Publications
Preprints
- P. Hochs and H. Saratchandran,`A Ruelle dynamical zeta
function for equivariant flows', ArXiv:2303.00312.
- P. Hochs and H. Saratchandran, `Equivariant analytic torsion
for proper actions', ArXiv:2205.04117.
Journal papers
- P. Hochs and H. Wang, `Spectral asymmetry and index theory on
manifolds with generalised hyperbolic cusps', SIGMA, to
appear, ArXiv:2110.00390.
- P. Hochs and H. Wang, `An absolute version of the
Gromov-Lawson relative index theorem', J. Topol. Anal.,
to appear, ArXiv:2110.00376.
- P. Hochs, B.-L. Wang and H. Wang, `An equivariant
Atiyah-Patodi-Singer index theorem for proper actions II: the K-theoretic index', Math.
Z., to appear, DOI:10.1007/s00209-021-02942-0.
(ArXiv)
- P. Hochs, B.-L. Wang and H. Wang, `An equivariant
Atiyah-Patodi-Singer index theorem for proper actions I: the
index formula', Int. Math. Res. Not., DOI:10.1093/imrn/rnab324.
(ArXiv)
- P. Hochs, Y. Song and X. Tang, `An index theorem for higher
orbital integrals', Math. Annalen, DOI:10.1007/s00208-021-02233-3.(ArXiv)
- H. Guo, P. Hochs and V. Mathai, `Equivariant Callias index
theory via coarse geometry', Ann.
Inst. Fourier 71(6), 2021, 2387-2430, DOI:10.5802/aif.3445.
(ArXiv)
- H. Guo, P. Hochs and V. Mathai, `Positive scalar curvature and
an equivariant Callias-type index theorem for proper actions', Ann.
K-theory 6(2), 2021, 319-356. (ArXiv)
- H. Guo, P. Hochs and V. Mathai, `Coarse geometry and Callias
quantisation', Trans. Amer.
Math. Soc.
374(4) (2021), 2479-2520, DOI:10.1090/tran/8202.
(ArXiv)
- P. Hochs, Y. Song and S. Yu, `A geometric realisation of
tempered representations restricted to maximal compact
subgroups', Math. Annalen
378(1) (2020), 97-152, DOI:10.1007/s00208-020-02006-4.
(ArXiv)
- P. Hochs and H. Wang, `An equivariant orbifold index for
proper actions', J. Geom.
Phys. 154 (2020), special issue `Index Theory, Duality
and Related Fields', DOI:10.1016/j.geomphys.2020.103710.
(ArXiv).
- P. Hochs, Y. Song and S. Yu, `A geometric formula for
multiplicities of K-types
of tempered representations', Trans.
Amer. Math. Soc, 372(12) (2019), 8553-8586, DOI:10.1090/tran/7857.
(ArXiv)
- P. Hochs and A.J. Roberts, `Normal forms and invariant
manifolds for nonlinear, non-autonomous PDEs, viewed as ODEs in
infinite dimensions', J.
Differential Equations 267(12) (2019), 7263-7312, DOI:10.1016/j.jde.2019.07.021.
(ArXiv)
- P. Hochs and H. Wang, `Orbital integrals and K-theory classes', Ann. K-theory 4(2) (2019),
185-209. (ArXiv)
- P. Hochs and Y. Song, `An equivariant index for proper actions
II: properties and applications', J. Noncommut. Geometry, 12(1) (2018), 157-193,
DOI:10.4171/jncg/273.
(ArXiv)
- P. Hochs and H. Wang, `Shelstad's character identity from the
point of view of index theory', Bull. London Math. Soc. 50 (2018), 759-771, DOI:10.1112/blms.12182.
(ArXiv)
- P. Hochs and H. Wang, `A fixed point theorem on noncompact
manifolds', Ann. K-theory
3 (2) (2018), 235-286, DOI 10.2140/akt.2018.3.235. (ArXiv)
- P. Hochs, J. Kaad and A. Schemaitat, `Algebraic K-theory and a semi-finite
Fuglede-Kadison determinant', Ann.
K-theory, 3(2) (2018), 193-206, DOI
10.2140/akt.2018.3.193. (ArXiv)
- P. Hochs and H. Wang, `A fixed point formula and
Harish-Chandra's character formula', Proc. London Math. Soc. (3) 116 (2018), 1-32,
DOI:10.1112/plms.12066.
(ArXiv)
- P. Hochs and V. Mathai, `Quantising proper actions on Spinc-manifolds',
Asian J. Math., 21(4)
(2017), 631-686, DOI:10.4310/AJM.2017.v21.n4.a2.
(ArXiv)
- P. Hochs and Y. Song, `Equivariant indices of Spinc-Dirac
operators for proper moment maps', Duke Math. J. 166(6) (2017), 1125-1178, DOI:10.1215/00127094-3792923.
(ArXiv)
- P. Hochs and Y. Song, `On the Vergne conjecture' Arch. Math., 108(1) (2017),
99-112, DOI:10.1007/s00013-016-0997-9.
(ArXiv)
- P. Hochs and Y. Song, `An equivariant index for proper actions
I', J. Funct. Anal.
272(2) (2017), 661-704, DOI:10.1016/j.jfa.2016.08.024.
(ArXiv)
- P. Hochs and V. Mathai, `Formal geometric quantisation for
proper actions', J. Homotopy
Relat. Struct. 11(3) (2016), 409-424, DOI:10.1007/s40062-015-0109-8.
(ArXiv)
- P. Hochs and Y. Song, `An equivariant index for proper actions
III: the invariant and discrete series indices', Differential Geom. Appl. 49
(2016), 1-22, DOI:10.1016/j.difgeo.2016.07.003.
(ArXiv)
- P. Hochs and V. Mathai, `Spin-structures and proper group
actions', Adv. Math.
292 (2016), 1-10, DOI:10.1016/j.aim.2016.01.010.
(ArXiv)
- P. Hochs and V. Mathai, `Geometric quantization and families
of inner products', Adv. Math. 282 (2015),
362-426, DOI:10.1016/j.aim.2015.07.004.
(ArXiv)
- P. Hochs, `Quantisation of presymplectic manifolds, K-theory and group
representations', Proc. Amer.
Math. Soc. 143 (2015), 2675-2692, DOI:10.1090/S0002-9939-2015-12464-1.
(ArXiv)
- P. Hochs, `Quantisation commutes with reduction at discrete
series representations of semisimple Lie groups', Adv. Math. 222 (2009)
862-919, DOI:10.1016/j.aim.2009.05.011.
(ArXiv)
- P. Hochs and N.P. Landsman, `The Guillemin-Sternberg
conjecture for noncompact groups and spaces', J. K-theory 1(3) (2008)
473-533, DOI:10.1017/is008001002jkt022.
(ArXiv)
Conference
proceedings
- P. Hochs, `Quantisation commutes with reduction at nontrivial
representations', extended abstract, workshop Geometric quantization in the
noncompact setting, Mathematisches Forschungsinstitut
Oberwolfach report no. 09/2011 (2011).
Thesis
- P. Hochs, `Quantisation
commutes with reduction for cocompact Hamiltonian group
actions', ISBN 978-90-9022607-1, Ph.D. thesis, Radboud
University, Nijmegen (2008).