |u| = (u · u)1/2 = (u21 + u22 + u23)
1/2

and call it the length of the vector u. In view of the Pythagoras Theorem the
length of the vector u is just the distance from 0 to u. The distance between
two points u and v is defined as the length of the difference vector u−v. In
the following proof the geometric idea behind this definition is explained.

Theorem 1.2. We have u · v = uv cos θ with 0 ≤ θ ≤ π the angle between
the vectors u and v.

Proof. Strictly speaking the angle between the vectors u and v is only defined
if both u and v are different from 0. However if either u or v are equal to
0 then both sides of the identity are zero (even though cos θ is undefined).
Hence assume uv 6= 0.

b b

bb

0 v

uw

θ

Consider triangle 0uv with angle θ at 0. If we put w = u− v then 0wuv is
a parallellogram, and therefore w = |u− v| is equal to the distance from u

to v. From the properties of the scalar product we get

|u− v|2 = (u− v) · (u− v) = u · u− u · v− v · u+ v · v = u2 + v2 − 2u · v
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while the cosine rule gives

|u− v|2 = u2 + v2 − 2uv cos θ .

We conclude that u2+ v2−2u ·v = u2+ v2−2uv cos θ, which in turn implies
that u · v = uv cos θ.

We say that u and v are perpendicular if u · v = 0, and u and v are
proportional if (u ·v)2 = u2v2. If u and v 6= 0 are proportional, then we also
write u ∝ v. We denote u ⊥ v if u and v are perpendicular. For u 6= 0 and
v 6= 0 we have u ⊥ v if θ = π/2, while u and v are proportional if θ = 0 or
θ = π, with θ the angle between the vectors u and v.

Proposition 1.3. Suppose we have given a point n in R
3 different from the

origin 0, and let N = Rn be the support of n. If the orthogonal projection
pN (u) of a vector u in R

3 on N is defined as the unique vector v on N for
which u− v and n are perpendicular, then we have pN (u) = (u · n)n/n2 for
all u in R

3.

b

b

b

b

b

0

n

u

w

pN (u) = v

N

Proof. If we take v = λn and w = u − v then w · n = 0 if and only if
u · n = v · n, which in turn is equivalent to u · n = λn2. Therefore we find
the formula pN (u) = (u·n)n/n2 for the orthogonal projection of u on N .

Theorem 1.4. Suppose we have given a point n in R
3 different from the

origin 0, and let N = Rn be the support of n. Suppose also given a point r
in R

3, and let V be the plane through r perpendicular to N . Denote by sV
the orthogonal reflection with mirror V. Then we have

sV(u) = u− 2((u− r) · n)n/n2

for all u in R
3.
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Proof. Indeed the orthogonal reflection of u in the plane V through r per-
pendicular to N is obtained from u by subtracting twice the difference
pN (u)− pN (r) of the orthogonal projections of u and r on N .

b

b

b

bb

b

b

0

n

u

r

sV(u)

pN (u)

pN (r)

N

V

Since pN (u)− pN (r) = pN (u− r) the desired formula is clear.

Remark 1.5. With the notation of the above theorem, let U denote the plane
through the origin 0 perpendicular to N . Hence the orthogonal reflection sU
with mirror U is given by the formula

sU(u) = u− 2(u · n)n/n2

for any u in R
3. It is easy to check that

sU(λu+ µv) = λsU(u) + µsU(v) , sU(u) · sU(v) = u · v

for all λ, µ in R and u,v in R
3. Because u ·v = uv cos θ this implies that sU

preserves the length of any vector and the angle between any two vectors. It
it easy to check that sV(u)− sV(v) = sU(u− v) which in turn implies that

|sV(u)− sV(v)| = |u− v|

for all u,v in R
3.

Exercise 1.1. Let n be a point in R
3 different from 0, and let U be the plane

through 0 perpendicular to n. Show that the orthogonal reflection sU with
mirror the plane U , so sU(u) = u− 2(u · n)n/n2, satisfies the relation

sU(u) · sU(v) = u · v

for all u,v in R
3. In other words, orthogonal reflections with mirror through

the origin preserve the scalar product of two points.
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Exercise 1.2. Let n be a point in R
3 different from 0, and let U be the plane

through 0 perpendicular to n. Let V be a plane in R
3 parallel to U , and let

sV be the orthogonal reflection with mirror V. Show that

sV(u)− sV(v) = sU(u− v)

and conclude that
|sV(u)− sV(v)| = |u− v|

for all u,v in R
3. In other words orthogonal reflections preserve the distance

between two points.

Exercise 1.3. Suppose we have given a point n in R
3 different from the

origin 0, and let N = Rn be the support of n. Suppose also given a point r
in R

3, and let V be the plane through r perpendicular to N . Let pV denote
the orthogonal projection of R3 on the plane V. Show that

pV(u) = u− ((u− r) · n)n/n2

for all u in R
3. Show that

|pV(u)− pV(v)| ≤ |u− v|

for all u,v in R
3 with equality if and only if (u− v) · n = 0.
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2 The Vector Product

In Cartesian space R3 we have defined for any pair of vectors u = (u1, u2, u3)
en v = (v1, v2, v3) the scalar product u·v = u1v1+u2v2+u3v3. The geometric
meaning of the scalar product was given by the formula

u · v = uv cos θ

with u = (u·u)1/2, v = (v ·v)1/2 and 0 ≤ θ ≤ π the angle between the vectors
u and v. Besides the scalar product we also define the vector product.

Definition 2.1. The vector product u×v of two vectors u,v in R
3 is defined

by the formula

u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

and is again a vector in R
3.

Just like the scalar product the vector product is bilineair, meaning

(u+ v)×w = u×w + v ×w , (λu)× v = λ(u× v)

u× (v +w) = u× v + u×w , u× (λv) = λ(u× v)

for all points u,v,w in R
3 and all scalars λ. However, in contrary to the

symmetric scalar product, the vector product is antisymmetric, meaning

v × u = −u× v ,

which in turn implies that
u× u = 0

for all u in R
3. More generally

u× v = 0

whenwever u and v are proportional. These rules follow easily by writing
out in coordinates, for example

u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

v × u = (v2u3 − v3u2, v3u1 − v1u3, v1u2 − v2u1)

and indeed these add up to 0 = (0, 0, 0). The scalar product and the vector
product satisfy the following important compatibility relations.
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Theorem 2.2. For u,v,w in R
3 we have

u · (v ×w) = (u× v) ·w
u× (v×w) = (u ·w)v− (u · v)w

which are called the triple product formulas for scalar and vector product.

Proof. The proof is an exercise in writing out the formulas in coordinates.
For example for the first formula we have

u · (v ×w) = u1(v2w3 − v3w2) + u2(v3w1 − v1w3) + u3(v1w2 − v2w1)

(u× v) ·w = (u2v3 − u3v2)w1 + (u3v1 − u1v3)w2 + (u1v2 − u2v1)w3

and both lines are indeed equal. The proof of the second formula goes along
similar lines.

The first triple product formula implies that

u · (u× v) = 0 , (u× v) · v = 0

and therefore
(u× v) ⊥ u , (u× v) ⊥ v .

Using both triple product formulas we obtain

(u× v) · (u× v) = u · (v × (u× v)) = u · ((v · v)u− (v · u)v) =
u2v2 − (u · v)2 = u2v2 − u2v2 cos2 θ = u2v2 sin2 θ

meaning that the length of u × v is equal to uv sin θ, with 0 ≤ θ ≤ π the
angle between the vectors u and v. Hence u×v = 0 if either u = 0 or v = 0

or if u 6= 0,v 6= 0 and θ = 0 or θ = π.

b b

b b

0 u

v u+ v

θ

Note that uv sin θ is equal to the area of the parallellogram spanned by the
vectors u and v.
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The properties (u×v) ⊥ u, (u×v) ⊥ v and |u×v| = uv sin θ determine
the vector u×v up to sign. The direction of u×v is given by the corkscrew
rule: u×v points in the direction of the corkscrew when turned from u to v.
For example (1, 0, 0)× (0, 1, 0) = (0, 0, 1). Altogether we have the following
geometric description of the vector product.

Corollary 2.3. The vector product u × v is a vector perpendicular to u

and perpendicular to v. The length |u× v| is equal to the area uv sin θ of
the parallellogram spanned by the vectors u and v. The direction of u × v

is given by the corkscrew rule. These geometric properties define the vector
product u× v unambiguously.

We have defined the Cartesian space R
3 in terms of coordinates, and

defined four operations on it: vector addition and scalar multiplication, and
scalar and vector product. An abstract space E3 is called a Euclidean space if
it is equipped with four such operations. In the remaining part of this section
we will show that in a Euclidean space E3 one can choose coordinates, which
allow an identification of E3 with the Cartesian space R

3. In other words
the four operations vector addition and scalar multiplication, and scalar and
vector product are a complete set of axioms for Euclidean space geometry.

Definition 2.4. A vector space E is a set consisting of vectors, together with
two operations. The first operation is vector addition. It assigns to any two
vectors u,v in E a new vector u + v in E, called the sum of u and v. The
vector addition satisfies

(u+ v) +w = u+ (v +w) , u+ 0 = 0+ u = u , u+ v = v + u

for some 0 in E, called the origin or null vector, and all u,v,w in E. The
second operation is scalar multiplication. It assigns to any scalar λ and any
vector u in E a new vector λu in E, called the multiplication of the scalar λ
and the vector u. The scalar multiplication satisfies

λ(µu) = (λµ)u , 1u = u , λu+ µu = (λ+ µ)u , λ(u+ v) = λu+ λv

for all scalars λ, µ and all vectors u,v in E.

A vector in the Cartesian vector space Rn of dimension n is defined as an
expression u = (u1, · · · , un) with u1, · · · , un real numbers. The operations
of vector addition and scalar multiplication are defined in the same way as
in the case of dimension n = 3. It is easy to show that the Cartesian vector
space R

n of dimension n is a vector space.
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Definition 2.5. Suppose E is a vector space. A scalar product on E is an
operation that assigns to any two vectors u,v in E a scalar u · v with the
(bilinear, symmetric) properties

(u+ v) ·w = u ·w + v ·w , (λu) · v = λ(u · v)
u · (v +w) = u · v + u ·w , u · (λv) = λ(u · v)

v · u = u · v
for all vectors u,v,w in E and all scalars λ. Finally we require the (posi-
tivity) property that u · u ≥ 0 and u · u = 0 is equivalent with u = 0. We
denote u = (u ·u)1/2 and call it the length of the vector u in E. A Euclidean
vector space E is a vector space, equipped with a scalar product operation.

For u = (u1, · · · , un) and v = (v1, · · · , vn) vectors in R
n we define the

scalar product u · v = u1v1 + · · · + unvn, making R
n the standard example

of a Euclidean vector space.

Definition 2.6. A Euclidean space E
3 is a Euclidean vector space together

with a vector product operation. A vector product on E
3 assigns to any two

vectors u,v in E
3 a new vector u×v in E

3 with the (bilinear, antisymmetric)
properties

(u+ v)×w = u×w + v ×w , (λu)× v = λ(u× v)

u× (v +w) = u× v + u×w , u× (λv) = λ(u× v)

v× u = −u× v

for all vectors u,v,w in E
3 and all scalars λ. In addition, we require that

the triple product formulas

u · (v ×w) = (u× v) ·w
u× (v×w) = (u ·w)v− (u · v)w

hold for all vectors u,v,w in E
3. Finally we assume that the vector product is

not trivial, in the sense that u×v 6= 0 for some u,v in E
3. This excludes the

trivial cases E0 = {0} and E
1 = Ru with u a nonzero vector, and u× v = 0

for all vectors u,v.

The Cartesian space R
3 with its usual scalar and vector product is an

example of a Euclidean space. However it is essentially the only example,
in the sense that for an abstract Euclidean space E

3 one can choose suitable
coordinates, which allow an identification of E3 with R

3. This is the content
of the next theorem.
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Theorem 2.7. In any Euclidean space E
3 we can choose vectors e1, e2, e3

with

e1 · e1 = e2 · e2 = e3 · e3 = 1 , e1 · e2 = e2 · e3 = e3 · e1 = 0

e1 × e2 = e3 , e2 × e3 = e1 , e3 × e1 = e2

and we call such a triple e1, e2, e3 an orthonormal basis of E3. Any vector u
in E

3 is of the form
u = u1e1 + u2e2 + u3e3

for certain real numbers u1, u2, u3. The numbers ui = u · ei are called the
coordinates of u relative to the orthonormal basis e1, e2, e3 of E3.

In case u = u1e1 + u2e2 + u3e3 and v = v1e1 + v2e2 + v3e3 we have

u · v = u1v1 + u2v2 + u3v3

u× v = (u2v3 − u3v2)e1 + (u3v1 − u1v3)e2 + (u1v2 − u2v1)e3

for the scalar and vector product of u,v in E
3.

Proof. Choose u,v in E
3 with u × v 6= 0. Take e1 = u/u. Put w =

v − (v · e1)e1 and check that w · e1 = 0 and e1 × w 6= 0, so in particular
w 6= 0. Take e2 = w/w and e3 = e1 × e2. It is a straightforward exercise to
check the remaining relations.

We claim that the only vector v in E
3 with v ·e1 = v ·e2 = v ·e3 = 0 is the

zero vector v = 0. Indeed v×e3 = v× (e1×e2) = (v ·e2)e1− (v ·e1)e2 = 0,
which in turn implies that 0 = (v × e3) · (v × e3) = v2 − (v · e3)2 = v2 and
so v = 0.

For any vector u in E
3 take ui = u · ei for i = 1, 2, 3. Then it is easy to

check that v = u− (u1e1 + u2e2 + u3e3) is perpendicular to e1, e2, e3. Hence
v = 0 and u = u1e1 + u2e2 + u3e3.

The final step that the scalar and vector product of two vectors in E
3 in

coordinates relative to an orthonormal basis e1, e2, e3 is given by the same
expressions for the scalar and vector product of two vectors in R

3 is left to
the reader.

