p-divisible groups

J.M. Commelin

January 19, 2016

1 Notation. — In these notes, instead of \lim_{\to} we write colim, and instead of \lim_{\leftarrow} we write \lim.

2 — Let K be a number field. Let A be an abelian variety over K. Let ℓ be a prime number. Let $A_{\ell^\infty}(\bar{K}) = \bigcup_n A[\ell^n](\bar{K})$ denote the ℓ-divisible subgroup of $A(\bar{K})$. Let W be a Gal(\bar{K}/K)-stable subgroup of $A_{\ell^\infty}(\bar{K})$. For every n, let $B(n)$ denote the quotient A/W_{ℓ^n}.

We want to bound the height of $B(n)$. More precisely, we want the following result.

3 Theorem. — For $n \gg 0$, the height $h(B(n))$ does not depend on n.

In this talk I will not prove this theorem. Rather, I will present an overview of some facts about p-divisible groups, and in the end prove a proposition that will be very useful for proving theorem 3.

4 — We will use [1] as main reference.

Let R be a ring (or scheme). Let p be a prime number. Let h be an integer ≥ 0. By definition, a group scheme over R has rank h if it is locally free of rank h over R (in other words, it is defined by a Hopf algebra that is locally free of rank h over R).

5 Definition. — A p-divisible group of height h is an inductive system

$$G = (G_\nu, i_\nu)_{\nu \geq 0}$$

where G_ν is a finite group scheme over R of order $p^{\nu h}$, and such that for each $\nu \geq 0$, the sequence

$$0 \longrightarrow G_\nu \xrightarrow{i_\nu} G_{\nu+1}[p^\nu] \longrightarrow G_{\nu+1}$$

is exact. (So G_ν is the set of p^ν-torsion points in $G_{\nu+1}$.)

A homomorphism of p-divisible groups is what you think it is. Probably the best known example of a p-divisible group is given by

$$G_\nu = (\mathbb{Z}/p^\nu \mathbb{Z})^h \quad \text{and} \quad G = \text{colim} G_\nu = (\mathbb{Q}_p/\mathbb{Z}_p)^h.$$

The next best known example is $A_{\ell^\infty}(\bar{K}) = \text{colim} A[\ell^n](\bar{K})$, where A is an abelian variety over a field K, as in §2.
6 Consequences of the definition. — Let G be a p-divisible group. By iteration, we obtain closed immersions $i_{\nu,\mu} : G_{\nu} \to G_{\nu+\mu}$, for all $\nu, \mu \geq 0$. (Note that $i_{\nu,1} = i_\nu$.) These maps $i_{\nu,\mu}$ identify G_{ν} with the kernel of $[p^\nu]$ in $G_{\nu+\mu}$.

Consider the following diagram, with exact row and column.

\[
\begin{array}{ccc}
0 & \longrightarrow & G_{\mu} \\
\downarrow & \downarrow & \downarrow \quad i_{\nu,\mu} \\
G_{\nu+\mu} & \longrightarrow & G_{\nu+\mu} \\
\downarrow & \downarrow & \downarrow \\
G_{\nu} & \longrightarrow & 0 \\
\end{array}
\]

Since the composition $[p^\nu] \circ [p^\mu] = [p^{\nu+\mu}]$ is identically 0 on $G_{\nu+\mu}$, we see that $[p^\mu]$ factors via a map $j_{\nu,\mu} : G_{\nu+\mu} \to G_{\nu}$.

\[
\begin{array}{ccc}
0 & \longrightarrow & G_{\mu} \\
\downarrow & \downarrow & \downarrow \quad i_{\nu,\mu} \\
G_{\nu+\mu} & \longrightarrow & G_{\nu+\mu} \\
\downarrow & \downarrow & \downarrow \\
G_{\nu} & \longrightarrow & 0 \\
\end{array}
\]

Observe that $i_{\nu,\mu} \circ j_{\mu,\nu} = [p^\mu]$. Because $i_{\nu,\mu}$ is an immersion, the sequence

\[
0 \longrightarrow G_{\mu} \xrightarrow{i_{\nu,\mu}} G_{\nu+\mu} \xrightarrow{j_{\mu,\nu}} G_{\nu}
\]

is exact. In fact, since the order of G_{μ} and G_{ν} add up to the order of $G_{\nu+\mu}$, we find that the last map is in fact a quotient map, and we obtain the short exact sequence

\[
0 \longrightarrow G_{\mu} \xrightarrow{i_{\nu,\mu}} G_{\nu+\mu} \xrightarrow{j_{\mu,\nu}} G_{\nu} \longrightarrow 0.
\]

We will write j_ν for $j_{1,\nu}$.

