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Abstract

We introduce Harish-Chandra’s Plancherel formula and some ideas
in its proof. We work out details for SL(2,R). This is based on
Knapp’s book on representation theory of semisimple groups.
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1 The Plancherel formula

Let G be a linear, connected, real semisimple Lie group, and G its unitary
dual. Fix a (left and right) Haar measure dg on G.

1.1 The Plancherel measure

For f € C®(G) and 7 € G, define the operator 7t(f) on the representation
space of by

() = j f(g)n(g) dg.

This operator is trace-class by Theorem 10.2 in [1], and hence Hilbert-
Schmid. Its trace is by definition O(f), the global character ©, € D'(G)
applied to f. The distribution @, is given by integration against a locally
integrable function, which we also denote by ©,. This is a deep result, see
Theorem 10.36 in [1].

Let the Fourier transform f of f be the function on G defined by

for 1 € G. Then f(7) is a Hilbert Schmid-operator on the representation
space of 7, for all 7t € G.

Theorem 1.1. There is a measure | on G such that forall f € C(G),

1206 = L; tr(Flr) () dus(rn). (w.1)

This is generalises to a statement about arbitrary locally compact groups
[2]. This theorem states that the Fourier transform defines a unitary iso-
morphism

L

2
L36) 5 | 5696 dulr)
G

where H, is the representation space of 7 € G, and the right hand side is
defined as the space of L*-sections of the field of Hilbert spaces [ [ . ¢ H®
H: — G with respect to 1. (The Hilbert space tensor product H ® H*
equals the Hilbert space of Hilbert-Schmid operators on a Hilbert space
H.)



Definition 1.2. The measure p from Theorem 1.1 is the Plancherel measure
on G.

Harish-Chandra’s Plancherel formula is an explicit expression for p.
The condition Eq. (1.1) can be rewritten into a more practical form.

Lemma 1.3. Suppose that every h € C°(G) satisfies the Fourier inversion for-
mula

hie) = L Ox(h) du(r0). (12)
Then Eq. (1.1) holds for all f € C2°(G).

Proof. Let f € C°(G), and set h := f* x f. Then h(e) = Hf||%z(G), and the
right hand side of Eq. (1.2) equals the right hand side of Eq. (1.1). O

1.2 Cartan subgroups and root systems

For a Cartan subalgebra h C g, let H be the corresponding Cartan sub-
group, defined as the centraliser of b in G, hence possible disconnected.
Let R = R(g%, h®) be the root system for h. Let W(G, H) = Ng(H)/Zg(H)
be the analytic Weyl group of (G, H).

We will tacitly choose a positive root system R™ C R for every Cartan
subgroup. A root is real or imaginary if it takes real or imaginary values
on h. We write R} := R (g%, h®) and R := R{ (g%, h*) for the sets of real
and imaginary positive roots, respectively.

Let p = p" be half the sum of the positive roots. We will use the func-
tion e® on H. This function is well-defined if p is integral. We will assume
this from now on. We also need to be careful about the definition of e for
disconnected H, so that the exponential map is not surjective. We assume
that e is well-defined on exp(h®), and define e® as its restriction to H.

The Weyl denominator for H is the function on H given by

Dy=e’ [J(1—e™.

x€ERT

The functions e * are also defined via extensions to exp(h®), as for e’.
Note that o is always integral. If the assumptions on p are not satisfied,
one needs to check that expressions involving Dy are well-defined even
when Dy, itself is not.



We will use the function

eR = sgn H (1—e™%)

xeRE
on H. (As on p. 349 of [1].)

Lemma 1.4. We have
D2 = (—1)*™ D,

See (10.25a) in [1].

1.3 Weyl’s integration formula

Let by, ..., by be a set of O-stable representatives from each conjugacy class
of Cartan subalgebras of g. Let Hy,...,H, be the corresponding Cartan
subgroups of G. Let dh; for a Haar measure on H;, and d(gH;) a G-
invariant measure on G/Hj, such that for all f € C(G),

JG flo)dg = JG/Hj JHj flgty) iy digH,).

Proposition 1.5 (Weyl's integration formula). For all f € C.(G),

R 1 o N N dh
J| 19190 =3 e ], Lo, T D algit) iy

See Proposition 5.27 in [1].