The choice of an orthonormal basis e1, e2, e3 in E
3 allows an identifica-

tion of u = u1e1 + u2e2 + u3e3 in the Euclidean space E
3 with (u1, u2, u3)

in the Cartesian space R
3 compatible with vector addition and scalar mul-

tiplication. Under this identification, the scalar and vector product on the
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Euclidean space E
3 corresponds to the standard scalar and vector product

on the Cartesian space R
3.

In the Euclidean space E
3 the reasoning is usually geometric using the

properties of vector addition, scalar multiplication, scalar product and vector
product. For example Theorem 1.4 equally holds both in R

3 and E
3. In the

Cartesian space R
3 the reasoning can also be algebraic using calculations in

the coordinates.

Exercise 2.1. Prove the second formula of Theorem 2.2.

Exercise 2.2. Show that u× (v ×w) + v × (w× u) +w × (u× v) = 0.
Hint: Use the second formula of Theorem 2.2.

Exercise 2.3. Let a,b, c be three vectors in R
3 different from 0, such that

c = a× b and the direction of c is given by the corkscrew rule. For example
a = (1, 0, 0),b = (0, 1, 0), c = (0, 0, 1) is such a triple. Let u,v in R

3 be
chosen, such that u(t) = ((1 − t)a + tu) and v(t) = ((1 − t)b + tv) are not
proportional for all 0 ≤ t ≤ 1. Prove that the direction of u × v is given by
the corkscrew rule.
Hint: Observe that u(t) × v(t) 6= 0 for all t with 0 ≤ t ≤ 1 by assumption,
and varies continuously as a (quadratic) function of t. Since the direction
of u(t) × v(t) can not suddenly change, this direction remains given by the
corkscrew rule for all t with 0 ≤ t ≤ 1.

Exercise 2.4. Show that the Cartesian space R
n of dimension n is indeed a

Euclidean vector space.

Exercise 2.5. Show that in any Euclidean vector space E we have

(u · v)2 ≤ u2v2

for all u,v in E. This is called the Schwarz inequality.
Hint: For u 6= 0 the expression (tu+ v) · (tu+ v) is a quadratic polynomial
in t and nonnegative for all t. Hence its discriminant is nonpositive.

Exercise 2.6. Check the last part in the proof of Theorem 2.7 that the scalar
and vector product on Euclidean space E3, expressed in coordinates relative to
an orthonormal basis, match with the formulas for scalar and vector product
on Cartesian space R

3.
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Exercise 2.7. A square matrix X = (xij) is a square array of real numbers,
so

X =

















x11 x12 · · · x1n
x21 x22 · · · x2n
· · · · · ·
· · · · · ·
· · · · · ·
xn1 xn2 · · · xnn

















with xij the entry on the place (i, j). So the first index i runs downwards, and
the second index j runs from left to right. The set Mn of all square matrices
of size n is a vector space with respect to entrywise addition and entrywise
scalar multiplication.

ForX andY two such matrices the productXY is by definition the matrix
with entry

∑

k xikykj on the place (i, j). Matrix multiplication satisfies the
usual rules of multiplication of real numbers, such as

X(YZ) = (XY)Z , X(Y + Z) = XY +XZ , X(λY) = λ(XY)

but with the important exception that XY need not be equal to YX. Matrix
multiplication is associative and distributive, but need not be commutative.

Denote by Xt the transposed matrix with entry xji on the place (i, j). A
matrix X is called antisymmetric if X + Xt = 0 with 0 the matrix with all
entries equal to 0. The trace tr(X) =

∑

k xkk of X is defined as the sum of
the entries on the main diagonal. Show that the space An of antisymmetric
matrices of size n×n has the structure of a Euclidean vector space with repect
to the scalar product

X ·Y = − tr(XY) .

Show that the commutator product of matrices

[X,Y] = XY −YX

is a bilinear antisymmetric operation on An for which the first triple product
formula

X · [Y,Z] = [X,Y] · Z
holds. Show that the second triple formula

[X, [Y,Z]] = (X · Z)Y − (X ·Y)Z

of Theorem 2.2 holds for n = 3 but fails for n ≥ 4.
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3 Motion in Euclidean Space

Differential calculus is the appropriate mathematical language for describing
the motion of a point particle in Cartesian space R

3 or Euclidean space E
3.

It was developped independently by Leibniz and Newton at the end of the
17th century, although both gentlemen had a rather different opinion about
their priority. The basic notion is the concept of smooth curve or smooth
motion.

Definition 3.1. A smooth curve (also called a smooth motion) in R
3 (or E3)

is a smooth map

r : (t0, t1) −→ R
3 , t 7−→ r(t) = (x(t), y(t), z(t))

for some −∞ ≤ t0 < t1 ≤ ∞.

b

b

t0 t1
t

r(t)

( )

The parameter t is usually to be thought of as time, and smooth means
infinitely differentiable. The point r(t) is called the position or radius vector
at time t. The geometric locus of points r traced out in time is called the
orbit. So an orbit is essentially just the picture of a smooth curve, while a
smooth curve is the picture plus the additional information how the radius
vector r(t) at time t moves along the orbit. However the terminology has
become sloppy, and one also uses the word ”curve” for ”orbit”. In case the
third coordinate z(t) vanishes identically, one speaks of a planar curve.

The first and second derivatives of the radius vector of a smooth curve

v(t) = ṙ(t) = (ẋ(t), ẏ(t), ż(t))

a(t) = r̈(t) = (ẍ(t), ÿ(t), z̈(t))
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are called the velocity and acceleration at time t. We have used a standard
convention in mechanics to denote the derivative with respect to time by a
dot, and likewise the second derivative with respect to time by two dots.
The notations d r/ d t and d2 r/ d t2 are only used if one needs to explicitly
emphasize the time variable t. Explicitly written out as limits we have

v(t) = lim
h→0

{r(t+ h)− r(t)}/h
a(t) = lim

h→0
{v(t+ h)− v(t)}/h

and these formulas hold equally well in Cartesian space R
3 and Euclidean

space E
3. As before, nonboldface letters r, v and a indicate the lengths of

the vectors r,v and a respectively.

Example 3.2. For two vectors u,v in R
3 with v 6= 0 the curve

r(t) = u+ tv

traces out a straight line, and is called uniform rectilinear motion. The vector
u is the position at time t = 0. The velocity ṙ(t) = v is independent of t,
and therefore the acceleration r̈(t) = 0.

A general curve t 7→ r(t) has at a fixed time t as linear approximation
the uniform rectilinear motion s 7→ r(t) + sv(t) as long as v(t) 6= 0. The
tangent line L to the curve at time t is therefore equal to r(t) + Rv(t).

b

b

b

0

r(t)

v(t)

L
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Example 3.3. For g > 0 and a, b, c, d real numbers the planar curve

r(t) = (at+ b,−gt2/2 + ct+ d)

traces out a parabola if a 6= 0 and a half line if a = 0. The velocity is given
by v(t) = (a,−gt + c) and so its horizontal component is constant. The
acceleration a(t) = (0,−g) is a constant vector, having a vertical downward
direction, and we speak of uniformly accelerated motion.

Example 3.4. For r > 0 and ω > 0 the planar curve

r(t) = (r cosωt, r sinωt)

traces out a circle with radius r, and we speak of uniform circular motion
with radius r and angular velocity ω. The period T for traversing the circle
is equal to T = 2π/ω.

b

b

b

b

t = 0

t = π/2ω

t = π/ω

t = 3π/2ω

The velocity v(t) = (−rω sinωt, rω cosωt) has constant length v = rω, and
likewise the acceleration a(t) = (−rω2 cosωt,−rω2 sinωt) has constant length
a = rω2. In turn this implies the relation

a = v2/r

obtained by Huygens in his book Horlogium Oscillatorium from 1673.

Example 3.5. For a ≥ b > 0 and ω > 0 the planar curve

r(t) = (a cosωt, b sinωt)

traces out an ellipse E with equation x2/a2 + y2/b2 = 1.
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b

b

b

b

t = 0

t = π/2ω

t = π/ω

t = 3π/2ω

E

The semimajor axis a and the semiminor axis b are one half of the major
and minor diameters respectively. The velocity and acceleration are given by

v(t) = (−aω sinωt, bω cosωt)

a(t) = (−aω2 cosωt,−bω2 sinωt)

and therefore a(t) = −ω2r(t) for all t. The acceleration is proportional to
the radius vector with a negative constant of proportionality −ω2, and we
speak of a harmonic motion with frequency ω. The period T for traversing
the ellipse in harmonic motion with frequency ω is equal to T = 2π/ω.

Suppose we have given two curves t 7→ u(t) and t 7→ v(t) defined for a
common time interval. Then we get a new scalar function t 7→ u(t) ·v(t) and
a new curve t 7→ u(t) × v(t) by taking pointwise scalar and vector product.
The derivative of these new functions is given by the following theorem,
generalizing the familiar Leibniz product rule

(fg)
.
= ḟ g + f ġ

for two scalar valued functions t 7→ f(t) and t 7→ g(t).

Theorem 3.6. We have the following Leibniz product rules

(u · v). = u̇ · v + u · v̇
(u× v)

.
= u̇× v + u× v̇

for differentiations of scalar and vector product respectively.
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Proof. Indeed we get

(u(t) · v(t)). = lim
h→0

{u(t+ h) · v(t+ h)− u(t) · v(t)}/h
= lim

h→0
{u(t+ h) · v(t+ h)− u(t) · v(t+ h) + u(t) · v(t+ h)− u(t) · v(t)}/h
= lim

h→0
{(u(t+ h)− u(t)) · v(t+ h) + u(t) · (v(t+ h)− v(t))}/h

= lim
h→0

{(u(t+ h)− u(t))/h} · v(t+ h) + u(t) · lim
h→0

{(v(t+ h)− v(t))/h}
= u̇(t) · v(t) + u(t) · v̇(t)

which proves the Leibniz product rule for the scalar product. The proof of
the Leibniz product rule for the vector product goes similarly.

If u is some point in the Cartesian space R
3, then the derivative of the

constant function t 7−→ u(t) = u is equal to 0. The converse statement is
called the Fundamental Theorem of Calculus.

Theorem 3.7. If for a smooth curve t 7−→ u(t) in R
3 we know that u̇(t) ≡ 0

then u(t) ≡ u for some point u in R
3. In this case we say that u(t) remains

conserved, and we speak of a conserved quantity.

For example, for a uniformly accelerated motion the acceleration is a
conserved quantity. We shall not discuss the proof of the above theorem,
which is fairly long, and would lead us too much into the mathematical
details of differential calculus.

Theorem 3.8. Suppose we have given −∞ < t0 < t1 ≤ ∞. If for all t with
t0 < t < t1 the smooth curve

r : [t0, t1) → R
3

has the property that the acceleration a is proportional to the position vector
r, then the motion takes place in a plane through the origin 0, and in equal
time intervals the radius vector with begin point 0 and end point r sweeps out
surfaces of equal area.

Proof. Consider the vector n = r × v as function of the time t. By the
Leinbiz product rule we get

ṅ = ṙ× v + r× v̇ = v × v + r× a = 0
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because r and a were proportional. Hence n is a constant vector by the
Fundamental Theorem of Calculus. Since

r · n = r · (r× v) = (r× r) · v = 0

the motion takes place in the plane through 0 with normal n in case n 6= 0.
If n = 0 it is easy to see that the motion is even on a line through 0. This
proves the first part of the theorem.

Let O(t) be the area of the surface traced out by the radius vector r(s)
for t0 ≤ s ≤ t. Below we shall derive the formula

Ȯ(t) = |r(t)× v(t)|/2

for all t0 < t < t1. But if Ȯ(t) = n/2 is conserved then O(t) = n(t − t0)/2
since O(t0) = 0. Hence equal areas are traced out in equal times.

The proof of the above formula follows since the surface swept out by the
radius vector r(s) in the time interval [t, t + h] is approximately a triangle
with vertices 0, r(t) and r(t+ h) when h > 0 gets small. Hence

Ȯ(t) = lim
h↓0

{O(t+ h)− O(t)}/h
= lim

h↓0
|r(t)× r(t+ h)|/(2h)

= lim
h↓0

|r(t)× {r(t+ h)− r(t)}|/(2h)
= lim

h↓0
|r(t)× {r(t+ h)− r(t)}/h|/2

= |r(t)× v(t)|/2

which completes the proof of the desired formula.

As is clear from the above proof the conservation of the direction of the
vector r × v 6= 0 implies that the motion is planar, while the conservation
of the length |r× v| is responsible for the property of equal area in equal
time. It is easy to check that the arguments in the above theorem can be
reversed, and so the motion is planar with equal areas in equal times if and
only if r and a are proportional. We shall return to the above theorem when
discussing the work of Kepler and Newton.

We are now readily equipped with our mathematical preparations to dis-
cuss the applications in physics. Subsequently we shall discuss the insights
of Copernicus, Kepler and Galilei, with the great final synthesis by Newton.
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Exercise 3.1. For g > 0 and a, b real numbers determine the equation of the
orbit traced out by the motion t 7→ r(t) = (t,−gt2/2 + at + b).

Exercise 3.2. Suppose a > b > 0 and let c > 0 be given by the equation
a2 = b2 + c2. The points f± = (±c, 0) are called the foci of the ellipse E with
equation x2/a2 + y2/b2 = 1.

b

b

b

b

bb

b

(a, 0)

(0, b)

(−a, 0)

(0,−b)

f+f−

r

E

Show that a point r = (x, y) lies on the ellipse E if and only if the sum of the
distances of r to the two foci is equal to the major axis 2a.
Hint: Show that the above equation x2/a2 + y2/b2 = 1 of the ellipse E can be
obtained by rewriting the equation |r− f+|+ |r− f−| = 2a. This is admittedly
a bit long calculation! The definition of an ellipse as geometric locus of points
for which the sum of the distances to two given points is constant is called
the gardener definition.

Exercise 3.3. Let us keep the notation of the previous exercise. The number
e = c/a between 0 and 1 is called the eccentricity of the ellipse E . If e is close
to 0 the ellipse is close to a circle, while for e close to 1 the ellipse is close to
the line segment between the two foci. In the picture below the ellipse is fairly
eccentric with eccentricity about 3/4. The lines D± with equation x = ±a/e
are called the directrices of E .

