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I realize that the disappearance of a culture does not signify the disappearance 
of human value, but simply of certain means of expressing this value, yet the fact 
remains that I have no sympathy for the current of European civilization and do 
not understand its goals, if it has any. So I am really writing for friends who are 
scattered throughout the corners of the globe. 

Our civilization is characterized by the word "progress". Progress is its form 
rather than making progress one of its features. Typically it constructs. It is oc­
cupied with building an ever more complicated structure. And even clarity is only 
sought as a means to this end, not as an end in itself For me on the contrary 
clarity, perspicuity are valuable in themselves. I am not interested in constructing 
a building, so much as in having a perspicuous view of the foundations of typical 
buildings. 

Ludwig Wittgenstein 



Preface 

Subject Matter 

The original title of this book was Tractatus Classico-Quantummechanicus, but 
it was pointed out to the author that this was rather grandiloquent. In any case, 
the book discusses certain topics in the interface between classical and quantum 
mechanics. Mathematically, one looks for similarities between Poisson algebras 
and symplectic geometry on the classical side, and operator algebras and Hilbert 
spaces on the quantum side. Physically, one tries to understand how a given quan­
tum system is related to its alleged classical counterpart (the classical limit), and 
vice versa (quantization). 

This monograph draws on two traditions: The algebraic formulation of quan­
tum mechanics and quantum field theory, and the geometric theory of classical 
mechanics. Since the former includes the geometry of state spaces, and even at 
the operator-algebraic level more and more submerges itself into noncommutative 
geometry, while the latter is formally part of the theory of Poisson algebras, one 
should take the words "algebraic" and "geometric" with a grain of salt! 

There are three central themes. The first is the relation between constructions 
involving observables on one side, and pure states on the other. Thus the reader will 
find a unified treatment of certain aspects of the theory of Poisson algebras, oper­
ator algebras, and their state spaces, which is based on this relationship. Roughly 
speaking, observables relate to each other by an algebraic structure, whereas pure 
states are tied together by transition probabilities (in both cases topology plays 
an additional role). The discussion of quantization shows both sides of the coin. 
One side involves a mapping of functions on the classical phase space into some 
operator algebra; at the other side one has coherent states, which define a map 
from the phase space itself into a projective Hilbert space. The duality between 
these sides is neatly exhibited in what is sometimes called Berezin quantization. 
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The second theme is the analogy between the C* -algebra of a Lie groupoid 
and the Poisson algebra of the corresponding Lie algebroid. For example, the role 
played by groups and fiber bundles in classical and quantum mechanics may be 
understood on the basis of this analogy. 

Thirdly, we describe the parallel between symplectic reduction in classical me­
chanics (with Marsden-Weinstein reduction as an important special case) and 
Rieffel induction (a tool for constructing representations of operator algebras) in 
quantum mechanics. This provides an interesting example of the mathematical 
similarities alluded to above, and in addition leads to a powerful strategy for the 
quantization of constrained systems in physics. 

Various examples illustrate the abstract theory: The reader will find particles 
moving on a curved space in an external gauge field, magnetic monopoles, low­
dimensional gauge theories, topological quantum effects, massless particles, and 
8-vacua. On the other hand, the reader will not find path integrals, geometric 
quantization, the WKB-approximation, microlocal analysis, quantum chaos, or 
quantum groups. The connection between these topics and those treated in this 
book largely remains to be understood. 

Prerequisites, Level, and Organization of the Book 

This book should be accessible to mathematicians with a good undergraduate 
education and some prior knowledge of classical and quantum mechanics, and to 
theoretical physicists who have not completely abstained from functional analysis. 
It is assumed that the reader has at least seen the description of classical mechanics 
in terms of symplectic geometry, and knows the standard Hilbert space description 
of a quantum-mechanical particle moving in R3. 

The reader should be familiar with the basics of the theory of manifolds, Lie 
groups, Banach spaces, and Hilbert spaces, say at the level of a first course. The 
necessary concepts in operator algebras, Riemannian and symplectic geometry, 
and fiber bundles are developed from scratch, but some previous exposure to these 
subjects would do no harm. 

It is suggested that the reader start by going through the informal Introductory 
Overview as a whole. The main text is of a technical nature. The various chapters 
are logically related to each other, but can be read almost independently. To study 
a given chapter it is usually sufficient to be familiar with the preceding chapters 
merely at the level of the Introductory Overview. Some technical details will, of 
course, depend on previous material in a deeper way. One should by all means go 
through the list of conventions and notation below. 

In the interest of clarity and continuity, no credits or references to the literature 
are given in the main text. These may be found in the Notes, which in addition 
contain comments and elaborations on the main text. If no reference for a particular 
result is given, it is either standard or new (we leave this decision to the reader). 
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The author would be happy if glaring omissions in the notes or references were 
pointed out to him. 

In the Index, entries refer only to the location where an entry is defined and/or 
occurs for the first time. 

Conventions and Notation 

Unless explicitly indicated otherwise, or obvious from the context, our conventions 
are as follows. 

General 

• The (Roman) chapter number is used only in cross-referencing between dif­
ferent chapters. In such references, numbers in brackets refer to equations and 
those without refer to paragraphs (e.g., 1.2.3) or to sections (such as 1.2). 

• The symbol • means "end of proof". The symbol 0 stands for "end of 
incomplete proof". 

• The equation A := B means that A is by definition equal to B. 
• The abbreviation "iff" means "if and only if". 
• An index that occurs twice is summed over, i.e., ajaj := Li ajaj. 
• Projections between spaces are denoted by T; in case of possible confusion we 

write TE->Q for the pertinent projection from E to Q. 
• The symbol f means "restricted to". 
• The symbol Ix stands for the function on X that is identically one. 
• We put 0 E JR+ but 0 f/. N. 

Functional Analysis 

• Vector spaces are over C, and functions are C-valued. Vector spaces over JR are 
denoted by VIR etc.; spaces of real-valued functions are written, for example, 
COO(P, JR). The only exception to this rule is formed by Lie algebras 9, which 
are always real except when the complexification 9c is explicitly indicated (this 
occurs only in 111.1.10, III.l.l1, and IV.3.6). 

• The space Co(X), where X is a locally compact Hausdorff space, consists of 
all continuous functions on X that vanish at infinity; the space of all compactly 
supported continuous functions on X is denoted by Cc(X), and the bounded 
continuous functions form Cb(X). These are usually seen as normed spaces 
under the sup-norm 

11/1100 := sup I/(x)l. 
XEX 

• When X has the discrete topology (relative to which all functions are continu­
ous), we often write l(X),lc(X),lOO(X),lo(X) for C(X), Cc(X), L OO(X), and 
Co(X). 
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• The topological dual of a topological vector space V is denoted by V*; hence 
the double dual is V**. The action of () E V* on v E V is denoted by ()(v). 
Multilinear forms a are similarly denoted by a(vI' ... , vn ). 

• When confusion might arise otherwise, we write X + Y for X + Y in VI EB V2, 
where X E VI and Y E V2 (for example, in V EB V the expression X + Y would 
be ambiguous, denoting either X + Y +0, where X + Y E V ~ V EBO c V EB V, 
or X+Y, orO+X + Y). 

Hilbert Spaces 

• Inner products (, ) in a Hilbert space 1-l are linear in the second entry and 
antilinear in the first. 

• If K is a closed subspace of a Hilbert space 1-l, then [K] denotes the orthogonal 
projection onto K. If \II E 1-l, we write [\II] for [C\II]. 

• The symbol S1-l denotes the space of all unit vectors in 1-l. The projective space 
of 1-l is called 1P7t; hence IPCN = ClPN - I • 

• The symbols ~(1-l), ~o(1-l), ~ I (1-l), ~lh(1-l) stand for the collections of all 
bounded, compact, trace-class, Hilbert-Schmidt operators on 1-l. The unit 
operator in ~(1-l) is called lL We write VJtN(C) for ~(CN). 

• When A and B are operators on 1-l, the symbol [A, B) stands for the commutator 
AB - BA. We also use {A, B}1i := i[A, B]/Ii. 

• In the context of the previous item, or more generally when A and B are elements 
of a Jordan algebra or a C* -algebra, A 0 B denotes ~ (A B + B A). In all other 
situations, 0 has its usual meaning of composition; i.e., when f and g are 
suitable functions, one has f 0 g(x) := f(g(x». 

• We say that two Hilbert spaces are naturally isomorphic if they are related by 
a unitary isomorphism whose construction is independent of a choice of basis. 

• The Hilbert space L2(JRn ) is defined with respect to Lebesgue measure. 

Our convention for the inner product is the one mainly used in the physics 
literature. Its motivation, however, is mathematical. Firstly, each \II E 1-l defines a 
linear functional on 1-l by \11(<1» := (\II, <1», without the need to change the order. 
Secondly, the convention is the same as for "inner products" taking values in a 
C*-algebra, which for good reasons are always taken to be linear in the second 
entry; see IV.2. 

C* -Algebras 

• The set of self-adjoint elements in a C* -algebra sa is called salR. Its state space 
is S(sa), and its pure state space is P(sa). 

• The unitization of a C*-algebra sa is called san. 
• States on a C* -algebra are denoted by w; pure states are sometimes also called 

p, a, or 1/f. The state space of sa is called S(sa); the pure state space is denoted 
by P(sa). 
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• The Gelfand transfonn A of A E ~tn{ is the function on P(~) defined by 
A(w) := w(A). When~is commutative, this concept is used for general A E ~. 

• Representations of a C* -algebra are generically denoted by 7r • 

• The GNS-representation corresponding to a state w is called 7rw , with canonical 
cyclic vector Qw. 

• Equivalence of representations means unitary equivalence. 
• The representation of a C* -algebra 21 induced (in the sense of Rieffel) by a 

representation 7r x of a C* -algebra ~ on a Hilbert space fix is denoted by 
7r x (~), realized on a Hilbert space fix. 

• Transfonnation group C* -algebras are called action C* -algebras. 

Group Representations and Actions 

• Group representations on a Hilbert space are tacitly assumed to be continuous 
and unitary. 

• The adjoint action of a Lie group G on its Lie algebra 9 is denoted by Ad; the 
dual coadjoint action on g* is called Co, i.e., Co(x) := Ad*(x- I ). 

• When H eGis a closed subgroup, the representation of G induced (in the 
sense of Mackey) from a representation U x (H) on a Hilbert space fi x is denoted 
by UX (G), and is realized on a Hilbert space called fix. 

• The unitary dual of a group G is denoted by G. 
• Equivalence of group representations means unitary equivalence. 

Differential Geometry 

• All manifolds (Lie groups included) are assumed to be real, smooth, connected, 
Hausdorff, finite-dimensional, and paracompact. 

• If cp : M ~ N is a smooth map between two manifolds, the pullback is denoted 
by cp*, and the pushforward is cp* (often called Tcp or cp' in the literature). In 
particular, for g E COO(N) the function cp*g in COO(M) is g 0 cpo 

• We denote a point on a manifold Q by q, with coordinates qi (in a given 
chart; i = 1, ... , dim(Q». The dependence ofthe coordinates on the chart is 
suppressed in the notation. We write ai for a/aqi. The point Pidqi in the fiber 
Tq* Q of the cotangent bundle T* Q at q then has canonical coordinates (Pi, qi); 

we denote this point by (p, q). Similarly, the point Vi ai in the fiber Tq Q of the 
tangent bundle T Q at q has coordinates (Vi, q j), and we sometimes label this 
simply as (u, q). 

• Theactionof8 E Tq*Qonu E TqQ iswrittenas8q (u). Similarly for multilinear 
fonns, e.g., ~(v, w) stands for a Riemannian inner product of v, WE Tq Q. 

• The tangent vector (field) to a curve cO is called cO. 
• The symbol I\n(Q) stands for the bundle of n-fonns over Q. Also, I\n(Q) 

is the dual vector bundle of I\n(Q), i.e., the bundle of totally antisymmetric 
contravariant tensors. 
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• The space of compactly supported smooth sections of a vector bundle E is 
denoted by r(E). 
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Introductory Overview 

I. Observables and Pure States 

The aim of the first chapter is to give two descriptions of classical and quantum 
mechanics, each of which enables one to see in a different way what their common 
properties as well as their striking differences are. The first description focuses on 
the observables of the theory, whereas the second one is based on the pure states. 

Observables 

Consider a particle moving in the configuration space Q = JR.3. Its phase space 
is the cotangent bundle T*JR.3 ~ JR.6, and the collection of classical observables is 
taken as Ql~ = coo(T*JR.3, JR.). This is a real vector space under pointwise addition 
and scalar multiplication by real numbers. 

Ordinary (pointwise) multiplication of f, g E Ql~, which for the moment we 
write as fog, naturally defines a bilinear map on Ql~. This map is commutative and 
associative. In addition, in mechanics a key role is played by the Poisson bracket 

af ag af ag 
{f, g} := api aqi - aqi api' 

Hence Ql~ becomes a real Lie algebra under the Poisson bracket. This bracket is 
related to 0 by the Leibniz rule, which says that g r-+ {f, g} is a derivation of 
o for all f E Ql~, in that {f, go h} = {f, g) 0 h + g 0 {f, hI. Hence one coins 
the abstract definition of a Poisson bracket on a commutative (but not necessarily 
associative) algebra as a Lie bracket satisfying the Leibniz rule with respect to the 
product defining the algebra. 

In quantum mechanics the above system is described by an infinite-dimensional 
space; to avoid complications we shall instead look at an N -level quantum system 
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(N < 00). The set of its observables mlR is the real vector space 9J1N(C)IR of 
Hermitian complex N x N matrices. A symmetric bilinear product on mlR is given 
by 

A 0 B := ~(AB + BA). 

In addition, mlR admits a Poisson bracket defined by 

i 
{A, Bli, := fi(AB - BA), 

where n E iR\{O}; in physics n has a specific numerical value, and is known as 
Planck's constant. A difference with the classical case is that 0 now fails to be 
associative. 

The following algebraic structure of the set of observables of classical or quan­
tum mechanics may be extracted from the above considerations. A Jordan-Lie 
algebra mlR is a real vector space equipped with two bilinear maps, 0 and {, } 
that are commutative and anticommutative, respectively. For each A EmIR, the 
map B ~ {A, B} is a derivation of the Poisson structure (mIR , {, }); this makes 
(mIR, {, }) a real Lie algebra. Also, B ~ {A, B} is a derivation of the Jordan 
structure (mIR , 0); this is the Leibniz rule. Finally, the associator identity 

(A 0 B) 0 C - A 0 (B 0 C) = ~n2{{A, C}, B) 

holds, for some constant n E R For n = 0, in which case the commutative product 
is associative, one speaks of a Poisson algebra; this associativity is an algebraic 
characterization of classical mechanics. 

The identity (AoB)oA2 = Ao(BoA2), where A2 := AoA, which makes (mIR , 0) 
a so-called (real) Jordan algebra, is implied by these axioms. A J B-algebra is 
defined as a Jordan algebra for which mlR is a Banach space, and the norm and the 
Jordan product 0 are related by certain axioms. We refer to a Jordan-Lie algebra 
mlR for which (mIR , 0) is a J B-algebraas a J LB-algebra (for Jordan-Lie-Banach). 

A C*-algebra is a complex Banach space equipped with an associative 
multiplication and an involution *, such that the C* -axioms 

IIABII :::; IIAIIIIBII, IIA*AII = IIAI12 

are satisfied. It can be shown that any C* -algebra is isomorphic to a norm-closed 
subalgebra of SB(H) for some Hilbert space H. 

In elementary quantum mechanics one assumes that every (bounded) observable 
of a given theory corresponds to a (bounded) self-adjoint operator on a Hilbert space 
H, and vice versa. This assumption may be dropped, in which case the system is 
said to possess superselection rules. The assumption that the observables form 
the self-adjoint part mlR := {A Em I A* = A} of a C*-algebra m then naturally 
emerges. A crucial point is now that a J LB-algebra is the self-adjoint part of a 
C* -algebra. 

The state space Scm) of a C* -algebra m (with unit II) consists of all linear 
functionals w on m that are positive (that is, w( A * A) ::: 0 for all A E m) and 
normalized (i.e., w(ll) = 1). Such states w are automatically continuous, so that 
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S(Qt) c Qt*. The space S(Qt) is equipped with the w* -topology inherited from Qt*. 
If A E (0, 1) and WI, W2 E S(Qt), then AWl + (1 - A)W2 E S(Qt). Moreover, S(Qt) 

is a closed subset of the unit ball of Qt*. Hence S(Qt) is a compact convex set. 
The state space of Qt = 9J1n (C) consists of the density matrices on C N • At the 

opposite extreme, so to speak, one can show that the state space ofQt = C(X) for 
a compact Hausdorff space X consists of the probability measures on X. 

A representation of a C* -algebra Qt is a linear map rr : Qt --+ '13('H), for some 
Hilbert space 'H, such that 

rr(AB) = rr(A)rr(B); rr(A*) = rr(A)*. 

For the J LB-algebra QtIR this means that rr : QtIR --+ '13(1i)1R satisfies 

rr({A, Bll) = (rr(A), rr(B)ll; rr(A 0 B) = rr(A) 0 rr(B); 

here (A, Bll := i(AB - BA) and A 0 B := !(AB + BA), etc. 
There is a remarkable correspondence between states and representations of 

a C* -algebra. It is given by the GNS-construction. Given a state W on a C*­
algebra Qt, this construction produces a representation rrw on some Hilbert space 
1iw containing a unit vector Q w that is cyclic for rrw(Qt) (that is, rrw(Qt)Qw is dense 
in 'Hw). These objects are related by 

(Qw, rrw(A)Qw) = w(A) VA E Qt. 

Conversely, let a vector Q E 1i be cyclic for some representation rr(Qt). Then 
w(A) = (Q, rr(A)Q) defines a state on Qt whose GNS-representation is equivalent 
to rr. 

Pure States 

A state is called pure if it cannot be written as a convex combination of other 
states. The set of pure states of a C*-algebra Qt is denoted by P(Qt); any state w 

can be approximated by finite sums Li Pi Pi, where Li Pi = 1 and all Pi are pure. 
The pure state space of 9J1n (C) and C(X) may be identified with the projective 
space lP'CN and with X, respectively. 

It is often convenient to look at A E QtIR as a function A on P(Qt); this is accom­
plished by putting A (p) = P (A). The map A 1--+ A is the Gelfand transform. The 
ensuing realization of QtIR as a space of functio~s on its pure state space is faithful. 
In this realization II A II equals the sup-norm II A 1100 of A over P(Qt). 

A representation rr is called irreducible if the set rr(Qt)\II is dense in 'H for 
every \II E 'H. The special significance of pure states in the context of the GNS­
construction is that the corresponding representations are irreducible. 

The pure states of a classical system are the points of its phase space P. A 
manifold P whose associated space of smooth functions COO(P, 1R) is equipped 
with a Poisson bracket (satisfying the Leibniz property with respect to pointwise 
multiplication) is called a Poisson manifold. Each function h E COO(P, 1R) then 
defines a Hamiltonian vector field /;h by 

/;h/ = {h, n· 
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Hence on P = T*JR3 we have 

ah a ah a ;h=-----
api aqi aqi api' 

Hamilton's equations of motion for a curve a (t) in P are 

da(t) 
----;jt = ;h(a(t)); 

solutions are called Hamiltonian flows or curves. 
Poisson manifolds form the main source of Poisson algebras. The example P = 

T*JR3 is special in that at each point a E P the collection of Hamiltonian vector 
fields;h spans the tangent space T" P. Poisson manifolds with this nondegenera­
cy property are called symplectic. Traditionally, classical mechanics used to be 
described in terms of symplectic manifolds, but many Poisson manifolds that are 
not symplectic have turned out to be relevant in physics. A system whose phase 
space is not symplectic may be said to possess classical superselection rules. 

The most important result in the theory of Poisson manifolds is that any such 
manifold admits a (generally singular) foliation by subspaces on which the ;h span 
the tangent space. These subspaces therefore acquire a symplectic structure, and 
are accordingly called the symplectic leaves of P. Such leaves are characterized 
by the properties that any two of their points can be connected by a piecewise 
smooth Hamiltonian curve in P and that any Hamiltonian flow must stay within a 
given leaf. 

The simplest nontrivial illustration is provided by P = JR3, with Poisson bracket 
given by {x, y} = z and its cyclic permutations. The symplectic leaves are the 
spheres S; of radius r; there is a jump in dimension of the leaves at r = 0, 
rendering the foliation a singular one. 

We return to quantum mechanics. Let H E 9J'tn (C)IR, and define if E COO(CN) 
by 

H(IJI) := (IJI, HIJI). 

The Hilbert space 'H = CN (seen as a real manifold) has a natural nondegenerate 
Poisson structure, characterized by 

- - i--
{A, B}I! = h,(AB - BA). 

Since a quantum-mechanical state is normalized to unit length and defined only 
up to a phase, the space of pure states is the projective space JID1i, rather than 'H. 
Fortunately, the considerations above can be transferred to JID1i almost without 
modification. In particular, if may be seen as a function H on JID1i, and the above 
Poisson structure projects to one on JID1i. The Hamiltonian flow of H with respect 
to that structure is then precisely the projection to JID1i of the unitary time evolution 
on 'H that solves the SchrOdinger equation with Hamiltonian H. 

Given a Poisson manifold P, we define a representation of the Poisson algebra 
Ql~ = COO(P, JR) on a symplectic manifold S (with associated Poisson bracket 
{, Js) as a linear map JT : Ql~ -+ COO(S, JR) satisfying three properties, of which 
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the two most important are 

n({f, g}) = {n(f), n(g)ls; n(f 0 g) = n(f) 0 n(g). 

One recognizes the analogy with the definition of a representation of a J L B­
algebra. A representation n of COO(P, R) on S is always associated to a smooth 
Poisson map J : S ~ P through n = J*. 

A representation n(Qt~) on S is said to be irreducible if at every point a E S 
the collection of Hamiltonian vector fields {!;n(f) (a ), f E Qt~} spans the (real) 
tangent space Ta S. Interestingly, the notion of irreducibility for representations of 
J L B -algebras (and therefore of C* -algebras), looked upon as spaces of functions 
on their pure state spaces, can be shown to be identical to the one for Poisson 
algebras. 

The pure state space P(Qt) of a C* -algebra Qt is a Poisson manifold in a certain 
generalized sense; it is foliated by symplectic leaves of the form lP1i", where each 
Hilbert space 1i" corresponds to an equivalence class of irreducible representations 
of Qt. The basic theorem on irreducible representations is the same for Poisson 
algebras of the type COO(P, R), where P is a finite-dimensional manifold (which 
we here consider to be the pure state space of COO(P, R)), and C* -algebras (where 
commutative C* -algebras are understood to have the zero Poisson structure), where 
S = lP1i for some Hilbert space 1i. It is the following: If a symplectic manifold 
S carries an irreducible representation n of a C* -algebra or a Poisson algebra Qt]R, 
then S must be isomorphic (as a symplectic manifold) to a symplectic leaf of the 
space of pure states of Qt]R, or to a covering space thereof. Up to isomorphism, n (f) 
is simply the restriction of f to the leaf in question (composed with the covering 
projection if necessary). 

Saying that lP1i equipped with a certain Poisson structure is the pure state 
space of quantum mechanics clearly does not fully characterize this theory. For by 
comparison with classical mechanics we know that the observables of quantum 
mechanics do not comprise all functions in C OO (1i, JR.), but only those of the form 
iI, where H E wtn (C)]R (or lB(1i)]R). 

The essential extra ingredient of quantum mechanics is the existence of transition 
probabilities between pure states. A transition probability on a set P is a function 
p : P x P ~ [0,1] satisfying p(p, a) = I ~ P = a and p(p, a) = 
o ~ p(a, p) = O. All transition probabilities in physics are symmetric in 
that p(p, a) = p(a, p). The transition probabilities of classical mechanics are 
trivial: p(p, a) = 8 pa' In quantum mechanics, on the other hand, where P = lP1i, 
the function p assumes the form p(rp, 1/1) = 1(<1>, 1JI)12 (where the unit vectors 
<1>, IJI E 11 project to rp, 1/1 E lP1i). 

From Pure States to Observables 

We have seen that classical mechanics is described by Poisson algebras of observ­
abIes of the type Qt]R = C OO ( P, JR.), where P is a Poisson manifold. The algebra of 
observables of a quantum-mechanical system (perhaps possessing superselection 
rules) is the self-adjoint part Qt]R of a C* -algebra Qt, realized as a certain collection 
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of functions on the pure state space P = P(~). This space is a generalized Poisson 
manifold, which, like its classical counterpart P, is foliated by symplectic leaves. 
Classical and quantum mechanics share the property ofunitarity. This means that 
the Hamiltonian flow p r+ p(t) generated by a given observable preserves the 
transition probabilities, in that p(p(t), a (t» = p(p, a) for all t for which the flow 
is defined. 

A Poisson space with a transition probability is, roughly speaking, at the same 
time a symmetric transition probability space P and a Poisson manifold, such that 
the Poisson structure is unitary. 

The quantum mechanics of an N -level system, whose algebra of observables 
is OOtn(C}R, has the property that its pure state space P = PeN is irreducible as 
a transition probability space. In general, a transition probability space is called 
irreducible if it is not the union of two (nonempty) orthogonal subsets. A sector 
C of a transition probability space P is a subset of P with the property that 
p(p, a) = 0 for all pEe and all a E P\ c. Thus a transition probability space 
is the disjoint union of its irreducible sectors. In classical mechanics each point of 
P is a sector. 

The superposition principle of quantum mechanics (which is normally expressed 
in terms of vectors in a Hilbert space) can be described in the present language. 
For any subset Q of P we define the orthoplement 

Q-L:= {a E Plp(p,a) = OVp E Q}. 

The possible superpositions of the pure states p, a are then the elements of 
{p, a}H. If p and a lie in different sectors, then clearly {p, a}H = {p, a}. 

It turns out that the pure state space of quantum mechanics with (discrete) 
superselection rules can be characterized (up to technicalities) by the following 
three properties (or axioms): 

• QMl: The pure state space P is a Poisson space with a transition probability. 
• Q M2: For each pair (p, a) of points that lie in the same sector of P, {p, a} H 

is isomorphic to Pe2 as a transition probability space. 
• QM3: The sectors of (P, p) as a transition probability space coincide with the 

symplectic leaves of P as a Poisson space. 

Here 1P'C2 is understood to be equipped with the usual Hilbert space transition 
probabilities. The universality of the transition probabilities (and, by implication, 
of the Poisson structure) of quantum mechanics is notable, as is the third property 
(which is not shared by classical mechanics). 

To characterize classical mechanics, one simply postulates 

• CM1: The pure state space P is a Poisson space with a transition probability. 
• CM2: The transition probabilities are p(p, a) = Dpa. 

One can reconstruct the algebra of observables ~R from its pure state space, 
equipped with the structure of a Poisson space with a transition probability. Given 
a general transition probability space (P, p), we first define the real vector space 
~R(P) as a certain subspace of the real Banach space l')(.)(P). For simplicity we 
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assume that (P, p) has a finite basis (here a basis B of P is a pairwise orthogonal 
subset for which LpEB p(p, a) = 1 for all a E P). The space Qt]R(P) in question 
then consists of all finite linear combinations Li Ai P Pi' where Ai E JR, Pi E p, 
and pp(a) := pp". This will be the collection of observables, which are seen to 
be essentially linear combinations of the transition probabilities. 

Axioms QMl and QM2 imply the existence of a spectral theorem in Qt]R(P), 
saying that every A E Qt]R(P) has a spectral resolution A := Lj A j Pej' where the 
e j are pairwise orthogonal and the eigenvalues A j are real. The spectral theorem 
equips QtIR(P) with a squaring map, for given the spectral resolution above one can 
define A2 by A2 = Lj A]Pej" Subsequently, one defines a map 0 on QtIR(P) by 

A 0 B := ~«A + B)2 - (A - B)2). 

Axiom QM2 implies that this map is bilinear, so that 0 indeed defines a Jordan prod­
uct. This product, combined with the sup-norm, turns QtIR(P) into a J B-algebra; 
the relevant axioms are satisfied as a consequence of the fact that the Jordan product 
comes from a spectral resolution. Had the transition probabilities been trivial, this 
Jordan product would have been pointwise multiplication, implying associativity. 

Given a Poisson structure on p, any function h on P whose restriction to each 
symplectic leaf is smooth defines a Hamiltonian flow a f-+ a(t) on P. This defines 
a one-parameter family of maps Cit : QtIR(P) -+ QtIR(P), given by CitU) : a f-+ 

f(a(t)). It is not difficult to show that unitarity (guaranteed by Axiom QMl) 
implies that Cit is a Jordan homomorphism; that is, CitU 0 g) = CitU) 0 Cit(g). The 
derivative of the homomorphism property with respect to t yields the Leibniz rule, 
since 

df(a(t)) = {h, f}(a(t)). 
dt 

Quite unlike the situation in classical mechanics, in quantum mechanics the 
Poisson structure of the pure state space turns out to be determined by the axioms 
up to a collection of constants (one for each sector). Suitable rescalings then lead to 
a single constant n. It is remarkable that the curious associator "identity" is satisfied 
by the ensuing Poisson bracket. Therefore, at the end of the day (QtIR (P), 0, {, }, II . 
II) becomes a J L B -algebra. This enables one to endow the complexification QtIR (P) 
with the properties of a C*-algebra, of which QtIR(P) is the self-adjoint part. In 
analogy with classical mechanics, the algebra of observables QtIR(P) is realized 
(even as a Banach space) as a subspace of fOO(P, JR). 

In passing from pure states to algebras of observables one has the correspon­
dences listed in Table 1. 

II. Quantization and the Classical Limit 

The second chapter relates classical and quantum mechanics to each other. Such 
a relation is possible on the basis of the structural similarities between the mathe-
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Pure state space 

transition probabilities 
Poisson structure 
unitarity 

Algebra of observables 

Jordan product 
Poisson bracket 

Leibniz rule 

TABLE 1. From pure states to algebras of observables 

matical description of these theories laid out in Chapter I, and it can be approached 
from the point of view of either observables or pure states. 

Foundations 

The problem of quantizing a given classical system is as old as quantum mechanics 
itself. Initially, the term "quantization" indicated the fact that at a microscopic scale 
certain physical quantities assume only discrete values, sometimes called quantum 
numbers. This was found to be true particularly for energy levels of bound states, 
as well as for, e.g., angular momentum and electrical charge. Such discreteness 
is easily understood within the Hilbert space formalism of quantum mechanics, 
where self-adjoint operators mayor may not have a discrete spectrum, and is no 
longer seen as the defining property of a quantum theory. 

In the modem literature "quantization" refers to the passage from a classical to a 
"corresponding" quantum theory. This notion goes back to the time that the correct 
formalism of quantum mechanics was beginning to be discovered, and from that 
time to the present day practically all known quantum-mechanical models have 
been constructed on the basis of some quantization procedure. Nonetheless, Barry 
Simon wrote: 

It seems to me that there has been in the literature entirely too much emphasis 
on quantization (i.e. general methods of obtaining quantum mechanics from 
classical methods) as opposed to the converse problem of the classical limit 
of quantum mechanics. This is unfortunate since the latter is an important 
question for various areas of modern physics while the former is, in my 
opinion, a chimera. 

In the present book the conception of quantization used in this quotation, which 
indeed applies to geometric quantization and related approaches, is replaced by a 
different one: We see quantization as the study of the possible correspondence be­
tween a given classical theory, given as a Poisson algebra or a Poisson manifold and 
perhaps a Hamiltonian, and a given quantum theory, mathematically expressed as 
a certain algebra of observables or a pure state space, and perhaps a time evolution. 
For this purpose it is not at all necessary that the quantum theory be formulated in 
terms of classical structures. On the basis of this understanding quantization and 
the classical limit are two sides of the same coin. 

Early thought on both quantization and the classical limit was guided by Bohr's 
"correspondence principle", which was a rather vague idea to the effect that quan-
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tum mechanics should converge to classical mechanics for Ii ~ 0, and also in 
the limit of large quantum numbers. The second aspect, including its relation to 
the first, will be studied in Chapter III. The use of the limit Ii ~ 0 is sometimes 
criticized on the argument that n is a constant, but what is meant here is simply that 
n should be small compared to other relevant quantities of the same dimension; 
this includes the case where units have been chosen in which n is dimensionless 
and equal to I! 

In Chapter I classical and quantum mechanics are formulated in such a way 
that they look structurally similar for any value of n. On the observable side one 
classically has a Poisson algebra (Q(~, 0, {, D, in which ° is associative, whereas 
quantum-mechanically one has the self-adjoint part (Q(~, On, {, }r,), n -=J- 0, of a 
CO-algebra. One now needs a proper way of expressing the idea that (Q(~, ... ) is 
the quantization of (Q(~, ... ), and that the latter is the classical limit of the former. 
For this to be possible in the first place, the quantum algebra of observables Q(~ 
must be defined for all values Ii E 10, where 10 is a certain subset ofR that has ° as 
an accumulation point (10 may be discrete, e.g., 10 = {lIn, n EN}, or an interval, 
such as 10 = (0, 1]; another example would be 10 = R\{O}). 

The essence of quantization is now that there should be a family of linear maps 
Q/t : Q(~ ~ Q(~, n E 10; the operator Q,,(f) is interpreted as the quantum 
observable corresponding to the classical observable f. A mathematically precise 
version of Bohr's correspondence principle, at least as far as the algebraic structure 
is concerned, is then given by the conditions 

and 

for all f, g E Q(~; here a possible Ii-dependence of the operations in Q(~ has been 
indicated. Together with the continuity of Ii t-+ II QnU)lIn for all f E Q(~, these 
conditions define what is meant by a strict quantization. 

From the perspective of pure states the classical theory is characterized by a 
Poisson manifold (P, {, }). Quantization should relate this to a family of Poisson 
spaces with a transition probability (Pn, p, {, In), n E 10, satisfying the "QM" 
axioms of Chapter I. This relation is given by a pure state quantization, which is 
a collection of injections qn : P ~ Ph (Ii E 10 ) that embed the classical pure state 
space into its quantum counterpart. These maps should satisfy certain conditions 
motivated by the correspondence principle. One such condition is obviously 

stating that the quantum-mechanical transition probabilities converge to the classi­
cal ones. It is interesting to relate this condition to the one on the Jordan product of 
observables. Assume that P is discrete; then Q(o = eo(p) is generated by functions 
of the type p~ : p t-+ opa. Given a pure state quantization q", we can hope to define 
a strict quantization Qf of Q(~ by linear extension of Q~ (p~) := Pqh(a). The spec-
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tral resolution of I E Qt~ is I = La I(a)p~, so that Qff(f) = La I(a)pqh(a)' 
For small Ii the right-hand side approximates the spectral representation of Qff(f), 
since the qh(a) become almost orthogonal. Therefore, Qff(f)2 is approximately 
La l(a)2 Pqh(a), which equals Qff(f2). Hence Qff(f)2 -+ Qff(f2) for Ii -+ 0, 
which is equivalent to the condition on the Jordan product. 

For nondiscrete P the notion of a pure state quantization has been worked out 
only when P = 5 is symplectic and each Ph is irreducible, being equal to F'1ih 
for some Hilbert space Jih. In the cases we consider, the sum over points in P is 
then replaced by the Liouville measure {LL on 5, locally given by d{LL(P, q) := 
dnpdnq/(2JT)n. In addition, a function c : 10 -+ lR\{O} appears. The conditions 
on a pure state quantization q h are stated in terms of the Berezin quantization of 
I E Qt~ = Co(5, lR). This is an operator Qff(f) on Hh, defined (for each Ii E 10 ) 

by its expectation values 

(\11, Q~(f)\I1) := c(1i) Is d{LL(a) p(qh(a), 1/I)/(a), 

where 1/1 E F'1ih is the projection of the unit vector \11 to F'1ih. This expression 
evidently generalizes Qff (f) in the previous paragraph. The function c is fixed by 
imposing the first condition Qff(ls) = IT. The second requirement on qh is that in 
the limit Ii -+ 0 the above expression with 1/1 = qtlp) converge to I(p) for all 
I E Qt~ and all p E 5. Finally, each qh should pull the canonical symplectic form 
on F'1ih back to the one on 5. 

Let us assume that each qh(a) E F'1i" is the projection of a unit vector \11K E Htt • 

The map W : Ji" -+ L2(5, c(Ii){Ld defined by WIJI(a) := (IJIK, IJI) is then a 
partial isometry. Defining p to be the projection onto the image of W, and U to be 
W, seen as a map from Hh to pL2(5, C(Ii){LL), we obtain 

UQff(f)U-1 = pip, 

where I is seen as a multiplication operator on L 2(5, c(Ii){Ld. In this way, quantum 
observables act on a subspace of L 2 (phase space), rather than on L 2( configuration 
space), as is more usual in quantization theory, in an extremely elegant fashion. 

Quantization on Flat Space 

Our main illustration of strict as well as pure state quantization will come from the 
manifold 5 = T*lRn , equipped with its canonical Poisson bracket; this makes 5 
symplectic. This manifold is particularly well structured in being both a cotangent 
bundle and a Kahler manifold (the latter comprise a class of complex manifolds of 
which more examples will be encountered in the next chapter). It turns out that a 
Kahler manifold often admits a strict Berezin quantization, which is derived from a 
pure state quantization as explained above. The observables on cotangent bundles, 
on the other hand, are best quantized using a prescription going back to Weyl, 
which is not directly related to a pure state quantization. The phase space T*lRn , 

then, may be quantized either way; Berezin quantization enjoys the advantage of 
positivity, whereas Weyl quantization has better symmetry properties. 
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In both methods the Heisenberg group Hn plays a central role; this is the 
connected and simply connected Lie group whose Lie algebra ~n = JR2n+ 1 is 
described by 

[Pi, Qj] = -8/ Z; [Pi, Z] = [Qj, Z] = 0, 

in terms of a suitable basis {Pi, Qj, Z}i,j=l, ... ,n' The Heisenberg group is nilpotent, 
and the exponential map Exp : ~n -+ Hn is a diffeomorphism. For each n i= 0 
there exists an irreducible representation Vi on 7t = L 2(JRn), given by 

h 

-i(t+luv-ux)/h 
Vi (Exp(-uQ + vP + tZ»\lI(x):= e 2 \lI(x - v), 

h 

where u Q := Ui Qi, etc. Of special significance are the Weyl operators 

Vi (p, q) := Vi (p, q, 0) = e*(PQ~-qpi), 
h h 

where Q~,i = Xi and Pl.i = -i na / axi are the position operator and momentum 
operator of elementary quantum mechanics. 

Both Berezin quantization Qff and Weyl quantization Q';i are defined for n E 

10 = JR\{O}, and map ~~ = Co(T*JRn,JR) into ~Il = 1B0(L2(Rn»]R (the self­
adjoint part of the C*-algebra of compact operators on L 2(JRn». Both are given by 
an expression of the form 

For Weyl quantization one puts A = 2n P, where P is the (nonpositive) parity 
operator P on L 2(Rn), defined by P\lI(x) := \lI( -x). To obtain Berezin quanti­
zation one chooses the positive operator A = [\lI~], which is the projection onto 
the (unit) vector 

\lI~(x) := (nn)-n I4e-x2/ (2h), 

The pure state quantization q: associated with Berezin quantization is given by 
7th = L2(JRn) for all n i= 0, and q:(p, q) = 1/I~p,q), where the right-hand side is 
given by projecting the unit vector 

\lI~p,q):= Vi(P,q)\lI~ 
h 

to JPlL 2(Rn), In terms of z := (q + ip)/./2, the transition probabilities between 
quantized pure states are 

p(q:(z), q:(w» = e-lz-wI2/t" 

which evidently converges to the classical transition probability 8zw as n -+ O. 
The Hilbert space L 2(T*JRn, I1-d is naturally isomorphic to L 2(Cn, I1-G), where 
I1-G is a suitable Gaussian measure on Cn. The projection p in the preceding 
section then projects on the subspace of functions on Cn that are entire in Z. 
Accordingly, Berezin quantization on flat space assumes the pulchritudinous form 
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of sandwiching a multiplication operator on L 2(Cn , /Lc) between two identical 
projections, whose image is a space of entire functions. 

A comparison between classical dynamics and its quantum counterpart is of 
central importance to the theory of quantization and the classical limit. If the 
classical Hamiltonian h lies in 2(~, this comparison is straightforward. In that 
case, the quantum Hamiltonian Hh := Qh(h) lies in 2(~, and Dirac's property 
implies that for fixed f and for all ! E 2(~ one has 

lim II Qh(a?U» - a~(Qh(f»11 = o. 
/i,-+O 

Here a?U) : u 1-+ !(u(t», and a;(A) := eitHn/h Ae-itH,,/h. 

It so happens that most Hamiltonians on T*JR.n used in physics are unbounded, 
so that the above norm-convergence is somewhat unrealistic. A silver lining on this 
generic unboundedness, however, is the fact that for Hamiltonians that are at most 
quadratic in the canonical variables (p, q) the excellent equivariance properties 
ofWeyl quantization imply that Qr (a?(f» - a?(QhU» = 0 for any It. For Qf 
instead of Qr this equation holds for Hamiltonians that in addition are O(2n)­
invariant. 

Convergence from quantum to classical dynamics for more general unbounded 
Hamiltonians may be achieved by looking at the time evolution of particular 
pure states. Most literature on this subject is concerned with the time-dependent 
WKB method, where one assumes that the initial wave function is of the form 
\II h (x) = Ph (x) exp(i S (x) / It), where S is real and independent of It, and Ph is a real 
formal power series in It (of which only the zeroth -order term is relevant in the clas­
sicallimit). An approximate solution \IIh(X, t) to the time-dependent Schr6dinger 
equation is then constructed in terms of a classical trajectory between x(O) and 
x(t) = x, where x(O) is determined by the requirement that the trajectory with 
initial data (d S(xo), xo) indeed arrives at x after time t. Such initial pure states are 
quite peculiar, since in the classical limit they typically converge to mixed states on 
2(0: The support of the mixed state on Co(T*JR.n) in question, which is a probability 
measure on T*JR.n, is the so-called Lagrangian submanifold of T*JR.n defined by S 
and Po (this is the collection of points (d S(q), q), where q E supp (Po». Moreover, 
the WKB method works without further ado only if the projected flow defines a 
diffeomorphism of the configuration space JR.n for all t' E [0, f]. 

We concentrate on a different method, which works well if the initial state 
\II h converges to a pure state in the classical limit. We will specifically look 
at the (coherent) state \II~p,q) defined earlier, whose classical limit is the point 
(p, q) E T*JR.n. The method is based on Taylor-expanding the quantum Hamilto­
nian H = H(Pt" Q~), which, up to suitable ordering, is obtained by substituting 
(Pt" Q~) for (p, q) in the classical Hamiltonian h(p, q) around the classical tra­
jectory (p(t), q(t». This method works well for classical Hamiltonians of the 
type 

h( ) = (p - eA(q»2 + V( ) 
p,q 2m q, 
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which describe a particle moving in an external potential V and magnetic field 
V x A. One can prove that for all f E Ql~, and Qh = QJi' or Qh = Qf" one has 

lim ('I1Ap.q), [Qh(a~(f» - a~(Qh(f»] 'I1}:.Q») = o. 
h->O 

Quantization on Riemannian Manifolds 

According to the general theory of relativity, gravitational fields are described by 
a pseudo-Riemannian metric g on spacetime. To describe the motion of a test 
particle in a static external gravitational field we therefore assume that space is 
a Riemannian manifold (Q, g); the corresponding phase space is the cotangent 
bundle S = T* Q, whose canonical symplectic structure is independent of g. The 
metric provides an isomorphism between T* Q and the tangent bundle T Q, and 
it turns out to be easier to discuss mechanics on T Q. The natural Hamiltonian on 
TQ is 

h(v,q) = ~gij(q)Vivj. 

The Hamiltonian flow (v(t), q(t» on T*Q is known as geodesic motion, since q(t) 
is a geodesic on Q; the tangent vector to this geodesic is v(t), which is parallel 
transported along the geodesic. 

Using the geometric structure, it is possible to generalize the Weyl quantiza­
tion method on the flat space ]Rn to any Riemannian manifold. The key to this 
generalization lies in rewriting Weyl's prescription as 

Q:;(f)'I1(x) = r dny KfLfJ(x, y)'I1(y), 
Ji*.n 

with kernel Kf LfJ(x, y) = n-n J«x - y)/n, ~(x + y». Here J(v, q) is the partial 
Fourier transform of f (p, q) in the fiber direction of T* Q; this is a function on T Q. 
We now recognize ~ (x + y) as the midpoint of the geodesic connecting x and y, and 
(x - y) as its tangent vector at this midpoint; the map (x, y) 1-+ «x - y), ~(x + y» 
provides a diffeomorphism between lRn x lRn and TlRn. 

When (Q, g) is complete (in that the motion generated by h is defined for all 
times), and in addition has the property that any two points are connected by a 
unique geodesic, one has Q :::::: lRn as a manifold. Moreover, the obvious gener­
alization of the geodesic construction above provides a diffeomorphism between 
Q x Q and T Q. In general, one has to proceed locally, using the geodesic midpoint 
construction to obtain a diffeomorphism between a neighborhood of the diagonal 
embedding o(Q) in Q x Q and the zero section Q in TQ. On a suitable choice 
of functions in Qlo = Co(T* Q), this still enables one to generalize the Weyl pre­
scription to obtain a strict quantization map QJ:' . For suitable (real) f, the operator 
QJ:' (f) is a compact (self-adjoint) operator on L2(Q) (defined with respect to the 
canonical Riemannian measure on Q). 

The single most important property of QJ:' is that it is equivariant under isome­
tries. To explain this, we first note that the group Diff(Q) of diffeomorphisms of 
Q acts on T* Q by pullback; call this action pO. Accordingly, each cP E Diff( Q) 
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defines an automorphism ag(f) = f 0 ({J* of ~o. Furthermore, there is a natu­
ral representation ph of Diff( Q) on L 2( Q), which defines automorphisms a; on 
~ = l}3o(L 2( Q», as explained before in the context oflRn. If, then, ({J is an isometry 
of (Q, g), for all suitable f one has 

a~ (QJi(f») = QJi(ag(f». 

It is possible to extend QJi to certain unbounded classical observables, in par­
ticular to functions that are polynomial in the canonical momenta. The Weyl 
quantization of the classical Hamiltonian is 

QJi (h) = -ih2(~ - ~R), 

containing not only the Laplace-Beltrami operator ~, but picking up an additional 
term proportional to the Ricci scalar R. If (Q, g) is complete and R is bounded, this 
quantum Hamiltonian is essentially self-adjoint on the domain C~(Q) C L2(Q). 
However, even when these conditions are not met one can prove results on the 
convergence of quantum to classical dynamics similar to those in the flat case. 

III. Groups, Bundles, and Groupoids 

In Chapter III we construct Poisson algebras and C* -algebras from well-known 
geometric objects, namely Lie groups and their Lie algebras, and principal fiber 
bundles and their associated "infinitesimal" objects. These Poisson and C*­
algebras tum out to be related by a strict quantization. The theory of Lie groupoids 
and algebroids then provides a perspective unifying these seemingly diverse classes 
of examples, as well as providing new ones. 

Lie Groups and Lie Algebras 

Let 9 be a Lie algebra. The (minus) Lie-Poisson structure on the dual g* is given 
by the Poisson bracket 

{X, Yl- = -[X, V], 

where each X E 9 defines a linear function X(e) := e(X) on g*. Physically, the 
associated Poisson algebra COO(g~, 1R) is the classical algebra of observables of 
an immobile particle whose only degrees of freedom are "internal". For example, 
when 9 = .50(3) it describes a spinning particle, the magnitude of whose spin is 
not fixed. 

In the spirit of Chapter lone may then look for representations of COO(g~, 1R) 
on a symplectic manifold S. Such a representation corresponds to a Poisson map 
J : S -+ g~. The representation theory of COO(g~, 1R) is closely related to the 
existence of g-actions on S, i.e., homomorphisms X f-+ ~x from 9 into the space 
of vector fields on S. For given such a representation, one finds a g-action by 
h := ~lx' with Jx := J* X. Conversely, ag-action X f-+ ~J'x generated by some 
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smooth map J : S ~ g~ in this way is called Hamiltonian, and J is known 
as a momentum map for the action. It does not follow that the momentum map 
of a Hamiltonian g-action is a Poisson map with respect to the Poisson bracket 
displayed above: In general, one has 

{lx, Jy}s = -J[x.Y] - f'(X, y), 

where r is constant on S, defining a so-called 2-cocycle on g. 
A smooth action of a Lie group G on a manifold S leads to a g-action through 

~xf(a) = df(Exp(tX)a)Jdtlt = 0; the G-action is said to be Hamiltonian when 
the associated g-action is. When J : S ~ g~ is a Poisson map (i.e., r = 0), the 
G-action and the g-action are called strongly Hamiltonian, and J is said to be 
equivariant. 

The coadjoint action Co of G on g* is the dual of the adjoint action. The 
main theorem on the Lie-Poisson structure is that the symplectic leaves of g~ 
are precisely the coadjoint orbits. This endows the coadjoint orbits with the Lie 
symplectic structure. For example, the coadjoint orbits in 50(3)* are two-spheres; 
picking an orbit fixes the magnitude of the classical spin. More generally, a coad­
joint orbit plays the role of a classical charge. When G is abelian, as in the theory 
of electromagnetism (where H = U (1 )), the charge is just a number. The signifi­
cance of the coadjoint orbits in representation theory is that (up to covering spaces) 
every irreducible representation 1fo of the Poisson algebra COO(g~, 1R) is realized 
on such an orbit O. 

In quantum mechanics the focus is on G-actions on a projective Hilbert space 
JID?t. These actions should not merely respect the Poisson structure on JID?t, but 
must in addition preserve the quantum-mechanical transition probabilities. Such 
G-actions on JID?t turn out to be given by linear unitary G-"actions" U on 11. itself, 
which satisfy U(x)U(y) = c(x, y)U(xy). Here c : G x G ~ U(l) is a so-called 
multiplier, which measures to what extent U differs from a true representation of 
G. A multiplier on G is the "global" analogue of a 2-cocycle r on the Lie algebra 
g. Indeed, let J be the momentum map of the associated action on JID?t; it is given 
by 

lx(1/I) = in(\II, dU(X)\II), 

where the unit vector \II is a lift of 1/1 E JID?t to 11., and 

d 
dU(X) := dt U(Exp(tX))lt=o. 

The presence of a multiplier in the G-action on 11. is then reflected by 

{ix, Jy}1l = -J[X,y] - nr(X, y). 

What is the quantum-mechanical counterpart of the Lie-Poisson algebra 
COO(g~, 1R)? This turns out to be the group C*-aIgebra C*(G). Here the shift 
from the "infinitesimal" object g* to the "global" object G in passing from classi­
cal to quantum mechanics is typical. To define C*(G) (for a group whose left and 
right Haar measures dx coincide, for simplicity) one starts from the convolution 
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operation on, say, Cgo(G), that is, 

f * g(x):= i dy f(xy-I)g(y). 

One adds an involution f*(x) := f(x- 1) so as to tum Cgo(G) into a * -algebra. In 
the associativity of convolution and the involutive nature of f 1--+ f* this algebra 
reflects the corresponding properties (xy)x = x(yz) and (xy)-l = y-l X-I of the 
group G itself. One then equips Cgo(G) with an appropriate nonn, and closes it so 
as to obtain the C*-algebra C*(G). 

The quantum analogue of the correspondence between g-actions on symplectic 
manifolds and representations of COO(g~, ~) is then a basic theorem about C*(G), 
stating that there is a bijective correspondence between representations U of G 
on Hilbert spaces and nondegenerate representations rr of C*(G) as a C*-algebra, 
given by rr(f) = Ie dx f(x)U(x). 

When G is compact there is a neat quantum analogue of the decomposition of 
g~ as the union of its symplectic leaves (which, as we saw, are just the coadjoint 
orbits). From the Peter-Weyl theorem, one has the decomposition 

C*(G) ~ EBm1dy (C), 

YEG 

where G is the space of all (equivalence classes of) irreducible representations of 
G, and dy is the dimension of a given such representation. 

The analogy between the Poisson algebra COO(g~, JR) and the C*-algebra C*(G) 
is further illustrated by the construction of a strict quantization relating the two. 
One here chooses Qlo = Co(g*) and QlJj = C*(G), and, roughly speaking, defines 
the quantization map QJj : Ql~ ---+ Ql~ by 

Qt,(f)(Exp(X» := -- e,,8(X) f«(). 1 dn() i 

0* (2rr fon 

For compact or nilpotent Lie groups one can show that this indeed defines a strict 
quantization. The nature of this prescription may be illustrated by the fact that in 
any representation rr of C*(G) one obtains (transgressing the realm of bounded 
operators) 

rr(Qh(X» = iMU(X). 

Hence from the Lie-Poisson bracket above and the property [dU(X), dU(y)] 
= dU([X, Y]) one immediately verifies that 

~ [rr(Qh(X»,rr(Qh(Y»] = rr(QJj({X, Y}_». 

Rather than COO(g~, R) one may try to quantize the Poisson algebra COO(O, R), 
where 0 is a coadjoint orbit in g*. For compact G this is indeed possible, with the 
interesting feature that Planck's constant is "quantized"; this reflects the compact­
ness of the classical phase space O. One starts from an irreducible representation 
U y (G) on a (finite-dimensional) Hilbert space 1iy labeled by a highest weight y, 
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with highest weight vector wy• Let J : lP1{y ~ g~ (as displayed above) be the 
momentum map of the G-action on lP1{ associated to the representation U on 'H. 
One then has to assume that 0 contains J (1/1 y). When this is the case, for k E Z 
one defines 'Hh for Ii = II k as 'H~/t, (i.e., the carrier space of the representation 
with highest weight ky), upon which the map qh : 0 ~ lP1{h, defined by 

qh(CO(X)y) := rHh ->lP1ih(Uy/h(X)W y/h), 

is a pure state quantization of 0 on 10 := liN. The associated Berezinquantization 
Qg then turns out to be strict. It is also G-equivariant: With a~(f) := f 0 Co(x- 1) 

for arbitrary x E G and f E COO(O), one has 

Qf/k(a~(f» = Uky(x)Qf/k(f)Uky(X)*. 

Internal Symmetries and External Gauge Fields 

The description of purely spatial degrees of freedom of a single particle having 
been given in Chapter II, and the treatment of purely internal variables having just 
been sketched, the goal is now to combine these. 

The appropriate mathematical tool is the theory of principal fiber bundles. 
When Q is a manifold and H a Lie group, a principal H -bundle P is defined by a 
free H -action on P and by a projection r : P ~ Q. These must be such that locally 
P :::::: Q x H, relative to which the H -action becomes the canonical right action 
on the second variable, and r is projection onto the first. In particular, PI H :::::: Q. 
This setup is the starting point for the classical as well as the quantum theory of a 
particle that moves on Q and has internal degrees of freedom related to H. 

More generally, a bundle over a manifold Q with typical fiber F is a space B 
with a projection r : B ~ Q such that locally B :::::: Q x F, and r is projection 
onto the first variable. Apart from principal bundles, where F is a Lie group, an 
important class is formed by vector bundles, where F is a vector space. A section 
of B is a map s : Q ~ B for which r 0 s = id. 

A most important concept, used in classical as well as in quantum mechanics, is 
that of an associated bundle: Given a smooth H -action L on some manifold M, 
the associated bundle M = P X H M is (P x M) I H, where the H -action on P x M 
defining the quotient is given by h : (x, m) ~ (xh- 1, Lh(m». This is a bundle over 
Q with typical fiber M. The projection rM->Q is given by rM->Q([x, m]H) = rex). 

The classical theory is based on the Poisson manifold (T* P)I H. Here the H­
action on T*P is the pullback of the given action on P; the canonical Poisson 
bracket on the cotangent bundle T * P quotients to one on (T* P) I H , defining its 
Poisson structure. The symplectic leaves of (T*P)I H are of the form J-1(0)1 H, 
where J : T*P ~ ~~ is the momentum map of the associated ~-action on T*P, 
and 0 is a coadjoint orbit in ~*. The choice of an orbit 0 specifies a classical 
charge; the orbit contains internal degrees of freedom, which in physics couple to 
an external gauge field. There is a correspondence 
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between the coadjoint orbits 0 in £:1*, here in the guise of the irreducible representa­
tions no of COO(£:1~, lR), and the irreducible representations of the Poisson algebra 
COO«T*P)/ H, lR): For each such orbit one obtains an irreducible representation 
nO on the symplectic manifold (T*P)o := J-1(0)/ H. 

A symplectic leaf (T* P)o is locally of the form T* Q x O. However, to separate 
the spatial and internal degrees of freedom in an intrinsic fashion, one needs to 
choose a connection on P. This is a decomposition of each tangent space Tx P 
into an (intrinsically defined) vertical subspace (which projects to zero under i), 
and a complement, called the horizontal tangent space at x. Choosing such a 
decomposition turns out to be equivalent to the specification of an £:1-valued 1-
form A on P, with certain properties. The part of A that lives on Q (relative to a 
local factorization P ~ Q x H) is the physicist's gauge field or Yang-Mills field. 

Let us introduce the manifold 

P *Q T*Q := {(x, a) E P x T*QI ip~Q(X) = ipQ--->Q(a)}. 

This is a principal H -bundle over T* Q if one defines its projection to be the 
one onto the second variable, and its H -action to be essentially the H -action 
on P. Choosing a connection then leads to the realization of (T* P)o as a bundle 
associated to P*Q T* Q by the coadjointrepresentation of H on O. In this realization 
the Poisson bracket on (T*P)o depends on A. 

The basic tool in the construction of (unbounded) physical observables on the 
phase space (T* P)o is the group Aut(P) of automorphisms of the bundle P; this 
group consists of those diffeomorphisms on P that commute with the H -action. 
Any diffeomorphism on P pulls back to one of T* P; a bundle automorphism in 
addition maps J- 1 (0) into itself, and quotients to a Poisson map on (T*P)o. The 
momentum map for this reduced action p~ of Aut(P) on (T* P)o then gives the 
classical observables that are linear in the (conventional) momentum. Functions 
of the configuration variable q are more easily obtained, namely from the natural 
projection i(pp)O--->Q. 

From the perspective of ("classical") representation theory the symplectic space 
(T* PP therefore plays a double role: It firstly carries the irreducible representation 
nO of the Poisson algebra COO«T*P)/ H, lR), and secondly it supports the Poisson 
action p~ of the group Aut(P). 

To specify a "natural" Hamiltonian hO on all leaves (T*P)o in one go, one 
needs a Riemannian metric gQ on Q and a connection A on P, as above. In the 
A-dependent realization of (T* P)o as the associated bundle (P *Q T* Q) x H 0 
one then simply puts 

hO(p, q, (J) = 4g1/(q)PIlPv. 

For simplicity this has been expressed in local coordinates, but hO is an intrinsically 
defined function. In the original definition of (T*P)o as a subspace of (T*P)/ H 
this reads 

h~(p, q, (J) = 4g~v(q)(pll - (JiA~(q»(pv - (JjA~(q». 

The associated equations of motion are the so-called Wong equations. 
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We now turn to the associated quantum theory. For compact H an appropriate 
(complexified) quantum algebra of observables is ~o(L 2(p»H, the C* -algebra of 
compact operators on L 2(P) (defined with respect to some H-invariant measure 
equivalent to the Lebesgue measure) that commute with the representation U R of 
H, given by 

On the basis of the quantization theory on Riemannian manifolds in Chapter II 
one shows that ~O(L2(p»H is a strict quantization of Co«T*P)/ H). Noticing 
that Co«T*P)/ H, JR) ~ Co(T*P, JR)H, the associated quantization map is simply 
given by restriction of the Weyl quantization map Q~ on T*P (where P has been 
equipped with an H -invariant Riemannian metric). 

From a representation-theoretic viewpoint, the quantum counterpart of (T*P)o 
is a Hilbert space 'H.x , constructed as follows. One starts with a representation 
U x (H) on a Hilbert space 'H. x , and then considers the vector bundle HX : = P x H 'H. x 
associated to P by the representation U x; locally HX ~ Q x 'H. X. In contrast with 
the classical situation, the relevant object is not this associated bundle itself, but 
rather its space of smooth sections r(HX) (with compact support). This space may 
be realized as a space of maps ",x : P -+ 'H.x satisfying the equivariance condition 

",X(xh-') = Ux(h)"'X(x) 

for all x E P and h E H. Exploiting the fact that the fiber 'H.x is a Hilbert space, 
one can equip r(HX) with an inner product; its closure is 'H.x. 

In analogy to the classical situation, Jix plays a double role in representation 
theory. Firstly, it carries a representation n x of the C* -algebra ~o(L 2(p»H , given 
by 

nX(K)"'X(x) = i dJi,(Y) K(x, y)"'X(y). 

This representation is irreducible iff U x (H) is irreducible, so that we obtain a 
correspondence 

UX(H) +--+ nX(~o(L2(p»H) 

analogous to the classical correspondence no B- nO. Secondly,1iX carries the 
induced representation U x (Aut(P», defined by 

dv(cpQ'(r(x))) ",X(cp-'(x», 
dv(r(x» 

where v is a measure on Q that is naturally defined by Ji" and CPQ is the 
diffeomorphism of Q associated to cP in the obvious way. 

The well-known construction of induced representations of a (Lie) group G is 
a special case: one takes P = G, defined as a bundle over Q = G / H through 
the canonical right action of H C G on G. The left action of G on itself then 
realizes G as a subgroup of Aut(G), so that the equation above applies. This is 
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called Mackey induction. When v is G-invariant we obtain 

UX(y)\IIX(x) = \IIX(y-IX). 

We return to the case of a general bundle P. The correspondence between the 
classical and the quantum theory is further illustrated by the remarkable equation 

iIu1UX(~) = JrX(Qf(1~». 

Here ~ is an element of the Lie algebra of Aut(P), that is, an H -invariant vector 
field on P, and J is the momentum map for the Aut(P)-action on T*P. Since 
the latter commutes with the H -action, its momentum map is H -invariant, so 
that each J~ lies in Coo(T* P, JR)H. Extending the definition of Qf to suitable 
unbounded functions, the right-hand side is therefore well-defined. When U x (H) 
actually corresponds to a coadjoint orbit 0, one may regard JrX(Qf(1~» as the 
quantization of Jp, but in the absence of such a correspondence the right-hand 
side still makes sense as the quantum "~-momentum" in the sector X . In particular, 
one has 

i 
/i[Jrx(Qf (1~», Jrx(Qf (17]))] = Jrx (Qf ({J~, J7]}))' 

The quantum Hamiltonian on fix defined by Weyl quantization is 

H; = -1fl,2 (~~ - iRQ + 12F2 - CX) . 

Here ~ ~ is a gauge-covariant Laplacian, and the other terms are geometric objects 
acting as multiplication operators, all constructed from gQ and A. 

As in Chapter II, the possible convergence of the classical equations of motion 
generated by h~ to their quantum counterparts generated by H; can be analyzed. 

One has to find a suitable analogue of the coherent states \IItq) used for this 
purpose when only spatial degrees of freedom are present. Our discussion on the 
quantization of the Poisson algebra Coo(O, JR.), where 0 is a coadjoint orbit in 
fl*, suggests how to proceed. We assume that 0 is associated with an irreducible 
representation U x (H), labeled by a highest weight X, in that 0 contains J (1/J x)· 

For "quantized" Ii = 1/ k, kEN, we then replace \II~p,q) by the unit vectors 

W(p,q,h) '- \II(p,q) .0, U (h)\II 
Ilk .- Ilk I(Y kx kx 

in L 2(l~.n) ® 7-lkx, where WkX is a normalized highest weight vector in fikx' The 
desired convergence may then be shown for k --+ 00. The proof makes essential 
use of the G-equivariance of the Berezin quantization of Coo(O, JR). 

Everything said so far may be explicitly calculated in the simplest nontrivial 
example, where the bundle P(Q, H) is SO(3)(S2, SO(2». This bundle supports 
a certain canonical connection, which in physics terms describes the field of a 
magnetic monopole sitting at the origin. The symplectic leaves in .50(2) = JR. are 
just numbers e, identified with the electric charge of the particle moving on S2. 
The symplectic leaves (T" S 0(3)Y are diffeomorphic to T* S2, but one still sees 
the effect of a nonzero charge e in all relevant quantities, such as the momentum 
map for the reduced SO(3) action on (T* SO(3)Y. 
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C*(G) 

FIGURE 1. Groupoids and algebroids in quantization 

The quantum theory is formulated in terms of the line bundles Hn , nEZ, 
defined by the irreducible representations Un(a) = exp( -ina) of SO(2). These 
representations are the quantum analogues of the coadjoint orbits e, illustrating 
the quantization of electrical charge. It should be mentioned that the Hilbert space 
1tn is insensitive to the topology of the line bundle Hn; the relevance of this bundle 
in quantum mechanics lies in the fact that the space of sections r(Hn ), which does 
"see" the topology, provides a domain of essential self-adjointness for the basic 
quantum observables. 

Lie Groupoids and Lie Algebroids 

Our aim is to explain Figure 1. Let us first look at a case where we already know 
what all the entries and arrows mean, namely when G = G is a Lie group and 
18 = 9 its Lie algebra. In that case, we have seen that we can canonically associate 
a Poisson algebra COO(g~, JR) with 9 and a C*-algebra C*(G) with G, in such a 
way that under favorable circumstances (e.g., when G is compact), C*(G) is a 
strict quantization of COO(g~). The central ingredient in the construction of the 
quantization map Q~ = Q/i was the usual exponential map Expw = Exp : 9 -+ 

G. 
The quantization of a system with configuration space Q fits into this diagram 

as well. We already know three of the four comers: For 18 we would like to read the 
tangent bundle T Q, with associated Poisson algebra Coo (T* Q, JR), and we wish 
C* (G) to be the algebra of compact operators 23o(L \ Q». The object G should then 
be chosen as Q x Q, equipped with structures such that one may firstly construct 
T Q as an associated infinitesimal object (in analogy to the construction of a Lie 
algebra from a Lie group), and secondly can define the C*-algebra C*(Q x Q) 
through the construction of a convolution and an involution on C~(Q x Q). 

The appropriate starting point is the concept of a groupoid. This is a gener­
alization of a group, in which multiplication is only partially defined. When it is 
defined, it is associative, and each element has an inverse. For example, one may 
say that two elements (q\, q;) and (q2, q~) of Q x Q can be multiplied iff q; = q2, 
in which case (q\, qD(q;, q~) := (q\, q~). This reflects the way arrows are com­
posed; one therefore interprets a point (q, q') E Q x Q as an arrow from q' to q. 
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Thus the inverse is (q, q,)-I := (q', q). The ensuing object is the pair groupoid 
on Q. 

Every groupoid G may be thought of as a collection of arrows connecting points 
on some space Q, called the base of G. The collection of all elements of the form 
y y -I , Y E G, is naturally isomorphic to the base Q, and this isomorphism leads 
to an inclusion t : Q ~ G. Arrows in t(Q) evidently start and end at the same 
point. In a pair groupoid one has t(q) = (q, q). 

In a group all arrows start and end at the unit e, so that any two elements may be 
composed. An intermediate possibility is an action groupoid. Given a group G and 
a G-action on a set Q, we look at G x Q as a collection of arrows between points in 
Q, in such a way that (x, q) starts at x-1q and ends at q. Accordingly, the product 
(x, q)(y, q') is defined when q' = x-1q, in which case (x, q)(y, x-1q) := (xy, q). 
The inverse is (x, q)-I := (X-I, x-1q). Hence t(q) = (e, q). 

When all relevant objects are manifolds and all operations are smooth, one 
speaks of a Lie groupoid. Given a Lie groupoid G, one can tum C~(G) into 
a convolution * -algebra that reflects the basic properties of the groupoid opera­
tions. For example, for a Lie group this reproduces the *-algebra we have already 
encountered. For a pair groupoid one obtains 

1* g(ql, q2) = fa dv(q) I(ql, q )g(q, q2) 

and f*(ql, q2) = l(q2, ql). On an action groupoid one has 

I*g(x,q)= fa dyl(xy,q)g(y-I,y-Ix-I q) 

and f*(x, q) = I(x- I , x-1q). 
One sees that in these two cases the involution is defined by 

f*(y) = I(y-I); 

this is, in fact, always true. One can put a norm on C~(G), and complete it so 
as to obtain a C*-algebra C*(G). For the pair groupoid Q x Q one then finds 
C*(Q x Q) = 'l30(L2(Q». 

Given a principal H -bundle P over Q, one may form the "quotient" of the pair 
groupoid P x P by H, obtaining the gauge groupoid P x H P of the bundle. This 
is a groupoid with base Q; an arrow [x, y]H starts at r(y) and ends at rex) (where 
r is the bundle projection on P). The C*-algebra C*(P XH P) of this groupoid 
turns out to be isomorphic to 'l30(L2(Q» ® C*(H). For compact H this is nothing 
but the C* -algebra 'l3o(L 2(p»H we have already encountered, and C*(P x H P) 
is in every respect the correct generalization of Bo(L2(P»H to the case where H 
is noncompact. In particular, given a representation Ux(H) one may construct an 
induced representationrr x ofC*(P XH P), which is irreducible iff Ux is. This leads 
to a bijective correspondence 

Ux(H) +------+ rrX(C*(P XH P» 

between the representations of H and the representations of C*(P XH P). 



III. Groups, Bundles, and Groupoids 23 

The C*-algebra of an action groupoid G x Q is usually written as C*(G, Q), 
and is called an action C*-algebra. The C*-algebra C*(G, Q) has the remarkable 
property that each of its representations corresponds to a system ofimprimitivity 
(U, if), where U is a representation of G, and if is a representation of Ca( Q), 
satisfying the covariance condition 

U(x)if(j)U(x)* = if (axCi». 

Here ax (i) : q 1-+ i(x- J q). This condition is an integrated fonn of the "canonical" 
commutation relation 

i - - -ti [Qt!(X), Q/l(f)] = Q,,(~x j), 

for i E C~(Q) and X E g. Here Q/l(X') := iMU(X) and Q,,(j) := if(j); recall 
the definition of the linear function X' E COO(g*, JR) and of the vector field h on 
Q. 

Turning to the top right comer in Figure I, we now describe the "infinitesimal" 
object Q5 associated to a Lie groupoid G, generalizing the concept of a Lie algebra. 
The Lie algebroid of a Lie groupoid with base Q is a vector bundle over Q, 
which apart from the bundle projection 'f : Q5 ~ Q enjoys another linear map 
'fa : Q5 ~ T Q, called the anchor. In addition, there is a Lie bracket [, ] on the 
space of sections of Q5, which is related to the usual commutator on vector fields 
on Q through the anchor. These objects are all constructed from G; the bundle Q5 

itself is built from the geometry of the map t : Q ~ G (it is the nonnal bundle 
of this inclusion), the Lie bracket is derived from the commutator of left-invariant 
vector fields on G (much as in the case of a Lie algebra), and the anchor is the 
derivative of the map from G to Q that assigns to an arrow its starting point. 

For example, the Lie algebroid of the pair groupoid Q x Q is the tangent bundle 
T Q with the obvious Lie bracket; the anchor is, of course, the identity map. The 
Lie algebroid of the action groupoid G x Q is the action algebroid 9 x Q, regarded 
as a trivial bundle over Q. Identifying sections of 9 x Q with g-valued functions 
X (.) on Q, the Lie bracket on constant sections is simply the bracket [, ]g in g. 
More generally, one has 

[X, Y]gxQ(q) = [X(q), Y(q)]g + ~yX(q) - ~x Y(q). 

The anchor comes out as 'fa (X, q) = -h(q). Finally, the Lie algebroid of the 
gauge groupoid P XH Pis (TP)/ H as a vector bundle over Q, with commutator 
inherited from the usual one on vector fields on P. 

This brings us to the downward arrow on the right in Figure I, namely the 
construction of a Poisson algebra from the Lie algebroid Q5. The Poisson mani­
fold in question is the dual bundle Q5*, the Poisson bracket on COO (Q5*, JR) being 
detennined by the special cases 

{f, g}- = 0; 

{S, fl- = -'fa 0 sf; ----{sJ, S2}- = -[sJ, S2]18. 



24 Introductory Overview 

Here f and g are functions on the base Q, and s is a linear function on I!)* defined 
by a section s of I!) in the obvious way. 

For I!) = T Q this is simply the usual Poisson structure on the cotangent bundle 
T* Q; we see that this structure ultimately derives from the groupoid operations on 
Q x Q. The relevant special cases of the bracket on the Poisson algebra Coo(g"'- x 
Q, JR.) determined by the action groupoid G x Q are as follows. Firstly, for functions 
f, g depending only on Q one has the obvious {f, g} _ = O. Secondly, on constant 

sections (identified with linear functions on gO) one has {X, Y}- = -[X,Y]. 
Finally, the "mixed" bracket is {X, j} _ = h j. One sees from these Poisson 
brackets that a representation of the Poisson algebra Coo (g* x Q, JR) on a symplectic 
manifold is essentially a classical system of imprimitivity, being the classical 
analogue of the system of imprimitivity determined by a representation of the 
corresponding groupoid C*-algebra C*(G, Q). 

Now to the top horizontal arrow. It turns out that the exponential map Exp : 
9 --+ G on a Lie algebra can be generalized to a map Exp W : I!) -~ G from the Lie 
algebroid I!) into a corresponding Lie groupoid G. This generalized exponential 
map, however, depends on the choice of a connection (or covariant derivative) on 
the vector bundle I!) over Q. Since for a Lie algebra the base space of this bundle 
consists of only one point, there is no need for a connection in this case. In an 
action Lie groupoid 9 x Q one does not need a connection either in order to define 
Expw. In terms ofExp: 9 --+ G the map Expw : 9 x Q --+ G x Q is given by 

ExpW (X, q) = (Exp(X), Exp(~X)q). 

On a pair Lie algebroid T Q one does need a connection; this is, of course, 
nothing but an affine connection. The latter leads to an exponential map exp in the 
sense of affine geometry, in terms of which Exp W : T Q --+ Q x Q is 

where T := TTQ-->Q' For example, the affine connection may be the Levi-Civita 
connection provided by a Riemannian metric on Q. 

At last, we are now in a position to define the generalized Weyl quantization 
map QJ:' : COO (I!) * , JR) --+ C*(G)]R (restricted to suitable bounded functions); this 
is the bottom line of Figure 1. In analogy with the prescription for groups, in a 
rough sketch it is given by 

where the integration is over the fiber of I!)* above T®-->Q(X), 

Using the above formulae for Expw, one verifies that this prescription indeed 
reduces to the Weyl quantization of Coo(T* Q, JR) explained in Chapter II, as well 
as to the quantization of Coo(g"'-, JR) discussed above. 
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IV. Reduction and Induction 

In symplectic geometry one has the concept of symplectic reduction, whose aim is 
the construction of new symplectic manifolds from old ones; it may be interpreted 
as a tool in the representation theory of Poisson algebras. There exists an analogous 
technique in the representation theory of C* -algebras, called induction. The final 
chapter develops the analogy between reduction on the classical side and induction 
on the quantum side. In physics these techniques playa central role in the classical 
and quantum theory of constrained systems. 