1.4 Orbital integrals

Fix a 0-stable Cartan H < G. Let f € C®(G). A crucial role in Harish-
Chandra’s proof of his Plancherel formula is played by the function F}' on
H given by

Fi(h) = eX(W)Dy(h) L/H f(ghg ") d(gH).

Lemma 1.6. For every m G,

1)“* T
Z #W(G, H;) JH' er’ (N)F;7 (hy) (DnOy) (hy) dh.

j=1



Proof. This follows from conjugation invariance of ®,, Lemma 1.4 and Propo-
sition 1.5. ]

In Lemma 1.6, the function DO, has a natural expression. See Theo-
rem 10.35in [1].

For o € R, let H, € b be the vector such that for all X € b, (x,X) =
B(Hq, X). ([1], p- 65.) Consider the element

o= J] Ha« eU@®).
«€R*(g%,h")
Let (") be the corresponding differential operator on C*(H).

Theorem 1.7. Suppose H is 0-stable and maximally compact. Then there is a
¢ # 0 such that for all f € CX(G),

(R(@MF) (e) = cf(e).

See Theorem 11.17 in [1].
By Lemmas 1.3 and 1.6 and Theorem 1.7, Theorem 1.1 is equivalent to
the equality

(@ - (e M (h ) FY (hy) (D® dh; d
o _y L 0 J@L X (hy)FY (1) (D11©2) () dhy ds(m)

j=1 j

for all f € C°(G), where H < G is a maximally compact, 6-stable Cartan.
The idea of the proof is to apply integration by parts and Fourier inversion
on each Cartan subgroup. A crucial role is played by discontinuities of the

functions F;’ on Weyl chamber walls.

2 Example: SL(2,R)

This proof of the Plancherel formula for SL(2,R) is based on Section XI.3
in [1].



2.1 Setup
Let G =SL(2,R), T =SO(2). For 06,t € R, we write

T cos® sino®
7\ —sin® cos0

. et 0
at — O eit .

A ={ta;te R} <G.

Then A and T are two 6-stable representatives of the two conjugacy classes
of Cartan subgroups of SL(2,R).
The Haar measure da on A is normalised by

and

Let

J f(a)da = %J f(aﬁdt%—%] f(—ay) dt. (2.1)
A R R
forall f € C.(A).
Write 1
0
H; = ( 1o ) (2.2)
and

We choose R* (g%, t©) = {«}, where

(o, Hy) = 2i.
And R* (g%, a®) = {B}, where

(B, Hz) =2.

For n € N at least 2, let ©,, be the global character of the direct sum of
the discrete series representations D}l and D, with infinitesimal character
(n—1)p".

For o € f/Z and v € R, let O, ;, be the global character of the principal
series representation induced from the representation ¢ ® e*" ® 1 of the
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minimal parabolic of upper triangular matrices P = MAyN, with M =

{£L}, Ao the identity component of A, and N the nilpotent group of 2 x 2

matrices with ones on the diagonal and zero in the lower left entry. Let o

be the trivial representation of M, and o_ the nontrivial irreducible one.
Our goal in this section is to prove the following result.

Theorem 2.1 (Plancherel formula for SL(2,R)). For all f € C2°(G),

2nif(e) = Z(n—1 )@n(f)-f—;1 JR O, iv(f)vtanh(mv/2) d\/—i—;l JR O, iv(f)vcoth(mv/2) dv.

n=2

2.2 Preliminaries

We now have e?” (a;) = €', and, by the way in which e® was defined for
disconnected Cartans,

ePA(_at) — epA (eXp((t +17T)H2)) — et-i-iﬂf — _et.

This complex-linear extension is also used to define functions e*, for roots
«. So, for example,

e P(—a) =ePlexp((t+imHy)) = e =e* =eP(ay).
So
Dr(ke) = Dr(exp(6H,;)) = e —e ™™,
Da(+a;) = Da(+exp(tHy)) = £(e' —e™). 23)
Furthermore, in this setting,
ex(ke) = sgn(1 — e ? =1 ife ¢nZ;

er(£ay) =sgn(1 —e ) =sgn(e' —e ") = sgn(t), @4)

and
Ri (65¢°) = R" (g5 ¢%) = {a); 25)

R{ (g% a%) = 0.