Show that a point r = (x, y) lies on the ellipse E if and only if the distance
from r to the focus f+ is equal to e times the distance from r to the directrix
D+. A similar statement holds with respect to the focus f− and the directrix
D− by symmetry.
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Can you give using this exercise a quicker argument (than the rather
elaborate calculation of the previous exercise) that for all points on the ellipse
E the sum of the distances to the two foci is constant (and equal to 2a)?

bb

b b

f+f−

r p

E D+D−

Hint: Show that the equation x2/a2 + y2/b2 = 1 of E can be obtained by
rewriting the equation |r− f+| = e|r− p| with p the orthogonal projection of
r on D+. The calculation is a bit easier than the one of the previous exercise.

Exercise 3.4. Write out the proof of the Leibniz product rule for the vector
product of two curves.

Exercise 3.5. Show that for a space curve t 7→ r(t) with velocity v(t) = ṙ(t)
of constant length v the velocity and acceleration are perpendicular.

Exercise 3.6. Suppose t 7→ r(t) is a smooth curve in R
3 avoiding the origin.

Show that ṙ = r · ṙ/r. Prove that r× ṙ = 0 for all t implies collinear motion,
that is the curve t 7→ r(t) traces out part of a line through the origin.
Hint: The assumptions r 6= 0 and r × ṙ = 0 imply that ṙ = fr for some
smooth scalar function t 7→ f(t). Use this to prove that n = r/r remains
constant.
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4 The Heliocentric System of Copernicus

The word ”planet” comes from the Greek word πλανητης which means ”wan-
derer”. The planets were wandering stars relative to the cosmic background
of fixed stars in the sky. The planets known in Greek antiquity were Mercury
('), Venus (♀), Mars (♂), Jupiter (X) and Saturn (Y). Together with the
Moon ($) and the Sun(⊙) they formed the heavenly bodies moving relative
to the cosmic background.

Ptolemy from Alexandria, who lived in Egypt in the second century AD,
wrote a comprehensive treatise on astronomy, now known as the Almagest. It
contained tables of planetary motion, collected over past centuries. For most
time of their period the planets move in eastward direction, but for a shorter
time they move in opposite direction from east to west. This phenomenon
is called prograde and retrograde motion. In order to explain the planetary
motion in the geocentric system (with the Earth (♁) in the center) Ptolemy
introduced the concept of epicyclic motion.

Definition 4.1. An epicyclic motion is the uniform circular motion of a
point r over a smaller circle, called the epicycle, while at the same time the
center c of the epicycle performs uniform circular motion over a larger circle,
called the deferent, with center at the origin 0.

b

b

b

0

c

r

The points r closest to the origin 0 are called pericenters, and those farthest
from the origin apocenters.

For example, epicyclic motion with radii r1, r2 > 0 and angular velocities
ω1, ω2 > 0 is given by the planar curve

r(t) = (r1 cosω1t+ r2 cosω2t, r1 sinω1t+ r2 sinω2t)
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or equivalently as the sum (or superposition)

r(t) = r1(t) + r2(t)

of the two uniform circular motions

r1(t) = (r1 cosω1t, r1 sinω1t)

r2(t) = (r2 cosω2t, r2 sinω2t)

with absolute velocities v1 = r1ω1 and v2 = r2ω2.
Let us assume that both r1 6= r2 and ω1 6= ω2, which in turn implies that

ω = |ω1 − ω2| > 0. A direct computation gives

r2(t) = r21(t) + r22(t) + 2r1(t) · r2(t) = r21 + r22 + 2r1r2 cos(ωt)

using the familiar relation

cos(α− β) = cosα cos β + sinα sin β

from trigonometry. Therefore the radius vector r(t) can only move in the
annular domain of those points r in R

2 for which |r1 − r2| ≤ r ≤ r1 + r2.
Hence the apocenters occur for time t an integral multiple of 2π/ω, while the
pericenters occur for t a half integral multiple of 2π/ω.

In the pictures below we shall assume that r1 > r2 > 0, so r1 is the radius
of the deferent and r2 the radius of the epicycle. The curve has a different
shape depending on the relative magnitude of the velocities v1 and v2.

In case v1 > v2 > 0, the radius vector r(t) moves counterclockwise around
a fixed origin 0 for all time t. Hence the motion is prograde for all time t.

b b

b

bb

0
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The velocity is maximal and equal to v1 + v2 at the apocenters, while the
velocity is minimal and equal to v1 − v2 at the pericenters.

However, in case 0 < v1 < v2, the motion is most of the time prograde,
but for a certain time interval centered around half integral multiples of 2π/ω
the motion is retrograde.

b b

b

b

b

0

The velocity is maximal and equal to v1 + v2 at the apocenters for time t
equal to an integral multiple of 2π/ω. At the pericenters for t equal to a
half integral multiple of 2π/ω, the velocity is minimal and equal to v2 − v1
with an opposite direction. In the view of Ptolemy, epicyclic motion with
r1 > r2 > 0 and 0 < v1 < v2 is the natural explanation for prograde and
retrograde motion.

A relevant example to have in mind is the orbit of Mars around the Earth.
The radii of deferent and epicycle are r1 = 1.52 and r2 = 1 in astronomical
units, while the periods are T1 = 2π/ω1 = 1.88 and T2 = 2π/ω2 = 1 in years.
Since r1/T1 < r2/T2 = 1 we have both prograde and retrograde motion.

b
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Over a time interval of 15 years, the orbit of Mars shows 7 or 8 pericentral
passages. The orbit is closed if ω = |ω1 − ω2| is commensurable with 2π. If
not then epicyclic motion is dense in the annulus r1 − r2 ≤ r ≤ r1 + r2 in
the sense that in the long run it comes arbitrary close to any point of the
annulus.

Ptolemy ordered the heavenly bodies in distance from the Earth by their
period for Moon and Sun, and by their period of epicycle for inner and
deferent for outer planets. The larger these periods the farther away they
are from the Earth, which in turn led him to the following geocentric world
system.
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b
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b
b

b

b

b
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⊙ ♂

X

Y

The relative distances are not drawn on the right scale. In the center of
the geocentric system is the immobile Earth. Both Moon and Sun describe
uniform circular motion around the Earth. The remaining planets all perform
epicyclic motion with both prograde and retrograde time intervals. There are
two remarkable things to observe about the special role of the Sun. For the
two planets Mercury and Venus the center of the epicycle lies on the line
segment between Earth and Sun, while for the three planets Mars, Jupiter
and Saturn, the radius vector from the center of the epicycle to the planet
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is parallel to the radius vector from the Earth to the Sun. The picture did
not quite match the data, and Ptolemy added extra epicycles to save the
geocentric system, making his theory more and more complicated.

The geocentric system of Ptolemy remained the prevailing understanding
of our planetary system, until Copernicus in his book De Revolutionibus
Orbium Coelestium (On the Revolution of Heavenly Bodies) of 1543 came
up with a better idea. In terms of the geocentric system, Copernicus made
the crucial suggestion that for Mercury and Venus the deferent is just equal
to the orbit of the Sun, while for Mars, Jupiter and Saturn the epicycle is
also equal to the orbit of the Sun. But what this really means is that all
planets describe uniform circular motion around the Sun.
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In the heliocentric world system of Copernicus there is an immobile Sun at the
center. The Earth is deprived of its unique central position in the universe,
and becomes just one of the 6 planets Mercury, Venus, Earth, Mars, Jupiter
and Saturn. All planets describe uniform circular motion around the Sun,
and only the Moon describes uniform circular motion around the Earth. In
hindsight it is just a small step from Ptolemy to Copernicus, but it took
nearly one and a half millennium to be made. Copernicus based his theory
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on the tables of the Almagest. According to legend Copernicus received
the first printed copy of his book on his deathbed in the same year 1543.
Simplicity is the hallmark of the truth, and this applies certainly to the work
of Copernicus!

We now turn to a mathematical analysis of the work of Copernicus, and
compute the transition moment 0 < t0 < π/(2ω) from retrograde to pro-
grade motion in the first quarter of the period 2π/ω between two succesive
pericenters.

Theorem 4.2. Suppose either r1 > r2 > 0, 0 < v1 < v2 or 0 < r1 < r2,
v1 > v2 > 0, and consider the epicyclic motion

r(t) = r1(t)− r2(t)

based on the difference of two uniform circular motions

r1(t) = (r1 cosω1t, r1 sinω1t)

r2(t) = (r2 cosω2t, r2 sinω2t)

with absolute velocities v1 = r1ω1 and v2 = r2ω2. The time t of transition
from prograde to retrograde is solution of the equation

cosωt = (r1v1 + r2v2)/(r1v2 + r2v1)

with ω = |ω1 − ω2| > 0. This equation has a unique solution t = t0 with
0 < t0 < π/(2ω) = T/4 with T the period of the epicyclic motion.

Proof. We have worked with the difference (rather than the sum) of two
uniform circular motions, so that pericentral points occur for integral (rather
than half integral) multiples of the period 2π/ω. Observe that the three
inequalities

(r1v1 + r2v2)/(r1v2 + r2v1) < 1

r1v1 + r2v2 < r1v2 + r2v1

(r1 − r2)(v1 − v2) < 0

are all equivalent, and the latter does hold by assumption. Therefore the
equation

cosωt = (r1v1 + r2v2)/(r1v2 + r2v1)

does have a unique solution t = t0 with 0 < t0 < π/(2ω). The general
solution of this equation consists of t = ±t0 + 2πk/ω with k an integer.
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s =
(r1v1 + r2v2)

(r1v2 + r2v1)

s = cosωt

t0−t0

b bb b bb

Transition between prograde and retrograde motion takes place if the
position vector

r(t) = (r1 cosω1t− r2 cosω2t, r1 sinω1t− r2 sinω2t)

and the velocity vector

v(t) = (−r1ω1 sinω1t + r2ω2 sinω2t, r1ω1 cosω1t− r2ω2 cosω2t)

are proportional, as is clear form the picture below (in which we suppose
that r1 > r2 > 0 and 0 < v1 < v2).
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0

t = −t0

t = t0

This proportionality happens if

(r1 cosω1t− r2 cosω2t)(r1ω1 cosω1t− r2ω2 cosω2t) =

(r1 sinω1t− r2 sinω2t)(−r1ω1 sinω1t+ r2ω2 sinω2t)
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which in turn is equivalent to

r21ω1(cos
2 ω1t + sin2 ω1t) + r22ω2(cos

2 ω2t+ sin2 ω2t) =

r1r2(ω1 + ω2)(cosω1t cosω2t+ sinω1t sinω2t)

and hence equivalent to

cosωt = (r21ω1 + r22ω2)/r1r2(ω1 + ω2) = (r1v1 + r2v2)/(r1v2 + r2v1)

which proves the theorem.

The third law of Kepler says that the ratio T 2/r3 is the same for all
planets. Here r is the radius and T = 2π/ω the period of the circular
planetary orbit around the Sun. Hence the absolute velocity v of the planet
around the Sun satisfies

v = rω = 2πr/T = 2π(r3/T 2)1/2r−1/2 ∝ r−1/2

and therefore the velocity v of a planet increases as its distance r to the Sun
gets smaller. In particular Theorem 4.2 shows that all planets have both
prograde and retrograde motion, in accordance with the observations.

The uniform circular motions of the planets around the Sun according to
the heliocentric world system of Copernicus lasted until the beginning of the
17th century, when Johannes Kepler revealed their true nature based on the
accurate planetary observations by Tycho Brahe.

Exercise 4.1. The period of Mars around the Sun is 687 days. Check that
the orbit of Mars around the Earth has 7 or 8 pericentral passages in 15
years, in accordance with the picture drawn of the Mars orbit.

Exercise 4.2. Show that epicyclic motion with radii r1 > r2 > 0 and opposite
angular velocities ω1 = −ω2 > 0 traverses an ellipse with semimajor axis
a = r1 + r2 and semiminor axis b = r1 − r2.

Exercise 4.3. For which of the classically known planets is the ratio of the
times of retrograde motion and prograde motion maximal?
Hint: Using the third law of Kepler one should minimize the function

(r1v1 + r2v2)

(r1v2 + r2v1)
=

(r
1

2

1 + r
1

2

2 )

(r1r
− 1
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1 r2)
=

(r
1

4 + r−
1

4 )

(r
3

4 + r−
3

4 )
=

1

(r
1

2 − 1 + r−
1

2 )

as a function of r > 0. Here r = r1/r2 is the distance of the planet to the
Sun in astronomical units.
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5 Kepler’s Laws of Planetary Motion

Tycho Brahe was a Danish nobleman, who collected extensive astronomical
and planetary observations in the period from 1570 to 1597. On the island
Hven he had built two observatories, and with large astronomical instruments
(but not yet telescopes), he was able to reach an accuracy of two arc minutes,
a precision that went far beyond earlier catalogers (notably Ptolemy).

After disagreements with the new king in 1597 he had to leave Denmark,
and was invited in 1599 by Emperor Rudolph II to Prague as the official
imperial astronomer. In 1600 he was able to appoint Johannes Kepler as his
mathematical assistent. When Brahe died in 1601, Kepler succeeded him as
imperial astronomer, which, in addition to a respectable job, gave Kepler free
access to all catalogues of Brahe. The combination of experimental skills of
Brahe and theoretical strength of Kepler was crucial to have for our further
understanding of planetary motion.

Kepler set out to test the hypothesis of Copernicus of circular planetary
motion around the Sun for the planet Mars. At that time the period of Mars
around the Sun was already known to be 687 days, which is 43 days less than
two periods of the Earth around the Sun.
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Kepler made the assumptions that the orbit of the Earth is a perfect
circle with the Sun at the center and traced out with uniform speed in 365
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days, while the orbit of Mars around the Sun is closed and traversed in 687
days. At some initial time the Earth is at position e1 and Mars at position
m1. After 687 days Mars is back in its original position m2 = m1 while the
Earth is at position e2 and will only complete two periods in 43 more days.
In other words the angle θ in the above picture is 360 · 43/365 = 42.4 in
degrees. Having measured the angles θ1 and θ2 from the positions of Mars
against the cosmic background of stars one can plot the position m1 = m2

of Mars by cross bearing. Repeating this construction at many more time
intervals of 687 days Kepler was able to plot the orbit of Mars accurately,
and found the picture below.

b bb b

c s
a p

C

The orbit of Mars is very well approximated by a circle C, but the position
s of the Sun is different from the center c of C. Moreover the speed of the
circular motion of Mars is not uniform, but is maximal at the perihelion
p nearest to the Sun and minimal at the aphelion a most distant to the
Sun. After a year of hard laborious calculations Kepler formulated in 1602
as phenomenological explanation that the area of the radius vector of Mars
from the Sun sweeps out equal areas in equal times.