Reduction 

The general concept of symplectic reduction is as follows. Let (S, w) be a symplec­
tic manifold, and let C be a submanifold of S. The restriction Wc of the symplectic 
form w to C is closed, but not necessarily nondegenerate. Suppose Wc is degen­
erate. The tangent bundle TC to C then contains a subbundle Nc := TC n TC~, 
where T C~ consists of all vectors in T C on which Wc identically vanishes. Under 
favorable circumstances, the collection of all curves in C that are tangent to Nc 
defines a foliation <l>c of C, whose quotient SC := C / <l>c is a manifold. 

The essential point is now that the reduced space SC is equipped with a sym­
plectic form wC , whose pullback to C under the projection from C to SC is Wc. 

This is possible because the "directions of degeneracy" Nc of Wc have disappeared 
in the construction of the reduced space. 

In physics the submanifold C C S is defined by constraints on the allowed initial 
states of a given dynamical system; Gauss's law in electrodynamics is a typical 
example. Flows along Nc are often generated by gauge transformations, which 
do not modify the physical state of the system, and correspond to a redundancy in 
the description of the system in terms of the degrees of freedom in S. The passage 
from S to C then implements the constraints, whereas the subsequent step from 
C to SC eliminates the gauge redundancy. In any case, one should firmly keep in 
mind that symplectic reduction is generically a two-step procedure (except when 
Wc is nondegenerate, so that C itself is symplectic, and SC = C). 

Suppose that TC~ is contained in TC, in which case C is called coisotropic. 
The collection of all smooth functions on S that are constant on the leaves of <l>c 
is then a Poisson algebra, which in physics is the algebra of weak observables Ql~ 
ofthe system. Each f E Ql~ evidently "reduces" to a well-defined function JTc (f) 
on the reduced space, and the map JT c is a representation of Ql~ in C"'\Sc , lR). 

The following specialization of the above reduction scheme plays a central 
role in this chapter. Suppose one has a pair of symplectic manifolds (S, ws) and 
(Sp, wp), a Poisson manifold P, and a pair of Poisson morphisms 1 : S ~ P­
and lp : Sp ~ P (here P- is P with minus its Poisson bracket). One then takes 
S = S x Sp, equipped with the symplectic form w := Ws + wp. We write <l>p for 
the null foliation <l>c. The submanifold 

C = S *p Sp := {(a, a) E S x SpIJ(a) = lp(a)} 
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is then coisotropic, and leads to a reduced space 

sj := (S *p Sp)/4>p. 

Most physically relevant examples of symplectic reduction are a special case of 
this construction, which we call special symplectic reduction. From the point of 
view of representation theory the main feature of the construction emerges when 
one has a second Poisson manifold P2, and a Poisson map J2 : S -+ P2, such that 
the pullback J;Coo(P2, JR) in Coo(S, JR) Poisson-commutes with J*Coo(P, JR). 
The map JP : sj -+ P2 , given by 

JP([a, a]<I>p) = h(a) 

is then well-defined, and is a Poisson map. Pulling back, one obtains a represen­
tation (JP)* of the Poisson algebra C oo(P2, JR) on sj, which is said to be reduced 
by the representation J; of Coo(P, JR). 

Writing 1t for J etc., we denote this situation by 

h h 
P2 +-- S -+ PI. 

Denote the set of all f E Coo(S, JR) for which {f, J;g} = o for all g E C oo(P2, JR) 
by J* Coo (P2, JR)'. The existence of the manifold S and the maps J 1, h implies that 
PI and P2 stand in a certain relationship to each other, which is particularly close 
if J;Coo(P2, JR)' = JtCoo(PI, JR) as well as JtCoo(P1, JR)' = J;Coo(P2 , JR), and 
1t and h are surjective, with connected and simply connected level sets in S. 

If, given PI and P2, one can find S, JI , and h such that these, and some 
additional technical conditions are met, one says that PI and P2 are Morita 
equivalent. The classical imprimitivity theorem then states that Coo(PI , JR) 
and Coo(P2 , JR) have equivalent representation theories. Specifically, every repre­
sentation of C oo (P2, JR) is reduced from some representation of Coo(PI , JR), and 
vice versa, and this bijection preserves irreducibility. 

The idea of the proof of this theorem is as simple as it is elegant, and is most 
easily formulated if we use Poisson maps J rather than representations n = J* 
(one may always pass from one to the other). Given a Poisson map Jp : Sp -+ Ph 
one constructs the reduced space Sf' by special symplectic reduction. As explained 
above, this leads to a Poisson map Ji : sf' -+ P2• One now turns the diagram 

P J2 S J1 db" P J1 S h P A I' . I I' 2 ~ -+ PI aroun ,0 tammg I ~ - -+ 2. pp ymg specla symp ectlc 
reduction once again, this time from J (J : = J i ' one obtains a reduced space S2 and 
a Poisson map J2 : S2 -+ PI' Using all the assumptions involved in the Morita 
equivalence of PI and P2, one then shows that S2 is symplectomorphic to Sp, such 
that J2 is equivalent to Jp- This works in the opposite direction as well. 

Specializing special symplectic reduction, we now assume that P = 1)* (where 
1)* is the dual of the Lie algebra I) of a connected Lie group H), and J : S -+ 
I):' is an equivariant momentum map coming from a strongly Hamiltonian H­
action on S. Moreover, we take Sp to be a coadjoint orbit 0 in 1)* (equipped 
with the Lie symplectic structure), so that Jp is simply the inclusion map. The 
ensuing doubly specialized reduction procedure is called Marsden-Weinstein 
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reduction. The reduced space Sf obtained by special symplectic reduction from 
these data is easily seen to be diffeomorphic to 1-'(0)/ H, which thereby acquires 
a symplectic structure. The symplectic space 1-'(0)/ H is called a Marsden­
Weinstein quotient. 

Since H acts on S by Poisson maps, the Poisson bracket on S descends to 
a Poisson bracket on S / H. However, the latter is not symplectic, unless H is 
discrete. As a Poisson manifold, S / H is foliated by its symplectic leaves. It turns 
out that these leaves are precisely the Marsden-Weinstein quotients 1-'(0)/ H. 
This allows us to see the phase spaces (T*P)o of Chapter III in a new light. In 
particular, when P and H are connected and simply connected, the correspondence 
no ~ nO between the irreducible representations of COO(~~, R) and those of 
COO«T*P)/ H, R) found in Chapter III comes out as a consequence of the classical 
imprimitivity theorem. 

In a generalization of this construction, which we call Kazhdan-Kostant­
Sternberg reduction, the inclusion of 0 into ~* is replaced by a general Poi~son 
map 1p : Sp ~ ~~, where Sp is symplectic. We assume that 1p is minus the 
momentum map of a strongly Hamiltonian H -action on Sp. Special symplectic 
reduction then leads to to a reduced space (T* P)P. 

In the special case that P = G is a Lie group, seen as a principal bundle over 
Q = G / H, we thus obtain a reduced space (T*G)P for each strongly Hamiltonian 
H -space S p' This reduced space carries a classical system of imprimitivity. Firstly, 
the left G-action on T*G (pulled back from the left action on G) reduces to a G­
action on (T*G)p. This yields a Poisson map 10) : (T*G)P ~ g~. Secondly, since 
(T*G)P is a bundle over G/H, one has a map 1&) : (T*G)P ~ G/H; this is a 
Poisson map with respect to the zero Poisson structure on G / H. These combine 
to form a representation of the Poisson algebra Coo (g~ x G / H, R) of the action 
algebroid defined by the canonical G-action on G / H. 

Without any connectedness assumptions, the classical transitive imprimitivity 
theorem now states that any classical system of imprimitivity for G and G / H , 
in other words, any representation of the Poisson algebra COO(g~ x G / H, R), is 
equivalent to one of the above form. 

So far, we have (tacitly) assumed that S/ H and each 1-1(0)/ H are manifolds. 
When H is compact this is the case when the H -action on S is free. A fascinating 
situation arises when one drops this assumption. Without loss of generality, we 
may restrict ourselves to the case 0 = {OJ. It turns out that the reduced space 
S~ is the (disjoint) union of certain symplectic manifolds S~Kl' each of which 
corresponds to the conjugacy class [K] of the stabilizer K C H of some point 
in S. The reduced space has a Poisson structure, which restricted to each S~Kl is 
equivalent to the symplectic structure of that subspace. Any Hamiltonian flow in 
1-1 (0)/ H necessarily stays inside a given subspace S~Kl' In view of the last point, 
the decomposition of S~ is somewhat reminiscent of the foliation of a Poisson 
manifold by its symplectic leaves. 
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Induction 

Almost every aspect of special symplectic reduction has a counterpart in the context 
of Hilbert spaces and C' -algebras, albeit with subtle changes. 

In special symplectic reduction one starts from a Poisson map J : S -+ p-. 
Equivalently, one has a representation j* : COO(P-) -+ COO(S, JR), which may 
alternatively be regarded as an antirepresentation of COO(P, JR). The quantum ana­
logue of the (complexified) Poisson algebra COO(P) is taken to be a C*-algebra 
1J3; the antirepresentation J* should then correspond to a right action JTR (IJ3) on a 
linear space of some sort. These are easy analogies. In the absence of an underlying 
space P for 1J3, it is clear that the equivalent classical objects J and j* should be 
disentangled in quantum theory. 

The quantum counterpart of J in operator theory is a Hilbert C* -module over 
the C* -algebra 1J3. This consists of a complex linear space £, a linear right action 
JTR oPE on £, and a "1J3-valued inner product" (, h : £ x £ -+ 1J3. 

The sesquilinear form (, }'B must firstly satisfy (\II, <I>); = (<I>, \II}'B, generaliz­
ing the behavior of an ordinary (>valued inner product under complex conjugation. 
Secondly, the lJ3-valued inner product should intertwine JTR with the canonical right 
action of IJ3 on itself (given by multiplication on the right); in other words, one 
requires that (\II, JTR(B)<I»'B = (\II, <1»'13 B. Furthermore, one imposes positive def­
initeness, in that (\II, \11)'13 ::: 0, with equality iff \II = O. It is finally required that 
£ be complete in the norm II \II II := II (\II, \11)'13 111/2. 

For example, IJ3 is a Hilbert C* -module over itself, with JTR(B)A := A Band 
(A, B)'B := A*B. Also, a Hilbert space 1t is a Hilbert C*-module over C in its 
inner product. 

So far, we have stated the first half of the input for "quantum induction". In 
special symplectic reduction one furthermore has a second Poisson map J p : 

Sp -+ P, where Sp is a symplectic manifold. In quantum theory Sp is replaced 
by a Hilbert space 'Hx. There is no quantum counterpart of Jp , but the associated 
representation J; : COO(P, JR) -+ COO(Sp, JR) corresponds to a representation JT x 
of IJ3 on 'H x . 

The construction of the classical reduced space sj is replaced by a procedure 
called Rieffel induction. Table 2 presents a summary of the analogy between 
special symplectic reduction and Rieffel induction, which proceeds as follows. One 
first equips £ ® 1tx with a sesquilinear form (, )~, defined by linear extension of 

(\II ® v, <I> ® w)~ := (v, JTx«(\II, <I»'B)wh, 

where \II, <I> E £ and v, w E 1t x' This form is positive semidefinite, because (, h 
and (, )'13 are. Then form the quotient of £ ® 'Hx by the null space N x of (, )~; 
this is evidently a pre-Hilbert space. The induced space 

1tx := (£ ® 'Hx/Nx)-

is the completion of £ ® 1tx / Nx in the inner product inherited from (, )~. 
For the quantum counterpart of the reduced representation (J P)*(COO ( P2» on sj 

in special symplectic reduction, we define the notion of an adjointable operator 



Special symplectic reduction 

Poisson algebra COO(P) 
symplectic manifold S 
J* : CCC(P) --+ COO(S) 
Poisson map J : S --+ P­
symplectic manifold Sp 
representation J; : COO(P) --+ COO(Sp) 
Cartesian product S x Sp 
constraint manifolds S *p Sp 
null foliation <t> p 

S'j = (S *p Sp)/<t>p 
J*COO(p)' c COO(S) 
Poisson algebra C OO (P2) 

reduced representation (JP)*(C OO (P2» 
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Rieffel induction 

C* -algebra IJ3 
linear space £ 

JfR(IJ3) on £ 
lJ3-valued inner product ( , )Ql 

Hilbert space 'H. x 
representation Jf x : IJ3 --+ 1J3('H.x) 

tensor product £ 18> 'H. x 
£ 18> 'H. x 

null space Nx 
'H.x = (£ 18> 'H.x/Nx)­

C*(£, 1J3) 
CO-algebra 2l 

induced representation Jf x (21) 

TABLE 2. Special symplectic reduction and Rieffel induction 

on E. This is an operator A that has an adjoint with respect to the ~-valued inner 
product; in other words, one has 

(\II, A<I»'B = (A*\II, <l>h 

for some operator A* on E. The space of all adjointable operators on E is a C*­
algebra, denoted by C*(E, 23). An adjointable operator A has the property that 
A ® llx maps the null space Nx into itself (here llx is the unit operator on Jix )' 
Hence A ® lIx induces an operator on E ® Jix /Nx in a natural way; under suitable 
boundedness assumptions the latter operator extends to an operator nX (A) on Jix. 

To complete the picture, suppose one has a morphism of a C* -algebra Ql into 
C*(E, 23). Composing with this morphism, one may (with slight abuse of notation) 
look at n x as a representation of Ql on the induced space Jix. This representation 
is said to be induced (in the sense of Rieffel) by the representation n x (23) with 
respect to the Hilbert C*-module E over~. 

With regard to the analogies listed in Table 2, it is remarkable that the constraint 
manifold of classical mechanics has no quantum counterpart. In other words, in 
quantum mechanics it is not necessary to impose the constraints (at least in the 
case that all constraints are first class in the sense of Dirac, which is the case in 
special symplectic reduction). As opposed to classical reduction, which is a two­
step procedure, the construction of the induced space Jix in Rieffel induction has 
only one step, corresponding to the second step of symplectic reduction. 

The physical interpretation of Jix is that it is the physical state space of the 
system, in which all gauge (and perhaps other unphysical) degrees of freedom 
have been removed. (Traditional approaches to constrained quantization instead 
try to mimic the first step of symplectic reduction, imposing the constraints on 
the Hilbert space of states of the unconstrained system. This has turned out not to 
work, except in the very simplest examples.) 
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We now explain the quantum analogue of Morita equivalence of Poisson al­
gebras. In preparation, we need a refinement of the C*-algebra C*(£, IB), which 
is analogous to the restriction of the C*-algebra IB(H) of all bounded operators 
on a Hilbert space H to the C*-algebra IBa(H) of all compact operators on H. 
Namely, we define CO(£, IB) as the C*-subalgebra of C*(£, IB) that is generated 
by all operators of the type T!f <4" where 1lJ, <l> E £, and 

T!f,¢>Z := 1lJ(<l>, Z)'B. 

Two C* -algebras Q( and IB are now said to be Morita equivalent when there exists 
a full Hilbert C*-module £ over IB under which Q( :::::: Co(£' IB). We write Q( ~ 

£ ~ lB. Here a Hilbert C* -module is called full when the collection {(IlJ, <I»'B}. 
where 1lJ, <l> run over £, is dense in lB. 

For example, IBa(H) is Morita equivalent to C, with £ = H. 
As in the classical case, Morita equivalence implies that Q( and IB have equivalent 

representation theories, the bijection preserving irreducibility. More precisely, the 
quantum imprimitivity theorem states that every representation of Q( is equiva­
lent to one that is Rieffel-induced from some representation Ji x (IB), and vice versa. 
The proof uses exactly the same idea as its classical counterpart. The crucial step 

of turning P2 13- s ~ PI around to PI ~ s- ~ P2 in the classical proof now 
works as follows. The conjugate space E is equal to £ as a real vector space, but has 
the conjugate action of complex scalars. The replacement of S by S- corresponds 
to the replacement of £ by E. Moreover, the expression 

(1lJ, <l>)c~(£.'B) := T!f,¢>, 

in combination with the right action JiR(A)1lJ := A *1lJ, where A E Co(£' IB), 
defines E as a full Hilbert C* -module over CO(£, IB). Similarly, the right action 
of IB on £ is turned into a left action on E by acting with the adjoint. Hence 
Q( ~ £ ~ IB turns around to IB ~ E ~ Q(. 

The theorem is then proved by starting with a representation Ji x (lB), Rieffel­
inducing with respect to Q( ~ £ ~ IB to obtain a representation Ji x (Q(), using the 
latter to construct an induced representation of IB with respect to IB ~ E ~ Q(, and 
finally showing that this representation of IB is equivalent to Ji x. This procedure 
works in both directions. 

In view of the Morita equivalence IBa(H) ~ H ~ C, an immediate corollary 
of the quantum imprimitivity theorem is that the C* -algebra of compact operators 
has only one irreducible representation. 

There is a quantum analogue of Marsden-Weinstein reduction. Instead of a 
strongly Hamiltonian H -action on a symplectic manifold S, we start from a repre­
sentation U (H) on a Hilbert space H, and the role of the Poisson algebra COO(f):') 
is now played by the group C* -algebra IB = C* (H). Suppose, for simplicity, that 
H is compact. We then take £ = H (actually, £ is a certain completion of H, but 
we will not bother with this detail), on which C*(H) acts from the right by 

JiRU) = l dh f(h)U(h)-I. 
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The C*(H)-valued inner product on 'H is defined by letting ('It, <1>}c*(H) be the 
function h ~ ('It, U (h)<1». 

We may now proceed with Rieffel induction from some representation rr x of 
C*(H); as we have seen in Chapter III, we may equivalently assume that we have 
a representation U x of H. The form (, )~ on Ji ® 1t x reads 

Although for compact H this integral may be explicitly computed, we leave the 
expression as it stands, and remark that it is valid for noncompact groups as well. 
The only difference with the compact case is that in general £ is a suitably chosen 
dense subspace of Ji (for in the noncompact case the convergence of the H­
integration needs attention). 

A most interesting instance of "quantum Marsden-Weinstein reduction" arises 
in the context of a principal H-bundle P. We take Ji = L 2(P) (defined with 
respect to some H -invariant measure), which carries the unitary representation 
U(H) := U R(H) naturally constructed from the given right action of H on P. 
Hence we obtain a right action of C*(H) on L 2(P), eventually leading to a Hilbert 
C* -module £ over C*(H). The Hilbert space Jix constructed by Rieffel induction 
from Ux(H) is then naturally isomorphic to the space Jix defined earlier in the 
context of Mackey induction. 

We may compute the C*-algebra q(£, C*(H». Remarkbly, this turns out to 
be the C*-algebra C*(P XH P) of the gauge groupoid of the bundle. It follows 
that C*(P XH P) and C*(H) are Morita equivalent. The bijective correspondence 
Ux(H) ++ rrX(C*(P XH P» found in Chapter III then follows from the quantum 
imprimitivity theorem. Let UL be the canonical representation of Aut(P) on L 2(P). 
For each cp E Aut(P) the operator U(cp) commutes with rrR(C*(H», which implies 
that it is adjointable. The Rieffel-induced representative rrX(U(cp» coincides with 
the induced representative U x (cp) defined in Chapter III. 

Specializing to the case where P = G is a Lie group, and realizing that the 
action C* -algebra C* (G, G / H) is isomorphic to the gauge groupoid C* -algebra 
C*(G XH G), we conclude that C*(G, G/ H) and C*(H) are Morita equivalent. 
Applied to this situation, the general quantum imprimitivity theorem then implies 
the quantum transitive imprimitivity theorem. To explain what this theorem 
means, first observe that Jix carries a transitive system of imprimitivity, in which 
U(G) = UX (G), and ff(Co(G / H» is defined by 

The theorem now states that for any system of imprimitivity for G with Q = G / H 
there exists a representation Ux(H) such that the system is equivalent to the one on 
Jix just defined. This is the exact quantum counterpart of the classical transitive 
imprimitivity theorem discussed earlier. 
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Applications in Relativistic Quantum Theory 

The most interesting applications of Rieffel's and other induction techniques in 
physics appear to be to the mathematically rigorous study of gauge field theories. 
We wish to clarify three aspects of such theories. 

Firstly, there is a close (but not universal) relationship between gauge invariance 
and the masslessness of the field quanta of a quantum gauge theory. A shadow of 
this relationship may already be seen in the classical theory of massless relativistic 
particles and fields; infinite-dimensional Marsden-Weinstein reduction will be 
seen to playa central role. 

Secondly, the passage from an unconstrained Yang-Mills theory to its physical 
sector involves a tremendous reduction in degrees of freedom; when the underlying 
space is a circle this reduction even leads to a finite-dimensional theory. This will 
be proved with induction techniques. 

Thirdly, it was discovered in the sixties and seventies that the quantization of 
certain physical systems, notably gauge theories, may involve parameters (be­
yond n) without a classical analogue. These so-called vacuum angles or O-angles 
emerge in a transparent way when one quantizes constrained systems using induced 
representations. 

We start with a description of the coadjoint orbits of the Poincare group. 
This group is the semidirect product P = L ~ p M of the Lorentz group 
L = SO(3, 1) and the additive group M = ]R4 (equipped with the Minkowski 
metric diag(l, -1, -1, -1), of which L is the connected isometry group). The 
action p of L on M with respect to which the semidirect product is formed is 
simply the defining action of SO(3, 1) on ]R4. A central role in the description of 
the coadjoint orbits of such semidirect products is played by the dual action p*(L) 
on M* c:::: ]R4. 

A nontrivial analysis shows that each coadjoint orbit oP in p* is isomorphic 
(as a symplectic manifold) to a Marsden-Weinstein quotient of the type (T* p)'?, 
which we have encountered before in a different context. Here we have to take 
P = L, whereas 0 is a coadjoint orbit of the stabilizer L p of some point p in M* 
under the action p*(L). Hence the orbits are fibered over T*(L / L p), with typical 
fiber O. 

The phase space of a massless relativistic particle with positive energy is ob­
tained by choosing p = (1, 0, 0, -1). Its stabilizer is isomorphic to the Euclidean 
group E(2) := SO(2) ~p ]R2 in dimension 2. Hence classical massless particles 
are further classified by the coadjoint orbits 0 of E(2). The dual of the Lie algebra 
of E(2) is]R3, whose coadjoint orbits are either cylinders C, = S; x ]R (where the 
circle S; of radius r > 0 lies in the (x, y)-plane, and ]R is the z-axis), or points 
(0,0, h). 

Only the latter are believed to be of physical relevance; the parameter h is called 
the helicity of the particle. For example, a classical photon has helicity 1 or -1, 
and a classical graviton has helicity ±2. The phase space 0b.+.h of such particles 
is diffeomorphic to T*(L/ E(2», but the Poisson bracket contains an additional 
term (beyond the canonical cotangent bundle bracket) proportional to h. 
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There is an almost complete parallel between the coadjoint orbits and the ir­
reducible representations of P. The only difference lies in the fact that the latter 
are classified by the irreducible representations of the stabilizers L jj, rather than 
by their coadjoint orbits. Relativistic massless quantum particles are therefore 
classified by the irreducible representations of £(2). The physically relevant rep­
resentations UO,+,h are again labeled by the helicity h, which in quantum theory 
assumes only (half-) integral values. The Hilbert space rt°,+,h carrying UO,+.h is 
L2(L/ £(2». 

In a remarkable twist of nature and mathematics, the physically relevant irre­
ducible representations of P describe both quantized particles and classical fields. 
However, the massless relativistic fields occurring in the Lagrangians and Hamilto­
nians of classical field theory do not transform under UO,+.h , but under a so-called 
covariant representation of P. This is a (generally nonunitary) representation 
nA that is (Mackey) induced from a (nonunitary) representation of L. The lack of 
unitarity does not matter for classical physics, since the "covariant" action of P 
on the space of fields should be seen in a symplectic context; it is, indeed, strongly 
Hamiltonian. 

Gauge fields A transform under the covariant vector representation n v (P), 
defined by 

In order to reach UO.+,±I, as a first step one imposes the infinite number of con­
straints DAIl = 0 on the space SV of all gauge fields, and performs symplectic 
reduction. This leads to a symplectic space So,+, v, whose configuration space 
part consists of all solutions of the above wave equation whose Cauchy data are 
square-integrable in a suitable sense. 

The second step of the passage from SV to rt°,+,±I, then, involves the gauge 
group 9. This is the real Hilbert space of real solutions). of the wave equation 
0). = 0 on M whose (weak) derivative a). (seen as a four-vector with components 
all).) lies in SO,JR, v, The connection between gauge invariance and masslessness in 
classical free field theories is now as follows. The gauge group acts on SO,JR, v by 

this action is strongly Hamiltonian, with momentum map J, and the Marsden­
Weinstein quotient J- ' (0)/9 is rt°,+,1 EB rt°,+,-I. Moreover, the reduction of the 
covariant action nV (P) on SV to SO,JR, v further reduces to an action on J- ' (0)/9, 
which coincides with the representation UO,+,I EB UO,+,-'. 

We now quantize this reduction procedure with the aid of a generalization of the 
quantum Marsden-Weinstein induction technique, which is suitable for dealing 
with infinite-dimensional groups. We start as if the gauge group were locally com­
pact, and consider a Hilbert space rt carrying a representation U (9). To construct 
rt we exploit the fact that SV, previously looked upon as a symplectic space, may 
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be turned into a Hilbert space 'Hv. For 'H we then take the bosonic Fock space 

00 

exp('H v):= EB®~1iv, 
'=0 

where ®~ 'Hv is the symmetrized tensor product of I copies of 1iv. We define a 
map JEXp : 1iv -+ exp(1iv) by 

00 ®'A 
JExp(A):= L-; 

1=0 --/IT 
it follows that the inner product of two exponential vectors is 

(JEXP(A), JEXP(B») = e(A,B)1tv . 

Since the exponential vectors are dense in 1i, the natural representation U(Q) 
we use is characterized by its matrix elements 

( JExp(A), U F(A)JExP(B») = e(A,B)1tv e -~ IIAII~v e(A,JA)1tV -(aA,B)1tv . 

Mimicking the finite-dimensional situation, we would like to integrate the above 
function of A over Q with respect to a Q-invariant "Lebesgue" measure. This is 
impossible, but fortunately one may combine the nonexistent Lebesgue measure 
on Q with the factor exp( - ~ II A II~v). This combination yields a Gaussian measure 
f-1, on a certain completion Qc of Q. We then put 

( JExp(A), JEXP(B»): := e(A,B)1tv £c df-1,(A)e(A,JA)1tV -(oA,B)1tv . 

One may proceed with the construction of the induced space 'HId as usual, obtaining 
the correct quantum field theory of photons. In particular, the gauge group Q is 
trivially represented in 1iid, and Gauss's law is satisfied. 

Following this treatment of the connection between masslessness and gauge 
invariance in classical and quantum electromagnetism, we tum to a different class 
of models for a discussion of the remaining two points of interest in gauge theories. 

Classical Yang-Mills theory on a circle with structure group H is defined by 
the configuration space AIR = L2(SI, ~), with phase space 

S = T*AIR:::: A = L2(S', ~C), 

Here the inner product in L2 is defined with respect to an Ad(H)-invariant 
inner product on ~. The gauge group Q of the model is the Sobolev loop 
group 'H, (SI, H), consisting of those g E C(S', H) whose (weak) derivative 
g := g-ldg/da lies in AIR. These definitions guarantee that the action 

g : A 1-+ A8 := Ad(g)A + gdg-' = g(A _ g)g-' 

of Q on AIR is smooth. This action lifts to a strongly Hamiltonian action on the phase 
space A, given by the same formula (with A replaced by a complex connection 
Z). 
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The point is now that the Marsden-Weinstein quotient SO = J-1(0)IQ (where 
J the momentum map of the above Q-action) is symplectomorphic to the finite­
dimensional cotangent bundle T*(H 1 Ad(H». The identification of this reduced 
space with the physical phase space rests on the fact that J-1(0) is the subspace 
of S on which Gauss's law holds. The key element of the proof of this symplecto­
morphism is the construction of the Wilson loop W : AIR -+ H. We first define 
W: L2(SI, ~) -+ C([O, 1], H) as the solution of the differential equation 

(a~ +A)WA(a)=o, 

with initial condition WA(O) = e (here WA := W(A». With W(A) := WA(l), 

one shows that W(Ag) = W(A) for all based gauge transfonnations g E Qe (i.e., 
g(O) = e). Hence W quotients to a map from AIRIQe to H; the peculiar feature 
of the model is that this map is a diffeomorphism. Moreover, W complexifies to a 
map We from the phase space A to the complexification He of H. Since He is dif­
feomorphic to T* H, the map We restricts and quotients to a symplectomorphism 
between Sa and T* H. 

The quantization of this reduction procedure follows the lines of our earlier 
treatment of photons. The unconstrained phase space S is quantized as the bosonic 
Fock space H := exp(A), on which the gauge group is represented by 

UF(g)JExp(Z):= e-~lIgIl2+(g,Z\/Exp(Zg). 

Hence the matrix element of U F (g) between two exponential vectors again contains 
a Gaussian factor exp( - ~ IIi 11 2), which we wish to combine with the nonexistent 
Haar measure on Q. This leads to a version of the well-known Wiener measure 
fL w, conditioned to the space of continuous loops on H. We may therefore put 

( JExp(W), JEXP(Z»): := iH dfL W (g) e(W,Z8)+(g,Z). 

For technical reasons the integral is over LH = C(SI, H) rather than over the 
gauge group, which is a sup-dense subspace of LH that happens to have fL W_ 

measure zero. 
The induced space H'd defined by induction with respect to the above fonn is 

naturally isomorphic to the subspace of L 2(H) that is invariant under the represen­
tation defined by the adjoint action. In fact, replacing LH in the above integral by 
the space LHe of based loops, the induced space H: is L2(H) itself. A function 
f E COO(H) defines W f E COO(A) by Wf(A) := f(W(A». The quantization of 
the observable Wf on L2(H) then comes out to be the multiplication operator f. 
When f is a class function, this operator has a well-defined restriction to H;d. 

The identification of H: with L 2(H) makes essential use of the Hall coherent 
states q/h in L 2(H); this is a recently discovered family of coherent states that is 
labeled by the points z in He. The complexified Wilson loop We : A -+ He of 
the classical theory has a quantum counterpart, which (up to normalization) maps 

-W(Z) 
Y"EXP(Z) to \11 1/ 2 • 
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We finally tum to vacuum angles. In view of the equalities 

noW) := 9/90 = no(LH) = nl(H), 

where 90 is the identity component of 9, the gauge group is disconnected whenever 
the first homotopy group of the structure group H is nontrivial. For example, in the 
abelian case H = U (l) one has no W) = n I (U (l» = Z. This motivates us to make 
some general comments on the quantization of Marsden-Weinstein quotients by 
a disconnected group 9. 

The space SO = J-'(0)/9 may be constructed in two steps: one firstly forms 
J- I (0)/9°, which is a symplectic space. Secondly, one quotients the latter by the 
discrete group no(Q), again obtaining a symplectic space, which is isomorphic to 
So. We isolate the second step. Although on the classical side noW) possesses 
only the trivial coadjoint orbit {O}, on the quantum side it will have nontrivial 
irreducible representations, which have no classical counterpart. A vacuum angle 
is an element of the unitary dual ;;;(g); for Yang-Mills theory on a circle this is 
the same as ;;(ii). For H = U (1) one therefore finds 9 = z = u (1), explaining 
the alternative name 8-angles. 

Pick a () E ;;;(g), with corresponding representation Ue (noW». Instead of 
forming the physical state space by induction from the trivial representation of 
the gauge group, as we have done so far, we have the freedom of inducing from 
the representation UeW), derived from Ue via the canonical projection from 9 to 
9/9°. The quantum observables of the gauge-invariant system, such as the physical 
Hamiltonian, then explicitly depend on 8, since these operators are constructed by 
an induction procedure that depends on 8. Hence one obtains a different physical 
theory for each 8 E ~. In other words, the gauge-invariant theory admits 
inequivalent quantizations, classified by 8. 

The 8-dependence may be shown quite explicitly in the U(l) gauge theory on 
a circle. As we have seen, the reduced classical theory of this model describes 
a particle moving on U(l); the corresponding 8-dependent quantum theory turns 
out to be a description of the Aharonov-Bohm effect. 



CHAPTER 

Observables and Pure States 

1 The Structure of Algebras of Observables 

1.1 Jordan-Lie Algebras and C*-Algebras 

In this section we specify the key algebraic and functional-analytic structures 
relevant to classical and quantum mechanics. Our main aim is to look at a C*­
algebra from the point of view of its self-adjoint part. From this perspective the 
relationship between the respective algebraic structures of classical and quantum 
mechanics is particularly transparent. 

Recall that an algebra is a vector space with a (not necessarily commutative or 
associative) bilinear and distributive mUltiplication o. We write A2 := A 0 A. 

Definition 1.1.1. A (real) Jordan algebra is a (real) algebra where 

A 0 B = BoA; 

A 0 (B 0 A2) = (A 0 B) 0 A2. 

(1.1) 

(1.2) 

The simplest motivation for (1.2) is that it is automatically satisfied when the 
Jordan product 0 comes from an associative product via A 0 B = 4(AB + BA). 
However, not all Jordan algebras arise in this way. 

Theories of dynamical significance have a second algebraic operation. 

Definition 1.1.2. A Jordan-Lie algebra is a real vector space ~lR equipped with 
two bilinear maps 0 and {, } (referred to as the Jordan product and the Poisson 
bracket, respectively), such that the following conditions are satisfied. Firstly, one 
has 

A 0 B = Bo A; 

{A, B} = -{B, A} (1.3) 
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for all A, B E !2ljR. Secondly,for each A, the map B ~ {A, B} is a derivation of 
(!2ljR, 0) as well as of(!2ljR, {, D. This means that the Leibniz rule 

fA, B 0 C} = fA, B} 0 C + B 0 fA, C} (1.4) 

as well as the Jacobi identity 

{A, {B, Cn = {{A, B}, C} + {B, {A, Cn (1.5) 

must hold for all A, B, C E !2ljR. Finally,for all A, B, C E !2ljR and some 1t2 E R 
one requires the associator identity 

(A 0 B) 0 C - A 0 (B 0 C) = ~lt2{{A, C}, B}. (1.6) 

A Jordan-Lie algebra in which 0 is associative is called a Poisson algebra. 

It follows from these axioms that (!2lIR, 0) is a real Jordan algebra, whereas 
(!2lIR, (, D is a real Lie algebra. In connection with Jordan-Lie algebras, the 
terminology (non) associative always refers to the Jordan product. 

The following definitions are recorded for later use. 

Definition 1.1.3. A Jordan morphism between Jordan-Lie algebras !2l1R and 
$IR is a linear map P : !2l1R ~ $IR satisfying P(A 0 B) = P(A) 0 P(B) for all 
A, B E !2l1R. Similarly, a Poisson morphism between such algebras is a linear map 
satisfying P({A, B}) = (P(A), P(B)}. A map between Jordan-Lie algebras that 
is simultaneously a Jordan morphism and a Poisson morphism is called simply a 
morphism. An invertible (Jordan, Poisson) morphism a : !2l1R ~ !2ljR is called a 
(Jordan, Poisson) automorphism, and an invertible (Jordan, Poisson) morphism 
a: !2l1R ~ $IR is a (Jordan, Poisson) isomorphism. 

We now equip the algebras introduced above with a norm. 

Definition 1.1.4. A J B-algebra is simultaneously a real Jordan algebra and a 
Banach space in which for all A, B E !2l1R one has 

IIA 0 BII ~ IIAIIIIBII; 
IIAII2 ~ IIA2 + B2 11. 

(1.7) 

(1.8) 

The motivation for the axioms of a J B -algebra will emerge in due course. 
Putting A = B in (1.7) and B = 0 in (1.8), one sees that given (1.7), axiom (1.8) 
is equivalent to the pair 

IIA211 = IIAII2; 
IIA211 ~ IIA2 + B2 11. 

(1.9) 

(1.10) 

Definition 1.1.5. A J LB-algebra is a J B-algebra!2l1R equipped with a Poisson 
bracket that makes it a Jordan-Lie algebra for some 1t2 ~ O. 

A J LB-algebra with It = 0 may alternatively be regarded as a Poisson alge­
bra with zero Poisson structure. A Poisson algebra with nonzero Poisson bracket 
cannot, in general, be normed in such a way that the bracket is defined on the 
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norm-completion of the algebra. For this reason Poisson algebras are usually not 
studied in the setting of Banach spaces. 

A J L B -algebra 21JR turns out to be the real part of a complex associative algebra 
21 of a much-studied type. 

An involution on a complex algebra is a real-linear map A ~ A* such that for 
all A, BE 21 and J.. E C one has 

A** = A; 

(AB)* = B* A*; 

(J..A)* = IA*. 

A * -algebra is a complex associative algebra with an involution. 

(1.11) 

(1.12) 

(1.13) 

Definition 1.1.6. A C*-a1gebra is a complex Banach space 21 that is at the same 
time a * -algebra, such that for all A, B E 21 one has 

IIABII :s IIAII IIBII; 

IIA* All = IIAII2. 

(1.14) 

(1.15) 

Combining the two axioms for a C* -algebra leads to II A II :s II A * II; replacing A 
by A * and using (1.11) yields 

IIA*II = IIAII· (1.16) 

It can actually be shown that (1.15) implies (1.14), but this highly nontrivial fact 
distracts from the guiding idea that a C* -algebra is a specialization of a Banach 
algebra. This is a complex Banach space and an associative algebra, in which all 
A, B satisfy (1.14). This property guarantees that left and right multiplication are 
bounded, hence continuous; in fact, multiplication is ajointly continuous operation. 
For example, the space I.B(B) of all linear maps on a Banach space B is a Banach 
algebra under the norm 

IIAII := sup{IIAWIlI WEB, IIWII = I}. (1.17) 

The C* -axioms are motivated by the following example. Consistent with the 
above terminology, a *-a1gebra of bounded operators on some Hilbert space 1{ 

is a collection of bounded operators on 1{ that is closed under addition, scalar 
multiplication, operator multiplication, and taking adjoints. Thus the role of the 
involution is played by the adjoint. Recall the definition of the norm of a bounded 
operator: 

IIAII2 := sup{(AW, AW)I \II E 1{, (W, \II) = I}. (1.18) 

Since in a Hilbert space the norm is defined by 11\11112 = (\II, W), eq. (1.18) is 
evidently a special case of(1.17). Hence IIA \1111 :s IIAIIII\IIII, which implies (1.14). 
Moreover, we estimate 
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so that IIAII2 ::::: IIA* All, which is ::::: IIA*IIIIAIl by (1.14). This leads to (1.16) by 
the argument preceding that equation; the ensuing inequality II A * A II ::::: II A 112 then 
implies (1.15). 

Definition 1.1.7. A morphism between C*-algebras~, SB is a linear map rp : 
~ --+ SB such that 

rp(AB) = rp(A)rp(B); 

cp(A *) = cp(A)* 

(1.19) 

(1.20) 

for all A, B E ~. An isomorphism is a bijective morphism. 1Wo C* -algebras are 
isomorphic when there exists an isomorphism between them. 

It is clear that a C* -algebra morphism between ~ and SB restricts to a morphism 
(in the sense of 1.1.3) between the associated J LB-algebras ~IR and SBIR (cf. 
1.1.9), and vice versa. Morphisms between C* -algebras have excellent properties; 
see 1.3.10. For example, an isomorphism is automatically isometric. 

Theorem 1.1.S. A norm-closed * -algebra ~ in SB(?t) is a C* -algebra (with oper­
ator multiplication as the product, etc.). Conversely, any C* -algebra is isomorphic 
to a norm-closed * -algebra in SB(?t), for some Hilbert space ?t. 

The computation following (1.18) establishes the first half. The proof of the 
converse will be given at the end of 1.5. D 

An element A of a * -algebra ~ for which A * = A is called self-adjoint. The 
self-adjoint part ~lR is the collection of all self-adjoint elements in ~, seen as a 
real vector space. Since one may write 

A = A' + jA":= ~(A + A*) + i-=?(A - A*), (1.21) 

every element of ~ is a linear combination of two self-adjoint elements. 
A commutative C* -algebra is a C* -algebra in which the associative multiplica­

tion is commutative. The connection between J B-algebras, Jordan-Lie algebras, 
and C* -algebras is as follows. 

Theorem 1.1.9. Let ~ be a C*-algebra, and choose hE 1R\{0}. Equipped with 
the norm inherited from ~, and the operations 

A 0 B:= ~(AB + BA); 

i 
{A, B}1l := /irA, B], (1.22) 

the self-adjoint part ~lR of~ is a J LB-algebra. When ~ is noncommutative, the 
parameter h in (1.6) equals Ii in (1.22); in particular, one has h2 > O. When ~ is 
commutative, ~IR is a Poisson algebra with zero Poisson bracket. 

Conversely, given a J LB-algebra ~IRfor which h2 ::: 0, its complexification ~ 
is a C* -algebra under the operations 

AB := A 0 B - ~ih{A, B}; 

(A + i B)* := A - i B; 

(1.23) 

(1.24) 
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1 
IIAII:= IIA*AII2. (1.25) 

In (1.24) we assume that A, B E QtjR, and concerning (1.25) we remark that 
A* A E QtjR for any A E Qt. 

To prove the first half of the theorem, first note that by (1.16) the involution in Qt 

is continuous, so that QtjR is a closed subspace of Qt. The axioms for a J LB-algebra 
are trivially verified, except (1.10). We defer the proof of this property to the end 
of 1.4. 

In the opposite direction, it is trivially verified that the product (1.23) is asso­
ciative as a consequence of the properties of a Jordan-Lie algebra. When (1.25) 
defines a norm, the property (1.15) holds by construction. 

When QtjR is associative, so that Qt is commutative, the norm (1.25) on Qt simply 
1 

becomes IIA + iBIl = IIA2 + B2112, where A, B E QtjR. All axioms for a norm are 
then easily derived from (1.9) and (LlO). 

The proof that (1.25) is a norm also in the noncommutative case, as well as the 
proof of (1.14), will be given at the end of 1.4, too. 0 

One could replace the minus sign on the right-hand side of (1.23) by a plus sign; 
that choice leads to a C* -algebra as well, which is anti-isomorphic to the one based 
on the minus sign. 

1.2 Spectrum and Commutative C* -Algebras 

We are going to examine to what extent the closely related notions of spectrum 
and functional calculus of a (bounded) self-adjoint operator A on a Hilbert space 
1{ generalize to the context of C* -algebras and J L B -algebras. On the way we 
discuss the structure of commutative C* -algebras. In this section we do not use 
Theorem 1.1.9, except in the commutative case, for the outstanding part of the 
proof of this theorem will depend on some of the results below. 

Recall that the spectrum a(A) of A E ~(1{) is the set of those z E C for which 
A - z[ has no (bounded two-sided) inverse; when A is self-adjoint, the spectral 
radius rCA) appears in the fundamental equality 

IIAII = rCA) := sup{lzll z E a(A)}. ( 1.26) 

Since the presence of a unit is crucial in these definitions, we have to go through 
the following considerations. A unit [in a J B-algebra QtjR is an element such that 
A 0 I = A for all A E QtjR; a J B-algebra with a unit is called unital. When QtjR is 
a J L B -algebra, its unit becomes a unit of the C* -algebra Qt, in that [A = A[ = A 
for all A E Qt. This follows by putting B = C = [in (1.4), implying {A, [} = 0 for 
all A, and subsequently applying (1.23). In any case, taking the adjoint of[*[ = [* 
yields [*[ = [; hence [* = [. Also, (1.15) then implies 11[11 = l. 

When a C* -algebra or a J L B -algebra has no unit, one may add one. 

Proposition 1.2.1. For every C* -algebra without unit there exists a unique unital 
C* -algebra Qt[, called the unitization of Qt, and an isometric (hence injective) 
morphism Qt ---+ Qt[, such that Qt[/Qt c::: C. 



42 I. Observables and Pure States 

Let 2)(~) be the Banach algebra of all bounded linear maps on ~. Whether or 
not ~ is unital, the map p : ~ ~ 2)(~), given by 

p(A)B:= AB, ( 1.27) 

is isometric. To see this, note that IIp(A)1I ::: IIAII by (1.14), whereas the opposite 
inequality follows from (1.15). 

Now let ~ be a nonunital C*-algebra, and form ~[ := ~ EB C. Extend p to ~[ 
by p(A+z)B := AB + zB, so that p(O+l) = H (the unit in 2)(~». Equipped 
with the norm (1.17) and the algebraic structure of 2)(~), and with the involution 
p(A+z)* := p(A*) + ZH, the vector space p(~[) is easily shown to be a unital 
C* -algebra. Since p is a vector space isomorphism between ~[ and p(~[), one 
may transfer the CO-algebraic structure on the latter to ~[. Restricted to ~ C ~[, 

one recovers ~ as a C* -algebra. Uniqueness follows from 1.2.4.4 below. 0 

Definition 1.2.2. Let ~ be either a unital C* -algebra, or the complexification of 
a unital J LB-algebra ~JR. The spectrum a(A) of A E Ql is defined as the set of 
those z E C for which A - zH has no (two-sided) inverse in Ql. 

When ~ is nonunital, one puts a(A) := a[(A+O), where a[ stands for the 
spectrum in the unitization of~. 

In the nonunital case 0 always lies ina(A), as it is obvious from 1.2.1 that A E Ql 

never has an inverse in QlIT. The theory of Banach algebras shows that a(A) is a 
compact subset of C. For later use we note that 

a(zA) = za(A); 

a(AB) U {OJ = a(BA) U {OJ 

(1.28) 

(1.29) 

for all A, B E ~; the first property is obvious, and the second follows, because for 
z I- 0 the invertibility of AB - z implies the invertibility of BA - z. Namely, one 
computes that (BA - z)-' = B(AB - z)-'A - z-'H. 

For any locally compact Hausdorff space X, we regard the space Co(X) of all 
continuous functions on X that vanish at infinity as a Banach space in the sup­
norm. A basic fact of topology and analysis is that Co(X) is complete in this 
norm. Convergence in the sup-norm is the same as uniform convergence. What's 
more, it is easily verified that Co( X) is a commutative C* -algebra under pointwise 
addition, multiplication, and complex conjugation (defining the involution). When 
X is compact, the function 1 x, which is 1 for every x, is the unit H. One checks 
that the spectrum of f E C(X) is simply the set of values of f. On Co(X), with X 
noncompact, one has to supplement this set with zero. 

Theorem 1.2.3. Let Ql be a commutative C* -algebra. There exists a locally com­
pact Hausdorffspace X for which Ql is isomorphic to Co(X). When ~ is unital, X 
is compact, so that ~ ~ C(X). The space X is unique up to homeomorphism. 

Similarly, an associative J LB-algebra ~JR is isomorphic to some Co(X, lR), 

where X is locally compact; when QlJR has a unit, X is compact. 

For simplicity we assume that ~ is unital; if it isn't, one would start by adjoining 
a unit. The proof is based on a technique that applies to general commutative unital 
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Banach algebras; we state the main facts without proof. Consider the space ~(m) 
of all nonzero multiplicative linear functionals w on m (that is, w : m ---* C satisfies 
w(AB) = w(A)w(B) for all A, B). Each w E ~(m) is continuous, and satisfies 
IIwll = w(lI) = 1. Thence it is easily seen that ~(m) is a closed subspace ofm' with 
the w*-topology. By the Banach-Alaoglu theorem, ~(m) is therefore a compact 
Hausdorff space in the relative w* -topology. 

The Gelfand transform of A E m is the function A on ~(m) defined by 

,.1.(w) := w(A). (1.30) 

Since the relative w*-topology on ~(m) coincides with the weakest topology that 
makes all functions A continuous, it is clear that the Gelfand transform maps m 
into C(~(m». It is immediate that the image ofm in C(~(m» separates points. Re­
garding C(~(m» as a commutative Banach algebra in the sup-norm, as explained 
above, the multiplicativity of each w E ~(m) implies that the Gelfand transform 
is a homomorphism. The spectrum of A E m coincides with the set of values of A 
on ~(m); in other words, 

a(A) = a(,.1.) = {,.1.(w)1 w E ~(m)}. (1.31) 

This implies that 

11,.1.1100 = rCA), (1.32) 

where the spectral radius rCA) is defined in (1.26). In any Banach algebra, 
commutative or not, one has 

rCA) = lim IIAn ll l / n . (1.33) 
n-->oo 

Now assume that m is a commutative C* -algebra; accordingly, regard C(~(m» 
as a commutative C* -algebra. We first show that w E ~(m) is real on mlR. Pick 
A EmIR, and suppose that w(A) = a + if3, where a, f3 E R Since w(lI) = 1, one 
has weB) = if3, where B := A - all is self-adjoint. Hence for t E lR one computes 
Iw(B + itlI)12 = f32 + 2tf3 + t2. On the other hand, using IIwll = 1 and (1.15) we 
estimate Iw(B + itlI)e :s IIBII2 + t2. Hence f32 + tf3 :s IIBII2 for all t E R For 
f3 > 0 this is impossible. For f3 < 0 we repeat the argument with B replaced by 
-B. Hence f3 = 0, so that w(A) is real when A = A*. Consequently, by (1.30) 
the function A is real-valued. Writing ((I(A) := A, condition (1.20) follows. 

Secondly, for A EmIR one combines (1.15) with (1.33) to obtain IIAII = rCA), 
which with (1.33) implies II A II 00 = II A II. For general A this equality then follows 
via (1.15) in both m and C(~(m», and the fact that A* A E mjR. Thus the Gelfand 
transform is isometric, and therefore injective. Finally, surjectivity follows from 
the Stone-Weierstrass theorem. 

The uniqueness of X follows from the fact that when X and Yare compact Haus­
dorff spaces, the commutative Banach algebras C(X) and C(Y) are isomorphic iff 
X and Y are homeomorphic; this is equivalent to the statement that ~(C(X» is 
homeomorphic to X. The homeomorphism is given by letting x E X correspond 
with Wx E ~(C(X», defined by wAf) := f(x). The assumption that X is compact 
and Hausdorff, hence normal, is used to prove that the evaluation map x 1---* Wx 
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is injective, whereas the compactness of X implies that the evaluation map is 
surjective. 

The case of a commutative J L B -algebra Qt]R may be reduced to that of a 
commutative C*-algebra by complexification; see Theorem 1.1.9. 0 

Theorem 1.2.4. Let Qt be either a unital C* -algebra or the complexification of a 
unital J L B -algebra QtJR. 

1. The spectrum a(A) of A E Qt]R in Qt is equal to its spectrum in the C*-algebra 
C*(A) generated by A and n. In particular, a(A) is a subset of the real line. 

2. The compact Hausdorff space Ll(C*(A» of Theorem 1.2.3 is homeomorphic 
to a(A), and the C*-algebra c*(A) of the preceding item is isomorphic to 
C(a(A». Under this isomorphism the function A E C(X) is mapped into 
ida (A) : t 1--+ t. 

3. The continuous functional calculus for self-adjoint operators A on a Hilbert 
space applies verbatim toQtJR: In particular, for each A E Qt]R and f E' C(a(A» 
there exists an operator f(A) E Qt that is the obvious expression when f is 
polynomial (and in the general case is given by uniformly approximating f 
by polynomials on the basis of the Stone-Weierstrass theorem), and has the 
properties 

a(f(A» = f(a(A»; (1.34) 

IIf(A)11 = IIflloo· (1.35) 

4. For A E QtJR the norm is given by (1.26); for general A one has II A II = 
-Jr(A * A). Hence the norm in a C* -algebra is unique, in that a * -algebra that is 
a C* -algebra in some norm admits no other norm in which it is a C* -algebra. 

If A = A*, then A z := A - z is normal for any z E C (i.e., Az commutes 
with its adjoint Af). Suppose that z 1. a(A), so that A z is invertible. Consider the 
commutative C*-algebra C*(Az' A;I) generated by A z, its inverse, and the unit. 
By Theorem 1.2.3 one has C*(Az' A;I) ~ C(X), where X = Ll(C*(Az' A;I». 

Since Az is invertible in C*(Az' A;I), it must be that Az(x) i= 0 for all x E X. It 
is then elementary that A;I is a uniform limit of polynomials in A z, Af , and Ix. 
Transferring this back to C*(Az' A;I) by the inverse of the Gelfand transform, it 
follows that C*(Az' A;I) = C*(Az) = C*(A). Hence when A - z is invertible in 
2t its inverse lies in C*(A), which implies the first claim in 1.2.4.1. 

Consider 1.2.3 and its proof with Qt = C*(A). We see from (1.31) and the fact 
that A is real-valued for A E 2tJR that the spectrum of A in C*(A) is real. When 
now Qt has the meaning of the present Theorem 1.2.4, the second claim in 1.2.4.1 
follows from the first one just proved. 

For 1.2.4.2, consider the map A : X -+ lR. It is clear from (1.31) that the image 
of A is a(A). To prove injectivity, assume A(Wl) = A(W2)' Then wl(A) = w2(A) 
by (1.30), whence wl(A)n = w2(A)n by multiplicativity of Wi E Ll(c*(A». 
Since the linear span of all polynomials is dense in C*(A), and the Wi are con­
tinuous, this yields WI = W2. The map A is continuous, because A E C(X) 
by 1.2.3. To prove continuity of the inverse, one checks that for z E a(A) the 



I The Structure of Algebras of Observables 45 

functional A -l(Z) E L'l.(C*(A» maps A to Z (and hence An to zn, etc.). Fi­
nally, given the homeomorphism L'l.(C*(A» :::: a(A), the second isomorphism 
in C*(A) :::: C(L'l.(C*(A») :::: C(a(A» follows from the topological fact that a 
compact Hausdorff space X is detennined by C(X), and vice versa; cf. the proof 
of 1.2.3. 

The existence of the continuous functional calculus should now be obvious. 
Since f(a(A)) is the set of values of f on a(A), (1.34) follows from (1.31), 
with A replaced by f(A). The fact that for C*-algebras the Gelfand transfonn is 
isometric yields (1.35). 

The corresponding statements for a J L B -algebra follow by complexification, 
using the commutative part of 1.1.9. 

The first claim in 1.2.4.4 follows from (1.35) with f = id. The second claim 
follows from the first, (1.15), and the property A* A E s,u1R. Hence the nonn is 
detennined by the algebraic structure. • 

For later use we record that for A E s,uIR, Theorem 1.2.4 implies 

a(A) = 0 {} A = O. (1.36) 

1.3 Positivity, Order, and Morphisms 

Recall that a (bounded) operator A E ~(H) on a Hilbert space is called positive 
when (\}I, A \II) ~ 0 for all \II E H; this property is equivalent to A * = A and 
a(A) ~ JR+. This notion of positivity induces a partial ordering :s in ~(H), in 
which A :s B when B - A ~ O. Our aim is to generalize these concepts to 
C*-algebras and J LB-algebras. 

Definition 1.3.1. A partially ordered vector space (s,uIR, :s) consists of a real 
vector space s,u1R and either one of the following equivalent data: 

• A positive cone s,u+ in s,u1R; this is a subset for which (i) A E s,u+ and t E JR+ 
implies t A E s,u+, (ii) A, B E s,u+ implies A + B E s,u+, and (iii) s,u+ n -s,u+ = O . 

• A linear partial ordering, i.e., a partial ordering :s in which A :s B implies 
A + C :s B + C for all C E s,u1R and t A :s t B for all t E JR+. 

The equivalence between these two structures is as follows: Given s,u~ one defines 
A :s B if B - A E s,u~, and given:s one puts s,u~ = {A E s,u1R 10 :s A}. 

Definition 1.3.2. Let s,u1R be a J LB-algebra or the self-adjoint part of a C*­
algebra. An element A E s,u1R is called positive when its spectrum is positive; i.e., 
a(A) C JR+. We write A ~ 0 or A E s,u+, where 

(1.37) 

It is immediate from (1.31) that A E s,u1R is positive iff its Gelfand transfonn A is 
pointwise positive in C(a(A». 
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Theorem 1.3.3. The set (1.37) of all positive elements of a C* -algebra Qt or a 
J L B -algebra QtJR is a positive cone. This cone may alternatively be expressed as 

Qt~ = (Azi A E QtJR} 

= (B* BI B E Qt}. 

(1.38) 

(1.39) 

Property (i) in 1.3.1 follows from (1.28). Since a(A) ~ [0, rCA)], we have 
Ic - tl :s c for all t E a(A) and all c ::: rCA). Hence SUPtEa(A) lc1a(A) - AI :s c 

by (1.31) and 1.2.4.2, so that lIc1a(A) - ,11100 :s c. Gelfand transforming back 
to C*(A), this implies licIT - A II :s c for all c ::: II A II by 1.2.4.3. Inverting this 
argument, one sees that if II cIT - A II :s c for some c ::: II A II, then a (A) c lR + . 
Using this with A replaced by A + B and c = IIAII + IIBllleads to property (ii). 
Finally, when A E Qt+ and A E -Qt+, it must be that a(A) = 0, hence A = 0 by 
(1.36). This proves property (iii). 

If a(A) C lR+ and A = A *, then ,JA E QtJR is defined by the continuous 

functional calculus for f = ,.f and satisfies ,JA2 = A. Hence Qt+ ~ {A21 A E 

QtJR}. The opposite inclusion follows from (1.34) and 1.2.4.2. This proves (1.38). 
The inclusion Qt+ ~ (B* BI B E Qt} is trivial from (1.38). 

Lemma 1.3.4. Every A E QtJR has a decomposition A = A+ - A_, where 
A+, A_ E Qt+ and A+A_ = O. Moreover, IIA± II :s IIA II. 

Apply the continuous functional calculus with f = ida(A) = f+ - f-, where 
ida (4)(t) = t, f+(t) = max{t, O}, and f-(t) = max(-t, O}. The bound follows 
from (1.35) with A replaced by A±. • 

Apply this decomposition to A = B* B (noting that A = A *); it follows that 
(A_)3 = -(BA_)* BA_. Since a(A_) C lR+ as A_ is positive, we see from (1.34) 
with f(t) = (3 that (A_)3 ::: O. Hence -(BA_)* BA_ ::: O. 

Lemma 1.3.5. If -C*C E Qt+ for some C E Qt, then C = O. 

Write C = D + iE, where D, E E QtJR (cf. (1.21», so that C*C = 2D2 + 
2E2 - CC*. Applying (1.29) with A replaced by C and B by C*, we see that the 
assumption a(C*C) C lR- implies a(CC*) C lR-; since C*C is the sum of three 
positive terms, and Qt+ is a positive cone, it follows that C*C E Qt+. 1;-Ience the 
starting assumption a(C*C) C lR- implies a(C*C) C lR+, so that a(C*C) = O. 
Hence C*C = 0 by (1.36). 

In a C*-algebra this implies C = 0 by (1.15). In a complexified J LB-algebra 
we replace C by C* in the above argument, so that CC* = 0 as well as C*C = 0; 
hence D2 + £2 = 0, whence D = £ = 0 by (1.8). • 

The last claim before the lemma therefore implies BA_ = O. As (A_)3 = 
-(BA_)* B A_ = 0, we see that (A_)3 = 0, and finally A_ = 0 by the continuous 
functional calculus with f(t) = t 1/3. Hence B* B = A+, which lies in Qt+. • 

When A = A * one checks the validity of 

- II A II IT :s A :s II A II IT (l.40) 
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by taking the Gelfand transform of C*(A). The implication 

- B ~ A ~ B => IIAII ~ IIBII (1.41) 

then follows, because - B ~ A ~ B and (1.40) with A replaced by B yield 
-IIBII][ ~ A ~ liB II ][, so that a(A) S; [-IIBII, IIBII]; hence IIAII ~ IIBII by 
(1.26). 

An important consequence of (1.39) is the fact that inequalities of the type A I ~ 
A2 for A I, A2 E mlR are stable under conjugation by arbitrary elements B E m, so 
that Al ~ A2 implies B* AlB ~ B* A2B. This is because AI ~ A2 is the same as 
A2 - Al 2: 0; by (1.39) there is an A3 Em such that A2 - Al = A;A3. But then 
(A3 B)* A3 B 2: 0, and this is nothing but B* A I B ~ B* A2 B. For example, replace 
A in (1.40) by A* A, and use (1.15) in a C*-algebra, or (1.25) in a complexified 
J LB-algebra. This yields A* A ~ IIA 11 2][. Applying the above principle to any 
A, BE m gives 

(1.42) 

Definition 1.3.6. A positive map Q : m ~ lB between two C* -algebras is a 
linear map with the property that A 2: 0 in m implies Q(A) 2: 0 in lB. 

Proposition 1.3.7. A positive map between C*-algebras is *-preserving and 
bounded. 

One infers from 1.3.4 that Q(mll~J S; lBlR; the C-linearity of Q then proves the 
first claim. 

For the second claim, let us first show that boundedness on m+ implies bound­
edness on m. Using (1.21) and 1.3.4, we can write A = A~ - A~ + iA~ - iA':., 

where A~ etc. are positive. Since IIA'II ~ IIAII and IIA"II ~ IIAII by (1.21), we 
have II BII ~ IIAII for B = A~, A~, A~, or A':. by 1.3.4. Hence ifllQ(B)1I ~ cliBIl 
for all B E m+ and some c > 0, then IIQ(A)II ~ 4c1lAIi. 

Now assume that Q is not bounded; by the previous argument it is not bounded 
on m+, so that for each n E N there is an An E mi such that II Q(An) II 2: n3 (here 
mi consists of all A E m+ with II A II ~ 1). The series L:o n-2 An obviously 
converges to some A E m+. Since Q is positive, we have Q(A) 2: n-2 Q(An) 2: 0 
for each n. Hence by (1.41), IIQ(A)II 2: n-2 I1Q(An )1I 2: n for all n EN, which 
is impossible. Thus Q is bounded on m+, and therefore on m by the previous 
paragraph. • 

Since a morphism cp : m ~ 'B satisfies cp(B* B) = cp(B)*cp(B), it is clear from 
(1.39) that a morphism is a positive map. For later reference we collect this, and 
other good properties of morphisms. In preparation, we define a left ideal in a 
C*-algebra m as a closed linear subspace 'J S; m such that A E 'J implies BA E 'J 
for all B E m. Similarly, a right ideal is a closed linear subspace 'J S; m such that 
A E 'J implies ABE 'J for all B E m. An ideal is both a left and a right ideal. 

A proper ideal cannot contain a unit ][; in order to prove properties of ideals one 
needs a suitable replacement of a unit. 
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Definition 1.3.8. An approximate unit in a nonunital C* -algebra Qt consists of 
a directed set A (i.e., a set with a partial order ~ in which for all AI, .1..2 there is 
a A :::: Ai, i = 1,2) and a family (l[AhEA of elements ofQtfor which H~ = HA and 
a(HA) C [0, 1] (whence IIHAII ~ 1), so that for all A E Qt one has 

lim IIHAA - All = lim IIAHA - All = O. 
A-+oo A->OO 

(1.43) 

For example, an approximate unit in Co(R) may be constructed with A = N, 
taking Hn to be a continuous function that is 1 on [-n, n] and vanishes for Ix I > 
n + 1. More generally, it can be shown that every nonunital C* -algebra Qt has an 
approximate unit; when Qt is separable, A may be chosen countable. The technique 
of approximate units allows us to prove the main properties of ideals in C* -algebras. 

Theorem 1.3.9. Let J be an ideal in a C* -algebra Qt. 

1. Ifl E JthenJ* E J;inotherwords,everyidealinaC*-algebraisself-adjoint. 
2. The quotientQt/J is a C*-algebra in the norm IIr(A)1I := infJEJ IIA + lli. the 

multiplication r(A)r(B) := r(AB), and the involution r(A)* := r(A*). 

Note that the involution in Qt/J is well-defined because of 1.3.9.1. 
Put J* := {A*I A E J}, and note that J n J* is a C*-subalgebra of Qt. Hence it 

has an approximate unit {HA}. Pick 1 E J, and use (1.15) and 1.3.8 to estimate 

IIJ* - J*HAII 2 ~ 11(1*1 - J* JHA)II + 11(1 J* - 1 J*H}JII. 

Now J* 1 and 1 J* both lie in J n J*, so that both terms on the right-hand side 
vanish for A --* 00. Hence J* is a norm-limit of elements in J; since J is closed, 
it follows that J* E J. 

We omit the well-known proof that Qt/J is a Banach algebra in the given norm 
and multiplication. To prove the C*-property (1.15), we first note that 

IIr(A)II = lim IIA - AHA II, 
A->OO 

(1.44) 

for any A E Qt and approximate unit {HA} in J. To prove this, we first add a unit to 
Qt if necessary. For any 1 E J we have A - AHA = (A + l)(H - HA) + 1 (HA - H), 
so that IIA - AHA II ~ IIA + 111 IIH - HAil + IIJHA - 111. Since 

IIH - HAil ~ 1 (1.45) 

from 1.3.8 and the proof of 1.3.3, we obtain limhoo II A - AHA II ~ II A + 1 II. For 
each E > 0 we can choose 1 E J such that IIr(A)II + E :::: IIA + 111. Using this 
1 in the previous inequality, letting E --* 0, and noting the obvious II A - AHA II :::: 
IIr(A)II, we obtain (1.44). 

Successively using (1.44), (1.15) in Qt, (1.45), (1.44) once again, and the def­
inition of the C*-operations in Qt/J, we obtain IIr(A)1I 2 ~ IIr(A)r(A)*II. By the 
argument preceding 1.1.7, this implies (1.15). 0 

Theorem 1.3.10. Let qJ : Qt --* ~ be a morphism between C* -algebras. 

1. The kernel of qJ is an ideal in Qt. Conversely, every ideal in a C* -algebra is the 
kernel of some morphism. 
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2. One has IIrpll = 1, and therefore IIrp(A)1I ::: IIAII for all A E Ql. 
3. The map rp is isometric when it is injective. 
4. The image rp(Ql) is a C* -subalgebra of~. 
5. The map rp is positive. 

It is clear that a (rp(A* A» ~ a(A* A), so that the inequality in 1.3.10.2 follows 
from 1.2.4.4. It follows that rp is continuous, so that ker(rp) is closed. It is then 
obvious from (1.19) that ker(rp) is an ideal. On the other hand, a given ideal J is 
the kernel of the canonical projection t' : Ql ~ QljJ. Now QljJ is a C*-algebra 
and rp := t' is a morphism with J = ker(rp). 

Assume that there is aBE Ql for which IIrp(B)1I =I=- IIBII. By (1.15), (1.19), and 
(1.20) this implies IIrp(B* B)II =I=- IIB* BII. Put A := B* B, noting that A* = A. By 
(1.26) we must have a(A) =I=- a(rp(A». Since a(rp(A» ~ a(A) in any case, this 
implies a(rp(A» C a(A). By Urysohn's lemma there is a nonzero f E C(a(A» 
that vanishes on a(rp(A», so that f(rp(A» = O. By the continuous functional 
calculus we have rp(f(A» = 0, proving 1.3.10.3 by reductio ad absurdum. 

Define 1/1 : Qlj ker(rp) ~ ~ by 1/1 0 t' = rp, with t' : Ql ~ Qlj ker(rp) the 
canonical projection. Then 1/1 is an injective morphism, so that it is isometric by 
1.3.10.3. Hence IIrpll = 1, since IIt'il = 1. Since 1/I(Qlj ker(rp» = rp(Ql), it follows 
that rp has closed range in ~. Since rp is a morphism, this implies that rp(Ql) is a 
C*-algebra in the norm of lB. • 

1.4 States 

We now change our perspective, and pass from observables to states. 

Definition 1.4.1. A state on a C* -algebra Ql is a linear map w : Ql ~ C for 
which w(A) ~ 0 for all A E Ql~ (positivity) and IIwll = 1 (normalization). The 
state space S(Ql) ofQl is the set of all states on Ql. 

For example, on Ql = ~(1i) every unit vector 0 E 1i defines a state w by 

w(A) = (0, 1l'(A)O). (1.46) 

This is, indeed, the original notion of a state as used in quantum mechanics. 
Combining 1.3.4 with positivity, we see that a state is real-valued on QlIR; in 

view of (1.21) we then infer that a state is a Hermitian functional on Ql, in that 

w(A*) = w(A) (1.47) 

for all A E Ql. In particular, a state is determined by its values on Ql+. Combining 
the positivity ofw with (1.39) one sees that (A, B){J) := w(A* B) defines a pre-inner 
product on Ql. Hence from the Cauchy-Schwarz inequality we obtain the useful 
bound 

Iw(A* B)12 ::: w(A* A)w(B* B). (l.48) 

Proposition 1.4.2. A linear map w : Ql ~ C on a unital C* -algebra is positive 
iJfw is bounded and IIwll = well). Hence a state w on a unital C*-algebra may 
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equivalently be characterized as a positive linear functional for which w(lI) = 1 
or as a bounded linear functional for which IIwll = w([) = 1. 

A state w on a C* -algebra without unit has a unique extension to a state Wn on 
the unitization Qtn, given by 

wn(A + A[) := w(A) + A. ( 1.49) 

When w is positive and A = A * we have, using (1.40), the bound Iw(A)1 :::: 
w([) II A II. For general A the same inequality follows from (l.48) with A = [, 
(1.15), and the bound just derived. The upper bound is reached by A = [. 

To prove the converse claim, we first note that the argument after (1.33) may 
be copied, showing that w is real on QtlR. Next, we show that A ::: 0 implies 
w(A) ::: O. Choose s > 0 small enough so that 11K - sAil :::: 1. For w i- 0 one 
has 11K - sAil ::: Iw([ - s A)I/w([), so that Iw([) - sw(A)1 :::: w([). This is only 
possible when w(A) ::: o. 

As to the positivity of Wn, we observe that Iw(A - A[)JI ~ 0 for any approximate 
unit in Qt. Using (1.48) with B = [,\., this leads to Iw(A)12 :::: w(A * A). Combining 
this inequality with 0.47), the definition (1.49) leads to w[«A + A[)*(A + A[» ::: 
Iw(A) + 3:1 2 ::: O. Hence w is positive by (1.39). • 

An important feature of a state space S(Qt) is that it is a convex set. (A convex 
set C in a vector space V is a subset of V such that the convex sum AV + (1 - A)W 
belongs to C whenever v, W E C and A E [0, 1]. Geometrically, this means that 
the line segment between any two points in C lies in C. It follows that a finite sum 
Li Pi Vi belongs to C when all Pi ::: 0 and Li Pi = 1, and all Vi E C.) In the 
unital case it is clear that S(Qt) is convex, since both positivity and normalization 
are clearly preserved under convex sums. In the nonunital case one arrives at this 
conclusion most simply via (1.49). 

Let S(Qt) be the state space of a unital C* -algebra Qt. Each element w of S(Qt) 
is continuous, so that S(Qt) c Qt*. Since w* -limits obviously preserve positivity 
and normalization, we see that S(Qt) is closed in Qt* if the latter is equipped with 
the w* -topology. Moreover, S(Qt) is a closed subset of the unit ball of Qt*, so that 
S(Qt) is compact in the relative w*-topology by the Banach-Alaoglu theorem. It 
follows that the state space of a unital C* -algebra is a compact convex set. 

The very simplest example is Qt = <C, in which case S(Qt) is a point. The next 
case is Qt = <C EB <C = <c2 . The dual is <c2 as well, so that each element of (<C2) * is 
of the form W(A+fL) = CtAt + C2A2. Positive elements of <C EB <C are of the form 
A+fL with A ::: 0 and fL ::: 0, so that a positive functional must have Ct ::: 0 and 
C2 ::: O. Since [ = 1 + 1, normalization yields Ct + C2 = 1. Identifying 0 with the 
functional mapping A+fL to A, and 1 with the one mapping it to fL, we conclude 
that S(<C EEl <C) may be identified with the interval [0, 1]. 

Now consider Qt = Wh (<C). We identify Wh (<C) with its dual through the pairing 
w(A) = TrwA. It follows that S(Qt) consists of all positive 2 x 2 matrices p with 
Tr p = 1; these are the density matrices of quantum mechanics_ To identify S(Qt) 
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with a familiar compact convex set, we parametrize 

_ ~ ( 1 + x Y + iz ) p- , 
2 y - iz 1 - x 

( 1.50) 

where x, y, Z E lR. The positivity of this matrix then corresponds to the constraint 
x 2 + y2 + Z2 :s 1. Hence S(VJ12(1C» is the unit ball in lR3. 

There are lots of states: 

Proposition 1.4.3. For every A E Qt and a E a(A) there is a state Wa on Qtfor 
which w(A) = a. When A = A* there exists a state W such that IW(A)I = IIAII. 

If necessary we add a unit to Qt; in the present context this is justified by (1.49). 
Define a linear map wa : ICA $IC[ --+ IC by wa(AA + J1.[) := Aa + J1.. Since 
a E a(A), one has Aa + J1. E a(AA + J1.[); this easily follows from the definition of 
a(A). In any Banach algebra one has r(A) :s II A II; applying this with A replaced 
by AA + J1.[ implies IWa(AA + J1.[)1 :s /lAA + J1.[II. Since wa([) = I, it follows that 
IIwII = 1. By the Hahn-Banach theorem there exists an extension Wa of W to Qt of 
norm 1. Since IIwa II = wa([) = I, this extension is a state, which clearly satisfies 
wa(A) = wa(A) = a. 

Since a(A) is closed, there is an a E a(A) for which r(A) = lal. For this a, and 
A = A*, one has IW(A)I = lal = r(A) = IIAII by (1.26); cf. 1.2.4.4. • 

Corollary 1.4.4. For all A E Qt]R one has 

IIAII = sup{lw(A)1 I W E S(Qt)}. (1.51) 

Hence ijw(A) = Ofor all states wE S(Qt), then A = O. 

Our goal is to give a geometric realization of a unital C* -algebra Qt as a certain 
function space, somewhat in the spirit of Theorem 1.2.3. A function f on a convex 
set K is called affine if it preserves convexity, that is, if 

The space A (K, lR) of all real-valued affine continuous functions on a compact 
convex set K has a positive cone A(K, lR)+, consisting of all positive functions 
(cf. 1.3.1). Equivalently, A(K, lR)+ has a linear partial ordering, in which f :s g 
when f(w) :::: g(w) for all W E K. Also, A(K, lR)+ is a Banach space in the 
sup-norm in the case that K is Hausdorff. 

Theorem 1.4.5. The selfadjoint part Qt]R of a unital C* -algebra Qt is isomorphic 
as a partially ordered Banach space to the space A(S(Qt), lR) of all real-valued 
affine continuous functions on the state space S(Qt) ofQt (equipped with the relative 
w* -topology). 

The isomorphism in question is given by (1.30), now seen as a map from Qt to 
the space of functions on the state space S(Qt). It is immediate that this transform 
is injective. It is a well-known fact in functional analysis that a Banach space Qt]R 

may be identified under (1.30) with the subspace of its double dual Qt~* consisting 
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of all w*-continuous linear functionals on ~IR' Since linear functionals on ~* are 
automatically affine on S(~), and since we know that a state is real-valued on 
~lR, the transform (1.30) maps ~lR into A(S(~),IR). Reinterpreting (1.51) as the 
equality IIAII = 11,11100, it follows that the map A ~ A is isometric. 

Without proof we state that any Hermitian functional q; E ~* on a C* -algebra ~ 
has a unique decomposition q; = tiwi - t2w2, where Wj E S(~) and tj E R+. This 
implies that an element f of A(S(~), R) has a unique extension to a Hermitian 
linear functionalj on ~* , which is evidently w* -continuous, and is therefore given 
by an element A E ~ (cf. the preceding paragraph). The function A in (1.30) is 
evidently f, so that the image of~ under A ~ A is all of A(S(~), R). 