Now Ng(T) = Zg(T) = Tyand Ng(A) is generated by A and H;, whereas
ZG (A) =A.So
W(G,T) ={e}
(G, T) ={e} 2.6)
W(G,A) =7/2.

(See page 132 in [1].)



Remark 2.2. The algebraic Weyl groups of R(g®, %) and R(g®, a®) are both
isomorphic to Z/2, but we will need the analytic Weyl groups since they
are used in Proposition 1.5.

Lemma 2.3. Forall t € R\ {0},

M +a,) = ietl[ f(+kamnk ") dk dn.

KxN

See Lemma 10.10 in [1].

2.3 Character formulas

The proof of Theorem 2.1 that we give below is based on the following
character formulas.

Proposition 2.4. Foralln € N, 0,t € R,

in® —in®
e —e
Oni1(ke) = —W}
€ (1 —sgnt) +e ™(1+sgnt)

Oni(+a) = (+1) E—

See Proposition 10.12 in [1].
Proposition 2.5. Forall o € Z\Q, 0,teR,veC,

®G,v(k6) = O»
evt + e—\/t

@O','V(:i:at) - O—(:i:1) ’et _ eit| *

See Corollary 10.13 in [1].
Note that by Eq. (2.3) and Propositions 2.4 and 2.5, the functions D0,
and DO, iy in Lemma 1.6 indeed have a simple form.

24 CalculusonR
Lemma 2.6. Let g(t) = e ™!sgn(t). Then

—2iv

I = o
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Proof. This is a direct computation.

Lemma 2.7. Forall z € C,

z
E 5 T[COt(T[Z).
nez Z-n

Lemma 2.8. Forall v e C,

v? ™V
Z m = —COth(TC'V/Z),

2
nEZ even
2
A% v
———— = — tanh(mtv/2).
D aryi= 5 tanh(mv/2)
nez odd

Proof. By Lemma 2.7,

v?2 iv iv/2 v
_ -7 = _— " coth 2).
2 vt 2 fvjr-m 2 (rev/2)

neZ even

By Lemma 2.7 and the above calculation,

2 2 2
v v v
Z 2 N2 Z 2 ~2 Z 2 2
nEZoddTL TV nez n v nEZevenn v
v
= imv cot(imv) — > coth(7tv/2)
T
= 7\/ tanh(7tv/2).

2.5 Calculus on R?

Lemma 2.9. Let F be a smooth function with compact support in
{(u,v) € R%;Juwv| < 1%

For s € R, set

I(s) := T[SJ F(se’, se 2" ) (e’ — e %) dr.
0

Then



(a)

. [
lg(r)ll(s) =5 L F(u,0) du,

.
IimI(s) = _EJ F(u, 0) du.

(b) There are cy,c, > 0 such that for all nonzero s in a neighbourhood of zero,
dI

I35 () + (s, s)l < Islfer + ¢z log(Is|™)).
In particular,
lim E(s) = —mF(0,0)
s—0 ds o ) )

Proof. See Lemma 11.5 in [1]. By substitutions, we find that

7 [ 7 [
5= 5| Ty a3 | Feywa @)
if s >0, and
7 [* 7t (°
I(s) = _EJ Fly,s’y ™) dy + EJ F(s'y ' y) dy. (2.8)

if s < 0. By taking the limits as s | 0 or s T O, we obtain part (a).

Taking derivatives in Egs. (2.7) and (2.8) with respect to s and using
boundedness of F and its support, we get (b).

For example, the derivative with respect to s of the second term on the
right hand side of Eq. (2.7) equals

S

us _ d
FF(s,9) = | @y y) Y
where 0, is the derivative in the first component. Let a > 0 be such that
all points in the support of 9;F have first coordinate in [—a, a]. Then the
integrand in the second term above is zero if s’y > a,i.e.y < s*/a. So, if
0 < s < a,then

S

§ d d
—nsj @y Y Y = —nsj @Ry )Y
0

s2/a

< —ms||01F|| oo (log(s) — log(sz/a)).
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The cases for the first term on the right hand side of Eq. (2.7) and for
s < 0 (where one differentiates Eq. (2.8)) are analogous. O

We will actually apply this lemma to a more general class of functions,
to which the statement extends.