Still, there remained little aberrations from the nonuniform circular orbit,
and Kepler kept on reworking his calculations to eliminate an error of eight
arc minutes. Finally in 1605 the spell of the nearly two millennia old Platonic
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dogma of circular motion was broken, when he realized that the orbit of
Mars was an ellipse with the Sun at a focus. The theory of conic sections
was already developed by Apollonius of Perga in his book Kωνικα written
around 200 BC. The names ellipse, parabola and hyperbola were also given
by him. In the above picture drawn in real proportion

|s− p|/|s− a| = 0.8

and so the eccentric location of the Sun was clearly visible. However much
less visible is that the ratio of the semiminor axis b and semimajor axis a
equals b/a = 0.995. Kepler published his results in the book Astronomia
Nova in 1609, in which he postulated the motion for all planets as he had
seen it for Mars. The delay in publication was partly caused by a dispute
with the Brahe family on the legal right of Kepler to use the Brahe catalogue.

First Law of Kepler. The orbit of a planet lies in a plane through the Sun,
and the planet moves along an ellipse with the Sun at a focus.

Second Law Kepler. The radius vector from the Sun to a planet sweeps
out equal areas in equal times.
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In the text books one finds the above picture to illustrate the Kepler laws.
The orbit E of a planet is an ellipse with the Sun at a focus f . The time
for the planet to move from position p to q is the same as to move from
position a to b if the areas of the shades regions are the same. However
one should keep in mind that for all planets the above ellipse E in reality
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looks much more like the ellipse C of the picture before. Notable exceptions
of highly eccentric elliptical orbits are Halley’s comet (e = 0.967) and the
dwarf planet Sedna (e = 0.855). For the eccentricities of the planetary orbits
see the tables in the last section of this book.

Kepler continued to reflect on the order of planetary motion in our solar
system. On the basis of the Brahe tables, he discovered in 1618 a remarkable
relation between the periods and the radii of the planetary orbits.

Third Law of Kepler. If T denotes the period and a the semimajor axis of
a planetary elliptical orbit around the Sun, then the ratio T 2/a3 is the same
for all planets.

Kepler published this result in 1619 in his book Harmonices Mundi. For
this reason the third law of Kepler is also called the Harmonic law. The first
law is also called the Ellipse law and the second law is also called the Area
law. The three laws of Kepler were half of the inspiration for Isaac Newton
to develop his theory of universal gravitation. The other half came from the
work of Galilei on falling bodies, which we will explain in the next section.

Exercise 5.1. Consider a planetary orbit with aphelium a and perihelium p.
Let v(a) and v(p) be the magnitude of the velocity at a and p respectively.
Show that the ratio of v(a) and v(p) is given by

v(a)

v(p)
=

1− e

1 + e

with e the eccentricity of the elliptical orbit.
Hint: Use Theorem 3.8 and the properties of the vector product.

Exercise 5.2. Show that the ratio of the semiminor axis b and semimajor
axis a of an ellips is given by b/a =

√
1− e2.

Exercise 5.3. Show that for small positive e we have

(1− e)/(1 + e) ∼ (1− 2e) , (
√
1− e2) ∼ (1− e2/2)

with ∼ meaning ”correct up to higher powers of e”.
Hint: Multiply by the denominator in the first formula, and square in the
second formula.

Exercise 5.4. Conclude from the previous exercise that for the orbit of Mars
(with e = 0.1) the Area law is about 40 times better visible then the Ellipse
law. Therefore it is no surprise that it took Kepler much more effort to find
the Ellipse law than the Area law.

37



6 Galilei’s Law of Free Fall

The next crucial step in the development of classical mechanics was made
by the Italian scientist Galileo Galilei. Shortly after the invention in 1608 of
the telescope by the Dutch spectacle maker Hans Lipperhey, Galilei was one
of the first to observe the planets with a telescope. In this way he discovered
in 1610 the four moons Io, Europa, Ganymedes and Callisto of the planet
Jupiter. In our present time we know that Jupiter has about 70 moons, but
only the four moons of Galilei are visible with a small telescope.

Galilei was a convinced supporter of the heliocentric world system of
Copernicus. In 1632 he published his book Dialogo sopra i due massimi sis-
temi del mondo, a dialogue on the geocentric system of Ptolemy and the helio-
centric system of Copernicus. In a dialogue between three characters, Salviati
(the distinguished scholar defending the heliocentric system), Sagredo (the
interested layman to amplify the point of view of Salviati) and Simplicio
(the naive supporter of the geocentric system) made his point very clear.
Pope Urbane VIII saw the ideas of the Catholic Church been represented
ridiculiously by Simplicio, and Galilei was summoned to appear before the
inquisition. The trial lead a year later to his dramatic condemnation. Galilei
had to retract his opinion, and got house arrest for the rest of his life. In
2000, Pope John Paul II issued a formal apology for the mistakes committed
by some catholics in the last 2000 years of the Catholic Church’s history,
including the trial of Galileo among others. From a mathematical point of
view the whole matter is idle. After remarking that the deferenses for the
planets Venus and Mercury (inside the orbit of the Earth) and the epicycles
for the planets Mars, Jupiter and Saturn (outside the orbit of the Earth) all
coincide with the orbit of the Sun, our picture of the geocentric world system
becomes identical with the picture of the heliocentric system.

After his condemnation, Galilei turned away from astronomy and resumed
his study of the motion of projectiles on the Earth. In 1638 he published his
book Discorsi e dimonstrazioni matematiche intorno a due nuove scienze,
in which he studied the motion and the air resistance of projectiles on the
surface of the Earth. The following laws are the essence of his work. They
hold in vacuo, meaning that the air resistence is neglected.

Law 6.1. The orbit of a projectile on the Earth lies in a plane perpendicular
to the surface of the Earth, and the projectile moves along a parabola with
main axis perpendicular to the surface of the Earth.
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Law 6.2. A projectile on the Earth traverses equal horizontal distances in
equal times.

So the steeper the slope of the parabola the greater the speed of the
motion.

x

y

b b

b
b

b b

b

b

There is a clear analogy between these laws and the first two Kepler laws.
If we denote by x the horizontal position and by y the vertical position (so
the height above the Earth) of the projectile, then the motion is given by

x = at + b , y = −gt2/2 + ct+ d

with certain constants a, b, c, d and g > 0. The constants a, b, c, d depend on
the initial position and initial velocity of the projectile. However the constant
g > 0 is universal. It is the same for all projectiles on the Earth, independent
of their mass and of their shape, as long as we work in vacuo. In the original
text of the Discorsi, written with the same three characters Salviati, Sagredo
and Simplicio, we can hear the astonished Simplicio say: ”This is a truly
remarkable statement, Salviati. But I can never believe that even in vacuo
(if motion at such place is possible) a tuft of wool and a piece of lead can fall
with the same speed.”

Definition 6.3. The constant g of Galilei is called the magnitude of the
acceleration of gravity on the Earth.

39



If we write r = (x, y) with the above coordinates, then

r(t) = (at+ b,−gt2/2 + ct+ d)

describes the motion of a projectile on the Earth. Hence the acceleration

a(t) = r̈(t) = (0,−g) = g

is a vector pointing downwards to the surface of the Earth with a constant
magnitude g.

Law of Free Fall of Galilei. The motion of a projectile on the Earth in
vacuo has a constant acceleration g, independent of the mass and the shape
of the projectile. The acceleration g is pointed downwards to the Earth, and
has magnitude g = 9.8 m/s2.

At a later time, accurate measurements have revealed that the Earth is
not perfectly spherical, but is slightly flattened at the north and south pole.
In accordance to this, the magnitude of the acceleration of projectiles at the
poles is slightly larger than near the equator.

How did Galilei find his law of free fall? Not by performing distance
measurements on bodies falling from the Pisa tower, as has been suggested.
Instead he made a leaden ball roll down along a gutter, placed under a small
but constant slope. Strings were attached to the gutter at various distances,
and pinched by the rolling ball. Subsequently he noticed that, if the strings
were placed at square distances, then the sound ding-ding-ding-ding with
equal time intervals was heard.

The work of Kepler on planetary motion and the work of Galilei on motion
of projectiles on the Earth are the two pillars, on which Newton could build
his theory of universal gravitation.

Exercise 6.1. Suppose that at time t = 0 the horizontal and vertical position
of a projectile are both 0, which in turn implies that the motion is given by

x = at , y = −gt2/2 + ct

for some constants a, c > 0, determined from the velocity v at time t = 0.
Show that for v2 = a2+ c2 constant, the horizontal displacements is maximal
for a = c. This means that the projectile is fired under an angle 45◦.
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θ

t = 0

t = c/g

t = 2c/g
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b b

b

Let c/a = tan θ with θ ∈ (0, π/2) the angle under which the projectile
at time t = 0 is fired. Show that for v2 = a2 + c2 constant the horizontal
displacement of the projectile fired under an angle θ and an angle (π/2− θ)
are equal.

Exercise 6.2. Consider for a, c > 0 the orbit of a projectile

x = at , y = −gt2/2 + ct

fired on a slope y = mx at time t = 0 with a constant speed v under a certain
angle θ relative to the x-axis.

x

y
y = mx

b

b

b

Conclude that a = v cos θ, c = v sin θ. Show that the x-coordinate of the
point, where the projectile lands, is equal to 2(ac − ma2)/g. Show that for
fixed v the projectile has optimal range if the tangent line to the orbit for
t = 0 is bisector for the slope y = mx and the y-axis. Show that for two
shots fired with constant speed v the projectile lands at the same point, if the
directions of both shots are mirror symmetric around this bisector.
Hint: Put m = tanψ and find a suitable expression for a(c−ma) as function
of θ and ψ, by using the trigonometric formula sin θ cosψ − sinψ cos θ =
sin(θ − ψ).
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7 Newton’s Laws of Motion and Gravitation

The theoretical foundation for the phenomenological laws of Kepler and
Galilei was given by the British scientist Sir Isaac Newton with his theory
of gravitation, which is nowadays usually called classical mechanics. Newton
published this theory in 1687 in his opus magnum Philosophiae Naturalis
Principia Mathematica. We begin with an important definition.

Definition 7.1. Let S be a finite set of points in Euclidean space R
3. A

vector field F on the complement R3 − S of the set S is a smooth map

F : R3 − S → R
3 , u 7→ F(u)

The letter F comes from the English word force, and we also call F the
gravitational force field. Newton imagined that a point particle with mass
m as a result of the mass distribution in the physical space R

3 experiences
a gravitational force field F on R

3. The word point particle with mass m
can be a bullet in the constant gravitational field of the Earth, or a planet
moving in the gravitational field of the Sun, or the Moon orbiting around
the Earth. All these motions have a single common source. It is the same
principle causing an apple to fall onto the surface of the Earth and the Moon
orbiting around the Earth. The story goes that Newton had this flash, while
seeing an apple fall from the apple tree in his garden in Woolthorpe Manor.
Subsequently Newton posed himself the question about the nature of the
motion of a point particle with mass m and position r(t) at time t under the
influence of a gravitational force field F? Newton postulated the answer to
this question as the equation of motion.

Equation of Motion of Newton. A point particle with mass m > 0 and
position r(t) at time t moves in Euclidean space under the influence of a
gravitational force field F according to

F(r(t)) = mr̈(t) ,

or shortly F = ma in our earlier notation a = r̈ for the acceleration.

A point particle with mass m is called free if there are no forces acting
upon it. The equation of motion for a free point particle becomes r̈ = 0. The
fundamental theorem of calculus gives as general solution

r(t) = u+ tv
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with u = r(0) the initial position and v = ṙ(0) the initial velocity at time
t = 0. In other words, a free point particle describes uniform rectilinear
motion. This is the Inertia Law as already formulated by Galilei.

The gravitational force field for a particle with mass m on the surface of
the Earth is constant and equal to F = mg with g = (0,−g) in the usual
coordinates and g = 9.8 m/s2. The equation of motion of Newton in this case
boils down to the law of free fall of Galilei. The equation of motion F = ma

therefore postulates an extension of the law of free fall for a gravitational
force field F that may vary with the position r in the Euclidean space.

The equation of motion of Newton is a second order differential equation.
So Newton used the language of differential calculus, which he invented for
this purpose. For a given force field F it can be shown that for given initial
position r(0) and given initial velocity v(0) = ṙ(0) there is, during suffi-
ciently small time t, a unique solution t 7→ r(t) to the equation F = ma with
the given initial conditions. In this sense the theory is deterministic. The
motion in nature behaves as a mechanical clock evolving uniquely in time
once installed by the clock maker. This explains the name mechanics for this
theory. The name ”classical” mechanics arose after the invention of ”quan-
tum” mechanics in 1925 by Heisenberg. This is an utterly subtle refinement
of Newtonian mechanics, needed to describe the motion of particles at the
microscopic atomic scale.

The equation of motion F = ma becomes really an equation if we know
what the gravitational force field F is in given physical situations. The crucial
case is the so called two body problem.

Law of Universal Gravitation of Newton. Two point particles with mass
m and M at distance r > 0 attract each other with a force F of magnitude

F = k/r2

with k = GmM and G a universal constant.

Definition 7.2. The constant G is called the universal gravitational constant
of Newton.

The constant G is equal to G = 6.673 × 10−11 N · m2/kg2 with N the
unit of force, called the Newton, and equal to N = kg · m/s2. This value
of G was found by Henry Cavendish in 1798, more than a century after
the appearance of the Principia. The universality of G means that the above
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value of G holds everywhere in our universe. On the human scale of kilogram,
meter and second the gravitational force is a very weak force. One can only
feel the gravitational force if at least one of the two attracting bodies is heavy.