Finally, it is trivial from the pertinent definitions that the transform (1.30) 
preserves positivity. 0 

As promised, we now complete the proof of Theorem 1.1.9. We discuss the 
unital case; the nonunital case may be reduced to this, using 1.2.1. 

For the first half it remained to be shown that the norm on the self-adjoint part of 
a C*-algebra satisfies (1.10). This follows from the order inequality A2 ::::: A2 + B2 
(which is derived from (1.38) and the linearity of the partial ordering) and (1.41). 

In the second half we need to prove that (1.25) defines a norm on ~. Firstly, the 
property IIAII = 0 => A = 0 follows from Lemma 1.3.5. Secondly, the triangle 
inequality follows by successively using (1.25) with A replaced by A + B, (1.51), 
(1.48), and again (1.25) and (1.51), this time from right to left. Finally, we use 
(1.42); taking the norm in ~lR and using (1.25) yields (1.14). • 

Thus from now on a J L B -algebra and the self-adjoint part of a C* -algebra will 
be one and the same object. 

1.5 Representations and the GNS-Construction 

In the theory of C* -algebras, Hilbert spaces are most naturally regarded as modules, 
and the material of this section explains how the usual Hilbert space framework 
of quantum mechanics emerges from the algebraic setting. 

Definition 1.5.1. A representation of a C* -algebra ~ on a Hilbert space 1f is a 
morphism n : ~ ---+ !.l3(1f). 

From the Jordan-Lie point of view, this means that n : ~lR ---+ !.l3(1f)lR is a 
morphism of Jordan-Lie algebras (cf. 1.1.3); here the Jordan-Lie structure on both 
spaces is given by (1.22). In view of 1.3.10.2 a representation n is automatically 
continuous; hence lin (A) II ::::: II A II for all A E ~. When n is faithful, this sharpens 
to IIn(A)1I = IIAII by 1.3.10.3. 

There is a natural equivalence relation in the set of all representations of ~: 
Two representations nl, n2 on Hilbert spaces 1f1o 1f2, respectively, are called 
equivalent if there exists a unitary isomorphism U : 1f1 ---+ 1f2 such that 
Unl(A)U* = n2(A) for all A E ~. 

The map n(A) = 0 for all A E ~ is a representation; more generally, such trivial 
n may occur as a summand. To exclude this possibility, one says that a represen-
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tation is nondegenerate if 0 is the only vector annihilated by all representatives 
of~. 

A representation Jr is called cyclic if its carrier space H contains a cyclic vector 
Q for Jr; this means that the closure of Jr(~)Q (which in any case is a closed 
subspace of H) coincides with H. 

Proposition 1.5.2. Any nondegenerate representation Jr is a direct sum of cyclic 
representations. 

The proof uses a lemma that appears in many other proofs as well. 

Lemma 1.5.3. Let 9)1 be a *-algebra in !J3(H), IJ1 a nonzero vector H, and p 
the projection onto the closure of9)1lJ1. Then p E 9)1' (that is, [p, A] = o for all 
A E 9Jt). 

If A E 9)1, then ApH ~ pH by definition of p. Hence pJ.. Ap = 0 with 
pJ.. = IT - p. When A = A* this yields [A, p] = 0; by (1.21) this is true for all 
A E 9)1. • 

Apply this lemma with 9)1 = Jr(~); the assumption of nondegeneracy guarantees 
that p is nonzero, and the conclusion implies that A f-* pJr(A) defines a cyclic 
subrepresentation of ~ on pH. This process may be repeated on pJ..H, etc. • 

If Jr is a nondegenerate representation of a C* -algebra ~ on H, then any unit 
vector Q E H defines a state w E S(~), referred to as a vector state relative to Jr , 

by means of (1.46). Conversely, from any state w E S(~) on ~ one can construct 
a cyclic representation Jrw on a Hilbert space Hw with cyclic vector Q w in the 
following way. We restrict ourselves to the unital case; the general case follows by 
adding a unit to ~ and extending w to ~ll by (1.49). 

Construction 1.5.4. 

1. Given w E S(~), define the sesquilinear form (, Xl on ~ by 

(A, B)~:= w(A*B). ( 1.53) 

Since w is a state, hence a positive functional, this form is positive semidefinite 
(this means that (A, A)O' 2: 0 for all A). Its null space 

N w = {A E ~ I w(A* A) = O} (1.54) 

is a left ideal in ~. 
2. The form (, )0' projects to an inner product (, )w on the quotient ~/Nw' If 

Vw : ~ --+ ~/ N w is the canonical projection, then by definition 

(VwA, V",B)", := (A, B)~. (1.55) 

The Hilbert space H", is the closure of~/Nw in this inner product. 
3. The representation Jr",(~) is firstly defined on ~/N", c H", by 

Jr",(A)V",B := V",AB; (1.56) 

it follows that Jr", is continuous. Hence Jr",(A) may be defined on all ofH", by 
continuous extension of ( 1.56). 
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4. The cyclic vector is defined by Ow = Vw][, so that 

(Ow, JTw(A)Ow) = w(A) VA E ~. (1.57) 

We now prove the various claims made here. First note that the null space Nw 

of (, )~ can be defined in two equivalent ways, since 

N w := {A E ~ I (A, A)~ = O} = {A E ~ I (A, B)~ = 0"1 B E ~}. (1.58) 

The equivalence follows from (1.48). With the continuity of w, the equality (1.58) 
implies that Nw is a left ideal. Hence JTw in (1.56) is well-defined on the dense 
subspace ~/Nw C 'H.w, where it clearly satisfies (1.19), with qJ ~ JTw. Also, (1.20) 
may be verified from (1.55) and (1.53). 

To prove thatJTw is bounded on ~/Nw, we compute IIJTw(A)1II112 for 111 = VwB, 
where A, B E ~. From (1.55) and (1.53) one has IIJTw(A)1II112 = w(B* A* AB). 
By (1.42) and the positivity of w one has w(B*A*AB) S IIAI1 2w(B*B). But 
w(B*B) = 1111111 2, so that IIJTw(A)1I s IIAII. Hence JTw may be extended to all of 
'H.w, where (1.55) and (1.53) hold by continuity. 

Proposition 1.5.5. If a representation JT (~) on 'H. is cyclic, then the GNS-represen­
tation JTw(~) on 'H.w defined by any vector state 0 (corresponding to a cyclic unit 
vector 0 E 'H.) is equivalent to JT(~). 

The operator U : 'H.w ~ 'H. implementing the equivalence is initially defined 
on the dense subspace JTw(~)Ow by UJTw(A)Ow = JT(A)O; this operator is well­
defined, for JTw(A)Ow = 0 implies JT(A)O = 0 by the GNS-construction.1t fonows 
from (1.57) that U is unitary as a map from 'H.w to U'H.w, but since 0 is cyclic for 
JT, the image of U is 'H.. Hence U is unitary. One verifies that U intertwines JTw 
and JT. • 

Corollary 1.5.6. If the Hilbert spaces 'H. I, 'H.2 of two cyclic representations JTI, JT2 
each contain a cyclic vector 01 E 'H.I, 02 E 'H.2 such that 

wl(A):= (0" JTI(A)OI) = (02, JT2(A)02) =: w2(A) 

for all A E ~, then JTI (~) and JT2(~) are equivalent. 

By 1.5.5 the representation JTI is equivalent to the GNS-representation JTwl , and 
JT2 is equivalent to JTW2 • On the other hand, JTW1 and JTW2 are induced by the same 
state WI = W2, so they must coincide. • 

The state w is called faithful when its GNS-representation JTw is faithful. This 
is guaranteed when Nw = 0, but note that even in that case 'Hw does not coincide 
with ~, as the topology on ~ in the operator-norm is finer than the topology of the 
norm IIAII~ := (A, A)~. 

The GNS-construction leads to a simple proof of Theorem 1.1.8, which uses the 
following notion. 

Definition 1.5.7. The universal representation JTu of a C* -algebra ~ is the direct 
sum of all its GNS-representations JTw , w E S(~); hence it is defined on the Hilbert 
space 'H.u = EBwES(~)'H.W' 
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Theorem 1.1.8 then follows by taking H = Hu; the desired isomorphism is 
nu. If nu(A) = 0 for some A E Qt, then nw(A)Qw = 0 for all states w, whence 
Ilnw(A)Qw 112 = w(A * A) = 0 by the GNS-construction, so that A * A = 0 by 
1.4.3, and finally A = 0 by (1.15). Hence nu is faithful, and therefore isometric by 
1.3.10.3. • 

1.6 Examples of C* -Algebras and State Spaces 

In this section we give some elementary examples of C* -algebras. 

Example 1.6.1. Commutative C* -algebras 

Let X be a discrete space. Take Qt := t:o(X), which is the closure (in the sup­
norm) of t:c(X). The space t:o(X) is a C*-algebra under pointwise multiplication 
and complex conjugation; see 1.2. By elementary Banach space theory, the dual 
of Qt is Qt* = t:1(X) under the pairing p(f) = Tr pf := LXEx p(x)f(x). The 
positive cone in Qt or Qt* consists of the positive functions f or p. The state space 
S(Qt) is the set of those positive functions p for which Tr p = Lx p(x) = l. 

For example, for a given y EX, the function p = 8y, defined by 8y (x) : = 8xy , is a 
state; one clearly has 8y(f) = f(y). Hence by Corollary 1.5.6 the one-dimensional 
representation ny, defined on Hy = <C by ny(f) := f(y), is equivalent to the 
GNS-representation n8y (the pertinent cyclic vector in <C is simply Q = I). 

A positive normalized function on X defines a faithful state when it is strictly 
positive on X. The GNS-representation n p(t:o(X» of a faithful state p is equivalent 
to the representation n on H = £2(X) (with counting measure) by multiplication 
operators, i.e., n(f)'I1(x) := f(x )'11 (x). To see this, we first write the inner product 
in t: 2(X) as ('11, <1» = Tr'l1*<I> := Lx 'I1(x)<I>(x). Then note that since Tr p = I, 
one has pl/2 E £2(X). It is clear from the property p(x) > 0 for all x that pl/2 
is a cyclic vector for n(£o(X», with the property (pI/2, n(f)pI/2) = p(f) for all 
f E £o(X). The equivalence between n p and n then follows from Corollary 1.5.6. 

Adding the fact that the double dual of Qt is t:o(X)** = £OO(X), we summarize 
the situation by 

(1.59) 

When X is finite all inclusions are replaced by equalities; when X is infinite all 
inclusions are strict. 

Now take X to be a locally compact Hausdorff space, and put Qt := Co(X) 
with the sup-norm; this is the closure of Cc(X). Recall that a Radon measure is 
a Borel measure that is inner regular with respect to compact sets. By the Riesz 
representation theorem, Qt* is the space of all complex Radon measures JL on X 
with finite total mass JL(X). With Qt+ consisting of the positive functions in Qt, the 
dual cone Qt*+ is the subspace of Qt* of nonnegative finite Radon measures. The 
state space S(Qt) = Mt(X) then consists of the probability measures on X. The 
GNS-representation nil of a state JL E S(Qt) is realized on Hil = L2(X, JL), on 
which nll(f) is f as a multiplication operator. 
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Example 1.6.2. Noncommutative C* -algebras 

When a Hilbert space H = (f is finite-dimensional, the "maximally noncom­
mutative" C* -algebra of operators on H is the algebra VJ'tN(C) of N x N matrices. 
The appropriate generalization of VJ'tN(C) to the infinite-dimensional case is as 
follows. A projection in a *-algebra is an element satisfying p2 = p* = p. 

Definition 1.6.3. Let H be a Hilbert space. The * -algebra lJ3 j(H) of finite-rank 
operators on H is the (finite) linear span of allfinite-dimensional projections on 1i. 
In other words, an operator A E lJ3(H) lies in lJ3 j(H) when A H : = {A \II I \II E H} 
is finite-dimensional. 

The C*-algebra lJ3o(H) of compact operators on H is the norm-closure of 
lJ3 f (H) in lJ3 (H) (with all C* -algebraic operations borrowed from lJ3 (H»). 

It is clear that lJ3 j (H) is a * -algebra, since p* = p for any projection p. It is 
obvious that lJ3 j(H) is closed under right multiplication by elements of lJ3(H); 
since it is a * -algebra, it is therefore also closed under left multiplication. By 
continuity of multiplication in lJ3(H), it follows that lJ3o(H) is an ideal in lJ3(H). It 
is easily verified that the unit operator [ lies in lJ3o(H) iff H is finite-dimensional. 

We know from the theory of single operators on a Hilbert space that the image of 
the unit ball in H under an element A E lJ3o(H) is compact (in the strong topology 
on H); this explains the name of lJ3o(H). A self-adjoint operator A E lJ3(H) is 
compact iff A = Li aj [\IIi] (norm-convergent sum), where each eigenvalue aj has 
finite multiplicity, and limi-+oo lai I = 0 (where the eigenvalues have been ordered 
so that aj :::; a j when i > j). In other words, the set of eigenvalues is discrete, and 
can have only 0 as a possible accumulation point. 

We now wish to determine the state space of lJ3o(H). This involves the study of 
a number of other subspaces of lJ3(H), whose definition we recall. 

Definition 1.6.4. The Hilbert-Schmidt norm II A 112 of A E lJ3(H) is defined by 

IIAII~ := L IIAe;ll2 = Tr(IAI2), (1.60) 

where {edj is an arbitrary basis ofH; the right-hand side is independent of the 
choice of basis. Also, IAI := .j A* A is defined by the continuous junctional cal­
culus. The Hilbert-Schmidt class lJ32(H) consists of all A E lJ3(H) for which 
IIAII2 < 00. 

The trace norm II A III of A E lJ3(H) is defined by 

IIAII, := IIIAII/211~ = TriAl. (1.61) 

The trace class lB, (H) consists of all A E lJ3(H) for which II A II, < 00. 

The noncommutative analogue of (1.59) is as follows. 

Theorem 1.6.5. One has the inclusions 

lB j (H) ~ lJ3, (H) = lJ3o(H)* ~ lJ32(H) ~ lJ3o(H) ~ lJ3(H) = lJ3o(H)**, 
(1.62) 
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where the (isometric) identification of fJ3 ICH) with fJ3oCH)* is made through the 
pairing 

p(A) = TrpA, (1.63) 

and fJ3(H) is (isometrically) identified with fJ3 1 (H)* = fJ3o(H)** through the 
pairing A(p) = Tr pA. 

The definition of the nonns in (1.6.4) easily leads to IIA II s II A IIi for i = 1,2. 
Since fJ3o(H), fJ31 (H), and fJ3 2(H) are the completions of fJ3 j (H) in the nonns II . II, 
II . Ill. and II . 112, respectively, these inequalities imply that fJ3 i (H) ~ fJ3o(H) for 
i = 1,2. Using the characterization of self-adjoint compact operators mentioned 
above, one then infers from 1.6.4 that II A 112 S II A Ill, so that fJ31 (H) ~ fJ3 2 (H). 

The inclusions fJ3 1 (H) ~ fJ3 o(H)* and fJ3(H) ~ fJ3 1 (H)* both follow from the 
(nontrivial) estimate 

ITrpAI s IIAlillplll. (1.64) 

To show that fJ3o(H)* ~ fJ3 1 (H) one restricts a given element p E fJ3o(H)* to 
fJ3 2CH), on which it is continuous. Now, the operator space fJ3 2(H) is a Hilbert 
space in the inner product (A, B) := Tr A* B, so that by Riesz-Fischer there must 
be an operator p E fJ3 2(1t) such that p(A) = Tr pA for all A E fJ32(H). One then 
shows that ITr pip II slip II for any finite-dimensional projection p, which implies 
that Ilplll s Ilpll, so that p E fJ3 1(H). With the opposite inequality from (1.64), 
this proves that fJ3 1 (1t) = fJ3o(H)* isometrically. 

To establish the inclusion fJ3 1 (H)* ~ fJ3(H), pick A E fJ3 1 (H)* , and define a 
quadraticform QA on H by QA (\}I, <1» := ,,1(1<1» (\}II). Here the operator 1<1» (\}II is 
defined by 1<1»(\}IIQ := (\}I, Q)<1>. This fonn is easily seen to be bounded by 11,,1 II, 
so that it is implemented by a bounded operator A, in that Q A (\}I, <1» = (\}I, A <1». 
By linear extension to fJ3 j(H) and subsequently continuous extension to fJ3 1 (H), 

this implies thatA(p) = Tr pA, with IIA II s 11,,1 II. Since (1.64) implies the opposite 
inequality, this proves the last claim. 0 

Corollary 1.6.6. The state space S(fJ3o(H» of the C*-algebra fJ3o(H) of all 
compact operators on some Hilbert space H consists of all density matrices, where 
a density matrix is an element p E fJ3 1 (H) that is positive (p 2: 0) and has unit 
trace (Tr p = 1), and the corresponding state is defined in (1.63). 

Since p E fJ3 1 (H) is compact, one may diagonalize it by p = Li Pi [\}Ii]. Using 
A = [\}Iil, which is positive, the condition p(A) 2: 0 yields Pi 2: O. Conversely, 
when all Pi 2: 0, the operator p is positive. The nonnalization condition II pili = 
L Pi = 1 completes the characterization of S(fJ3o(H». • 

Proposition 1.6.7. 

1. For each unit vector \}I E H the GNS-representation rr 1ft (fJ3o(H» corresponding 
to the density matrix p = [\}I] is equivalent to the defining representation. 

2. The GNS-representation rr p corresponding to a faithful state p on fJ3o(1t) is 
equivalent to the representation R-p(fJ3o(H» on the Hilbert space fJ3 2(H) of 
Hilbert-Schmidt operators given by left multiplication, i.e., R-p(A)B := AB. 
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The first claim is immediate from the property Tr [\{J] A = (\{J, A \{J) and 1.5.5. 
For the second, it is obvious from 1.6.4 that for A E l13(H) and B E 1132(H) 
one has II A B 112 ::: II A II II B 112, so that the representation Tr p is well-defined. When 
p E 113 1(1i) and p ::: 0, then pl/2 E 113 2(H), and it is easily seen that pl/2 is 
cyclic for Tr p(l13oCH» when p is faithful. Using the fact that for A, B E 1132(H) 
one has Tr AB = Tr BA, we compute (pI/2, Trp(A)p I /2) = peA). The equivalence 
between Trp and Trp then follows from 1.5.6. • 

1.7 Von Neumann Algebras 

In this section we state some basic facts about von Neumann algebras (which 
will be used only as ancillary tools). The com mutant 9:n' of some collection 9:n 
of bounded operators on a Hilbert space is the set of all bounded operators that 
commute with all elements of 9:n; the bicommutant 9:n" is the commutant of 9:n'. 
One verifies that 9:n'" = 9:n'. The main result is the so-called double commutant 
theorem, which we will first state in the finite-dimensional case. 

Proposition 1.7.1. Let H = en be afinite-dimensional Hilbert space, and let 9:n 
be a *-algebra (and hence a C*-algebra) in l13(H) = 9:nn (C) containing IT. Then 
9:n" = 9:n. 

Choose some \{J E H, form the linear subspace 9:n\{J of H, and consider the 
projection p = [9:n\{J] onto this subspace. By Lemma 1.5.3 one has p E 9:n'. Hence 
A E 9:n" commutes with p. Since ][ E 9:n, we therefore have \{J = IT\{J E 9:n\{J, 
so \{J = p\{J, and A\{J = Ap\{J = pA\{J E 9:n\{J. Hence A\{J = Ao\{J for some 
Ao E 9:n. 

Choose \{JI, ... , \{In E H, and regard Q := \{JI+'" +\{In as an element of 
H n := tBnH :::::: H ® en (the direct sum of n copies of H), where \{Ji lies in the ith 
copy. Identify l13(Hn) with the algebra 9:nn(l13(H» of n x n matrices with entries 
in l13(H), and embed 9:n in 9:nn (l13(H» by A f--7 8(A) := AIT~, where IT~ is the 
unit in 9:nn(l13(H»; this is the diagonal matrix in 9:nn(l13(H» in which all diagonal 
entries are A. 

Now use the first part of the proof, with H, 9:n, A, and \{J replaced by Hn, 
8(9:n), A := 8(A), and Q, respectively. Hence given \{JI, ... , \{In and 8(A) E 8(9:n) 
there exists Ao E 8(9:n)" such that 8(A)Q = AoQ. For arbitrary B E 9:nn(l13(H», 
compute ([B, 8(A)])ij = [Bij , A]. Hence 8(9:n)' = 9:nn (9:n'). It is easy to see that 
9:nn (9:n')' = 9:nn (9:n"), so that 8(9:n)" = 8(9:n"). Therefore, Ao = 8(A)o for some 
Ao E 9:n. Hence A\{Ji = AO\{Ji for all i = 1, ... , n. Since the \{Ji were arbitrary, 
this proves that A = Ao E 9:n". • 

As it stands, Proposition 1.7.1 is not valid when 9:nn(C) is replaced by l13(H), 
where dim(H) = 00. To describe the appropriate refinement, we define two locally 
convex topologies on l13(H) that are weaker than the norm topology we have been 
using so far. 

The seminorms plJ!(A) := IIA \{J II define the strong topology on l13(H), so that 
A). -+ A strongly when II(A). - A)\{J II -+ ° for all \{J E H. In the proof of 1.7.2 
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we will use the fact that a neighborhood basis of A is given by all sets of the form 
{B E ~(1t) I II(A - B)\Ildl < E for all i = 1, ... , n}, where E > 0, n EN, and 
\III, ... , \Iln E 1t. 

The weak topology on ~(1t) is defined by the seminorms p"'.<I>(A) := 
I(\II, A<l»I, so that A" ~ A weakly when I(\II, (A" - A)\II)I ~ 0 for all \II E 1t. 
The norm topology is stronger than the strong topology, which in tum is stronger 
than the weak topology. 

Theorem 1.7.2. Let rot be a *-algebra in SB(1t) containing n. Thefollowing are 
equivalent: 

1. rot" = rot. 
2. rot is closed in the weak operator topology. 
3. rot is closed in the strong operator topology. 

It is easily verified from the definition of weak convergence that the commutant 
!J1' of a * -algebra !J1 is always weakly closed. If rot" = rot, then rot = S)1' for 
!J1 = rot', so that rot is weakly closed. Hence 1 => 2. Since the weak topology is 
weaker than the strong topology, 2 => 3 is trivial. 

To prove 3 => 1, we adapt the proof of 1.7.1 to the infinite-dimensional situation. 
Instead of rot\II , which may not be closed, we consider its closure rot\II , so that p = 
[rot\Il]. Hence A E rot" implies A E rot\Il; in other words, for every E > 0 there is 
an A€ E rot such that II (A - A€)\Il1l < E. For1tn this means that II«S(A - Af)QII2 < 
E2. The left-hand side of this inequality equals the sum E7=1 II(A - Af)\IldI 2, so 
that II(A - Af)\Ili II < E for all i = 1, ... , n. It follows that Af ~ A strongly for 
E ~ O. Since all A€ E rot and rot is strongly closed, this implies that A E rot, so 
that rot" £ rot. Since trivially rot £ rot", this proves 3 => 1. • 

This theorem is remarkable, for it relates a topological condition (rot being 
closed in certain topologies) to an algebraic one (rot being its own bicommutant). 
A similar but simpler example of such a theorem states that a linear subspace lC of 
a Hilbert space is closed iff lC = lC..l.J. (where lC 1. is the orthogonal complement 
of lC). 

Definition 1.7.3. A * -algebra rot (containing the unit operator) of bounded oper­
ators on some Hilbert space is called a von Neumann algebra ifit satisfies one 
(hence all) of the conditions in 1.7.2. 

We know from 1.6.5 that SB(1t) = ~I (1t)*; the pertinent w*-topology on SB(1t) 
is often called the a-weak topology. This topology is generated by the seminorms 
pp(A) := ITr pAl, and is clearly stronger than the weak topology (but weaker than 
the norm topology). Hence a von Neumann algebra rot ~ ~(1t) is closed in the 
(relative) a-weak topology. 

Moreover, a von Neumann algebra rot is closed in the norm topology (defined 
by the norm (1.18» as well, so that it is a C* -algebra. A state on rot £ ~(1t) of the 
form (1.63) for a density matrix p (cf. 1.6.6) is called normal. The linear span of 
all normal states in rot* is called the predual rot* of rot. For example, the predual 
of SB(1t) is ~ I (1t), and more generally one has rot = rot: as a Banach space. The 



60 I. Observables and Pure States 

set N(9J1) := S(9J1) n 9J1* of all normal states on 9J1 is called the normal state 
space of 9J1. 

All von Neumann algebras in this book are of the form 9J1 = JT('2t)", where JT 
is a representation of some C* -algebra '2t. In particular, one may take JT = JTu; cf. 
1.5.7. 

Proposition 1.7.4. The bidual '2t ** of a C* -algebra '2t is isomorphic (as a Banach 
space) to JTu('2t)". Through this isomorphism, '2t** acquires the structure of a von 
Neumann algebra (and therefore of a C* -algebra). 

The proof is a highly nontrivial generalization of the proof of 1.6.5. The equality 
!Boo-i)* = !B I (H) is now replaced by the fact that '2t* is the linear span of all func­
tionals of the form A ~ (\II, JTu('2t)<l», where \II, <l> E Hu. This characterization is 
then used to show that '2t* is the predual of JTu('2t)", so that '2t** = JTu('2t)". 0 

In the context of Theorem 1.4.5, we note that when K is a Hausdorff compact 
convex set, the bidual of A(K, JR) (with sup-norm) is the space Ab(K, JR) of all 
bounded real-valued affine functions on K. Hence for a C* -algebra '2t one has 
'2t~* ::: JTu('2t)~ ::: Ab(S('2t), JR). The predual of '2t** is obviously '2t;* = '2t*, and 
the normal state space is N('2t**) = S('2t). More generally, for any von Neumann 
algebra 9J1 one has 9J11R ::: Ab(N(9J1), JR) as partially ordered Banach spaces. 
This isomorphism maps the a -weak topology on 9J11R to the topology of pointwise 
convergence on Ab (N(9J1), JR). 

The center of a von Neumann algebra 9J1 is 9J1n9J1'; this is the set of all elements 
of 9J1 that commute with every element in the algebra. The following proposition 
allows one to regard JT('2t)" as a von Neumann subalgebra of'2t**. 

Proposition 1.7.5. If JT is a cyclic representation of a C* -algebra '2t, there exists 
a projection p in the center ofJTu('2t)" such that JT('2t)" is isomorphic (as a von 
Neumann algebra) to PJTu ('2t)". 

The idea of the proof is that the morphism JT 0 JTu- 1 from JTu('2t) to JT('2t) is 
a-weakly continuous, so that it can be extended to a morphism from JTu('2t)" to 
JT ('2t)". The kernel of this extension is a a -weakly closed ideal in JTu('2t)". It can be 
shown that a a-weakly closed ideal in a von Neumann algebra 9J1 is of the form 
q9J1, where q is a projection in the center of 9J1. Applying this to the case at hand 
yields 1.7.5, with p = [- q. 0 

2 The Structure of Pure State Spaces 

2.1 Pure States and Compact Convex Sets 

In this section we look at a subspace of the state space on a C* -algebra, which may 
be interpreted as a quantum analogue of the phase space of a classical system. 

Let us return to 1.4. One observes that the compact convex sets one naturally 
has in mind have a boundary; this particularly applies to the state spaces of the 
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C* -algebras C, C ED C, and 9J12(C). The intrinsic definition of this boundary is as 
follows. 

Definition 2.1.1. An extreme point in a convex set K is a member W of K that 
can be decomposed as W = AWl + (1 - A)w2, where A E (0, 1), iff WI = W2 = w. 
The collection 8e K of extreme points in K is called the extreme boundary of K . 

An extreme point in the state space K = s(m) of a C* -algebra m is called a 
pure state. A state that is not pure is called mixed. We write p(m), or simply p, 
for 8eS(m), referred to as the pure state space ofm. 

Thus the single state on C is pure, the pure states on C ED C are the points 0 and 
1 in [0, 1], and the pure states on 9J12(C) are the matrices p in (1.50) for which 
x 2 + y2 + Z2 = 1. These are the projections onto one-dimensional subspaces of 
C2, and we see that P(9J12(C» may be identified with the unit sphere in JR3. More 
generally, one has 

Proposition 2.1.2. The pure state space of S}3 0 (H) consists of all one-dimensional 
projections, so that any pure state on !.Bo(H) is a vector state ( J.46) in H. 

This is immediate from 1.6.6, the spectral theorem applied to a density matrix, 
and 2.1.1. • 

A useful reformulation of the notion of a pure state is as follows. 

Proposition 2.1.3. A state is pure iff 0 S P S W for a positive functional p 
implies p = twfor some t E JR+. 

We assume that m is unital; if not, use 1.2.1 and (1.49). For p = 0 or p = W 

the claim is obvious. When w is pure and 0 S p S w, with 0 i- p i- w, then 
o < p(lI) < I, since w - p is positive; hence IIw - p II = w(lI) - p(lI) = 1 - p(II). 
Hence p(lI) would imply w = p, whereas p(lI) = 0 implies p = 0, contrary to 
assumption. Hence WI := (w - p)/(1 - p(II» and W2 := pi p(lI) are states, and 
w = AWl + (1 - A)Wz with A = 1 - p(II). Since w is pure, by 2.1.1 we have 
p = p(lI)w. 

Conversely, if w is decomposed as in 2.1.1, then 0 S AWl S W, so that AWl = 
tw by assumption; normalization gives t = A, hence WI = W = W2, and w is 
~. . 

Here is another example of a pure state space. 

Proposition 2.1.4. The pure state space of the commutative C* -algebra Co(X) 
(equipped with the relative w* -topology) is homeomorphic to X. 

The case that X is not compact may be reduced to the compact case by passing 
from m = Co(X) to mx = C(X) (where X is the one-point compactification of 
X); cf. (2.2) below. In view of the proof of Theorem 1.2.3, we then merely need to 
prove that any pure state on C(X) is multiplicative, and vice versa; P(C(X» and 
~(C(X» are both equipped with the relative w* -topology. 

Let Wx E ~(C(X» (cf. the proof of 1.2.3), and suppose a functional p satisfies 
o S p S Wx ' Then ker(wx ) S; ker(p), and ker(wx ) is a maximal ideal, so that 
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ker(wx ) = ker(p). Since two functionals on any vector space are proportional 
when they have the same kernel, it follows from 2.1.3 that Wx is pure. 

Conversely, let W be a pure state, and pick agE C(X) with 0 :::: g :::: Ix. Define 
a functional Wg on C(X) by wg(f) := w(fg). Since w(f)- wg(f) = w(f(I - g», 

and 0:::: I - g :::: lx, one has 0:::: Wg :::: w. Hence Wg = tw for some t E JR.+ by 
2.1.3. Putting f = Ix yields t = w(g). Since any function is a linear combination 
of functions g for which 0 :::: g :::: I x, it follows that W is multiplicative. • 

It could be that a given convex set contains no extreme points at all; think of 
an open convex cone. When K is compact, this possibility is excluded by a basic 
theorem in functional analysis, which we state without proof. The convex hull 
co( V) of a subset V of a vector space is defined by 

co(V) := {AV + (1 - A)W I v, W E V, A E [0, I]). (2.1) 

Theorem 2.1.5. A compact convex set K embedded in a locally convex vector 
space is the closure of the convex hull of its extreme points. In other words, K = 
co(aeK). 

Although the state space of a C*-algebra ~ without unit (such as 23o{1i) or 
Co(X» is not compact, Theorem 2.1.5 may nonetheless be used. For the pure 
state space of ~ may be described in terms of the pure state space P(~ll) of its 
unitization ~ll; cf. 1.2.1. Define a functional Woo by woo(A + Ali) = A for all A; 
this is easily seen to be a pure state on ~ll. Taking (1.49) into account, one obtains 
a homeomorphism 

(2.2) 

The extreme boundary ae K of a compact convex set is not necessarily closed, so 
that the pure state space P(~) of a unital C* -algebra ~, while always a Hausdorff 
space, is not generally compact. Nonetheless, it is interesting to realize ~IR as a 
subspace of C(~IR(P), JR.), somewhat in the spirit of 1.4.5. To do so, we replace 
~(~) in the definition (1.30) of the Gelfand transform by the pure state space of 
an arbitrary C* -algebra; cf. 2.1.4. 

Definition 2.1.6. Let 2l.IR be the self-adjoint part of a C* -algebra ~. The Gelfand 
transform of A E 2l.IR is the function A : P(~) -+ JR. defined by (1.30). The 
subspace {A I A E ~Ild of£OO(P(~), JR.) is denoted by mIR . 

The extension of the Gelfand transform from ~IR to ~ is useful only for com­
mutative C* -algebras; in the noncommutative case the first claim below would not 
hold if ~IR were replaced by ~. 

Theorem 2.1.7. The Gelfand transform is an isomorphism between ~IR and mlR ~ 
C(P(~), JR.), seen as partially ordered Banach spaces (here the order in ~IR is 
defined by 1.3.3 and 1.3.1, whereas the order in C(P(~), JR.) is defined by the cone 
of pointwise positive functions). 

The equality mlR = C(P(~), JR.) occurs iff ~ is commutative and unital, in which 
case P(~) is closed. 
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The first claim follows from 1.4.5 and 2.1.5: Any A E A(K, R) is determined by 
its values on ae K (for it is affine and continuous). The inclusion!it1R 5; C(P(~), R) 
is immediate from the definition of the relative w* -topology. The claim about the 
order is a trivial consequence of the pertinent definition, too. The last claim follows 
from 1.2.3 and 2.1.4. • 

An alternative proof may be obtained from the following sharpening of 
Proposition 1.4.3. 

Proposition 2.1.8. For every A E ~IR and a E a(A) there is a pure state Wa on 
~for which wa(A) = a. There exists a pure state w such that Iw(A)1 = IIAII. 

We extend the state in the proof of 1.4.3 to C*(A) by multiplicativity and conti­
nuity, that is, we put eVa (An) = an, etc. It follows from 2.1.4 that this extension is 
pure. One easily checks that the set of all extensions of eVa to!.21 (which extensions 
we know to be states; see the proof of 1.4.3) is a closed convex subset Ka of S(~); 
hence it is a compact convex set. By Theorem 2.1.5, Ka has at least one extreme 
point Wa. If Wa were not an extreme point in S(~), it would be decomposable as 
in 2.1.1. But in that case WI andw2 would both coincide on C*(A) with eVa, so that 
Wa cannot be an extreme point of Ka. • 

In any case, when !.21 is noncommutative one would like to characterize !it1R in 
C(P(!.21), R). This will be done in Theorem 3.2.1. 

2.2 Pure States and Irreducible Representations 

In this section we start our analysis of irreducible representations of C* -algebras 
and their connection to pure states. 

Definition 2.2.1. A representation Jr of a C* -algebra !.21 on a Hilbert space 1t is 
called irreducible if a closed subspace of1t that is stable under Jr(!.21) is either 1t 
orO. 

This definition should be familiar from the theory of group representations. The 
defining representations of!mn (C), ll3o(1t), and s:B(1t) are evidently irreducible. 

Proposition 2.2.2. Each of the following conditions is equivalent to the 
irreducibility of Jr (!.21): 

1. Jr(!.21)' = C][, or, equivalently, Jr(!.21)" = s:B(1t) (Schur's lemma). 
2. Every nonzero vector Q in 1t is cyclic for Jr(!.21) (i.e., Jr(!.21)Q is dense in 1tfor 

all Q =f=. 0). 

The commutant Jr(!.21)' is a *-algebra in s:B(1t), so when it is nontrivial it must 
contain a self-adjoint element A that is not a multiple of][. It follows from Theorem 
1.7.2 and the spectral theorem that the projections in the spectral resolution of A lie 
in Jr (!.21)' if A does. Hence when Jr (!.21)' is nontrivial it contains a nontrivial projection 
p. But then p1t is stable under Jr(!.21), contradicting irreducibility. Hence 2.2.1 ~ 
2.2.2.1. 
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Conversely, when ;rr(Qt)' = ClI and ;rr is reducible, one finds a contradiction 
because the projection onto the alleged nontrivial stable subspace ofH commutes 
with ;rr(Qt). 

When there exists a vector \}! E H for which ;rr(Qt)\}! is not dense in H, we can 
form the projection onto the closure of Jr(Qt)\}!. By Lemma 1.5.3, with 9J1 = ;rr(Qt), 
this projection lies in Jr(Qt)', so that by Schur's lemma Jr cannot be irreducible. 
Hence 2.2.1 =::} 2.2.2.2. The converse is trivial. • 

The connection between representations and states (see 1.5) can be refined when 
a state is pure. 

Theorem 2.2.3. The GNS-representation Jr",(Qt) of a state W E S(Qt) is irreducible 
iff W is pure. 

When W is pure yet Jr",(Qt) reducible, there is a nontrivial projection p E Jr",(Qt)' 
by Schur's lemma. Let Q", be the cyclic vector for Jr",. If pQ", = 0, then ApQ", = 
pAQ", = 0 for all A E Qt, so that p = 0, since Jr", is cyclic. Similarly, p-1Q", = 0 
is impossible. We may then decompose W = A 1/1 + (1 - A)1/I-1, where 1/1 and 1/1-1 
are states defined as in (1.46), with \}! := pQ",1 II pQ",1I , \}!-1 := p-1Q",1 II p-1Q", II, 
and A = IIp-1Q,,, 112. Hence W cannot be pure, so that Jr", is irreducible by reductio 
ad absurdum. 

In the opposite direction, suppose Jr", is irreducible, yet W decomposable as in 
2.1.1. Then AWl - W = (1 - A)w2, which is positive; hence AWI(A* A) :::: w(A* A) 

for all A E Qt. By (l.48) this yields IAwl (A * B)1 2 :::: w(A * A)w(B* B) for all A, B. 

This makes the quadratic form Q on Jr",(Qt)Q", by Q(Jr",(A)Q"" Jr",(B)Q",) := 
AW I (A * B) well-defined. Furthermore, Q is bounded with norm I, so that Q can 
be extended to 'H", by continuity. Since w is a Hermitian functional, one has 

Q(<I>, \}!) = Q(\}!, <1». 
Thus there exists a self-adjoint operator Q on H", such that Q(\}!, <1» = (\}!, Q <1» 

for all \}!, <I> E H. In other words, one has (Jr",(A)Q"" QJr",(B)Q",) = AWl (A* B). 

Since Jr", is a representation, one computes that [Q, Jr",(C)] = 0 for all C E Qt, so 
that Q E Jr",(Qt)'. Since Jr", is irreducible, one must have Q = tlI for some t E lR.. 
Hence WI is proportional to w, and therefore equal to w by normalization, so that 
w is pure. • 

Here are some easy consequences of this result, culminating in 2.2.6. 

Proposition 2.2.4. If (Jr(Qt), H) is irreducible, then the GNS-representation 
(Jr",(Qt), H",) defined by any vector state w (corresponding to a unit vector Q E 'H) 
is equivalent to (Jr(Qt), H). In particular, any vector state in an irreducible 
representation is pure. 

Immediate from 2.2.2.2, 1.5.5, and 2.2.3. • 
Corollary 2.2.5. Every irreducible representation of a C* -algebra comes from a 
pure state via the GNS-construction. 

Combine 2.2.4 and 2.2.3. • 
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This leads straight to a basic result in the theory of C* -algebras: 

Theorem 2.2.6. The C* -algebra l.l3o(1t) of all compact operators on some Hilbert 
space possesses only one irreducible representation, up to equivalence, namely the 
defining one. 

This is immediate from 2.1.2,2.2.5, and 2.2.4. • 
Two pure states p and a on a C* -algebra 2t are said to be equivalent if the 

associated GNS-representations Ji p and Ji(J are equivalent; we write p '" a. It 
is easily verified from the definition of this notion of equivalence that '" is an 
equivalence relation in P(2t). It follows from 2.2.4 that all vector states in rip are 
equivalent to p. Conversely, any state a '" p is given by a vector state in rip, 
for if U : H(J --+ Hp intertwines Ji(J and Ji p, then the vector state defined by 
UQ(J E Hp coincides with a. Since the intertwiner is unique by Schur's lemma, 
one thus obtains a bijection between the equivalence class [p] of a given pure state 
p and the set of vector states in H p • 

The topological aspects of this bijection will be clarified in 2.5. For now, we 
are led to a manageable refinement of the the universal representation (cf. 1.5.7), 
which is still faithful. 

Definition 2.2.7. The reduced atomic representation Jim ofa C* -algebra 2t is the 
direct sum over irreducible representations Jira = EBpE(P(QI)]Ji p (on the Hilbert space 
Hra = EBpE[p('<l)]H p ), where one includes one representative of each equivalence 
class in P(2t). 

The specific choice of pure states in each equivalence class affects the reduced 
atomic representation only within (unitary) equivalence. Replacing the use of 1.4.3 
in the proof of Theorem 1.1.8 by 2.1.8, one infers that Jira is indeed faithful. If p 
and a are inequivalent pure states, Schur's lemma implies that 

Jira(2t)" = EB"'E[P('l)]I.l3(H",). (2.3) 

If 2t is commutative, so that 2tR ~ C(P(2t), JR) (see 2.1.7), one easily infers that 
Ji ra(2t)" = eOO (p(2t». On the noncommutative side, we infer 

Proposition 2.2.8. Every finite-dimensional C* -algebra is a direct sum of matrix 
algebras. 

Since 2t is finite-dimensional and 2t ~ Jira(2t), the right-hand side must be finite­
dimensional. Hence by 1.7.1 and (2.3) one has 2t ~ EB"'E(p(QI)]l.B(H",), where each 
H", is finite-dimensional and the sum is finite. • 

2.3 Poisson Manifolds 

We return to Poisson algebras (cf. 1.1.2). The main source of such algebras is the 
following. 
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Definition 2.3.1. A Poisson manifold is a manifold P equipped with a bilinear 
operation {, } : C'~\P, JR) x Ceo(P, JR) ~ eeo(p, JR) with the property that 
(Ceo(P, JR), 0, {, }), where ° is pointwise multiplication, is a Poisson algebra. 

By definition, the map g ~ {f, g} (for fixed f E Ceo(P, JR» is a derivation on 
COO(P, JR), and this implies that the Poisson bracket (f, g}(a) depends only on the 
differentials df and dg at a E P. Therefore, there exists a smooth anti symmetric 
tensor field B E r(J\2(P» such that 

{f, g} = B(df, dg). 

The Jacobi identity implies that the Poisson tensor B must satisfy 

tBdtBa = 0 Va E J\3(p). 

(2.4) 

(2.5) 

(Recall that the insertion t of A E J\n(P) into fJ E J\n+m(p) produces an element 
tAfJ E J\rn(p) defined by (tAfJ)(C) = fJ(A J\ C) for all C E !\m(P).) If P is 
finite-dimensional, this can be conveniently stated in terms of local coordinates 
faa}: If Bab(a) = Bry(daa J\ dab), so that Bba = _Bab, then 

aB k aB~ aBro 
Bea __ + Bec __ + Beb __ = O. 

aa e aa e aa e 
(2.6) 

Conversely, an element B E r(J\2(P» satisfying (2.5) (or 2.6» defines a Poisson 
bracket by (2.4). 

The Poisson tensor B defines a linear map B~ : T* P ~ T P by 

(B~(a»(fJ) := B(a, fJ), (2.7) 

where a and fJ lie in the same fiber in T* P. If h E Ceo(P, JR), the image B~(dh) 
is usually written as ~h, and called the Hamiltonian vector field of h. Hence 

(2.8) 

By virtue of the Jacobi identity, one has 

(2.9) 

and 

(2.10) 

for all j, g E Ceo(P, JR), where L is the Lie derivative. Hence j ~ ~f is a 
homomorphism from eeo(p, JR) into the subspace of reT P) (regarded as a Lie 
algebra under the commutator) of vector fields preserving the Poisson structure. 

If c : I ~ P (where I ~ JR is some interval containing 0) is a curve in P 
for which e(O) = a, we write a(t) for e(l). Given h E Ceo(P, JR), Hamilton's 
equations of motion for such a curve are 

da(t) 
-- = ~h(a(t». 

dt 
(2.11) 
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A curve satisfying this equation for some h is called a Hamiltonian curve. The 
corresponding flow, given by 

Ft(a) = a(t), (2.12) 

is called the Hamiltonian flow of h. A trivial consequence of (2.11) and (2.8) is 

Proposition 2.3.2. A function h E COO(P, JR) is constant along the flow 
trajectories it generates. 

The theory of ordinary differential equations (Picard iterations) guarantees ex­
istence and uniqueness of a local solution for each initial value c(O) E P and t 
in some compact interval around O. When the motion exists, one has the property 
Fs 0 Ft = Fs+t . Given h and c(O), it may happen that the motion is not defined for 
all t E JR, in which case the vector field ~h is called incomplete. If ~h has compact 
support, it is always complete. 

Given h E COO(P, JR) with Hamiltonian flow a(t), one constructs a 
one-parameter family of linear maps a~ : COO(P, JR) -4 COO(P, JR) by 

a~(f)(a) := f(a(t)). (2.13) 

This family is evidently defined only for those t for which the solution of (2.11) is 
defined for any initial value. One infers from (2.8) and (2.11) that the infinitesimal 
version of (2.13) is 

da;~f) = {h, a~(f)}; (2.14) 

here the derivative is understood pointwise. The following result is a local version 
of the "infinitesimal" fact (2.10). 

Proposition 2.3.3. Ifa~(f) satisfies (2.14), then a? is a morphism (cf 1.1.3) of 
COO(P, JR)for each t for which it is defined. 

The Leibniz rule and (2.14) imply d[at(fg)]/dt = d [at (f)at (g)]/dt; the 
proposition follows by integrating this relation. • 

If the motion pertinent to h is defined for all t E JR, one obtains a one-parameter 
group of automorphisms in this way. Equation (2.14) evidently makes sense in any 
Poisson algebra. 

Definition 2.3.4. An element h of a Poisson algebra is called complete if the 
one-parameter family of automorphisms defined by (2.14) is defined for all t E JR. 

For Poisson algebras of the type COO(P, JR) this amounts to saying that the flow 
of ~h is complete. 

We will frequently need the notion of a Poisson map J : (PI, B I) -4 (P2, B2); 
this is a smooth map such that, in obvious notation, 

1*{f, gh = {1* f, 1*gh 

for all f, g E C OO (P2, JR). Equivalently, 

B;(J*a, 1*/3) = BJ(O')(a, /3) 

(2.15) 

(2.16) 
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for all a E PI and all a, fJ E TJ(tY)P2 , 

It follows from the Jacobi identity that the flow Ft : P -+ P of each Hamiltonian 
vector field ~f is a Poisson map (for all t for which the flow is defined). Moreover, 
a chasing of the definitions shows the validity of 

Proposition 2.3.5. For any Poisson map J : PI -+ P2 one has 

(2.17) 

for all f E C"'(P2 , JR). Moreover, the image of the flow of~J* f under J is the flow 

of~f' 

In the present setting, symplectic spaces are regarded as special instances of 
Poisson manifolds. 

Definition 2.3.6. A Poisson manifold for which the map BO is an isomorphism is 
called symplectic. If B-;. : T P -+ T* P is the inverse of BO, the symplectic form 
WE r(/\2(p» is defined by 

W(X, Y) := (B~(X»(Y). (2.18) 

As a consequence of the Jacobi identity (or (2.5», W is closed (dw = 0). In 
terms of the symplectic form, the Poisson bracket reads 

{f, g} = -w(~f' ~g), 

where ~J and ~g are defined as in (2.8), that is, 

~f = BU-I(df), 

and this is equivalent to the connection 

i~fw = df· 

(2.19) 

(2.20) 

(2.21) 

The following characterization of symplectic manifolds follows directly from 
the definition and the local existence of Hamiltonian flows. 

Proposition 2.3.7. A Poisson manifold is symplectic iff one of the following 
equivalent properties is satisfied: 

• The collection of Hamiltonian vector fields {~f' f E C"'(P, JR)}, or, 
equivalently, the image of B~, spans TtY P at each a E P . 

• Any two points of P can be connected by a piecewise smooth Hamiltonian 
curve. 

When P is finite-dimensional, the first condition simply states that at every point 
the rank of BO (that is, the dimension of the image of B~ at a given point) equals 
the dimension of P. 

The cotangent bundle T* Q of any manifold Q is symplectic. 

Definition 2.3.8. The canonical symplectic form w on a cotangent bundle T* Q 
is given by w = -de, where e is a one-form on T* Q defined by 

(2.22) 
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where t := tT'Q-,>Q. 

In canonical coordinates (p, q) on T* Q this reads 

UJ = dqi /\dpi' 

and the associated Poisson bracket is given by 

{j,g}:= af ~ _ af}.~. 
api aq' aq' api 

(2.23) 

(2.24) 

A diffeomorphism J : Sl -+ S2 between two symplectic manifolds that is a 
Poisson map is called a symplectomorphism; Sl and S2 are symplectomorphic 
when such a map exists. 

2.4 The Symplectic Decomposition of a Poisson Manifold 

In this section we argue that an arbitrary finite-dimensional Poisson manifold is 
foliated by symplectic subspaces; this is somewhat analogous to the decomposition 
of a finite-dimensional C* -algebra as a direct sum of matrix algebras; cf. 2.2.8. In 
preparation, we recall some differential geometry. 

Definition 2.4.1. A distribution D on a manifold P is a subset of the tangent 
bundle T P such that Da := D n Ta P is a vector spacefor each a E P. The rank 
of D at a is the dimension of Da. 

A distribution is called smooth if for every a E P and vEDa there is a smooth 
vector field ~, defined on a neighborhood N of a, such that ~ (p) E D p for all 
pEN, and ~(a) = v. Such a ~ is called a local section of D. 

A distribution is called involutive if for any pair ~ I , ~2 of local sections one has 
[~l' ~2](P) E D p in their common domain of definition. 

A distribution D on P is completely integrable when each point a E P lies in 
an immersed submanifold Sa ~ P whose tangent space at a is Dao 

(One sometimes speaks of a generalized distribution when the rank of D is not 
constant on P; we will, instead, speak of a regular distribution when the rank is 
constant.) 

Hence a completely integrable distribution defines a foliation of P, whose leaves 
are the Sa. The leaves of a completely integrable foliation may have varying di­
mension. (Such a foliation is sometimes called singular; again, we will rather use 
the adjective regular when the leaf dimension is constant.) 

For smooth regular distributions the question of complete integrability is settled 
by the well-known Frobenius theorem, which states that D is completely inte­
grable iff it is involutive. In general, one needs a stronger condition (the "singular 
Frobenius theorem") to arrive at completely integrability, which we state without 
proof. 

Lemma 2.4.2. A smooth distribution D is integrable iff at each a E P one can 
choose local sections ~ I, ... , ~rank(D") that span Da with the property that for an 
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arbitrary local section ~ of D (defined around a) one has 

[~, ~j](a(t)) = A{ (t)~j(a(t)) (2.25) 

for small enough t. Here a ~ a(t) is the (local)flow generated by ~, and the A{ 
are certain functions of t. 

We return to Poisson manifolds. In general, the map B~ may fail to be surjective. 
The image of B~ defines a distribution D on T P , which is easily seen to be smooth; 
for it is generated by the Hamiltonian vector fields, each of which is a smooth 
section of the tangent bundle. The rank of B~ is not necessarily constant, so that 
D may not be regular. 

Definition 2.4.3. A symplectic leaf in a Poisson manifold (P, B) is a maximal 
set of points that are equivalent under the following equivalence relation: p "-' a 
iff p and a can be connected by a piecewise smooth Hamiltonian curve. 

The terminology will be justified shortly. This equivalence relation leads to a 
decomposition P = Ua Sa, where each Sa is a symplectic leaf. 

Lemma 2.4.4. The rank of B~ is constant on each symplectic leaf. 

This is simply because the flow of each Hamiltonian vector field ~f is a Poisson 
map, and such maps leave B (and therefore BU) invariant, cf. (2.10) and (2.16). 
In particular, the pushforward of a Hamiltonian flow Ft maps the image of B~ at 
some a into its image at Ft(a). • 

Using 2.4.4, 2.4.2 (with ~j = ~fj for suitable fi), and (2.9), one infers that D 
is completely integrable, and it will become clear shortly that the leaves of the 
foliation defined by D are just the symplectic leaves of S. 

In general, a given symplectic leaf Sa C P may not be a submanifold of P. 
Nonetheless, one may tum Sa into a manifold by a standard procedure of (singular) 
foliation theory. In the present context, this is accomplished by defining a chart 
around a given a E Sa in the following way. Let the rank of BU at a be n, and 
choose functions iI, ... , fn such that {~Ji}j=I ..... n spans the image of BU at a. 
There is an E > 0 and an E-ball OE C Rn around 0 such that F : OE --+ P, defined 
by 

F(t), ... , tn) = F1: 0 ... 0 F,:(a), 

where F/ denotes the flow of ~fj' is a bijection. 

Lemma 2.4.5. Applying the above procedure for a sufficient number of points 
a E Sa leads to an atlas on Sa that is well-defined and independent, up to smooth 
equivalence, of the choice of the fi at each point. The dimension of Sa with this 
manifold structure is the rank of BU. 

The pushforward of each F/ , and therefore of F,: 0 ••• 0 F,:, maps the image of 
Btt at a into its image at F/ (a). • 
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Equipped with this manifold structure and topology, each Sa is an injectively 
immersed submanifold of P; that is, the inclusion La : Sa '-+ P is continuous and 
of constant rank, equal to the dimension of Sa, at each point. 

The singular Frobenius theorem 2.4.2 applies; indeed, the leaf of the pertinent 
foliation is locally given by F( Of)' 

Lemma2.4.6. Iff E COO(P, JR) vanishes on Sa, then {f, g}(a) = Of or all a E Sa 
and all g E COO(P, JR). Therefore, one can define a Poisson bracket {, }a on Sa by 

{t~f, t~g}a := t~{f, g}. (2.26) 

Each Sa is a symplectic manifold, and each inclusion La is a Poisson map. 

If f = 0 on Sa, then {f, g} = -l;g/ = 0, since l;g is tangent to Sa. • 

Thus we arrive at 

Theorem 2.4.7. For each finite-dimensional Poisson manifold P there exists a 
family {Sa} of symplectic manifolds, and injective Poisson immersions ta : Sa '-+ 

P, such that P = UaLa(Sa) (disjoint union). Each subset ta(Sa) is a symplectic 
leafof P as defined in 2.4.3. The value of the Poisson bracket {f, g} at some a E P 
depends only on the restrictions of f and g to the symplectic leaf through a. 

In the text preceding the theorem we have made no notational distinction be­
tween Sa and ta (Sa)' Indeed, if each Sa is a submanifold, one can simply say that 
P = Ua Sa as manifolds. 

2.5 (Projective) Hilbert Spaces as Symplectic Manifolds 

In this section we look at the geometric structure of P(Q3oCJt». 

Definition 2.5.1. The projective space lP1t of a Hilbert space 11. is the space of 
one-dimensional complex linear subspaces of1t. Equivalently, lP1t is the quotient 
§1t / U (1) of the unit sphere 

§1t:= {\II E 11. I (\II, \II) = I} (2.27) 

by the action ofU(l) ~ T, given by z : \II t--+ z\ll, where Izl = 1. 

The identification of vector states in 'N, one-dimensional projections on 11., and 
points of lP1t is immediately clear from this realization. Hence we conclude from 
2.1.2 that lP1t ~ P(1J30(1t» (as collections of linear functionals on 1130(11.) for 
the moment), and lP1t S; P(Q3(1t»; when 11. is infinite-dimensionallP1t does not 
nearly exhaust P(Q3(1t». 

The space lP1t can be topologized by restricting the usual (norm) Hilbert space 
topology on 11. to §1t, and quotienting it to lP1t ~ §1t/ U(1). We will denote the 
image of \II E §1t in lP1t under the canonical projection T : §1t -+ lP1t by 1/1; 
conversely, given 1/1 E lP1t, such a \II E §'N will stand for an arbitrary preimage 
of 1/1 (and similarly for rp, <1>, etc.). 
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We now give IP1i the structure of a real manifold. For 1/1 E IP1i and \lI E §1-{, 

define a neighborhood N", := {cp E IP1i I (\lI, <1» -=1= OJ; this is indeed an open set 
in the quotient topology. Then N", is mapped into \lI..L C 1-{ by 

<I> [\lI..L ] <I> 
F",(cp) = (\lI, <1» - \lI = (\lI, <1» (2.28) 

(which depends only on the lift <1», where [1lJ..L] is the projection onto \lI..L C 1-{. 

Clearly, 1/1 is mapped into the null vector, and the image of this map is open in \lI..L. 
It is easily checked that this map is a homeomorphism between N", and its image. 
We now let 1/1 (more precisely, 1lJ) vary over a basis in 1-{, and for each such 1/1 we 
construct an (arbitrary) reference isomorphism between \lI..L and a fixed reference 
Hilbert space 1-{' with two (real) dimensions less than 1-{. This leads to a collection 
of charts, making IP1i a Hilbert manifold, modeled on 1-{' (equipped with the strong 
topology). We will refer to the topology on IP1i considered so far as its manifold 
topology. 

Proposition 2.5.2. Thefollowing topologies on 1P'1-{ coincide: 

1. The manifold topology. 
2. The w* -topology relative to IP1i C lJ3o(1-{)*. 

3. The w* -topology relative to IP1i C 1J3(1-{)*. 

It is quite trivial to verify that the topology on IP1i that is inherited from the 
strong topology on 1-{ is stronger than the topology in 2.5.2.3, which in turn is 
stronger than the one of2.5.2.2. Using the fact that lJ3o(1-{) is generated by the one­
dimensional projections on 1-{, one verifies that the topology in 2.5.2.2 coincides 
with the one induced by the weak topology on 1-{. Since the strong and the weak 
Hilbert space topologies coincide on §1-{, the equivalence between 2.5.2.2 and 
2.5.2.3 follows. 

It follows from (2.28) that for arbitrary cP EN"" one has 

cp(A) 
cp([IlJ]) = (F",(cp), AF",(cp»+(IlJ, AF",(cp» + (F",(cp), A\lI) + (1lJ, AIlJ). (2.29) 

It is clear from this equation that F",(CPn) ~ F",(cp) strongly implies CPn(A) ~ 
cp(A), so that CPn ~ cp in the topology of 2.5.2.3. Hence the manifold topology 
on IP1i is stronger than the topology of 2.5.2.3. Conversely, if CPn(A) ~ cp(A), 
then each term on the right-hand side of (2.29) must converge, so that F",(CPn) ~ 
F",(cp) weakly and (F",(CPn), AF",(CPn» ~ (F",(CPn), AF",(CPn»' Taking A = II, 
these conditions imply F",(CPn) ~ F",(cp) strongly, so that the topology of 2.5.2.3 
is stronger than the manifold topology. Hence the topologies in 2.5.2.1 and 2.5.2.3 
coincide. • 

Corollary 2.5.3. The pure state space of the C* -algebra lJ3o(1-{) (with relative w*­
topology) is homeomorphic to the projective space IP1i (with manifold topology). 

Theorem 2.5.4. The pure state space p(m) of a C* -algebra m is a disjoint union 
p(m) = UalP1ia, where 1-{a is isomorphic to the irreducible GNS-representation 
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space of an arbitrary state in IntO'. All states in a given subspace IntO' are equiv­
alent, and any two states lying in different such subspaces are inequivalent. The 
inclusion map of any IntO' (equipped with the manifold topology) into P(~) (with 
the w* -topology) is continuous. 

The set-theoretic part of this claim follows from the comments after the proof 
of 2.2.6. The topological part is a consequence of (1.57) and the equalities of the 
topologies in 2.5.2.1 and 2.5.2.3. • 

Of course, the disjoint union in 2.5.4 is meant in a set-theoretic rather than a 
topological sense (the IntO' are not necessarily components of P(~». 

We now embark on a description of Int as a symplectic manifold, starting with 
the corresponding analysis of 'H. Regarding 'H as a real vector space, we identify 
the tangent bundle T'H with 'H x 'H in the usual way: For any \II E 'H, an element 
<I> E 'H defines a tangent vector V (<I» E T Ijt 'H by 

df 
V(<I»ljtf = d"t(\II + t<l»II=O. (2.30) 

If V(<I» is tangent to §'H, the derivative r* will project it to an element v(<I» of 
TInt. This applies to tangent vectors of the form V(iA\II), where A* = A in 
~('H), and \II is arbitrary. We observe that for any \II E 'H the collection of vectors 
{iA\II1 A E ~('H)Ild, while not being equal to 'H because of the restriction to 
~('H)IR, contains \11.1. It then follows from the above discussion of the manifold 
structure of Int that for all 1/1 E Int one has 

T",Int = {v(iA\II) I A E ~('H)Ild. (2.31) 

We now show that 'H and Int are both examples of (real) symplectic manifolds 
(the real structure depends on the choice of a basis). Further to the identification 
T'H c::::: 'H x 'H (see (2.30» we identify T*'H with 'H x 'H: For <I> E 'H the one-form 
0(<1» is defined by 

(O(<I»)(V(Q»:= Re (<I>, Q). (2.32) 

Note that 0(<1» = df(!J, where f(!J(Q) := Re (<I>, Q). 
A Poisson tensor on 'H may be defined for any It E lR\{O} by 

1 
B(O(<I», O(Q» := - 2ltIm (<I>, Q). (2.33) 

It follows that 

1 
BU(O(<I») = - 21t V (i<l». (2.34) 

Since this map is evidently invertible, one infers 

Proposition 2.5.5. The Poisson manifold ('H, B) is symplectic. The symplectic 
form w is given by 

w(V(<I», V(Q» = 2ltIm (<I>, Q). (2.35) 
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Let H be a self-adjoint element of lB(1-{). Define iI E COO (1-{, JR) by 

H(\II) := (\II, H\II). 

The corresponding Hamiltonian vector field is 

(2.36) 

(2.37) 

The (real) linear span of V(\II) and all ~ii(\II) is Tlllft. The Poisson bracket of 
functions of the type (2.36) is (cf. (1.22» 

.......... i----
{A, B} = /i([A, BD = {A, BJn. (2.38) 

If U is a unitary operator on 1-{, the pullback U* A equals U-I AU. It then follows 
from (2.38) and (2.15) that each such U defines a Poisson map. 

The Schrodinger equation "H\II(t) = ifid\ll(t)/dt" of quantum mechanics is 
nothing but (2.11) with (2.37). The solution of this equation is the Hamiltonian 
flow generated by H, given by 

(2.39) 

We now pass to 1P1t. Recall the action of U(1) on 1-{ (cf. 2.5.1); it is easily 
checked that this is a Poisson map for each z E U(l). Consider 1-{* := ft\{O}; 
since each point of1-{* has the same stabilizer (namely {e}), it follows that 1-{* / U (1) 
is a manifold. Moreover, ft* / U (1) is a Poisson manifold: If T : 1-{* ~ 1-{* / U (1) 
is the canonical projection, then T*B(\II) = T*B(z\ll) for all z and \II, so that we 
can consistently define a Poisson tensor B R on 1-{* / U (l) at some point 1/1 = T (\II) 
by BR('I/!) = T*B(\II). Equivalently, the Poisson bracket {, } on 1-{* / U(l) is taken 
to be 

T*{f, g}R = {T* f, T*g}, (2.40) 

which is well-defined by the same argument. The Jacobi identity and the Leibniz 
rule follow from the fact that they are satisfied on P. 

Although ft* / U (1) may be infinite-dimensional, the statement of Theorem 2.4.7 
actually applies. 

Proposition 2.5.6. The symplectic leaves of the Poisson manifold 1-{* / U (1) are the 
spaces Sr = 1-{r / U (1), where 1-{r = {\II E 1-{ I (\II, \II) = r2}, so that 1-{* / U(1) = 
Ur>oftr/ U(l). The projective space IP1t may be identified with SI. Hence IP1t is 
symplectic; the symplectic form w is explicitly given by 

w",(v(iA\II), v(iBW» = -in[A,B](1/I), (2.41) 

and the corresponding Poisson bracket is 

"" i--- ---
{A, B} = /i[A, B] = {A, B}It, (2.42) 

cf (1.22) and (2.38). 
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See the text below (2.30) for the definition of v. We will show that Sl is a 
symplectic leaf of 1t* / U(I); the argument for the other S, is similar. For each 
H E !.B(1t)IR we here have introduced the function iI on Int by 

if(1/I) = if(r(\II» := H(\II), (2.43) 

where H is given by (2.36), and \II is now assumed to be a unit vector. Note that 

(2.44) 

where the norm on the left-hand side is the operator norm in !.B(1t). Indeed, our 
notation if is motivated by the fact that (2.43) is a special case of the Gelfand 
transform (1.30). It follows directly from the definition of the manifold structure 
of Int that if is smooth for each H E !.B(1t)IR' Equation (2.37) implies 

~H(r(\II» = -v (~H\II ) . (2.45) 

The fact that each S, is symplectic now follows from Propositions 2.3.7 and 2.2.2, 
and (2.37) or (2.45). The Poisson bracket (2.42) is derived from (2.38); it is, of 
course, consistent with (2.19), (2.41), and (2.45). 

Finally, the continuity of the inclusion of S I into 1t* / U (1) is immediate from 
Proposition 2.5.2. • 

It follows from the comment after (2.37) that the Poisson structure is completely 
determined by the special case (2.42). 

If 1t = eN is finite-dimensional, the symplectic form defined by (2.41) is fi 
times the well-known Fubini-Study form on !PeN. 

As on 1t, each unitary operator U (projected to a map on Int) is a Poisson map 
with respect to (2.42). The Schr6dinger equation, projected to Int, is a special case 
of (2.11): If, in somewhat sloppy notation, 1/I(t) is the flow obtained by projecting 
\II(t) (cf. (2.39» from §1t to Int, one has from (2.45) 

d1/l(t) = ~. (1/1 (t). (2.46) 
dt H 

In particular, the flow is complete for any H. As a matter of notation, we write the 
solution as 

(2.47) 

The right-hand side is by definition the projection of (2.39) to JP1t. 
Eigenvalues and eigenvectors have a neat description in the present language, 

too. 

Proposition 2.5.7. A vector \II E 1t is an eigenvector of an operator H E 1"l3(1t)IR 
iff 1/1 = r(\II)~ is a critical point of if (i.e., d if(1/I) = 0); the corresponding 
eigenvalue is H (1/1). 

This is perhaps obvious from the minimax description of eigenvalues, but here 
is a direct proof. The property d if (1/1) = 0 is the same as X if (1/1) = 0 for all 
X E T",JP1t. By (2.31) and (2.39), this is equivalent to (\II, (H A - AH)\II) = 0, 
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or (AIJI, HIJI) = (AIJI, HIJI), for all A E ~(1-0IR. Hence (IJI, Hct» E IR for all 
ct> E IJI-L, which is possible only if (IJI, Hct» vanishes for all ct> E IJI-L. This implies 
that IJI must be an eigenvector of H. • 

From the symplectic point of view, the two steps in the construction of PH 
appear in reverse order. Firstly, one pulls the symplectic form w on H back to §H; 
here it is degenerate. Secondly, this degeneracy is removed upon quotienting §H 
by U(l), arriving at JlD1i once more. See IV. 1.5. 

2.6 Representations of Poisson Algebras 

We look at symplectic manifolds as the classical analogues of modules for Poisson 
algebras (cf. the opening remark in 1.5). 

Definition 2.6.1. A representation of a Poi.sson algebra (1.2(1R, c, (, }) is a linear 
map Jr : I.2(IR --+ COO(S, IR), where S is a symplectic manifold, satisfying 

Jr(f 0 g) = Jr(f)Jr(g); 

{Jr(f), Jr(g)}s = Jr({f, g}) (2.48) 

(where {, } s is the Poisson bracket on S), as well as preserving completeness. 

The condition (2.48) says simply that Jr : I.2(IR --+ COO(S, IR) is a morphism, 
assuming that the Jordan product in COO(S, IR) is represented by pointwise multi­
plication (cf. 1.1.3). The completeness requirement means that the flow of ~lC(h) is 
defined for all times if h is complete in QlIR, cf. 2.3.4. It is imposed to eliminate 
constructions of the type QlIR = COO(P, IR), pi f P open in P, and Jr being simply 
restriction to P'. 

There is a natural notion of equivalence. Namely, two representations Jrl : 
I.2(jR --+ COO(SI, IR) and Jr2 : QljR --+ C OO (S2, IR) are caned equivalent if there exists 
a symplectomorphism J : SI --+ S2 such that J*Jr2(f) = Jrl(f) for all f E QlIR· 

We can analyze the structure of representations of Poisson algebras of a slightly 
more general type than COO(P, IR), where P is a Poisson manifold. 

Definition 2.6.2. A Poisson space P is a Hausdorff topological space together 
with a linear subspace QlIR C C(P, IR) and a collection Sa of symplectic manifolds 
(called the symplectic leaves of P ), as well as continuous injections ta : Sa "---+ P, 
such that: 

1. P = Uata(Sa) (disjoint union). 
2. QlIR separates points. 
3. QlIR ~ C,[,(P, IR), where C'['(P, JR) consists of all f E C(P, IR) for which 

t~ f E COO(Sa, JR) for each Cf. 

4. QljR is closed under the Poisson bracket 

{f, g}(ta(a» = {t~f, t~g}a(a). (2.49) 
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If the ambient space P carries additional structure, such as a uniformity or a 
smooth structure, one can refine the above definition in the obvious way; such 
refinements will play an important role in later sections. 

Definition 2.6.3. A uniform Poisson space is a Poisson space P in which the 
topology is defined by a uniformity on P and that satisfies Definition 2.6.2 with 
C(P, JR) replaced by the space Cu(P, JR) of uniformly continuous functions on P. 

Similarly, a smooth Poisson space is a Poisson space for which P is a manifold 
and C(P, JR) is replaced by C'X)(P, JR). By Theorem 2.4.7, a smooth Poisson space 
with Qt]R = COO(P, JR) is nothing but a Poisson manifold. The more general concept 
of a Poisson space is useful when the symplectic leaves do not fit together to 
form a manifold. This happens in the context of singular symplectic reduction, cf. 
IV.I.II. Moreover, we will show in 3.2.2 that the pure state space of a C* -algebra 
is a uniform Poisson space. In any case, the object C,[,(P, JR) defined in 2.6.2.3 is 
the function space intrinsically related to a (general, uniform, or smooth) Poisson 
space P. 

Definition 2.6.2 does not entail that Qt]R is a Poisson algebra under pointwise 
multiplication as the Jordan product, but an interesting result arises when one 
makes that assumption. In preparation for this, we remark that the notion of a 
Poisson map makes sense in the context of Poisson spaces: It is still defined by 
(2.15). 

Proposition 2.6.4. Let (P, Qt]R) be a locally compact Poisson space for which Qt]R 

is a Poisson algebra under pointwise multiplication. If rr : Qt]R ~ COO(S, JR) is 
a representation ofQt]R on a finite-dimensional symplectic manifold S, then there 
exists a continuous map J : S ~ P such that rr = J*. 

For simplicity we show this for compact P, and assume that Qt]R contains the 
unit function I p . The Stone-Weierstrass theorem then implies that Qt]R is dense in 
C( P , JR) in the su p-norm. Take a point a E S, and define a linear functional la 
on Qt]R by la(!) = (rr(f»(a). By the first member of (2.48), this functional is 
multiplicative. If it were defined on all of C (P, JR), we could immediately conclude 
from this that fa is continuous; a positivity argument shows that this follows in 
the present case as well. Hence we extend fa to all of C(P, JR). It follows that fa 
defines a pure state, and pure states on C(P, JR) correspond to points of P (see 
2.1.4). Hence la corresponds to a point J (a) in P, and this defines the desired map 
J : S ~ P. The continuity of J follows from a technical argument in the theory 
of commutative C* -algebras. The second member of (2.48) obviously implies that 
J is a Poisson map. 0 

Corollary 2.6.5. IfQt]R = COO(P, JR)for a Poisson manifold P and rr : Qt]R ~ 

COO(S, JR) is a representation, then there exists a smooth Poisson map J : S ~ P 
such that rr = J*. 

The smoothness of J follows from the property rr = J*. • 
There is a natural notion of irreducibility for representations of Poisson algebras. 
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Definition 2.6.6. A representation 7r of a Poisson algebra Q(IR is called irreducible 
if 

(2.50) 

If S is infinite-dimensional, it is understood that one takes the closure of the 
left-hand side in the definition. The finite-dimensional irreducible representations 
of a Poisson algebra associated with a locally compact Poisson space (Definition 
2.6.2) can be described concretely. 

Theorem 2.6.7. Under the assumptions of Proposition 2.6.4, let 7r be irreducible. 
Then S is symplectomorphic to a symplectic leaf Sa of P, or to a covering space 
thereof 

In fact, it will follow from the proof below that an irreducible representation 
space S of a locally compact Poisson space has to be finite-dimensional. The proof 
of this theorem is based on 2.6.4; we have 7T -=- j* for 1 : S -+ P. For each 
a E S, let Sa(a) be the symplectic leaf for which la(a)(Sa(a» contains l(a) (cf. 
2.6.2); we will henceforth identify la(a)(Sa(a» and Sa(a)' By irreducibility, any 
X ETaS can be written as X = ~rr(j) for some f E Q(IR. We define a linear map 
1* : TaS -+ TJ(a)Sa(a) by 

(2.51) 

The notation is consistent: If P is a manifold, 1* is indeed the pushforward of 1, 
cf. (2.17). The fact that 1* is well-defined follows from its injectivity, which we 
will now demonstrate. If l*~rr(j)(a) = 0, then (j, g}(l(a» = 0 for all g E Q(IR, 

since 1 is a Poisson map. But then (U;(~rr(f), ~rr(g» = 0 for all g, where (US is 
the symplectic form on S. Since (US is nondegenerate, this implies ~rr(f) = 0, 
which proves injectivity. Now, 1* is evidently surjective as well, because Sara) is 
symplectic. Hence 1* is an isomorphism. 

Combining this result with Propositions 2.3.5 and 2.3.7, we conclude that 
1 (S) S; Sa(a) , where Sand Sa(a) are locally symplectomorphic (since 7r is a repre­
sentation). The completeness of 7r (see Definition 2.6.1) implies that 1 (S) = Sa(a)' 

For if the inclusion l(S) S; Sa(a) were proper, we could take a neighborhood N 

of a boundary point of l(S) in Sa(a), and take al E N n l(S) and az E N but 
az ¢. 1 (S), such that al and a2 are connected by a Hamiltonian curve tangent to 
~f (cf. 2.3.7). We then consider the Hamiltonian curve in S tangent to ~rr(j) and 
passing through s" where l(SI) = al (Sl may not be unique). By 2.3.5 this curve 
is mapped onto the Hamiltonian curve connecting al and a2, but this is impossible 
because of our assumptions on a2. Hence the curve in S in question must suddenly 
stop somewhere, contradicting the completeness of 7r . 