7 Tate modules. — Let R be an integral domain, with field of fractions K. Assume char $K = 0$ and let \bar{K} be an algebraic closure of K. Let G be a p-divisible group over R of height h. The Tate module of G is denoted $T(G)$, and is by definition $\lim_G G_{\nu}(\bar{K})$, where limit is taken over the morphisms j_ν. Dually, one defines $\Phi(G)$ as $\text{colim}_G G_{\nu}(\bar{K})$, where the colimit is over the maps i_ν.

N.b.: There is a notion of “points of G” which we do not need for the main result of this talk. It coincides with $\Phi(G)$ when G is étale, but contains $\Phi(G)$ as torsion subgroup in the general situation.
Since \(K \) has characteristic 0, the groups \(G_\nu \otimes K \) are étale, and hence \(T(G) \) is isomorphic as \(\mathbb{Z}_p \)-module to \(\mathbb{Z}_p^b \), while \(\Phi(G) \) is isomorphic to \(\left(\mathbb{Q}_p / \mathbb{Z}_p \right)^b \). Furthermore, there is a continuous action of \(\text{Gal}(\bar{K} / K) \) on \(T(G) \) and \(\Phi(G) \). There are canonical isomorphisms (of Galois modules)

\[
\Phi(G) \cong T(G) \otimes_{\mathbb{Z}_p} \left(\mathbb{Q}_p / \mathbb{Z}_p \right) \quad \text{and} \quad T(G) \cong \text{Hom}(\mathbb{Q}_p / \mathbb{Z}_p, \Phi(G)).
\]

Observe that one can recover the Galois module \(G_\nu(\bar{K}) \) from \(\Phi(G) \) by taking the kernel of \([p^\nu] \).

Using the well-known fact that a finite étale group scheme over a field is determined by its Galois module of \(\bar{K} \)-points, we may thus recover the generic fibre \(G \otimes_R K \) from \(\Phi(G) \) or \(T(G) \).

8 Corollary. — The assignment \(G \mapsto T(G) \) establishes an equivalence of categories between the category of \(p \)-divisible groups over \(K \) and free \(\mathbb{Z}_p \)-modules of finite rank with a continuous action of \(\text{Gal}(\bar{K} / K) \).

9 Proposition (Prp. 12 of [4]). — Let \(R \) be an integrally closed, Noetherian, integral domain, with field of fractions \(K \). Fix a prime number \(p \). Let \(G \) be a \(p \)-divisible group over \(R \). Let \(T(G) \) be the Tate module of \(G \). Let \(W \) be a direct summand of \(T(G) \) over \(\mathbb{Z}_p \) that is stable under the action of \(\text{Gal}(\bar{K} / K) \). Then there exists a \(p \)-divisible group \(\Gamma \) over \(R \), and a morphism \(\phi : \Gamma \to G \) such that \(\phi \) induces an isomorphism \(T(\Gamma) \cong W \).

Proof. By corollary 8 we immediately obtain a \(p \)-divisible subgroup \(H_s \subset G \otimes K \). We want to take the closure \(H \) of \(H_s \) in \(G \). To make this precise, let \(B_\nu \) be the \(R \)-algebra corresponding to \(G_\nu \). Let \(A_\nu \) be the \(K \)-algebra corresponding to \(H_\nu \), and consider \(u_\nu : B_\nu \otimes_R K \to A_\nu \) corresponding to \(H_\nu \subset G_\nu \otimes K \). Let \(A_\nu \) be the image \(u_\nu(B_\nu) \) and put \(H_\nu = \text{Spec}(A_\nu) \). Observe that \(A_\nu \) is a cocommutative Hopf algebra, and therefore \(H_\nu \) is a commutative group scheme.