Our next aim is to explain how a center of mass reduction simplifies the
equation of motion in the two body problem, and in fact reduces the two body
problem to a one body problem. Let u be the position of a point particle
with mass m and let v be the position of a point particle with mass M .
According to Newton’s equation of motion and law of universal gravitation
the motion

t 7→ u(t) , t 7→ v(t)

satisfies the coupled system of second order differential equations

mü(t) = F , M v̈(t) = −F , F = −k(u− v)/|u− v|3

with k the coupling constant given by k = GmM .
Rather than working with the two positions u,v we shall introduce new

variables r, z given by

r = u− v , z = (mu+Mv)/(m+M) .

The point r is the position of u as seen from v and is called the relative
position of u with respect to v. The point z is called the center of mass of u
and v. It lies on the line segment between u and v in a ratio

|z− u| : |z− v| =M : m .

Here is a picture with M : m = 3 : 1.

b

bb

b

b

0

uv

r

z

44



Conversely, we can recover the original positions u,v from r, z by means of
the relations

u = z+Mr/(m+M) , v = z−mr/(m+M)

as seen by direct substitution.

Theorem 7.3. The axioms of Newton for the relative position r and the
center of mass z take the form

µr̈ = F , z̈ = 0

with µ = mM/(m +M) the reduced mass and F(r) = −kr/r3 the reduced
gravitational force field with coupling constant k = GmM .

Proof. The axioms of Newton amount to the differential equations

mü(t) = F , M v̈(t) = −F ,

with F = −k(u − v)/|u− v|3 and the coupling constant k given by k =
GmM . Adding up both formulas yields (mü +M v̈) = 0, and hence also
z̈ = 0. Taking M× the first formula minus m× the second formula gives
mM(ü− v̈) = (m+M)F, and hence also µr̈ = F.

The transition from the pair u,v to the pair r, z has the advantage that
the differential equations

µr̈ = −kr/r3 , z̈ = 0

are decoupled, in the sense that in the first equation only r enters and no z,
while in the second equation only z occurs and no r. This second equation is
easy to solve using the fundamental theorem of calculus. Indeed, the general
solution is given by

z(t) = x+ ty

with x the initial position and y the initial velocity of the center of mass
z. We conclude that the motion of z is uniform rectilinear. The remaining
equation

µr̈ = −kr/r3

with µ = mM/(m +M) and k = GmM is also called the Kepler problem,
which will be discussed in detail in later sections. We end this section by
showing how the law of free fall of Galilei can be derived from the Kepler
problem by a limit transition, which in turn relates the constants g of Galilei
and G of Newton.
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Theorem 7.4. The gravitational force field for a projectile with mass m on
the surface of the Earth is given in the usual coordinates by

F(x, y) = mg = (0,−mg)
and g and G are related by

g = GM/R2

with M = 5.976× 1024 kg the mass and R = 6.371× 106 m the radius of the
Earth.

Proof. We approximate the motion of a projectile on the Earth to zero order
around an origin 0 on the surface of the Earth. Let c be the center of the
Earth and 0 an origin on the surface of the Earth (so |0− c| equals the radius
R of the earth) and finally let r be a position nearby the origin 0.

We shall assume that the gravitational force field of the Earth is given by
the 1/r2 law, with the Earth taken as a point particle located at the center c
of the Earth with mass M . In a later section we shall explain the beautiful
arguments of Newton and Laplace validating this assumption.
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Approximately (r − c) ∼ (0 − c) = (0, R) and |r− c| ∼ R, because r was
supposed to be close to 0 relative to R ≫ 0. In this approximation the
inverse square gravitational force field

F(r) = −GmM(r − c)/|r− c|3

takes the form
F(x, y) ∼ GmM(0,−R)/R3 = mg ,

with g = (0,−g) and g = GM/R2. Therefore the constant gravitational field
of Galilei can be seen as a limit of the inverse square gravitational force field
of Newton.
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The force field F = mg for a projectile on Earth with mass m has, by the
main theorem of calculus, as solutions of F = ma, the motion

r(t) = gt2/2 + vt+ u

for certain initial position and velocity u,v ∈ R
3 at time t = 0. All in all,

the axioms of Newton also include the law of free fall of Galilei as a limit
case.

In the next section we will solve the Kepler problem

µr̈ = −kr/r3

with k = GmM the coupling constant and µ = mM/(m +M) the reduced
mass. In most text books on classical mechanics, the solution consists of
magical algebraic calculations, leading finally to a mathematical derivation
of the three Kepler laws from the two Newton laws. On the contrary, the
solution as given in the next section has a strong geometric flavor and, once
understood, can be easily remembered by heart.

Exercise 7.1. A point particle with mass m is called free if no forces act on
it. The inertia law of Galilei states that a free point particle has uniform rec-
tilinear motion. Show that the law of inertia follows from Newton’s equation
of motion.

Exercise 7.2. Show that r = u − v , z = (mu +Mv)/(m +M) implies
that u = z+Mr/(m+M) , v = z−mr/(m+M). Conclude that |u− z| :
|v − z| =M : m.

Exercise 7.3. For a physical quantity P we denote by [P ] the units in which
P is expressed. For example [r] = m, [v] = m/s,[a] = m/s2 and [F ] = N =
kg ·m/s2. Check that [G] = N ·m2/kg2 using the law of universal gravitation.

Exercise 7.4. Check that g = GM/R2 using the tables at end of the text.
Compute the average mass density 3M/(4πR3) of the Earth. Did you expect
such a number, and what conclusion can be drawn from it?
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8 Solution of the Kepler Problem

In this section we will discuss the Kepler problem

µr̈ = −kr/r3

with k = GmM the coupling constant and µ = mM/(m +M) the reduced
mass. Our goal is to derive the three Kepler laws on planetary motion.
The method consists in finding sufficiently many conserved quantities. As a
rule of thumb conserved quantities always have a meaning, either physical
or geometric. The conserved quantities and their physical and geometric
meaning will be a leitmotiv in the solution of the Kepler problem.

The second law of Kepler is the easiest to prove. In fact this law holds in
greater generality for central force fields on R

3 minus the origin 0, so forces
r 7→ F = F(r) with r× F = 0, or equivalently

F(r) = f(r)r/r

with f a scalar function on R
3 minus the origin 0. Central force fields have the

property that in each point r of R3 with r > 0 the value F(r) is proportional
to r. Note that F = −kr/r3 is indeed a central force field with f(r) = −k/r2.

Theorem 8.1. If F(r) = f(r)r/r is a central force field, then the solutions
of F = µa are planar motions, and the radius vector traces out equal areas
in equal times.

Proof. The vector p = µṙ is called the (linear) momentum, and so the equa-
tion of motion takes the form F = ṗ. The vector product L = r×p is called
angular momentum, and by the Leibniz product rule L̇ = 0 for a central
force field. In case L 6= 0 the motion takes place in the plane perpendicular
to the constant vector L. As shown in Theorem 3.8 the area O(t) traced out
in time t by the radius vector r has time derivative equal to L/(2µ), and
so the area law of Kepler holds. The case L = 0 corresponds to collinear
motion.

The reason for the definition of angular momentum L = r×p is precisely
its conservation for motion under influence of a central force field F. Angular
momentum is a vector whose direction is perpendicular to the plane of motion
and whose length is equal to the 2µ times the areal speed Ȯ(t).
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We say that a force field F is spherically symmetric if F is invariant under
any rotation around any axis through the origin. The most general form of
a spherically symmetric force field is

F(r) = f(r)r/r

with f some scalar valued function defined on positive real numbers. Note
that spherically symmetric force fields are always central. However the con-
verse is not true: not every central force field needs to be spherically sym-
metric.

Theorem 8.2. For a spherically symmetric force field F(r) = f(r)r/r the
total energy

H = p2/(2µ) + V (r)

is conserved. Here V (r) = −
∫

f(r) d r is called the potential energy, while
p2/(2µ) is called the kinetic energy.

The total energy H is also called the Hamiltonian, named after the Irish
mathematician Sir William Hamilton (1805-1865). Hamilton gave a new
treatment of mechanics inspired by analogy with optics, and in this treat-
ment the total energy plays a fundamental role. Note that the Hamiltonian
is a function of position r and momentum p and in fact for a spherically
symmetric force field just a function of their lengths r and p.

Proof. Using the Leibniz product rule and the chain rule one has

d

d t
(p · p) = ṗ · p+ p · ṗ = 2p · ṗ , V̇ = −f(r)ṙ ,

which in turn implies that

Ḣ =
d

d t
(p2/(2µ) + V ) = p · ṗ/µ+ V̇ = v · F− f(r)ṙ .

We still have to determine ṙ. Writing r = (r2)1/2 = (r · r)1/2 and using the
chain rule and the product rule yields

ṙ =
d

d t
(r2)1/2 = 1

2
r−12(r · ṙ) = v · r/r .

We conclude that Ḣ = v · F − f(r)v · r/r = v · (F − f(r)r/r) = 0 since
F = f(r)r/r.
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Having established the conservations of angular momentum and energy
for a spherically symmetric force field, we shall look for one more additional
conserved quantity in the Kepler problem

µr̈ = −kr/r3 ,

which indeed is a spherically symmetric force field F(r) = f(r)r/r with
f(r) = −k/r2 and potential V (r) = −

∫

f(r) d r = −k/r. Therefore the
Hamiltonian becomes

H = p2/(2µ)− k/r .

Throughout the rest of this section we will assume that

H < 0

and under this condition we shall derive the ellipse law of Kepler.

Theorem 8.3. The motion in the plane perpendicular to L is bounded inside
a circle C with center 0 and radius −k/H. Remark that −k/H > 0 because
k > 0 and H < 0.

Proof. Indeed k/r = p2/(2µ)−H ≥ −H and so r ≤ −k/H .
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Consider the above picture of the plane perpendicular to L. The circle C
with center 0 and radius −k/H is the boundary of a disc where motion with
energy H < 0 can take place. The circle C consists precisely of those points
with the given energy H < 0 for which the velocity vanishes, and for that
reason is called the fall circle. Let s = −kr/(rH) be the central projection of
r from the origin 0 on the fall circle C. The line L = r+Rv through r with
direction vector p is the tangent line to the orbit E at position r. Let t be the
orthogonal reflection of s in the line L. If the time runs then r moves over
the orbit E and likewise s moves over the fall circle C. It is a good question
to ask how the mirror point t moves in time. First we give a manageable
formula for t as function of r and p.

Theorem 8.4. The point t is equal to K/(µH) with

K = p× L− kµr/r

the so called Lenz vector.

Proof. The support N of n = p × L is perpendicular to L. The point t is
obtained from s by subtracting twice the orthogonal projection of (s− r) on
the line N , as discussed in Theorem 1.4. We therefore get

t = s− 2((s− r) · n)n/n2.

Observe that
s = −kr/(rH)

(because s is the central projection of r with origin 0 on C), and therefore

(s− r) · n = −(k/r +H)r · (p× L)/H = −(H + k/r)L2/H

(because n = p× L, and r · (p× L) = (r× p) · L = L2), and

n2 = p2L2 = 2µ(H + k/r)L2

(because p ⊥ L). By a miraculous cancellation of factors we get

t = −kr/(rH) + n/(µH) = K/(µH)

with K = p× L− kµr/r the Lenz vector.

Theorem 8.5. We have K̇ = 0 and so both K and t are conserved quantities.
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Proof. The proof of this result is analogous to the proof of conservation of
energy in Theorem 8.2. It is a (rather elaborate) exercise using the Leibniz
product rule, the chain rule and the triple product formula for the vector
product. We leave the details of the calculation to the reader. For some
indications of the proof we refer to Exercise 8.1

The ellipse law of Kepler now follows almost trivially.

Corollary 8.6. Under the assumption that H < 0 and L > 0 the orbit E
traced out by the position vector r is an ellipse with foci at 0 and t with major
axis equal to 2a = −k/H.

Proof. In Exercise 1.2 we have shown that orthogonal reflections preserve
distance. Hence

|t− r|+ |r− 0| = |s− r|+ |r− 0| = |s− 0| = −k/H

because r lies on the line segment [0, s]. Because of the gardener definition
(in Exercise 3.2) the orbit E is an ellipse with foci at 0 and t with major axis
2a = −k/H .

Hence we have derived the ellipse law and the area law of Kepler from
the equation of motion and the law of universal gravitation of Newton. It is
quite generally acknowledged that the birth of calculus, which is attributed
to Newton and Leibniz independently, and its application to the problems of
mechanics by Newton, is one of the greatest revolutions in mathematics and
physics. As far as relevance in mathematics and physics goes, it is probably
only comparable with the second revolution, that took place in the first
quarter of the twentieth century, with the invention of general relativity by
Einstein and quantum mechanics by Heisenberg (and Born, Jordan, Dirac,
Pauli and Schrödinger).

Finally we shall derive Kepler’s third (also called the harmonic) law.
In fact the third law is a consequence of the first and second law together
with the explicit expressions for the numerical parameters of the ellipse as
functions of the mass µ = mM/(m+M), the coupling constant k = GmM ,
the total energy H and the length L of angular momentum. The first law
says that the orbit is an ellipse E with major axis 2a = −k/H and minor
axis 2b =

√

−2L2/(µH). The major axis formula is clear from Corollary 8.6
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while the minor axis formula requires a little computation. Indeed, if 2c is
the distance between the two foci, then

4c2 = t · t = K2/(µ2H2) = (2µHL2 + µ2k2)/(µ2H2)

and together with 4a2 = 4b2 + 4c2 = k2/H2 we arrive at 4b2 = −2L2/(µH).
The area of the region bounded inside E is πab, and therefore

πab = LT/(2µ)

with T the period of the orbit. Indeed, the area of the region traced out by
the radius vector r per unit of time is equal to L/(2µ). Hence we obtain

T 2/a3 = 4π2µ2b2/(aL2) = 4π2µ/k = 4π2/G(m+M)

which is the third law of Kepler.