A similar argument shows that 1 is a covering projection. For 1 not to be a 
covering projection, there must exist a point a3 E Sa (a ), a neighborhood Na3 of a3, 

and a connected component 1;-1 (NaJ of 1- 1(NaJ such that 1(1;-/ (NaJ) C Na3 

is a proper inclusion. Butin that case we could choose points al E 1(1;-1 (Na» and 
a2 E Na3 buta2 ¢. 1(1;-1 (Na3 », which can be connected by a smooth Hamiltonian 
curve, tangent to some vector field ~g. Letal = 1 (SI) for some Sl, and consider the 
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flow of ~rr(g) through s I in S. Then this flow must either suddenly stop, contradicting 
the completeness of:rr , or continue outside Ji- 1 (Na ) to a point S2 for which J (S2) = 
a2, contradicting the assumptions on az. Hence J must be a covering projection, 
and Theorem 2.6.7 is proved. • 

We now return to C* -algebras and their pure state spaces. Take a C* -algebra 2l 
with pure state space P = P(21) (equipped with the w*-topology), and identify 
its self-adjoint part 2lJR with a subspace of C(P, R) by the Gelfand transfonn 
A E C(P, R); see (1.30). We will occasionally drop the hat on A. 

Proposition 2.6.8. The pure state space P = P(21) of a C* -algebra 2l (where 2lJR 
is identified with a subspace ofC(P, R) through the Gelfand transform (1.30)), 
equipped with the irreducible representation spaces Sa = Inta and the inclusion 
maps La, is a Poisson space. 

This is a trivial consequence of 2.5.4; note that the Poisson bracket in the sense 
of 2.6.2 coincides with the one (1.22) originally defined on 2lJR. Recall that the 
choice of each Ha is arbitrary within unitary equivalence; the Poisson structure 
on P(21) is independent of the particular choices made by the comment following 
(2.42). The spaces Inta are now seen to be the symplectic leaves of P. • 

Proposition 2.6.8 recognizes the fact that (the self-adjoint parts of) C* -algebras 
fall under the theory of Poisson spaces. This point of view receives further support 
from a reconsideration of the notion of a representation :rr of a C* -algebra on a 
Hilbert space 1t (see 1.5.1). As explained in 2.5, we may identify ~(H)JR with a 

subspace of the Poisson algebra COO(H, JR), so that:rr maps A E 2lJR to;(A) E 

COO(Int, JR) (cf. (2.43». It follows from 2.5.6 that:rr : 2lJR ~ COO(H, JR), thus 
interpreted, is a Poisson morphism. 

Proposition 2.6.9. A representation :rr of a C* -algebra 2l on a Hilbert space H is 
irreducible iff for every 1{1 E Int the set {v(i:rr(A)III) I A E 2lJR} of tangent vectors 
is dense in T",Int (Poisson irreducibility). 

This follows from (2.31) and 2.2.2.2. Note that T",H equals {V(AIII) 1111 E 

~(H)}, but does not equal {V(AIII) 1111 E ~(H)IId; nonetheless, T",Int is given 
by (2.31). This is because the orthogonal complement of {V (A 111) 1111 E ~(H)JR} 

in T", H projects to zero in T",Int. • 

Combining 2.6.9 and (2.45), we see that the notions of irreducibility of a repre­
sentation of a C* -algebra (Definition 2.2.1) and of a Poisson algebra (Definition 
2.6.6) coincide (cf. 2.2.1). Therefore, on the Poisson side there is a close fonnal 
similarity between C* -algebras and Poisson algebras as far as their respective rep­
resentation theories are concerned. Indeed, combining Theorems 2.5.4 and 2.6.7 
and Proposition 2.6.8, we obtain (under the above identifications) 

Corollary 2.6.10. Let 2lJR be either a Poisson algebra defined by a locally compact 
Poisson space P, or the selfadjoint part of a C* -algebra with pure state space 
P. Then, up to equivalence, every irreducible representation of21JR is given by the 
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restriction of~R to a symplectic leaf of P (or p, respectively), or by this restriction 
preceded by the covering projection on a covering space of such a leaf 

Note that lP1t has no nontrivial covering spaces. If the Poisson space P is 
compact and the Poisson algebra ~R contains the unit function, then !ZlR is dense 
in C(P, JR) (cf. the proof of 2.6.4); in that case, P is actually the pure state space 
of ~ as a C* -algebra (cf. 2.1). If P is merely locally compact, the same conclusion 
holds if!ZlR is contained in Co(P). 

The difference between representations of C* -algebras and Poisson algebras 
lies on the Jordan side; from the point of view of pure states, the Jordan structure 
on !ZlR eventually originates from a novel structure on P(~). 

2.7 Transition Probability Spaces 

Here is the structure alluded to at the end of the preceding section. 

Definition 2.7.1. A transition probability on a set Pis a function 

p : P x P ~ [0, 1] 

that satisfies 

p(p, a) = 1 {:=} P = a 

and 

p(p, a) = 0 {:=} p(a, p) = O. 

(2.52) 

(2.53) 

(2.54) 

A set with such a transition probability is called a transition probability space. 

The following set of definitions is natural and self-evident. 

Definition 2.7.2. A family of subsets of a transition probability space P is called 
orthogonal if p(p, a) = 0 whenever p and a do not lie in the same subset. The 
space P is called reducible if it is the union of two (nonempty ) orthogonal subsets; 
if not, it is said to be irreducible. A component C ofP is a subset C C P such 
that C and P\ C are orthogonal. An irreducible component of P is called a sector. 

Thus any transition probability space is the disjoint union of its sectors. 
Certain subsets of P are of special significance. The orthoplement of Q C P 

is defined by 

Q1- = {a E P I p(p, a) = 0 V P E Q}. (2.55) 

It is immediately obvious that if R ~ S, then S1- ~ R1-, and that T ~ T1-1-. 
Putting R = Q and S = Q1-1- shows that Q1-1-1- ~ Q1-; putting T = Q1- yields 
Q1- ~ Q1-1-1-. Hence Q1- = Q1-1-1-. Accordingly, the orthoclosure of a subset 
Q ~ P is defined as Q1-1-, and Q is called orthoclosed if Q = Q1-1-. It follows 
that Q1- (and therefore Q1-1-) is always orthoclosed. Also, one easily sees that any 
component C ~ P is orthoclosed; this applies in particular to P itself, and to any 
sectorofP. 
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Definition 2.7.3. A basis of a transition probability space P is an orthogonal 
family B of points ofP with the property that 

L pep, a) = I Va E P (2.56) 
pEB 

(if B is infinite the sum is defined as the least upper bound of all finite partial 
sums). 

The transition probability space is called symmetric if 

pcp, a) = pea, p) Vp, a E P. (2.57) 

The simplest example of a symmetric transition probability space is obtained by 
taking any set P, and putting 

pcp, a) := Dpo. (2.58) 

Proposition 2.7.4. In a 5ymmetric transition probability space all bases have the 
same cardinality. 

Let BI and B2 be two bases. If both are finite, (2.56) shows that the cardinality 
card(BI) of BI is given by LpEB, LOEB2 pcp, a). But then the symmetry of p 
implies that this must equal card(B2). The same calculation shows that it is im­
possible that B\ is finite and B2 infinite (and vice versa). Let both be infinite. For 
fixed a E B2 , define R(a) = (p E BI I pcp, a) > O}. By (2.56), R(a) can be at 
most countable. Hence the set UoE B2R(a) has the same cardinality as B2 . On the 
other hand, this set is contained in B\, so that card(B2) S card(Bd. The symmetry 
of p leads to the opposite inequality, so that card(BI) = card(82). • 

Consequently, one can define the dimension of a symmetric transition prob­
ability space as the cardinality of any of its bases. If B is a basis, then 81-1- = 
P. 

Clearly, any subset of P is a transition probability space if one simply restricts 
p to it. Not every orthoclosed subset is necessarily the orthoclosure of a maximal 
orthogonal subset contained in it, however: There exist examples of orthoclosed 
subsets that do not have any basis. To exclude pathological cases, we impose the 
following 

Definition 2.7.5. A transition probability space is well-behaved if: 

• It is symmetric. 
• Every orthoclosed subset Q ofP has the property that any maximal orthogonal 

subset of Q is a basis of Q. 

In a well-behaved transition probability space any set of the type Q1- is 
orthoclosed. Moreover, any orthogonal subset S has the property 

S1-1- = {p E PI L pcp, a) = I} , 
OES 

(2.59) 

since one can complete S with a basis of S1- to form a basis of P. 
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For each point p in an arbitrary transition probability space p, the function p p 

on P is defined by 

pp(a) := pep, a). (2.60) 

Proposition 2.7.6. Let P be a well-behaved transition probability space. For each 
orthoclosed subset Q s:; P the function 

dim(Q) 

PQ:= L Pe, 
i=! 

is independent of the choice of basis {ei} of Q. Moreover, 

Q={pEP/PQ(p)=I}. 

(2.61) 

(2.62) 

Choose a basis B = {ei} U {u j} of P that contains the given basis of Q; clearly, 
u j E Q1.. for all j. By (2.56), PQ = Li Pe, = 1- Lj PUj' in which the right-hand 
side is clearly independent of the choice of basis of Q. We now prove (2.62). If 
p E Q, then Lj pep, Uj) = 0, so that PQ(p) = 1 by (2.56). If PQ(p) = I, then 
P (p, U j) = 0 for all j, so that p E (U j U j)1.. = QH = Q. • 

2.8 Pure State Spaces as Transition Probability Spaces 

This section is devoted to the result that the pure state space of a C* -algebra is a 
well-behaved transition probability space. To see this in perspective, we start in 
the more general context of compact convex sets; cf. 1.4.5 and preceding text. We 
will routinely omit the hat on the Gelfand transform. 

Let K be a compact convex set (in a Hausdorff vector space). An extreme 
point p E aeK is called norm-exposed if there exists some A E Ab(K, 1R), with 
IIAII = I, such that {w E K / A(w) = I} = p. Equivalently, A satisfies A(p) = I 
and A(w) < 1 for all WE K\{p}. 

Proposition 2.8.1. Let K be a Hausdorff compact convex set with the property 
that every extreme point is norm-exposed. Then the formula 

pep, a):= inf {A(p) / A E Ab(K, 1R), 0 ~ A ~ IK, A(a) = I} (2.63) 

defines a transition probability on the extreme boundary ae K of K. The expression 
(2.63) is not changed if the infimum is taken over A(K, 1R) instead of Ab(K, 1R). 

If p = a, then pep, a) = 1 by definition. The converse follows immediately 
from the extra requirement on K. Condition (2.54) is easily verified if one rewrites 
(2.63) as 

pea, p) = 1 - sup {A(a) / A E Ab(K, 1R), 0 ~ A ~ IK, A(p) = OJ. (2.64) 

The claim that we may minimize over A in A(K, 1R) follows from the density of 
A(K, JR) in Ab(K, 1R) in the topology of pointwise convergence. • 

If Q{ is a commutative unital C* -algebra, its self-adjoint part is of the form 
Q{1R = C(P(Q{), 1R) by Theorem 2.1.7, where the pure state space is a compact 
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Hausdorff space. Since ~R.* contains eOO(p(~», one immediately sees that (2.63) 
leads to (2.58). Ifone minimizes (2.63) only over A(K, R) ~ C(p(~), R),thesame 
result follows from Urysohn's lemma; since p(~) is compact and Hausdorff, it is 
normal. 

Theorem 2.8.2. The pure state space p(~) of a C* -algebra ~ is a well-behaved 
transition probability space under (2.63). The transition probabilities are explicitly 
given by p(p, a) = 0 if P and a are inequivalent, and 

p(p, a) = I(Qp, QO')1 2 (2.65) 

if p and a are equivalent. Here Qp, QO' E §'Jia are (arbitrary) preimages of 
p, a E P'Jia (cf. 2.5 and 2.2). 

Note that this implies that the transition probabilities are given by (2.58) if ~ is 
commutative. 

We may assume that ~IR has a unit. If it hasn't, we use 1.2.1 and (2.2); the special 
point Woo satisfies p(woo , p) = o for all p =I- Woo. To see what is happening, we first 
prove the theorem for finite-dimensional C* -algebras. By Proposition 2.2.8 these 
are direct sums of matrix algebras, i.e., ~ = $arotNa(C). We write A = $aAa 
for A E ~. The pure state space of ~ is P = UalPCNa . We now take a fixed ex; if 
a E IPCNa C p, then a(A) = a(Aa) = (QO', AaQO'), where QO' E CNa is defined 
as in the statement of the theorem. The projection [QO'] onto QO' may be regarded 
as an element of ~ by adding zero operators. Then 

(2.66) 

if p E IPC Na (i.e., it is equivalent to a), and [QO' ](p) = 0 otherwise. In particular, 
[QO' ](a) = 1, and [QO' ](p) < 1 if p =I- a. This shows firstly that every pure state 
is norm-exposed, and secondly that p(p, a) vanishes if p and a are inequivalent 
(note that 0 < [QO'] < nand II [QO'] II = 1, since [QO'] is a projection). 

We now assume that p and a are equivalent, and without loss of generality, 
put ~ = rotN(C). We claim that the infimum in (2.63) is reached for A = [QO']. 
For suppose there exists an A E ~IR = rotN(C)IR for which 0 < A < [QO'] and 
A(a) = (QO', AQO') = 1. Choose a basis {e" ... , eN} in C N that projects onto 
{a, ... , eN} in PCN. Since 0 < A < [QO'] and [QO'](ej) = 0 for i = 2, ... , it 
must be that A(ej) = 0 for i = 2, ... , N. Also, clearly, A(e,) = [QO' ](e,) (since 
e, = a). Then B = [QO'] - A satisfies B > 0, and B(ej) = (ej, Bei) = 0 for all 
i. The latter is impossible for a positive definite matrix. Hence we can compute p 
by p(p, a) = [QO' ](p), which, with (2.66), proves (2.65). 

The proof of Theorem 2.8.2 for general C* -algebras follows the same idea; the 
direct sum of matrix algebras is now replaced by the reduced atomic representation 
1Tra of ~ (see 2.2.7 and the subsequent theory). The projection [QO'] E fJ3('Ji0') is 
regarded as an element of 1Tra(ll)" by adding zero operators; hence it lies in ~R.*. As 
in the finite-dimensional case, this shows that every pure state is norm-exposed, 
while additionally reducing the proof to the situation where p and a are equivalent. 

We then observe that A(S(~), R) ~ 1Tra(~IR)" ~ Ab(S(~), R) (with equalities 
only for finite-dimensional algebras), so that we may take the infimum in (2.63) 
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over all A in n m (Q(lld'. The remainder of the proof is then the same as in the finite­
dimensional case, since the property of positive definite matrices we used holds 
for arbitrary positive definite operators on a Hilbert space. 

A basis of P is obtained by using the decomposition P = Ua lP1-(, (see 2.5.4); 
one chooses an orthonormal basis (in the usual Hilbert space sense) in each Ha, 
and projects it to IP1ia. This yields a basis (in the sense of 2.7.3) of IP1ia as a 
transition probability space. Combining these bases by taking the union over all a 
then produces a basis ofP. The fact that P is a well-behaved transition probability 
space then follows from elementary Hilbert space theory. • 

The transition probability between pure states on a C* -algebra Q( may be related 
to the norm on Q(*, in that 

pep, a) = 1 - jllp - a1l 2 • (2.67) 

If p and a are equivalent, so that they are vector states in the same Hilbert space 
(cf. the comments following 2.2.6), then (2.67) is equivalent to 

(2.68) 

either equality follows from a simple calculation with 2 x 2 matrices. If p and a 
are inequivalent, one can show that II p - a II = 2. 

3 From Pure States to Observables 

3.1 Poisson Spaces with a Transition Probability 

We have encountered two kinds of structure on the pure state space P(Q() of a 
C*-algebra Q(. Firstly, it is a Poisson space (cf. 2.6.2 and 2.6.8), and secondly, as 
established in 2.8.2, it is a transition probability space. We will now examine how 
these structures are interrelated. Recall (2.60). 

Definition 3.1.1. The real normed vector space Q(:(P), regarded as a subspace 
of lOO (P, JR) (with sup-norm), consists of all finite linear combinations of the type 
L~l Ci Pp" where Ci E JR and Pi E P. The closure of Q(:(P) is called Q(~(P). 

The double dual of Q(~(P) will playa central role in what follows, so that we 
use a special symbol: 

(3.1) 

Since Q(~(P) ~ lo(P, JR), one has Q(1R(P) ~ lo(P, JR)** = loo(P, JR). The space 
Q(1R(P) is the function space intrinsically related to a transition probability space 
P. It is a partially ordered Banach space in the obvious way. We will now identify 
this space in the case that P is the pure state space of a C* -algebra. 

According to 1.7.5 there exists a central projection p in Q(** such that nm(Q()" c::: 
pQ(** (cf. 2.2.7). Hence nra(Q()" is contained in Q(** in a natural way. By w*­
continuity, elements ofQ(1R c::: A(S(Q(), JR) are determined by their values on P(Q(). 
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This is, in general, not the case for arbitrary elements of Ql~* ~ Ab(S(Qt),JR.). 

However, A E pQlJr:' c Ql~* is determined by Ii E £oo(P(Ql), JR.); this follows either 
from the explicit expression (2.3) or from a more abstract argument. Therefore, the 
Gelfand transform (1.30) maps pQl~*, and hence JTra(Ql)~, isometrically into some 
closed subspace of £oo(P(Ql), JR.). 

Proposition 3.1.2. IfP is the pure state space of a C* -algebra Qt, equipped with 
the transition probabilities (2.65), then the Gelfand transform (1.30) isomorphi­
cally maps JTra(Ql)i ~ pQl~* (as a partially ordered Banach space) to Ql]R(P).ln 
particular, Ql]R(P) = £oo(P, JR.) ifQl is commutative. 

As a visual aid in proving this proposition, we define a (locally nontrivial) fiber 
bundle B(P), whose base space B is the space of sectors, equipped with the discrete 
topology, and whose fiber above a given base point ex is ~(TiO'h~; here TiO' is such 
that the sector ex is JlD1t0'. Moreover, by (2.5.4) the pure state space P itself may be 
seen as a fiber bundle over the same base space; now, the fiber above ex is JlD1t0'. We 
will denote the projection of the latter bundle by r. A cross section s of B(P) then 
defines a function son P by s(p) = [s(r(p))](p); in this description, we identify 
a bounded self-adjoint operator H on TiO' with the corresponding function iI on 
JlD1tO', cf. (2.43). By (2.44), this identification is isometric if we define the norm 
of a cross section of B(P) by lis II = SUPO'EB Ils(ex)1I (where the right-hand side, of 
course, contains the operator norm in ~(TiO'» and the norm of s as the sup-norm 
in £oo(P, JR.). 

It follows directly from its definition that the space Ql~o(P) consists of sections 
s of B(P) with finite support for which s(ex) has finite rank for each ex. Its closure 
Ql~(P) contains all sections for which ex 1-+ IIs(ex)1I vanishes at infinity, and s(ex) is 
a compact operator. It follows from 1.6.5 that the dual Qt~ (P)* may be realized as 
the space of sections for which s(ex) is of trace class and ex 1-+ IIs(ex) II 1 (cf. (1.61» 
is in £I(B, JR.). The bidual Ql]R(P) then consists of all sections of B(P) for which 
ex 1-+ IIs(ex)1I is in £oo(B, JR.). It follows from (2.3) that this is precisely the image 
of the Gelfand transform (1.30) of JTnJQt)i. • 

IfP is simultaneously a (general, uniform, or smooth) Poisson space (cf. 2.6.2, 
2.6.3) and a transition probability space, two function spaces are intrinsically as­
sociated with it: C,[,(P, JR.), defined in 2.6.2.3, and Ql]R(P), respectively. The space 
naturally tied with both structures in concert is therefore 

QldP, JR.) := Ql]R(P) n C'['(P, JR.). (3.2) 

For example, if P is a smooth Poisson space (i.e., a Poisson manifold) equipped 
with the transition probabilities (2.58), then Ql]R(P) = £oo(P, JR.), so that 
QldP,JR.) = Cf,'b(P, JR.). The corresponding equation for C*-algebras is (3.6) 
below. 

In general, since elements of QlL (P, JR.) are smooth on each symplectic leaf of 
p, they generate a well-defined Hamiltonian flow (2.11), which, of course, stays 
inside a given leaf. 
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Definition 3.1.3. A (general, uniform, or smooth) Poisson space that is simulta­
neouslya transition probability space is called unitary if the Hamiltonian flow on 
P defined by each element ofQtL (P, JR) preserves the transition probabilities. That 
is, if p(t) and a(t) are Hamiltonian curves (with respect to a given H E QtdP, JR») 
through p(O) = p and a(O) = a, respectively, then 

p(p(t), a(t» = p(p, a) 

for each t for which both flows are defined. 

(3.3) 

We infer from (2.46), (2.47), 3.1.2, 2.6.8, and 2.8.2 that the pure state space of 
a c· -algebra is unitary. Also, a Poisson manifold with (2.58) is evidently unitary. 

Definition 3.1.4. A (general, uniform, or smooth) Poisson space with a transition 
probability is a set P that is a well-behaved transition probability space (Defini­
tion 2.7.5) and a unitary (general, uniform, or smooth) Poisson space (Definitions 
2.6.2,2.6.3, and 3.1.3),Jor which QtjR = QtdP, JR) (defined in (3.2)). 

This definition imposes two closely related compatibility conditions between the 
Poisson structure and the transition probabilities: Firstly, it makes a definite choice 
for the space QtjR appearing in the definition of a Poisson space, and secondly, it 
imposes the unitarity requirement. 

We collect the previous findings in 

Theorem 3.1.5. 

• The pure state space of a C* -algebra equipped with the w* -topology, the tran­
sition probabilities (2.63), and the Poisson structure 2.6.8, is a Poisson space 
with a transition probability. 

• A Poisson manifold equipped with the transition probabilities (2.58) is a smooth 
Poisson space with a transition probability. 

3.2 Identification of the Algebra ofObservables 

This section is devoted to the following result, which shows how a unital C*­
algebra Qt can be recovered from its pure state space. We recall that Qt~(P) was 
defined in 3.1.1, and that QtjR(P) ~ ioo(p, JR) (cf. (3.1). Also, we regard QtjR as a 
closed subspace of Cb(P(Qt), JR) c iOO(P(Qt), JR) through the Gelfand transform 
(1.30). 

Theorem 3.2.1. Let P(Qt) be the pure state space of a unital C* -algebra Qt, 
equipped with the transition probabilities (2.63) and the w* -uniformity inherited 
from Qt*. Then 

(3.4) 

where CAP(Qt), JR) is the space of real-valued uniformly continuous functions on 
P(Qt). 

Before starting with the proof, we clarify the content of the theorem. 
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Firstly, the w* -uniformity on p(~) may be defined by its subbase consisting of 
all subsets of P x P of the type {(p, a) E P x P IIp(A) - a(A)1 < E}, where 
A E ~JR and E > O. It is noteworthy, however, that the subspace of functions in 
lOO(P(~), R) that are uniformly continuous with respect to any uniformity on P(~) 
is closed. This generalizes the well-known fact that the subspace of continuous 
functions relative to any topology on P is sup-norm closed; the proof of our 
observation proceeds by the same e /3 argument. 

Secondly, we know from 1.4.5 that ~JR :::::: A(S(~), R) = ~** n C(S(~), R). 
There may, however, exist spurious elements of ~IR* that happen to be w*­
continuous on P(~) but not on S(~). Therefore, an arbitrary C* -algebra ~ does not 
satisfy ~JR = 2t1R* n C(P(2t), R) (although a large class of such algebras does, see 
below). The theorem shows that these spurious elements fail to be uniformly con­
tinuous on P(2t), and that uniform continuity on P(2t) can be used to characterize 
2tJR. 

We now pass to the proof of Theorem 3.2.1. According to 3.1.2, we may iden­
tify 2tJR(P) with the image of the Gelfand transform of Jr .. (2t)i (or p2tIR*) in 
lOO(P(2t), R); we denote this image by rotJR' Hence we can write the right-hand 
side of (3.4) as rot]R n Cu('P(2t), R). Since we identify 2t]R with its Gelfand trans­
form, and because 2tJR ~ Jrra (2t}R' we can say that 2tJR ~ rot]R. The inclusion 
2t]R ~ Cu(P, R) is immediate from the definition of the w*-uniformity, so that 
2tJR ~ rotJR n Cu(P, R). 

We note that P(2t) = aeN(rot), where N(rot) is the normal state space of the 
complexification rot ofrot]R, cf. 1.7 (recall that rot is a von Neumann algebra). For 
any von Neumann algebra rot of the form rot = 123** (where 23 is a C* -algebra) 
one has 

(3.5) 

which sharpens Theorem 2.1.5, since N(rot) ~ S(rot) may be a proper inclusion. 
We apply this with Sl3]R = 2t~(P) (cf. the proof of 3.1.2), for which 123** indeed 
equals our rot. As a corollary of Theorem 2.1.5, note that if L C K is a closed 
subset of K for which co(L) = K, then aeK ~ L. It then follows from (3.5) 
that P(rot)- ~ (aeN(rot»- = P(2t)-, where the closures are taken in the w*­
topology on rot*. Therefore, one can approximate any p and a in P(rot)- in the 
w* -topology on rot* by elements of P(2t), so that Pa ~ P and ap ~ a for nets 
{Pa} and lap} in P(2t). If we choose these such that P = a on 2t]R, then clearly 
lima,fJ(Pa(A) - ap(A» = 0 for all A E 2t]R. 

Now choose B E rot n Cu ('P(2t), R). By the definition of the w* -uniformity on 
2t1R , the uniform continuity of B implies that lima.fJ(Pa(B) - afJ(8» = O. Hence 
p(B) = 0'(8). 

Without proof, we now invoke a deep corollary of the Stone-Weierstrass theorem 
for C* -algebras: If 2t and 23 are unital C* -algebras with 2t ~ 23, and B E 23 is 
such that p(8) = 0'(8) for any pair p, a coinciding on 2t, then B E 2t. 

Returning to the previous paragraph, this corollary implies that 8 E 2tJR . 0 

Combining Theorem 3.1.5 and (3.4) we infer 
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Corollary 3.2.2. The pure state space of a C*-algebra equipped with the w*­
uniformity, the transition probabilities (2.63), and the Poisson structure 2.6.8 is a 
uniform Poisson space with a transition probability. 

We briefly return to (3.2). According to Propositions 3.1.2 and 2.6.8, and the 
comment below (2.44), for pure state spaces P = P(2l.) of C* -algebras one has 
2l.]R(P) n Cu(P) c Cf(P, JR).1t then follows from Theorem 3.2.1 that 

(3.6) 

A unital C* -algebra 2l. is called perfect if 

(3.7) 

In that case, Cu in (3.6) may be replaced by C. 
If P(2l.) is closed (hence compact), then 2l. is obviously perfect. Hence com­

mutative C*-algebras are perfect (cf. 2.1.7, which actually implies 3.2.1 in the 
commutative case), and so are finite-dimensional C*-algebras. On the basis of 
Proposition 2.5.2 one might expect that the unitization !Bo(1i)n of !Bo(1i) cannot 
be perfect, but the opposite is true. While 2.5.2 does show that any element of fJ3('Jt) 
is continuous on all points of P(fJ3o(1i)n) except Woo (cf. (2.2», only members of 
!Bo(1i)n are continuous at Woo, too. Finally, deeper analysis shows that fJ3(,}-{) is 
perfect for any Hilbert space '}-{. 

3.3 Spectral Theorem and Jordan Product 

Given a C*-algebra 2l., one can use Proposition 3.1.2 to endow 2l.]R(P), and hence 
2l.]R (cf. (3.4», with the structure of a J LB-algebra; cf. 1.1.9. It is enlightening, 
however, to derive this structure from the pure state space P = P(2l.). By Theo­
rem 3.1.5 this is a Poisson space with a transition probability; our first goal is to 
reconstruct the Jordan product on 2l.]R(P) from the transition probabilities. 

Definition 3.3.1. Let P be a well-behaved transition probability space (cf 2.7.5). 
A spectral resolution of an element A E foo(P, JR) is an expansion (in the topology 
of pointwise convergence) 

A = I:>-.jpQj, 
j 

(3.8) 

where A. j E JR, and {Q j} is an orthogonal family of orthoclosed subsets ofP (cf 
(2.61 »for which Lj PQj equals the unit function on P. 

Proposition 3.3.2. IfP = Ua lF1ia with transition probabilities (2.65), then any 
A E 2l.:(P) (cf 3.1.1) has a unique spectral resolution. 

By 2.5.4 and 2.8.2 this applies, in particular, to the pure state space of a C*­
algebra. 

Firstly, the case of reducible P may be reduced to the irreducible one by grouping 
the Pi in A = L~l CiPPI into mutually orthogonal groups, with the property 
that (Up)..L..L is irreducible if the union is over all Pi in a given group. Thus we 
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henceforth assume that P is irreducible, hence of the form P = IfP1-{ with the 
transition probabilities (2.65). 

If P is finite-dimensional, the proposition is simply a restatement of the spectral 
theorem for Hermitian matrices. In the general case, let A be as above, and Q := 
{PI, ... , PN }H. If a E Q, then A(a) = Lj AjpQj(a) for some Aj and mutually 
orthogonal Q j c Q, since the situation is finite-dimensional. If a E Q-L, this 
equation trivially holds, as both sides vanish. 

Let us assume, therefore, that a lies neither in Q nor in Q-L. Define C{JQ (a) by the 
following procedure: Lift a to a unit vector E in 1{, project E onto the subspace 
defined by Q, normalize the resulting vector to unity, and project back to IfP1-{. In 
the Hilbert space case relevant to us, the transition probabilities satisfy 

pea, p) = pea, C{JQ(a))p(C{JQ(a), p) (3.9) 

for P E Q and a ~ Q-L. We now compute A (a) by using this equation, followed by 
the use of the spectral theorem in Q, and subsequently recycle the same equation 
in the opposite direction. This calculation establishes the proposition for a ~ 
Q-L. • 

Proposition 3.3.3. lfP is the pure state space of a C' -algebra, A = Lj A j PQj 

is the spectral resolution of A E '2l~(P), and A2 is defined by A2 = Lj A7PQj' 
then the product 0 defined by 

(3.10) 

turns '2l~o(P) into a Jordan algebra. Moreover, this Jordan product 0 can be 
extended to '2l~(P) (cf 3.1.1) by (norm-) continuity, which thereby becomes a 
J B-algebra. Finally, the bidual '2l1R (P) (with sup-norm inherited from eOO(p, JR)) 
is turned into a J B -algebra by extending 0 by w' -continuity. 

The bilinearity of (3.10) is not obvious, and would not necessarily hold for 
arbitrary well-behaved transition probability spaces in which a spectral theorem 
(in the sense of 3.3.2) is valid. In the present case, it follows from the explicit form 
of the transition probabilities in IfP1-{. The quickest way to establish bilinearity, of 
course, is to look at a function PQ (where Q lies in a sector IfP1-{ of P) as the 
Gelfand transform of a projection operator on 1{ (cf. (2.43)). 

Given bilinearity and the spectral theorem 3.3.2, the proof of (1.2) reduces to 
showing that (p p 0 Pr) 0 p" = P p 0 (Pr 0 p" ) for p, a orthogonal and r arbitrary. 
Through the (inverse) Gelfand transform this reduces to a calculation with 3 x 3 
matrices. The first Jordan algebra axiom is trivially satisfied by (3.10). 

We now show that the axioms (1.7), (1.8) hold in '2l~(P); the norm-closure 
'2l~(P) will then be a J B-algebra. If A is given by (3.8), and A := SUPj IAjl, then 
on the one hand IIAII ::: A, since each Aj is a possible value of A (assumed at any 
point in Qj)' On the other hand, IA(a)1 :::; A Lj pQj(a) = A by (2.56), so that 

II A II :::; A. Hence II A II = A. With our definition of A 2, this immediately establishes 
(1.9) and (LlO) (which are equivalent to (1.8)). Axiom (1.7) follows if we assume 
that II A II :::; 1 and II B II :::; 1, use (3.10), the observation that if f, g E eoo are both 
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positive then IIf - gil is majorized by max{1I fll, IIgll}, and the triangle inequality; 
these steps yield II A 0 B II :::: 1. 

The statement about the bidual is a direct consequence of Lemma 3.3.4 
below. • 

Without proof we state a generalization of Proposition 1.7.4. 

Lemma 3.3.4. Let (2tJR, 0) be a J B -algebra. Then the Jordan product on 2tJR has 
a bilinear extension (called 0 as well) to 2tlit such that the maps A ~ A 0 Band 
A ~ BoA are w* -continuous and II A 0 B II :::: II A II II B II for all A, B E 2tlit. An 
extension with these properties is unique. 

Of course, this discussion includes the situation where 2t is commutative. In that 
case, the trivial transition probabilities (2.58) and the above construction imply that 
the Jordan product on 2tJR('P) = lOO(P, JR) is pointwise multiplication, as it should 
be. 

3.4 Unitarity and Leibniz Rule 

The following result shows that the Leibniz rule (1.4) in a J LB-algebra 2tJR is 
a consequence of the unitarity condition relating the Poisson structure and the 
transition probabilities on P(2t). 

Proposition 3.4.1. Let P be a Poisson space with a transition probability (see 
3.1.4) in which every A E 2t:(P) has a unique spectral resolution (in the sense 
of 3.3.1). Assume that for each h E 2tL (P, JR) (cf (3.2)) the map A ~ {h, A} 
is bounded on 2tL(P, JR) (with sup-norm). If a Jordan product 0 is defined on 
2t dP, JR) through the transition probabilities, in the manner of Proposition 3.3.3, 
then 0 and the Poisson bracket satisfy the Leibniz rule. 

The boundedness assumption holds when P is the pure state space of a C*­
algebra; it is made mainly to simplify the proof. The proposition evidently holds 
when 2tL (P, JR) is a Poisson algebra, for which the assumption is violated. 

Writing 8h(A) for {h, A}, the boundedness of 8h implies that the series at(A) = 
L:otn8Z(A)/n! converges uniformly and defines a uniformly continuous one­
parameter group of maps on 2tL (P, JR). On the other hand, if a (t) is the Hamiltonian 
flow of h on P (cf. 2.3), then at as defined by (2.13) must coincide with the 
definition above, for they each satisfy the differential equation (2.14) with the same 
initial condition. In particular, the flow in question must be complete. Moreover, 
it follows that the Leibniz rule (yet to be established) is equivalent to the property 
that at is a Jordan morphism for each t; this, in tum, can be rephrased by saying 
that at(A2) = at(A)2 for all A E 2tL(P, JR). 

Let A E 2t~o(P) n 2tdP, JR). By (3.8) and (2.61), A = Lk AkPek' where all ek 
are orthogonal. Unitarity implies firstly that at(A) = Lk AkPek(-t), and secondly 
that the ek( -1) are orthogonal. Hence at(A) is given in its spectral resolution, so 
that (at(A»2 = Lk A~Pe.(-t). Repeating the first use of unitarity, we find that 
this equals at(A2 ). Hence the property holds on 2t:(P). Now 2t:(p) is dense 
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in ~lu~.(P) in the topology of pointwise convergence in eOO(p, R). But AI. ---+ A 
pointwise clearly implies at(AA) ---+ at(A) pointwise. This, plus the w*-continuity 
of the Jordan product (cf. 3.3.4), proves the desired result. • 

We return to the pure state space P of a unital C* -algebra. Through the results 
3.3.3 and 3.4.1, the fact that Qlll~'<P) c QldP, R), and the observation that the 
associator identity (1.6) is a consequence of the special form of the transition 
probabilities, we have reconstructed QlJR(P) as a J LB-algebra. The final ingredient 
on P that allows one to reconstruct the C* -algebra Ql whose pure state space it is, is 
its uniform structure (namely, the w* -uniformity defined by QlJR). The J L B -algebra 
QlJR is given by (3.4), and the C*-algebra Ql is then constructed as in 1.1.9. 

Corollary 3.4.2. Let Ql be a unital C* -algebra with pure state space P(Ql), the 
latter seen as a uniform Poisson space with a transition probability. Then a : 
QlJR ---+ QlJR is an automorphism (cf. 1.1.3) iff the map a* : P ---+ P, defined by 
a* peA) := p(a(A», 

1. is a bijection ofP; 
2. is uniformly continuous, along with its inverse; 
3. is a Poisson map; 
4. leaves the transition probabilities invariant. 

This is now obvious, as we have seen that the data preserved by a determine 
P(Q1), whereas the data preserved by a* determine QlJR. • 

Corollary 3.4.3. A bijection of Int that preserves transition probabilities is 
induced by a unitary or an antiunitary operator on 'H.. 

We start with Ql = ~o('H.), for which QlJR(P) = ~('H.)JR (cf. 1.6.5 and 3.1.2). 
By Proposition 3.3.3, the Jordan structure on ~('H.)JR is therefore determined by 
the transition probabilities on P(Ql) = Int. Hence the given bijection of P must 
correspond to a Jordan automorphism of ~('H.)JR. The corollary then follows from 
the following lemma. 0 

Lemma 3.4.4. Any Jordan automorphism a of~('H.)JR is (anti) unitarily imple­
mented. That is, a(A) = U AU* for some unitary or antiunitary operator U on 
'H.. 

To start, extend a to ~('H.) by (complex) linearity. The definition of a Jordan 
morphism then implies, after some manipulations, that 

(a(AB) - a(A)a(B»(a(AB) - a(B)a(A» = 0 

for all A, B E ~('H.)JR. Since ~('H.) acts irreducibly on 'H., it follows that a must 
either be a morphism (i.e., a(AB) = a(A)a(B» or an antimorphism (a(AB) = 
a(B)a(A». If a is a morphism, one defines the unitary operator U as follows. Take 
an arbitrary unit vector Q E 'H.; since Q is cyclic for ~('H.), one may start defining U 
on vectors of the type AQ, where A E ~('H.). Let the range of the projectiona([Q)) 
be CQ(h where Qa is a unit vector. Then define U AQ := a(A)Qa • The property 
lIa(B)1I = liB II for all B E ~('H.)(withB = A[Q])showsthatllUAQIl = IIAQII, 
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so that U is well-defined and unitary. The property a(A) = U AU* easily follows 
from the fact that a is a morphism. 

The case where a is an antimorphism can be reduced to the previous paragraph. 
Define a bya(A) = a(A *); this is an antilinear morphism of ~(1i). The operator 
U is then constructed as in the previous paragraph, and evidently turns out to be 
an@~~ • 

3.5 Orthomodular Lattices 

In this section we collect some material from the theory of lattices that will be 
used in what follows. 

Definition 3.5.1. A lattice .c is a partially ordered set (poset) in which any two 
elements x. y have a supremum (or least upper bound) x V y (that is, x :s: x v y 
and y :s: x v y, and if x :s: z and y :s: zfor some z, then x v y :s: z) and an infimum 
(or greatest lower bound) x /\ y (i.e., x ~ x /\ y and y ~ x /\ y. and if x ~ z and 
y ~ zfor some z, then x /\ y ~ z). 

An equivalent definition of a lattice is that it is a set .c equipped with two 
idempotent, commutative, and associative operations V. /\ : .c x .c -+ .c that 
satisfy x v (y /\ x) = x and x /\ (y V x) = x. The partial ordering is then defined 
by x :s: y if x /\ y = x. The largest element in the lattice, if it exists, is denoted by 
I, and the smallest one (if it exists) by o. Hence 0 :s: x :s: I for all x E .c. 

A lattice .c is called complete when every subset of .c has a supremum as well 
as an infimum. An atom of a lattice .c with 0 is an element a for which 0 :s: x :s: a 
implies x = 0 or x = a. A lattice with 0 is called atomic if for every x f. 0 in L 
there is an atom a f. 0 such that a :s: x. All lattices occurring in this section are 
complete and atomic. 

The "classical" example of a lattice is obtained by taking a set S and defining .c 
as the power set 2s of S (i.e., the set of all subsets of S). The lattice structure of .c 
consists of v := U and /\ := n.1t follows that I = S, whereas 0 = 0 is the empty 
set. Such a lattice is distributive, in that 

x V (y /\ z) = (x v y) /\ (x v z); (3.11) 

this is equivalent to the same property with v and /\ swapped. 
One can weaken the distributivity property by requiring only (3.11) if x :s: z; 

thus a lattice is said to be modular if 

x :s: z ===> x V (y /\ z) = (x v y) /\ Z Vy. (3.12) 

The canonical example of a nondistributive modular lattice is the collection L(V) 
of all linear subspaces of a (left) vector space V (over an arbitrary division ring [J); 

the reader may keep [J) = 1R or C in mind). The lattice operations are x /\ y : = x ny, 
while x v y := x + y is the linear span of x and y. Equivalently, the partial order 
is given by inclusion. Evidently, I = V and 0 = O. 

Definition 3.5.2. An orthocomplementation on a lattice .c with 0 and I is a map 
x ~ x.L, satisfying (for all x. y E .c) 
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• x1-1-=x. 
• x:::: y {=:} y1- ::::x1-. 

• x 1\ x1- = o. 
• x V x1- = f. 

It follows that 11- = 0 and 01- = f, and that 

(x v y)1- = x1- 1\ y1-; (x 1\ y)1- = x1- V y1- (3.13) 

(de Morgan's laws). A lattice with an orthocomplementation is called an 
orthocomplemented lattice. For example, in the lattice £ = 2s an orthocom­
plementation is given by the set-theoretic complement. 

A lattice homomorphism between two orthocomplemented lattices is a map 
preserving:::: and ..L (and hence V and 1\). A lattice isomorphism is a bijection that 
with its inverse is a homomorphism; we write £( c::: £2 if £( and £2 are isomorphic. 
Similarly, a lattice automorphism is an isomorphism between a lattice and itself. 

The following weakening of the modular law (3.12) will soon tum out to be of 
prime relevance. 

Definition 3.5.3. An orthocomplemented lattice £ is called orthomodular if 
(3.12) holds for y = x1-, that is, 

x :::: z ==} x V (x1- 1\ z) = z. (3.14) 

The following reformulation of orthomodularity will be used later on. 

Lemma 3.5.4. An orthocomplemented lattice £ is orthomodular if.! x :::: z and 
x1- 1\ Z = 0 imply x = z. 

If (3.14) holds and x1- 1\ Z = 0, then z = x V 0 = x. Conversely, if x :::: z, then 
z v (x1- 1\ z) = z, so that x v (x1- 1\ z) :::: z. Assuming that x1- 1\ Z = 0, one infers 
(x V (x1- 1\ z))1- 1\ Z = o. Now apply the condition stated in the lemma with x 
replaced by x V (x1- 1\ z). • 

Let (, ) : V x V be a Hermitian form (that is, a nondegenerate sesquilinear 
form) on V, defined relative to an involution A f-+ I of l!) (think of complex 
conjugation for l!) = C, and of the identity map on R). The orthoplement x1- of 
x E L(V) is defined in the obvious way by x1- := {\II E V I (\II, Cl» = OVCl> EX}; 

this is an element of L(V) as well. One easily verifies that x U 1- = x1- (cf. (2.55) 
and subsequent text), but in general x :::: X 1-1- , rather than the equality required in 
Definition 3.5.2. 

Therefore, one considers the lattice LeV) of orthoclosed subspaces of V, that 
is, x E L(V) lies in LeV) iff XU = x. The lattice operation 1\ is the same as 
in L(V), but v in LeV) is defined by x V y = (x + y)u (this is the smallest 
orthoclosed subspace containing x and y). This lattice is evidently complete. One 
can show that LeV) is modular iff V is finite-dimensional. In fact, in general, 
any finite-dimensional linear subspace of V is orthoclosed, so that L(V) = LeV) 
if V is finite-dimensional. Even in the finite-dimensional case, ..L need not be an 
orthocomplementation on £(V).1t is almost trivial, however, to check the following 
necessary and sufficient extra condition. 
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Proposition 3.5.5. The map x ~ x~ is an orthocomplementation on C(V) iff 
(x + x~)~ = o for all x E C(V), which is equivalent to the property ('11, '11) = 
o {} '11 = 0 (that is, (, ) is anisotropic). If, in addition, x + x~ is orthoclosed 
(implying x + x ~ = V) for all x E C( V), then C( V) is orthomodular. 

To show that the additional assumption implies orthomodularity, note that on 
this assumption, for any x one has z = z 1\ V = Z 1\ (x + x~). If x ::: z, this 
equals x + z 1\ x~ by the modular law (3.12) in L(V) (with y = x~; recall + is 
v in L(V». Taking the double orthoplement of the equation Z = x + z 1\ x~ thus 
found yields z~~ = z for the left-hand side (since z E C(V) by assumption) and 
(x + z 1\ X~)H = X v (z 1\ x~) by the definition of v in C(V). This proves the 
orthomodular law (3.14). • 

Corollary 3.5.6. The lattice CUt) of all closed subspaces of a Hilbert space is 
complete, atomic, and orthomodular. 

This follows from Proposition 3.5.5, since a linear subspace of a Hilbert space 
is closed iff it is orthoclosed. • 

The lattices C(V) (and in particular C(Ji» enjoy the property of irreducibility. 
Here a lattice is said to be reducible if it is (isomorphic to) a nontrivial Cartesian 
product C = C1 x C2 (with lattice operations defined componentwise). If not, it is 
called irreducible. The key tool in analyzing reducibility of orthocomplemented 
lattices is the center C(C) of C. This consists of the elements c E C for which 
x = (x 1\ c) V (x 1\ c~) for all x E C. Clearly, 0, I E C(C). 

Proposition 3.5.7. An orthocomplemented lattice C is irreducible iff the cen­
ter is trivial, in that C(C) = {o, l}. In general, any c E C(C) corresponds 
to a factorization C ~ [0, c] x [0, c~], where the isomorphism is given by 
x *+ (x 1\ C, X 1\ c~). The orthocomplementation in [0, c] x [0, c~] is defined 
by (x, y)~ := (x~ 1\ C, y~ 1\ c~). 

Here [0, c] = {x E C 10::: x ::: c}, etc. Note that I *+ (c, c~). The proof of this 
proposition is a straightforward definition-chasing. 0 

3.6 Lattices Associated with States and Observables 

The connection between states and observables is further elucidated by consider­
ing various lattices naturally defined in terms of these. Also, one such lattice in 
particular will playa central role in the axiomatization of pure state spaces. 

Proposition 3.6.1. The collection of projections in a von Neumann algebra !JJ1 
forms a complete orthomodular lattice C(!JJ1), in which the partial ordering is 
given by the usual order structure inherited from !JJ1 (seen as a partially ordered 
space, cf 1.3), and the orthocomplementation is x~ = I - x, where I =]I. 

The lattice C(~(Ji» is isomorphic to C(Ji). 

We first demonstrate the last claim. The isomorphism is obtained by identifying 
a projection [K] E C(~(H» with the closed subspace K E C(H) onto which it 
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projects (given a projection p, the subspace K ~ 1t consists of those \}I E 1t for 
which p \}I = \}I; the fact that K is closed follows from elementary estimates). The 
definition of the order :s and the orthocomplementation 1- in the two lattices then 
rapidly leads to the conclusion that this identification leads to a lattice isomorphism; 
note that for projections, x :s y iff x = xy. One then applies Proposition 3.5.5. 
The proposition itself then follows from Definition 1.7.3 and Theorem 1.7.2, which 
allow us to regard C(!JJt) as a sub lattice of C(1t) for some Hilbert space 1t. The 
completeness of C(!JJt) is equivalent to the property that!JJt is strongly closed. Note 
that!JJt is determined by C(!JJt) in the sense that !JJt = C(!JJt)". • 

There are two von Neumann algebras naturally associated with a C* -algebra ~. 
Firstly, one can take the bidual !JJt = ~** = Jru(~)" (cf. 1.7.4); through Propo­

sition 3.6.1 this defines the complete orthomodular lattice C(~**). The atoms of 
C(~**) are the minimal projections; this lattice is atomic only for a limited class 
of C* -algebras. Atomicity holds, for example, if ~ = lBo(1t), in which case 
~** = 1l3(1t), so that C(~**) ::::: C(1t) by 3.6.1. 

Secondly, one may choose!JJt = Jrra(~)". In view of the isomorphism Jrra(~)~ ::::: 
~~(P) (cf. (3.1) and 3.1.2), we write 

C(~R(P» := C(Jrra(~)"). (3.15) 

This is a complete atomic orthomodular lattice. 
The lattice C(~**) turns out to be isomorphic to a certain lattice defined in terms 

of the state space S(~). This requires the following concept. 

Definition 3.6.2. A face F of a convex set K is a convex subspace that is closed 
under "purification". That is, F is a face of K iff given a decomposition W = 
AWl + (l - A)w2for some A E [0,1], the condition WI, W2 E F implies WE F, 
and conversely, W E F implies WI, W2 E F. 

Clearly, a face consisting of a single point is an extreme point of K. The set K 
is a face, and we regard the empty set 0 as a face, too. For example, the faces of 
an equilateral triangle (interior plus boundary) in 1l~2 are the empty set, the three 
comers, the three (closed) sides of the triangle, and the triangle itself. 

The set F(K) of all faces of K is partially ordered by inclusion, and has a 
minimal element 0 = 0 and a maximal element I = K. The intersection of an 
arbitrary family offaces is a face as well. Hence F(K) is a complete lattice with 0 

and I, for which x /\ y = x ny, and x v y is the intersection of all faces containing 
x U y. The atoms of F(K) are the extreme points. 

Even if K = S(~), the lattice F(K) is not particularly well behaved. As the 
following result shows, it turns out to be preferable to look at a smaller set of faces. 

Proposition 3.6.3. The collection F(S(~» of all norm-closed faces in the state 
space of a unital C* -algebra is a complete orthomodular lattice under the following 
operations: :s is ~, and F -'- is the supremum of the set of all norm-closed faces 
that are orthogonal to F (here we say that F2 is orthogonal to FI , or F2 1- F" if 
there is an element A E [0, [] ~ ~llt ::::: Ab(S(~), R.) such that A(w) = 1 for all 
W E FI and A(w) = ° for all W E F2)' Finally, F(S(~» is isomorphic to C(~**). 
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Given a projection P E QI.]R*, the set Fp := {w E S(QI.) I w(p) = I} is easily 
shown to be a norm-closed face in S(QI.). Equally easily, given a norm-closed 
face F, the set IF := {A E QI.]R* I w(A* A) = OVw E F} is seen to be the self­
adjoint part of a a -weakly closed left ideal in QI.**. A technical argument in the 
theory of von Neumann algebras shows that any such ideal must be of the form 
IF = QI.]R* p.l for some projection p.l .It is then easily checked that F p = F, and that 
the correspondence p # Fp thus established yields an isomorphism of £(QI.**) 
and F(S(QI.» as lattices. Note that under this isomorphism minimal projections 
correspond to pure states. 

We now tum to the orthocomplementation. If A = 0 on Fp and A E [0, II], then 
vA E IFp. Hence vA = Bp.l for some B, so that A = Ap.l. Since A* = A, 
this implies A = p.l A, so that A = p.l Ap.l. Now, p.l Ap.l ~ p.l IIp.l = p.l, 

since A ~ II, so that A ~ p.l. A similar argument shows that A = I on F p and 
A E [0, II] imply p ~ A. Therefore, if A = 0 on Fp2 , A = Ion Fp1 , and A E [0, II], 
then PI ~ A ~ pi, from which PI ~ pi; we say that PI .1 P2. The converse is 
obvious, so that we have shown that FPl .1 FP2 is equivalent to PI .1 P2. We now 
notice that p.l equals the supremum of alI q for which p .1 q, and conclude that 
the bijection p # F p preserves orthocomplementation. D 

We are going to show that the lattice £(Ql.IR(P» is isomorphic to a certain lattice 
defined by the transition probabilities on P(QI.). For the moment, however, we 
return to the general setting of transition probability spaces (cf. 2.7). 

Proposition 3.6.4. The collection of orthoclosed subsets of a well-behaved tran­
sition probability space P forms a complete atomic orthomodular lattice £(P) 
under the operations x /\ y = x ny, x v y = (x U y).l.l (equivalently, ~ is ~), 
and.l is given by (2.55). 

The orthomodularity follows from Lemma 3.5.4: Assume x ~ z, and choose a 
basis B(z) ofz containing a basis B(x) of x . It follows from (2.56) and the definition 
/\ = n that B(z)\B(x) is a basis of x.l /\ z. If this equals 0, then B(z) = B(x), and 
hence z = x. 

Equations (2.59) and (2.53) imply that pH = P for all PEP; hence each point 
ofP lies in £(P), and the definition of ~ implies that these points are precisely the 
atoms of £(P). The completeness of £(P) is obvious, since arbitrary intersections 
of orthoclosed subsets are orthoclosed, and the lattice is orthocomplemented. • 

Proposition 3.6.5. Let P = Ua Pa be the decomposition of a well-behaved 
transition probability space into its sectors (cf 2.7.2). Then 

(3.16) 

Here each factor £(Pa ) is irreducible; in particular, P is irreducible iff £(P) is 
irreducible. 

If C is a component of P (so that P = C U C.l), and Q, R E £(P) satisfy 
Q ~ C and R ~ P\C = C.l, then Q U R = Q v R; this follows from repeated 
application of (3.13), and from Q.l.l = Q (etc.). Since sectors are components, 
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this shows that c := Pa (regarded as an element of C(P» is in the center C(C(P». 
Equation (3.16) then follows from Proposition 3.5.7. 

Now suppose that P is irreducible, yet C(C(P» nontrivial. This means that 
there exists an orthoclosed subset c <; P (where c i=- 0 and c i=- P) such that 
Q = (Q /\ c) V (Q /\ c-L) for all orthoclosed Q <; P. Since P is irreducible, one 
cannot have P = c U c-L , so that there is an atom p lying in neither c nor c-L . Taking 
Q = p we thus find Q /\ C = Q /\ c-L = 0 (recall that /\ = n in C(P». This shows 
that such c cannot exist, and therefore C(P) must be irreducible. • 

Theorem 3.6.6. If2! is a C*-algebra with pure state space P(2!), one has the 
lattice isomorphism (cf (3.15) and 3.6.4) 

C(2!IR(P» ~ C(P(2!». (3.17) 

By Theorems 2.5.4, 2.8.2, and 3.6.5, one has C(P(2!» ~ Op C(Inip)' On the 
other hand, C(2!IR(P» (which by definition is C(11ra(2!)f~), cf. Proposition 3.1.2) 
equals C(E9p~(1{p» by (2.3). The center of this lattice is generated by the minimal 
central projections [1{p], and by 3.5.7 and 3.6.1. One therefore obtains C(2!IR (P» ~ 
Op C(1{p)' Finally, if K is a closed subspace of some Hilbert space 1{, and K] := 
K n §1{, then K ++ r(K j ) (where r : §1{ ~ Ini is the canonical projection, cf. 
2.5) establishes an isomorphism between the lattices C(1{) and C(Ini). • 

The lattice C(P(2!» occurs in an interesting reformulation of the spectral the­
orem. In preparation, recall from basic measure theory that the a-algebra 13(JR) 
of Borel subsets of JR is an orthocomplemented lattice in which S is <; (hence 
B] V B2 = B] U B2, B j /\ B2 = B] n B2, 0 = 0, and I = JR). This lattice is 
not complete, but merely a-complete (i.e., V and /\ exist for arbitrary countable 
families). 

Theorem 3.6.7. For each self-adjoint element A of a C* -algebra 2! there exists 
a lattice homomorphism CPA : 13(JR) ~ C(P(2!» with the property that 

(3.18) 

if the B j are mutually disjoint. For each p E P(2!) the Gelfand transform A then 
has the spectral resolution 

A(p)= r A.dp~ (A.), 
JIR A 

where the Borel measure P:A on JR is defined by (cf (2.61)) 

P~A (B) := P'PA(B)(P)· 

(3.19) 

(3.20) 

This follows from the usual spectral theorem for self-adjoint operators on a 
Hilbert space, applied to 11m(A) (cf. 2.2.7). It is easily checked that the precise 
choice of 11m (which, we recall, depends on choosing a pure state in each sector 
of P(2!» does not affect any of the statements in the theorem, as different choices 
lead to equivalent realizations. • 
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3.7 The Two-Sphere Property in a Pure State Space 

The lattice £(P(I.((» plays a central role in the proof of the following char­
acterization of the pure state space of a C* -algebra as a transition probability 
space. 

Definition 3.7.1. A well-behaved transition probability space P (with associated 
lattice £(P») is said to have the two-sphere property iffor any two points p, a 
(with pi-a) lying in the same sector ofP, the space p Va is isomorphic as 
a transition probability space to the two-sphere S2, with transition probabilities 
given by p(z, W) = ~(l + cos8(z, w», where 8(z, w) is the angular distance 
between z and w, measured along a great circle. 

To understand the nature of this property, recall that a two-sphere S2 with radius 
I may be regarded as the extreme boundary of the unit ball B3 C JR.3. The latter 
is affinely isomorphic to the state space S(VJ12(C» of the C*-algebra of 2 x 2 
matrices, so that S2 is the pure state space of this algebra. Concretely, we identify 
a state on VJ12(C) with a density matrix p on C2 , which may be parametrized as in 
(1.50). Restricted to the extreme boundary, this parametrization leads to a bijection 
between IP'C2 and S2. Under this bijection the transition probabilities (2.65) on 1P'C2 

are mapped into the ones stated in 3.7.1. In other words, the two-sphere property 
states that there exists a fixed two-sphere S;, :::::: 1P'C2 , equipped with the standard 
Hilbert space transition probabilities p = PC2 given by (2.65), and a collection 
of bijections Tpva : p V a --+ S;" defined for each orthoclosed subspace of the 
type p V a (where p and a #- p lie III the same sector of P), such that for all 
p', a' E p Va, 

pC2(Tpva (p'), Tpva(a'» = p{p',a'). (3.21) 

Theorem 3.7.2. Let a well-behaved transition probability space P (with associ­
ated lattice £(P») have the two-sphere property. IfP has no sector of dimension 3, 
then P :::::: UalP'7ta as a transition probability space (for somefamily Pia} of Hilbert 
spaces), where each sector lP'7ta is equipped with the transition probabilities (2.65 ). 

This statement is not necessarily false when P does have sectors of dimension 
3 (in fact, we believe it to be true in that case as well); unfortunately, the proof 
below does not work in that special dimension. 

If p and a lie in different sectors of P, then p V a = {p, a}; this follows from 
repeated application of (3.13) and pl...L = P (etc.). In any case, it is sufficient 
to prove the theorem for each sector separately, so we may assume that P is 
irreducible. The first step in the proof is then to construct the lattice C{P) (cf. 
3.6.4). The strategy of the proof is to characterize £(P), and then use the so-called 
coordinatization theorem in lattice theory to show that C{P) = £(1t) for some 
Hilbert space 1t. 

We already know that £(P) is orthomodular, atomic, and complete (as estab­
lished in Proposition 3.6.4); by 3.6.5 it is irreducible (in the sense of 3.5.7) as well. 
A lattice £ is called atomistic if every element is the supremum of the collection 
of its atoms. If £ is orthomodular, atomic, and complete, then it is atomistic. For let 
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x be the supremum of the atoms in some Z E C, and assume x < z. By (3.14) one 
then has x1- /\ Z =1= 0, so that x1- /\ Z must contain an atom, which is a contradiction. 

To apply the coordinatization theorem, we need to establish a further property 
of C(P). An atomistic lattice C with 0 is said to have the covering property if 
for an atom a E C and an arbitrary element x E C with a /\ x = 0, the inclusions 
x S y S x Va for some y E C imply y = x or y = x Va. For example, the 
lattices C(V) in 3.5 have the covering property. 

Lemma 3.7.3. C(P) has the covering property. 

Consistent with previous notation, we denote atoms of C(P) (hence points of 
P) by p, a, and arbitrary elements by Q, Qi, R, S. 

Let n = dim(Q) (cf. 2.7); for the moment we assume n < 00. We will first use 
induction to prove that if p fit Q, then the element (p v Q) /\ Q1- is an atom. 

To start, note that if Q I S Q2 for orthoclosed Q I, Q2 sets of the same finite 
dimension, then Q I = Q2. For an orthoclosed set in P is determined by a basis of it 
(cf. (2.62)), which in tum determines its dimension. This implies that dim(p v Q) > 
dim(Q) if p fit Q (take QI = Q and Q2 = p v Q). Accordingly, it must be that 
(p v Q) /\ Q1- > 0, for equality would imply that dim(p v Q) = dim(Q). 

For n = 1, Q is an atom. By assumption, p v Q is S2; hence (p v Q) /\ Q1-
is the antipodal point to Q in p v Q, which is an atom, as desired. Now assume 
n > 1. Choose a basis {edi=l, ... ,dim(Q) of Q; then Q = V7=lei' Put R = v7::iei; 
then R < Q, whence Q1- < R1-, so that (p v Q) /\ Q1- S (p v Q) /\ R1-. The 
assumption (p v Q) /\ Q1- = (p v Q) /\ R1- is equivalent, on use of Q = R v en, 
(3.13), and the associativity of /\, to«p v Q)/\ R1-)/\e; = (p v Q)/\ R1-, which 
implies that (p v Q) /\ R1- S e;. This is not possible, since the left-hand side 
contains en. Hence 

0< (p v Q) /\ Q1- < (p v Q) /\ R1-. (3.22) 

It follows from the orthomodularity of C(P) that if R S Sand R S Q, then 

(3.23) 

Since R < Q and R S p v R, one has p v Q = (p v R) v Q. Now use (3.23) to 
find 

The right-hand side equals a v en, where a := (p v R) /\ R1- is an atom by the 
induction hypothesis. The equality a = en would imply that p E Q, hence a =1= en. 
But then (3.22) and the two-sphere property imply 0 < dim«p v Q) /\ Q1-) < 2, 
so that (p v Q) /\ Q1- must indeed be an atom. 

It follows that dim(p v Q) = dime Q)+ 1. Hence any S C P satisfying Q S S S 
P v Q must have dimeS) equal to dim(Q) or to dim(Q) + 1. In the former case, it 
must be that S = Q by the dimension argument earlier. Similarly, in the latter case 
the only possibility is S = p v Q. All in all, we have proved the covering property 
for finite-dimensional sublattices. A complicated technical argument involving the 
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dimension theory of lattices then shows that the covering property holds for all 
x E C(P). 0 

Atomistic lattices with the covering property are known as AC-Iattices. At this 
stage we can sum up by saying that C(P) is a complete irreducible orthomodular 
AC-lattice. This allows us to use the following classical coordinatization theorem; 
cf. 3.5 for the definition of C(V). This involves the notion of a chain, which is 
a totally ordered subset of the lattice C. The length (also called rank, height, 
or dimension) of an AC-lattice C is the cardinality of a maximal chain (which 
contains 0 and l) minus I, which is well-defined because of the covering property. 
This number coincides with the minimal number of atoms Pi for which [ = V Pi; 
for C = C(P) it is equal to the dimension of P (as defined in 2.7). 

The coordinatization theorem for AC-Iattices is the following. 

Theorem 3.7.4. Let C be a complete irreducible orthomodular AC-lattice of 
length:::: 4. There exists a vector space V over a division ring JD) (both unique 
up to isomorphism), equipped with an anisotropic Hermitian form (defined rel­
ative to an involution ofll)), and unique up to scaling), such that C ~ C(V) as 
orthocomplemented lattices. 

We omit the lengthy and complicated proof of this theorem. In the context of 
our lattice C(P), the essential point is that the division ring Il)) is constructed by 
choosing two atoms p and a i- p, whereupon Il)) ~ (p va) \ a. The vector space 
V is constructed in terms of a basis {ei}, which corresponds to a basis {ei} of P 
(or, more generally, of the set of atoms in C); hence the length of C is equal to 
the dimension of V. We will need neither the explicit form of the addition and 
multiplication in Il)), nor the scalar multiplication in V (which are given in terms 
of a certain geometric procedure). To proceed, the following information suffices. 

Lemma 3.7.5. Let V be 3-dimensional, and let C(V) carry a topology for which 
the lattice operations V and /\ are jointly continuous. Then Il)) (regarded as a 
subset of the collection of atoms in C(V»), equipped with the topology inherited 
from C(V), is a topological division ring (i.e., addition and multiplication are 
jointly continuous). 

This is clear from the explicit construction of addition and multiplication in 
Il)). • 

Let F E C(P) be finite-dimensional. We can define a topology on [0, F] (i.e., 
the set of all Q E C(P) for which Q :::: F) through a specification of convergence. 
Given anet {Qd in F, we say that QA ~ Q when eventually dim(QA) = dim(Q), 
and if there exists a family of bases {et} for {Qd, and a basis {e j } of Q, such that 
Li,j p(et, ej) ~ dim(Q). This notion is actually independent of the choice of all 
bases involved, since L j p(p, e j) is independent of the choice of the basis in Q 

for any PEP, and similarly for the bases of QA (to see this, extend {ej }~~I(Q) to 

a basis {e j } ~~I(P) , and use (2.56». An equivalent definition of this convergence is 

that QA ~ Q if P(PA' a) ~ 0 for all a E F /\ Q-.l and all {pd such that PA E QA' 
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Lemma 3.7.6. The above construction defines a topology on F, which is 
Hausdorff. 

The first claim is easily verified. For the second, let QA -+ Q and QA -+ 
R. Then P(PA' a) -+ 0 for all a E Q~ V R~ = (Q /\ R)~, and all {PAl for 
which PA E Q A' Choose a basis {e j 1 of Q that extends a basis of Q /\ R. Then 
"dim(QAR) ( ) _ I b I "dim(Q) ( .) - l' Q Q H L..j=! P PA' ej - , ut a so L..j=! p PA' eJ - ,SInce A -+ . ence 
P(PA' a) -+ 0 for all a E Q /\ (Q /\ R)~. This leads to a contradiction unless 
Q=R. • 

Lemma 3.7.7. The restriction of this topology to any two-sphere P Va :::= S2 in 
F induces the usual topology on S2 . Moreover, v and /\ are jointly continuous on 
any [0, Fl, where F is a 3-dimensional subspace of C(P). 

If we restrict the topology to the atoms in F, then PA --+ P if P(PA' p) -+ 1. 
On F = P v a :::= S2, one can easily show from the explicit form of the transition 
probabilities P that the convergence p( 1/IA' 1/1) -+ 1 is equivalent to p( 1/IA' q;) -+ 
p(1/I, q;) for all q; E P Va. Namely, if P(1/IA' 1/1) -+ 1 in lP1i (for any Hilbert space 
1i; the case of relevance is 1i = C2), then I(\IIA, \11)1 -+ 1 for arbitrary lifts \IIA' \II 
in §1i. Choose an orthonormal basis {ei 1 in 1i containing \II; the equation (\II, <1» = 
Li(\II, ei )(ei, <1» then rapidly leads to the conclusion 1 (\IIA , <1»1 -+ 1(\11, <1»1 for all 
<I> E §1i. The corresponding topology is the projection of the usual topology on 
C2 to S2 :::= IPC2, which demonstrates the first claim. 

We turn to the proof of joint continuity of v and /\. Assume that F E C(P) is 3-
dimensional. We firstly show that PA -+ P and aA -+ a, where P and a are atoms, 
impliesPA VaA -+ pva.LetrA = (PA vaA)~/\F,andr = (pva)~/\F;theseare 
atoms. Let p~ be the antipodal point to PA in PA vaA (i.e., p~ = Pi: /\ (PA vaA», 
and let a{ be antipodal to a A in PA V a A. Then {PA' p~, rAl is a basis of F, and 
so is {aA, a{, rAJ. The definition of a basis and of PA -+ p, a A -+ a implies that 
p(p, rA) -+ 0 and p(a, rA) -+ O. Hence p(r, rA) -+ 1. Now take an arbitrary atom 
exA E rf /\ F, and complete to a basis {exA, ex~, rd, where ex~ E PA V a A. Again, 
the definition of a basis implies that p(exA, r) -+ O. By our second definition of 
convergence, one therefore has PA V aA -+ P Va. 

Secondly, we show that QA -+ Q and RA -+ R, where Q and R are two­
dimensional subspaces of F, implies QA /\ RA -+ Q /\ R (we assume Q =I- R, 
so eventually QA =I- RA)' Let ex = Q~ /\ F, fJ = R~ /\ F, Y = Q /\ R, and 
YA = QA /\ RA; as a simple dimension count shows, these are all atoms. By 
assumption, P(YA' ex) -+ 0 and P(YA' fJ) -+ O. Since (ex U fJl = (ex V fJ)~ by 
definition of v, and (ex v fJ) is two-dimensional, Y is the only point in F that is 
orthogonal to ex and fJ. Hence P(YA, y) -+ 1; if not, the assumption would be 
contradicted. But this is precisely the definition of QA /\ RA -+ Q /\ R, and the 
proof is finished. • 

Corollary 3.7.8. The division ring ]I)) equals C, and the involution relative to 
which the Hermitian form of Theorem 3.7.4 is defined is complex conjugation. 
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It follows from the previous lemma that Jl)) is locally compact and connected. 
According to the classification of locally compact division rings, there exist only 
three connected ones: Jl)) = R., C, and !HI (the quatemions). Of these, only C is 
homeomorphic to (p v a)\a c:::: ]R2. Note that the algebraic structure is therefore 
entirely determined by the topology. 

Moreover, Lemma 3.7.7 implies that the orthocomplementation 1. is continu­
ous on 3-dimensional subspaces. If one inspects the way the involution A 1-+ Iof 
Jl)) is constructed in the proof of Theorem 3.7.4, one immediately infers that this 
involution (of C in our case) must be continuous as well. It can be shown that C 
possesses only two continuous involutions: complex conjugation and the identity 
map. The latter cannot define a nondegenerate sesquilinear form (so that in par­
ticular, the lattice .c(V) cannot be orthomodular). Hence one is left with complex 
conjugation. • 

Note that we have used the two-sphere property twice, for different purposes: 
firstly for deriving the covering property of .c(P), and secondly for identifying 
Jl))=C. 

With this corollary in hand, the definition of a Hermitian form implies that 
(\}I, \}I) must be real for all \}I E V, and the anisotropy means that (\}I, \}I) must be 
nonzero and have the same sign for all \}I. If necessary, one may change the sign 
of the form so as to make it positive definite. Accordingly, V is equipped with an 
inner product in the usual sense, that is, it is a pre-Hilbert space. The fact that V 
is actually a Hilbert space follows from the orthomodularity of .c(P) c:::: .c(V) by 
a rather technical result, whose proof we omit. 

Proposition 3.7.9. A pre-Hilbert space V over C is complete iff the associated 
orthocomplemented lattice .c( V) is orthomodular. 

We conclude that .c(P) is isomorphic to the projection lattice .cO-O of some 
complex Hilbert space 'H. Therefore, their respective collections of atoms P and 
JP>1i must be isomorphic. Accordingly, we may identify P and JP>1i as sets. Denote 
the standard transition probabilities (2.65) on JP>1i by PH' With p the transition 
probabilities in P, we will show that p = P1t. 

Refer to the text following 3.7.1. We may embed S;r isometrically in JP>1i; one 
then simply has p = P1t on S;f' Equation (3.21) then reads 

(3.24) 

in particular, PH(Tpvu (p'), Tpvu(a'» = 0 iff p(p', a') = O. On the other hand, we 
know that P and PH generate isomorphic lattices, which implies that PI-(p', a') = 0 
iff p(p', a') = O. Putting this together, we see that 

PH(Tpvu(p'), Tpvu(a'» = 0 

iff PH(P', a') = O. A fairly deep generalization of Corollary 3.4.3 states that a 
bijection T : JP>1i1 ---+ JP>1i2 (where the 'Hi are separable) that merely preserves 
orthogonality (i.e., PH2(T(p'), T(a'» = 0 iff PHI (p', a') = 0) is induced by a 
unitary or an antiunitary operator U : 'HI ---+ 'H2. We use this with 'HI = P va, 
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1t2 = S;f' and T = Tpv(J' Since Tpv(J is induced by a unitary or an antiunitary 
map, which preserves PH, we conclude from (3.24) that PH(P', a') = p(p', a'). 
Since P and a (and p', a' E pYa) were arbitrary, the proof of Theorem 3.7.2 is 
finished. • 

3.8 The Poisson Structure on the Pure State Space 

We now further investigate how the transition probabilities and the Poisson 
structure on the pure state of a C* -algebra are related. 

Theorem 3.8.1. IfP is the pure state space of a C* -algebra, then the symplectic 
leaves of P as a Poisson space coincide with the sectors of P as a transition 
probability space. 

This is immediate by combining 2.5.4 and 2.8.2 with 2.6.8. • 
If the C* -algebra in question is commutative (so that its transition probabilities 

are (2.58», it is understood to be equipped with the zero Poisson structure. cf. 
the comment following 1.1.5. If, however, 2lIR is a Poisson algebra associated to a 
Poisson space P, then the natural transition probabilities on P are given by (2.58). 
and the above result fails: The sectors of P are its points, whereas its symplectic 
leaves are nontrivial if the Poisson bracket does not identically vanish. 

We now show that the symplectic structure on lP1t is determined by the transition 
probabilities (2.65) and unitarity; recall Definition 3.1.3. 

Theorem 3.8.2. Let lP1t, equipped with the transition probabilities (2.65) and its 
usual manifold structure, be a unitary Poisson space for which the Poisson structure 
is symplectic. Then the Poisson structure is determined up to a multiplicative 
constant, and is given by (2.42)for some Ii =1= o. 

It follows from (3.2) and Proposition 3.1.2 that 2ldP, R) equals the Gelfand 
transform of ~(1t)IR. According to the definition of unitarity, the Hamiltonian flow 
generated by any function A on lP1t (where A is a bounded self-adjoint operator 
on 1t, cf. (2.43» must preserve the transition probabilities (2.65). Corollary 3.4.3 

and Stone's theorem imply that such a flow must be of the form 1/I(t) = e-itC(A)1/I; 
cf. (2.47), where C(A) is some self-adjoint operator depending on A in an as yet 
unknown way. Antiunitary flows are excluded, for they cann<!t satisfy 1/1(0) = O. 

We now compute the Poisson bracket of the functions A and B (see 2.43). 
Using (2.8), (2.11), and the preceding paragraph, we obtain {A, B}(1/I) = 

1, B (eXP(itC(A»1/I ) It = O. The right-hand side equals i[CW,B](1/I). The anti­

symmetry of the left-hand side implies that C(A) = Ii-I A for some Ii-I E R. The 
value Ii-I = 0 is excluded unless 1t is one-dimensional, for otherwise the Poisson 
structure would be degenerate. In other words, the Poisson bracket is given by 
(2.42). Since the collection of all differentials dA spans the cotangent bundle at 
each point 1/1 of lP1t. the Poisson structure is completely determined. • 
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Theorems 3.8.1 and 3.8.2 show that the Poisson structure on the pure state 
space P(Qt) = Ua JPl1ta of a C* -algebra (cf. 2.5.4) is to a large extent determined 
by unitarity. The only freedom resides in a possible sector-dependence of n; here 
n- I i- 0 except in one-dimensional sectors (in which the value of n is irrelevant, as 
the Poisson bracket identically vanishes at such points). The choice (1.22) for the 
Poisson bracket on Qt]R corresponds to taking n to be a sector-independent constant. 
We may regard n as a function on P(Qt), which is constant on each sector. If A 
denotes an element of Qt]R, the restriction of A to a sector JID1ta corresponds to an 
operator Aa (cf. (2.43». The sector in which p E P(Qt) lies is called a(p). With 
this notation, the Poisson bracket is then given by 

" " i---
{A, B}(p) = n(p) [Aa(p), Ba(p)](P)· (3.25) 

The following result shows that under a natural topological requirement the sector­
dependence of n cannot be arbitrary. 

Lemma 3.8.3. Equip P(Qt) = Ua JlD1ta with the Poisson structure (3.25). Assume 
thatP(Qt) is equipped with a uniformity for which Qt]R (as defined in (3.4)) is closed 
under Poisson brackets. Then the function n is uniformly continuous on P(Qt). 