\[
\begin{array}{ccc}
B_\nu \otimes_R K & \longrightarrow & A_\nu \\
\uparrow & & \downarrow \iota \\
B_{\nu+1} \otimes_R K & \longrightarrow & A_{\nu+1} \\
\sigma & & \\
A_{\nu+1} & \longrightarrow & A_{\nu+1}
\end{array}
\]

By construction \(\iota \) is injective, while \(\sigma \) is surjective. Hence we obtain a map

\[
\begin{array}{ccc}
B_{\nu} \otimes_R K & \longrightarrow & A_{\nu} \\
\uparrow & & \downarrow \iota \\
B_{\nu+1} \otimes_R K & \longrightarrow & A_{\nu+1} \\
\sigma & & \\
A_{\nu+1} & \longrightarrow & A_{\nu+1}
\end{array}
\]

and thus maps \(H_\nu \to H_{\nu+1} \). Nevertheless, \(H \) is not necessarily a \(p \)-divisible group. (The last lines of [4] provide an example by Serre, that illustrates this problem.) However, \(H \otimes K \cong H_s \) is a \(p \)-divisible group. As we will see, the failure of \(H \) being a \(p \)-divisible group is somehow only at a finite level. What I mean is this: for \(\nu \gg 0 \) we will see that \(H_{\nu} \to H_{\nu+1} \) satisfies the axioms for a \(p \)-divisible group. We will exploit this to define \(\Gamma \) in terms of \(H \).

Because all groups involved are finite, quotients such as \(H_{\mu+1} / H_\mu \) exist. By looking at the generic fibre, we see that \(H_{\mu+1} / H_\mu \) is killed by \(p \). In particular the map \([p]\) induces maps

\[
H_{\mu+\nu+1} / H_{\mu+1} \to H_{\mu+\nu} / H_\mu
\]
that are isomorphisms on the generic fibre. (After all, on the generic fibre both the source and the
target are isomorphic to H_ν, and the kernel of the map is 0.) Let D_μ be the algebra corresponding
to $H_{\mu+1}/H_\mu$. By the above observation, the algebra $D_\mu \otimes_R K$ does not depend on μ; and the
D_μ form an increasing sequence of orders inside a finite separable K-algebra.

From some point onwards, say μ_0, this sequence stabilises: $D_\mu = D_{\mu_0}$ for $\mu \geq \mu_0$. Now we
may put $\Gamma_\nu = H_{\nu+\mu_0}/H_{\mu_0}$. Note that $[p^{\mu_0}]$ induces maps $\Gamma_\nu \to H_\nu$ that are isomorphisms on
the generic fibre. Hence (if we assume for a moment that Γ is p-divisible), it is immediate that
$\Gamma \mapsto G$ induces an isomorphism $T(\Gamma) \to W$.

We are done if we show that Γ is p-divisible. To see this, consider the following diagram.

\[
\begin{array}{ccc}
H_{\nu+\mu_0+1}/H_{\mu_0} & \xrightarrow{[p^{\nu}]} & H_{\nu+\mu_0+1}/H_{\mu_0} \\
\downarrow \alpha & & \downarrow \gamma \\
H_{\nu+\mu_0+1}/H_{\nu+\mu_0} & \xrightarrow{\beta} & H_{\mu_0+1}/H_{\mu_0}
\end{array}
\]

Here
- α is the canonical surjection.
- $ \beta $ is the map induced by $[p^{\nu}]$, and is an isomorphism by the choice of μ_0.
- $ \gamma $ is the canonical inclusion.

Observe that both objects in the top row are isomorphic to $\Gamma_{\nu+1}$. We conclude that the kernel
of $[p^{\nu}]: \Gamma_{\nu+1} \to \Gamma_{\nu+1}$ is isomorphic to the kernel of α, which is $H_{\nu+\mu_0}/H_{\mu_0}$. By definition this
is Γ_ν. We conclude that Γ is indeed p-divisible.

\[\square\]

References