Corollary 8.7. If T is the period and a the semimajor axis of a planetary
orbit around the Sun then T 2/a3 = 4π2/(G(m+M)) with m the mass of the
planet and M the mass of the Sun.

If m≪M then we find

T 2/a3 ∼ 4π2/(GM)

and so T 2/a3 is approximately the same for all planets. Kepler observed this
phenomenon on the basis of planetary tables of his time.

Exercise 8.1. Show that K̇ = 0. Hint: Check that

(p× L)
.
= −kµ

r3
((r · v)r− r2v)

(r/r)
.
= −(v · r)r/r3 + v/r

from which the statement follows. Use that ṙ = v · r/r as used before in the
derivation of Ḣ = 0.

Exercise 8.2. Show that K · L = 0 and K2 = (2µHL2 + µ2k2). Conclude
that besides the conserved quantities L and H only the direction of K is a
new independent conserved quantity. Altogether there are five independent
conserved quantities: three components of angular momentum L, one for the
energy H and one for the direction of K in the plane perpendicular to L.
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Exercise 8.3. Show that for H < 0 we have L2 ≤ µk2/(−2H) with equality
if and only if the orbit is circular.

Exercise 8.4. Consider the reduced Kepler problem under the assumption
that H < 0. Recall from Exercise 3.6 that L = 0 implies that the motion is
collinear. What is the speed at the origin 0 in case L = 0?

Exercise 8.5. Check the details in the derivation of the harmonic law of
Kepler T 2/a3 = 4π2/(G(m+M)) at the end of the section using Exercise 8.2.

Exercise 8.6. The comet of Halley moves in an elliptical orbit with period
T of about 76 year. Using the harmonic law check that the semimajor axis
a of the Halley comet is about 17.8 AU with 1 AU = 1.50 × 1011 m the
semimajor axis of the Earth orbit around the Sun. Show that the eccentricity
e of the elliptical orbit is equal to 0.97 if the shortest distance from the comet
of Halley to the Sun is about 0.57 AU .

Exercise 8.7. A modern definition of one AU (Astronomical Unit) is the
semimajor axis of a hypothetical massless particle whose orbital period around
the Sun is one year. Explain that the semimajor axis of the orbit of the Earth
around the Sun is slightly larger than 1 AU .

Exercise 8.8. Show that

vn/n = K/(µL) + kr/(rL)

with n = p × L and K = n − kµr/r the Lenz vector. Conclude (with the
picture after Theorem 8.3 in mind) that the velocity vector v = ṙ traces out a
circle in the plane perpendicular to n with radius k/L and center at distance
K/µL from the origin. This result was found independently by Möbius in
1843 and Hamilton in 1845, and rediscovered by Maxwell in 1877 and Feyn-
man in 1964 in his ”Lost Lecture”, who all used this to give a geometric proof
of Kepler’s first law. The circle traced out by the velocity vector of the Kepler
problem is called the hodograph.
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9 Other Solutions of the Kepler Problem

In the previous section we have shown that the orbits of the Kepler problem

µr̈ = −kr/r3

under the conditions H < 0 and L > 0 are ellipses. Our geometric proof of
this result was found while teaching a class on the Kepler laws for bright high
school students (Math. Intelligencer 31 (2009), no. 2, 40-44). In this section
we shall discuss three classical proofs of the ellipse law of Kepler, the oldest
one by Sir Isaac Newton, the standard one by Johann Bernouilli and Jakob
Hermann found in most text books, and, last but not least, a beautiful one
by Wilhelm Lenz.

The first proof was published by Newton in the Principia Mathematica
of 1687 as Proposition 11 and is rephrased below in the modern language of
vector calculus. We start with a general result on the geometry of acceleration
for motion under the area law.

Theorem 9.1. A smooth closed curve E is called an oval if for any two points
u and v on E the line segment [u,v] lies entirely inside E . Suppose we have
given two points c and d inside the oval E . Suppose that r(s) moves along
the curve E in time s, such that the areal speed with respect to the origin c

is constant. Likewise suppose that r(t) moves along the curve E in time t,
such that the areal speed with respect to the origin d is constant. Moreover
suppose that both motions have the same period T and traverse E in the same
direction (so d s/ d t > 0).
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Let L be the tangent line to E at the point r, and let e be the intersection
point of the line M, parallel to L through c, and the line through the points
r and d. Then the ratio of the accelerations of both motions is given by
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∣

∣

∣

d2 r

d t2

∣

∣

∣
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:
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∣
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d2 r

d s2

∣

∣

∣

∣

=
|r− e|3

|r− c| · |r− d|2

with s and t functions of each other.

Proof. Using the chain rule we find

d r

d t
=

d r

d s
· d s
d t

,
d2 r

d t2
=
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d s2
·
(d s
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d s
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2 s

d t2
.

According to the converse of Theorem 3.8 we get

d2 r

d s2
∝ (r− c) ,

d2 r

d t2
∝ (r− d)

which in turn implies that d2 r/d s2+d r/d s ·d2 s/d t2 : (d s/d t)2 is obtained
from d2 r/d s2 by a projection parallel to L on the support of (r−d). Hence
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for the ratio of the two accelerations. Because the curve E is traversed in time
s and time t with equal areal speed relative to the points c and d respectively
we get from the proof of Theorem 3.8
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In turn this implies
∣

∣

∣

∣

d2 r

d t2

∣

∣

∣

∣

:

∣

∣

∣

∣

d2 r

d s2

∣

∣

∣

∣

=
(d s

d t

)2

· |r− e|
|r− c| =

|r− e|3

|r− c| · |r− d|2

which proves the theorem.
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We shall apply this theorem in case where the oval E is an ellipse with
center c and focus d. Suppose that the motion s 7→ r(s) traverses the ellipse
E in a harmonic motion with period T = 2π/ω relative to the central point c
as discussed in Example 3.5. Harmonic motion is a solution of the differential
equation

d2 r

d s2
= −ω2(r− c)

with ω the angular velocity and c the central point. The fact that for the
harmonic motion force is proportional to distance is called Hooke’s law.
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Let b be the other focus of E , and let f be the intersection point of the
line N through b parallel to L with the line through r and d. From the
picture it is clear that

|d− e| = |f − e| , |r− b| = |r− f |
and therefore |e− r| is equal to the semimajor axis a of the ellipse E . As a
consequence of Theorem 9.1, Hooke’s law and Kepler’s third law we get

|d2 r/ d t2| = a3ω2/|r− d|2 = 4π2a3/(T 2|r− d|2) = G(m+M)/|r− d|2 .
The equation of motion F = µr̈ of Newton with µ = mM/(m+M) can only
give a motion in accordance with the three Kepler laws if the force field is
given by the inverse square law

F = k/|r− d|2 , k = GmM

and so we obtain the following result.
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Theorem 9.2. Motion according to the Newton’s law of universal gravitation
is a consequence of the three laws of Kepler together with the equation of
motion of Newton.

For modern physicists the inverse square law is plausible because the
gravitational force field of a point mass at 0 decays at a point r with the
inverse of the area of a sphere centered at 0 with radius r > 0. Shortly
after Newton it was realized that the proof, that one really wanted, was
a derivation of the three Kepler laws from Newton’s equation of motion
F(r) = µr̈ and Newton’s law of gravitation F(r) = −kr/r3. As before
µ = mM/(m+M) and k = GmM . One such proof was given in the previous
section. But did this implication also follow from Newton’s argument above?
Newton checked that elliptical orbits, traversed according to the area law
with respect to the selected focus 0, are solutions of the Kepler problem

µr̈ = −kr/r3

with the conditions H < 0 and L > 0. The fact that besides these there
are no other solutions can be derived from the existence and uniqueness
theorem for differential equations like the Kepler problem. Existence and
uniqueness theorems for solutions of differential equations were only stated
and rigorously proved in the 19th century, but there can be little doubt that
Newton must have grasped their intuitive meaning.

In the rest of this section we shall give two other proofs of the ellipse
law, one by Johann Bernoulli and Jakob Hermann from 1710, and the other
by Wilhelm Lenz from 1924. Both these proofs need the equation of an
ellipse in polar coordinates relative to a focus. This can be derived easily
from the focus-directrix characterization of an ellipse, which was discussed
in Exercise 3.3.

The directrix D corresponding to the focus 0 is the line perpendicular to
the major axis of E , such that E is the locus of points r for which the distance
to 0 is equal to e times the distance to D. By definition 0 < e = c/a < 1 is
the eccentricity of the ellipse with semimajor and semiminor axes a > b > 0
and a2 = b2 + c2.

Let θ be the angle between the radius vector r and the major axis of E as
indicated in the figure below. We seek to describe the length r = r(θ) of a
point r on the ellipse E as a function of the angle θ. Such a function r = r(θ)
is called the equation of the ellipse E in polar coordinates r and θ.
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The length |l− n| of the vertical chord ln of E passing through the focus
0 is called the latus rectum, and so the length l of the vector l is called the
semilatus rectum. Clearly we have

r = |r− 0| = e|r− s| = e(|l−m| − r cos θ) = (l − er cos θ)

and therefore (taking θ = 0 gives l = (1+ e)p = (1+ e)(a− c) = a(1− e2) as
formula for the semilatus rectum) we find

r = l/(1 + e cos θ)

for the equation of E in polar coordinates.
The proof of the Kepler ellipse law by Bernoulli and Hermann consists

of a series of clever calculations. By conservation of angular momentum the
motion takes place in a plane, and we write

r = (x, y) = (r cos θ, r sin θ)

in Cartesian coordinates (x, y) and polar coordinates (r, θ). Expressed in
polar coordinates the angular momentum and energy are given by (say θ̇ > 0)

L = µr2θ̇ , H = µ(ṙ2 + r2θ̇2)/2 + V

with V = V (r) a spherically symmetric potential. If we put u = 1/r then
d u/ d θ = −r−2 d r/ d θ and therefore

µṙ = µθ̇
d r

d θ
= −µr2θ̇du

d θ
= −Ld u

d θ
,
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which in turn implies

(d u

d θ

)2

+ u2 = 2µ(H − V )/L2 .

This relation is called the conservation law in polar coordinates.

Corollary 9.3. For u = 1/r and the Newtonian potential V (u) = −ku the
conservation law in polar coordinates becomes

(d u

d θ

)2

+ u2 − 2u/l = 2H/(kl)

with l = L2/(kµ). If we denote v = lu − 1, then d v/ d θ = l d u/ d θ and
hence

(d v

d θ

)2

+ v2 = e2

with e2 = (2Hl/k + 1).

The general solution of the latter differential equation is

v = e cos(θ − θ0)

with θ0 a constant of integration. Since r = l/(1 + v) we conclude

r = l/(1 + e cos(θ − θ0)) ,

which is the equation of an ellipse in polar coordinates.
This proof of the ellipse law arouses mixed feelings. On the one hand,

in his famous text book Classical Mechanics from 1950, Herbert Goldstein
writes: ”There are several ways to integrate the equation of motion, the above
calculation (by Bernoulli and Hermann) being the simplest one.” Presumably,
this is how most physicists think. Nothing wrong with polar coordinates, and
apparently u = 1/r is a useful substitution! On the other hand, this chain of
computational tricks leaves the reader behind with a feeling of black magic.

The last proof by Wilhelm Lenz (Zeitschrift für Physik 24, 197-207,
1924) became well known, notably after its generalization by Wolgang Pauli
(Zeitschrift für Physik 36, 336-363, 1926) in quantum mechanics. As in any
proof the motion is planar by conservation of angular momentum L. If we
introduce the ”axis vector”

K = p× L− kµr/r
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then one verifies that K̇ = 0, and so K is a constant of motion. If θ is the
angle between r and K then

r ·K = rK cos θ = L2 − kµr ,

which in turn implies
r = L2/(kµ+K cos θ) .

This is the equation of an ellipse in polar coordinates with semilatus rectum
l = L2/(kµ) and e = K/(kµ) (as long as e < 1). The name axis vector for
K by Lenz is justified only a posteriori, as vector pointing in the direction
of the major axis of the ellipse. The Lenz vector K has been rediscovered
many times, by Lenz (1924), Runge (1919), Laplace (1798) after its (first?)
introduction by Lagrange (Théorie des variations séculaires des éléments des
planètes, 1781). This is presumably the shortest proof for a reader familiar
with the equation of an ellipse in polar coordinates, but again there is a
feeling of black magic by simply writing down the vector K with only a
posteriori justification.

Exercise 9.1. For V = V (r) a spherically symmetric potential check the
relations

L = µr2θ̇ , H = µ(ṙ2 + r2θ̇2)/2 + V

for angular momentum and energy in polar coordinates.

Exercise 9.2. Using Exercise 8.2 conclude that K2/(kµ)2 = (2Hl/k + 1)
with l = L2/(kµ), which justifies the substitution e2 = (2Hl/k+ 1) in Corol-
lary 9.3, and the conclusion 0 ≤ e ≤ 1 for H < 0.

Exercise 9.3. In this exercise we will show that an ellipse is uniquely given
once a focus and three points on the elipse are given, a result obtained by
Newton in Proposition 21 of the Principia.

We shall describe the construction of the directrix D of the ellipse E with
focus e. Let the points b, c and d on E be given. Consider the line through
b and c and also the line through c and d, and produce points f and h on
them, such that

|f − b| : |f − c| = |e− b| : |e− c|
|h− c| : |h− d| = |e− c| : |e− d|

Now let D be the line through f and h, and let i, j and k be the orthogonal
projections of b, c and d on D respectively.
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Show that

|e− b| : |e− c| : |e− d| = |b− i| : |c− j| : |d− k|

and so D is the directrix of the ellipse E relative to the focus e.

Exercise 9.4. If in the notation of the previous exercise the point g is chosen
on the line through b and d such that

|g − b| : |g− d| = |e− b| : |e− d|

then show that the three points f , g and h lie on the single line D.