This applies in particular to the w* -uniformity on P(Qt). Suppose n is not 
uniformly continuous. We then take A, B E Qt]R in such a way that Aa and 
Ba are independent of a in a neighborhood of a point a of discontinuity of 
n, with [Aa(a), Ba(a)] i- o. Then the real-valued function on P(Qt) defined by 
p ~ n(p){A, B}(p) is certainly uniformly continuous near a, since its value at 
p is equal to i[Aa~(p)](p). But, by assumption, {A, B} is uniformly contin­
uous as well. Because of the factor n, the product n{A, B} cannot be uniformly 
continuous. This leads to a contradiction. • 

We can always rescale the Poisson bracket by multiplying it with n(·); the 
resulting Poisson structure is then the same in all sectors. In view of Lemma 3.8.3, 
in the given situation Qt]R will be closed under the rescaled Poisson bracket as well. 

3.9 Axioms for the Pure State Space of a C* -Algebra 

We can sum up part of the preceding discussion as follows. 

Theorem 3.9.1. The pure state space P of a unital C* -algebra Qt, equipped with 
the w* -uniformity, the transition probabilities (2.65), and the Poisson structure 
( 1.22), has the following properties. 

C* 1: P is a uniform Poisson space with a transition probability (Definition 3.1.4). 
C*2: P has the two-sphere property (Definition 3.7). 
C* 3: The sectors ofP as a transition probability space coincide with the symplectic 

leaves ofP as a Poisson space. 
C*4: The space Qt]R (defined through C* 1 by (3.2)) is closed under the Jordan 

product constructed from the transition probabilities in 3.3. 
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C* 5: The pure state space P(Qt) ofQt (as defined in 2.1.1) coincides with P. 

Recall that Qt]R is the self-adjoint part of Qt, and that the norm on Qt]R is equal 
to the sup-norm that Qt]R inherits from its inclusion in i(~\P, JR.). Property C* 1 
was established in Corollary 3.2.2; C*2 is immediate from (2.65); C*3 holds by 
Theorem 3.8.1; C*4follows from (3.6) and Theorem 3.2.1; and C*5 holds because 
the uniformity on P(Qt) used to establish 3.2.1 is precisely the w* -uniformity. • 

We now turn things around, and claim that the properties C* l-C* 5 actually 
characterize pure state spaces of unital C* -algebras. Property C* 5 is then regarded 
as an axiom restricting the possible uniformities on P. As an axiom, the precise 
meaning of C*5 is as follows. From Axioms C*I, C*2, and C*4 the space Qt]R 
emerges as a J B-algebra, which is contained in C(P, JR.) as a partially ordered 
Banach space. Hence each element of P defines a pure state on Qt]R by evaluation; 
Axiom C* 5 requires that all pure states of Qt]R be of this form (note that by C* 1, 
the function space Qt]R ~ Q(1R already separates points). 

Theorem 3.9.2. If a set P satisfies C* l-C* 5 (with P as a transition probability 
space containing no sector of dimension 3), then there exists a unital C* -algebra 
Qt, whose self-adjoint part is Qt]R (defined through C* 1). This Qt is unique up to 
isomorphism, and can be explicitly reconstructed from p, such that 

1. P = P(Qt) (i.e., P is the pure state space ojQt). 
2. The transition probabilities (2.63) coincide with those initially given on P. 
3. The Poisson structure on each symplectic leaf ofP is proportional to the Poisson 

structure imposed on the given leaf by (1.22). 
4. The w* -uniformity on P(Qt) defined by Qt is contained in the initial uniformity 

onP. 
5. The CO-norm on Qt]R C Qt is equal to the sup-norm inherited from the inclusion 

QtIR C iOO(P, JR.). 

As stated after Theorem 3.7.2 (which is an important step in the proof of 3.9.2), 
we believe that the restriction to dimension =I- 3 can be dropped. 

The proof of this theorem essentially consists in the descri ption of the construc­
tion of Q(; practically all the work has already been done. Axioms C* I and C*2 
entirely determine P as a transition probability space by Theorem 3.7.2. Hence 
QtIR(P) is determined by Proposition 3.1.2. We now use Axiom C*3, which implies 
that each symplectic leaf of P is a projective Hilbert space Inia. For the moment 
let us assume that each leaf Inia has a manifold structure (e.g., the usual one) 
relative to which all functions Ii (cf. (2.43», where H E !E(1ta )]R, are smooth. 
Then QtIR(P) n Cu(P, JR.) C C'l':'(P, JR.) by the explicit description of Qt]R(P) in 
3.1.2. It then follows from Axiom C* 1, in particular from (3.2), that 

(3.26) 

This space is norm-closed by one of the remarks following 3.2.1. The condition 
in Proposition 3.3.2 holds, so that we can construct a Jordan product in Qt]R by the 
procedure in 3.3. By Proposition 3.3.3 and Axiom C*4, this turns Qt]R into a J B­
algebra. At this stage we can already construct the pure state space P(Qt) through 
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2.1.1 and 1.4.1; the property 3.9.2.1 then holds by Axiom C*5, whereas 3.9.2.2 
follows from Theorem 2.8.2. 

We may regard the restriction of !2l]R to a given sector IP1t", as the Gelfand 
transform of a Jordan sub algebra of 23(1i",)]R. This subalgebra must be weakly 
dense in 23(1i",)]R, for otherwise Axiom C*5 cannot hold. 

By Axiom C*3 and a straightforward modification of Theorem 3.8.2 (taking into 
account that the restriction of !2ldP, R) to IP1t", is weakly dense in 23 (1i)]R, rather 
than coinciding with it), the Poisson structure in each sector ofP is determined up to 
a constant, which implies 3.9.2.3. By Lemma 3.8.3 and Axiom C* 1 (which, through 
the definition of a uniform Poisson space, requires that!2l]R be closed under Poisson 
brackets) we can rescale the Poisson bracket so as to make Planck's "constant" 
a constant on P. By Proposition 3.4.1 the Leibniz rule (1.4) is then satisfied as 
a consequence of the unitarity imposed by Axiom C* I. By the remark after the 
proof of 3.4.1, the associator identity (1.6) holds for the rescaled Poisson bracket. 
Hence !2l]R becomes a J L B-algebra by Definition 1.1.5, and the complexification 

!2l is a C* -algebra by Proposition 1.1.9. 
From 3.9.2.1 and 3.9.2.2 we infer that !2l]R(P) = !2l]R(P(!2l». The w*-uniformity 

appearing in (3.4) is the weakest uniformity relative to which all elements of!2l]R 
are uniformly continuous. Property 3.9.2.4 then follows from Theorem 3.2.1 and 
(3.26). Property 3.9.2.5 is evident from Proposition 3.3.3. 

Finally, let us assume that some IP1t", have an exotic manifold structure such that 
!2l]R(P) n Cu(P, R) is not contained in C'{'(P, R), so that!2l]R C !2l]R(p)nCII (p, R) 
is a proper inclusion (rather than the equality (3.26». It follows from Axiom C*5 
that the weak density mentioned two paragraphs ago must still hold. This weak 
density suffices for the subsequent arguments to be valid, and we can construct 
a C*-algebra!2l with pure state space P. The proper inclusion above would then 
contradict (3.4). Hence such exotic manifold structures are excluded by the axioms 
(if they exist at all). • 

Certain simplifications of this characterization suggest themselves. For example, 
if one amends C* l-C* 5 in Theorem 3.9.1 by deleting the word "uniform" from C* 1 
and replacing (3.4) in C*3 by (3.7), then Theorem 3.9.2 is correct if one replaces 
"( w* -) uniformity" by "( w* -) topology" and "C* -algebra" by "perfect C* -algebra" 
(cf. 3.2). Greater simplification is achieved by imposing finite-dimensionality on 
P (as a transition probability space, cf. 2.7): 

Corollary 3.9.3. The pure state space P of a finite-dimensional C* -algebra is 
characterized by the following properties: 

QM 1: P is a finite-dimensional Poisson space with a transition probability. 
QM2: P has the two-sphere property (Definition 3.7). 
QM3: the sectors ofP as a transition probability space coincide with the symplectic 

leaves ofP as a Poisson space. 

Compare this with the characterization of classical mechanics: 
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Corollary 3.9.4. The pure state space P of a classical mechanical system is 
characterized by the following properties: 

CM 1: P is a smooth Poisson space with a transition probability. 
CM2: The transition probabilities are p(p, a) = 8p(J' 



CHAPTER II 

Quantization and 
the Classical Limit 

1 Foundations 

1.1 Strict Quantization of Observables 

The aim of quantization theory as presented in this book is to relate Poisson algebras 
or Poisson manifolds to C* -algebras or their pure state spaces. A slightly awkward 
feature of the first relationship is that usually Poisson algebras are not Banach 
spaces; a nonzero Poisson bracket on some Poisson subalgebra 2t~ of Cf'(P, JR) 
cannot be extended to the closure ~~ of 2t~ in the sup-norm. 

Apart from this complication, the following definition is largely motivated by 
Theorem 1.1.1.9; in particular, recall 1.(1.22). 

Definition 1.1.1. A strict quantization of a Poisson algebra 2t~ (which is dense ly 
contained in the selfadjoint part ~~ of a commutative C* -algebra ~o ) consists of 
a collection of points 10 s;: JR that has 0 ¢ 10 as an accumulation point (we write 
I := 10 U {OJ), a collection ofC*-algebras {~lilnE[, and a collection of linear 
maps {QIi : 2t~ --+ ~~}fjEJ (where Qo is the identity map), such that the following 
conditions hold: 

1. Rieffel's condition: For all f E 2t~, the function Ii f--+ II Qfj(f) II is continuous 
on I. In particular, one has 

lim IIQh(f)1I = 11111· 
h~O 

(1.1) 

2. von Neumann's condition: For all f, g E 2t~ one has 

(1.2) 
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3. Dirac's condition: For all I, g E 2i~ one has 

lim II{Qh(f), Q/i(g)}/i - Q/i({f, g})11 = O. 
/i->O 

(1.3) 

4. Completeness: The collection { Q/i(f) liE 2i~} is dense in m~/or each n E I. 

A strict quantization of a Poisson manifold P is a strict quantization 01 some 
Poisson subalgebra 2i~ oIC'b(P, JR.), equipped with the sup-norm 11111 = 1111100, 
whose closure contains Co(P, JR.). 

For a given classical observable 1 E 2io, one construes the operator Qr,(f) as 
the quantum observable (at the given value of n) whose physical interpretation 
corresponds to that of its classical counterpart I. 

We have suppressed the possible n-dependence of the C* -algebraic operations 
in mh in our notation. The completeness condition is not crucial: If it fails to 
be satisfied for a given m /i, one may simply replace mil in the definition by the 
C*-algebra generated by all Q/i(f). 

We may extend Q/i to a map (denoted by the same symbol) from 2i0 to mil by 
complex linearity. Conditions 1.1.1.2 and 1.1.1.3 then imply that 

lim IIQ,,(f)Q/i(g) - Qh(fg)1I = O. 
/i->O 

(1.4) 

Definition 1.1.2. A strict quantization (mil, {QIl}) is called a strict deforma­
tion quantization when Q/i(2io) is closed under multiplication (in mh) and Q/i is 
nondegeneratelor each n in that QIl(f) = 0 iff 1 = O. 

Note that Rieffel's condition implies that a strict quantization is always non­
degenerate for small enough n, so the last requirement is a modest one. The 
terminology is justified by the fact that a strict deformation quantization of 2i~ 
allows one to define an associative "deformed" product· /i in 2i0 with the property 
Q/i(f)Q/i(g) = Q,,(f '/i g) (and, of course, 1 '0 g := Ig). The conditions on 
a strict quantization may then be rephrased in terms of this product in the obvi­
ous way. There are many examples of strict quantization that are not deformation 
quantizations, in particular those related to pure states (see 1.3). 

The maps Q/i are highly nonunique, depending on what physicists call 
an operator-ordering prescription. Hence two strict quantizations (m~, {Q~}), 
(m~, {Q~}), where m~ = m~ for all n, are called equivalent if for each 1 E 2i~ the 
function 

n ~ IIQ~(f) - Q~(f)1I 

is continuous on I. It follows that lim/i->o II QA(f) - Q~(f)1I = O. In the next 
section we will construct an object from a given strict deformation quantization 
that is invariant under changes to equivalent quantizations. 

A strict (deformation) quantization is called positive if each Q" is positive 
(that is, 1 :::: 0 in m~ implies Q/i(f) :::: 0 in m~). In many physically relevant 
applications, including the premier example ofWeyl quantization, the quantization 
fails to be positive. However, a nonpositive quantization is sometimes equivalent 



110 II. Quantization and the Classical Limit 

to a positive one (cf. 2.6.3). If a positive quantization can be extended from Q(~ to 
Qt~ (where the property (1.3) is evidently lost) such that it remains positive, the 
maps Q" : Qto ~ Qth are automatically continuous; see 1.1.3.7. 

1.2 Continuous Fields of C* -Algebras 

The notion of strict quantization is closely related to an object intrinsic to the 
theory of C* -algebras. 

Definition 1.2.1. A continuous field of C*-algebras (\t, (Qtx, CPx }XEX) over a 
locally compact Hausdorff space X consists of a C* -algebra It, a collection of 
C*-algebras {QtxhEX' and a set (cpx : \t ~ QtX}XEX of surjective morphisms, such 
that: 

1. The function x f--+ IIcpAA)1I is in CoCX) for all A E \to 
2. The norm of any A E \t is IIAII = SUPXEX IIcpxCA) II· 
3. For any f E Co(X) and A E \t there is an element fA E \tfor which cpAf A) = 

fC x)cpxC A) for all x E X. 

A section of the field is an element {Ax }XEX of OXEX Qtx for which there is an 
A E \t such that Ax = cpxCA)for all x E X. 

It is clear that \t may be identified with the space of sections of the field, seen 
as a C* -algebra under pointwise scalar multiplication, addition, adjointing, and 
operator multiplication, by means of (CPx(A)}xEX ++ A. In particular, A = B iff 
CPx(A) = cpAB) for all x. 

The simplest example is obtained by taking Qtx = Q( for all x, and letting 
\t = Co(X, Qt) with CPx(A):= Ax. Such a field is called trivial. 

Lemma 1.2.2. The C* -algebra \t of (sections of) a continuous field is locally 
uniformly closed. That is, if A E Ox Qtx is such that for every y E X and every 
E > 0 there exists a BYE \t and a neighborhood NY of y in which II A x - BJ II < E 

for all x E NY, and also limx-+oo IIAxll = 0, then A E \to 
Alternatively, if the junction x f--+ II Ax - C x II lies in Co(X) for each C E It, 

then A E \to 

Inthesituationofthefirstpart,thereisacompactsetK S; X for which II Ax II < f 

outside K, as well as a finite cover {NX1 , ••• , NXn} of K. Taking a partition of 
unity {ud on K subordinate to this cover, the operator B := Li ujW' lies in \t 
because of 1.2.1.3, and satisfies SUPXEX IIAx - Bx II < f. Hence A E \t by 1.2.1.2 
and the completeness of \to 

Given any A E Ox Qtx and y EX, because CPy is surjective there is a BYE \t such 
that Ay = B~. The assumption in the second part then implies that the conditions 
in the first part are satisfied, such that A E \to • 

Proposition 1.2.3. Suppose one has a family {QtX}XEX ofC*-algebras indexed by 
a locally compact Hausdorff space X, as well as a subset it S; Ox Q(x that satisfies 
the following conditions: 
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1. The set {Ax I A E ~} is dense in mx for each x E X. 
2. Thefunction x 1-+ II Ax II is in Co(X) for each A E ~. 
3. The set ~ is a * -algebra (under pointwise operations). 

There exists a unique continuous field of C* -algebras (It, {mX, CPx }xeX) whose 
collection of sections contains ~. Namely, It consists of all A E Ox mx for which 

the function x 1-+ IIAx - Cxlllies in CO(X) for each C E ~,regarded as a C*­
algebra under pointwise operations, and the norm ofl.2.1.2. Finally, CPx(A) := Ax 
is the evaluation map. 

We first show that It as defined above is locally unifonnly closed. With the 
objects A, y, E, BY, and N as specified in Lemma 1.2.2, take C E ~ arbitrary, and 
define the functions fAC : x 1-+ IlAx - Cx II and fBC : x 1-+ II BI - Cx II. Using the 
general Banach space inequality 

I(IIXII -IIYI!)I ~ IIX - n, (1.5) 

one obtains IfAC(x) - fBc(X) I < E for all x EN. By assumption, /Bc is con­
tinuous, so that If Bc(X) - f Bc(Y) I < E for all x in some neighborhood N' of y. 
Combining the two inequalities yields IfAc(X)- fAc(Y) I < 3E for all X E NnN'. 
Hence fAc is continuous at y, which was arbitrary, so that A E It by definition of 
It. 

Using this property, it is easily shown that It is a C* -algebra, and that condition 3 
in Definition 1.2.1 is satisfied. It is clear from 1.2.1.1 and the definition of It in 
1.2.3 that It is maximal. On the other hand, according to the second part of Lemma 
1.2.2, It is minimal, so that it is unique. • 

We are now in a position to connect Definitions 1.1.1 and 1.2.1. 

Theorem 1.2.4. Suppose one has a strict quantization of a Poisson algebra m~, 
except perhaps for (1.3). When I is not compact, the function Ii 1-+ IIQfi(f)1I is 
assumed to be in Co(I) for all f E mO. Furthermore, assume that either I is 
discrete, or that all mfi are identical for Ii =1= 0 and the function Ii 1-+ Qfi(f) is 
continuous for all f E mO. 

There exists a unique continuous field of C*-algebras (It, {mfi , CPfi}fief) whose 

collection of sections {cpfi(A)} fief, A E It, contains all {Qfi(f)}fief, f E mO. 
Moreover, any strict quantization equivalent to the given one leads to the same 
continuous field. 

One defines ~ C Ofi mfi as the complex linear span of all expressions of the 

fonn Ii 1-+ Qfi(fd··· Qfi(fn), where Ii E mO. We first show that each function 
of the type Ii 1-+ II Qfi(!1) ... Qfi(fn)1I is continuous. It follows from (1.4) that 
limfi-->o II Qfi(fdQ/i(f2 ... fn) - Q/i(fl ... fn)1I = 0, so that by induction one has 

(1.6) 

Equation (1.5) then yields limfi-->O II Q/i(!1) . .. Qfi(fn)1I - II Q/i(!1 ... fn)1I = 0, 
so that, finally, limfi-->O II Q/i(!1) . .. Q/i(fn)1I = IIfl ... fn II by (1.1). This proves 
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continuity at Ii = O. Using (1.6) and the continuity of each function Ii I--? Qh(f), 
the same result follows for polynomials in the QhC!;). 

When I is discrete, continuity away from 0 is trivial. In the alternative case, for 
monomials this follows from an inductive argument based on the inequalities 

I II Qh(ft) ... Qh(fn) II - II Qh,(ft> '" Qh,(fn)1I1 

~ IIQh(ft)··· Qh(fn) - Qh/(ft)··· Qh/(fn)1I 

~ II Qh(ft) - Qh/(ft) II II Qh(h) ... Qh(fn)1I 

+ II Qh/(ft) II II Qh(h) ... Qh(fn) - Qn:(h)'" Qh'(fn)lI. (1.7) 

The extension of this argument to polynomials is a trivial application of the 
triangle inequality. Since condition 1.2.3.2 is evidently satisfied, one is therefore 
in the situation of Proposition 1.2.3, and the first claim follows. The second is clear 
from the proof of 1.2.3 and the definition of equivalent quantizations. • 

If one wishes to take Definition 1.2.1 as a canonical starting point of the theory 
of quantization, one might contemplate the following definition of quantization 
(specialized to the case of Poisson manifolds, for simplicity). 

Definition 1.2.5. Let I £; 1R contain 0 as an accumulation point. A continuous 
quantization of a Poisson manifold P consists of 

1. A continuous field ofC*-algebras (It, {Qth, <Ph}hE/). 

2. A Poisson subalgebra §to ofC~(P) whose closure Qto contains Co(P). 

3. A linear map Q : §to --? It that with Qh(f) := <Ph(Q(f»for all f E §to and 
Ii E I satisfies Qo(f) = f and Qh(f*) = Qh(f)*, and for all f, g E §to 
satisfies Dirac's condition (1.3). 

Provided that 1.1.1.4 is satisfied, a continuous quantization is strict. Conversely, 
Proposition 1.2.4 gives conditions, which will be satisfied in all examples in this 
book, under which a strict quantization is continuous. 

1.3 Coherent States and Berezin Quantization 

Having introduced quantization theory from the point of view of observables, we 
now look at quantization from the dual perspective of pure states. Recall 1.2.1. 

Definition 1.3.1. Relative to a continuous field of C* -algebras (It, {Qtx, <Px }xEK ), 
a continuous field of (pure) states is afamily {w~}~~~, where each w~ is a (pure) 
state on Qtx, and A is an index set, such that 

1. For each.le E A and A E It the function x I--? w~(Ax) lies in Co(X). 
2. For each x E X the collection {W~}AEA isfaithful, in that nAEA ker(lTc.f.) = 0, 

where IT(OI.(QtX ) is the GNS-representation defined by w~ (in other words, the 
represent~tion EEl AEA IT (01. (Qt X) is faithful). 

x 

In the context of quantization theory, the following result allows one to construct 
continuous fields of pure states by checking a simple condition. 
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Lemma 1.3.2. Under the assumptions of Theorem 1.2.4, suppose for each Ii E I 
one has a state Wh on ~h such that the function Ii f-+ Wh(Qh(f» is continuous on 
I for each f E §lo. Then Ii f-+ wh(Ah) is continuous on I for all A E \to 

We first assume that A = Qh(ft)··· Qh(fn) (the extension to polynomials is 
trivial). Continuity at Ii = 0 is an immediate consequence of (1.6) and the as­
sumption in 1.3.2. Away from 0, one uses the completeness assumption 1.1.1.4 to 
approximate Q/i,(ft)· .. Qh(fn) by Qh(f), and notes that the proof of 1.2.4 estab­
lishes the continuity of Ii f-+ Qh(ft)··· Qh(fn); simply omit the first inequality in 
(1.7). Combined with the continuity of Ii f-+ Wh(Qh(f», this does the job. 

Finally, if A is as specified in the last paragraph of 1.2.3, one uses the last 
sentence in the proof of 1.2.2, from which the result trivially follows. • 

Given a continuous quantization of a Poisson manifold P (cf. 1.2.5), with ~o = 
Co(P), itis natural to take A = P and wg (f) = f(a) for alIa E P. Writingqh(a) 
for wI:., one may then look at qh as a map that "quantizes" classical pure states. 
Such maps may be studied in their own right, even in the absence of a continuous 
quantization of P. We will do so in the special case that P = S is a symplectic 
manifold of dimension 2n < 00. One may then anticipate that ~h = 230(7th). 

In what follows, the transition probability p is the standard one defined on a 
projective Hilbert space, given by 1.(2.65). The canonical symplectic form on IP1t 
is denoted by W1f. (cf.1.2.5). A measure on a manifold is said to be locally Lebesgue 
if it is equivalent to Lebesgue measure in each local chart. 

Definition 1.3.3. Let 10 £ R be as in 1.1.1. In a pure state quantization of a 
symplectic manifold (S, ws) one specifies, for each Ii E 10 , a separable Hilbert 
space 7th, a smooth injection qh : S ~ IP1th (cf 1.2.5.1), and a Radon measure 
J.th on S that is locally Lebesgue, such that 

1. for all Ii E 10 and alil/J E 1P1t/i one has 

Is dJ.th(a) p(qh(a),l/J) = 1; 

2. for allfixed f E Cc(S) and PES, the function 

Ii f-+ Is dJ.th(a) p(qh(P), qh(a»f(a) 

is continuous on 10 and satisfies 

lim f dJ.t/i(a) P(qh(P), qh(a»f(a) = f(p); 
h-+O Js 

3. the map qh is an approximate symplectomorphism, in that (pointwise) 

lim qhW1i = Ws. 
h-+O 

(1.8) 

(1.9) 

(1.10) 

Since f E Cc(S), the requirement 1.3.3.2 is equivalent to the continuity of the 
function Ii f-+ p(qh(p), qh(a» for fixed P and a. Moreover, we will shortly see 
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that (1.9) and (1.8) imply the conceptually pleasing result 

lim p(qli(P), qli(a» = 8pu • 
Ii--'>O 

(1.11) 

The (over) completeness condition (1.8) should be compared with 1.(2.56), but 
note that elements of a basis of a transition probability space are by definition 
orthogonal, whereas the family {qli (p) I pES} becomes approximately orthogonal 
only in the limit limli--'>o, as guaranteed by (1.11). 

Combining 1.(2.56), applied to the transition probability space JPYHIi, with (l.8), 
the volume volli (S) of S with respect to I-Lli is found to be 

volli (S) = dim (71.1i). (1.12) 

In all examples in this book, (1.10) holds without the limit for alln E 10 • In 
addition, the measure I-Lli will always be of the form 

(1.13) 

where c : 10 --+ 1R\{0} is some positive continuous function, and the Liouville 
measure I-L L on S is defined by 

1 f n 
I-LLCf) := (21T)nn! Js fws· (1.14) 

The Liouville measure stands out by its invariance under any Hamiltonian flow, as 
Proposition 1.2.3.3 implies that I-LLCf) = I-LLCap(f» for all t; cf. 1.(2.13). 

It is clear from (1.13) and (1.12) that 71.1i is finite-dimensional iff S is compact, 
and that only certain discrete values of n are allowed in that case. As 0 :5 p(., .) :5 1, 
eq. (1.8) then implies limli--'>o c(1i) = 00, so that limli--'>o dim (71.1i) = 00. 

A pure state quantization naturally leads to the quantization of observables. 

Definition 1.3.4. Let {71.1i, qli, I-LlilliEio be a pure state quantization ofa symplectic 
manifold S. The Berezin quantization of a function f E L OO(S) is the family of 

operators {Qff(f)}IiEio' where Qff(f) E r.13(71.1i) is defined by polarizing 

it(Q~(f»:= 1 dl-Lli(a) p(qli(a), it)f(a). (1.15) 

Here it E JPYHIi; the integral converges because of(1.8}. 

Here LOO(S) is defined with respect to any locally Lebesgue measure, such as 
I-LL. If Qff takes values in r.130(1i1i), the left-hand side coincides with the Gelfand 

transform of Qff(f) evaluated at it, namely Qf(j)(it). Iff E L '(S, I-Lh)nLOO(S), 
the operator Qff (f) may be written as a Bochner integral 

Qff(f) = 1 dl-L,,(a)f(a)[q,,(a)], (1.16) 

where [q,,(a)] is the projection onto the one-dimensional subspace in 11." whose 
image in JPYHIi is qli(a). A number of properties of Qff are immediately evident. 
Most trivially, (1.9) may be rewritten as 

lim qli(p)(Q~(f) = f(p). (1.17) 
Ii .... 0 
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This leads to (l.11), as follows. According to Urysohn's lemma, there is a function 
f E Co(S, JR) such that IIflloo = 1, and f(p) = - f(a) = 1. From 1.(2.67) and 
(1.19) below we infer 

IqJj(p)(Q~(f» - qJj(a)(Q~(f» I ~ 2J1 - p(qJj(p), q,,(a» ~ 2. 

Letting h ~ 0, eq. (1.11) then follows from (1.17) and 1.(2.53). 

Theorem 1.3.5. Assume that f E Loo(S, JR). Then: 

• Q~ is positive (that is, f 2: 0 almost everywhere on S implies Qf(f) 2: 0 in 
1J3(1tJj»). 

• Q~ (f) is selfadjoint. 
• Iff E LI(S, /lll). then Q~(f) E 1"J3 1(1th) (i.e .• Q~(f) is of trace-class). with 

Tr Q~(f) = /lJj(f) = Is d/lh(a)f(a). (1.18) 

• The operator Q~ (f) is bounded by 

IIQf(f)1I :s IIflloo. (1.19) 

• If f E Co(S). then Qf(f) E lJ3o(1tJj) (i.e .• Qf(f) is compact). and Q~ : 
Co(S) ~ 1J30(1th) is continuous. 

Positivity and self-adjointness are obvious from (1.15). To show that Qf (f) 
is trace-class for f E LI(S, /lit) n Loo(S), we first assume f 2: O. Then 
Qf (f) 2: 0, so that the trace norm is II Qf (f) III = Tr Qf (f). Choose a basis 

{en} in 1t1l. Then I::=I(en , [qh(a)]en) = I::=I p(qll(a), en) :s 1 for N < 00. 
Since f E LI(S, /lh), the monotone convergence theorem says that Tr Q~(f) ex­
istsandequalsjsd/lh(a)f(a). Thus IIQ~(f)111 = /lr!(f) for f 2: O.Forarbitrary 
f we write f = fl - 12, with fl' h 2: 0 a.e. Hence II Qf(f) II 1 :s 00; linearity 
of the trace then yields (1.18). 

The conclusion from (1.15) that for f E L 00 (S) the operator Q~ (f) is bounded, 
with bound (1.19), uses the following (slightly more general) argument. Let A 
be a symmetric operator such that 1(1lJ, AIlJ)1 :s cllllJ1I2 for some c > 0 and for 
all IlJ in its domain. One then replaces IlJ by IlJ ± A IlJ / c, and subtracts the two 
inequalities thus obtained. This implies the inequality II A IlJII :s c II 1lJ1I, showing 
that A is bounded with norm:s c. This argument with (1.8) implies (1.19). 

Finally, the last claim follows from the second and the third: Start with f E 

Cc(S), and use (1.19). • 

There is a clear intuitive connection between the respective conditions 1.1.1.1, 
1.1.1.3 on the observable side, and 1.3.3.2, 1.3.3.3 on the pure state side. More­
over, 1.1.1.2 is closely related to (1.11). For the latter equation implies that the 
projections [qll(a)] in (1.16) become approximately orthogonal as h ~ 0, so that 
the integral should approximate the spectral resolution of Q~ (f). This implies that 
Q~(f)2 should approach Q~(f2) for small h (cf. 1.3.3), which is the essence of 
von Neumann's condition. 
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On the other hand, the completeness conditions 1.1.1.4 and 1.3.3.1 are not 
related. Even if a Berezin quantization satisfies 1.1.1.1-4, it may not define a strict 
deformation quantization. On the positive side, we have 

Proposition 1.3.6. Let f E Co(S), and assume that 1ih is independent of 1i 
whenever 1i varies through a connected subset of 10• Then Rieffel's condition holds; 
in particular, 

(1.20) 

We initially assume that f E Cc(S), and at the end extend the result to f E 

Co(S, R) using the continuity of Qg. The function 1i 1-+ Qg(f) from any given 
connected subset of 10 to 23(1ih) is continuous with respect to the trace norm, 
hence certainly relative to the operator norm on 23(1ih). Therefore, 1i 1-+ II Qg (f) II 
is continuous on 10 by (1.5). 

To prove (1.1), note that (1.19) implies 

lim sup II Qg (f) II ~ IIflloo. (1.21) 
h-...O 

On the other hand, for f E Co(S) we can find PES for which IIflloo = If(p)l. 
By (1.9) and the obvious inequality II Qg(f) II :::: Iqh(p)(Qg(f))l, we have 

lim inf IIQg(f)1I :::: IIflloo. (1.22) 
h-...O 

Hence (1.20) follows. • 
In the examples in this book, the Berezin quantizations constructed from certain 

pure state quantizations do satisfy all of 1.1.1.1-4. Unfortunately, the proofs of 
1.1.1.2-4 seem to involve special features of these examples. 

Corollary 1.3.7. In the situation of Definitions 1.3.3 and 1.3.4, suppose that 1ih 
is independent of 1i whenever 1i varies through a connected subset of 10 , and that 
the Berezin quantization map Qg, defined on ~o = Co(S), satisfies 1.1.1.2. 

The collection {wh }h::l, where wh := qh(a), is a continuous field of pure states 
(cj. 1.3.1) relative to the continuous field of C* -algebras of Theorem 1.2.4. 

It is clear from Proposition 1.3.6 and its proof that the assumptions of Theorem 
1.2.4 hold. Condition 1.3.3.2 implies that the assumption in 1.3.2 is met. Finally, 
(1.8) implies that the faithfulness assumption in 1.3.1, where ~x = ~h = 'BO(1ih), 
is satisfied for 1i =f:. O. Hence the claim follows from Lemma 1.3.2. • 

This corollary applies to all pure state and Berezin quantizations considered in 
this book. 

1.4 Complete Positivity 

Theorem 1.3.5 shows that Qg is a positive linear map from Co(S) into 'BO(1ih)' 
It has, in fact, a stronger positivity property. The study of this property is further 
motivated by the idea that a positive map Q (cf. Definition 1.3.6) generalizes the 
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notion of a state, in that the C in w : ~ ~ C is replaced by a general C* -algebra 
~ in Q : ~ ~ ~. One would like to see whether one can generalize the GNS­
construction, and it turns out that for this purpose one needs to impose the stronger 
positivity property in question. 

For a given C*-algebra~, and n E N, we first introduce the C*-algebra VRn(~)' 
The elements of VRn(~) are n x n matrices MI with entries in ~; multiplication 
is done in the usual way, i.e, (MIN)ij := MIikNkj. with the difference that one 
now multiplies elements of ~ rather than complex numbers. In particular, the 
order has to be taken into account. The involution in VRn (~) is, of course, given by 
(MI*)ij = MIji' in which the involution in ~ replaces the usual complex conjugation 
in C. One may identify VRn(~) with ~ ® VRn(C) in the obvious way. 

When 1f is a faithful representation of ~ (which exists by Theorem 1.1.1.8), one 
obtains a faithful realization 1f n of VRn (~) on 11. ® cn , defined by linear extension of 
1fn(MI)Vi := 1f(MIij)Vj; we here look at elements of11.®cn asn-tuples(v" ... , vn), 
where each Vi E 11.. The norm IlMIIi of MI E VRn(~) is then simply defined to be 
the norm of 1fn (MI). Since 1fn(VRn(~» is a closed *-algebrain ~(11.®cn) (because 
n < (0), it is obvious that VRn (~) is a C* -algebra in this norm. The norm is unique 
by I. 1.2.4.4, so that its definition does not depend on the choice of 1f . 

Definition 1.4.1. Given a linear map Q : ~ ~ ~ between C* -algebras ~ and 
~,and n EN, define the map Qn : VRn(~) ~ VRn(ll~) by (Qn(lW»ij := Q(MIij). 
In other words, seen as a map from ~ ® VRn(C) to 'B ® VRn(C), one defines Qn 
by linear extension of Q ® id on elementary tensors. 

A linear map Q : ~ ~ 'B between C* -algebras is called completely positive 
if Qn is positive for all n E N. 

The point is now that completely positive maps that in addition are normalized 
(like a state) have a generic structure, which is of central importance for quantiza­
tion theory. Recall that a partial isometry is a linear map W : 11., ~ 11.2 between 
two Hilbert spaces, with the property that 1t, contains a closed subspace K, such 
that (W'l1, W<I>h = ('l1, <1», for all \11, <I> E K 1, and W = 0 on Kt. Hence W is 
unitary from K, to WK1.1t follows that W*W = [Ktl and WW* = [K2], where 
K2 is the image of W, are projections. 

Theorem 1.4.2. Let Q : ~ ~ ~ be a completely positive map between C*­
algebras with unit, such that Q(ll) = ll. By Theorem 1.1.1.8, we may assume that 
~ is faithfully represented as a subalgebra 1fx(~) ~ ~(1tx),for some Hilbert 
space 1tx . 

There exists a Hilbert space 1tx , a representation 1fX of ~ on 1tx , and a partial 
isometry W : 1tx ---+ 1tx (with W*W = ll) such that 

1fx(Q(A» = W*1fX(A)W (1.23) 

for all A E ~. With P := WW* (the targetprojectionofW on 1tX), itx := p1tx = 
W1tx c 1tx , and U : 1tx ---+ itx defined as W, seen as a unitary mapfrom 1tx 
to itx , one has the equivalent relation 

(1.24) 
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The proof consists in a modification of the GNS-construction (cf. 1.1.5). We 
denote elements of1tx by v, w, with inner product (v, who 

Construction 1.4.3. 

1. Define the sesquilinear form (, )~ on Q( ® 1tx (algebraic tensor product) by 
(sesqui- )linear extension of 

(A ® v, B ® w)~ := (v, Jrx(Q(A* B»wh. (1.25) 

Since Q is completely positive, this form is positive semidefinite; denote its null 
space byNx' 

2. The form (, )~ projects to an inner product (, )X on Q( ® 1t x / N x· If Vx : 
Q( ® 1tx ~ Q( ® 1tx /Nx is the canonical projection, then by definition 

(1.26) 

The Hilbert space 1tx is the closure ofQ( ® 1tx / N x in this inner product. 
3. The representation Jr x (Q() is initially defined on Q(® 1t x / N x by linear extension 

of 

JrX(A)Vx(B ® w):= Vx(AB ® w); 

this is well-defined, because Q( ® IIxNx ~ N x. One has the bound 

IIJrX(A)11 ~ IIAII, 

(1.27) 

(1.28) 

so that Jr x (A) may be defined on all of 1t x by continuous extension of ( 1.27). 
This extension is a representation of Q( on 1tx. 

4. The map W : 1tx ~ 1tx , defined by 

(1.29) 

is a partial isometry. Its adjoint W* : 1tx ~ 1tx is given by (continuous 
extension of) 

W*VxA ® v = Jrx(Q(A»v, 

from which the properties W' W = II and (1.23) follow. 

(1.30) 

We now prove the various claims made in this construction. Firstly, to show that 
the form defined by (1.25) is positive, we write 

L(Ai ® Vi, Aj ® Vj)& = L(vi, Jrx(Q(A7 Aj»vj)x' (1.31) 
i.j i.j 

Now consider the element A of!mn(Q() with matrix elements Aij = A7 A j . Taking 
a faithful representation Jr (Q(), from which one constructs Jr n (!mn (Q(» as explained 
above 1.4.1, one sees that 

(z, Jrn(A)z) = L(Zi, Jr(A7 Aj)zj) = L(Jr(Ai)Zi, Jr(Aj)Zj) = IIAzII2 ::: 0, 
i.j i.j 

where Az := Li Jr(Ai)Zi. Hence A::: 0. Since Q is completely positive, it must 
be that $, defined by its matrix elements $ij := Q(A7 Aj), is positive in !mn(lB). 
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Repeating the above argument with A and 7f replaced by la and 7f x' respectively, 
one concludes that the right-hand side of (1.31) is positive. 

It follows from (1.25) that (C®v, AB®w)~ = (A*C®v, B®w)~,sothatA®][x 
leaves Nx stable; compare the corresponding argument for the GNS-construction 
based on 1.(1.58). 

To prove (1.28) one uses 1.(1.42) in VJtn(~)' Namely, for an arbitrary collection 
A, B I, ... , Bn E ~ we conjugate 0 ~ A * A][n ~ II A 112][n with the matrix la, whose 
first row is (BI •...• Bn). and which has zeros everywhere else; the adjoint la* is 
then the matrix whose first column is (Bi • ...• B:)T. and all other entries zero. 
This leads to 0 ~ la* A* Ala ~ IIAII21a*1a. Since Q is completely positive. one 
has Qn (la* A * Ala) ~ II A 112 Qn (la*la). Hence in any representation 7f x (~) and any 
vector (v[, ... vn) E Xx ® en one has 

i,j i,j 

With \II = Li Vx Bi ® Vi, from (1.25), (1.27), and (1.32) one then has 

I17fX(A)\II1I2 ~ IIAII2~)Vi.7fX(Q(BtBj»vj>X = IIAII211\11112. 
i,j 

(1.32) 

To show that W is a partial isometry one merely uses (1.29). (1.25). and Q(][) = ][. 
Equation (1.30) is then trivially verified from the defining property (w. W*\II)x = 
(Ww. \II)X for all WE 1tx and \II E 1tx. 

To verify (1.23), one uses (1.29) and (1.30). Since W is a partial isometry, one 
has p = W W* for the projection p onto the image of W, and in this case, W* W = ][ 
for the projection onto the subspace of 1tx on which W is isometric; this subspace 
is 1tx itself. Hence (1.24) follows from (1.23), since 

U7fx(Q(A»U- 1 = W7fx(Q(A»W* = WW*7fX(A)WW* = p7fX(A)p. • 

When Q fails to preserve the unit. the above construction still applies. but W is 
no longer a partial isometry; one rather has II WII 2 = II Q(][)II. Thus it is no longer 
possible to regard 1tx as a subspace of 1tx. 

If ~ and perhaps ~ are nonunital, the theorem holds if Q can be extended (as a 
positive map) to the unitization of ~ (cf. 1.1.2.1). such that the extension preserves 
the unit ][ (perhaps relative to the unitization of ~). When the extension exists but 
does not preserve the unit, one is in the situation of the previous paragraph. 

The relevance of all this to Berezin quantization is as follows. 

Proposition 1.4.4. A positive map between a commutative unital C* -algebra and 
a C* -algebra is completely positive. 

We write Q : ~ ~ ~ for the map in question. By Theorem 1.1.2.3 one has 
~ = C(X) for some compact Hausdorff space X. We may then identify VJtn(C(X» 
with C(X. VJtn(C». Take G E C(X, VJtn(C» and pick E > O. Since X is compact, 
there is a finite collection of points Xl • •••• Xn and a finite cover {O!" ...• O!/} 
with the property that IIG(Xi) - G(x)1I < E for all X E O!i' Using a partition 
of unity {ud subordinate to this cover. one constructs F, E C(X, VJtn(C» by 
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Ft(x) := L:=l Ui(X)G(Xj). One then has 11Ft - Gil < E. Hence elements of the 
form F, where F(x) = Li fi(x)Mi for fi E C(X) and M j E 91tn(C), and the sum 
is finite, are dense in C(X, 91tn(C». 

It is easily seen that such F is positive iff all fi and Mi are positive, so that positive 
elements G ofC(X, 91tn(C» can be approximated by positive F's. On such F, one 
has Qn(F) = Li Q(fi) OS) Mi. Now, each operator Bi OS) M is positive in 91tn(~) 
when Bi and M are positive (as can be checked in a faithful representation). Since Q 
is positive, it follows that Qn maps each positive element of the form F = Li fi Mi 
into a positive member of 91tn (~). 

We know from 1.1.3.7 that Q is continuous; the continuity of Qn follows because 
n < 00. A norm-limit A = limn An of positive elements in aC*-algebra is positive, 
because by 1.( 1.39) we have An = B; Bn , and lim Bn = B exists because of 
1.(1.15). Finally, A = B* B by continuity of multiplication, i.e., by 1.(1.14). Hence 
if Fk -+ G :::: 0 in C(X, 91tn(C», then Qn(G) = limk Qn(Fd is a norm-limit of 
positive elements, which is positive. • 

The application to Berezin quantization is obvious from 1.1.3.5 and 1.4.4: We 
take 2l = Co(S), 23 = 230 ('Jih), 'Jix = 'Jir., and Q = Qg. Theorem 1.4.2 then 
applies, for we can extend Qg to the unitization Co(S)n of Co(S) (which consists 
of all functions of the form f + Al s, f E Co(S) and A E C) by linear extension of 
(1.15). Since Co(S) + CIs c LOO(S), this extension is still positive by Theorem 
U.S, and satisfies Qg(1s) = If because of (1.8). 

Corollary 1.4.5. The image Qg(Co(S» is closed in ~o('Jir.). In particular, if 
Qg(C~(S» is dense in 23o('Jir.), then Qg(Co(S» = 23o('Jir.). 

Taking rrx as in the proof of 1.4.2, the image rrX(Co(S» is closed by Theorem 
1.1.3.10.4, so that prrX(Co(S»p = Qg(Co(S» is closed as well. • 

In the opposite direction, one may ask whether a given positive map Q can be 
written in a form similar to (1.16). 

Proposition 1.4.6. Let Q : Co(S) -+ 23('Ji) be positive (where S is a locally 
compact Hausdorffspace), and such that Q(f) E ~l('Ji)forali f E Cc(S), Then 
there exists a regular Borel measure J1, on S and a (weakly) measurable family 
a ~ p(a) of density matrices, such that (weakly) 

Q(f) = Is dJ1,(a)f(a)p(a). (1.33) 

Given the assumptions, the map f ~ Tr Q(f) defines a positive linear func­
tional, which by the Riesz representation theorem corresponds to a positive regular 
Borel measure J1, on S. Also, for each unit vector \II E 'Ji we obtain a posi­
tive linear functional f ~ (\II, Q(f)\II), hence a positive regular Borel measure 
J1,q, on S. Since (\II, Q(f)\II) :::: Tr Q(f), we see that J1,q, is absolutely con­
tinuous with respect to J1,. Hence we obtain the Radon-Nikodym derivatives 
pq,(a) := dJ1,q,/dJ1,(a), and subsequently the operators p(a) by polarization. 
Equation (1.33) follows by construction; the claimed properties of the p(a) are 
then obvious. • 
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Obviously, the given condition is always met if 'H is finite-dimensional. It 
remains to be investigated whether each p(a) is a one-dimensional projection, 
and if so, whether the ensuing map S ~ Jnl is smooth. There is, however, 
a generalization of (1.33) that applies to any positive map on a commutative 
C* -algebra. 

Definition 1.4.7. Let X be a set with a a-algebra :E of subsets of X. A positive­
operator-valued measure, or POVM, on X in a Hilbert space 'H is a map Il ~ 
A(ll)from :E to ~('H)+ (the set of positive operators on 'H), satisfying A(0) = 0, 
A(X) = n, and A(U;Il;) = L; A(Il;) for any countable collection of disjoint 
Il; E :E (where the infinite sum is taken in the weak operator topology). 

A projection-valued measure, or PVM, is a POVM that in addition satisfies 
A(Il, n 1l2) = A(1l 1)A(1l2)for all Il" 112 E :E. 

Note that the above conditions force 0 ::5 A(1l) ::5 n. A PVM is usually written 
as Il ~ E(Il); it follows that each E(Il) is a projection (take Il, = 112 in the 
definition). This notion is familiar from the spectral theorem. 

Proposition 1.4.8. Let X be a locally compact Hausdorff space, with Borel struc­
ture :E. There is a bijective correspondence between positive maps Q : Co(X) ~ 
~ ('H) that can be extended to CO(X)I by a unit-preserving positive map and POVMs 
Il ~ A(1l) on X in 'H, given by 

Q(f) = Ix dA(x) f(x). (1.34) 

The map Q is a representation ofCo(X) iff Il ~ A(1l) is a PVM. 

The precise meaning of (1.34) will emerge shortly. Given the assumptions, in 
view of 1.1.2.3 we may as well assume that X is compact. 

Given Q, for arbitrary '" E 'H one constructs a functional jlljl,1/J on C(X) by 
jlljl,I/J(f) := ("', Q(f)"'). Since Q is linear and positive, this functional has the 
same properties. Hence the Riesz representation theorem yields a probability mea­
sure J.,L1jI,1jI on X, For Il E :E one then puts ("', A(Il)"') := J.,L1/J,1/J(1l), defining an 
operator A(1l) by polarization. The ensuing map Il ~ A(1l) is easily checked to 
have the properties required of a POVM. 

Conversely, for each pair"', <1> E 1{ a POVM Il ~ A(Il) in'H defines a signed 
measure J.,L1jI,<fJ on X by means of J.,L1/J,<fJ(Il) := ("', A(Il)<1». This yields a positive 
map Q : C(X) ~ ~('H) by ("', Q(f)<1» := Ix dJ.,LI/J,<fJ(x) f(x); the meaning of 
(1.34) is expressed by this equation. 

Approximating f, g E C(X) by step functions, one verifies that the property 
E(Il? = E(Il) is equivalent to Q(fg) = Q(f)Q(g); then use 1.1.3.7. • 

Corollary 1.4.9. Let Il ~ A(Il) be a POVM on a locally compact Hausdorff 
space X in a Hilbert space 'Hx. There exist a Hilbert space 'Hx , a projection p on 
'Hx , a unitary map U : 'Hx ~ p'Hx , and a PVM Il ~ E(1l) on 'Hx such that 
U A(Il)U-' = pE(ll)p for all Il E :E. 

Combine Theorem 1.4.2 with Proposition 1.4.8. • 
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Suppose X is the phase space S of a physical system, and one is in the situation 
discussed prior to 1.4.5. One then obtains a POVM Ll ~ A(Ll) on S in 1{/i asso­
ciated to the Berezin quantization map Q = Qg : Co(S) -+ ~o(1{/i). According 
to 1.1.6.6, one may identify a state on 'Bo(1{/i) with a density matrix p on 1{/i. The 
physical interpretation of the map Ll ~ A(Ll) is then contained in the statement 
that the number 

(1.35) 

is the probability that in a state p the system in question is localized in Ll C S 
(localization in phase space). Transferring the situation to it/i by means of the 
unitary U in 1.4.2, and writing p := U pU-I , one simply has pp(Ll) = Tr pE(Ll), 
where Ll ~ E(Ll) is the PVM on 1{x given by 1.4.9. 

When X is a configuration space Q, on the other hand, the Poisson bracket 
between any two functions on X normally vanishes, so that the conditions (1.2) 
and (1.3) can be satisfied by taking Q to be a representation rr of Co(Q) on 1{. 

By Proposition 1.4.8, the situation is therefore described by a PVM Ll ~ E(d) 
on Q in 1{; the probability that in a state p the system is localized in Ll C Q 
(localization in configuration space) is 

pp(Ll) := Tr pEed). (1.36) 

1.5 Coherent States and Reproducing Kernels 

One can find an explicit realization of 1{/i := 1{x and of the projection p in 1.4.2 
if a further assumption is made, which is satisfied in many cases of interest. 

Definition 1.5.1. A pure state quantization {1{/i, q/i, f-L/i}hElo of S is said to be 
coherent if each qh(a) E lnlh can be lifted to a unit vector WI:' E 1{h, and the 
ensuing map a ~ WI:' from S to 1{h is continuous. The unit vectors WK coming 
from a coherent pure state quantization are called coherent states. 

In terms of coherent states, the polarized form of (1.8) is 

Is df-Lh(a)(W\. Wh>(WK. W2) = (W1,W2) (1.37) 

for all WI , W2 E 1ih' We write 

Kh(p,a):= (Wf,Wh>; (1.38) 

as a consequence of the continuity assumption above, K/i is jointly continuous. 
Also, one notices that 

(1.39) 

Proposition 1.5.2. Let {1{h. WK. f-L/i}aES,hElo be a coherent pure state quantiza­
tion, with associated Berezin quantization Qg. One may put 

1{x = 1{h := L 2(S. dJlh); (l.40) 

rrx (f)4>(a) := f(a)4>(a) (1.41) 
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in 1.4.2. Furthermore: 

• For each Ii E 10, the map W : 1tn -+ 1t1l defined by 

W\II(O") := (\11K, \II) (1.42) 

is a partial isometry (with WW* = p a projection, and W* W = n). We denote 
its image W1t1l in Jill by ii.n. 

• The projection p : 1t1l -+ ii.1l is given by 

(1.43) 

• The elements ofii.1l C 1t1l may be chosen to be continuous functions. 
• For each PES, the function 0" 1-+ K,1l(0", p) lies in ii.n. 
• The evaluation map <1> 1-+ <1>(0") is continuous for all <1> E ii.1l and all 0" E S. 
• For each f E VX)(S), the operator Qg(f) := WQg(f)W* on ii. 1l, which 

provides an equivalent realization of the Berezin quantization of S, is given by 

Qg(f)<l>(O") = pf(O")<l>(O"). (1.44) 

The first two claims follow from (1.37). The Cauchy-Schwarz inequality applied 
to (1.42), and the continuity of qll prove the third claim. The next claim is immediate 
from (1.42), since K,h(" p) = W\IIt:. To show the continuity of the evaluation map, 
we write 

(1.45) 

which, as a consequence of (1.43), holds for all <l> E ii.h and all pES. The right­
hand side is (K,h(" p), <l» (inner product in 1t/j), which, combined with the previous 
item, proves the claim. Finally, (1.44) is immediate from the definitions. • 

Comparing, e.g., (1.44) with (1.24), we see how the above construction provides 
an explicit realization of the objects defined in 1.4.2. As a case in point, we may 
rewrite (1.35) in an appealing way. Note that because of (1.41), the PVM ~ 1-+ 

E(~) in 1.4.9 is given by E(M = Xli (the characteristic function of ~). Assuming 
that p is a pure state p = [\II], where \II E 81t/j, the discussion after (1.35) and 
(1.42) then implies that the probability that the system is localized in ~ is 

p[ljIj(M = i d/l-/j(O") 1 (\11K ,\11)12. (1.46) 

An interesting feature to be abstracted from 1.5.2 is the following. 

Definition 1.5.3. Let S be some set, and let 1t be a Hilbert space offunctions (of 
some class) on S. A reproducing kernel of1t is afunction K, : S x S -+ C such 
that: 

• For each PES, the function 0" 1-+ K,( 0", p) lies in 1t. 
• The reproducing property 

\II(p) = (K(., p), \II) (1.47) 
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holds for all'll E ?t, pES. 

Taking IV = K(·, p), we obtain 

1I,q·, p)1I = JK(p, p); (1.48) 

in particular, K(p, p) ::: 0 for all p. Putting'll = K(·, a), one observes that 
K(a, p) = K(p, a). 

Proposition 1.5.4. A Hilbert space offunctions on S has a (necessarily unique) 
reproducing kernel ifJeach evaluation map Err : 'll ~ 'll(a) is continuous. 

The uniqueness of K follows by assuming that two reproducing kernels K 1, K2 
exist, and showing that IIK1(-, p) - Kd·, p)1I has to vanish because of the 
reproducing property. The rest is obvious. • 

Lemma 1.5.5. If 'Ii has a reproducing kernel K, then strong convergence 'lln -)­
'll in ?t implies uniform convergence as functions on all subsets of S where a ~ 
K(a, a) is bounded. 

One has 

Then use (1.48). • 
This situation becomes particularly interesting when S is a topological space 

and K is jointly continuous. In that case, (1.47) and (1.48) imply that ?t consists 
of continuous functions. Moreover, if we equip C(S) with the topology of uni­
form convergence on compact sets, then Lemma 1.5.5 implies that the canonical 
injection ?t ~ C(S) is continuous. This motivates the following abstract con­
siderations, which provide an interesting perspective on the reproducing kernel of 
?t. 

Definition 1.5.6. A Hilbert subspace of a topological vector space V is a 
Hilbert space ?t with continuous linear injection ?t ~ V. In other words, ?t 
is a continuously embedded subspace of V. 

The Riesz-Fischer theorem then leads to an antilinear map (j ~ 0 from V* to 
?t (and hence to V), defined by the property (j(w) = (0, w) for all w E ?t. When 
V* separates points in V, the range V* of this map is dense in ?t. To guarantee 
this, we assume that V is locally convex and Hausdorff. In any case, one obtains a 
positive sesquilinear form Q on V* by 

Q«(j, 11) := (ii, 0). (1.49) 

In the situation of the paragraph preceding 1.5.6, the dual of V = C(S) is the 
space of complex Radon measures f..L on S with compact support. Hence 

jl(p) = Is df..L(a)K(p, a) (1.50) 
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from (1.47), so that the quadratic form Q is given by 

Q(/L, v) = ( dv(p)d/L(a)lC(p, a). 
Jsxs 

(1.51) 

In particular, the reproducing kernel itself is recovered by lC(p, a) = Q(80' , 8p ), 

where 80' is the Dirac measure at a (i.e., 80' (f) := f (a», etc. Hence IC is completely 
determined by the embedding 1t "-+ C(S). If, in addition, we suppose that 1t C 
L 2(S, d/L) (defined with respect to some Radon measure /L), the projection p : 
L 2(S, d/L) ~ 1t is given by generalizing (1.43) to 

p'P(p) = Is d/L(a)lC(p, a)'P(a). (1.52) 

We know that lC(a, a) :::: 0 for all a E S; let us further assume that lC(a, a) > 0 
for all a (equivalently, there are no points in S at which all elements of 1t vanish). 
Then one obtains a family of unit vectors \110' in 1t, defined by 

'PO' (p):= lC(p, a) . 
.jJC(a, a) 

These satisfy the overcompleteness property 

(1.53) 

Is d/L(a)K.(a, a)('PJ, 'PO')('PO' , 'P2) = ('PI. 'P2) (1.54) 

for all 'PI, 'P2 E 1t; cf. (1.37), and notice thatthe inner product (, ) is the one in 1t, 
inherited from L 2(S, dJ-L). Hence these unit vectors satisfy the key property (1.8) 
of coherent states; via the reproducing kernel they are eventually defined through 
the evaluation map. 

The Hilbert space 1tn is defined as the image of 1t under the unitary transforma­
tion U : L2(S, d/L) ~ L2(S, d/Ln) (where d/Ln(a) := d/L(a)lC(a, a» defined by 
U'P(a) = 'P(a)/.jJC(a, a). This space 1tn has a reproducing kernellCn , namely 

K. ( a)'- ('P P 'PO') _ lC(p, a) 
n p, .- , - .jJC(p, p)1C(a, a) (1.55) 

This kernel is normalized, in that ICn(a, a) = 1 for all a; equivalently, one has 
IIlCn(·, p)1I = 1 in 1tn. Its reproducing nature in 1tn may be derived from the 
corresponding property of IC in 1t. 

A Berezin operator QB(f), depending on f E UXJ(S), may then be defined on 
1t (or 1tn) as in (1.44), with p given by (1.52) (with IC replaced by ICn). On 1t this 
operator then assumes the form (cf. (1.16» 

(1.56) 

whereas on 1tn one has the same equation with 'P'" replaced by U'P'" = ICnh a). 
It remains to be seen, of course, whether one can introduce Ii in a suitable way, so 
as to arrive at a pure state quantization or a strict quantization. 
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2 Quantization on Flat Space 

2.1 The Heisenberg Group and its Representations 

The manifold P = T*]Rn is equipped with its canonical cotangent bundle Pois­
son bracket 1.(2.24). Regarding V f := (aflap, aflaq) as a vector in ]R2n, and 
introducing the 2n x 2n matrix 

J = (~n ~), (2.1) 

we can write 

{f, g} = (V f, J V g) (2.2) 

in terms of the natural inner product in ]R2n. This Poisson bracket is symplectic; 
as in 1.(2.23), the symplectic form is 

(2.3) 

A central role in the study of T*]Rn is played by the so-called Heisenberg 
group Hn. A concrete form of its Lie algebra ~n = ]R2n+l is obtained by taking 
the coordinate functions Pi, qj as well as the unit function on T*]Rn as basis 
elements, and equating the Lie bracket with minus the Poisson bracket. This basis 
is traditionally denoted by {Pi, Qj, Zl;,j=l .... ,n. The Lie brackets are 

[Pi, Pj] = [Qi, Qj] = 0; 

[Pi, Qj] = -d! Z; 

[Pi, Z] = [Qj, Z] = o. (2.4) 

Definition 2.1.1. The Heisenberg group fIn is the unique connected and simply 
connected Lie group with Lie algebra ~n' 

Clearly, fIn = ]R2n+l is nilpotent, and the exponential map Exp : ~n -+ fIn 
is a diffeomorphism. Following the physics literature, we parametrize fIn by 
coordinates u, v E ]Rn and s E ]R so that 

(u, v, s):= Exp(-uQ + vP + sZ), (2.5) 

where u Q := Uj Qi , etc. The composition rule in fIn then follows from (2.4) and 
the CBH-formula Exp(A)Exp(B) = Exp(A + B + HA, B]); the higher-order 
commutators vanish in this case. This yields 

(u, v, s)· (u', v', s') := (u + u', v + v', s + s' - ~(uv' - vu'», (2.6) 

where v u' = Vi u;, etc. Regarding w : = (u, v) as a vector in the linear symplectic 
space ]R2n, equipped with the (symplectic) form w = dv i /\duj (cf. (2.3», we may 
write (2.6) as 

(w, s)· (w', s') = (w + w', s + s' + ~w(w, w'». (2.7) 
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One often works with a version of the Heisenberg group in which the s­
coordinate is compactified; the group Hn is the quotient of fIn by the discrete 
normal subgroup (0,0, 2JrZ). Hence the projection T : fIn --+ Hn is given by 
T(U, V, s) = (u, v, exp(-is». The composition law in Hn then follows from (2.6) 
as 

(u, v, z)· (u ' , Vi, z'):= (u + u' , V + Vi, zz'e~i(UVI-VUI»). (2.8) 

A Lie algebra anti-isomorphism p~1 ~ f)n between the Poisson algebra p~1 of 
polynomials on T*]Rn of degree ::s 1 and the Heisenberg Lie algebra is given by 

p(u.v.s)(p, q) = vp - uq + s ~ vP - uQ + sZ. (2.9) 

One may regard X E f)n as a function X on the dual f)~ by putting X(O) := 
O(X) for 0 E f)~; this yields an inclusion f)n C C)O(f)~). We use coordinates 
(p, q, c) on f)~ = ]R2n+1 (where p, q E ]Rn and c E ]R), which represent the point 

p P + q Q + c Z. Here {Pi, Qi, ZJi.i= I ..... n is the basis of f)~ dual to the given one 
in f)n' The functions Pi, Qi then coincide with the coordinate functions Pi, qi. 

The differentials of all functions X span the cotangent bundle T* f)~, so that a 
possible Poisson structure on f)~ is determined by the Poisson brackets of the X. 
Thus one may put 

{X, YJ- := -fX,YJ. (2.10) 

The reason for the minus sign will become clear in III.I.l. This leads to the Poisson 
bracket (we omit the argument (p, q, c» 

{f,gJ-=c(:;i::i - ::i::J, (2.11) 

cf. 1.(2.24). The symplectic leaves of f)~ come in two types. Firstly, one has the 
manifolds T*IR~ := ]R2n X {c} for c =f- 0, with symplectic form We = C dqi /\ dpi. 
The "usual" T*]Rn with Poisson bracket 1.(2.24) is the leaf corresponding to c = 1. 
Secondly, each point (p, q) in T*lRn x {OJ is a leaf. 

There is a different way of looking at these leaves. The so-called coadjoint 
action Co of fIn on f)~ is defined by 

(Co(u, v, s)e)(Y) := O(Ad«u, v, S)-I)y), (2.12) 

where Ad is the adjoint action of fIn on f)n' The CBH-formula yields 

Proposition 2.1.2. The coadjoint action of the Heisenberg group is given by 

Co(u, v, s)(p, q, c) = (p + cu, q + cv, c). (2.13) 

Accordingly, the orbits in f)~ under the coadjoint action coincide with the symplectic 
leaves of the Poisson structure (2.10). 

The result may be recast in the language of Chapter I. 

Proposition 2.1.3. Unless it is defined on a zero-dimensional space, any ir­
reducible representation Jrel of the Poisson algebra COO(f)~) associated to the 
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Heisenberg group is equivalent to rr~1 ,for some real c i- 0, defined on the symplectic 
manifold (T*JRn , c dqi A dpi) by 

rr~I(f) = fre; 

frc(P, q) := f(p, q, c). (2.14) 

If rr d is zero-dimensional, there is a point (p, q) E T*Rn such that 

rr(~.q)(f) = f(p, q, 0). 

This is immediate from Theorem 1.2.6.7. 

The corresponding representation of ~n C COO(~~) on T*JR~ is simply 

Pi~Pi; 

Qi ~ qi; 

Z ~ cIr*JR". 

(2.15) 

• 

(2.16) 

In particular, CCXl(T*JRn) with the canonical Poisson structure 1.(2.24) may be seen 
as the representative rrll(COQ(~~». 

Proposition 2.1.3 has an exact parallel in quantum mechanics. Consider the 
following family of representations of fIn. For each real A i- 0, construct the 
operator Uf(u, v, t) on the Hilbert space L2(Rn) by 

(2.17) 

It is easily checked that the Uf are unitary, and indeed furnish a representation 
of fIn, called the Schrodinger representation. The irreducibility of Uf will be 
proved in 2.5.5. We see that Uf(O, 0, s) = exp( -i)..s)[; hence for).. E Z the 
representation uf is defined on Hn as well, satisfying 

U~(O, 0, z) = zn[. (2.18) 

A useful equivalent version of uf is given by 

UJ..(u, v, s)\II(x) := e-iJ..{s+!uv-UX)\II(x - v); (2.19) 

one has vufv* = UJ.. for the unitary V: L2(Rn) ~ L2(JRn) defined by V\ll(x) = 
)..n/2\11(AX). The corresponding representations of the Lie algebra ~n are given by 
(cf. III.(1.69» 

and 

dUJ..(Qi) = _i)..xi; 

a 
dUJ..(P·) = --.. } ax}' 
dUJ..(Z) = -iH, 

(2.20) 

(2.21) 



2 Quantization on Flat Space 129 

respectively; here xi is meant as a multiplication operator, i.e., (xi \II)(x) = Xi \II (x). 
These operators are defined and essentially self-adjoint on S(JRn) c L2(JRn), on 

• (S) (S) (S) ~ I.. which [dU .. (X), dU .. (Y)] = dU .. ([X, Y]) lor all X, Y E '}n' 

The representation U .. is of particular use for).. = lin. For later convenience, 
we introduce the Weyl operator 

i ( S S) Ul(p, q):= U!(p, q, 0) = eX pQh-qPh , 
h h 

(2.22) 

where 

(2.23) 

and 

(2.24) 

are the physicists' position operator and momentum operator, respectively; cf. 
(2.20) and (2.37). These operators are both defined and essentially self-adjoint on 
S(JRn), on which domain one has the canonical commutation relations 

Cp s Qs.j] _ . r. .j][. 
h,i' Ii - -I,wi ' (2.25) 

cf. (2.4). One might add here that 

ihdUdZ) = n. 
h 

(2.26) 

Theorem 2.1.4. Unless it is one-dimensional, any irreducible representation U 
of fin is equivalent to uf for some).. t= O. When U is one-dimensional, there is a 
point (p, q) E T*JRn such that U equals 

U ( ) i(uq-vp) 
(p,q) u, v, s = e . (2.27) 

When U (0, 0, s) = n for all s E JR, the representation must be one-dimensional, 
so that (2.27) is a restatement of the representation theory of the abelian group JR2n . 
A proof of the remainder of this celebrated theorem will be given at the end of 
III.3.7. Another appropriate proof is obtained by combining either Corollary 2.6.7 
or Proposition 111.1.8.4 with Corollary 1.2.2.6; the statement in 2.1.4 concerning 
).. t= 0 is equivalent to the uniqueness of the irreducible representation of the 
C* -algebra of compact operators. 0 

2.2 The Metaplectic Representation 

As we have seen in the previous section, the Heisenberg group is closely re­
lated to the Poisson algebra p~l of polynomials on T*JRn of degree ~ 1. At 
the next level, the Poisson algebra p2 of quadratic polynomials on T*JRn turns 
out to be anti-isomorphic to the Lie algebra of the symplectic group Sp(n, JR). 
This group consists of the linear Poisson isomorphisms of T*JRn ::::: JR2n; a ma­
trix M E GL(2n, JR) lies in Sp(n, JR) iff MT J M = J (cf. (2.1». For the Lie 
algebra this means that a 2n x 2n matrix X lies in sp(n, JR) iff J X + XT J = 0 
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(equivalently, Xl is symmetric). The maximal compact subgroup of Sp(n, R) is 
Sp(n, R) n O(2n); ifR2n is identified with en through 

. (qj + ipj) 
Zl = -'---:~-

-Ii 
(2.28) 

(where pj := Pj), then Sp(n, R) n O(2n) = U(n). It follows from the theory of 
noncompact semisimple Lie groups that the homotopic properties of Sp(n, R) are 
determined by its maximal compact subgroup; hence Sp(n, R) is connected, but 
not simply connected, since Jrl (Sp(n, R» = JrI(U(n» = Z. Note that in terms of 
complex coordinates the symplectic form (2.3) reads 

(2.29) 

Hence in terms of the usual inner product on en one has 

w(z, z') = 21m (z, z'). (2.30) 

This expression renders it self-evident that U (n) C Sp(n, R). With a : = a / az and 
a := a/az, the Poisson bracket 1.(2.24) now reads 

{j, g} = i(ajag - ajag). (2.31) 

Further to the notation w = (u, v), we put a := (p, q); also recall (2.1). For 
X E .sp(n, R) we define the quadratic polynomial 

PX(a) := t(J Xa, a), (2.32) 

where the inner product is the usual one in R2n. Using (2.2), for X, X' E .sp(n, R) 
one easily verifies that 

{PX, P X'} = -PIX,X']' (2.33) 

which proves that (2.32), which is clearly bijective, defines a Lie algebra anti­
isomorphism between p2 and .sp(n, R). 

The group Sp(n, R) acts on Hn: the matrix ME Sp(n, R) maps (w, s) E Hn to 
(Mw, s). Writing h for (w, s), we say simply that M maps h into Mh. We may 
therefore build the semidirect product Sp(n, R) ~ Hn, whose elements are pairs 
(M, h), with M E Sp(n, R) and h E Hn. The group multiplication is given by 
(M, h) . (M', h') := (M M', h . M h'), where the product· in Hn is given by (2.6). 
Note, in particular, that 

(M, 0)· (e, h)· (M- I , 0) = (e, Mh), (2.34) 

where e and 0 are the identity elements in Sp(n, R) and Hn , respectively. The 
"mixed" Lie bracket in the Lie algebra .sp(n, R) ~ I)n is 

[M, (w, s)] = (Mw, s). (2.35) 

Let PI, P2 be polynomials of degree ::'S 2 in (Pi, qj). The space p:::2 of such 
polynomials is easily seen to be closed under the Poisson bracket 1.(2.24). 
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Proposition 2.2.1. 

• Under the correspondence (2.9) the Poisson algebra p:::1 of polynomials of 
degree::: 1 is anti-isomorphic to the Lie algebra ~n of the Heisenberg group 
fIn. 

• The Poisson algebra p2 of quadratic polynomials is anti-isomorphic to the Lie 
algebra sp(n, R) of Sp(n, R) under the correspondence PM(a) ~ M. 

• By linear extension of the preceding two items, the Poisson algebra p:::2 of 
polynomials of degree::: 2 is anti-isomorphic to the Lie algebra sp(n, R) ~ ~n 
of the semidirect product Sp(n, R) ~ fIn. 

The first item was shown in the previous section. The second is proved by (2.33). 
The third claim follows from (2.35). • 

One can easily solve the equations of motion for Hamiltonians in p:::2. The 
Hamiltonian flow generated by p(w,s) (cf. (2.9» is a(t) = a + tw (cf. (2.13) 
with c = 1), and the flow generated by P x is a(t) = Exp(tX)a. These flows are 
compatible with the natural action pO of Sp(n, R) ~ fIn on T*Rn, under which 
(M, (w, s»mapsa tOP?M.(W,S»(a) = Ma+w.IfPx ~ X under the isomorphism 
of2.2.1 (X E sp(n, R) ~ ~n), one verifies that Exp(tX) maps a to Exp(tX)a = 
a(t), where a ~ a(t) is the Hamiltonian flow generated by P x on T*Rn. Hence 

Exp(X)a = a(1). (2.36) 

We will now construct an important integrable Hilbert space representation of 
sp(n, R). Let P(Pi, qj, 1) be a polynomial on T*Rn. We define 

Q'j( (P(Pi, qj, 1» := A[P(Pl.i , Q:.,j), 1I], (2.37) 

cf. (2.24) and (2.23). This expression means that one substitutes pi, Q~, for p, q 
in p, and symmetrizes; thus A[ ... ] denotes complete symmetrization. For example, 
A[A h ... , An] = L1rES. A1r(I)' .. A1r(n)/n!, where the sum is over all n! elements 
7C of the permutation group Sn. 

Given its construction from UK (Exp(u Q - v P», it follows from standard repre­
sentation theory that Q'j( (P) is well-defined as an unbounded operator on L 2(Rn) 
with domain S(Rn). If P is real, then Q'j( (P) is symmetric on this domain. 

Proposition 2.2.2. 

• Restricted to at most quadratic polynomials, Q'j( is a Lie algebra homomor­
phism, in that for all PI, P2 E p:::2 one has 

i[W W] W h Q" (PI), Q/i (P2) = Q" ({PI, P2}). (2.38) 

• Hence dph, defined by 

(2.39) 

(where X E sp(n, R) ~ ~n corresponds to P x under the anti-isomorphism 
between sp(n, R) ~ ~n and p:::2, cf. 2.2.1 ),jurnishes a representation of the Lie 
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algebra sp(n. R) P< ~n as unbounded operators on the common invariant dense 
domain S(Rn) C L2(Rn). 

• For each X E sp(n. R) P< ~n the operator idP"'(X) is essentially selfadjoint on 
this domain. 

• There exists a double covering Mp(n. R) of Sp(n. R) (known as the meta­
plectic group) and a representation ph of Mp(n. R) P< fIn (where the action 
of Mp(n. R) on fIn factors through Sp(n. R) in the obvious way) on L2(Rn), 
whose derived representation ofsp(n. R) P< ~n is dph. 

• Restricted to fIn' the representation pli coincides with UI/IiUln). 

The restriction of pli to Sp(n. R) is called the metaplectic representation. 
A simple calculation shows that the commutation relations (2.38) are satisfied on 

S(Rn); hence the first claim follows from 2.2.1. The equationdph(X) = dUI/Ii(X) 
for X E ~n is immediate from (2.23), (2.24), and (2.26). 

A technical result in functional analysis, involving the existence of a dense set 
of analytic vectors (here given by the linear span of the Hermite polynomials), 
shows that dpli(sp(n, R» exponentiates to a representation ph(Sp(n, R», where 
Sp(n, R) is the unique connected and simply connected covering group of Sp(n. R) 
(one has Sp(n. R)/ Sp(n. R) ~ IE). This argument also leads to the essential self­
adjointness property mentioned. It can be shown that the metaplectic representation 
ph is double-valued on Sp(n. R) (that is, pli(M)ph(M') = ±p\M M'), where the 
sign depends on M and M'), so that there is a double covering group Mp(n. R) of 
Sp(n. R) on which ph is single-valued (i.e., is a representation). 0 

From 2.2.2, (2.22), and (2.34) we have the equivariance property 

p\M)Ul(a)ph(M)* = Ul(Ma). 
h h 

(2.40) 

where M E Sp(n, R). We may reformulate this result in terms of dynamics. We 
regard a real polynomial h on T*Rn as a classical Hamiltonian, denoting its flow 
by a ~ a(t). Its quantization, the quantum Hamiltonian Hh, is taken to be the 
unbounded operator 

Hh := Q:i (h(P;. Q~», (2.41) 

cf. (2.37), (2.24), and (2.23). Let h = Px E p2. From (2.39) we see that Hh = 
i hdph(X), so according to (2.36) we can rewrite (2.40) as 

(2.42) 

We tum to the reducibility of ph(Sp(n, R». The following result will be of 
central importance in the construction of the Weyl quantization map in 2.5. 