Example 2.10. Let F be the indicator function of the square [—a, a] x[—a, a] C
R?, for a small enough. Then

%—ns%—g—f if0<s<aq
I(s)=< 0 if s =0;

2
_ma __ _ st f —
p) 7tS 2a if —a <s<0.

This implies claim (a) in the lemma. And for nonzero s € [—a, al,

dl 78|
5 (&) FnF(s,s) =",
S a

so claim (b) also holds, with ¢; = t/a and ¢, = 0.

2.6 Orbital integrals over G/T

From now on, we fix f € C(G). We may assume that f is invariant under
conjugation by K, since both sides of the Plancherel formula are so we can
apply averaging with respect to conjugation by K.

Writing A* := {a;t > 0}, we have G = KA"K. We normalise the Haar
measure dg so that for all h € C.(G),

h(kg, aike,) sinh(2t)—— dt —-.

27t Joo ‘[27'[ de] dez
0 271 27

L h(g)dg = ZTIJ

o Jo
Note that ¢2 is the Haar measure on K giving it unit volume.
Lemma 2.11.

161151 Fi(ke) — 13%1 Fl(ke) = imtFf(ap)

(2.9)

161511 Fi(ke) — 191%1 Fl (ko) = intFf (—ap);

'
lim 41k

o a0 (ke) = —me(e).

11



Proof. By the top equalities in Egs. (2.3) and (2.4), we have for all 0 € R\nZ,
Fllka) = (2 ™) | flgkog ") ligT). (2.10)
G/T

Since f is invariant under conjugation by K, the function gT +— f(gkeg ")
is left K-invariant. So the right hand side of Eq. (2.10) equals

47isin(0) JOO f(aikea_;) sinh(2t) dt. (2.11)
0

Define the function F. on {(u,v) € R uv| < 1} by

+/1T—uv u )
_'v °

Fi(u,v) ::f( LT W

Then Eq. (2.11) equals

27tisin(0) J F. (sin(0)e?, sin(0)e ') (e?* — e %) dt,
0

where use F, if —1/2 < 0 < /2 and F_ if /2 < 6 < 37/2 (these ranges
are taken modulo 27tZ).
Let I, be as in Lemma 2.9, defined with F = F,.. Then

Fl (ko) = 21l (sin(0)),

with the sign & depending on where 0 lies, as above. So, by part (a) of
Lemma 2.9

lei)ﬁ)l Fl(ke) = Zilsiﬂf)l I,(s) = iﬂL F,(u,0) du;

0
. T _ e 1 4 .
15%1 Fi (ko) = 21 181%1 I.(s) =—im Joo F.(u,0)du,
0
LimF/ (k¢) = 2ilimI_(s) = —mJ F_(u,0)du;
ol sTO oo

lim F] (k) = 2ilimI_(s) = mJ F_(u,0) du.
0T s]0 0

12



Hence

limFI(ke)—lei%qFI(ke) :irtJ F.(u,0) du:inJ f((]) f ) ds;
R R

910
F (w,0) du:—irtj f(— ((]) f )) ds.

Lemma 2.12 and the fact that f is invariant under conjugation by K imply

that
FA(La) ::I:J f(i(é ? )) ds.
R

So the first two equalities in Eq. (2.9) follow.
And by part (b) of Lemma 2.9,

. T T T s
lim FY (ko) — lim Ff (ko) mJR

dFf(ke) . \ ... dI.(sin(0)) e dL.(s), .
%11)% a0 (ko) = 211913& T(sm(e)) = 211913(}@5(9) s (sin(0))
= —2miF, (0,0) = —2mif(e).
]
2.7 Orbital integrals over G/A
Lemma 2.12. Forallt € R,
1 .
Fa) = 51 | (O anlf) + @ nlf))e ™ v
271 Jp
Foad) = 3 | (@ () = O s (Me ™ av.
27 Jp ’ ’
Proof. The equalities Egs. (2.3) to (2.6) imply that forall t € R,
(_1 )#R?(QC’GC) A 1 t —t 2.12
W(ﬁkDA)(iat) —i§|€ —e | (212)