Exercise 9.5. Consider two triangles abc and def in the Euclidean plane.
The theorem of Desargues says that the corresponding vertices of these two
triangles are in perspective if and only if the corresponding sides of these two
triangles are in perspective. More precisely, the three corresponding lines ad,
be and cf intersect in a common point p if and only if the three intersection
points k = bc∩ ef , l = ac ∩df and m = ab∩de of the corresponding sides
lie on a common line L.
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There are two ways of proving this theorem. The first method is by algebra.
Observe that we can write

d = αa+ (1− α)p , e = βb+ (1− β)p , f = γc+ (1− γ)p

for some real numbers α, β, γ. Subsequently solve real numbers ξ, η from the
equations m = ξa+ (1− ξ)b = ηd+ (1− η)e to find

m =
α(1− β)a− (1− α)βb

α− β

and similar expressions for l and k. Finally check that k, l and m lie on a
line. However this proof does not give any insight why the theorem is true.

The second method is an illuminating geometric argument. See the picture
as the planar projection of a three dimensional figure, that is see pabc as
a tetrahedron in Euclidean space and the triangle def as the intersection of
this tetrahedron with a plane W. The line L through the points k, l and m

is then the intersection of the ground plane V through triangle abc with the
plane W.

Show that the result of the previous exercise can also be derived from the
theorem of Desargues, by letting triangle def under the assumption

|d− p| = |e− p| = |f − p|

shrink to p (using the ratio theorem of the outer bissectrix).
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10 The Geometry of Hyperbolic Orbits

In the previous sections we have discussed the motion t 7→ r(t) in the Kepler
problem

µr̈ = −kr/r3

with k = GmM > 0 the coupling constant and µ = mM/(m + M) the
reduced mass. We have shown that the quantities angular momentum

L = r× p

with momentum p = µṙ, and total energy

H = p2/2µ− k/r ,

and Lenz vector
K = p× L− kµr/r

are all three conserved, and subsequently deduced the three Kepler laws. For
this we had to assume that L > 0 to exclude collinear motion, and H < 0 in
order that the motion is bounded inside the region r < −k/H . The boundary
r = −k/H of this region in the plane perpendicular to L is called the fall
circle C.

Angular momentum is conserved in any central force field

F(r) = f(r)r/r

with f a scalar valued function on Euclidean space, while the total energy

H = p2/(2µ) + V (r)

is conserved in any spherically symmetric central force field

F(r) = f(r)r/r

with f a scalar valued function of scalar argument. Here V (r) = −
∫

f(r) d r
is by definition the potential function.

The conservation of the Lenz vectorK is particular for the Kepler problem
with f(r) = −k/r2 and V (r) = −k/r. Under the assumptions L > 0, H < 0
we motivated the Lenz vector by a geometric construction. If s = −kr/(rH)
is the central projection of r on the the fall circle C, then the orthogonal

64



reflection with mirror the tangent line L = r + Rp to the orbit at r of the
point s was shown to be t = K/(µH). In turn, Kepler’s first law that the
motion traverses an ellipse with foci at the origin 0 and the point t followed
as an immediate consequence.

We shall now discuss the motion in case L > 0 and H > 0. As before
let C be the circle in the plane perpendicular to L with center 0 and square
radius k2/H2. The name fall circle might no longer be appropriate, but the
point s = −kr/(rH) still lies on C, with 0 on the line segment from r to s.
Again t = K/(µH) is the orthogonal reflection of s in the tangent line L.
Likewise K and also t remain conserved for H > 0. Indeed the value of H
did not play any role in the derivation of K̇ = 0.
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For H > 0 we do get the above figure. Analogously to Corollary 8.6 we
find the following result.

Theorem 10.1. Assume that H > 0 and also L > 0 to exclude collinear
motion. The orbit H in the plane perpendicular to L is one branch of the
hyperbola with foci 0 and t = K/(µH), and long axis equal to 2a = k/H.
The point r lies on this branch H if and only if |r− t| − |r− 0| = k/H.

Proof. Indeed we have

|r− t| − |r− 0| = |r− s| − |r− 0| = |s− 0| = k/H ,

because 0 lies on the line segment from r to s.
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So a point particle with positive energy H > 0 in a gravitational inverse
square force field is no longer captured in a closed elliptical orbit, but moves
in the end to infinity with positive speed v >

√

2H/µ along the branch of a
hyperbola nearest to the focus at the center of attraction.

The motion along the other branch of the hyperbola does occur in the
Kepler problem

µr̈ = −kr/r3

in case the coupling constant k < 0 and therefore H = p2/(2µ) − k/r >
0. This means that the force field F(r) = −kr/r3 is repulsive rather than
attractive. Under this assumption k < 0 we have H ≥ −k/r or equivalently
r ≥ −k/H . Hence the motion can only take place outside the fall circle C.
Consider the following figure.
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Again s = −kr/(rH) lies on the circle C, but on the line segment from 0

to r. Likewise t = K/(µH) is the orthogonal reflection of s in the tangent
line L = r + Rp to the orbit at r. Moreover t is conserved, and r moves
along the branch

|r− t| − |r− 0| = k/H

of the hyperbola with foci the center of repulsion 0 and the point t and with
major axis equal to −k/H .
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In the theory of gravitation only attractive force fields do appear. But
it was observed by the French physicist Charles Coulomb (1736-1806) that
the motion of electrically charged particles under influence of an electric
force field can be understood by the same Newtonian mathematics. The
coupling constant k in case of an electric field for a system of two particles
is proportional to the product of the two charges, but there is a minus sign.
Explicitly, the coupling constant is given by k = −keqQ with q and Q the
charges of the two bodies, and the constant of Coulomb ke is equal to

ke = 8.987× 109 N.m2/C2

with C the unit of charge, called the Coulomb. Hence two electric particles
with opposite charges attract each other under the inverse square law (k > 0),
but two electric particles with the similar charges repel each other (k < 0).
This observation of Coulomb is a beautiful illustration of the universality of
mathematics.

Exercise 10.1. Let a, b > 0 and c > 0 satisfy the equation c2 = a2+ b2. The
two points f± = (±c, 0) are called the foci of the hyperbola H with equation
x2/a2−y2/b2 = 1. Show that a point r lies on the right branch of H precisely
if |r− f−| − |r− f+| = 2a. This characterization is called the focus–focus
characterization for the hyperbola.

Exercise 10.2. Suppose L,H > 0 and k > 0. Use the triangle inequality

|t− r| ≤ |t− 0|+ |r− 0|

to show that the second focus t lies outside the fall circle. Answer the same
question for L,H > 0 but k < 0.

Exercise 10.3. Show that for k < 0 the Hamiltonian H = p2/(2µ) − k/r
is always positive, and conclude that the motion is restricted to the region
r ≥ −k/H. Under the assumptions L > 0 and k < 0 formulate and prove
the analogue of Theorem 10.1.

Exercise 10.4. Construct in the figures for L,H > 0 the asymptotic lines
for the hyperbolic orbits.

Exercise 10.5. Work out the analogues of Exercise 3.3 and the equation in
polar coordinates in the previous section for hyperbolas instead of ellipses.
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11 The Geometry of Parabolic Orbits

For µ > 0 and k 6= 0 consider the reduced Kepler problem

F(r) = µr̈ = −kr/r3

with the previously discussed conserved quantities

L = r× p , H = p2/(2µ)− k/r , K = p× L− kµr/r ,

named angular momentum, Hamiltonian and Lenz vector. Conservation of
angular momentum L 6= 0 implies that the radius vector r moves in a plane
through 0 and sweeps out equal areas in equal times. In case L = 0 the
motion even takes place on a line through 0.

We have seen that the radius vector r moves along elliptic or hyperbolic
orbits, depending on whether H < 0 or H > 0 respectively. In both cases the
origin 0 is a focus, and our geometric argument was based on the conservation
of the other focus t = K/(µH). Which of the two branches of the hyperbola
were traversed depends on the sign of the coupling constant k. For k > 0
we have deflection along the branch closest to 0, while for k < 0 we have
scattering along the branch closest to t.

In this section we shall discuss the remaining case that H = 0, which
amounts to p2 = 2kµ/r. Let us consider the following picture of the plane
perpendicular to L.
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We have given an initial position r and an initial momentum p at some initial
time t. As before, the line L = r + Rp is the tangent line to the orbit P at
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time t. The formula of the previous sections

s = −kr/(rH)

for the central projection of r on the fall circle does not make sense forH = 0.
Instead, the clue is to take for s the mirror image of 0 under reflection in the
tangent line L = r+ Rp, and look for its orbit.

Theorem 11.1. In case H = 0 the mirror image of the origin 0 in the line
L is equal to s = 2n/p2 with n = p × L as usual. In addition, we have the
relations s ·K = L2 and s− r = 2K/p2.

Proof. Using the reflection formula of Theorem 1.4 we get

s = sL(0) = 2(r · n)n/n2 = 2(r · (p× L))n/n2

and using the triple product for scalar and vector product we arrive at

s = 2((r× p) · L)n/n2 = 2L2n/(p2L2) = 2n/p2

which proves the first formula. The last formula follows from

s− r = 2n/p2 − r = 2(n− kµr/r)/p2 = 2K/p2

because H = 0 or equivalently p2/2 = kµ/r. The formula s · K = L2 is
proved by a similar computation.

If the time runs, then the point s moves along a line D perpendicular to
the line K = RK. Indeed s ·K = L2 is the equation of a line D. Since s− r

is a multiple of K and hence perpendicular to D, it folows that the distance
from r to the origin 0 is equal to the distance from r to the line D. Indeed,
using Exercise 8.2 in case H = 0 we arrive at r2 = 4K2/p4. Since a parabola
is the geometric locus of points at equal distance to a given point, called the
focus, and a given line, called the directrix, we obtain the following corollary.

Corollary 11.2. The orbit P is a parabola with focus 0 and directrix D.
The line K = RK is the principal axis of the parabola.

Hence we have discussed the solutions of the Kepler problem for all values
of H . The conclusion is that for arbitrary values of H the orbit is either a
straight line (in case k = 0 or L = 0) or a conic section (in case L 6= 0).
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Exercise 11.1. Consider for a real parameter p 6= 0 the parabola P in R
2

with equation y2 = 4px. The point f = (p, 0) is called the focus of P, and the
line D with equation x = −p is called the directrix of P.
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bb

f

r
s

D P

Check that the point r = (x, y) lies on the parabola P if and only if the
distance of r to the focus f is equal to the distance of r to the directrix D.

Exercise 11.2. Check the last formula s · K = L2 of the above theorem.
Check the details of the proof of Corollary 11.2.
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12 Attraction by a Homogeneous Sphere

The celestial bodies as the Sun and the planets are in approximation spheri-
cal balls with a spherically symmetric mass distribution, possibly increasing
towards the center of the ball. In Newtonian mechanics these massive spher-
ically symmetric bodies are replaced by point masses, as if all the mass is
simply concentrated in the center of the spherical body.

With his superb skills in Euclidean geometry Newton found a beautiful
mathematical justification for the point mass hypothesis. The argument
below is the original proof by Newton as given in Theorem 31 in the Principia.
Let us consider a homogeneous mass distribution on a spherical surface with
center 0. Newton showed that the total gravitational force of the spherical
surface exerted on a point mass at position r outside the spherical surface is
the same, as if all mass of the spherical surface is concentrated at the center
0 of the sphere.
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A planar cross section through r and 0 is drawn in the above picture. The
central line through r and 0 intersects the circle in a and b. In this plane we
draw two lines through r, which intersect the circle in h and k for the first
line and in i and l for the second line. Choose d on the first line, such that
the line segment d0 is perpendicular to the second line in e. Finally choose
m on the first line, such that the line segment ml is perpendicular to the
second line in l. We are interested in the case that the angle mrl is small.

The similarity of the triangles rml and rde implies that

|m− l|
|r− l| =

|d− e|
|r− e|
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and likewise the similarity of triangles rln and r0e implies that

|r− n|
|r− l| =

|r− e|
|r− 0| ,

|n− l|
|r− l| =

|e− 0|
|r− 0|

while the almost similarity of triangles klm and 0le implies that

|k− l|
|m− l| ≃

|0− l|
|e− l|

in approximation. Multiplication of these four relations gives the following
result.

Theorem 12.1. Under the assumption that angle mrl is small we get

|k− l| × |n− l|
|r− l|2

× |r− n|
|r− l| ≃ |d− e| × |e− 0|

|r− 0|2
× |0− l|

|e− l|

in approximation.

Let us also draw a second similar picture but with two parallel lines
instead of two lines trough r. The various points are denoted by the same
letters in capitals.
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We choose the two parallel lines such that

|D−E| = |d− e| , |E− 0| = |e− 0|

and therefore also

|0− L| = |0− l| , |E− L| = |e− l|
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holds. Hence we find

|d− e| × |e− 0| × |0− l|
|e− l| = |D− E| × |E− 0| × |0− L|

|E− L|

which in turn is equal to

|M− L| × |N− L| × |0− L|
|E− L| ≃ |M− L| × |N− L| × |K− L|

|M− L|

because of the almost similarity of the triangles 0LE and KLM. Together
with the previous theorem we arrive at the following conclusion.

Corollary 12.2. Under the assumption that |d− e| = |D− E| is small we
have

|k− l| × |n− l|
|r− l|2

× |r− n|
|r− l| ≃ |K− L| × |N− L|

|r− 0|2

in approximation.

If we slice up the sphere in the first figure in narrow bands (small letters),
then for a given point r outside the sphere we arrive at a corresponding
slicing (capital letters) of the sphere as in the second figure. If we have given
a uniform mass distribution on the sphere, then the gravitational force of a
(small letters) narrow band in the first slicing exerted on the point r is the
same in approximation as if all mass of the corresponding (capital letters)
narrow band in the second slicing is located at the center 0 of the sphere.
If the band of the slicing get smaller and smaller, we arrive at the following
conclusion.

Theorem 12.3. The total gravitational force of a spherically symmetric body
with mass M and radius R exerted on a point mass at position r outside the
body with mass m is the same as if all the mass of the body is located at the
center 0 of the body. In other words, the gravitational force field of the body
exerted on the point mass at position r is given by

F(r) = −kr/r3

for r > R with coupling constant k = GmM .