Lemma 2.2.3. The parity operator P on L2(Rn). defined by 

PIlI(x):= 1lI(-x), (2.43) 

commutes with all ph(M), M E Sp(n, R). The eigenspaces L2(Rn)± C L2(Rn). 
characterized by the property PL2(Rn)± = ±lIL2(Rn)±. are irreducible under 
ph(Sp(n, R». Hence the commutant of ph(Sp(n. R» is spanned by P and lI. 
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Simple computations show that [P, dp"(X)] = 0 for all X E 51'(2, R). 
Since Sp(n, R) is connected and the exponential map is onto, it follows that 
[P, p\M)] = 0 for all M E Sp(n, R). Hence p"(Sp(n, R» is reducible, 
and $±L2(Rn)± obviously decomposes L2(JRn). The fact that the L2(JRn)± are 
irreducible follows from an uninteresting technical argument. D 

This lemma implies that for all M E Sp(n, R) one has 

p"(M)Pp\M)* = P. (2.44) 

2.3 Berezin Quantization on Flat Space 

Mter this preparatory material we tum to the quantization of T*JRn. A suit­
able choice of the Poisson algebra we wish to quantize turns out to be !it~ := 
C~(T*JRn, JR); this is a dense subspace of~~ = Co(T*JRn, JR) under the sup-norm. 
We write (J' = (p, q); the Poisson bracket is given by 1.(2.24). 

We now construct a Berezin quantization of ~~ from a pure state quantization, 
as outlined in 1.3. The strategy is generic. 

Proposition 2.3.1. Put I = Rand?-t" := L2(Rn) for all Ii =f. O. For each 
(p, q) E T*Rn, define a unit vector l.JI~p,q} E ?-th by 

I.JIhP,q}:= Uk(p,q)l.JIg; 

I.JIg(x) := (rrh)-n/4e-x2/(2h), 

cf (2.22). Explicitly, one has 

(2.45) 

(2.46) 

I.JIhP,q}(x) = (rr h)-n/4e-!iPq/"eiPX/"e-(X-q)2/(2h) , (2.47) 

Denote the projection ofl.JlhP,q) E §?-th to JP1{" by l/IhP,q}. Then the choices 

q:(p, q) := l/Ihp,q), (2.48) 
dnpdnq 

d/L"(p, q):= (2rrli)n (2.49) 

yield a coherent pure state quantization ofT*JRn . 

This is established by simple computations. In fact, (1.10), without the limit, 
and (1.8) are valid for any unit vector I.JIg; the explicit choice (2.46) is used only 
to prove (1.9). Here the decisive intermediate result may be expressed in terms of 
complex variables (see (2.28» as 

("'(w) ",(z» _ It'" r:; ) _ (-!ww-!zHWZ)/h. Vh 'Vh - I'vh\Z, W - e , 

cf. (1.38). Hence (1.11) is immediate from the corollary 

p (q:(w), q:(z») = e-lz-wI2/h, 

The Berezin quantization Qg defined by (2.48) (cf. 1.3.4) is given by 

B f dnpdnq (pq) 
Q" (f) = IT*lR" (2rrli)n f(p, q)[I.JI" , ], 

(2.50) 

• 
(2.51) 
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where f E Loo(T*Rn). For f E Co(T*Rn, R) the Gelfand transfonn (1.15) is 

--;-- _ f dn pdnq (P.q) 
Q/i (f)(1{I) - iT-an (2rrn)n P(1{Ih ,1{I)f(p, q). (2.52) 

In tenns of the complex variables (2.28), the measure (2.49) reads 

dnzd"z 
dJL/i(z, Z) = (2rr ni)n . (2.53) 

Proposition 2.3.2. In the context of Proposition 1.5.2 (in which, using complex 
coordinates, 11.1'1 = L 2(Cn , JL,,»), the Hilbert space it" consists of all junctions of 
the type W(z, z) = exp(-zz/(2n»III(Z), where III is an entire function for which 
fen dnzdnzexp(-zz)IIII(z)12 < 00. 

We call the space of functions of the stated type iJ2(Cn ); elementary analysis 
shows that it has IC" (cf. (2.50) as a reproducing kernel. By the argument given in 
the proof of 1.5.2, nonn-convergence in iJ2 (Cn) implies uniform convergence. This 
shows that iJ2(Cn ) is complete. Moreover, the fact that entire functions are given 
by Taylor series (unifonnly convergent on compact sets) shows that the functions 
{<i>"}~I=O' where a := (al, ... , an) is a multi-index, with lal := al + ... + an, 
and 

(2.54) 

where za := ~I ••• ~n, fonn an orthononnal basis in it". The orthononnality 
follows from an elementary computation in polar coordinates. 

Using (2.47) and (2.28), we write (1.42) as 

WIII(z, z) = (rrfi}-n/4e-(Z"l+z2)/(2") f d"x 111 (x)e( _tx2+~Z)/". (2.55) 

The integral converges unifonnly in Z on compact sets, so Will is exp( -zz/(2fi}) 
times an entire function in Z. The square-integrability of Will follows from 
the fact that W is a partial isometry. Hence it" £ iJ2(Cn ). For example, 
IC/i(', w) E it/i for each W E Cn , as it should be. One computes (<1>." IC,,(-, w» = 
2-"/2 exp( -tww)w.,. It follows that (<I>, IC/i(-, w» = 0 for all w implies <I> = 0, 

so that the span of the collection of functions IC/i(-, w) E it/i, W E Cn , is dense in 
it/i. Since these are the images of the coherent states in 11.1'1 under W, the proof is 
complete. • 

With hindsight, we can now fonnulate a unitarily equivalent fonnulation of 

Berezin quantization on T*R": We start with the Hilbert space H~(cn) of 
conjugate-entire functions on Cn , whose inner product with respect to the Gaussian 
measure on Cn is finite, namely 

(III, <1» := n-n --. -e-zz/"III(z)<I>(Z) < 00. [ 
d"zdnz -

Cn (2rr t)n 
(2.56) 
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The functions <1>", occurring in the proof of 2.3.2 form an orthonormal basis of 

H~(cn). The latter plays the role of1t in Definition 1.5.3. The Berezin quantization 
in this realization, which we denote by Q~ to avoid confusion with the equivalent 
version (2.51), is then given by 

Qf(f) = pip· (2.57) 

Here I is regarded as a multiplication operator on it" := L 2(Cn, n-n jt~) (where 
jt~ is the Gaussian measure occurring in (2.56», and p is the projection onto the 

subspace H~(cn) of entire functions ofz in it". Compare with (1.44). 

The Hilbert space H~(cn) has an (unnormalized) reproducing kernel, the so­
called Bergman kernel, given by 

(2.58) 

Hence by Proposition 1.5.4 each evaluation map E z : '11 ~ 'I1(Z) is continuous. 
The coherent states 'I11t' are defined as in (1.53). As in the passage from (1.44) to 
(1.56), we may then rewrite (2.57) as 

v (dnwdnw _ 
Qf,(f)'I1(z) = n-n len (27ri)n e-ww/"~;}h(Z' w)/(w, W)'I1(W). (2.59) 

As explained in 1.3, this can be transferred to the Hilbert space 1tn, which possesses 
the normalized reproducing kernel (1.55). In the present setting, 1tn coincides with 
H" (cf. 2.3.2), since the rescaled measure jtn is just the Liouville measure times 
n-n. Hence we indeed have 

(2.60) 

There is yet another, closely related, way of looking at Berezin quantization, or 
rather the coherent states behind it. For any Hilbert space 1(, with inner product 
(, k, we introduce the exponential Hilbert space, or bosonic Fock space, exp(l() 
as follows. Let the Hilbert space ®~I( be the symmetrized tensor product of I 
copies of 1(; this is the invariant subspace of ®I I( under the natural action of the 
permutation group SI. The closure of the direct sum of all ®I I( is 

00 

exp(K) := E9 ®~I(. (2.61) 
1=0 

This space is separable iff I( is. The element 1 E C = ®0l( is denoted by Q; 
elements of I( are called w or Z. We define a map JEXp: I( -+ exp(l() by 

m= ~®IW w®w 
v Exp( w) := L... '" = Q + w + Mj + ... ; 

1=0 vi! V 2! 
(2.62) 

this is called an exponential vector. This map is clearly injective, since the compo­
nent of JEXp( w) in I( c exp(K) is w itself. The inner product of two exponential 
vectors is 

(2.63) 
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For one thing, this equation easily entails that JEXP is continuous. It is not difficult 
to show that the collection of exponential vectors is linearly independent and total; 
i.e., the linear span IE of all JExp(w), w E K, is dense in exp(K). 

For K = Cn it is clear from the fact that (2.54) provides an orthonormal basis 
-2 

that the map Vh : exp(Cn ) -+ H It(Cn), defined by extension of 

I 
(V/tw! ®s'" ®s w/)(z):= ,IiI"b;"(z, wlkn .. ·(z, w[kn (2.64) 

yl!nn 

is unitary. Hence the subspace ®~cn of exp(Cn ) corresponds to the subspace of 

lth order monomials in H~(cn). Note that 

(2.65) 

cf. (2.58). Hence, with the convention (2.28), the coherent states (2.45) in L 2(]Rn) 

correspond to the vectors JEXP (w/Jli) , up to normalization. Using (2.63), we 

may therefore rephrase Proposition 2.3.1 as 

Corollary 2.3.3. For finite-dimensional K the unit vectors (cf 1.5.1) 

\II):' := e-k(w.wlx:/ltJExp (w/JIi) (2.66) 

define a coherent pure state quantization of K into Hit : = exp(K) for all n i- o. 
Conceptually, one should stress that K, although a Hilbert space, is to be seen 

as a classical phase space. In particular, q/t(w) depends on the phase of w, so 
that qh does not quotient to a function on the projective space IP'K. In the infinite­
dimensional case the conditions (1.8) and (1.9) are not defined in the absence of 
a Liouville measure on K, but (2.66) makes sense, and comes from a map qh that 
satisfies the crucial condition (1.11). 

Corollary 2.3.3 and (2.45) suggest that one look for a realization of the repre­
sentation U! (fin) on exp(K); what follows holds whatever the dimension of K. 

n 
For each z E K the annihilation operator a(z) is an unbounded operator on the 
dense domain <E C exp(K) satisfying 

a(z)JExp(w) = (z, wkJExp(w). (2.67) 

The map z ~ a(z) is evidently antilinear. It can be shown that a(z) is closable; 
the domain of its adjoint a(z)* contains <E. The map z ~ a(z)* is linear; a(z)* is 
called a creation operator. The domain <E is evidently invariant under a(z); it can 
be shown that a(w)*<E is contained in the domain of the closure of each a(z). The 
commutator [a, a*] is therefore well-defined on <E; it is given by 

[a(z), a(w)*] = (z, wk. (2.68) 

The unbounded operators exp(a(z» and exp(a(z)*) are defined on <E as well, where 
their action is given by a strongly convergent power series expansion. From (2.67) 
one obtains 

(2.69) 
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ea(z)* JExp(w) = JExp(z + w). (2.70) 

In terms of these, the analogue on exp(K) of the Weyl operator (2.22) is 

U 1 (z) := e f,;[a(z)*-a(zlJ; (2.71) 
h 

the unitarity of U is obvious from this expression, and z f-+ U 1 (z) (with (2.28» 
h 

yields a representation of the Heisenberg group that is equivalent to the one defined 
in 2.1 under the same name. We then see from the eBH-formula and (2.68) that 
we may rewrite (2.66) as 

(2.72) 

The position and momentum operators (2.23), (2.24) may then be expressed in 
terms of the a and a* as Q~.i = .ffli(ai + an and Pl.i = .ffli(ai - ani i, where 

a(z) = aj i , etc. 

2.4 Properties of Berezin Quantization on Flat Space 

Berezin quantization on flat space has the following pleasant property. 

Theorem 2.4.1. Putting §to = C~(T*JRn) and 2(t, = ~o(L 2(JRn» for Ii i= 0, 

the Berezin quantization map Q~ : §t~ -+ 2(~ defined by (2.51) is a nondegener­
ate strict quantization of the Poisson manifold T*JRn (with its canonical Poisson 
bracket 1.(2.24)) on 1 = JR. Moreover, 

Q~(Co(T*JRn» = ~o(L\JRn». (2.73) 

Hence Qf, is a strict deformation quantization, except for (1.3), of 2(0 = 
Co(T*JRn). 

Before starting with the proof, we note that Qr, determines a continuous field 
of C* -algebras by Proposition 1.2.4; this will be further developed in 2.6. 

The nondegeneracy of Q~ is an easy corollary of 2.3.2. For qJ I, qJ2 E Ji" and 
W defined by (1.42) we have (qJI, Q~(f)qJ2) = (WqJI, fWqJ2), where the inner 
product is in Jih = L 2(S, d JL,,). Since one can construct a basis of the latter Hilbert 
space consisting of functions of the type WqJI WqJ2, the property Qr,(f) = 0 
implies f = 0 almost everywhere, which means that f = 0 for f E C~(T*JRn). 

The converse is trivial. 
The fact that Qr, maps C~(T*JRn, JR) into ~o(L 2 (JRn»]R follows from 1.3.5. To 

show that Qr,(C~(T*JRn» is dense in ~0(L2(JRn», one observes that Q~(f) is 
Hilbert-Schmidt for f E C~(T*JRn). If one assumes that f(p, q) = fl(p)!z(q), 
the kernel K (x, y) of Qr, (f) factorizes as a function of the variables x ± y. Each 
factor is then easily seen to be dense in L2(JRn ) as fi runs through C~(JRn). Equation 
(2.73) then follows from 1.4.5. 

Rieffel's condition and (1.1) hold by Proposition 1.3.6. 
We now tum to the proof of (1.2), using (2.28). For mEN we will use 

IIgllm.oo:= L lIaaafJ flloo, (2.74) 
lal+lfJl :'Om 
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where a and fJ are multi-indices, and aa := a;' ... a~", etc. For \Ii E L 2(JRn) we 
write (\liK, \Ii) = exp( -zz/(2n)\Ii(Z); cf. 2.3.2. From (2.51) and (2.50) we obtain, 
after a shift of one of the integration variables, 

(\Ii, Q~(f)Q~(g)\Ii) = f dJ.ih(Z, Z)dJ.ih(~, ~)e-(zzHf+zf)/" 

x \Ii(z)\Ii(z + ~)f(z, z)g(z +~, Z + n (2.75) 

One now expands g(z + ~, z + ~) in a Taylor series around (z, z). The zeroth-order 
term leads to (\Ii, Q~(fg)\Ii). The remainder is :s ClIglIl,oolH for a constant C 
of order 1 (further contributions to this constant will be absorbed without change 
of notation). We take II f II 00 out of the integral, and of the factor exp( -~ ~ In) we 
put exp( -~~ 1(2n» into the measure. We then apply Cauchy-Schwarz to the ~­
integral, factorizing the ~ -dependent integrand into I~ I times the rest. The first of 
the ensuing two ~ -integrals is a Gaussian integral of I~ 12 , which is proportional to 
n (which appears under a square root, so it will lead to a factor nI/2 ). There remains 
an integral over z and ~. Here we apply Cauchy-Schwarz to the z-integration. The 
resulting triple integral factorizes after a shift in one of the variables, and can be 
performed; two of the factors are equal to II \Ii II. Hence 

(2.76) 

By 1.2.1.8, 1.2.5.3, and 1.(1.57), for each A E ~(1{)n~ there is a unit vector 
\Ii E 7-{ such that 

IIAII = 1(\Ii,A\Ii)I· (2.77) 

Hence (1.2) follows from (2.76), which implies 

lim IIQ~(j) 0 Q~(g) - Q~(fg)1I = o. 
h--->O 

(2.78) 

The proof of (1.3) is similar. We consider (2.75) with (\Ii, Q~(f)Q~(g)\Ii) re­
placed by (\Ii, wg(f), Q~(g)]\IJ). On the right-hand side one then has the terms 
fez, Z)g(z + ~, z + ~) - fez + ~, z + ~)g(z, z), instead of fez, z)g(z +~, z + ~). 
One now expands g(z + ~, z + ~) as well as fez + ~, z + ~) in a Taylor series 
around (z, z). The zeroth-order term obviously vanishes. The linear term can 
be evaluated by also expanding exp(-z~/n)\Ii(z + ~) in powers of f The ~­
integration can then be performed: The only nonzero contribution comes from 
factors ~ f A partial integration in z then shows that the linear term equals 
n(\Ii, Q~(-i{f, g} + gaaf - faag)\Ii), where the Poisson bracket is given by 
(2.31). 

The quadratic term contains ~~(faag - gaaj). In the ~-integral only the 
zeroth-order term in ~ from exp( -z~ 1n)\Ii(z + ~) contributes, and the result may 
be expressed as n(\Ii, Q~«(faag - gaaj)\Ii). This cancels the additional term 
from the linear contribution. Hence the linear term and the expression with ~~ in 
the quadratic term together produce n(\Ii, Q~( -i {f, g })\Ii). The remainder of the 
quadratic term has a part proportional to ~ ~ , which vanishes upon integration, and 
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a part proportional to ~ g . After g -integration, and partial integration in z, the latter 
part is easily seen to be bounded by h2 11f114,00 IIg1l4,00 11111112. 

The contribution of the higher-order terms is estimated as follows. Taylor's 
formula with remainder of third order yields an object bounded by 211fll3,00 
IIg 113,001~ 13. We now proceed as in the proof of (1.2): Practically the only dif­
ference is that the Gaussian integral of I~ 12 in that proof is now replaced by one of 
I~ 16, which leads to an overall factor of order h3/ 2• All this leads to the estimate 

1(111, ~[Qf(f), Qf(g)] - Qf({f, g})lII)l ~ 
(Cdll3.oo IIgll3,oohl/2 + C211f1l4,00 IIgIl4,ooh) 11111112. (2.79) 

Equation (1.3) now follows in the same fashion as (1.2) above. • 

We turn to the equivariance properties of Qf. In preparation: 

Definition 2.4.2. An automorphic action a of a group G on a C* -algebra Ql is 
a homomorphism x t-+ ax, such that each ax is an automorphism ofQl, In other 
words, apart from the linearity and bijectivity of each ax : Ql -+ Ql one has the 
properties ax 0 a y = axy , ax(AB) = ax (A)ax (B), and aAA*) = ax(A)*. 

Consider the natural action pO of Sp(n, JR.) D< JR.2n on T*JR.n ~ JR.2n, according to 
which (M, w) maps a E T*JR.n to prM,W)(a) := Ma + w (cf. 2.2). This leads to 

an automorphic action aO of Sp(n, JR.) D< JR.2n on Qlo = Co(T*JR.n), given by 

(2.80) 

Also, one has an automorphic action a h of G on Qlh = ~o(L2(JR.n», given by the 
representation constructed in 2.2.2. That is, 

afM,W)(A):= ph(M, w)Aph(M, w)*. (2.81) 

Theorem 2.4.3. Foreach(M, w) E U(n)D<JR.2n, whereU(n) = Sp(n, JR.)nO(2n) 
(cf. the text surrounding (2.28)), and all f E Co(T*JR.n), one has 

Qf(arM,w)(f) = afM,W)(Qf(f)· (2.82) 

To prove this, we rewrite (2.51) as a weak integral 

(2.83) 

The equivariance under JR.2n is obvious from this formula, the last claim in 2.2.2, 
(2.22), (2.6), and (2.19). 

Lemma 2.4.4. ffU E U(n) and ph is the metaplectic representation of Sp(n, JR.) 
on 7th = L2(JR.n), then 

(2.84) 

This is most easily proved in the realization ~n ith, described in 2.3.2. From 
(2.55) and (2.50) we have WIII~(z, z) = exp( -zz/(2h». If U E Sp(n, JR.)n O(2n), 
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then Wph(U)W* can be shown to be given by 

Wp'~(U)W*\II(z, z) = ~\II(U-1Z' U-1z), 
det(U) 

from which (2.84) is immediate. 

(2.85) 

o 
The equivariance under U (n) follows from this lemma and (2.40). Since each 

element of a semidirect product factorizes, Theorem 2.4.3 follows. • 

This theorem can be reformulated in terms of dynamics on T*JRn. 

Corollary 2.4.5. Define a class of classical Hamiltonians on T*JRn by 

h(p, q) = 4(p, Ap) + 4(q, Aq) + (p, Bq) + (e, p) + (d, q), (2.86) 

where A and B are real n x n matrices such that AT = A and B T = - B, the 
inner products are in JRn, and e. d E JRn. Denote the time evolution generated by h 
on the classical observables by a? (cf 1.(2.13)). Define the quantum Hamiltonian 
Hhby 

(2.87) 

which is an unbounded operator with domain S(JRn). Then Hh is essentially self­
adjoint on S(JRn). The one-parameter automorphism group a~ on ll3o(L2 (JRn» is 
defined by 

(2.88) 

Then one has 

(2.89) 

A matrix X E 9Jt2n (C) lies in U(n) when it satisfies J X + XT J = 0 and 
XT + X = O. The polynomial (2.32) is then precisely of the form of the quadratic 
term in (2.86). For h of the form (2.86), one computes 

Q~(h) = 4(Pi, APi) + 4(Q~, AQ~) + (Pi. BQ~) + (c, pi) + (d, Q~) (2.90) 

in terms of (2.24) and (2.23). This follows by calculating the matrix elements 
between coherent states (which indeed lie in the domain of Hh). The expression 
(2.90) coincides with (2.41), and therefore the essential self-adjointness of Hh, is 
a consequence of Proposition 2.2.2. Corollary 2.4.5 now follows from Theorem 
2.4.3, exactly as in the derivation of (2.42). • 

2.5 Weyl Quantization on Flat Space 

Theorem 2.4.3 suggests that one look for a quantization that is equivariant under 
the full affine symplectic group Sp(n, JR) ~ JR2n . It is obvious from Lemma 2.4.4, 
in particular from (2.84) and (2.44), how this may be accomplished: One simply 
replaces the projection [\II~] in (2.83) by (a constant times) the parity operator P. 
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This leads to the definition of the Weyl quantization of a suitable function 1 on 
T*Rn as the operator on L2(Rn) given by 

(2.91) 

The normalization has been chosen so that Q]i(1PlRn) = n. Note that at least 
in a heuristic sense, Q]i (8) = (Jr h.)-n P (where 8 is the Dirac delta function on 
T*Rn ~ R2n), which places the parity operator in a remarkable light. 

Since the Fourier transform will play an important role in what follows, we 
choose the Schwartz space 

(2.92) 

as the Poisson algebra to be quantized. Clearly, the closure of §to in the sup-norm 
is ~o = Co(T*Rn). We define (2.91) for 1 E S(T*Rn); it is immediate that Q]i 
maps S(T*Rn, R) into ID(L2(Rn»lR. 

We will shortly see that Q]i (f) E lDo(L2(Rn». Given our motivation for 
constructing Q]i, the following comes as no surprise. 

Theorem 2.5.1. Let a O and a h be as in (2.80) and (2.81), respectively. For each 
(M, w) E Sp(n, R) ~ R2n and all 1 E S(T*Rn), one has 

Q]i (a?M.w)(f» = afM.w)(Q]i (f). (2.93) 

The proof is similar to that of 2.4.3, with (2.44) replacing (2.84). o 
Corollary 2.5.2. Let the classical Hamiltonian h be an arbitrary real polynomial 
on T*Rn 01 degree::: 2 in (p, q). The quantum Hamiltonian Hh := Q]i (h) (see 
(2.41)) is well-defined as an unbounded operator on the domain S(Rn), on which 
it is essentially self-adjoint. With the one-parameter automorphisms a~ and a~ 
defined as in 1.(2.13) and (2.88), respectively, one has 

Q]i (a~(f» = a~(Q]i (f). (2.94) 

Equation (2.90) is valid (and proved by the same method) also if Qg is replaced 
by Q]i, which settles the domain and self-adjointness issues. The corollary then 
follows from Proposition 2.2.1. • 

The notation Q]i used here and in (2.41) will be justified shortly. 
Weyl quantization may be rewritten in various ways. Firstly, one has 

w f dnpdnq w 
Qh (f) = JPlRn (2Jrnf I(p, q)Oh (p, q), 

where O]i (p, q) E ID(L2(Rn» is defined by 

o]i (p, q)\II(x) := 2ne2ip(x-q)/h\ll(2q - x). 

The function 1 may be recovered from Q]i (f) by the formula 

I(p, q) = Tr Q]i (f)o]i (p, q). 

(2.95) 

(2.96) 

(2.97) 
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This equation may be proved by noting that Q"ii (f) is trace-class for! E S(T*Rn) 
(see below), so that Q"ii (f)n"ii (p, q) is trace-class as well, because n"ii (p, q) is 
bounded. If K(·,·) is the kernel of Q"ii(f)n"ii(p,q), its trace is J dnx K(x,x), 
which easily leads to (2.97). 

More generally, the Weyl symbol a/iw LAJ of an operator A E ~(L2(lRn» is a 
distribution in $'(T*Rn) defined by 

atLAJ(f):= (21f1i)nTrAQ:r(f). (2.98) 

If at LAJ is a locally integrable function, we see from (2.95) that one may write 

at LAJ(p, q) = Tr An:r (p, q). (2.99) 

Comparing this with (2.97), for! E S(T*Rn) one infers that 

Q:r (a/iw LAJ) = A. (2.100) 

(Using distribution theory it is possible to make sense of this equation even when 
! E S'(T*lRn).) Hence at is the inverse of Qr 

Analogously to (2.52), we can write the Gelfand transform of Q"ii (f) as --- i dnpdnq 
Q "ii(f) (1/1) = (2 )n W/iL1/IJ(p,q)!(p,q), (2.101) 

PIll" 1f 

where the (real-valued) Wigner function is given by 

W/iL1/I J(p, q) = li-n(\{J, n"ii (p, q)\{J). (2.102) 

Since n"ii (p, q) is 2n times a unitary operator, the Cauchy-Schwarz inequality 
implies that IIW/iL1/IJlloo :::: (2j1i)n (if \{J had not been normalized, the bound 
would contain an additional factor II \{J 11 2). It is then easy to show that W/i L 1/1 J E 

L2(T*lRn) n Co(T*Rn). The expression (2.102) is often written as 

W/iL1/I J(p, q) = ( dnv eipv\{J(q + kliv)\{J(q - kliv). (2.103) 
JIll" 

It may be inferred from (2.102) that Q"ii is not positive, since there exist vectors 
\{J for which W /i L 1/1 J is not positive definite. For such \{J, the Wigner function 
may not even be in L 1 (T*lRn). Here Berezin quantization is much better behaved. 
Comparing (2.101) with (2.52), one sees that the Wigner function W/i L 1/1 J in Weyl 
quantization replaces the positive definite expression (p, q) f-+ Ii-n p( 1/1 t q , 1/1) 
(whose L1-norm is 1 by (1.8» in Berezin quantization. 

It follows from (2.98) and (2.102) that for a unit vector \{J E L2(Rn) one has 

a{ L[\{J]J = lin W/i L 1/1 J , (2.104) 

or, by (2.100), 

(2.105) 

Consequently, the transition probabilities 1.(2.65) in p(~o(L2(lRn») may be 
expressed in terms of the overlap of the pertinent Wigner functions as 

i dnpdnq 
p(p,a) = lin (2 )n W/iLpJ(p, q)W/iLaJ(p, q); 

TO Ill" 1f 
(2.106) 
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note that the integral on the right-hand side is well-defined, since we have just seen 
that Wn E L 2(T*JRn). 

The image of Q~ in !B(L2(JRn» is best studied by rewriting (2.91) as 

Q~ (f)\II(x) = P Y eip(x-y)/n f (p, 1(X + y») \II(y). 1 dn d n 

PIR" (211 li)n 

In other words, Q~ (f) is an integral operator 

Q~ (f) \II (x) = f dny KfLfJ(x, y)\II(y); 
JIR" 

Kf LfJ(x, y) := Ii-n l«x - y)/Ii, 1(x + y». 

(2.107) 

(2.108) 

(2.109) 

Here the partial (fiberwise) Fourier transform 1 E S(TJRn) of f E S(T*JRn) is , 1 dnp. 
f(v, q):= -- e1PV f(p, q). 

T* IR" (211)n 
q 

(2.110) 

Proposition 2.5.3. The map Q~ is an isomorphism between S(T*JRn) and the 
space 1132 (L 2(1Rn» of Hilbert-Schmidt operators on L 2(JRn) with kernel in S(JR2n ) . 

This is immediate from the above expressions. • 
Corollary 2.5.4 • 

• The image Q~(sito) is a norm-dense subalgebra offl! = lJ3o(L2(JRn», and 
therefore acts irreducibly on L2(JRn) . 

• The quantization Q~ is non degenerate (cf 1.1.2). 

Finally, we rewrite (2.91) as 

Q~(f) = f dnudnv leu, v)U;' (Exp(-uQ + vP». (2.111) 
JIR" 

For f E S(T*JRn) we have defined the symplectic Fourier transform I E S(JR2n) 
by inverting 

(2.112) 

Hence we see (with Weyl) that Q~ corresponds to a particular operator ordering, 
in which the function (p, q) ~ exp(iuq - ivp) on T*JRn (smeared with a test 
function) is quantized by the operator U;,(Exp(-uQ + vP» on L 2(JRn). Ignoring 
the test functions, one may repeatedly differentiate with respect to u and v; the 
linearity of Q~ then indicates that polynomials P on T*JRn are Weyl-quantized 
by (2.37). An interesting corollary to (2.111) is 

Proposition 2.5.5. The Schrodinger representation (2.17) is irreducible. 

If U;, were reducible, by Schur's lemma there would exist E E IJ3(L2(JRn» such 
that [E, U;, (u, v, z)] = 0 for all (u, v, z) E Hn. Equation (2.111) and the definition 
of a weak integral then imply that [E, Q~ (f)] = 0 for all f E S(T*Rn). But we 
saw in 2.5.4 that Qr (S(T*Rn» acts irreducibly on L2(Rn); cf. I.2.2.2. • 
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2.6 Strict Quantization and Continuous Fields on Flat Space 

In this section we show that Weyl quantization is strict, and even continuous, like 
its Berezin counterpart. The continuous field of C*-algebras generated by Q:i or 
Qg will be described in terms of the Heisenberg group fin. 

Theorem 2.6.1. The Weyl maps Q:i define a strict deformation quantization of 

!i(~ = S(T*JRn, JR) (with Poisson bracket 1.(2.24)) over 1 = JR, with 2(1i = 2( := 
~o(L2(JRn»for Ii f. O. 

Given that it is strict, the fact that Q:i is a deformation quantization follows 
from 2.5.4. A key ingredient of the proof of strictness is an estimate we borrow 
from the theory of pseudo-differential operators. 

Lemma 2.6.2. There exists a constant C > 0 such that for all f E S(T*JRn) 

II Qr (f) II ::::: CllfII2n+l,00, (2.113) 

where,for mEN (cf (2.74)), 

IIfllm,oo:= E II a; a: flloo. (2.114) 
Ictl+llll:::m 

Here act '= actl ... actn. similarly for afJ P • PI Pn' q. 

This lemma is useful also for Ii f. 1, because Q:i (f) = Qf (fli), with 
fli(p, q) := f(lip, q). Indeed, it now rapidly follows that Ii ~ Q:i (f) is con­
tinuous as a function from JR\{O} to ~o(L2(JRn»; this implies the continuity 
of Ii ~ IIQ:i(f)1I for Ii f. O. Also, (1.2) and (1.3) follow straightforwardly 
from (2.113) by computing f 'Ii g. As in 1.1, this is defined by the property 
Q:i (f)Q:i (g) = Q:i (f 'Ii g), and can be computed from (2.109). 

To prove continuity at Ii = 0, we use the following facts. Firstly, a simple 
computation shows that the Wigner function (2.102) of the coherent state (2.46) 
is a Gaussian: 

(2.115) 

Secondly, the connection between Weyl quantization and Berezin quantization is 
given by 

(2.116) 

where * is convolution in T*JRn :::::: JR2n. This may alternatively be written as 

Qg(f) = Q:i (e~lil\2n f), 

where ~2n is the Laplacian on T*JRn :::::: JR2n . 

Proposition 2.6.3. For each f E S(T*JRn ) the function 

Ii ~ II Qg(f) - Q:i (f)11 

(2.117) 

is continuous on lR. That is, the Weyl and Berezin quantizations of S(T*JRn) are 
equivalent. 
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This follows from (2.116) and an application of Lemma 2.6.2. Note that 
continuity at n = 0 simply follows from 

lim II QJi (f) - Qf (f) II = 0 
n-->O 

(2.118) 

(from the same lemma), since Qii (f) = Qg (f) = f· • 
The continuity of n ~ II QJi (f) II at n = 0 (and, indeed, at any fi) is now obvious 

from 2.6.3 and 2.4.1 (or 1.3 .6), finishing the proof of 2.6.1. • 

A different and much more general proof of Rieffel's condition for Weyl quan­
tization will be given in Theorem 111.3.11.4. For now, we return to the Heisenberg 
group. One may extend (the inverse of) (2.112) to obtain an isomorphism be­
tween S(Hn) and S(lJ~). Thus the (symplectic) Fourier transform j E S(Hn) of 
f E S(~~) is defined by 

feu v s) '= e,(uq-pv-cs)f(p q c). ~ 1 dn pdnqdc . 
" • f)~ (2rr)2n+l ' , 

(2.119) 

What follows is a special case of a general construction explained in 111.1.7. One 
can define an associative product· on S(Hn) by convolution, i.e., 

j. g(u, v, s):= f_ dnu'dnv'ds' j«u, v, s)· (u', v', S,)-I)g(U', v', s'), (2.120) 
lil. 

as well as an involution * by 

/*(u, v, s) = feu, v, S)-l. (2.121) 

A representation U of Hn on a Hilbert space H defines a linear map rr : S (Hn) ~ 
IJ3(H) by 

rr(j):= f_ dnudnvdt j(u, v, s)U(u, v, s). 
luo 

(2.122) 

Using (2.120), one easily checks that any representation U(Hn) thus defines a 
representation rr of S(Hn) as a * -algebra. 

We firstly use this construction with H = it:= L2(Hn,dnudnvds),andU(Hn) 
defined by 

U(u, v, s)W(u', v', s') = W«u, v, S)-I . (u', v', Sf». (2.123) 

It is clear that the ensuing representation ir(S(Hn» defined by (2.122) is faithful. 
One now puts a norm on S(Hn) by 

11111 := lIir(j)II; (2.124) 

this is evidently a C* -norm. The completion of S(Hn) in this norm is denoted by 
C*(Hn). All representations of the convolution algebra S(Hn) extend to C*(Hn) 
by continuity. Now recall Definition 1.2.1 and (2.14). 

Proposition 2.6.4. Define rr5 : C*(Hn) ~ Co(T*Rn) by rr5(j) := fro, extended 

from S(Hn) to C*(Hn) by continuity; this yields a representation of C*(Hn) on 
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L2(T*JRn) by multiplication operators. For n -# 0, define a representation n% of 
C(Hn) on L2(JRn) by putting U = U% in (2.122); see (2.17). 

The triples (C*(Hn), {mh , niJilEIR) and (C*(Hn), {mil, nKlnEoUI/Z), where 

mo := Co(T*JRn) and mil := lBoCL2(JRn» for n -# 0, are continuous fields of 
C* -algebras. 

Analogous to (2.111), one derives the remarkable relation 

(2.125) 

One may then imitate the method of proof of Rieffel 's condition in Theorem 2.6.1, 
concluding that the function n r-+ IIn;;(i) II lies in C(JR) for i E S(Hn). Moreover, 
one infers from Lemma 2.6.2 and the fact that fr!! decreases rapidly in n that this 
function even lies in Co(JR). Since n,7 is continuous, this property holds for any 

i E C*(Hn). Hence condition l.2.1.1 is satisfied. 
Consider the Hilbert space H := L 2(JR;(2n)-2n dnlnl n) ® 'B2(L2(JRn»; el­

ements of H are functions on JR taking values in lB 2(L 2(JRn», with inner 
product 

(\II, <I» = [ ~ I nln Tr \II (n)* <I> (n). JIR (2n) n 
(2.126) 

For q, E S(Hn) C if and n -# ° one then defines the operator Wq,(n) on L2(JRn) 
by Wq,Cfi) := n%Cq,). We know from Proposition 2.5.3 that Wq,(n) is a Hilbert­

Schmidt operator. An explicit calculation, using (2.109), shows that W : S(Hn) --+ 

H is unitary, so that W can be extended to a unitary isomorphism from if to H. 
Writing n := WiT W* of C*(Hn), the point is now that 

(2.127) 

for all j E C*(Hn). Using (2.122), (2.123), and (2.17), this is initially proved 
for j E S(Hn), and extended to C*(Hn) by continuity. The product of n%(j) E 

lB(L2(JRn» and \II(n) E 'B2(L2(JRn» lies in 'B2(L 2(JRn», because lB2(H) is a 
(two-sided, nonclosed) ideal in lB(H). 

Condition 1.2.l.2 now follows, since from (2.127), (2.124), the unitarity of W, 
and 1.2.1.1 just proved, one has 

lIill = sup IIn%(i)ll. (2.128) 
IlEIR 

It follows from 2.5.4 and (2.125) that ni,(S(Hn» is dense in 'Bo(L2(JRn». For 
n -# ° one therefore has 

(2.129) 

since the left-hand side is norm-closed by 1.1.3.10.4. This is consistent with (and 
could alternatively have been derived from) 2.1.4, 111.1.7.5, and 1.2.2.2.1. Similarly. 
since n5(S(Hn» is dense in Co(T*JRn), by 1.1.3.10.4 one has 

n5(C*(Hn» = Co(T*JRn). (2.130) 
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The results just proved imply that S(Hn ), regarded as a subspace of nllEiR Qtll, 
satisfies the three conditions in Proposition 1.2.3, Moreover, it is obvious from 
property 1.2.1, the definition of the norm in C*(Hn ), and the continuity of each 
representation rrK that the function n 1-+ IIrrK(j) - rr%(g) II lies in Co(lR) for each 

j E C*(Hn) and g E S(Hn). In view of the uniqueness part in the statement of 
Proposition 1.2.3, the continuous field determined by S(Hn ) C nt!EiR Qtll through 

1.2.3 therefore coincides with the field ( C*(Hn), {Qtll, rr/~lnEiR)' 
The statement about C* (Hn) is obvious from the comment preceding (2.18). • 

Theorem 2.6.5. The quantization maps Q:i of Weyl and Q~ of Berezin both 
satisfy the assumptions of Theorem 1.2.4, and therefore lead to a continuous quan­
tization ofT*Rn (cf 1.2.5). The continuous field ofC* -algebras determined by Weyl 
quantization according to Theorem 1.2.4 coincides with the one determined by 

Berezin quantization, and is equal to the continuous field ( C*(Hn)' {Qtll, rr%JhEIR) 

of the C*-algebra of the Heisenberg group. 

First observe that limll-+±oo II Q:i (f) II = 0 for all f E S(T*Rn). This is most 
easily proved by (2.108), (2.109), and the inequality IIA II ::: IIA 112; see the comment 
after 1.1.6.5. Combining this with Theorem 2.6.1 implies that the first claim in 2.6.5 
holds. 

Similarly, it follows from (2.51) that II Qg (f) II ::: n-n J f, so that for f E 

C~(T*Rn) one has limll-+±oo II Qf(f) II = O. With Theorem 2.4.1, this leads to 
the second claim in 2.6.5. The continuous fields determined by Weyl and Berezin 
quantization then coincide by Propositions 2.6.3 and 1.2.3 (used in the context of 
the proof of 1.2.4). 

Lemma 2.6.6. The continuous field determined by S(Hn ) through Proposi­
tion 1.2.3 coincides with the continuous field determined by Weyl quantization 
according to Theorem 1.2.4. 

It is clear from Proposition 2.6.4 that S(Hn) satisfies the three conditions in 
1.2.3. Similarly, we know from the part of the proof of 2.6.5 that has already been 
given that the assumptions in 1.2.4 are met. Now note that for any compact set 
K cRone may choose j E S(Hn) such that frll does not depend on n for n E K. 
This shows that the second field defined in 2.6.6 is contained in the first. 

Conversely, let A E nllEK Qtt. lie in the first field. It then satisfies the first 
("if") condition in Lemma 1.2.2, where each B Il' is of the form n 1-+ rrK(jt() 

for some jll' E S(Hn). Hence for each n' E K there exists a function p: E 

S(Hn) and a neighborhood Nt( such that IIAh - rr%(jIl')1I < E for all n E Nil'. 
Employing the partition of unity in the proof of 1.2.2, define C E nllEK Qth by 

Ch := Lj u j(n)Q:i (!r~j)' Since f~} lies in S(T*Rn), the section C lies in the 

second field because of 1.2.1.3. As fh j E S(!J~), one can choose the neighborhoods 
Nil} small enough so that Ilf hj (., n) - fllj(., nj)1I2n+l,oo < E/C for all n E Nil}; 
cf. (2.113). Using (2.125) and (2.113), one finds that II All - CIlIl < 2E uniformly 
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on K. Since both fields vanish at infinity, this shows that A lies in the second field 
in 2.6.6. The claim follows. • 

Theorem 2.6.5 follows from this lemma, since by the proof of Proposition 2.6.4 

the first field in 2.6.6 is (C*(Hn), {mh, n!.lnEIR). • 
Corollary 2.6.7. The restriction of the continuous field of2.6.5 to R\ {OJ is trivial: 
if A : R\ {OJ ---+ ~o(L 2(Rn» is in Co(R\ {O}, ~o(L2(Rn))), then A is the restriction 
of some element ofC*(Hn) (seen as an element ofTIhEIR mh) to R\{O}. 

As in the paragraph following 2.6.2, for Ii =1= 0 the map Ii ~ QJ; Ur") is 
continuous as a function from R\{O} to ~o(L 2(Rn». The claim then follows from 
2.6.5 and the proof of 1.2.3. • 

A fascinating perspective on Theorem 2.6.5 will be given in III.3.12. 

2.7 The Classical Limit of the Dynamics 

We turn our attention to the connection between classical and quantum dynamics 
on flat space. Equation (2.94) does not hold if h ¢ p:::2; for general Hamiltonians h 
one merely has asymptotic results. For the moment we proceed in a more general 
context, and consider a general strict quantization Qh, defined with respect to some 
m~ C; Co(T*Rn) and mh C; ~(L 2(Rn)). The sharpest convergence occurs when 

h itself lies in m~; then H" := Qh(h) is in m". We use the notation of (2.88) and 
preceding text. 

Proposition 2.7.1. The flow of h E m~ is complete. For f E m~, assume that 

apU) E m~ for all t. For any strict quantization Qh (such as Q" = QJ; or 
Qh = Qf,), for all fixed t one then has 

lim IIQ,,(apU» - a~(Q,,(f))ll = O. (2.131) 
h->O 

For Qh = Qf, and Q" = QJ; we had m~ = C~(T*Rn) and m~ = S(T*Rn), 
respectively; since the Hamiltonian flow is smooth the assumption that at (f) E m~ 
is therefore satisfied in those cases. 

The completeness of the flow of h follows, by a standard argument, from the 
fact that its Hamiltonian vector field ~h is bounded on T*Rn (the components of 
~h in canonical coordinates are themselves in m~). To prove (2.131) we write 

Qh(a?(f» - a:'(Q,,(f» = lot ds :s a;'-s(Q,,(a.?(f))) 

= lot ds a;'-s ( Q,,({h, a?um - ~[Qh(h), Qh(a?(f))]) . (2.132) 

Using the fact that automorphisms are norm-preserving, we therefore see that the 
norm II Qh(a?U)) - a~(Qh(f)1I is bounded by 

1t ds II Qh({h, a?um - ~[Qh(h), Qh(a?u))]ll· 
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By (1.3), the integrand vanishes as Ii ~ O. • 

Since most realistic Hamiltonians in physics are not bounded, this instructive re­
sult is of limited practical use. Many physically relevant one-particle Hamiltonians 
are of the form 

h( ) = (p - eA(q»2 + V( ) 
p,q 2m q , (2.133) 

where m > 0, e E JR, the function A : JRn ~ JRn is the magnetic field potential, 
and V : JRn ~ R is a scalar potential. It is not necessary to assume that V and 
A lie in coo(JRn); for the existence of local solutions (p(t), q(t» to the classical 
equations of motion with initial value (p(O), q(O» it suffices that V V and V A 
be Lipschitz around q(O). A formal application of the Weyl prescription (2.37) 
indicates that h is quantized by the Schrodinger operator (cf. (2.24), (2.23» 

( ps eA(QS»2 
HI, = h(P;, Q~) = I, - 2m I! + V(Q~). (2.134) 

Theorem 2.7.2. Given (p, q) E T*JRn, assume that 

• the classical motion (p(t), q(t» with initial conditions (p(O), q(O» = (p, q) 
exists for ti < t < t f; 

• V and A are c 3(JRn) in a neighborhood of each point (p(t), q(t»; 
• V and A2 are O(exp(x2/2»for x ~ 06. 

If Ii < 1, the expression HI, in (2.133) is symmetric on the domain Do consisting 
of the span of all coherent states (2.47). If A = 0, the operator HI! has at least 
one self-adjoint extension; for arbitrary A, assume this to be the case. By abuse of 
notation, let the symbol HI! stand for an arbitrary self-adjoint extension of (2.133 ), 
generating the unitary one-parameter group exp(it HI!/Ii) on L 2(JRn). Then, with 
the notation (2.88), 1.(2.13), and (2.47),for all t E (ti, tf),for QI! = Qf:' (and 
f E S(T*JRn») or QI! = Q~ (and f E C~(T*JRn)), one has 

lim (\II~P.q), [Q1!(a~(f» - a;(QI!(f))]\II~p,q)) = O. (2.135) 
r,--+o 

Since Do is contained in S(JRn ), and the growth conditions postulated on V and 
A imply that the multiplication operators V(Q~), Ai(Q~), and A(QD2 map Do 
into itself, it easily follows that HI! is indeed symmetric on Do. If A = 0, then HI! 
commutes with the conjugation \II 1-+ \II on L 2(JRn); hence it has equal deficiency 
indices. 

We now write a = (p, q) and R~ = (P;, QD. Given a particular a, we expand 
HI! around the solution a(t) of the classical equations of motion aa /dt = {h, a}, 
with initial value a (0) = a. That is, 

with 

H(2)(t) := Ho + HI(t) + H2(t), 

Ho := h(a(t»[, 

(2.136) 

(2.137) 

(2.138) 



ISO II. Quantization and the Classical Limit 

ah s . 
Hl(t):= -. (a(t»(R/i - a(t»', 

aa' 
o2h s . s . 

H2(t) := ! . . (a (t»(R/i - a(t)Y (R/i - a(t»l , 
aa'oal 

while H3(t) is defined as the remainder. 

(2.139) 

(2.140) 

The operator H(2)(t) has a semiclassical interpretation. Firstly, h(a (t» in (2.138) 
is just the classical Hamiltonian evaluated at the classical path. This is independent 
of t. Secondly, writing S := T*Rn, consider the function h(l) on T S defined by 

h(I)(V, a) := dhu(v) = aah. vi. (2.141) 
a' 

One sees that Hl(t) is obtained from h(l) by a "partial" quantization along the 
trajectory a(t): 

Hl(t) = h(I)(R~ - a(t), a(t». 

Secondly, for each fixed t and a define a function h(2)(t) on Tu(,)S by 

h(2)(V, t) := !(h")ij(t)viv j , 

where 

" a2h (h )ij(t) = . . (a(t». 
oa'aa l 

Clearly, 

(2.142) 

(2.143) 

(2.144) 

(2.145) 

Both h(l) and h(2) generate linearized equations of motion, but they do so in a 
different sense. The Hamitonian flow a ~ a(t) on S generated by h pushes 
forward to a flow (v, a) ~ (v(t), a(t» on the tangent bundle T S. By definition 
of the pushforward, one may think. of the latter as follows: if a(t, a) is a one­
parameter family of solutions of the equations of motion on S (where a E (-E, E) 
for some E > 0) neighboring a given trajectory a(t) = a(t, 0), and (v, a) E TuS 
equals aa(O, a)/aala = 0, then (v(t), a(t» = aa(t, a)/aala = O. 

Now, T S is a symplectic manifold in a natural way: The map Bn : T S -+­

T* S (cf. 1.2.3.6) defines a symplectic form w* := - B;w on T S (where w is the 
canonical symplectic form on T* S, cf. Definition 1.2.3.8). If (Pi, qi) are canonical 
coordinates on S, we denote the coordinates induced on T S by (Pi, iji , Pi, qi); 
these stand for the point Pia/api + ijia/oqi E 1(~.q)TS. In terms of these, the 
form w* is given by 

w* = diji A dPi + dqi A dpi. (2.146) 

The associated Poisson bracket is 

* af ag af ag 
{f,g} = api aiji + 0Pi aqi - f ++ g. (2.147) 

Accordingly, the pushforward flow (v, a) ~ (v(t), a(t» on TS is Hamiltonian 
with respect to the Poisson bracket (2.147) and the Hamiltonian (2.141). 
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Alternatively, if the trajectory a (t) is already known, one can describe the tangent 
part of the flow (v, a) ~ (v(t), aCt»~ as a Hamiltonian system in the v-variable. 
This is done as follows. Since in the present case the tangent bundle T S is globally 
trivial, there is a natural identification of all fibers of T S; in particular, T(1(t) is iden­
tified with T(1 S for all t. The vector space T(1 S is a linear symplectic space, whose 
symplectic form W(1 is simply the canonical symplectic form W on S, evaluated at 
T(1S; writing v = (p, ij), one has W(1 = diji /\ dpi. The time evolution v ~ vet) 

(where v E T(1 S) then coincides with the Hamiltonian flow on T(1 S generated by 
the time-dependent Hamiltonian h(2)(t) (regarded as a function on T(1S through 
the above identification). The corresponding Hamiltonian equations of motion are 
given by 

dv = (h(2)(t), v}. 
dt 

Since this system is linear in v, it is solved by 

vet) = M(t)v, 

where the 2n x 2n matrix M(t) is the solution of 

dM(t) = lh"(t)M(t) 
dt 

with initial condition M(O) = [2n; here 1 is given by (2.1). 

(2.148) 

(2.149) 

(2.1 SO) 

We return to the quantum theory. To understand the nature of HI (t) we define 

",(p,q)(t) '= eiS(t)/Il",(p(t).q(t» 
Il cl' Il' (2.1S1) 

with the classical action 

S(t):= 1t ds [~(p(s)q(s) - jJ(s)q(s» - h(p(s), q(s»]. (2.1S2) 

We can evidently write this as 

"'hP,q)(t)cl = U?,q)(t)"'hP,q) , (2.1S3) 

where 

(2.1S4) 

is the classical propagator. The point is now that the classical equations of motion 
and the relation 

imply that U?,q)(t) is the solution of 

d in dt u?·q)(t) = (Ra + HI(t»U?,q)(t) 

with initial condition u~p,q)(O) = l 

(2.1SS) 

(2.1S6) 
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We now incorporate H2(t). In terms of the metaplectic representation pli 
constructed in 2.2.2, we define 

uiP,q)(t):= u~p,q)(t)Ul(p, q)pli(M(t»Ul(p, q)*. (2.157) 
h h 

It follows from 2.2.2 and (2.148)-(2.150) that pli(M(t» is the propagator for 
the Hamiltonian H(2)(t) := !(h")ij(t)R~·i R~·j. Indeed, a short calculation, using 
dp(M(t»/dt = dpli(M(t)M(t)-1 )pli(M(t», and subsequently (2.150), (2.39), and 
(2.32), shows that 

ili!!:.-.pli(M(t» = H(2)(t)p"(M(t». 
dt 

Consequently, from (2.156), (2.158), and (2.155) one derives 

i Ii!!:.-. U(p,q) (t) - H (t )U(P.q) (t) dt 2 - (2) 2 . 

Hence the object 

w(p,q)(t) '= U(P·q)(t)W(p,q) 
h sc· 2 h 

satisfies the semiclassical Schrodinger equation 

d 
i Ii- w~p,q)(t)sc = H(2)(t)WhP,q)(t)sc' 

dt 

(2.158) 

(2.159) 

(2.160) 

(2.161) 

We refer to uiP,q)(t) as the semiclassical propagator. This terminology is 
motivated by the following result. 

Proposition 2.7.3. With HIi, W~p,q>, and W~P·q>Ct)", given by (2.134), (2.45), and 
(2.160), respectively, one has 

lim lIe-iIHh/IiW~P.q) - wtq)(t)", 11 = o. 
h-+O 

(2.162) 

To prove this, we follow the strategy of the proof of Proposition 2.7.1, and write 
(with U(t):= exp(-itHh/li» 

t d (U(t) - uip,q)(t)) W~P.q) = -U(t) 10 ds ds u(s)*uiP·q)(s)W~p,q) 

= -~U(t) l' ds U(S)(Hh - H(2)(s»uiP·q\s)w~{'q), (2.163) 

where (2.159) has been used. The existence of the strong derivative d/ds follows 
from the growth conditions imposed on V and A. We now insert the expansion 
(2.136), and use the explicit form (2.157) to obtain the estimate 

It II(U(t) - uiP,q)(t»wtq)1I s h 10 ds IIH3(S)/'(M(S»W~0,0)1I· (2.164) 

Here H3(S) := U1/h(P(S), q(s»* H3(s)Ul/h(P(S), q(s»; this is just H3(S) with 
Rl- aCt) replaced by R~. Using (2.39), one finds p"(M(s»Wko.O)(x) to be pro­
portional to li-n/ 4 exp( -(Nx, x)/(2h), where N is a nonsingular complex matrix 
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(composed from the entries of M) whose real part is positive definite. We then use 
the explicit action (2.24), (2.23) of the operators in H3(s), upon which Taylor's 
formula with remainder and the growth conditions on V and A lead to the conclu­
sion that the integrand in (2.164) is O(h3/ 2 ). Hence the left-hand side is O(h1/ 2 ), 

and (2.162) is proved. • 

Using (2.157), as well as (2.93) (with (2.80) and (2.81», we obtain 

(utq)(t)\II~,q), Q:i (f)U?,q)(t)\II}tq») = 

( (0,0) QW ° (I) (0,0») \II/i ' /i (a(M(t),a(t»-l ) \II/i . 

A short calculation shows that 

( \IIkp,q), Q:i (f)\IIkP,q») = e/it:.'bI/4 I(p, q); 

cf. (2.117). This equation, or a combination of (1.17) and (2.117), implies 

lim (\II}(,q), Q:i (f)\II}(,q») = I(p, q). 
/i---+O 

By (2.162) and (2.167) we then obtain 

~~ (\II~p,q), a~(Q:i (f»\IIkp,q») = a?M(t),a(t»-l (f)(O). 

(2.165) 

(2.166) 

(2.167) 

(2.168) 

By (2.80), the right-hand side equals I(a(t» = I(p(t), q(t», as (M(t), a(t» 
acting on 0 yields just a(t). Theorem 2.7.2 then follows for Q/i = Q:i, since by 
(2.167) one has 

lim (\IIkP,q) , a~(Q:i (f)\II}(,q») = I(p(t), q(t». 
/i---+O 

(2.169) 

For Q/i = Qg we can use 2.4.3 to write 

Uk(p, q)*Qg(f)Ui(p, q) = Qg(a?_p,_q)(f», (2.170) 

where we have identified (- p, -q) with (H2n , (p, q»-l. We apply this with (p, q) 
replaced by (p(t), q(t». An explicit computation establishes that 

lim (P\M(t»\IIko,O), Qg(f)P/i(M(t»\IIko,O») = 1(0,0); (2.171) 
/i---+O 

cf. (1.17). The desired result then follows as for Q:i. • 
In fact, the above proof for Qg works for Q:i as well; in either case the essential 

ingredients of the proof are the equivariance of Qg and Q:i under translations in 
T*JRn and the fact that the quadratic term M(t) does not contribute to the limit in 
(2.135). 

It is remarkable that while the classical motion generated by h may be in­
complete, the quantum evolution generated by H/i is defined for all times. Hence 
classical incompleteness is generically traded for quantum-mechanical nonunique­
ness, for the self-adjoint extension H/i may not be uniquely determined by the 
formal expression (2.133). 
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3 Quantization on Riemannian Manifolds 

3.1 Some Affine Geometry 

We now replace the configuration space IRn by a general n-dimensional connected 
manifold Q. In general, whenever it is convenient to employ (local) coordinates 
qi on Q, we will use them; recall that ai := a/aqi. 

We start with a geometric structure on the tangent bundle. 

Definition 3.1.1. An affine connection on the tangent bundle T Q is a collection 
of linear maps V'~ : reT Q) ~ reT Q), defined for each vector field ~ E reT Q), 
such that V' f~ = fV'~ and V'd17 = ~(f)17 + fV'(fJ for all f E COO(Q) and all 
~,17Er(TQ). 

It follows from this definition that in local coordinates the covariant derivative 
can be expressed by 

(3.1) 

where ~ = ~i ai and 17 = 17 i ai are vector fields, and the connection coefficients 
r(k are certain functions on Q. 

A curve (v(t), q(t» in T Q (covering, as the notation indicates, a curve q(t) in Q) 
is called horizontal if V'q(f)V(t) = 0; although the covariant derivative is defined 
as acting on vector fields, this condition makes sense because V'q(t) involves only 
the behavior of the section it acts on along the curve q(t). 

In that case one says that vet) E Tq(t)Q is the parallel transport of v(o) E 

Tq(o)Q, and that (v(t), q(t» is a horizontal lift of q(t). Each curve q(t) has a 
unique lift i(v,q)(q(t» through a given point (v, q) E TQ. The collection of all 
vectors in T(q,v) T Q that are tangent to some horizontal curve through (v, q) forms 
the horizontal subspace Tt:'q) T Q of T(v,q) T Q. One may equally well speak of the 
horizontal lift i(v,q)(X) of a vector X E Tq Q; this is the unique vector in T(~:q)(T Q) 
that projects to X under LT(TQ)-4TQ' 

U(v i , qi) are canonical coordinates on T Q (standing for the point Vi ai E Tq Q), 
we denote the coordinates induced on T(T Q) by (Vi, iP, Vi, qi); these stand for 
the point via/avi + iFa/aqi E Trv,q)TQ. In terms of these, it follows from (3.1) 
that horizontal vectors in Trv,q) are of the generic form 

_ i j k iii i(v,q)(W, q) - (-rjk(q)w v ,W ,v ,q ), (3,2) 

One has a natural isomorphism T(~:q)TQ c:::: TqQ, under which X E 1(l~:q)TQ 

corresponds to L*X E Tq Q; in coordinates, (-r~k(q)wj vk , Wi, Vi, qi) c:::: (Wi, qi). 
In contrast, the vertical subspace T(~:q) T Q C T(v,q) T Q consists of all tangent 

vectors to vertical curves (v(t), q), which lie in Tq Q. In other words, T(~:q)T Q := 
kerL* n T(v,q)TQ, where L := LTQ-4Q, hence L* = LT(TQ)-4TQ. Such vertical 
vectors are of the form (Wi, 0, Vi, qi). Also here one has a natural isomorphism 
1(~:q)TQ c:::: TqQ, because T(~:q)TQ = T(TqQ) c:::: TqQ. In coordinates one has 
(Wi, 0, vi, qi) c:::: (Wi, qi). Hence the decomposition 

T(v,q)TQ = T(~:q)TQ $ T(~:q)TQ c:::: TqQ $ TqQ. (3.3) 
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An affine connection on T Q defines a vector field ~c on T Q by ~f := fx(X). 
The integral curves of ~c are the geodesic flow on TQ. However, the name 
("affinely parametrized") geodesic is reserved for a curve in Q that is the pro­
jection of such a flow in TQ under rTQ->Q' It is customary to denote geodesics 
by y(.). 

Proposition 3.1.2. With Y : = d y / d t, a geodesic satisfies the equation 

v yY = O. (3.4) 

This is obvious from the definition of a horizontal lift and of ~c. • 

Putting w = v in (3.2), we see that the coordinate fonn of the geodesic equation 
(3.4) is 

~yi(t) + r,ik(y(t))yj(t)yk(t) = O. 
dt 

(3.5) 

We write y (q, v; .) for the parametrized geodesic starting at y (q, v; 0) = q with 
tangent vector y(q, v; 0) = v. Existence and uniqueness of such a geodesic for 
small enough t routinely foIIow from the theory of ordinary differential equations. 
However, there is no guarantee that a geodesic exists for all t. 

An important role in affine geometry is played by the exponential mapping 
exp, which is defined through geodesics. It maps a certain set 0 C T Q into Q, 
and is defined by 

exp(X) := y(rTQ->Q(X), X; I). (3.6) 

The set 0 is simply the set of those X for which the geodesic in question is defined 
at t = I; this is an open subset of T Q, evidently containing the zero section Q. 
The restriction of exp to Oq := Tq Q n 0 is denoted by eXPq. For good global 
properties of geodesics a special assumption has to be made. 

Definition 3.1.3. A manifold with affine connection is called geodesic ally 
complete when all geodesics exist for arbitrary values of the parameter t. 

Clearly, Q is geodesicaIIy complete iff 0 = T Q; in other words, for all q E Q 
the map eXPq is defined on all of Tq Q. A weaker notion would be completeness at 
a point q, meaning that eXPq is defined on Tq Q. The issue of completeness will be 
taken up further in the next section, where a special fonn of the affine connection 
leads to interesting results in this context. 

From the tangent bundle we pass to the cotangent bundle. The cotangent bundle 
S = T* Q is equipped with the canonical symplectic fonn 1.(2.23) and the associ­
ated Poisson bracket 1.(2.24). Recall the notation (Pi, qj) := Pidqi for canonical 
coordinates on T* Q. The following functions on T* Q will be of basic importance 
in what follows. Firstly, a function g E COO(Q, JR.) induces the smooth function 

Jg := r*g (3.7) 
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on T*Q (with -r := -rT*Q~Q)' Secondly, a smooth vectorfield~ on Q hasasymhol 
J~ E COO(T* Q), defined by 

(3.8) 

in coordinates, if ~(q) = ~; (q)a;, this reads J~(p, q) = p;~; (q). The basic Poisson 
brackets between these functions, which comprise the essence of the canonical 
Poisson structure on T* Q, are 

{Jg, Jii} = 0; 

{J~, Jg} = JH; 

{J~J' J~2} = J[~1.~21· 

(3.9) 

(3.10) 

(3.11 ) 

These functions and Poisson brackets have a group-theoretical interpretation. 
Firstly, regard Cgo(Q, JR) as an abelian group (under addition). The Lie algebra 
of this group is the same space, equipped with the trivial Lie bracket. Then (3.9) 
shows that the map g H- Jg is a Lie algebra antihomomorphism of Cgo(Q, JR) into 
COO(T* Q, JR). 

Secondly, consider the group Diff(Q) of (smooth) diffeomorphisms of Q with 
compact support (that is, a diffeomorphism cp E Diff (Q) is the identity map outside 
some compact set). It is possible to equip Diff(Q) with the structure of an infinite­
dimensional Lie group (though not one modeled on a Banach manifold). Since 
one-parameter subgroups ofDiff(Q) by definition generate flows on Q, one infers 
that, at least formally, the Lie algebra Diff(Q) of Diff(Q) is the set r c(T Q) of 
(smooth) vector fields ~ on Q with compact support. In the opposite direction, the 
exponential map on Diff(Q) is given by (exp~)(q) = CPt(q), where CPt is the flow 
defined by the vector field ~. Unfortunately, with this identification the Lie bracket 
in this Lie algebra equals minus the commutator of vector fields; in what foHows 
the notation [~l, ~2] stands for the latter (as usual). Evidently, (3.11) shows that the 
map ~ H- J~ is a Lie algebra antihomomorphism of Diff(Q) into COO(T* Q, JR). 

FinalIy, we can define the semidirect product 

QQ := Diff(Q) ~ C;:O(Q, JR) (3.12) 

through the natural action of Diff(Q) on Cgo(Q, JR): cP E Diff(Q) maps g E 

Cgo(Q) to (cp-l)*g. The Lie algebra of QQ is denoted by QQ. The corresponding 
"mixed" Lie bracket is [~, g] = -H; the minus sign reflects the one in cp-l above. 
Hence (3.10) shows 

Proposition 3.1.4. The map J : ~ + g H- J~ + Jg is a Lie algebra 
antihomomorphism ofQQ into COO(T*Q, JR). 

We describe the Hamiltonian flow on T*Q generated by Jg and J~. 

Proposition 3.1.5. Define an action Po ofQQ on T* Q by 

Po(g) : a H- a - dg(-r(a»; 

Po(cp) : a H- (cp-l)*a, (3.13) 
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and Po(q;, g) := Po(g) 0 Po(q;).lfX E 9Q. then a ~ Exp(tX)a is the Hamiltonian 
flow on T* Q generated by Ix. 

This is shown by a straightforward computation in coordinates. D 

This and similar results will be placed in their proper context in III.2A. 

3.2 Some Riemannian Geometry 

We now assume that Q is equipped with a Riemannian structure, i.e., with a 
metric. The following remarks are mainly intended to establish some notation and 
conventions. The metric g provides each tangent space Tq Q with an inner product 
~, that is, a bilinear symmetric positive definite map ~ : Tq Q ® Tq Q ~ Q. The 
positive-definiteness means that ~(X, X) ::: 0 for all X E TqQ, with ~(X, X) = 
o ¢} X = O. This, of course, implies that ~ is nondegenerate. Throughout this 
chapter g is assumed to be smooth (C<~). 

The length of a parametrized C I curve (c(t) I t E [ti, t f]} is 

[
If 

i(c):= Ii dt J&:(t)(c(t), c(t»; (3.14) 

this is evidently independent of the parametrization. The length of a piecewise C I 
curve is the sum of the lengths of its C 1 pieces. The distance d between two points 
in Q is the infimum over the lengths of all piecewise C 1 curves connecting the 
points. (If Q were not connected, this definition would apply if the points lie in 
the same component; if they don't, the distance is 00.) It is easily shown that this 
distance defines a metric on Q in the sense of point-set topology, making (Q, d) a 
metric space in that sense. 

Let us use the metric to define a bundle homomorphism gn : T* Q ~ T Q. This 
maps T; Q into Tq Q, and is defined by the property 

~(gU(a), X) = a(X) (3.15) 

(where a E Tq* Q and X E Tq Q). The nondegeneracy of g implies firstly that gU 
is well-defined by (3.15), and secondly that it is a bijection; its inverse is denoted 
by gu : TQ ~ T*Q. The smoothness of g then leads to the conclusion that gU 
and gu are diffeomorphisms. One application is the definition of the gradient of a 
function: 

(3.16) 

One writes &j(q) := ~(ai' aj ); the inverse of the matrix (gij(q)} is denoted 
by (gij(q)}, so thatgik(q)gkj(q) = at. Ifa = aidqi E TqQ, thengU(a) = aiaj , 

with a j = gij (q)a j; hence aj = gij (q)a j. A similar notation is used for general 
tensors. 

All concepts of the preceding sections apply; recall Definition 3.1.1. 
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Definition 3.2.1. The Levi-Civita connection, or covariant derivative, is the 
unique affine connection V' on T Q that is torsion-free in that 

and metric in that 

~g(1]I, 1]2) = g(V';-1]1, 1]2) + g(1]1 , V';-1]2) 

for all vector fields ~, 1]1, 1]2. 

(3.17) 

(3.18) 

For the Levi-Civita connection the object r appearing in (3.1) takes the form 

r i .- I ilea + a a) jk .- zg jgkl kglj - 19jk . 

In this context r is known as the Christoffel symbol. 
The Riemann curvature tensor R is defined by 

(3.19) 

(3.20) 

where Rq(~, 1]) : TqR -+ Tq Q. Remarkably, this is a local expression that indeed 
defines a tensor. If we write R(X, Y)Zi = R~klZj Xkyl, then from (3.20) and (3.1) 
one has 

R~kl = akr~l - alr~k + r~krj, - r~lrJ1. (3.21) 

Lowering the first index, one has the symmetries 

Rijkl = -Rjikl = -Rijik = Rklij . (3.22) 

The Ricci scalar is defined by 

R ·- gijRk .- ikj· (3.23) 

The Levi-Civita connection leads to geodesics satisfying (3.5) with (3.19). A 
set U C Q is called geodesically convex if any two points in U can be joined by 
a unique geodesic of minimum length, that lies in U. A neighborhood Uq of q is 
called normal if eXPq is a diffeomorphism between some neighborhood of 0 in 
Tq Q and Uq. Clearly, a geodesically convex neighborhood is normal. 

In local Riemannian geometry one can prove the following 

Proposition 3.2.2. Consider the ball B~ := {X E Tq Q I ~(X, X) < E2}. For 

each q there exists an E > 0 such that B~ C (\' and U: := eXPq B~ is geodesically 
convex. 

We will usually drop the E on U~. On a normal neighborhood U q of q one 

can often use normal coordinates qtn) to simplify computations. These depend 
on the choice of a fixed orthonormal basis {ei} of Tq Q. By definition, the normal 
coordinates of a point y(q, viei; 1) (assumed to lie in Uq ) are qtn) = vi. Obviously, 

the normal coordinates of q itself are qin) = 0, and geodesics simply have the form 

qin/t) = tv i • One can show that in these coordinates, 

gij(q(n) = oij - 1Rikjiq~)qin) + O(q{n). (3.24) 
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Hence gij(q) = 8ij and akgij(q) = 0, so that the Christoffel symbols r~k vanish 
at q. Furthermore, 

(3.25) 

A fundamental theorem of global Riemannian geometry gives equivalent forms 
of completeness. Recall our standing assumption that Q is connected. 

Theorem 3.2.3. The following conditions are equivalent: 

• (Q, g) is geodesically complete at one point. 
• (Q, g) is geodesically complete. 
• (Q, d) is complete (as a metric space). 

If any (hence all) of these conditions is satisfied, then any two points may be 
joined by a minimal geodesic; this is a geodesic whose length equals the distance 
between the points. 

In view of this theorem, we simply call (Q, g) complete iff it is geodesically 
(hence metrically) complete. 

The geodesic of the last claim in this theorem is not necessarily unique. 

Definition 3.2.4. The cut locus C(q) ofa givenpointq in a complete Riemannian 
manifold Q is the collection of points q' in Q for which there exists more than one 
minimal geodesic between q and q'. 

Global Riemannian geometry yields the following decomposition of Q. 

Theorem 3.2.5. In a complete Riemannian manifold Q, let o;ax consist of all 
X E Tq Q for which y(q, X; t) is minimal for all t E [0, I]. The cut locus is 

(3.26) 

where ao;;, is the boundary of 0;;' in TqQ. The set U:;ax eXPq(O;ax) is a 
normal neighborhood of q, which coincides with the set of points in Q that can be 
connected to q by a unique minimal geodesic. Hence for each q, Q is the disjoint 
union 

(3.27) 

Heuristically, U:;ax is the largest neighborhood on which normal coordinates can 
be defined. 

Corollary 3.2.6. Let (Q, g) be complete. For each given q E Q, the set of all 
points q' E Q for which there is a unique minimal geodesic between q and q' is 
open and dense in Q. 

3.3 Hamiltonian Riemannian Geometry 

We move on to perturbations of geodesics. Some of this material is interesting in 
its own right; other parts will be used in the study of Weyl quantization. 
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Definition 3.3.1. A Jacobi field J along a geodesic y is a vector field satisfying 
the equation of geodesic deviation (or Jacobi equation) 

(3.28) 

This is a second-order differential equation, whose solution J(t) is determined 
by the initial data J(O) and VyJ(O). 

To derive and interpret (3.28), one looks at a family {y(., a)}aE[O.E] of geodesics, 
smoothly depending on a parameter a, such that y (t, 0) = y (t). The value of J 
at yet) is defined by J(y(t)) := dy(t, a)/dala = O. The geodesic equation (3.4) 
satisfied by Y(', a) for each a leads to V JVyY = O. Since [at, aa] = 0, one 
has [y, J] = 0, which, in view of the fact that the Levi-Civita connection V is 
torsion-free, implies V JY = VyJ. Combined with (3.20) this results in (3.28). 

A Jacobi field along y(q, v;·) is generically denoted by J(q, v; .). In normal 
coordinates based at q the equation of geodesic deviation (3.28) at q reads 

:t22 Ji(q) + ~R~kl(q)yj(q)y/(q)Jk(q) = O. (3.29) 

Our aim is to show that the evolution equations (3.4) and (3.28) may be brought 
into Hamiltonian form. Consider the classical Hamiltonian h* on T* Q, defined by 

(3.30) 

In coordinates this reads 

(3.31) 

For simplicity we have put a possible mass parameter m equal to 1; cf. (2.133). 
Also, we have omitted a possible potential energy from (3.31); the metric tensor 
already represents a (static) gravitational field in which the particle moves. The 
Hamiltonian flow a 1-+ a (t) on T* Q generated by h* is known as cogeodesic 
flow. This terminology is explained by the following 

Proposition 3.3.2. Suppose thata(t) satisfies the Hamiltonian equation of motion 
da(t)/dt = ~h*(a(t)). Then Ya(t) := TT'Q-+Q(a(t)) is a geodesic on Q with 
tangent vector field Ya(t) = gP(a(t)). Accordingly, aCt) is equal to the parallel 
transport of a along yO'. 

This is most easily proved by a coordinate calculation; in a local chart, one 
needs to establish that the motion (p(t), q(t)) is such that q(t) is a geodesic with 
q(t) = gn(p(t)). This follows from 1.(2.24), (3.5), and (3.19). • 

Proposition 3.3.2 suggests that it is more natural to transfer the situation from 
T* Q to T Q by the isomorphism gP. Thus the Hamiltonian on T Q, which we 
denote by h, has the two equivalent expressions 

(3.32) 

(3.33) 
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Proposition 3.3.3. The Hamiltonianflow (v, q) f-+ (v(t), q(t» on T Q generated 
by h coincides with the geodesic flow, and is given by parallel transporting the 
tangent vector v = v(O) along the geodesic q(t) = y(q, v; t)on Q (withq = q(O»). 

In the coordinates (vi, qi), the Poisson bracket on T Q reads 

_ ij (af ag af ag mn I af ag ) 
{j, g} - g avi aqj - aqi av j + g v (ajgml - amgjl) avn avi . (3.34) 

The claim is then easily derived from (3.5). • 
Alternatively, one may regard (Pi, qi) as canonical coordinates on T Q, which 

are related to the noncanonical ones (Vi, qi) by 

(3.35) 

In either case, the Hamiltonian equations of motion derived from the canonical 
Poisson bracket 1.(2.24) come out as 

q = v; 

Vvv = O. (3.36) 

One sees that Q is complete iff the Hamiltonian h is complete in the sense of 
Definition 3.1.3. 

To find the Hamiltonian form of (3.28) we recall the discussion surrounding 
(2.147), which equally well applies to the present case S = T Q. Hence T(T Q) is 
a symplectic manifold, and the pushforward of the geodesic flow on T Q to T (T Q) 
is generated by h(l), which is constructed from h in (3.33) by (2.141). 

Theorem 3.3.4. The Hamiltonian equations of motion on T(T Q) generated by 
h(l) take the form (3.36), supplemented by 

(3.37) 

where we have decomposed X E T(v,q) as X = Xhor + xvcr, and have identified Xhor 
and xver with elements ofTq Q in accordance with (3.3) and preceding text. Hence 
the Jacobi equation (3.28) along a given geodesic q(.) is Hamiltonian on T(T Q), 
ifwe use (3.3 ) in the opposite direction to identify J(t) and V vJ (t) in Tq(t) Q with 
a horizontal and a vertical vector in T(q(t).q(t), respectively. 