So by Lemma 1.6, Proposition 2.5, and Eq. (2.1), we have for all f € C(G)
andalloc € Z/2and v € R,

1 . . 1 . .
Op,iv(f) = —J FAa)(e™ +e ™) dt — o(—1 )ZJ FA(—a) (e + e ™) dt.
R R

4
(2.13)

13



With H; as in Eq. (2.2),
+a_ =H; (j:at)Hf1.
So by conjugation invariance of Ff,
F(fay) = Ff(£ay).
Because of this equality, Eq. (2.13) equals

1J FMay)e™ dt—G(—])lJ FA—ay)e™ dt = lJ (FMay)—o(—1)Fr (—ay))e™ dt.
2 Jg 2 Jgp 2 Jgp
By Fourier inversion, we find that
Fi(a) —F(—ay) = lJ 20,, iv(f)e ™ dv;
27 Jp

1
27

from which the claim follows. O

FA(ag) + FA(—ay) = j 20, o (fle ™ dv,
R

2.8 Discrete series characters

Lemma 2.13. Foralln € N,

| A o dFI (k.
1O (1) =~ [ et e T
0 do

deA(at) n] —nlt| dF?(_at)
S a0 et | e sgniy TE

Proof. The equalities Egs. (2.3) to (2.6) imply that for all 6 € R,
(—1 )#Rf(g‘c,t‘c)
#W(G,T)

By this equality and Egs. (2.1) and (2.12), Lemma 1.6 and Proposition 2.4
imply that

(ko) dO

+1J e "Ysgn(t) (—ay) dt.
2 Jg

(exD1) (ko) = —(e® — ™).

27

n . .

no,(f) = —Zﬂj (e™? — e ™) F{(ke) dO
0

+ %J (e™(1 —sgnt) +e ™(1+sgnt))(Fi(a) — (—1)""'F}(—ay)) dt.
: (2.14)

14



And by integration by parts, taking into account the discontinuities of
Fi,

nJ (e — e ™) F (ko) dO =
0
, , N o dFT (K,
—1i ((elne_i_efln@)]:;(ke))}o +IJ (elne_i_eflne) f( 9)

ko) dO =
0 Lo (ko)

n T
2ilim ] (ko) = 2i(~1)" Em Ff (ko) + i J (etn0 4 gm0y IFr (ko)

ko) dO.
O Lo (ko)

Similarly,

27
nJ (e"? — e )F{ (ko) dO =
27 T
. . . . ; _ing, dF; (Ke)
o T _1\n T in® in6 f
leé%Ff(ke)Jer( 1) 161{2Ff(k9)+1L (e™ +e )—de (ko) dO.

So

2n )
nJ (e — e ™) F (ko) dO =
0

21(161% Fi(ke) — 161%1 Fi (ko)) 4 2i(—1 )“(16153 Fi(ke) — 161%2 Fi (ko))

27t T
) . o, dFs (ko)
in® in® f
1JO (e +e ™) =1

(ko) d0. (2.15)

To evaluate the second term on the right hand side of (2.14), we again
use integration by parts to find

nro(e“tﬂ —sgnt) +e (1 +sgnt))(F(a) + (—1)"F}(—ay)) dt
0

_ JOO Zne (P (a) + (—1)"FA(—ay)) dt
0

= (2 ™M) + R a2 [ et RO APy
= 2R a1 a2 e (T e S g

15



Here we used continuity of F{'. Similarly,

0
nJ (e™(1—sgnt) +e ™(1+sgnt))(F(a) + (—1)"F(—ay)) dt

0
_ J 2ne™ (FA(ap) + (—1)"FA(—ay)) dt

0 A
= (2™ (F}a) + (—1)"Fr(—a)))° -2 J ent(ded (tat)

—0Q

dF?(—at)

it )(a) dt

+(=1"

dF?(_at)
dt

dF?(at)

pramas el

0
- Z(Fﬁ(aom—l)“F?(—ao))—Zj e () dt.