This theorem gave Newton the mathematical justification for working
with point masses instead of spatial spherically symmetric bodies. In the
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rest of this section we shall give a second proof of this theorem, which is due
to Pierre Simon Laplace and was published in 1802 in the third volume of
his Mécanique Céleste. His beautiful proof is based on the Laplace operator
or Laplacian, which he introduced exactly for this purpose.

First we introduce partial differentiation. Suppose we have given a scalar
valued function (x, y, z) 7→ f(x, y, z) depending on the scalar variables x, y
and z. The partial derivative of this function with respect to x is denoted

∂f

∂x
(x, y, z) = ∂xf(x, y, z)

and this is nothing but the ordinary derivative with respect to x, while keep-
ing y and z constant. For example

∂x(x
2 + y2 + z2) = 2x

and likewise
∂2x(x

2 + y2 + z2) = ∂x(2x) = 2

for the second order partial derivative with respect to x. In the same way we
shall work with the partial derivative with respect to y or z.

Theorem 12.4. If a force field F = (F1, F2, F3) on R
3 is of the form

F = (−∂xV,−∂yV,−∂zV )

for some scalar function (x, y, z) 7→ V (x, y, z), called the potential function,
then the Hamiltonian H = p2/(2µ) + V (with p = µṙ the momentum) is
conserved under motions t 7→ r(t) according to Newton’s law µr̈ = F(r). For
this reason a force field F of the above form is called conservative.

Proof. Indeed we have (p · p)./(2µ) = p · ṗ/µ and V̇ = −F · ṙ by the chain
rule. Since p = µṙ and ṗ = F we arrive at Ḣ = 0.

Definition 12.5. The Laplacian ∆ is the expression

∆ = ∂2x + ∂2y + ∂2z

and so for each smooth function f(x, y, z) of three variables x, y, z we obtain
a new function

∆f(x, y, z) = ∂2xf(x, y, z) + ∂2yf(x, y, z) + ∂2zf(x, y, z)

of the three variables.
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The proof of the next theorem is an exercise using the chain rule.

Theorem 12.6. Suppose we have given a scalar function r 7→ f(r) of one
variable r and let us define a new function F (x, y, z) of three variables x, y, z
by

F (x, y, z) = f(r) , r =
√

x2 + y2 + z2 ,

such that this new function on R
3 is spherically symmetric. Then we have

∆F (x, y, z) = f ′′(r) + 2f ′(r)/r

with f ′(r) the ordinary derivative of the function r 7→ f(r).

Proof. Using the chain rule

∂x(r) = ∂x(x
2 + y2 + z2)

1

2 = 1

2
(x2 + y2 + z2)−

1

22x = (x2 + y2 + z2)−
1

2x

∂2x(r) = ∂x((x
2 + y2 + z2)−

1

2x) = −(x2 + y2 + z2)−
3

2x2 + (x2 + y2 + z2)−
1

2

and analogously for y en z. We conclude that ∆(r) = (−1/r + 3/r) = 2/r.
Using the chain rule once more

∂xF (x, y, z) = f ′(r)∂x(r)

∂2xF (x, y, z) = f ′′(r)(∂x(r))
2 + f ′(r)∂2x(r)

and therefore

∆F (x, y, z) = f ′′(r)[(∂x(r))
2 + (∂y(r))

2 + (∂z(r))
2] + f ′(r)∆(r)

∆F (x, y, z) = f ′′(r) + 2f ′(r)/r

which proves the theorem.

Corollary 12.7. For a spherically symmetric function F (x, y, z) = f(r) we
have ∆F (x, y, z) = 0 if and only if f(r) = −A/r + B for certain constants
A and B.

Proof. The spherically symmetric function F (x, y, z) = f(r) is a solution
of the partial differential equation ∆F (x, y, z) = 0 if and only if f(r) is a
solution of the ordinary differential equation

r2f ′′(r) + 2rf ′(r) = (r2f ′(r))′ = 0
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using the above theorem, and hence

r2f ′(r) = A

for some constant A. The general solution of

f ′(r) = A/r2

is of the form f(r) = −A/r +B for some constant B.

A function F (x, y, z) with ∆F (x, y, z) = 0 is called a harmonic function
on R

3. So a spherically symmetric harmonic function on R
3 is necessarily of

the form
F (x, y, z) = f(r) , f(r) = −A/r +B

for some constants A,B.
Let r 7→ F(r) be the gravitational force field of a spherically symmetric

body with mass M and center at the origin 0. By symmetry, this force field
is also spherically symmetric, hence of the form

F(r) = f(r)r/r

for some function f(r). Such a force field is always conservative with potential
V (r) defined by V (r) = −

∫

f(r)dr ofwel V ′(r) = −f(r).

b b0 r

If the body is partioned into smaller parts then the superposition principle
says that the force field of the total body is just the sum of the force fields
of the smaller parts. The force field on a point particle at position r with
mass m exerted by a small part at position s is conservative with potential
function Vs(r) approximately equal to −GmMs/|r− s| with Ms the mass of
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the small part at position s by Newton’s law of universal gravitation. Hence
the potential of the total body becomes a sum of the potentials of the smaller
parts

V (r) ≃
∑

s

−GmMs/|r− s|

and the approximation becomes better when the parts of the partition get
smaller. It would be cumbersome to explicitly evaluate such a sum. However
the potential of the total body is a harmonic spherically symmetric function
on R

3. Indeed, each of the above summands with index s is harmonic since

∆(
1

|r− s|) = ∆(
1

r
)(r 7→ (r− s)) = 0

by the above corollary, and a sum of harmonic functions is harmonic. But a
spherically symmetric harmonic function V (r) on R

3 is of the form

V (r) = −A/r +B

for suitable constants A,B. Because of the formula for V (r) as sum over
the smaller parts we get V (r) → 0 for r → ∞, and hence B = 0. Likewise
rV (r) → −GmM for r → ∞, with M =

∑

s
Ms the total mass of the

body. Hence V (r) = −GmM/r and the gravitational force field of the total
body exerted on a point particle at position r with mass m becomes equal
to F(r) = −GmMr/r3.

Remark 12.8. The arguments of both Newton and Laplace can be adapted
to show that the gravitational force field inside a spherically symmetric body
vanishes identically.

bb 0r

Exercise 12.1. Show that for a homogeneous mass distribution on a sphere
the gravitational force field inside the sphere is equal to zero.
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13 Tabels

In this section we shall collect some tables about our solar system. For more
and more accurate data the reader should consult the internet. The first
table deals with the planets in our solar system. The mass M of a planet
is given in 1024 kg, the (equatorial) diameter D is given in km, while the
semimajor axis a of the orbit around t he Sun is given in astronomical units
AU. Here 1 AU (astronomical unit) is equal to 1.5 × 108 km, which is the
average distance from the Earth to the Sun. The eccentricity e of the ellipse
orbit is a dimensionless number between 0 and 1. The greater e the more
eccentric the orbit. The period T of the planet around the Sun as well as the
rotation period P are given in hours (h), or days (d), or years (y).

Planet M D a e T P
Mercury 0.33 4878 0.39 0.206 88 d 59 d
Venus 4.87 12102 0.72 0.007 225 d -243 d
Earth 5.97 12756 1.00 0.017 365.26 d 23 h 56 m 1 s
Mars 0.64 6792 1.52 0.093 1.88 y 24 h 37 m 23 s
Jupiter 1898.8 141700 5.20 0.048 11.86 y 9 h 50 m 30 s
Saturn 568.41 120660 9.58 0.052 29.46 y 10 h 14 m
Uranus 86.97 50800 19.31 0.050 84.01 y 14 h 42 m
Neptune 102.85 48600 30.20 0.004 164.79 y 18 h 24m

The planets Mercury, Venus, Mars, Jupiter and Saturn are well visible
with the naked eye, and have been known since antiquity. Note that for an
observer on Venus the cosmic background almost remains constant, because
the orbit period T and the rotation period P almost cancel out.

Uranus was discovered by accident in 1781 by the British astronomer
William Herschel. Soon after the discovery of Uranus there were speculations
about the existence of more planets, at a still larger distance from the Sun.
These speculations were partly motivated by small aberrations in the orbit of
Uranus from the Newtonian laws of motion, who could be explained by the
existence of one further planet. Eventually, after the prediction of its position
by the French astronomer Urbain Le Verrier, the final planet Neptune was
observed in 1846 by the German astronomer Johann Gottfried Galle.

It lasted until 1930 before Pluto was discovered by the American Clyde
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Tombaugh at a distance of about 40 AU from the Sun. The Irish astronomer
Kenneth Edgeworth published in 1949 an article, in which a new theory was
developped, that outside the orbit of Neptune there would be a whole ring of
small heavenly bodies. Pluto would be just the tip of this iceberg. In 1951
the Dutch astronomer Gerard Kuiper published an important survey article
about the origins of our solar system, without making reference to the paper
of Edgeworth. In this paper by Kuiper the idea was proposed, that in the
outer region of our solar system there would be a whole ring of planetoids.
The article of Kuiper attracted wide attention, and the name Kuiper belt
was used for this ring of small icy formations of material outside the orbit of
Neptune. At the beginning of the 21st century new objects in the Kuiper belt
were observed at a rapid pace. The most important ones are listed below in
the following table, in which Y stands for the year of its discovery.

Dwarf planet D Y a e T
Pluto 2300 1930 39.54 0.249 248.1 y
Varuna 900 2000 43.13 0.051 283.2 y
Ixion 800 2001 39.68 0.242 250.0 y
Quaoar 1300 2002 43.61 0.034 286.0 y
Sedna 1500 2003 525.86 0.855 12050 y
Orcus 1100 2004 39.42 0.225 247.5 y
Eris 2400 2005 67.67 0.442 557 y

These objects in the Kuiper belt are called dwarf planets or ice dwarfs.
During a congress of the International Astronomical Union in Prague in
2006 there was an extensive debate on the correct definition of the concept
of planet. The result of the ultimate vote was that objects in the Kuiper belt
were no longer planets, but only dwarf planets. Our solar system had just
8 planets and no more! As a result Pluto was deprived of its former status
of planet. The name plutino was given to objects in the Kuiper belt, that
have an orbital resonance with Neptune in a ratio of 2 : 3. For every 2 orbits
that a plutino makes, Neptune orbits 3 times the Sun. Besides Pluto itself
Ixion and Orcus are examples of plutinos. Eris is the Greek goddess of strife
and discord, as a remembrance of the dispute about the planetary status of
Pluto and the formerly tenth planet Eris.

The dwarf planet Sedna is a curious object in the Kuiper belt. Its orbit is
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highly eccentric, and the distance of its aphelion to the Sun is about 972 AU .
Sedna has only been observed, because this ice dwarf is now moving near its
perihelion, at about 76 AU of the Sun.

Most planets and even some dwarf planets in our solar system have moons,
also called satellites, a term coined by Kepler. Just the best known satellites
are listed in the next table. Here a is the semimajor axis of the satellite
orbit around the planet in km, and T is the period of the satellite around
the planet.

Planet Satellite D Y a T
Earth Moon 3476 3.84× 105 27.32 d
Mars Phobos 22.2 1877 9.38× 103 0.32 d

Deimos 12.6 1877 2.35× 104 1.26 d
Jupiter Io 3660 1610 4.22× 105 1.769 d

Europa 3120 1610 6.71× 105 3.551 d
Ganymede 5260 1610 1.07× 106 7.155 d
Callisto 4820 1610 1.88× 106 16.69 d

Saturn Rhea 1530 1672 5.27× 105 4.52 d
Titan 5150 1655 1.22× 106 15.95 d
Iapetus 1470 1671 3.56× 106 79.32 d

Uranus Titania 1580 1787 4.36× 105 8.70 d
Oberon 1520 1787 5.84× 105 13.46 d

Neptune Triton 2710 1846 3.55× 105 -5.88 d
Pluto Charon 1210 1978 1.96× 104 6.39 d
Eris Dysnomia 150 2005 3.74× 104 15.77 d

The mass of the satellite Charon of the dwarf planet Pluto is about 12% of
the mass of Pluto, and therefore we could even speak of a double planetoid.
Note that the motion of the satellite Triton is retrograde relative to the
orbital motion of Neptune around the Sun.
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Index

acceleration, 19
angular velocity, 20
aphelion, 35
apocenter, 26
Apollonius, 36
Area law, 37
AU, 54

Bernoulli, 58
Brahe, 34

Cartesian plane, 5
Cartesian space, 5
collinear motion, 25
conic section, 72
conservative force field, 77
conserved quantity, 22
Copernicus, 26, 30
corkscrew rule, 13
Coulomb, 70

deferent, 26
Descartes, 5
directrix, 25, 72

eccentric anomaly, 65
eccentricity, 24
Edgeworth, 82
ellipse, 20
Ellipse law, 37
epicycle, 26
Euclidean space, 14

fall circle, 51
First Law of Kepler, 36
focus, 24, 70, 72

frequency, 21

Galilei, 38
Galle, 81
geocentric system, 29

Halley comet, 54
Hamilton, 49
Hamiltonian, 49
harmonic function, 79
Harmonic law, 37
harmonic motion, 21
heliocentric system, 30
Hermann, 58
Herschel, 81
hodograph, 54
hyperbola, 68

Kepler, 34
Kepler equation, 65
Kuiper belt, 82

Laplace, 77
Laplacian, 77
Le Verrier, 81
Leibniz product rule, 21
length, 7
Lenz, 58
Lenz vector, 51

mean anomaly, 65

Newton, 42

orbit, 18
origin, 5
orthonormal basis, 15
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parabola, 72
pericenter, 26
perihelion, 35
perpendicular, 8
position, 18
proportional, 8
Ptolemy, 26

radius vector, 18

scalar, 6
scalar product, 6
Schwarz inequality, 16
Second Law of Kepler, 36
semilatus rectum, 59
semimajor axis, 21
semiminor axis, 21
smooth curve, 18
smooth motion, 18

Third Law of Kepler, 37
time, 18
Tombaugh, 82
triple product formula, 12
true anomaly, 65

uniform circular motion, 20
uniform rectilinear motion, 19
uniformly accelerated motion, 20

vector, 5
vector product, 11
velocity, 19
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