We give a computational proof. The coordinates (ii, iJi, Vi, qi) on T(T Q) (cf. 
the paragraph after (3.1» are not canonical with respect to the symplectic structure 
on T(T Q); they are related to canonical coordinates (Pi, iF, Pi, qi) by 

(3.38) 

cf. (3.35). The Hamiltonian (2.141) on TS derived from (3.33), expressed in 
canonical coordinates, then reads 

(3.39) 
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From (2.147), (3.39), and (3.38) one finds that di/ /dt = Ii. Using the coordi­
nate expressions for horizontal and vertical vectors, and making the identification 
with vectors in Tq Q mentioned in the theorem, the time-derivative d / d t may be 
converted into a directional derivative along the curve q(t). Using q(t) = v(t), 
this leads to the first member of (3.37). Note here that the coordinate expression 
of X + VvX, where X E TqQ and VvX E TqQ are embedded in T(q,v)TQ as 
horizontal and vertical vectors, respectively, is simply (Vi = v(Xi), iF = Xi). 

The proof of the second member of (3.37) is a straightforward but lengthy 
computation, which may be simplified by working in normal coordinates on Q 
based at q. Using the same simplification, the Hamiltonian equation of motion for 
Vi at q is calculated to be dvi /dt + ~Rjklvjvlqk. Converting the time-derivative 
into a directional derivative as in the previous paragraph and comparing with (3.29) 
then leads to the second member of (3.37). 0 

3.4 Weyl Quantization on Riemannian Manifolds 

Our goal is the quantization of a suitable subspace of Q(o := Co(T* Q). The most 
natural way of doing this is based on a Riemannian generalization of the kernel 
(2.109) characterizing Weyl quantization. Hence we start by generalizing the par­
tial Fourier transform (2.110) to the Riemannian setting. The invariant measure on 
Q is called JL, the one on the fiber Tq Q is JLq, and the measure on Tq* Q is denoted 
by JL~. In coordinates one has 

dJL(q) = dnqJdetg(q); 

dJLq(v) = dnvy'detg(q); 

dnp 
d JL * (p) = -:-:-:-::-i:::;:=:=;:::::;: 

q (211)n v'det g(q) 
(3.40) 

Here det g(q) denotes the determinant of the matrix gij (q) in given coordinates. 
The natural measure on T* Q constructed from (3.40) coincides with the Liouville 
measure ILL, since the factors Jdet g(q) cancel. That is, for f E Ll(T* Q) one has 

( dJLL(P, q) f(p, q) = f dJL(q) ( dJL;(p)f(p, q). 
JT*Q Q JT;Q 

(3.41) 

The fiberwise Fourier transform of a suitable function f on T* Q is the function 
j on T Q defined by 

(3.42) 

where X E Tq X. In coordinates, this simply amounts to (cf. (2.110» 

(3.43) 
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The fiberwise convolution l * g is the Fourier transform of the pointwise product 
f g, which gives 

l * g(v, q) = f dJ-Lq(v' ) l(~v - v', q)gOv + v', q). 

Similarly, the Fourier transform of the Poisson bracket 1.(2.24) is 

{j, g}(v, q) = i ( dJ-Lq(v' ) lqv - v', q) 
JTqQ 

[ 
<- ~ ] a 1 IiI I i a '1 I x -.(zv+v) +(-zv+v)-. g(zv+v,q). 

aq' aq' 

(3.44) 

(3.45) 

Definition 3.4.1. Let M J and M2 be manifolds, and t : MJ "--+ M2 an embedding 
(i.e., an injective immersion). The pullback t*T M2 is the manifold 

(3.46) 

containing M J as a distinguished submanifold (the so-called zero section) through 
the identification (0, m) == m; compare 1l1.(2.2). 

The normal bundle of the embedding t is the manifold 

(3.47) 

containing MJ as the zero section by the identification inherited from t*T M2. 

These definitions may be rephrased as follows. Firstly, the pullback t*(T M2) is 
justtherestriction T M2 I t(Mt) ofT M2 to t(Mt) C M2; this is the union UmEM l Vm 
of the vector spaces Vm := riit2~M,<t(m», with topology inherited from T M2. 
Secondly, the push forward t*(TMt) C TM2 is a subspace of l*(TM2); it is the 
union UmEM l V~, where the vector space V~ C Vm consists of all vectors that are 
tangent to l(Md. Finally, the quotientt*T M2/l* T M J is UmEMl Vm/ V~, equipped 
with the quotient topology. 

The normal bundle is isomorphic to a subbundle of T M2 r M t, but not naturally 
so. The following is a fundamental theorem of differential geometry. 

Theorem 3.4.2. Let l(Mt ) be a closed submanifold of a manifold M2 • 

• There exist a tubular neighborhood N'(Md of M t C N'MJ (where MJ is 
identified with the zero section), a neighborhood N;(Mt) C M2 of l(MJ), and 
a diffeomorphism cp : N'(Mt) --+ N;(MJ) satisfying rp(m) = l(m) for all 
mEM t • 

Let, in addition, M2 have a Riemannian metric, and define (T M2 r MJ)-L as the 
union UmEM l V,;, where Vm is the orthogonal complement T,(m)l(Md.L ofT,(m)t(Mt ) 
in T,(m)M2 (with topology inherited from T M2) . 

• There is a diffeomorphism 7], : N'Mt --+ (TM2 r MJ).L such that 7], is linear 
on each vector space Vm/ V~ and 7],(Vm/ V~) = V'; for all m. 
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• The tubular neighborhood N'(M I) may be chosen in such a way that the dif­
feomorphism <p of the first part of this theorem is given by the restriction of 
expo7], : N'MI ~ N toN'(M,). 

A special case is that of M, C M2 a submanifold of M2, and I the inclusion 
map. We further specialize to the case M, = Q, M2 = Q x Q, and I = 0, the 
diagonal embedding defined by o(q) := (q, q). 

Lemma 3.4.3. 

• The normal bundle N 8 Q of the diagonal embedding is isomorphic to T Q. 
• Equip Q x Q with the Riemannian metric g Ell g; then V8 = exp 07]1J : T Q ~ 

Q x Q is given on Xq E Tq Q by 

(3.48) 

One identifies T(q.q)(Q x Q) with Tq QEElTq Q. The fiber of o*T(Q x Q) ata point 
(q , q) is Tq Q Ell Tq Q. The fiber of the push forward bundle 0* T Q at (q , q), on the 
other hand, consists of all vectors of the type X + X, X E Tq Q. Hence NiJ Q ~ T Q 
by the definition (3.47). With the metric g Ell g, the orthogonal decomposition of 
X +Y has the component i(X + Y)+i(X + Y) ino*TQ and i(X - Y)+i(Y -X)in 

1- 1 • I (T(Q x Q) r 0(Q» . Hence 7]8 maps Xq E TqQ to IXq+ - IXq E T(q,q)Q x Q, 
and (3.48) follows. • 

To appreciate the following quantization prescription it is helpful to understand 
the geometric meaning of the diffeomorphism (3.48): Namely, vi'(q, q') in T Q 
is the tangent vector to the geodesic from q' to q at its midpoint. 

We are now in a position to define the (generalized) Weyl quantization map Q}[. 
We take the dense sub algebra of Co(T* Q) of quantizable functions to be 

Qio := C~(T* Q). (3.49) 

These are by definition the functions f on T* Q whose Fourier transform j is 
in Crgo(T Q); the motivation for this choice will become clear shortly. The space 
C~(T* Q, R) is a Poisson subalgebra of COO(T* Q, R); this follows from an in­
spection of (3.45), using the fact that Crgo is closed under convolution and pointwise 
multiplication. 

The map QJi takes values in Qlll := lBo(L2(Q», where the Hilbert space L2(Q) 
is defined with respect to the Riemannian measure Jj, on Q; cf. (3.40). 

Definition 3.4.4. The Weyl quantization of f E C~(T* Q) is given,for Ii i= 0, 
by the integral operator 

Q}[(f)\}J(x):= fo dJj,(y)K,:vLfJ(x,y)\}J(y). (3.50) 

For (x, y) tt M(Q) we define K,:v LfJ(x, y) := 0, whereasfor (x, y) E M(Q) we 
put 

(3.51) 
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with V8 given by (3.48). Here K is a smooth function on T Q with the following 
properties: 

• K = 1 in a neighborhood j;{8(Q) C N8(Q) of Q (regarded as the zero section 
in TQ). 

• K has support in N8(Q). 
• K(-V, q) = K(V, q). 

For later convenience, we shall in fact assume that for each q the support of 
K(', q) is contained in a geodesic ally convex (hence normal) neighborhood of 
o E Tq Q. As in 2.5, we write the argument of 'II as x rather than q to avoid 
confusion with the argument (p, q) of f. 

Proposition 3.4.5. For f E C~(T* Q, JR) one has Q:' (f) E !Bo(L 2(Q»IR' 

By definition of C~(T* Q), the kernel of Q:' (f) is in C~(Q x Q), so that 
Q:' (f) is a Hilbert-Schmidt operator, hence compact. Also, (3.42), (3.48), and 
the symmetry of K in v guarantee that K:' is Hermitian, so that for real f the 
operator Q:' (f) is self-adjoint. • 

The presence of the cutoff function K implies that the kernel K:' is smooth; 
unfortunately, Q:' (f) seems to depend on the choice of this function (as well as 

of j;{8(Q». However, since j has compact support by our choice of lito, there is 
a value h.o > 0 (that depends on f) such that Q:' (f) does not depend on these 

choices for Ii E (0, h.o). Namely, h.o is the smallest value of Ii for which h.osupp (j) 
lies in j;{8(Q). If the tubular neighborhoods may be chosen as N8(Q) = T Q and 
Ni,(Q) = Q x Q, then one may obviously putK = 1. This is possible for Q = JRn 
(with flat metric), in which case (3.50) and (3.51) reduce to (2.108), and (2.109), 
respectively. 

The same conclusion of K-independence formally holds true if j is a distribution 
with compact support; if f is polynomial in the momenta pi, the support of j is 
localized at the zero section of T Q, and Q:' (f), now defined as an unbounded 
operator on the domain C~(Q), is independent of K for any Ii. This will be further 
explored in 3.6. 

As in the flat case (cf. (2.101» there is a Wigner function. 

Proposition 3.4.6. The Gelfand transform of Q:' (f) is given by 

Qf(j)(l{f) = ( dILL(P, q)WhLl{f J(p, q)f(p, q), (3.52) 
lpQ 

with Wigner function (cf. (2.103)) 

WIiLl{f J(p, q) = 1 dlLq(V) K(liv, q)J(q, v; ~Ii) 
TqQ 

--"--.,,......,----;-..,...,....,.. 
X eipv'II(y(q, v; ~1i»'II(y(q, v; -~Ii», (3.53) 

where J is a Jacobian defined in (3.55) below. 
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To prove this, we initially assume that 'l'T*Q->-Q( supp (f» is contained in a 
suitably small geodesically convex set U C P, on which we use coordinates qi . 
The linearity of Q~, the fact that 'l'T*Q->-Q( supp (f» is compact, and the existence 

of (smooth) partitions of unity on Q then imply the result for general f E 2,l~. We 
change integration variables in 

Qf(iKl/f) = ( d/-L(q\)d/-L(q2) Ki':' LfJ(q\, q2)I.{J(q\)I.{J(q2): 
lQxQ 

If an arbitrary function F E C( Q x Q) has support inside U xU, we put 

f d/-L(q\)d/-L(q2) F(q\, q2) = 
UxU 

( d/-L(q)d/-Lq(v) J(q, v; k)F(y(q, v; k), y(q, v; -k», lTV 

(3.54) 

(3.55) 

which, with the property J(q,tv;V = J(q,v;kt), defines J in (3.53). The 
proposition then follows from (3.54), (3.55), (3.50), (3.51), and (3.43). • 

The Jacobian J will be studied in detail in the next section; we will find that 
J (q, v, k 11,) = 1 + 0(11,2). Also, J will be seen to have the symmetry property 
J( -v, q; t) = J(v, q; t), which, with (3.53), confirms that Wfj L 1/1 J is realfor real­
valued f. Given that Q~ (f) is bounded for f E 2t~, this property is equivalent to 
the self-adjointness of Q~ (f). 

3.5 Proof of Strictness 

_ Recalling Definitions 1.1.1 and 1.2.5, the aim of this section is to prove 

Theorem 3.5.1. The map Q~ defined in 3.4.4 is a nondegenerate strict and 

continuous quantization of 2t~ = C~(T* Q, lR), so that 2,l0 = Co(T* Q), and 
2,lfj = !l3o(L2(Q» for 11, i=- 0 (with the possible exception of the completeness 
condition 1.1.1.4). 

It is clear that 1.1.1.4 is not satisfied if the cutoff function K in (3.51) is not 
equal to unity. If Q x Q is diffeomorphic to TQ by the map V8 (cf. (3.48», the 
quantization Q~ does satisfy 1.1.1.4, since the collection {Q~ (f)} is dense in the 
set of Hilbert-Schmidt operators on L2(Q). 

The nondegeneracy is obvious: Q~ (f) = 0 implies j = 0 by (3.51), which 
implies f = O. Continuity follows from strictness by Theorem 1.2.4. 

In the following discussion we will assume that 11, > 0; the arguments for 11, < 0 
are a trivial modification. The necessary computations are greatly simplified by 
the possibility of localization. 

Lemma 3.5.2. Let f, g E 2t~.lfthe projection 'l'T*Q->-Q( supp (f» of the support 
of f is disjoint from that of g, then there is nf,g > 0 such that Q~ (f)Q~ (g) = 0 
for 11, E (0, nt,g)' 
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It follows from (3.51) and the fact that j has compact support (particularly 
in the fiber direction) that K ~ Lf J (x , z) is nonzero only if the (Riemannian) dis­
tance from both x and z to 'l"PQ-+Q( supp(f) is 0(11.); similarly for K~ LgJ(z, y). 
Hence for fixed x, y the kernel J d/L(z) K~ LfJ(x, z)K:' 19J(z, y) of the product 
Qf(f)Qf(g) vanishes for sufficiently small 11. < h(x, y),foracertainh(x, y) > O. 

Since j and g have compact support also on in the base direction, this vanishing 
can be achieved uniformly in (x, y). • 

For the reasons stated in the proof of 3.4.6, Lemma 3.5.2 allows us to assume 
that 'l"PQ-+Q( supp(f» and 'l"T*Q-+Q( supp(g» are contained in an arbitrarily small 
open set U C Q. For U we choose a geodesically convex set Uq (cf. the paragraph 
following 3.4.6). 

Since (3.28) is a second-order differential equation, for given X, Y E Ty(o)Q 

there exists a unique Jacobi field:r for which :r(0) = X and Vy:r(O) = Y. If we 
write :r = :ri ai in given coordinates, one may equally well pose the initial condi­
tions :ri(O) = Xi, ji(O) = yi, with unique solution :ri(t). We write Jcj)(q, v;·) 
for the Jacobi field with initial conditions 

.:Tr.~)(q, v;O) = cS~; 

!rr.~)(q, v;O) = 0, 

and j(j)(q, v;·) for the Jacobi field with initial conditions 

~~)(q, v; 0) = 0; 

( d -. ) . 
dt.:Tr.'j) (q, v;O) = cSj. 

(3.56) 

(3.57) 

The n x n matrices M(q, v;t) and M(q, v;t) are then defined by their matrix 
elementsM(q, v;t)~ := .:Tr.~)(q, v;t)andM(q, v;t)~:= ~~)(q, v;t),respectively. 
These are combined in the 2n x 2n matrix 

M2:= ( M(q, ~;t) ~(q, ~;t) ). 
M(q, v, -t) M(q, v, -t) 

(3.58) 

Lemma 3.5.3 • 

• The Jacobian in (3.55) is given (for arbitrary t, as long as the geodesics in 
question exist) by 

J(q, v; t) = It-n I[detg(y(q, v; t» detg(y(q, v; -t»] 1/2 

x detg(q)-ll detM2(q, v;t)l. (3.59) 

• If G E C(Q) has support in U, and q E U is such that U is contained in the 
image of the exponential map on Tq Q, then 

1 d/L(q')G(q') = ( d/Lq(v) i(q, v; I)G(y(q, v; 1», (3.60) 
u JTqQ 
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with Jacobian 

i(q, v; t) = It-nl[detg(y(q, v; t»1 detg(q)]!/21 det M(q, v; t)l. (3.61) 

To derive (3.55), one passes from the coordinates (qt, q~) to qi, Vi via the expres­
sion q! = y(q, v; t), q2 = y(q, v; -t) (where t = ! in the special case above). 
The definition of a Jacobi field implies that 

aq~(q, v; t)laqj = .:lr.~)(q, v; -t); aq~(q, v; t)/av j = J(~)(q, v; -t), 
(3.62) 

which leads to (3.55). The derivation of (3.60) is analogous. • 

We assume the support conditions on f and g stated after 3.5.2, and take 
an arbitrary W E L2(Q). From (3.50), (3.51), Lemma 3.5.3, and the property 
y(q, v, lit) = y(q, nv, t), we obtain 

(w, [QIi (f)QIi (g) - QIi (fg)]w) = 1 dJL(q) ( dJLq(v) ( dJLq(v/) 
U lTqQ lTqQ 

W(y(q, v; nI2»W(y(q, v; -nI2»[(n, q, v, v'), (3.63) 

with 

[(n, q, v, v') = J(q, v; n12) [n2n i(q, v'; h) 

x K:' Lf J(y(q, v; n12), y(q, v'; n»K:' LgJ(y(q, v'; h), y(q, v; -nI2» 

- j(q, !v - V')g(q, ~v + VI)] . (3.64) 

For a fixed value (q, v, v'), we now make a Taylor expansion of [(n, q, v, v') 
in n. Here [ is a function on T U ® T U, so we may proceed in any coordinate 
system. 

By evaluating (3.28) in normal coordinates at t = 0 (cf. (3.29» it follows 
immediately that jj(q, v, n) = M~(1 + 0(n2» and .Jj(q, v, n) = 8~(1 + 0(n2». 
Combined with the explicit form (3.24) of the metric in normal coordinates, we 
thus infer from (3.59) and (3.61) that (in any coordinates) 

J(q, v; n12) = 1 + 0(n2); 
- I 2 J(q, v ; n) = 1 + O(n ). (3.65) 

To deal with the terms involving K:' in (3.64) we use (3.25) and perform a Taylor 
expansion of K:' LfJ around the point (y(q, 4v - v'; n12), y(q, 4v - v'; -nI2»), 
and of QIi (g) around (y(q, 4v + v'; n12), y(q, 4v + v'; -nI2»). Using (3.51), 

the result is then rewritten in terms of the j and g. The 0(1) term vanishes. In 
computing the O(h) term, one encounters expressions of the type 

( a a) W I I I I -. +-. Kfi LfJ(q!=y(q'i: v - v ;nI2),q2=y(q'i:v - v ;-nI2», 
aq: aq~ 

(3.66) 
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to be expressed in normal coordinates as indicated above. This is done by in­
verting (3.62) and expanding in powers of Ii. The result is that lin times (3.66) 
equals (aiJaqi)(q, 4v - v') + O(Ii). Using (3.45), one then finds that the in­
tegrand of the analogue of (3.63), with Q:i (f)Q:i (g) - Q:i (fg) replaced by 
i [Q:i (f), Q:i (g»)/Ii - Q:i ({f, g}), is O(Ii). 

In either case one is left with an expression of the type (3.63), with 1 replaced 
by a remainder 1(1) of O(Ii). One then replaces the integration variables (q, v, v') 
in (3.63) by (q', v, v'), with q' = y(q, v; 1i/2); this introduces a Jacobian, which 
is 1 + O(1i2 ), as in the argument leading to (3.65). This Jacobian may be absorbed 
into 1(1), which then remains 0 (Ii). Then apply the Cauchy-Schwarz inequality to 
the q'-integration, splitting the integrand into "'(q') and the rest. This takes out a 
term <Iv dJ,L(q') 1",(q')12)1/2 ::: II '" II. The second factor produced by the Cauchy­
Schwarz inequality is majorized by taking out another factor II '" II, and bounding 
the rest of the q' -integrand by taking its supremum over q'. This leads to 

1("', [Q:i(f)Q:i(g) - Q:i(fg»)"') 1 ::: Clill'" 112 II ill I,oollgll 1,00 

x sup [J,Lq(supp(j) n TqU)J,Lq(supp(g) n TqU»), (3.67) 
qeV 

and a similar inequality for 1("', (i [Q:i (f), Q:i (g»)/Ii - Q:i ({f, g })"')I, in which 
the norms II . 111,00 in (3.67) are replaced by II . 112,00' Hence (1.2) and (1.3) follow 
as in the proof of 2.4.1. 

It remains to prove Rieffel 's condition. Since a very general proof of this property 
will be given in Theorem III.3.11.4, we will merely sketch how the proof in flat 
space may be generalized. 

Firstly, continuity at Ii =1= 0 can be proved in several ways, e.g., by proving 
continuity with respect to the Hilbert-Schmidt norm of Q:i (f). To prove continuity 
for Ii ---+ 0, we shall construct a positive map Qh', which is equivalent to Q:i in 
the sense that the function Ii ~ II Q:i (f) - Qh'(f)II is continuous on R\ {OJ and 
limli-+o II Q:i (f) - Qh'(f)II = O. This map may be shown to satisfy (1.1), which 
then implies the same for Q:i. In the proof of 2.6.1 we had Qh' = Q:; in the 
present case the construction of Qh' is motivated by Q: on flat space, but unlike 
Q:i it holds no intrinsic significance on curved spaces. 

We define Qh'(f) (where f E Qi~) through its Gelfand transform Qf(j), 
defined as a function on IPL2(Q), by 

Qf{j)(tfJ) = ( dJ,Ldp, q) W:'LtfJ J(p, q)f(p, q), (3.68) 
JT*Q 

where 

WPOS L·I'J ( ) '= Ii-n I ( dJ,Lq(v) 
Ii 'I' p, q . JTqQ (rrli)n/4 

K(V, q)J J(q, v; 1)e-iPv/lie-v2/(21i)"'(y(q, v; 1)12 
, (3.69) 
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where v2 := ~(v, v), and j is given by (3.61). It is easy to see that (3.69) defines 
a bounded operator Q'h'(f) on L2(Q) (see 3.5.4 below). In flat space one has 
Q'h' = Qg; in general, (3.69) depends on the cutoff function K, cf. (3.53). 

Lemma 3.5.4. The map Q'h' : sii~ ---+ ~(L 2(Q» is positive and takes values in 

~o(L 2( Q»jR. It satisfies, for all f E sii~, 

lim II Q'h'(f) - Q~ (f) II = 0 (3.70) 
n~O 

and 

lim IIQh'(f)1I = IIflloo. 
n~O 

(3.71) 

The positivity of Q'h' is obvious from (3.69). Since f and K are compactly 
supported in q and v, respectively, Q'h'(f) is an integral operator with smooth 
compactly supported kernel; hence it is Hilbert-Schmidt and therefore compact. 
Self-adjointness is immediate from the reality of Wr. 

The proof of (3.70) and (3.71) is very tedious, and will be omitted. 
Given this lemma, the corresponding argument in the proof of 2.6.1 leads to 

lim IIQ~(f)1I = 1111100, 
n~O 

and the proof of Theorem 3.5.1 is finished. 

(3.72) 

o 
The continuous field of C* -algebras defined by Q:i through Theorems 3.5.1 

and 1.2.4 will be identified in 111.3.12. 

3.6 Commutation Relations on Riemannian Manifolds 

We would like to quantize certain unbounded smooth functions f on the phase 
space T* Q. This can be done by the prescription (3.50), (3.51) if f is polynomial 
in p. The domain on which the ensuing unbounded operator Q:i (f) is defined is 
initially taken to be C;;o( Q), since on this domain the formal manipUlations used in 
computing Q~ (f) are well-defined. In this section we examine certain intrinsically 
defined functions on T* Q of order zero and one in the canonical momenta (the 
Hamiltonian, which is of order two, will be dealt with in the next section). 

Proposition 3.6.1. The WeyJ quantizations (in the sense of 3.4.4) of f = Jg (cf 
(3.7)) and of f = J~ (cf (3.8)), defined on C;;o(Q) c L2(Q), are given by 

Q~ (Jg) = g; (3.73) 

Q:i(J~) = -in(~ +!V. ~). (3.74) 

Here g and ! V . ~ (:= ! Vi~i) are multiplication operators. 
The computation of Q:i ( .. ·)'It(x) is best done in normal coordinates q! based 

at x (cf. 3.2). In these coordinates the point q and the vector X q E Tq Q for which 
(exPq<!Xq), eXPq(-!Xq » = (0, v)(see (3.48» are given simply by q! = ~Vi and 
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x~ = -Vi. Hence from (3.50), (3.51), and (3.43) one obtains 

det g(v) 1 • 

detg(~v)f(lip, i V )'I1(v), 

(3.75) 
for the functions f under study this expression will tum out to be independent of 
the cutoff function K. For f polynomial in p one has the (oscillatory) integral 

f dn p -ipv il i (. a) (. 8 ) ~(n)( ) --e p ... p"= 1-, ... 1-.0 v, 
(2Jl')n 8v11 8v1" 

(3.76) 

where 8(n) is the n-dimensional Dirac delta distribution. This leads to (3.73) and 
(3.74). • 

Straightforward computation leads to the following "canonical" commutation 
relations (valid on the domain C~(Q»: 

(3.77) 

(3.78) 

(3.79) 

These reflect the classical Poisson brackets (3.9)-(3.11), in that Dirac's relation 
i [ QJi' (f), QJi' (g)] / Ii = QJi' ({f, g}) is satisfied for the functions in question. 
The "canonical" commutation relations may be interpreted in terms of a certain 
representation Ph of the group (}Q (see (3.12» on L2(Q). 

Proposition 3.6.2. The linear action of(}Q on L2(Q) defined by 

Ph(g)'I1(q):= e-ig(q)/h'l1(q), (3.80) 

dJL(rp-l(q» '11( -l( » 
dJL(q) rp q, (3.81) 

and Ph(rp, g) := Ph(g) 0 Ph(rp), is unitary, hence a representation. The derived 
representation of the Lie algebra gQ is given in terms of the map J (cf. 3.1.4) by 

(3.82) 

The Radon-Nikodym derivative under the square root exists because rp-l is 
a diffeomorphism, under which the locally Lebesgue measure class is invariant. 
Given the square root, unitarity is immediate from the definitions. For the remaining 
calculation one combines the identity 

8i log Jdetg = rb 
with (3.40) and (3.1). 

(3.83) 

o 
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The representation Ph induces a *-automorphic action a h of 9Q on 2(h 
23o(L2(Q» by 

at""g)(A) := Ph(CP, g)Aph(rp, g)*, 

Writing a; := at""O) and a; := a[:d,g)' the kernel of A 
transforms as 

(3.84) 

QJ;(f) (cf. (3.51» 

(a~(K:: LfJ))(x, y) = 
d/L(cp-I(X» d/L(cp-l(y» 

d /L(x) d /L(y) 

X K,~ LfJ(cp-l(x), cp-l(y»; 

(aI(K:: Lf J») (x, y) = ei[g(y)-g(x)]lh K:: Lf J (x, y). 

The classical analogue of this automorphism is evidently given by 

a~,g)(f) '= f 0 Po«cp, g)-I), 

where Po is defined in (3.13). 

(3.85) 

(3.86) 

(3.87) 

An isometry of (Q, g) is a diffeomorphism cp for which cp*g = g; an infinites­
imal isometry is a vector field I; on Q for which L~g = 0 (where L is the Lie 
derivative ). 

Theorem 3.6.3. If cp is an isometry of (Q, g), then 

a;(QJ; (f» = QJ; (a~(f) (3.88) 

for all f E C~(T*Q) (cf (3.49)), and n small enough so that QJ; (f) is indepen­
dent of the cutoffK (cf the comments following 3.4.4), IfK is invariant under the 
(pushforward) action of cp to T Q, eq. (3.88) holds for alln i= 0, 

If I; is an infinitesimal isometry whose flow is complete, then, under the same 
conditions on f, on the domain C~(Q) one has 

(3.89) 

If cp is an isometry, the Radon-Nikodym derivatives in (3.85) equal unity. 
Equation (3.88) then follows from (3.85), (3.51), (3.42), (3.48), and the property 

(3.90) 

which, because cp is an isometry, holds by the definition of the exponential map. 
Equation (3.89) follows from (3.88), (3.82), Proposition 3.1.5, and the following 
interesting result. • 

Proposition 3.6.4. If a vector field I; on Q is complete, then QJ; (J~) is essentially 
self-adjoint on the domain C~(Q). 

By (3.82) we might as well consider dph(I;). Let CPt be the flow generated 
by 1;; since I; is complete, the flow exists for all t. Then (3.81) defines a one­
parameter unitary group t f-+ Ph(CP/) on L2(Q). A routine calculation shows that 
dp,,(cp/)\II/dtlt = 0 exists for all \II E C~(Q), and equals 1;\11. Hence C~(Q) is 
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contained in the domain of the generator of the unitary group, and this generator 
equals -i~ on C;:O(Q). Furthennore, by (3.81), P/i(cpt) leaves the dense domain 
C;:O( Q) invariant for all t, since CPt is a diffeomorphism. A lemma in functional 
analysis states that if t r-+ exp(i t H) is a unitary group in a Hilbert space that leaves 
a dense linear subspace 1)0 c D(H) invariant, then H is essentially self-adjoint 
on 1)0' This implies the proposition. • 

3.7 The Quantum Hamiltonian and its Classical Limit 

We extend Proposition 3.6.1 to the most important function on T* Q that is 
quadratic in the momenta. 

Definition 3.7.1. Given a Riemannian metric g on Q, the Laplace-Beltrami 
operator ~ is an elliptic second-order differential operator on Q, defined by 

(\II, ~<I» = - £ d/L(q)f,q(V\ll(q), V<l>(q», 

where \II, <I> E C;:O(Q); the gradient V is defined in (3.16). 

In coordinates, one has 

~ = gij\1·a· = _1-a.(Jdetggija.)· 
'J Jdetg' J ' 

(3.91) 

(3.92) 

here ai acts on everything to its right, including the (omitted) \II. In flat space ~ 
clearly reduces to the Laplacian. 

Proposition 3.7.2. The Weyl quantization of the Hamiltonian h* (cf (3.31)) is 
given (on the domain C;:O(Q) C L2(Q») by 

Hti := QJi (h) = -~n,z(~ - ~R). (3.93) 

Here the Ricci scalar R (cf (3.23)) is seen as a multiplication operator. 

The proof of (3.93) follows the same steps as in 3.6.1; here one additionally 
uses (3.25). D 

The functional analysis of the first tenn of (3.93) is given by a result of the same 
type as 3.6.4, but somewhat deeper. 

Theorem 3.7.3. When (Q, g) is complete (cf 3.1.3), the Laplace-Beltrami 
operator is essentially self-adjoint on C;:O(Q). 

The symbol ~ stands for the differential operator (3.92) defined on the domain 
C;:O(Q); its closure is denoted by ~. We can look at (3.91) as the definition of ~ 
as a quadratic fonn with initial domain C;:O(Q). 

It is easily verified that ~ is symmetric. It is evident from the definition (3.91) 
that~, and therefore ~, is negative. It follows that ~ has equal deficiency indices, 
so that self-adjoint extensions exist. (This conclusion also follows from the fact 
that ~ commutes with the conjugation \II r-+ \II on L 2(Q).) The domain D(~) of 
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II is the set of vectors \II E L 2(Q) for which there exists a sequence \II j E C;:O(Q) 
such that \II j --+ \II, and II \II j converges to an element in L 2(Q); the latter is then 
by definition II \II. The domain D(ll *) of the adjoint is the collection of vectors 
in L2(Q) C V(Q)' (the distributional dual of C;:O(Q) = V(Q) with the Schwartz 
topology) for which II * \lilies in L 2(Q); here II * is given by the expression (3.92), 
understood in the sense of weak (distributional) derivatives. The theorem states 
that D(ll) = D(ll *) if Q is complete. 

The following fact will be used: If A is a positive closed operator, then the 
dimension of ker (A - A) is constant for A E C\[O,oo). Suppose II is not self­
adjoint. Then the deficiency indices are nonzero (and equal), so that the equation 
II *\11 = i \II has a nonzero solution in D(ll *). By the above fact, there is a nonzero 
solution \II = \III of ll*\II = \II. The theory of elliptic PDE's shows that \III E 

C oo ( Q) ("elliptic regularity"), so that the weak derivatives in II * are actually strong 
ones. Abbreviating the right-hand side of(3.91) as (V\II, V¢), the idea of the proof 
is to write 

(V\III. V\III) = -ell *\1110 \II]) = -(\III. \III) ::: O. 

forcing V\II] = 0 (in L2(Q» and therefore ll*\II1 = \III = O. However, the partial 
integration leading to the first equality is not a priori justified unless \III has compact 
support (hence if Q were compact the proof would be finished here). Hence one 
uses the following device. Pick a fixed qo E Q, and define a family of functions 
jk : Q --+ [0, I] by jk(q) = j(d(q. qo)/k) (k EN), where d is the distance 
function on Q x Q (see 3.2), and j : [0, 00) --+ [0, I] is a smooth cutoff function 
that is 1 in [0, I] and 0 on [2, 00). At this point the completeness of (Q, g) is used: 
It follows from Theorem 3.2.3, guaranteeing metric completeness, that each jk has 
compact support (since a closed and bounded set in a finite-dimensional complete 
metric space is compact). One clearly has jk --+ 1 pointwise. 

The distance d(q, qo) is a differentiable function of q except at qo and at the 
cut locus C(qo) (cf. 3.2.4). By Corollary 3.2.6 the set C(qo) is of JL-measure zero, 
so that each component of Vd(·, qo) is well-defined as an element of L~C<Q). The 
triangle inequality leads to Id(ql, qo) - d(q2, qo)1 ::: d(ql, q2)' This Lipschitz 
condition implies that in normal coordinates centered at qo the metric is absolutely 
continuous with respect to each variable, with Id;d(q, qo)1 < 1. Hence, by the 
chain rule, Id;jk(q)1 ::: 11/1100/ k, so that 

(3.94) 

Trivially, Uk\lll, jk\ll]) :::: O. Moving the second jk to the left, replacing the 
second \III by II * \III, and performing a partial integration (now allowed, since 
j;\II1 has compact support), one rewrites this inequality as 

IIjk V \IIIII~::: 21(\11 1 V jko jk V \111)1, 

where II . 112 is the norm derived from (, ). The Cauchy-Schwarz inequality then 
yields IUk V \II tll~ ::: 211 \III V jk 112 IUk V \II db which in tum leads to the bound 
IUk V \111112 ::: 211\11] V A 112. Accordingly, by (3.94) one has limk IUk V \11]112 = O. 
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Fatou's lemma and limk jk = I (pointwise) then imply that II V \111112 = 0; as we 
have seen before, this implies \III = O. • 

Self-adjointness of Q';i (h) in (3.93) then follows from a mild assumption. 

Proposition 3.7.4. Let (Q, g) be complete with Ricci scalar R bounded. Then 
Q';i (h) is essentially self-adjoint on C~(Q) and self-adjoint on D(I::!.). 

This is immediate from the Kato-Rellich theorem on perturbations of self-
adjoint operators. 0 

In order to generalize the proof of Theorem 2.7.2 to Riemannian spaces (Q, g), 
we have to make a simplifying assumption, namely that Q :::::: an as a manifold. 
If (Q, g) is complete, by Theorem 3.2.5 this would follow from the assumption 
that the cut locus C(qo) is empty for some point qo E Q. The globally defined 
coordinates Xi on an may then taken to be normal coordinates based at qo. However, 
given the assumption that Q :::::: an, we need not assume that the cut loci defined by 
the metric are empty, and neither is it necessary that the classical motion defined 
by h be complete. (The case that (Q :::::: an, g) is complete and R is bounded is, of 
course, covered; cf. 3.7.4.) 

In the present case the notation L2(Q) stands for L 2(an ,dnxy'detg(x». We 
can define normalized coherent states in L2(Q) by 

\IIhP,q)(x) := (n n)-n/\det g(X»-1/4 eip(X-~q)/lie-(x-q)2/(21i); (3.95) 

this slightly generalizes (2.47). 
We shall merely assume that g is a metric on Q = an for which gij and its 

derivatives are o (exp(x2 /2» for x ---+ 00. Ifn < I, the operator Hii in (3.93) is then 
symmetric on the domain Do consisting of the span of all coherent states (3.95), 
and has one or more self-adjoint extensions (since it commutes with complex 
conjugation). As in 2.7.2, with slight abuse of notation the unitary one-parameter 
group exp(itHIi/1i) on L2(Q) is understood to be generated by an arbitrary self­
adjoint extension of (3.93). We use the notation (2.88) and 1.(2.13). 

Theorem 3.7.5. Let (Q, g) be as detailed in the preceding paragraph. Fix (p, q) E 

T* Q, assuming that the cogeodesic motion (p(t), q(t» with initial conditions 
(p(O), q(O» = (p, q) exists for ti < t < t f. Then with Q';i defined by 3.4.4 and 

\IIhP,q) given by (3.95 ),/or all t E (ti, t f) one has 

lim (\IIJ(',q), [Q';i (ct?(f) - ct~(Q';i (f»] \IIhP,q») = O. 
Ii-->O 

(3.96) 

The coordinates (Pi, qi) are globally defined on T* Q, and from (3.74), (3.1), 
and (3.83) we obtain 

Q~ := Q';i (qi) = Xi; 

a 
Pli,i := Q';i (Pi) = -indetg(X)-1/4 axi detg(x)I/4, (3.97) 
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defined as operators on Vo or on C~(Q) (cf. the comment after (3.92». We may 
then write 

(3.98) 

(rather than the complete symmetrization ~A [Q:; (gij), Qj; (Pi), Q:;Cp j)], as 
might have been expected on the basis of the flat-space case (2.37». The trans­
formation V : L2(Q) ---+ L2(JRn) defined by VIl1(x) = detg(x)1/41l1(x) is clearly 
unitary, and satisfies 

V Q~ V* = Q~.i; 

V Pft,i V* = pli' (3.99) 

cf. (2.23), (2.24). In particular, one infers that Q~ and Pft,i are essentially self­
adjoint on V o or on C~(Q). Moreover, the canonical commutation relations are 
the same as in the flat-space case; see (2,25). From (3.98) and (3.99) we obtain 

V Hft V* = ~ [gij (Q~)Pli pl j - iMjgij (Q~)Pli - ~Ii?aiajgij (Q~)]. (3.100) 

The final virtue of V is that up to a phase, it maps the coherent states (3.95) into 
their flat-space analogues (2.47). Hence one can transfer the entire situation to 
L 2 (JRn). 

Lemma 3.7.6. With 1l1};,q) the coherent state (3.95), one hasforall (p, q) E T*Q, 

all (rp, g) E YQ' and all f E C~(T*Q) 

lim (Il1(P,q) [aft - (Qw(f» - QW(ao - (f»]Il1(P,Q)) = 0 ft->o ft ' (IP,g) ft Ii (IP,g) Ii ' (3.101) 

Denote the Fourier transform (cf. (3.42» of a?IP,g/f) by a?IP,g)(j). From (3.87), 
for X E TQ Q we obtain the expression 

a~(j)(X) = dJ1-d:~~~q» j(rp:;l X); 

a~(j)(X) = e-i(Xg)(q) j(X), 

(3.102) 

(3.103) 

As in the proof of Theorem 3.5.1, Lemma 3.5.2 allows the assumption that 
the set iT'Q->Q(supp(f) is contained in an arbitrarily small open set U C Q, 
which we choose to be some geodesically convex set U. It is clear from (3.85), 
(3.102), and (3.95) that both terms in (3.101) vanish in the limit Ii, ---+ 0 if rp(q) i 
iT' Q-> Q ( supp (f); hence we assume the converse. 

We treat rp = (rp, 0) and g = (id, g) separately; the result for the two combined 
follows in an obvious way. We start with alP' We write both terms in (3.101) in 
the form (3.54), change variables firstly by qj t-+ rp(qj), and secondly by (3.55), 
with subsequent rescaling v t-+ li,v. We now write q' for the object q in (3.55) to 
avoid confusion with the label q on ll1~p,q). In the first term we then use (3.85) and 
(3.51). In the second term we have the expression 

li,n Ki:' Lao(f)J(rp(y(q', v; ~Ii,), rp(y(q', v; -~Ii,)). 
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By definition, rp(q') = rp(y(q', v;O» and rp*(v) = tdy(q', v; th)/dnln = O. 
Hence 

rp(y(q', v; ±th) = y(rp(q'), rp*(v); ±tn) + 0(n2 ), 

where the order symbol is meant in the sense of smooth functions evaluated on 
both sides. From (3.51) and (3.102) we then see that the expression above equals 
[dJ.t(q')/dJ.t(rp(q'»]j(v, q') + O(li). In the first term in (3.101) we expand the 
terms involving F (see (3.85» and j around li = O. To 0(1) the first and the 
second term are then seen to cancel out. The remainder of O(n) is easily shown to 
vanish for n ~ 0, since j has compact support. 

The argument for ag is analogous. This time the cancellation of the 0(1) term 
is effected by (3.86), (3.103), and the fact that 

[g(y(q', v; -~li» - g(y(q', v; -1n)))/li = -vg(q') + O(n), 

which follows because by definition v = y(q, v; 0). • 
One then proceeds in precisely the same fashion as in the proof of 2.7.2, and 

obtains (2.162). The final stage is analogous to the procedure to prove 2.7.2 for 
Q/i = Q~, except that the use of 2.4.3 is replaced by Lemma 3.7.6. This is possible 
because (up to a phase) the operators Ul(P(t), q(t» used in that step are of the 

h 

form Vp,,(rp, g)V*; cf. 3.6.2. • 



CHAPTER III 

Groups, Bundles, 
and Groupoids 

1 Lie Groups and Lie Algebras 

1.1 Lie Algebra Actions and the Momentum Map 

This section describes the main class of examples of Poisson manifolds that are 
not symplectic. Here G is a Lie group, g its Lie algebra, and g* is the dual of g. 

Definition 1.1.1. The (±) Lie-Poisson structure on g* is given by the Poisson 
bracket 

{f, g}±(I1) := ±11([dfe, dge]); (1.1) 

here the differential dfe of f E COO(g*, JR) at 11 E g*, which is a linear map from 
Tog* c:::: g* to lR, is identified with an element of g c:::: g**, so that the right-hand side 
of( 1.1) is the Lie bracket in g. The space g* equipped with the Poisson bracket (1.1) 
is denoted by gl; hence COO(gl, JR) stands for the associated Poisson algebra. 

For X E g let X be the linear function on g* defined by X(I1) := I1(X); clearly 
X E COO(g*, JR). From (1.1) one then obtains 

{X, y}± = ±[X, Y); (1.2) 

cf. 11.(2.10) and surrounding text. In fact, the Poisson structure is determined by 
the special case (1.2). For let {Ta} be a basis of g, with [Ta, n) = C~bTc, and 
dual basis {wa} of g*, defined by wa (Tb) = 0b' We then have global coordinates l1a 

on g* (so that 11 = l1awa), and ta is simply the coordinate function l1a. We know 
that {f, g} depends linearly on df and dg; cf. 1.(2.4). Since df = (aflal1a )dta , 

the claim follows. Evidently, {ta, t b}± = ±C~btc, or {ea, I1b}± = ±czbec' Thus, 
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omitting the argument a, (1.1) may be written as 

c af ag 
{f, gl± = ±cabac aaa aab' (1.3) 

We now look at the representation theory of Coo (g~, JR) (in the sense of 1.2.6.1). 
By Corollary 1.2.6.5 a representation of Coo(g~. JR) corresponds to a symplectic 
manifold S and a smooth map J : S ~ g*, such that {J* f, J* g Js = J* {f, g }_ 
for all f, g E Coo(g*, JR). That is, J : S ~ g~ is a Poisson map. Let 

Jx:= J*X, (1.4) 

which is in Coo(S, JR); in other words, lx(a) := (J(a»(X). 

Proposition 1.1.2. A smooth map J : S ~ g~ is Poisson iff {lx, J y } s = -J[X,y] 
for all X, Y E g. 

If B S is the Poisson tensor on S, then {J* f, J*g}s = B;(J*df. J*dg}. As in 
the previous paragraph, this implies that 

{J* f, J*gJs(a) = af (J(a»~(J(a»{J*Ta, J*Tb}(a). (1.5) 
aaa aab 

By assumption {J*Ta, J*TbJs(a) = -C~bTc(J(a», so that the right-hand side of 
(1.5) is (f, g}_(J(a». • 

Define ~x := ~Jx' which is the Hamiltonian vector field of lx. Assuming that 
J is indeed a Poisson morphism, the Jacobi identity on the Poisson bracket of S 
(or (1.2.9» implies that 

(1.6) 

here the left-hand side contains the commutator of vector fields, whereas on the 
right-hand side [. ] stands for the Lie bracket in g. 

Let us refer to a linear map X t-+ ~x of 9 into the space of vector fields l(T S) 
on S satisfying (1.6) as a g-action on S. Here r(T S) may be regarded as the 
Lie algebra of the diffeomorphism group of S, whose Lie bracket is minus the 
commutator (cf. 1.3.3), so (1.6) corresponds to a Lie algebra homomorphism as 
appropriate. When various g-actions playa role we sometimes write ~1 for h. If 
{Ta} is a basis of g, we abbreviate ~a := ~Ta' One speaks of a Poisson g-action 
when S is a Poisson manifold and Lh B = 0 for all X E g, where B is the Poisson 
tensor. When (S, w) is symplectic, which is the only case we shall consider in the 
context of g-actions, this condition is equivalent to L~xw = 0 for all X. 

We infer from 1.(2.10) that a representation of COO (g "'- , JR) on S leads to a Poisson 
g-action on S. Conversely, one may ask whether a given g-action on a symplectic 
manifold S is related to a representation of Coo(g~, JR) on S. 

Definition 1.1.3. A momentum map for a g-action X t-+ h on S is a map 
J : S ~ g* for which 

~Jx =h (1.7) 
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for all X E g; here 1x is defined by (J.4). 

This definition applies to general Poisson manifolds, but we will use it only 
when S is symplectic. We will occasionally write Ja for h a • A Hamiltonian g­
action on a symplectic manifold is a g-action given by a momentum map as in 
0.7). It is clear from (1.7) and 1.(2.10) that a Hamiltonian g-action is Poisson. 
When a momentum map J exists, (1.7) is equivalent to 

(1.8) 

for all X E g; to prove this, contract both sides with ~f (which is the most general 
type of local vector field, since S is symplectic) and use 1.(2.19). 

Conversely, when a g-action is Poisson, the properties dw = 0 and Lhw = 0 
and the identity L~ = i~d + di~ imply dihw = 0, so that by Poincare's lemma a 
function Jx satisfying (1.8) must exist at least locally. 

Proposition 1.1.4. Sufficient conditions for the existence of a momentum map for 
a Poisson g-action on a symplectic manifold (S, w) are Hd~(S, JR.) = Oor 9 = [g, g) 
(equivalently, Hl(g, JR.) = 0). 

Here Hd~(S, JR.) := ZlR(S, JR.)/ B1R(S, JR.) is the first de Rham cohomology group 
of S; recall that ZlR(S, JR.) and Bd~(S, JR.) are the spaces of all closed and all exact 1-
forms on S, respectively. The sufficiency of the condition H~ (S, JR.) = 0 is evident 
from the paragraph preceding this proposition. 

The vector space Hl(g, JR) is the first cohomology group of g; since Bl(g, JR.) 
is identically zero, HI (g, JR) is defined as the subspace Z 1 (g, JR) c g* of all () for 
which ()([X, Y)) = 0 for all X, Y E g. The equivalence between the conditions 
9 = [g, g) and Hl(g, JR) = 0 is obvious. 

If 9 = [g, g), then an arbitrary X E 9 can be written as X = Lj X j 

with X j = [Yj , Zd for appropriate Yj , Zj E g. If X = [Y, Z], we choose 
1x = w(~y, ~z), which, by an elementary calculation, using (1.6) and dw = 0, 
satisfies (1.8) and hence (1.7). For arbitrary X we define 1x by linear extension of 
this expression. • 

The existence of a momentum map J in itself does not imply that J preserves 
the Poisson bracket. To detect the extent to which it does we define a function r 
ong x 9 x S by 

{lx, Jy 15 = -J[x.Yl - r(X, Y). (1.9) 

It is clear that r is bilinear and anti symmetric in X, Y. Taking the Poisson bracket 
of both sides of (1.9) with an arbitrary f E COO(S), and using (1.7), (1.6), and the 
Jacobi identity, we infer that {r(X, Y), f} = 0 for all X, Y. Since S is symplectic, 
this shows that r does not depend on its argument in S. A bilinear function r : 
9 ® 9 --+ JR satisfying 

r(x, Y) = -r(Y, X), 

r(X, [Y, Z)) + r(Z, [X, Y)) + r(Y, [Z, X)) = 0 

(1.1 0) 

(1.11) 
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is called a 2-cocycle on 9 (with values in JR). The space of all 2-cocycles on 9 is 
denoted by Z2(g, JR). It follows from the Jacobi identity on both {, } s and [, ] that 
r as defined in (1.9) is indeed an element of Z2(g, JR). 

We are now motivated to define a modified Lie-Poisson bracket on g* by 

{f, g}~ := {f, g}± ± r(df, dg); (1.12) 

this is indeed a Poisson bracket on account of (1.11). Generalizing (1.3), in 
coordinates one has 

(1.13) 

( 1.14) 

As for r = 0, one shows that this modified Poisson bracket is determined by the 
special case 

{X, f}~ = ± ([X,Yj + reX, y»). (1.15) 

Definition 1.1.5. The space g* equipped with the Poisson bracket (1.13) is denoted 
by g('r)±; we sometimes write Cr(g~) for the associated Poisson algebra. 

Generalizing Proposition 1.1.2, one easily proves 

Proposition 1.1.6. A smooth map J : S ~ g('r)- is Poisson iff (1.9) holds. 

The essence of the preceding discussion may now be summarized as follows. 

Theorem 1.1.7. There is a bijective correspondence between representations Jr 

ofCr(g~) (in the sense ofl.2.6.1) and Hamiltonian g-actions with given complete 
momentum map and associated 2-cocycle r. Given Jr : Cr(g~) ~ COO(S) one 
constructs a Poisson map J : S ~ g(r)- by 1.2.6.5, and subsequently defines the 
g-action X ~ h by (1.7). Conversely, given a g-action with associated complete 
momentum map J (yielding a 2-cocycle r), one puts Jr = 1*. 

The fact that X ~ h is indeed a g-action follows from the argument leading 
to (1.6); even when r f= 0 the additional term in (1.12) is a constant function, so 
that the Jacobi identity on the Poisson bracket still implies (1.6). It is Poisson by 
1.(2.10), and Hamiltonian with 2-cocycle r by construction. In the converse the 
fact that 1* is a representation is immediate from 1.1.6. • 

A strongly Hamiltonian g-action is a Hamiltonian g-action possessing a mo­
mentum map J : S ~ g~ that is Poisson; in other words, there exists a J for 
which r = 0 in (1.9). A Hamiltonian g-action with 2-cocycle r may alternatively 
be described as a strongly Hamiltonian action of a certain r -dependent Lie algebra 
containing g. 

Definition 1.1.8. The central extension gr of a Lie algebra 9 by JR relative to 
some r E Z2(g, JR) is gr := gtBJR as a vector space, equipped with the Lie bracket 

[X, Y]r = [X, Y] + reX, Y)To; 

[X, To]r = 0 

(1.16) 

(1.17) 
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for X, Y E g, and To a basis vector of the extension R 

The Jacobi identity for [, ]1' is a consequence of (1.11). We have an embedding 
I : 9 "-+ gr by leX) = X +0 (which is not a Lie algebra homomorphism unless 
r = 0), as well as a quotient 9 ~ gr /JR as Lie algebras. 

Proposition 1.1.9. There is a bijective correspondence between Poisson maps 
1 : S -+ g(r)- (or, equivalently, Hamiltonian g-actions with 2-cocycle r) and 
Poisson maps 11' : S -+ gr- (or strongly Hamiltonian gr-actions) in which 
(Jr(a»(To) = 1 for all a E S (equivalently, n(To) = Is, so that ~To = 0). This 
correspondence preserves irreducibility. 

Let wO be the basis element in gr dual to To. Then 11 : g(r)- -+ gr- given by 

11(f) := f)+wo is a Poisson map (where 9* is embedded in gr as the annihilator 

of the extension JR); this follows from (1.15), (1.16), (1.2), and ltTo = 19" 

Given 1 : S -+ g(r)-' one constructs lr : S -+ gr-- by lr := 11 0 1. 

Conversely, when a given lr is as stated, the equality lfcTo) = Is and Proposition 
1.1.6 imply that lx(a) := (Jr),(X) (a) with (1.4) is a Poisson map 1 : S -+ 9(1')-' 
Finally, Definition 1.2.6.6 and the fact that ~To = 0 lead to the last part of the 
proposition. • 

As a by-product of the proof we have 

Proposition 1.1.10. The canonical identification of COO(gr_)/ ker(Jt) with 
Cf(g"'J is a Poisson isomorphism. 

This is immediate from the definitions and (1.13). • 
The theory so far has been concerned with a Hamiltonian g-action with given 

momentum map 1. However, when some 1 exists, then any map l' = 1 + f)o, 
where f)o E g*, is obviously a momentum map for the given g-action as well. 
Having found a particular 1 for which r -I 0, when can we redefine 1 r-+ l' so 
as to make l' a Poisson morphism? 

A 2-cocycle r E Z2(g, JR) is said to be trivial when 

reX, Y) = f)o([X, Y]) (1.18) 

for some f)o E g*. The subspace of trivial 2-cocycles is called 8 2(g, JR). The 
quotient H\g,JR) := Z2(g, JR)/82(g, JR) is the second cohomology group of g. 

Proposition 1.1.11. If a momentum map of a Hamiltonian g-action defines a 2-
cocycle satisfying (1.18), then the g-action is strongly Hamiltonian. In particular, 
when H\g, JR) = 0 any Hamiltonian g-action is strongly Hamiltonian. 

Given (1.18), the redefined momentum map l' = 1 + f)o : S -+ g:' is a Poisson 
map by (1.9). The condition H2(g, JR) = 0 implies that any 2-cocyc1e r is given 
by (1.18). • 

Combining 1.1.11 and 1.1.4 we obtain 
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Corollary 1.1.12. Let Hi(g, R) = H2(g, R) = O. Any Poisson g-action is 
strongly Hamiltonian, and is associated with a unique Poisson momentum map 
J: S ~ g~. 

If one has a Poisson momentum map J, one may still shift J t-+ J + eo, 
preserving the Poisson property, iff eo annihilates [g, g]; when 9 = [g, g] this 
forces eo = o. • 

The conditions Hi (g, R) = 0, i = 1, 2, are satisfied, for example, when G is 
semisimple. The consistency between 1.1.9 and 1.1.11 is guaranteed by 

Proposition 1.1.13. If r(X, Y) = eo ([X , YD for some eo E g*, then g. is iso­
morphic to the trivial extension go = 9 EB R as a direct sum of Lie algebras. In 
particular, when H2(g, R) = 0, any central extension of 9 by R is trivial. 

If r(X, Y) = eo([X, YD, then X t-+ X + eo(X)To for X E 9 and To t-+ To is 
the desired isomorphism between g. and 90. • 

1.2 Hamiltonian Group Actions 

We will now relate g-actions to G-actions, where G is a Lie group with Lie algebra 
g. Recall that a (left) action L of a group G on a manifold S is a map L : G x S ~ S, 
satisfying L(e, a) = a and L(x, L(y, a» = L(xy, a) for all a E S and x, y E G. 
If G is a Lie group, we assume that L is smooth, unless the contrary is explicitly 
stated. We write Lx(a) = xa := L(x, a). 

Given a Lie group action, one defines a linear map X t-+ I;x by 

d 
I;xf(a):= dtf(Exp(tX)a)lt=o, (1.19) 

where Exp : 9 ~ G is the usual exponential map. One sees that (1.6) holds, so 
that X t-+ I;x is a Lie algebra homomorphism from 9 into the Lie algebra r(T S) of 
Diff(S). We say that the ~x generate the G-action, and call ~x a generator defined 
by X. 

Conversely, one may ask whether a representation of COO(g~, R) on S is de­
rived from a G-action, in which case the representation is called integrable. This 
question is partly answered by the following statement. 

Theorem 1.2.1. Let X t-+ ~x be a homomorphism as above, and suppose the 
flow of each I;x, X E g, is complete (this is the case iff there is a basis {Ta} of 9 
such that the flow of each ~a is complete). Then the I;x generate an action of the 
simply connected Lie group a whose Lie algebra is g. 

The construction of the a-action is, of course, done with the flow of the genera­
tors; that is, if a t-+ a(t)istheflowgeneratedbY~x,oneputsExp(tX): a t-+ a(t). 
Such one-parameter groups generate a (which is connected), but it remains to 
check that one indeed obtains a smooth group action. 0 

Note that the statement about the basis is nontrivial, since in principle the sum of 
two complete vector fields may be incomplete. Clearly, the hypothesis is automat-
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ically satisfied when S is compact, or more generally when all h have compact 
support. In any case, if the theorem leads to a a-action and if no h is identically 
zero, there is a discrete normal subgroup Ds C a such that Ds is the maximal 
subgroup of a that acts trivially on S. If G = a I D for some discrete central 
subgroup DCa (recall that any Lie group with Lie algebra 9 is of this form), 
then the h generate a G-action if D ~ Ds. 

When the g-action associated to a G-action on a symplectic manifold S is 
Hamiltonian, one speaks of a Hamiltonian group action. Similarly, a strongly 
Hamiltonian group action is an action for which a momentum map J : S -+ g* 
exists that is a Poisson map; cf. (1.19) and 1.1.3. It is immediate from the comment 
preceding 1.2.3.5 that a Hamiltonian G-action automatically consists of Poisson 
maps. Further to this, the conditions for a G-action on a symplectic manifold to be 
(strongly) Hamiltonian are entirely determined by the properties of the associated 
g-action, and are therefore given by Propositions 1.1.4 and 1.1.11 and Corollary 
1.1.12. 

The Hamiltonian version of Noether's theorem is as follows. 

Proposition 1.2.2. Given a Hamiltonian G-action on a symplectic manifold S, 
when h E COO(S, JR) is G-invariant (i.e., h(xa) = h(a)forall x E G), each lx is 
constant along the Hamiltonian flow lines of h. 

Putting x = Exp(tX) in h(xa) = h(a), evaluating dldt at t = 0, and using 
(1.7) leads to {lx, h} = 0, which by 1.(2.8) and 1.(2.11) implies the claim. • 

In view of this, in physics the components Jx of the momentum map usually 
play the role of conserved charges. 

A Hamiltonian G-action enjoys a certain equivariance property. Recall the ad­
joint action Ad of G on g, defined by Ad(x)Y := xYx- 1 (more precisely, if 
Y = dy(t)ldtlt = 0, then Ad(x)Y = dxy(t)x-1It = 0). The derived rep­
resentation of 9 is then given by ad(X)Y = [X, Y] (where we simply write 
ad for the awkward dAd). The coadjoint action Co of G on g* is defined by 
(Co(x)8)(Y) := O(Ad(x- 1 )y), with derived action of 9 ong* written as co := dCo. 
One has ad(Ta)Tb = C~bTc, whence 

(1.20) 

As a first application of these definitions we note: 

Proposition 1.2.3. The Lie-Poisson structure is invariant under the coadjoint 
action (in other words, the map Co(x) is a Poisson map for each x E G). 

By the comment following (1.2) it suffices to show that {X 0 Co(x), Y 0 

Co(x)}± = .-!&Y}± 0 Co(x) for all X, Y E g and x E G. Since X 0 

Co(x) = Ad(x-1)X etc., this is evident from the fact that the adjoint action is 
an automorphism of the Lie algebra. • 
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Given a choice J of a momentum map associated to a Hamiltonian G-action on 
S via the derived g-action, we define y : G x S ~ g* by 

y(x, a) = I(xa) - Co(x)J(a). (1.21) 

Lemma 1.2.4. The function y is independent of a, and satisfies 

y(xy) = y(x) + Co(x)y(y). (1.22) 

A smooth map y : G ~ g* with property (1.22) is called a l-cocycle on G with 
values in g*; the space of such 1-cocycles is denoted by Z 1 (G, Co, g*). The proof 
that (1.21) is independent of a is similar to the argument after (1.9). For arbitrary 
f E COO(S) we compute {IyoLx , f}sforfixedx E GandY E g,anduse(1.7)and 
the invariance of the Poisson bracket under Lx. This shows that {Iy 0 Lx, f}s = 
{hd(r1)Y, f} s· Since S is symplectic, yy (in obvious notation) is therefore constant 
in a for all Y. The property (1.22) is then immediate from the definition and the 
a-independence of y and the equality Co(xy) = Co(x)Co(y). • 

Corollary 1.2.5. A momentum map I for a Hamiltonian G -action is equivariant 
with respect to the modified coadjoint G-action on g* defined by 

CoY(x)e := Co(xW + y(x), (1.23) 

where y is given by (1.21). That is, I 0 Lx = CoY (x) 0 I for all x E G (recall that 
y(x, a) = y(x»). 

In particular, for a strongly Hamiltonian G-action the momentum map I is Co­
equivariant, or simplyequivariant, in that I oLx = Co(x)o I forallx. Moreover, 
infinitesimal Co-equivariance (in the sense that I : S ~ g~ is a Poisson map) is 
equivalent to global Co-equivariance. 

Note that (1.22) guarantees that CoY is an (affine) action. 
Only the final claim is not immediately obvious. It is clear from (1.9) and (1.21) 

that the 2-cocycle r defined by the momentum map of the g-action corresponding 
to the group action is given in terms of y by 

(1.24) 

If we put y = Exp(t Y) in (1.22) and differentiate with respect to t, the right-hand 
side vanishes when the g-action is strongly Hamiltonian (as r = 0 in that case). 
Hence the vanishing of the left-hand side says that y(x) is constant in x; since 
y(e) = 0, y identically vanishes. The equivariance is then stated by (1.21). • 

It should be remarked here that the anti symmetry of r as defined by (1.24) is 
not automatic; it is guaranteed, however, when y is of the form (1.21). 

Theorem 1.2.6. Assume that G is simply connected, and let r E Z2 (g, lR) and y E 

Z 1 (G, Co, g*) be related by (1.24). There is a bijective correspondence between 
representations of Cr(g~) and Hamiltonian G-actions with 1-cocycle y whose 
momentum map I is complete: 
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• Given a representation 7r = 1* : Cr(g~J -+ COO(S), define the vector fields 
h := ~Jx (with (1 A)) on S; then the corresponding G-action exists andsatis.fies 
(1.21). 

• Given a Hamiltonian G-action on S with momentum map J and 1-cocycle y 
(defined by (1.21)), the corresponding representation 7r is given by 7r = 1*. 

This follows from Theorems 1.1.7 and 1.2.1, and the fact that y is uniquely 
determined by [' and (1.24). To see this, define r : 9 -+ g* by (r(X»(Y) := 
[,(Y, X). This leads to an affine map cor : g* -+ g* ,given by cor (X)8 = co(X)O+ 
r(X). It follows from (1.11) that cor (X) is a Lie algebra homomorphism; note 
that the Lie bracket of two affine maps Ai = L j + Vi, where L is linear, is defined 
by [AI, A2]O := (AIA2 -A2AI)8+A1V2 -A2VI. As in the linear case, when Gis 
simply connected there is a unique affine action CoY (G) on g* whose derivative is 
cor (g); it is given by (1.23), where y satisfies (1.22), which is equivalent to (1.11). 
This y then has to coincide with the same symbol defined by (1.21), stripped of 
its vacuous a -dependence. • 

When G = G J D (in the notation used after 1.2.1) is not simply connected, one 
has to assume integrability of the G-action. In tum, this guarantees integrability of 
[' to y; given its existence, y is uniquely determined by the property 9 = yo L{;-->G. 

Recall the definition of the space of l-cocycles ZI(G, Co, g*) below (1.22); 
define B I (G, Co, g*) C Z I (G, Co, g*) as the subspace of maps of the form 

y(x) = Co(x)Oo - 00 (1.25) 

for some 00 E g*. The 2-cocycle [' derived from y E B 1 (G, Co, g*) by (1.24) 
lies in B2(g, lR); it is remarkable that such a [' is automatically antisymmetric. 
In general, elements of Z2(g,lR) derived from y E ZI(G, Co, g*) by (1.24) may 
fail to be antisymmetric. Elements of ZI(G, Co, g*) that do give rise to an an­
tisymmetric [' are called symplectic cocycles, forming the space Z1(G, Co, g*). 
The first cohomology group of G relative to the coadjoint representation is 
Hsl(G, Co, g*) := Z1(G, Co, g*)J Bl(G, Co, g*). 

Proposition 1.2.7. When G is simpLy connected, H 2(g, lR) and H}(G, Co, g*) 
are isomorphic. 

The proof of Theorem 1.2.6 shows that any [' E Z2(g, lR) corresponds to a 
unique y E ZI(G, Co, g*). The claim then easily follows from the paragraph 
preceding the proposition. • 

More generally, further to 1.1.11 we have 

Proposition 1.2.8. When a Hamiltonian G-action with momentum map J satisfies 
(J.21) with (1.25), the action is strongly Hamiltonian. When H/(G, Co, g*) = 0, 
any Hamiltonian action ofG is strongly Hamiltonian. 

When y is of the form (1.25), the redefined momentum map J' = J + 00 is 
equivariant, as is clear from (1.21). If Hsl(G, Co, g*) = 0, then any y is of this 
bm • 
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Note that the affine map A : () 1-* () + ()o satisfies ACoY (x)A -I = Co(x) for all 
x, as well as {A* f, A*g}~ = A*{f, g}±. 

Corollary 1.2.9. A Hamiltonian action of a compact Lie group is always strongly 
Hamiltonian. 

The cohomology group HI(G, Co, g*) := ZI(G, Co, g*)/ BI(G, Co, g*) is zero 
when G is compact. Hence HsI(G, Co, g*) c HI(G, Co, g*) must be trivial as 
~. D 

The group analogue of 1.1.12 is 

Corollary 1.2.10. Let H1(g, R) = H 2(g, R) = 0, and let G act on a symplectic 
manifold by Poisson maps. There exists a unique equivariant momentum map J 
associated with this action. 

Example 1.2.11. Let S = T*Rn with its canonical symplectic structure. 

1. TheactionofG = Rn (whoseLiealgebrag = Rn has a basis (1ih=I .... ,n) on S, 
given by a : (p, q) 1-* (p, q + a), is Hamiltonian, with equivariant momentum 
map Ji(P, q) = Pi. 

2. The action ofG = SO(n) (whose Lie algebra 9 = (\2(Rn) has a natural basis 
{T;j}i<j=I, .... n) on S, given by R : (p, q) 1-* (Rp, Rq), is Hamiltonian, with 
equivariant momentum map Jij(p, q) = Piqj - Pjqj, qi := qi. 

3. Let the abelian Lie algebra 9 = R2n have a basis {Pi, Qj}i.j=I ..... n. The corre­
sponding Lie group G = R2n is parametrized by (u, v) := Exp(-uQ + vP); 
cf II. (2.5). It acts on S by 

(u, v) : (p, q) 1-* (p + u, q + v); 

see 1l.(2.J3), in which we have put c = 1. This action is Hamiltonian, with 
momentum map Jp;(p, q) = Pi and JQ;(p, q) = qi. The 2-cocycle r is 

r(Pi, Pj) = r(Qi, Qj) = 0; 

(1.26) 

The central extension gr is the Heisenberg Lie algebra l)n; see II.(204). 
4. Finally, the map J of Proposition II.3 .104 is an equivariant momentum map for 

the group action II.(3.J3). 

The first two examples are a special case of Lemma 2.3.1 below. As to the third, 
it should be remarked that since G is abelian, it must be that B 2(R2n, R) = 0; cf. 
(1.18). Also, (1.11) is identically satisfied, so that a 2-cocycle on R2n is simply an 
antisymmetric bilinear map on R2n. The dimension of the space of antisymmetric 
m x m matrices is ~m(m - 1); hence H 2(R2n, R) = Rn(2n-1). 

1.3 Multipliers and Central Extensions 

Definition 1.1.8 and the ensuing discussion have an analogue at the group level. 
The best way to approach this matter is via the following concept. 
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Definition 1.3.1. A central extension of a Lie group G by U (1) is a short exact 
sequence 

rp T 
e ~ U(1) ~ G ~ G ~ e, (1.27) 

in which G is a Lie group, ({J and r are smooth homomorphisms, and ({J(U(1)) is 
contained in the center ofG (by definition of an exact sequence, the image of each 
map is the kernel of the next). 

It is most natural to analyze this structure in terms of principal fiber bundles; 
the reader unfamiliar with this notion may either skip the following geometric 
discussion and resume at Theorem 1.3.3, or jump ahead and read 2.1 before 
proceeding. 

It is quite easy to see that the group G in (1.27) is a principal U (1 )-bundle 
G(G, U(1), r) over the base G; in particular, the action of U(1) on G is given by 
Rz(X) := X({J(z). (Identifying U(1) with 1', we write its elements as z.) We now 
choose a section s : G ~ G of this bundle (that is, r(s(x)) = x for all x E G). 
Since r is a homomorphism, it must be that r(s(x)s(y)) = r(s(xy)). Hence there 
exists a function c : G x G ~ U (1) such that 

s(x)s(y) = c(x, y)s(xy) (1.28) 

for all x, y E G. Since s«xy)z) = s(x(yx)) by associativity of the multiplication 
in G, one must have the identity 

c(x, y)c(xy, z) = c(x, yz)c(y, z) (1.29) 

for all x, y, Z E G. We may restrict ourselves to sections satisfying s(e) = e 
(where on the left-hand side e E G and on the right-hand side e E G). Then 

c(e, x) = c(x, e) = 1 (1.30) 

for all x. Moreover, while s may not be globally smooth, it may always be chosen 
so as to be (Borel) measurable, and smooth in a neighborhood of e E G. In that 
case c is smooth near (e, e). This motivates the following 

Definition 1.3.2. A multiplier on a Lie group G is a measurable function c : 
G x G ~ U(l) that is smooth near (e, e) and satisfies (1.29) and (1.30). 

The set of all multipliers on G is called Z2(G, U(l)); this isa vector space when 
the group operation in the abelian group U(1) is written additively. 

As explained in 2.1, a section s leads to a trivialization 1/1 s : G ~ G x U (1) of 
G, which is generally discontinuous with respect to the product manifold structure. 
According to (2.3) one has 1/Is-l(X, z) = s(x)z. Transferring the group operations 
from G to G x U(l), using (1.28) one obtains 

(x, z)· (y, w) = (xy, zwc(x, y)); 

(x, Z)-l = (X-I, zc(x, X-l )). (1.31) 

The c-extension G c of G is G x U (1) with the above group operations, and with 
the manifold structure inherited from G via 1/Is. Thus Ge, which is a Lie group, is 
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simply a trivialized version of G, depending on c via the choice of the section s. 
Conversely, one may start from a multiplier. 

Theorem 1.3.3. Let c be a multiplier on G. Equip the set Gc := G x U(1) with 
the group law (1.31). There exists a manifold structure on G c that turns it into a 
Lie group with the given multiplication. If c is smooth on G x G, the manifold 
structure is that of the direct product. 

Associativity of the group multiplication in Gc is a consequence of (1.29). The 
remainder of the proof is a technical exercise in the definition of a Lie group; 
the idea is that the product manifold structure may be used in a neighborhood of 
(e, I); the group operations are then smooth because c is smooth near (e, e). This 
local manifold structure is subsequently transferred to all of G c using the group 
~ D 

The embedding t : G ~ G c by t(x) = (x, I) is not a homomorphism unless 
c = 1. When necessary for unambiguity we will denote the subgroup U(I) C Gc 

defining the central extension by Uc(1). 
If one starts from the diagram (1.27) and then passes to G c via a section s, 

one may examine the effect of a change in son c and hence on Gc • Given some 
measurable function b : G -+ U (1) that is smooth near e, one may pass from s to 
s', defined by s'(x) := s(x)Rb(x) = s(x)cp(b(x». This leads to the replacement of 
c by 

, b(x)b(y) 
c (x, y) = c(x, y). 

b(xy) 
(1.32) 

Two multipliers c, c' related by (1.32) for some b are called equivalent. Thus an 
appropriate cohomology theory is defined through the subspace B2(G, U(I» of 
Z2(G, U(I», consisting of multipliers of the form 

b(xy) 
c(x, y) = b(x)b(y) (1.33) 

for some measurable function b : G -+ U(l) that is smooth near e. Hence one 
forms the cohomology group H2(G, U(I» := Z2(G, U(1»/ B2(G, U(l». Equiv­
alent multipliers then define the same element of H2(G, U(I». In particular, the 
multiplier c in (1.33) is equivalent to 1. 

The connection between equivalent multipliers and isomorphic group extensions 
is now as follows. 

Proposition 1.3.4. 

1. Two multipliers c and c' are related by (1.32) iff the extensions G c and G c' are 
isomorphic as Lie groups. 

2. In particular, when c is of the form (1.33), the corresponding c-extension is 
isomorphic to the direct product of G and U (1). 

3. Thus when H2(G, U(l» = 0, any c-extension ofG is trivial. 
4. When G is simply connected, every multiplier is equivalent to one that is smooth 

on G x G, so that as a manifold G c is a trivial U (I )-bundle over G (cf 2.1 ). 
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The map (x, z) 1-+ (x, Zb(x)-I) provides the desired isomorphism from Ge 

to Ge,. Conversely, when Ge and Ge, are isomorphic to G, they must be related 
by an isomorphism cp : G e ~ G e' of the form cp(x, z) = (x, ¢(x )z), where 
¢ : G ~ Ue(1). Since cp is in particular a group homomorphism, the choice 
b(x) := ip(x )-1 satisfies (1.32). The second point follows from the first by choosing 
c' = 1. 

When H2(G, U(1» = 0, any c is given by (1.33), which implies 1.3.4.3. 
The last statement is a consequence of Theorem 1.3.3 and the fact that a 

U(1) bundle over a contractible space is necessarily (isomorphic to) a trivial 
bundle. • 

Under certain conditions there is a correspondence between extensions of Lie 
algebras and of Lie groups. We identify JR. in 1.1.8 with the Lie algebra ue (1) of 
Ue(1), and write Exp : u(l) ~ U(1) for the exponential map, conventionally 
realized as Exp(X) = exp(-iX). In a neighborhood Ne x Ne of (e, e) we can 
write c = Exp(X), where X : Ne x Ne ~ uc( 1) (for simply connected G this can 
be done on all of G x G). Then define r : 9 ® 9 ~ JR. by 

d d 
r(X, Y):= -- [x (Exp(tX), Exp(sY» - X (Exp(sY), Exp(tX»]1 -1-0' 

ds dt s--
(1.34) 

For example, in the setting of Example 1.2.11.3 the multiplier c : JR.2n X JR.2n ~ 
U (1) is given by 

c«u, v), (u ' , Vi» = e i (uv'-vu')/2. ( 1.35) 

Through (1.34) (with c = exp(-ix» and 11.(2.5) this indeed reproduces the 2-
cocycle r in (1.26). The Heisenberg group Hn is nothing but the central extension 
JR.~n defined by r; cf. 11.(2.8) and 1.3.6 below. The multiplier c' «u, v), (u', v'» := 
exp(iuv') leads to the same r; it is related to c by (1.32), with b(u, v) = 
exp(-~iuv). 