So

nJ (e™(1—sgnt) +e ™(1 +sgnt))(F(a) + (=1)"F(—ay)) dt
R

dF?(_at)

+(—=1)" it

)(ai) dt.
(2.16)

_ A nrA —nJt| dF/f/\
= 4(F; (ao)+(—1)"F (—ao))+2 | e sgnt(T
R

Using Egs. (2.15) and (2.16), we conclude that the right hand side of
Eq. (2.14) equals

;_((hmF( o) — 11mF (ke))—l—%(—ﬂ (hmF( o) — ll%nFT(ke))

i o ind —in dF (ke)
+ZJ (e™ +e e)—iie (ko) dO
A Al
a1 R a) | e sgae(TE Ao S a at

By Lemma 2.11,

i(hmFI(1<G)—1irnFI(1<e))+i(—1) (Lim F{( e)—leig}FI(ke))+(F¢(ao)+(—1)“F?(—ao)) =0.

7T ~ 010 010 7T 0lm

Hence the claim follows. O

16



2.9 Proof of Theorem 2.1

Let us prove Theorem 2.1. We start with a first expression for f(e), which
we later rewrite into Theorem 2.1.

Lemma 2.14.

1
2nif(e Z nO, . (f FA(Go) + Ff(—ao))

! - —njt dFA(at) 1 = n —nlt -
_zn:1 JRe “sgn(t) fdt (at)dt—EZ(_n JRe Usgn(t )T(—at)dt.

Proof. By Lemma 2.13,

3 —1 § [ o AFT (ko) 1 [ dFf (ko)
Zn@nﬂ(f)_ﬁkezzjo e T(ke)deJrﬁJO S5 (ke)dO

ZJ il sen(t dFiE[at)(at) dt—{—1 i(_”nj e it Sgn(t)m(_at) dt.

Splitting up the integral into integrals over (0,7t) and (7, 27t), we find
that the second term on the right hand side equals

—1

-1, .
5= (11mF (kg) — 11m Fi(ke)) + ﬁ(lel%l Fi(ke) — 19112 Ff(ke)),

which by Lemma 2.11 equals
1
—5(Ff(a0) + Fi(—ao)).

Part (b) of Lemma 2.9 implies that

(ke)| = ) (sin6)

< 27F+(0,0)| + |sin 0](cy + 2| log((sin 8) "))

dF{ (ko)
do

. dFT (kg) - ..
for certain constants cy,c; > 0 and for s near zero. So fd(e o) is a Holder

function, ands Dini’s test implies that it satisfies Fourier inversion. So by

17



the third equality in Lemma 2.11, the first term on the right hand side of
Eq. (2.17) equals
dF{ (ko)

i 0 (e) = 2ntf(e).
]
Lemma 2.15.
1 1 & dF? (a
EF?(aO) -5 ZJ e "sgn(t) dec J (a) dt
R

0o Al
+ —F?(—ao) — ] Z(—U“ JR e M sgn(t)%(—at) dt =

%J Og, iv(f)vtanh(mrv/2) dv + %J O,_,iv(f)vcoth(mv/2) dv. (2.18)
R R
Proof. Define the functions g and h. on R by

g(t) := e "sgn(t);
—1v

hi(v) = ?(@c_,iv(f) + O, v (f)).

Differentiating both sides of the equalities in Lemma 2.12, we find that

ﬁi(t) _ deA(:tClt)

dt (Fai).

Using this equality, Lemma 2.6, and the equality

J (gR) (1) dt = J (G(v) dv,
R

R

we find that for alln € N,
FA + _ 2
J e ™ sgn(t)—d ES) (£a) dt = —1J v
R dt R

And by Lemma 2.12,

1
FAao) + FA (—aq) = —J B0 1(f) dv.
TTJRr



So the left hand side of Eq. (2.18) equals

1 v?
5 i 5 E 5 . o_,iv f op,iv
T JR @Gﬂw(f) dv + 2t — J]R TLZ + VZ (® , ( ) + @ + (f)) dv
;o Eoo (—U“J v (Oc_iv(f) = g, iv(f)) dv
27_[_ R nz + Vz o—,v 04,1V .

This equals
1 v2 1 2
2n —@G R fld P —@0 iv f) dv.
27TneZZevenJ'Rnz—i_v2 () V+2ﬂn.gzzodean+V2 wiv(f) dv

The claim now follows from Lemma 2.8. O

Theorem 2.1 follows from Lemmas 2.14 and 2.15.
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