Lemma 1.3.5. The map r defined by (1.34) is an element of Z2(g, JR.). If c E 

B2(G, U(1», then r E B2(g, JR.). 

Wewriter(X, Y) = X*(X, Y)-X*(Y, X) for x* : gxg ~ JR.. With this notation, 
(1.29) combined with its cyclic permutations in x, y, z implies X*(X, [V, Z]) + 
cycl. = X*([Y, Z), XHcycl., which leads to(1.11). The second claim is immediate 
from (1.33) and (1.18). • 

We now discuss the inverse process of passing from r to c. 

Proposition 1.3.6. 

1. When G is simply connected there exists a multiplier c E Z2(G, U(J» that is 
related to a given 2-cocycle r E Z2(g, JR.) by (1.34). 

2. When G = G / D (where G is simply connected and D = 1T1 (G) is a central 
subgroup of G), such aCE Z2(G, U(1» exists iff D ~ Z(G c)/Uc(1) (here 
G e is the central extension given by the previous item and 1.3.3, and we have 
identified G with Gc/Uc(1»). 
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3. When c exists, its equivalence class in H2(G, U(1» or H2(G, U(l» is uniquely 
determined by r. 

By Lie's third theorem there is a simply connected Lie group Gr with Lie 
algebra gr (unique up to isomorphism); as a manifold Gr = G x R. Define 
c: G x G -+ JR. by (x, 0)· (y, 0) = (xy, c(x, y», where· is the multiplication in 
Gr that comes with its construction. The associativity of . implies that c satisfies 
(1.29) (if the group law in JR. is written multiplicatively). If r : JR. -+ U (1) is the 
covering projection, we put c := roc and verify that c satisfies (1.29), since r is 
a homomorphism. This is the desired multiplier c, and Ge , defined as in 1.3.3, is 
a quotient of Gr by the central subgroup IE c JR.. In particular, the Lie algebra of 
Ge is gr. This proves the first claim. 

As to the not simply connected case, the necessity of the stated condition is 
obvious, for D must lie in the center Z(G) of G. To prove sufficiency, consider 
Dr C Gr ; as a set Dr := D x JR., which is a subgroup of Gr. The assumption 
implies that Dr is abelian, so that there must be an isomorphism </J : Dr -+ D x JR., 
where this time the symbol x stands for the direct product of groups. Hence 
Dr := </J-l(D x IE) is a discrete central subgroup of Gr. Then one easily infers 
that the Lie group Ge := Gr / Dr is a central extension of G. Its multiplier cis 
defined by the property (x, 0)· (y, 0) = (xy, c(x, y», proving its existence. 

Finally, uniqueness in cohomology follows from Lie's third theorem In 

combination with 1.3.4.1. • 

Given G and r, this proposition gives conditions for the existence of a central 
extension G e with Lie algebra gr. 

Corollary 1.3.7. When G is simply connected one has 

( 1.36) 

The first isomorphism is clear from 1.3.5 and 1.3.6; the second one follows from 
Proposition 1.2.7. • 

We return to symplectic geometry. The group analogue of 1.1.9 is 

Corollary 1.3.8. Let a Hamiltonian G -action on a connected symplectic manifold 
with CoY -equivariant momentum map be given, with r defined by (1.24). Assume 
that G and r are such that a central extension Ge (defined through 1.3.6 and 1.3.3) 
with Lie algebra gr exists. Then the G e-action obtainedfrom the G-action through 
projection on G = Gel Ue(1) is strongly Hamiltonian. 

This is immediate from (1.12), 1.1.8, and 1.1.6. • 
According to Proposition 1.2.8, the special case y E B 1 (G, Co, g*) implies that 

the G-action has an equivariant momentum map; in other words, it is strongly 
Hamiltonian. This is consistent with 1.3.8, for Y E Bl(G, Co, g*) implies r E 

B2(g, JR.) by the proof of 1.2.7; this, in tum, leads to c E B2(G, U(l» by 1.3.6.3, 
which means that Gc :::::: G x U(l) as a Lie group by 1.3.4. 
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1.4 The (Twisted) Lie-Poisson Structure 

We now turn to an analysis of the Poisson algebra Cf(g~), starting with an in­
teresting realization of it. This involves the geometry of T*G, which we briefly 
review first. We denote the right- and left-invariant vector fields on G by ~: and 
I:L . I . " x ' respective y; I.e., 

L d h f(y):= dt f(yExp(tX»lt=O. 

R d 
~x f(y):= dt f(Exp(tX)y)lt=o. 

For the commutator one has 

[I:L,R I:L,R] _ ±I:L,R . 
5X '''Y - "[X,y]' 

(1.37) 

(1.38) 

(1.39) 

here and in what follows the upper sign enters for "L", and the lower one for "R". 
We write ~L,R := ~!:.R. One sees that 

a '. 

(1.40) 

The left or right Maurer-Cartan form 0t!~ is an element of A l(G) 0 9 (i.e., 
a g-valued I-form on G), defined by . 

OMC(I:L,R) '- X 
L,R "x ,- . 

The connection between the two follows from (1.40) as 

Ad(xWt!c(x) = rli/c(x). 

(1.41) 

(1.42) 

In terms of a basis {Ta} of 9 we expand Ot!~ (x) = Of R(X )Ta, defining a collection 
of left- or right-invariant I-forms Of R(X): Define th~ G-actions Land R on G by 

Lx(Y) := xy; 

Rx(Y) := yx- I • 

(1.43) 

(1.44) 

One may then equivalently define Bf(x) := L:_1wa and B~(x) := R;_IWa, where 
the wa form a basis of g* = Te* G dual to the basis {Ta }. The Maurer-Cartan 
equations 

dBf,R(x) = =FtcgcBf.R(X)!\ °f.R(x) 

are an immediate consequence of (1.39). 
One defines two (globally valid) trivializations 

TG ~ 9 x G; 

(1.45) 

(1.46) 

in the left trivialization one maps Y E Tx G to (L r I )* Y E 9 x G, whereas in the 
right trivialization one maps the same Y to (Rx)S. Conversely, (Y, X)L stands 
for (Lx)*Y E TxG, and (Y,X)R corresponds to (Rrl)*Y E TxG. For example, 
the left trivialization of ~f(x) is (Y, X)L, and the left trivialization of ~:(x) is 
(Ad([ I ) Y, x) L; cf. (1.40). 
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Similar to (1.46), one has 

T*G ~ g* x G; (1.47) 

in the left trivialization a E Tx*G is mapped to (L~a, x) in g* x G, and in the right 
trivialization a is mapped to (R;_,a, x). We write (0, X)L for L;_,O E Tx*G, and 
(0, X)R for R;O E Tx*G. The connection between these trivializations is 

(0, X)L = (Co(x)(J, X)R. (1.48) 

Given a cocycle r E Z2(g, lR) (regarded as an element of A;(G», one can define 
a 2-form r L on G by rdx):= L;_,r; similarly, rR(x):= R;r. In other words, 

rL,R(~~,R, ~~,R) = reX, Y). Hence rL.R(X) = rab0f,R(X) A 0f,R(X); cf. (1.14). 

Thus we obtain a 2-form r~.R := r*rL.R on T*G, where r := rpG4G (this 
notation will be used throughout this section). 

We define G-actions Ax := L;_, and Px := R;_, on T*G; in the trivializations 
defined above their expressions are 

Px(O, yh := (CoY (x)(J, yx-I)L; 

Ax(O, yh := (0, XY)L; 

Px(O, y)R := (0, YX-1)R; 

Ax(O, y)R := (CoY (x)(J, XY)R; 

(1.49) 

(1.50) 

(1.51) 

(1.52) 

here we assume that r is related to y by (1.24). To derive these expressions, one 
uses relations of the type (cf. (1.42» 

R;O:!C = Ad(x )O:!c. (1.53) 

Recall the coordinates Oa on g* introduced after (1.2). 

Proposition 1.4.1. Letw be the canonical symplecticform on T*G (cll.2.3.8), 
and equip T*G with the 2-form W~·R := w + rl.R" 

• The form W~·R is symplectic. 
• In the above trivializations the corresponding Poisson bracket on T* G is given 

by 

(1.54) 

• The actions p and A commute and are Hamiltonian, with CoY -equivariant 
momentum mappings j Rand j L, respectively, given by 

jR(O, X)L = -0; 

jL(O, X)L = CoY(x)(J; 

jR(O, X)R = -COY(x-I)(J; 

jL(O, X)R = O. 

(1.55) 

(1.56) 

(1.57) 

( 1.58) 

The 2-form rtR is closed as a consequence of (1.11). For an arbitrary manifold 
Q, it is easily verified that the form w + r*a on T* Q is symplectic for any closed 
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2-form a on Q. To derive (1.54), one first observes that 8 in 1.(2.22) is given by 
8(0, x) = Oa 1\ '*0f,R(X), and then uses the Maurer-Cartan equation to show that 

(1.59) 

Equation (1.54) then follows from 1.(2.19). Given this Poisson bracket, one verifies 
that the momentum maps (1.58) generate the actions (1.52); this, in turn, guarantees 
that the group actions in question are Hamiltonian. The equivariance of J Rand 
J L is trivially verified. • 

Let Cf(T*G)R stand for the set of p-invariant functions in COO(T*G), with 
Poisson bracket (1.54). This is a Poisson sub algebra, since each Px is a Poisson 
map. 

Corollary 1.4.2. The map (JL)* : Cf(g~) --+ Cf(T*G)R is an isomorphism of 
Poisson algebras. 

We see from (1.52) that in the right trivialization, Cf(T*G)R consists of those 
f (p, x) R that are independent of x. One then immediately infers from (1.54), where 
the lower sign applies, that such functions satisfy the Poisson bracket (1.12); cf. 
(1.3). Then use (1.58). • 

The obvious generalization of Proposition 1.2.3 is 

Proposition 1.4.3. The Poisson structure (1.12) is invariant under the G-action 
(1.23); in other words, the map CoY (x) is a Poisson map for each x E G. 

Proceeding as in the proof of 1.2.3, the claim follows if 

y(x)([X, Y]) = r(Ad(x-1)X, Ad(x-1)y) - r(X, Y). (1.60) 

To prove this, we write the left-hand side as d[y(x)(Ad(Exp(t X»y)]/dt at t = O. 
The expression in square brackets equals [Co(Exp( -tX»y(x)](Y). Using (1.22), 
this equals [y(Exp(-tX)x) - y«Exp(-tX»](Y). Writing xx-1Exp(-IX)X for 
Exp( -I X)x and using (1.22) once again, as well as (1.24), we eventually obtain 
(1.60). • 

A coadjoint orbit 0 in g* is an orbit under the coadjoint action. Similarly, a 
CoY -orbit in g* is defined with respect to the action (1.23). The CoY -orbit 0; 
through 0 E g* is of the form 0; = G / G~, where G~ is the stability group of e 
under the CoY -action; we see from (1.23) and (1.24) that its Lie algebra is 

g~ = {X E gIO([X, Y]) - r(X, Y) =OVY E g}. (1.61) 

Theorem 1.4.4. Let y be a symplectic cocycle, and define r by (1.24). The sym­
plectic leaves ofg* with respect to the Poisson structure (1.12) are the CoY -orbits 
of G. In particular, the symplectic leaves of the Lie-Poisson structure coincide 
with the coadjoint orbits. 

We know from 1.2.4.7 and 1.2.3.7 that the tangent space at some point e of a 
given leaf L(J is spanned by the Hamiltonian vector fields ~f(e). These depend 
linearly on df = (aflafJa}dfJa = (aj/aea)dTa. We now use an ancillary result. 
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Lemma 1.4.5. The Hamiltonianjlow on g± (computed with respect to the Poisson 

structure (1.12)) generated by X is O(t) = CoY (Exp(=t=tX»)O. In other words, 
~: = =t=~x, where h is defined by (1.19) and the CoY -action (1.23) on g*, and~: 
is the Hamiltonian vector field defined by the Poisson structure (1.12). 

For clarity we start with the proof for y = f' = 0, choosing the minus sign for 
concreteness. Since the linear functions separate points in g* , it suffices to compute 

d - - -
dt Y(Co(Exp(tX»)8) = -O(Ad(Exp(-tX»[X, Y)) = {X, y}-(O(t», 

from which the claim follows. For general y one in addition uses the identity 

d 
dt y(Exp(tX»(y) = -f'(X, Y) - y(Exp(tX»([X, Y)), (1.62) 

which follows by putting x = Exp(tX) and y = Exp(sX) in (1.22), dividing by s 
and letting s -+ 0, and subsequently applying (1.60). 

The calculation for the plus sign is analogous. • 

By this lemma, the Hamiltonian vector fields ~fa span the tangent space at 0 
to the CoY -orbit through 0; this implies the claim locally. Globally, since G is 
connected, it is generated by the image of Exp(g) in G. This ends the proof of 
Theorem 1.4.4. • 

It follows that any CoY -orbit (and in particular any coadjoint orbit) OY is an 
even-dimensional symplectic manifold; for y = 0 the immersion of 0 := 0° in 
g± defines the (±) Lie symplectic form w~ on O. Equipped with this form, we 
denote 0 by O±. (As in the general case of symplectic leaves, 0 is not necessarily 
a submanifold of g*; cf. the text following 1.2.4.4.) For general y we see from 
1.(2.19) and (1.2) that w~Y is given by 

oy ± ± 
(w± Mh, ~y ) = =t=(O([X, Y) + f'(X, Y»; (1.63) 

since this action is trivially transitive, (1.63) suffices to define w~Y. It is clear from 
(1.63) or 1.2.3 that w~Y is invariant under the CoY -action. 

Lemma 1.4.5 has the following 

Corollary 1.4.6. The momentum map for the coadjoint action ofG on a coadjoint 
orbit O± is given by h(O) = =t=0. 

Recall Definition 1.1.5. Theorem 1.4.4 leads to 

Corollary 1.4.7. Let 7f : Cf(g~) -+ COO(S) be an irreducible representation 
(in the sense ofl.2.6.6). Then S must be (symplectomorphic to) a CoY -orbit in g* 
(equipped with the symplectic structure (1.63)), or a covering space thereof 

This is immediate from Theorems 1.2.6.7 and 1.4.4. The symplectomorphism 
in question is given by the momentum map. • 

Note that Proposition 11.2.1.2 is a special case of 1.4.7. 
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Corollary 1.4.8. Let S be a connected symplectic space with a transitive Hamil­
tonian action of a Lie group G. There is ayE ZI(G, Co, g*) such that S is 
(symplectomorphic to) a CoY -orbit in g* (equipped with the symplectic structure 
( 1.63)), or a covering space thereof 

If, in addition, HI (g, 1R) = H 2(g, 1R) = 0, then S is (symplectomorphic to) a 
coadjoint orbit in g*, or a covering space thereof 

If the G-action is Hamiltonian, there is a momentum map 1. The transitivity of 
the G-action on S implies that 1* is irreducible in the sense of Definition 1.2.6.6. 
Then apply 1.4.7. The second claim is then immediate from Corollary 1.2.10. • 

Finally, the central extension Gc introduced in 1.3.3 may be used to shed light 
on the Poisson structure (1.54) on T*G, which in this context we write as (T*G)c' 

Proposition 1.4.9. Let Uc(l) act on T*G c (equipped with the canonical cotan­
gent bundle Poisson structure) by lifting the action h : x ~ xh- I on Ge. An 
equivariant momentum map 1c : T*G c ~ ueO) = IRfor this action is given in 
the right trivialization by 1c(80, 81, ... , 8n ) = -80 . Then (T* G)e ::::: 1c- 1 (l)/ Uc(l) 
as Poisson manifolds. 

Realizing that the additional structure constants of G c (compared with G) are 
given by C~b = rab and Cb j = 0 for all i, j = 0, ... , n, this follows from (1.54), 
first applied to G c and then to G. • 

This statement will be properly understood in the setting of 2.3 and IV.I.5. 

1.5 Projective Representations 

We specialize the discussion to the setting relevant to quantum mechanics: The 
symplectic manifold S is a projective Hilbert space Ini (see I.2.5), and the G­
action Lx : l{! ~ xl{! on Ini should preserve the transition probabilities I.(2.65) 
for all x E G. In all cases of interest it turns out that requiring smoothness of a Lie 
group action on Ini would force 7t to be finite-dimensional, so we here assume 
the action to be merely continuous. 

This continuity may be restated as follows. We equip the group U(7t) of all 
unitary operators on 7t with the strong operator topology (or the weak one, which 
coincides with the strong topology on the unitaries). Denote the central subgroup 
of all mUltiples of II by 1l'lI, and form the quotient U(7t)/'ll'lI, endowed with the 
quotient topology. Continuity of the G-action is then equivalent to continuity of 
L, seen as a homomorphism from G into U(7t)/1l'lI. 

By I.3.4.3, for each x E G there exists a unitary or an antiunitary operator U (x) 
on 7t such that TO U(x) = Lx 0 T (where T := T§1t~lP1l)' For G connected, all 
U(x) must be unitary, since in a connected Lie group each x is a square, and a 
square of either a unitary or an antiunitary operator is unitary. Two different U's 
projecting to the same map on 1P'7t must differ by a phase. Now consider 

G := {(x, U) E G x U(7t) I Lx = T(U)}, ( 1.64) 
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where -r(V) is the map ofJnl defined by V through the canonical projection of§1t 
to Jnl. Inheriting the group operations and topology from G x U(1t), one verifies 
that G is a Lie group, which by the previous paragraph is a central extension of G 
by V(1); cf. (1.27). Following the discussion after Definition 1.3.2, we choose a 
measurable section s : G ~ G, smooth near e, associated with a multiplier c on 
G. The trivialization G ~ G x V(I) (as a set) defined by s leads to the choice of 
a representative V(x) for each map Lx. This choice obviously satisfies 

V(x)V(y) = c(x, y)V(xy). (1.65) 

Hence V is a projective representation of G on 1t with multiplier c; we sometimes 
say that V is a c-representation. 

For example, the abelian group JR2n has a projective representation on L2(JRn) 
given by 

vf(u, v)\}I(x) := eiu(x-1 v)\}I(x - v); (1.66) 

cf. 1I.(2.17). The multiplier is given by (1.35), which should not be surprising in 
view of the definition of the Heisenberg groups fIn and Hn = JR~n . 

A redefinition V'(x) = b(x)V(x), where b : G ~ V(I), leads to the modifi­
cation (1.32); we say that V and V' are equivalent. Clearly, V is equivalent to a 
representation iff cis ofthe form (1.33). 

Proposition 1.5.1. There is a bijective correspondence between c-representations 
V ofG and representations Vc ofGc in which Vc(1) is represented by the defin­
ing representation (times the identity operator). This correspondence preserves 
irreducibility. 

Given a c-representation V(G), define Vc(Gc) by Vc(x, z) := zV(x). Con­
versely, if a representation Vc(Gc) satisfies Vc(e, z) = zH, then V(x) := Vc(x, 1) 
satisfies (1.65). The last claim is obvious from Schur's lemma and the fact that 
Vc(1) is a central subgroup of Gc • • 

Indeed, the projective representation V f (JR2n ) defined in (1.66) is the restriction 
of Vf(Hn) (see 1I.(2.17» to JR2n, identified with (JR2n, 1) C Hn. 

The classical analogue of 1.5.1 is Proposition 1.1.9. 

Proposition 1.5.2. If H2( G, V (1» = 0, then any projective representation of G 
is equivalent to a representation. 

As already pointed out, we see from (1.32) that V is equivalent to a representation 
iff c is of the form (1.33). • 

We now look at the corresponding concepts for Lie algebras. A projective 
representation of a Lie algebra g on a complex vector space V is a linear map 
R : g ~ L(V) (the space of linear maps on V) such that 

[R(X), R(Y)] = R([X, YD - if(X, Y)H (1.67) 

for some 2-cocycle f E Z2(g, JR); the Jacobi identity on the commutator on the 
left-hand side enforces (1.11). One may speak of a f-representation of g. If R 
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is modified to R'(X) := R(X) + iOo(X)1I for some (fixed) 00 E g, then (1.67) is 
satisfied for R', with 

r'(x, y) = r(X, Y) + Oo([X, Y]); (1.68) 

cf. (1.18). Such representations R and R' are called equivalent. 

Proposition 1.5.3. There is a bijective correspondence between r -represen­
tations of 9 (on complex vector spaces) and representations of g(' in which the 
generator To is represented by -ill; cf Definition 1.1.8. 

A r-representation R(g) defines a representation Rr(gr) by Rr(X) := R(X) 
and Rr(To) := -ill, and vice versa. • 

Proposition 1.5.4. If r(X, Y) = Oo([X, Y]) for some 00 E g*, then a r­
representation is equivalent to a representation. Hence when H 2(g, JR.) = 0 any 
r -representation is equivalent to a representation. 

Compare with 1.1.13. This is obvious from (1.68): A projective representation 
whose r is of the above form is equivalent to a representation by the shift R' (X) : = 
R(X) - iOo(X)II. • 

In relating (projective) representations of a Lie group G to (projective) represen­
tations of its Lie algebra g, we need to discuss a technical point. This discussion is 
necessary, because when 1i is infinite-dimensional, the G-action on lP'1i provided 
by a representation is not necessarily smooth or even C I. In other words, for a given 
\II E 1i the map from G to 1i defined by x ~ U(x)\II may not be differentiable, 
so that the curve U (Exp(t X»\II is not necessarily C I; this would make it difficult 
to define the generating vector field ~x at \II. 

To simplify the discussion somewhat we assume that U, when it is projective, 
defines a multiplier c that is smooth on G x G (the case where c = 1 is therefore 
included). As we have seen in 1.3.4, when G is simply connected this can always 
be achieved. 

Definition 1.5.5. A smooth vector for a (projective) representation U is an 
element \II E 1i for which the map x ~ U (x) \II is smooth. 

It can be shown that the set 1i'tj of smooth vectors for U is a dense linear 
subspace of 1i. 

Proposition 1.5.6. Under the above conditions on U and 1i, the subspace 1i'tj 
is stable under U(G). For each X E 9 the operator dU(X), defined by 

d 
dU(XW := dt U(ExP(tX»\IIlt=O (1.69) 

is essentially self-adjoint on 'H'tj. Finally, 1i'tj is stable under d U (g). 

The stability of 1i'tj follows from (1.65) and the smoothness of c and of group 
multiplication. The second claim is then shown as in the proof of II.3 .6.4. The last 
point is evident. • 
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It follows from (1.65) and (1.34) that on 1irJ one has 

[dU(X), dU(Y)] = dU([X, YD - ir(X, Y)][, 

where r is defined by (1.34) with c = exp(-ix); cf. (1.67). 

(1.70) 

Conversely, given a (projective) representation R of 9 by symmetric operators 
on some common domain D, one may ask whether there is a (projective) repre­
sentation U (G) such that R = d U. As in the classical case, such a representation 
of 9 is then called integrable. 

When 1i is finite-dimensional and G is simply connected, every representation of 
9 by skew-Hermitian matrices is integrable; this is already a difference with the case 
of group actions on general finite-dimensional manifolds, caused by the fact that 
the flow of a skew-Hermitian matrix is always complete. In the infinite-dimensional 
case further conditions are required. 

1.6 The Twisted Enveloping Algebra 

Recall the definition I.(2.43) of the function A E Coo(lP1i), where A E ~(1i)IR' 
Since dU(X) tends to be unbounded, the functions idiJ{X) are defined only on 
IP1trJ; cf. the preceding section. One can topologize 1irJ so that IP1trJ is a Frt5chet 
submanifold of 1P1t, and the G-action restricted to IP1trJ is smooth, with smooth 
momentum mapping. Since this is technically involved, we will merely state a key 
result. 

Theorem 1.6.1. Let 1i and U be as stated above 1.5.5. Then --1x := iIidU(X), (1.71) 

defined on IP1trJ. is a momentum map for the G-action on lP1t derived from the 
representation U on 1i. It satisfies 

{Jx, Jrh = -J[x.YJ - lir(X, y)IJ1>'H. 

where r is defined by (1.34) or (1.70). 

(1.72) 

With 1/1 = 'l"S1-l-->JI>'H(\II) one obtains h(1/I) = v(X\II) (where v is defined after 
I.(2.30», so that (1.71) follows from I.(2.45). Equation (1.72) is then derived from 
(1.69), I.(2.42), and (1.70). • 

Hamiltonian G-actions on lP1t will, in general, fail to preserve the transition 
probabilities 1.(2.65), and will therefore not be given by a (projective) represen­
tation U(G) on 1i. For this reason the Poisson algebra Cf(g~) is not useful in 
quantum mechanics. 

There are three algebras that do playa role in quantum mechanics analogous to 
the job performed by Cf(g~) in classical mechanics. One will be constructed in 
this section, the other two in the next. 

Definition 1.6.2. The enveloping algebra U(gc) of 9 is the quotient of the 
complexified tensor algebra 7(gc) = EB~o ®n gc (where ®OgC := C) by the 
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two-sided ideal I generated by all elements of the form X ® Y - Y ® X - [X, V], 
where X, Y E ge. 

In other words, T (gc) is the complex vector space consisting of linear combina­
tions of complex elements of the form X I ® ... ® Xko Xi E ge, with algebra product 
given by concatenation. The productinU(gc) is the one inherited from T(gc). The 
quotienting procedure imposes the relation X ® Y - Y ® X - [X, Y] = 0 for all 
X, Y E ge inU(gc). We denote the image of XI ® ... ® Xk E T(ge) inU(gc) 
simply by X I' .. Xko so that XY - Y X = [X, Y] in U(gc). 

Definition 1.6.3. The twisted enveloping algebra Ur(gc) of g relative to r E 

Z2(g, Ii) is the quotient of T(gc) by the two-sided ideal Ir generated by all 
elements of the form X ® Y - Y ® X - [X, Y] + ir(X, Y). 

Here r(X, Y) is seen as an element of ®Oge. This time one has the relation 
X ® Y - Y ® X - [X, Y] + ir(X, Y) = 0 inUr(gc). 

Proposition 1.6.4. The twisted enveloping algebra Ur (gc) is isomorphic to the 
quotient ofU (gr ) by the two-sided ideal generated by To + i. 

This is obvious. • 
The algebra Ur(gc) (and hence its special case U(ge» has a natural involution 

(cf. 1.1.1), given by linear extension of (XI ... Xk)* = (_I)k Xk'" XI (as well as 
A * = I for A E C); this is well-defined, and descends from a similarly defined 
evolution on T(gc) because the relation mentioned in 1.6.3 is stable under it. 

Definition 1.6.5. As a real vector space, the Jordan-Lie algebra ~~(g), defined 
for each Ii 1= 0, is the subspace of elements OfUr/h(gc) that are invariant under 
the involution. Its Jordan product and Poisson bracket are given by the projection 
oftheoperationsAoB:= !(A®B+B®A)and{A, B}h = i(A®B-B®A)/Ii, 
defined on T (gc), to Ur /h(gc), respectively. 

Note that the projection of these operations to ~~(g) is well-defined, since 
A 0 Ir/h c Ir/h and {B, Ir}h C Ir/h for all A, B E T(gc). One verifies 1.(1.6). 
The analogue of Proposition 1.4.3 is 

Proposition 1.6.6. One obtains an automorphic group action fJ y / h of G on 
Ur/h(gc) and thence on ~~(g) by defining 

fJI(X) := Ad(x)X - iy(x-I)(X) (1.73) 

on g C T(gc), extending this action to T(gc) by fJI (1) = 1 and fJI (X I ® ... ® 
Xk):= fJI X I ®·· '®fJI Xk,projecting the action toUr/h(gc),andfinally restricting 
it to ~~(g). 

The fact that one indeed has a group action follows from (1.22). On T(ge) the 
action is automorphic by construction. The fact that it quotients well to Ur(gc) 
follows from the property 

fJI (X ® Y - Y ® X - [X, y] + ir(X, Y» = Ad(x)X ® Ad(x)Y-
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Ad(x)Y ® Ad(x)X - [Ad(x)X, Ad(x)Y] + ir(Ad(x)X, Ad(x)y), (1.74) 

which is a consequence of (1.60) and the fact that Ad(x) is an automorphism of 
g. Finally, the restriction to 1.2l~(g) is well-defined because pi (X*) = (Pi (X»* 
etc. • 

The Jordan-Lie algebra 1.2l~(g) is a quantum analogue of the Poisson algebra 
Pr(g~) of (real) polynomials on g*, equipped with the Poisson bracket (1.12) 
inherited from Cf(g~). A quantization map is constructed as follows. 

Theorem 1.6.7. The map Q~ : Pr(g~) ~ 1.2l~(g) defined by Qn(lg.) := 1 and 
linear extension of 

satisfies 

{Q~(A), Q~(B)}n = Q~({A, B}~) + O(h); 

Q~(A) 0 Q~(B) = Q~(AB) + O(h); 

Q~(Pr(g~J) = 1.2l~(g). 

(1.75) 

(1.76) 

(1.77) 

(1.78) 

Here the symmetrization operation A is defined after 11.(2.37). The first two 
equations are a matter of checking the definitions. The third one follows from the 
fact that symmetrization establishes a vector space isomorphism between Ur(gc) 
and the symmetric tensor algebra 8(g); this follows from the Poincare-Birkhoff­
Witt theorem, which is well known for U(gc), hence valid for U(grc), and holds 
for Ur (gc) in view of Proposition 1.6.4. • 

Proposition 1.6.8. With f3Y and CoY given by (1.73) and (1.23), respectively,for 
all x E G and A E P(g*) one has the equivariance property 

The proof is a simple calculation. 

(1.79) 

o 
Due to the integrability problem, not all representations of 1.2l~(g) are related 

to unitary G-actions. In addition, 1.2l~(g) has the drawback of not being a J LB­
algebra, so that much of the functional-analytic apparatus developed in Chapter I 
is not available. 

1.7 Group C* -Algebras 

We will now construct an object free from these drawbacks. To simplify the nota­
tion, we assume that the multiplier c is globally smooth; when it isn't, one should 
replace C~(G) in the discussion below by the space B;;o(G) of bounded mea­
surable functions with compact support that are smooth near e. We also assume 
that G is unimodular; that is, each left Haar measure is also right-invariant. This 
assumption is not necessary, but simplifies most of the formulae. We denote Haar 
measure by dx; it is unique up to normalization. When G is compact we choose 
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the normalization so that fa dx = 1. The Banach space LI(G) and the Hilbert 
space L2(G) are defined with respect to Haar measure. 

Given a multiplier c, we define the (twisted) convolution 

f * g(x):= fa dy C(xy-I, y)f(xy-I)g(y). (1.80) 

This certainly makes sense for f, g E C;:O(G). The associativity of * is a conse­
quence of the associativity of group multiplication and the invariance properties 
of the Haar measure (and, when c f. 1, of (1.29». Moreover, we can define an 
involution on C;:O(G) by 

/*(x):= c(x, x-I)f(x- I ). (1.81) 

The property (f * g)* = g* * /* reflects the law (xy)-I = y-Ix-l in a group 
(for c f. lone in addition needs (1.29». Hence C;:O(G) has been turned into a 
*-algebra. 

A representation 1r of C;:O(G) on a Hilbert space 'It is defined as a morphism 1r : 
C;:O(G) -+ 1B('It). An example of a representation is 1rL : C;:O(G) -+ IB(L2(G», 
defined by 

1rdf)'II := f * 'II. (1.82) 

In Lemma 1.7.2 we will see that this operator is bounded. Moreover, one easily 
verifies that JrL(f * g) = 1rdf)1rL(g) and 1rL(f*) = 1rdf)*. Introducing the 
left-regular representation UL of G on L2(G) by 

Udy)'II(x) := c(y, y-IX)'II(y-1x), (1.83) 

it follows that 

(1.84) 

Definition 1.7.1. The (twisted) reduced group C* -algebra q( G, c) is the small­
est C*-algebra in IB(L2(G» containing 1rdC;:O(G». In other words, q(G, c) 
is the closure of the latter in the norm Ilflir := l11rdf)lI. We write q(G) for 
q(G,I). 

Perhaps the simplest example of a reduced group algebra is obtained by taking 
G = ]Rn. Since the Fourier transform f ~ 1 turns convolution into pointwise 
multiplication, the algebra q(]Rn) is commutative. Indeed, the left-regular rep­
resentation 7rL on L2(]Rn) is Fourier-transformed into the action on L2(]Rn) by 
multiplication operators. Hence 

IIfllr = 1111100, (1.85) 

so that by the Riemann-Lebesgue lemma and the Stone-Weierstrass theorem, 

(1.86) 

This generalizes to arbitrary abelian Lie groups G (and, more generally, to locally 
compact abelian groups). Let GC be the set of all irreducible c-representations of 
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G; for c = 1 this is the set of characters, and we write G := G1• It is well known 
that G is itself a locally compact abelian group, in terms of which the Fourier 
transform f (which is a function on G) of f E LI(G) may be defined as 

f(y):= fa dx f(x)Uy(x). (1.87) 

By the same arguments as for IRn , one obtains 

(1.88) 

We return to the general, possibly twisted case. 

Lemma 1.7.2. Let U be an arbitrary continuous c-representation of G on a 
Hilbert space 1t. Then rr(f), defined by 

rr(f):= fa dx f(x)U(x), (1.89) 

is bounded, with 

( 1.90) 

Since U is unitary, we have 1(\11, rr(f)\II)1 :::: (F, F)u(G) for all \II E ri, 
where F(x) := 1I\IIIIJlf(x)l. The Cauchy-Schwarz inequality then leads to 
1(\11, rr(f)\II)1 :::: II 111111\11112. The argument in the proof of 11.1.3.5 then leads to 
(1.90). (A more sophisticated proof uses properties of Bochner integrals to argue 
that IIrr(f)1I :::: JG dx If(x)1 IIU(x)1I = IIfliI·) • 

The following result generalizes the correspondence between U L in (1.83) and 
rr L in (1.84) to arbitrary representations. 

Theorem 1.7.3. There is a bijective correspondence between nondegenerate 
representations rr of the * -algebra C~( G) that satisfy (1.90) and continuous c­
representations U of G. This correspondence is given in one direction by (1.89), 
and in the other by 

(1.91 ) 

where fX(y) := c(x, x-1y)f(x-1y). This bijection preserves direct sums, and 
therefore irreducibility. 

It is technically convenient to extend the *-algebra C~(G) to a Banach algebra 
Ll(G, c); this is Ll(G) as a Banach space. The operations (1.80) and (1.81) are 
easily seen to be continuous on the LI-norm, so that they may be extended from 
C~(G) to Ll(G). Recall from 1.1.5.2 that any nondegenerate representation of a 
C* -algebra is a direct sum of cyclic representations; the same can be shown to be 
true of L 1 (G , c). Thus Q in (1.91) stands for a cyclic vector of a certain cyclic 
summand of1t, and (1.89) defines U on a dense subspace of this summand; it will 
be shown that U is unitary, so that it can be extended to all of 1t by continuity. 

Given U, it follows from easy calculations, using (1.65), that rr(f) in (1.89) 
indeed defines a representation. It is bounded by Lemma 1.7.2. The proof of non­
degeneracy makes use of the existence of an approximate unit in LI(G, c), which 
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heuristically converges to the Dirac delta function De. This is constructed as fol­
lows. Consider a basis of neighborhoods N).. of e, partially ordered by inclusion. 
Choose II).. = N)..XN)., which is the characteristic function of N).. times a normal­
ization factor ensuring that II II).. II 1 = 1. One can then show that lim).. II).. * f = f (in 
II . Iii) for all f ELI (G, c)( and similarly for f * II)..); for c =1= 1 it is at this point that 
the continuity of c near e is used. Since Jr is continuous, one has lim).. Jr(II)..) = II 
strongly, proving that Jr must be nondegenerate. 

To go in the opposite direction we use the approximate unit once more; it follows 
from (1.91) (from which the continuity of U is obvious) that U(x)Jr(f)Q = 
lim).. Jr(IIDJr(f)Q. Hence U(x) = lim).. Jr(II~) strongly on a dense domain. The 
property (1.65) then follows from (1.91) and (1.80). Since IIJr(lIDIl :::: 1I1Ifili = 1, 
we infer that II U (x) II < 1 for all x. Hence also II U (x -I) II < 1. From (1.65) we 
derive 

(1.92) 

so that II U (x )-111 :::: 1. We see that U (x) and U (x) -I are both contractions; this is 
possible only when U(x) is unitary. 

Finally, if U is reducible, there is a projection E such that [E, U (x)] = 0 for all 
x E G (see 1.2.2.2). It follows from (1.89) that [Jr(f), E] = 0 for all f; hence Jr 
is reducible. Conversely, ifJr is reducible, then [E, Jr(IID] = 0 for all x E G; by 
the previous paragraph this implies [E, U(x)] = 0 for all x. D 

This theorem suggests looking at a slightly different object from C:(G, c). 
Inspired by 1.1.5.7 one makes the following 

Definition 1.7.4. The (twisted) group C*.aIgebra C*(G, c) is the closure of the 
convolution algebra Cgo(G) in the norm 

11111 := IIJru(f)1I = sup IIJr(f)II, (1.93) 
7f 

where Jr u is the direct sum of all nondegenerate representations Jr of crgo (G) that 
are bounded as in (1.90). We write C*(G)for C*(G, 1). 

By Theorem 1.7.3 the representations Jr occurring in the sum are those associated 
with representations U(G) via (1.89). 

Corollary 1.7.5. There is a bijective correspondence between nondegenerate 
representations Jr of the C*-algebra C*(G, c) and continuous c-representations 
U ofG, given by (continuous extension of) (1.89) and (1.91). This correspondence 
preserves irreducibility. 

Hence one may alternatively define C*(G, c) as the closure ofCrgo(G) in the 
norm (1.93), where now the sum is over all representations Jr of Crgo(G) that 
correspond to an irreducible representation U (G) via (1.89). 

The second part follows from the last statement of the first part and the faithful­
ness of the reduced atomic representation; cf. 1.2.2.7 etc. Hence one obtains the 
same norm in (1.93) by restricting the Jr 's to be irreducible. • 



1 Lie Groups and Lie Algebras 205 

Since a Lie group is separable as a topological space (separability being part of 
the definition of a manifold used in this book), the algebras Cg'"(G) (inheriting the 
norm of Ll(G» and hence C*(G) are (norm) separable. Therefore, all irreducible 
representations are on separable Hilbert spaces, and one would obtain the same 
C* -algebra by restricting the rr's in Definition 1.7.4 to be on separable Hilbert 
spaces. 

In conjunction with (1.85), the second definition of C*( G) stated in 1.7.5 implies 
that for abelian groups, C*(G) always coincides with C;(G). The reason is that for 
y E G one has rry{f) = j(y) E C, so that the norms (1.93) and (1.85) coincide. 
For future reference we single out (cf. (1.86» 

(1.94) 

In any case, looking at 1.7.1, we see that 

C;(G, c) = rrL(C*(G, c» ::::: C*(G, c)/ ker(rrd. (l.95) 

A Lie group is said to be amenable when the equality C;(G) = C*(G) holds; 
in other words, rrdC*(G» is faithful iff G is amenable. This turns out to imply 
that also C;(G, c) = C*(G, c) for arbitrary multipliers c; we shall not prove this 
remarkable result. We have just seen that all locally compact abelian groups are 
amenable, so that the previous comment implies that the Heisenberg group Hn 
is amenable. Hence the object C*(Hn) constructed in 11.2.6 is indeed the group 
C*-algebra of Hn. It follows from the Peter-Weyl theorems in the next section 
that all compact groups are amenable. It may be shown that also all solvable Lie 
groups are amenable, as are direct products of the amenable groups mentioned. 

To provide an alternative characterization of amenability we first describe the 
connection between the representation theories of C*(G, c) and of C;(G, c). 

Definition 1.7.6. The c-unitary dual GC of a group G is the collection of 
equivalence classes of irreducible c-representations ofG .In other words (cf Corol­
lary 1.7.5), GC is the set of equivalence classes of irreducible representations of 
C*(G, c). 

The reduced unitary dual G~ is the set of equivalence classes of irreducible 

representations ofC;(G, c). For c = 1 we write G(r) := Gtr)' and speak of the 
(reduced) unitary dual. 

The earlier definition of the unitary dual of an abelian group is evidently a 
special case of 1.7.6. The following notion provides the key to describing G~. We 
say that a representation V 1(G) is weakly contained in a representation V2(G) 
when ker rr2(C*(G, c» ~ ker rrl (C*(G, c»; here V j is related to rrj by (1.89). 

For example, every subrepresentation properly contained in a representation is 
weakly contained in it. However, the notion of weak containment is more general 
than proper containment. Consider the regular representation V L of R.n on L 2(R.n); 
since the associated representation rrL(C*(JR» is faithful (see (1.94) and the pre­
ceding discussion), its kernel is {O}. Hence every irreducible representation of R.n 
is weakly contained in VL, although none is properly contained in it. 
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Proposition 1.7.7. The reduced c-unitary dual G~ consists of those irreducible 
representations that are weakly contained in the left-regular representation U L (G). 
Consequently, G is amenable iff all its irreducible representations are weakly 
contained in U L. 

This directly follows from the above definitions. • 
Remarkably, one may show that the above condition for amenability is equivalent 

to the weak containment of merely the trivial representation in UL • Either way, 
when G is a noncompact semisimple Lie group it can be shown that the trivial 
representation is neither properly nor weakly contained in the (left- or right-) 
regular representation. Hence such groups are not amenable. 

A comparison between Theorem 1.2.6 and Corollary 1.7.5 indicates that C*(G) 
is a quantum analogue of CXl(g"'J. More generally, Corollaries 1.4.7 and 1.7.5 
suggest that C*(G, c) is a quantum analogue of C~(g~), and that CoY -orbits are a 
classical version of projective irreducible representations. In particular, coadjoint 
orbits are analogous to irreducible representations. 

In addition, we can formulate an "integrated" version of Proposition 1.6.6 (and 
thereby a quantum version of 1.4.3): 

Proposition 1.7.8. One obtains an automorphic group action a(c) of G on 
C*(G, c) by putting 

a~C)(f): y 1-+ c(x, Ad(x-l)y)C(Y, x)f(Ad(x-1)y) 

for f E C;o(G), and extending to C*(G, c) by continuity. 

In the universal representation one has 

(1.96) 

(1.97) 

which firstly shows that a~c) is an automorphism, secondly that it can be extended 
to C*(G, c), and thirdly that (1.96) defines a group action. • 

1.8 A Generalized Peter-Weyl Theorem 

Further to the left-regular representation U d G) in (1.83), which is a c­
representation, consider the right-regular representation UR(G) on the Hilbert 
space L2(G), defined by 

(1.98) 

this is a c-representation. Note that 

1T/i(f)\II := L dx f(X)UR(X)-I\ll = \11* f, (1.99) 

where convolution (1.80) is defined with respect to c. It immediately follows from 
(1.99) and (1.82) that ULand U R commute; this may also be verified directly, using 
(1.29). 
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Recall Definition 1.7.6. Each Y E {;c has a conjugate Y E {;e; a representative 
Uy of the class y is obtained by defining a representative U y of y on the conjugate 

Hilbert space 11.y rather than on 11.y (hence 11.y = 11.y ). 
After these definitions we recall (a version of) the Peter-Weyl theorem. This 

theorem states that for a compact Lie group G one has 

L 2(G) ~ E911.y ® 11.y , (1.100) 

YEG 

under which decomposition 

UdG) ® UR(G) ~ E9 Uy(G) ® Uy(G). (1.101) 

YEG 

The direct sum is, of course, meant in the Hilbert space sense. This is usually 
stated and proved for c = 1, but is, in fact, valid for any multiplier; see below. 
One may identify 11.y ® 11.y with !mdy (C) (where dy is the dimension of the 
representations in the class y) as Hilbert spaces by letting v ® W E 11.y ® 11.y 
correspond to the operator mapping U E 11.y to (w, u)v, and extending by linearity. 
The inner product on !mdy (C) is then given by (M, N) = Tr M* N. We accordingly 
rewrite (1.100) as 

L\G) ~ i}(G):= E9 !mdy (C). (1.102) 

YEG 

Writing (h,R(X) for the operator on i.2(G) that is equivalent to UL,R(X) on L2(G) 
under the isomorphism (1.102), we may rephrase (1.101) as 

Udx)\I1(y) = Uy(x)\I1(y); 

UR(x)\I1(y) = \I1(y)Uy(x)*. 

(1.103) 

(1.104) 

The essential step in the proof of the Peter-Weyl theorem consists in showing 
that the Plancherel transform V : L2(G) ~ f2(G), defined by 

"'(Y) := V\I1(y) = .[d; fa dx \I1(x)Uy(x), (1.105) 

is unitary. The inverse transform can then be computed from unitarity as 

V-1",(X) = E#rTr["'(y)Uy(X)*]. 

yEa 

(1.106) 

The Peter-Weyl theorem (with multiplier) has an interesting reformulation, also 
valid for c =I=- I, which in a certain sense is a quantization of Theorem 1.4.4. 

Theorem 1.8.1. For a compact Lie group G one has 

C:(G, c) ~ C*(G, c) ~ E9 !mdy(C). (1.107) 

YEOc 

Here the direct sum oJmatrixalgebras includes those sums $yMy of matrices for 

which the function y 1-+ liMy II is in lo(GC ). 



208 III. Groups, Bundles, and Groupoids 

Note that the definition of the direct sum is different from the one in (1.102). 
The proof below uses some elementary aspects of the theory of induced group 
representations. This subject will be studied in great generality in 2.9; for the mo­
ment we need just a very special and simple case. Let H be a compact subgroup 
of a unimodular locally compact group G c , and let Vx be a I-dimensional repre­
sentation of H. (In the application below, G c will indeed be a central extension, 
but for the moment it is arbitrary as stated above. We will, accordingly, denote its 
elements simply by x.) The Hilbert space 11.x C L2(Gc ) is defined as the set of 
functions \II E L2(Gc ) that satisfy the equivariance condition 

(1.108) 

for (almost) all x E G c, h E H; the inner product on 11. x is the one inherited from 
L2(Gc ). In other words, 11.x is the subspace of L2(Gc ) that transforms trivially 
under V R ® Vx(H), where V R(h)\II(x) := \II(xh). The left-regular representation 
(1.83) (with c = 1) restricts to a representation VX(G c ) on 1tx , which is said to 
be induced by V X. In other words, for \II E 11. x one has 

VX(y)\II(x) := \II(y-I X). (1.109) 

The projection VX : L2(Gc ) ---+ 1tx defined by 

Vx\ll(x):= £ dh \II (xh)Ux (h) (1.110) 

obviously intertwines V L and V x, i.e., Vx 0 V L = V X 0 Vx . Moreover, when H is 
abelian, Fourier analysis on H shows that EBXEH Vx = II, so that for such H 

L2(Gc ) ~ EBXEH1tX; 

VdG c ) ~ EBXEHVX(G C ). (1.111) 

An equivalent realization of VX may be defined on L\GcIH) (defined with 
respect to a suitably normalized G-invariant measure, which exists because Gc 

and H are unimodular), as follows. Choose a cross section s : G cI H ---+ G c (i.e., 
r 0 s = id, with T := rGc~GclH)' and define VX : L2(Gc ) ---+ L2(Gcl H) by 

VX\lI(q) := \II(s(q», (1.112) 

with adjoint 

(1.1l3) 

It follows that V x is a partial isometry, which is unitary on the image of (V X)*, 
which is 1t x . Putting V/ := V x V x (V X)* , one obtains 

VsX(x)ct>(q) = Vx(S(q)-lxs(X-Iq»ct>(X-lq). (1.114) 

We will apply this to the case where Gc is as defined in 1.3.3 and H = Vc(l), 
so that Gel H = G. In the following result G is not necessarily compact. 

Lemma 1.8.2. The representation Vc(Gc) associated (by 1.5.1) with the c­
representation VdG) on 1t = L2(G) defined by (1.83) is equivalent to the 
representation VI(G c ) induced by the defining representation VI ofVc(l). 
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This is verified using the cross section s : G -+ G c given by s (x) = (x, 1). The 
property 

UI(e, z) = zIT 

follows from (1.108), (1.109), and the fact that Uc(1) is central. 

(1.115) 

• 
Let us now assume that G (and hence G c ) is compact. The well-known Frobe­

nius reciprocity theorem states that the number of times a given irreducible 
representation U(Gc) occurs in}(X is equal to the number of times Ux(H) occurs 
in U(Gc f H) (i.e., the restriction of U to H). 

Hence a given irreducible representation U y (G c) occurs in the decomposition of 
Uc(Gc) with multiplicity equal to the number of times the defining representation 
of Uc(l) occurs in U y . By 1.5.1 this multiplicity must equal dy, since Uc(l) is 
always in the defining representation times the unit matrix. Hence by 1.5.1 all 
c-irreducible representations y of G occur in L 2( G) with multiplicity dy , as in the 
case c = 1. 

Clearly, the Hilbert space VJtdy(C) carries a c-representation U~2)(G) given by 
U?)(x)M := Uy(x)M, which is the irreducible c-representation Uy(G) with mul­
tiplicity dy • Here U y is some representative of y; everything that follows depends 
on the choice of this representative, but other choices lead to equivalent statements. 

We recall the orthogonality relations for a compact group K: Given an 
irreducible representation UI«K) of dimension dl( one has 

dl( l dx (\III, UI«x)\II2)(Udx)\II3 , \114 ) = (\III, \114 )(\113 , \112), (1.116) 

It follows from these relations for Gc that Py : L2(G) -+ VJtdy(C), defined 

by Py\ll := q,(y) (see (1.105», is a partial isometry (note that L2 S;;; Lion 

compact spaces, so that Py is we11-defined). Trivially, PyUL = U~2) Py. From the 

preceding two paragraphs we conclude that the map V : L2(G) -+ i.2(G) given 
by V := ffiYEGCPy is unitary, and satisfies VUL = (h V. Of course, V is the 
Plancherel transform (1.105). 

This shows that, as in the case c = 1, the left-regular representation U L on 
L 2(G) contains all irreducible c-representations. It then follows from 1.7.1 and the 
comment after 1.2.2.7 that C;(G, c) = C*(G, c). 

For f E C~(G) we have from (1.84) and (1.105) that 

irL(f) := VJrdf)V- 1 = ffiYEGCJry(f) ® ~y; (1.117) 

cf. (1.89). The map f f-+ VJrL(f)V- 1 is a *-isomorphism from C~(G) into 
ffiyEGc VJtdy (C), seen as direct sum of matrix algebras, since Jr L is a faithful 
representation and V is unitary. It can therefore be extended by continuity. The 
irreducibility statement in 1.7.5 implies that Jr y (C; (G, c» = VJtdy (C). 

Finally, to prove that the direct sum in (1.107) should be defined as stated, first 
note that JrL(f) E s:B I (L2(G» for f E C~(G). Hence JrL(f) E s:B O(L2(G» by 
1.(1.62), so that JrdC*(G» c s:BO(L2(G» by the continuity of JrL. Since V is 
unitary, it follows that VJrL(C*(G»V-I E s:BO(L2(G». It is then easy to adapt 



210 III. Groups, Bundles, and Groupoids 

the standard proof that the eigenvalues of a compact self-adjoint operator (ordered 
from large to small) go to zero to conclude that limy-->oo lI]l'y(f)1I = O. 

Theorem 1.8.1 follows. • 

We write ]l' k for the representation of C* ( G c) corresponding to the representation 
Uk(Gc) induced by Uk(Uc(l» (see (1.89», where k E Z and Uk(Z) := Zk for 
Z E 'll' = U (1). For G possibly noncompact, the first stage of the above proof leads 
to 

Corollary 1.8.3. For each k E Z there are isomorphisms 

C;(G, ek)::::::: ]l'k(C*(Gc»::::::: C*(Gc)/ker(]l'k). (1.118) 

Explicitly, under the first isomorphism the function rrk(f) E C;(G, ek) (where 
f E C~(Gc) C C(Gc» is 

rrk(f) : x ~ l dz l f(x, z). (1.119) 

Here dz is the normalized Haar measure on 'll'. This corollary is proved by a 
straightforward generalization of Lemma 1.8.2: Given a ek-representation U of G, 
one defines an associated representation Uck of G c by Uck(X, z) := zkU(x), and 
verifies that Uck ::::::: Uk. • 

For k = lone should compare 1.8.3 with 1.1.10. As we have seen in 1.3, the 
multiplier c is a derived object, the intrinsic object being the central extension 
(1.27). Hence C;(G, c) is not quite intrinsic either, but Corollary 1.8.3 shows 
how to define the intrinsic analogue of C;(G, c): It is C*(G)/ ker(rr 1). This C*­
algebra is, of course, isomorphic to C;(G, c), and also to any C;(G, e'), where c' 
is equivalent to c. The case of general k will be used in the next section. 

Corollary 1.8.3 is closely related to the decomposition 

C;(Gc) ::::::: EDkeZ rrk(C*(Gc», (1.120) 

which follows from C;(Gc) = rrL(C*(Gc» and (1.111). Equation (1.118) shows 
that C;(G, c) is isomorphic to a (closed 2-sided) ideal in C;(Gd, namely the one 
that is isomorphic to rrl(C*(Gc» by (1.120). 

As an application of (1.118) we prove 

Proposition 1.8.4. Let e be the mUltiplier on ]R2n given in (1.35). Then for all 
k E Z\{O} there are isomorphisms 

C*(]R2n, ek ) ::::::: C;(]R2n, ck ) ::::::: ~o(L 2(]Rn». (1.121) 

We will not prove the first isomorphism here; the proof is identical to that 
of Theorem 3.7.1 below. As to the second, we saw (after (1.35» that ]R~n = 
Hn. We use the notation of Lemma 1.8.2. Using (1.115), 11.(2.18), and Theorem 
11.2.1.4, or direct calculation, one shows that Uk (Hn) is a multiple of the irreducible 
SchrOdinger representation Uf(Hn) defined in 11.(2.17). The second isomorphism 
in (1.121) then follows from 1.8.3 and 11.(2.129) (with fIn replaced by Hn). 
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Here is a direct proof as well. Define a map Kk : S(JR2n ) --* S(JR2n) by 

(1.122) 

with inverse 

(1.123) 

The well-known properties of the Fourier transform show that Kk is an isomor­
phism (of vector spaces to begin with). We identify the image S(JR.2n) of Kk with 
S(JRn x JR.n), regarded as a space of kernels on JR.n, and as such as a subspace of 
~o(L2(JR.n»; cf. 11.2.5.3. One calculates from (1.80) and (1.81) with (1.35) that 
Kk is a *-isomorphism between dense subspaces of C;(JR.2n, ck ) and ~o(L 2(JRn». 
Then extend Kk by continuity. • 

Note that the multiplier has a crucial effect: Without it, one has the isomorphism 
ct)(JR2n) ~ Co(JR.2n) by Fourier transformation; cf. (1.86). 

In the light of Example 1.2.11.3, the classical analogue of Proposition 1.8.4 (for 
k = 1, say) states that the Poisson algebra Cf(JR.2n, JR.) (where JR2n is seen as the 
dual Lie algebra g* for G = JR2n) is coo(T*JRn, JR.) equipped with the canonical 
Poisson bracket 1.(2.24); cf. 1.9.6. 

To close this section, we "quantize" the realization of Cf(g~) stated in 1.4.2. 
Denote the operators in a C* -algebra Q( C ~(L 2(G» that commute with U R(G) 
(cf. 0.98» by Q(R. The following result is nontrivial even for c = 1. 

Proposition 1.8.5. When G is compact, JrdC*(G, c» = ~O(L2(G»R. 

The Plancherel transform (1.105) maps U R into {; R := V U R V-I, given by 
{; R(X)q,(y) = q,(y)Uy(x)-I. The result then follows from (1.l17). • 

1.9 The Group C* -Algebra as a Strict Quantization 

When G is compact the C*-algebra C*(G) turns out to be related to the 
(complexified) Poisson algebra COO(g~) by a strict quantization. 

Analogously to 11.(3.49), we define C~(g*) as the class of functions on g* 
whose Fourier transform j is in C?,,(g). Here the Fourier transform of j E L I(g*) 
is defined by (cf. 11.(3.42» 

j(X) := 1 dn
(} eiB(X) j«(}), (1.124) 

g* (2Jr)n 

where d n() is Lebesgue measure on g* ~ JR.n, whose normalization is fixed by that 
of the Haar measure dx on G, as follows. When j has support near e, we can write 

1 dx j(x) = 1 d n X J(X)j(Exp(X», (1.125) 

where dn X is a Lebesgue measure on g, and J is some Jacobian. The normalization 
is now fixed by the condition J (0) = 1. In turn, the normalization of the Lebesgue 
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measure dnO on fl* is fixed by requiring the inversion formula 

f(O) = ~ d n X e-ili(X) j(X). (1.126) 

As in the argument after 11.(3.49), one infers that C~(fll, JR) is a Poisson subalgebra 
of COO(fll, JR). 

We choose a smooth cutoff function K on fl that equals I in a neighborhood jj 
of 0, is invariant under inversion X H - X, and has support in the neighborhood 
N of 0 on which Exp is a diffeomorphism; cf. 11.3.4.4. When G is compact one 
may assume that K is Ad-invariant; i.e., satisfies K(Ad(y)X) = K(X) for all y E G. 
This may always be achieved by averaging. 

Definition 1.9.1. For an n-dimensional Lie group G, the RietTel quantiza­
tion Qf : C~(fl~) -+ C*(G) is defined as follows: For x rJ. Exp(N) we put 
Q~ (f)(x) = 0, whereas for x E Exp(N) we put 

Qf,(f)(x) := lI,-n K (Exp-' (x»j(Exp-' (x)/Il,). (1.127) 

Analogously to QJ[ in 11.3.4, the restriction f E C~(fl*) implies that for small 
enough II, the operator Qf, (f) is independent of K. When G is exponential (in that 
Exp : fl -+ G is a diffeomorphism) the cutoff K can be omitted altogether. For 
general f E COO(fl*) the object Qf(f) is a distribution on G. In particular, when 
f is a polynomial, one obtains a distribution with support at e. One may identify 
the set of such distributions with the enveloping algebra U(gc), but even on this 
space Qf, does not coincide with Qf, in (1.78) unless the Jacobian 1 appearing in 
(1.125) equals unity. However, for unimodular groups, and therefore in particular 
for compact groups, one has leX) = I + O(X2 ), and this property suffices to 
guarantee that, at least formally, Qf,(X) = Q~(X) for all X E g. Since Qf,(X) is 
not defined as an element of C*(G), one may pass to a representation 1l'(C*(G», 
related to U(G) by (1.89). Formally, one then has 

1l'(Qf,(X» = iMU(X). (1.128) 

Theorem 1.9.2. Let Qto = CO(fl*) and Qtll = C*(G) for II, rJ. O. When G is 
compact, the map Qf, in 1.9.1 yields a strict and continuous quantization ofSil~ := 
C~(fl~, JR) on 1= JR, up to condition II.I.l.lA. 

Strictness, which implies continuity (cf. 11.1.2.5) by Theorem 11.1.2.4, will fol­
low from the fact that Qf is a special case of the generalized Weyl quantization 
prescription on Riemannian manifolds (cf. 11.3.4). 

Lemma 1.9.3. A compact Lie group G admits a right-invariant Riemannian 
metric g such that the exponential map eXPe obtained from g coincides with the 
map Exp defined by the Lie group structure. 

Choose an inner product (, ) on TeG = fl that is invariant under the adjoint 
action of G. and define g by the property g;;(~:. ~:) := (X, Y); cf. (1.38). this is 
evidently right-invariant, but due to the Ad-invariance of (. ) it is left-invariant as 
well. Such metrics are called bi-invariant. 
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For any right-invariant metric g and any point of G one has the identity 

g (v~{~:, ~:) = k {g ([~:,~:J,~:) - g ([~:, ~n, ~n + g ([~:, ~n, ~n}, 
(1.129) 

obtained from 11.(3.17) and 11.(3.18) with various permutations of the entries, using 
the x-independence of gx(~:, ~:). When g is Ad-invariant, the last two terms 
cancel, upon which the nondegeneracy of g implies that V~:~: = k [H, ~:J due 

to the nondegeneracy ofg. In particular, V~:~: = 0, so that by 11.(3.4) we infer that 
the curves x(t) = Exp(t Y)x are geodesic for all Y E g. The claim follows. • 

We identify C*(G) with nLCC*(G» (see (1.95) and 1.8.1), which in turn is 
expressed as in 1.8.5. Also, we identify C~(g*) C COO(g*) with C~(T*G)R c 
COO(T*G)R, as in 1.4.2 (with r = 0). Choosing a metric on G as in the lemma, it 
follows from 11.(3.51), 11.(3.48), (1.82), (1.80) (with c = 1), and (1.127) that under 
the above identifications one has Qf = QJi on C~(T*G)R (confirming 11.3.6.3). 
The theorem then follows from Theorem 11.3.5.1. • 

Proposition 1.9.4. Suppose that G admits a metric g as specified in Lemma 1.9.3, 
and that the cutoff K is Ad-invariant (these assumptions are satisfied when G is 
compact). With a := a(l) given by (1.96),for all x E G and f E §to one has 

ax(QfU» = Qf(Co(x- I )* f). (1.130) 

The metric g of Lemma 1.9.3 is bi-invariant, and g.. is invariant under the adjoint 
representation Ad(G). Identifying g ~ JRn this implies that Ad(G) ~ SO(n); in 
particular, Ad(G) and Co(G) leave the Lebesgue measures invariant on g and g*, 
respectively. The claim then follows from (1.127), (1.124), and the Ad-invariance 
of the cutoff K . 

Alternatively, the claim follows from Proposition 1.2.3, equation (1.52), and 
Theorem 11.3.6.3. • 

This proposition is a "bounded" version of 1.6.8. 
Theorem 1.9.2 can be generalized to the twisted case, at the cost of It being 

defined only at a discrete set. Let r E Z2(g, JR) be related to c E Z2(G, U(1» by 
(1.34). This leads to a Poisson algebra C~(g~, JR) (see 1.1.5), a central extension 
Gc with Lie algebra gr (see 1.3.3 and 1.3.6), a group C*-algebra C*(Gc ), and a 
twisted group C*-algebra C*(G, c) (cf. 1.7). 

Theorem 1.9.5. Let Q(o := Co(g*) and Q(1i := C*(G, cl / Ii) for It = 1/ k, where 
k E IE, and let sit~ := C~(g(r)-' JR) be equipped with the Poisson bracket (1.12), 

(1.13), taking the minus sign. When G is compact, the map Qf, defined in 1.9.1 
with C*(G) replaced by C*(G, clift), is a strict quantization ofQi~ on 10 = I/Z 
(except possibly for the completeness condition lI.1.1.1.4). 

The signs may be checked from (1.128), (1.67), and (1.15). The proof is based 
on the analogy between 1.1.10 and 1.8.3. Extend f E C~(g*, JR.) to a function 
i E C~(flf, JR.), such that fee) = i(1, e) and 

i(eo i= 1, e) < i(eo = 1, e) = fee); (1.131) 
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in particular, one has 

Ilflloo = 1111100' (1.132) 

In view of (1.13) this automatically means that 

(j, g}-(l, e) = {j, g}~(e), (1.133) 

since the left-hand side does not involve derivatives with respect to eo. 
We denote the map of Definition 1.9.1 as defined on C~(g*, JR.), taking values 

in C*(G, c 1/ 1i), by Qf, whereas the map defined in the same way, but now on 

C~(g~, JR.), taking values in C* (G c), is written as Qf. A short computation using 
(1.119) and an elementary oscillatory integral shows that 

(1.134) 

for Ii E I/Z small enough so that the right-hand side is independent of K. In 
particular, the left-hand side depends only on the value of I at eo = 1; this is 
a special case of the fact that, for Ii small enough, nk(Qf(I» depends only on 
I(eo = kli). This follows by a calculation similar to the one leading to (1.134). 

Theorem 1.9.2 applied to G c implies that limli--->o II Qf(I)1I = 1111100' On the 
other hand, according to (1.120) one has IIAII = SUPkEZ IInk(A)1I for all A E 

C* (G c). Combining the two of these equations with the last remark of the preceding 
paragraph and the property (1.131), we conclude that 

(1.135) 

Together with (1.132) and (1.134) this proves II.(1.1) for Qf. 
Conditions IL(1.2) and 11.(1.3) in Theorem 1.9.5 now follow from (1.134), 

Corollary 1.8.3, (1.133), Theorem 1.9.2 (once again applied to G c ), and the 
inequality IInk(A)1I :s IIAII in C*(Gc); cf. U.S. • 

The obvious generalization of 1.9.4 (in which Co is replaced by CoY, where y 
and r are related by (1.24» is not valid except in special cases (see below). 

While proved for compact G, Theorem 1.9.5 may hold in other situations. 

Proposition 1.9.6. Let G :::::: g* = JR.2n, with r given by (1.26) and c defined in 
(1.35). Then the statement of Theorem 1.9.5 holds (without the final qualification). 

Using Proposition 1.8.4 one obtains that Qf = Qj; (cf. 1I.2.5), so the 
proposition follows from Theorem IL2.6.1. • 

In this case one does have the "twisted equivariance property" 

(1.136) 

for all x E JR.2n and f E C~(T*JR.n) (or S(T*JR.n», where y is related to r by 
(1.24). This follows by direct computation; in (1.23) only the term y(x) con­
tributes, yielding CoY (u, v) : (p, q) f-+ (p + u, q + v). Alternatively, one uses the 
corresponding property II.(2.93) of Qj;. 
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1.10 Representation Theory o/Compact Lie Groups 

Following the discussion of the Weyl quantization of g*, we tum our attention to 
the possible quantization of coadjoint orbits C) in g*. In view of later applications 
to gauge theories we restrict ourselves to the case that G is compact. We start with 
a brief review of the relevant representation theory, assuming familiarity with the 
standard Cartan-Weyl approach. Throughout this section G is a compact connected 
Lie group unless stated otherwise, and all representations are finite-dimensional. 

Firstly, let G be abelian; it then has to be a torus G = T = '['r = U (l)' . Each 
irreducible representation of T is one-dimensional, and is a character UA : ']I" ---* 

C (a character of an arbitrary group is a one-dimensional representation). The label 
'A of the character is an element of t* ::::: IRr (the dual of the Lie algebra t ::::: IRr of 
T), related to UA by 

dUA(X) = -i'A(X). (1.137) 

It follows that 'A E A := 'ZI c t*. Conversely, each 'A E A defines an irre­
ducible representation of T by exponentiation, so that we have found a bijective 
correspondence between the unitary dual f and the lattice A C t*. 

For a general Lie group, we note that (1.61) (with r = 0) implies that 0 E g* 
satisfies O([X, Y]) = 0 for all X, Y E ge (where gil is the Lie algebra of the 
stabilizer Gil of 0 under the co adjoint action). In other words, 0 : gil ---* IR is a Lie 
algebra homomorphism. 

Definition 1.10.1. A coadjoint orbit C) E g* is called integral if for some (hence 
all) 0 E C) the functional 0 f gil exponentiates to a character ofGe. 

Inotherwords,O isintegraliffthere is a character UII of Go such that 0 = idUII on 
gil. If this holds for one 0 E C),itholdsforall, since one has UCo(x)1I = UooAd(x-1). 

Obviously, if G is a torus T, its coadjoint action is trivial, so that its coadjoint 
orbits are the points of t*; the integral orbits are precisely the elements of the 
lattice A. Consequently, one has a bijective correspondence between f and the set 
of integral coadjoint orbits of T. The following theorem generalizes this idea. 

Theorem 1.10.2. There exists a bijective correspondence between the unitary 
dual G and the set of integral coadjoint orbits in g*. 

We will merely sketch the proof in explaining how this parametrization of G is 
related to the Cartan-Weyl theory. This theory starts by choosing a maximal torus 
T (i.e., a maximal connected abelian subgroup) of G, with associated Weyl group 
W := N(T)/T (where N(T) is the normalizer of T). The integer r := dim(T) 
is called the rank of G; it does not depend on the choice of T, since all maximal 
tori are conjugate. The Weyl group acts on T by conjugation, and hence it acts 
on t and t*. The latter action is the projection of the coadjoint action of N(T). 
It maps A C t* (called the weight lattice in the present context; elements of A 
are traditionally called weights) into itself; the W -action on A coincides with the 
natural W -action on f under the identification of f with A explained above. The 
Cartan-Weyl theory states 
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Theorem 1.10.3. Let T be some maximal torus in G. There exists a bijective 
correspondence between the unitary dual {; and the set of W -orbits in f .. that is, 
{;~f/W=A/W. 

The relationship between this parametrization of (; and the one in 1.10.2 follows 
from an important lemma in the structure theory of compact Lie groups, which we 
state without proof. 

Lemma 1.10.4. In the notation of 1.10.3 there is a bijection 

G/Ad(G) ~ T/W. 

Denoting the set of coadjoint orbits in g* by g* / G, one therefore has 

g*/G ~ t*/W. 

(1.138) 

(1.139) 

The concrete association of a coadjoint orbit in g* with a W -orbit in t* is as 
follows. Restrict the adjoint representation of G (extended to the complexification 
gc) to T, and decompose gl(: under Ad(T) as gl(: = tc EB ti:, where ti: is the 
sum of all eigenspaces with nonzero eigenvalues; this leads to a decomposition 
g = tEB tl., where tl. := ti: n g. This coincides with the orthogonal decomposition 
of 9 under an arbitrary Ad( G)-invariant inner product (, ). One may, for example, 
take a faithful representation U of G, and define the invariant inner product by 

(X, Y):= -TrdU(X)dU(Y). (1.140) 

An arbitrary compact Lie group is of the form G = S X ']['k , where S is semisimple 
(i.e., a product of simple factors with finite discrete center) and ']['k is a torus. If G 
is semisimple, the adjoint representation is faithful, and may be used in (1.140); 
this defines the Killing form on g. More generally, all invariant metrics have 
the property that the direct summands in g are mutually orthogonal, and that the 
metric restricted to a given simple summand is proportional to the Killing form. For 
concreteness' sake, in what follows we assume that (, ) restricted to the semisimple 
part of g coincides with the Killing form. 

The extension e() .. ) E g* of A E t* obtained by putting e(A) = 0 on t..L and 
e(A) = A on t is therefore independent of the choice of the metric on g. Thus the 
coadjoint orbit OA := OO(A) associated to A is the coadjoint orbit through e(A); it 
is obvious from the definition of the W -action on t* that all points of the W -orbit 
of A are mapped into OA' 

To go in the opposite direction one needs (1.138) to show that the stabilizer 
of any point in 0 is connected, and that it contains a maximal torus. As any two 
maximal tori are conjugate to each other, and Gco(x)e = x Gllx -\ , there accordingly 
exists a e E 0 for which T ~ Gil' Hence we can define A(e) = e r t. Note that 
(1.61) and T ~ Gil imply that e r tl. = O. 

If Gil = T the coadjoint orbit 011 through e is said to be regular; it is of maximal 
dimension among all coadjoint orbits. Otherwise, it is called singular. For regular 
orbits one immediately sees that Gco(x)O == T implies that x E N(T), so that 
different choices of e for which Gil = T map into the same W -orbit of A(e). It 
follows from (1.138) that the same is true for the singUlar orbits. 
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Theorem 1.10.2 now follows from Theorem 1.10.3 and Lemma 1.10.4 by 
restricting the isomorphism to weights and integral orbits. • 

A functional A E t* is called regular when WA = A for W E W implies 
W = e (and singular otherwise); this defines the sets t: and A, := t: n A of 
regular elements and regular weights in t* , respectively. In the context of 1.10.2, 
elements of t; evidently correspond to regular coadjoint orbits, and similarly for 
the singular case. 

Each connected component C of t; is called a Weyl chamber; this is an open 
convex cone in t*. Singular weights clearly lie on the boundary of some Weyl 
chamber. One singles out an arbitrary Weyl chamber Cd' and declares a weight 
dominant if it lies in the closure Cd' The point is now that each W -orbit intersects 
a given closed Weyl chamber C in exactly one point. Hence Theorem 1.10.3 may 
now be restated: 

Corollary 1.10.5. In the notation of 1.10.3 there is a bijection between G and 
the set Ad := A n Cd of dominant weights. 

Any Hilbert space 1i carrying a representation U(G) decomposes under U(T) 
as 1i ~ tB).Etlo(U)1i)., where each 1i). carries the representation U).(T) (perhaps 
with multiplicity). The set 1'1o(U) C A contains the weights of U. This applies, in 
particular, to the adjoint representation Ad. The nonzero weights of Ad are called 
roots; one writes 1'1 for 1'1o(Ad)\{O}, with elements generically denoted by a. 

The decomposition of 9c under Ad takes the form 9c = tBaEtl9a tB ie, where 
each 9a is one-dimensional. Writing 9a = CEa for some nonzero vector E a , we 
have 

[X, Eal = -ia(X)Ea (1.141) 

for X E t. It follows that if a E 1'1, then -a E 1'1, since ga = 9-a (where the 
complex conjugation is the usual one on gc = 9 tB ig). 

Given a choice of Cd' a root is called positive if (a, A) > 0 for all A E Cd (here 
the inner product on 9 has been transferred to 9* in the usual way). The collection of 
positive roots is called 1'1 +. A root lies either in 1'1+ or in - 1'1 + . Singular dominant 
weights A have the property that (a, A) = 0 for some a E 1'1+; a weight is regular 
iff (a, A) I- 0 for all roots a. 

lt is not difficult to show from (1.141) and the Jacobi identity that 9c has a basis 
{Hj, E a , E-a}j=I ..... r;aEtl+' normalized such that (Ea, E-a) = 1, satisfying 

[Hj, Hd = 0; 

[Hj , E±a] = ~iajE±a; 

[Ea , E-al = -iajHj; 

[Ea, Epl = Na.pEa+p (fJ I- -a), (1.142) 

where a E 1'1+, fJ E 1'1, a j := a(Hj ), and the Na.p are constants that vanish iff 
a + fJ is not a root (in which case Ea+p is, of course, not defined). 

The bijection in 1.10.5 is now implemented by the following fact: 
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Corollary 1.10.6. In the notation of 1.10.3, a Hilbert space 1{~w carrying an 
irreducible representation U y corresponding to a dominant weight y has a unit 
vector Illy. unique up to a phase, on which 

dUy(X)llIy = -iy(X)llIy (1.143) 

for all X E t, whereas for all ex E ~ + one has 

(1.144) 

The unit vector Illy is called a highest weight vector; it is unique up to a phase. 
It is easily inferred that 

(1.145) 

for all ex E ~ +. since the Lie brackets (1.142) imply that dU(E_a)llIy must either 
be zero or a vector with weight y - ex :f. y. 

One may now see the correspondence in 1.10.2 in a clearer light. Let J : lP1{y -* 

g* be the momentum map for the G-action on lP1{y defined by Uy• given by (1.71); 
this may be rewritten as 

h(1/I) = i(llI, dUy(X)IlI), (1.146) 

where the unit vector III is a lift of 1/1 E lP1{y to §1{~w. 

Proposition 1.10.7. The coadjoint orbit Oy corresponding to an irreducible 
representation Uy with highest weight vector Illy contains J1/Iy' 

In fact, J : JIDUy(G)llIy -* Oy is a symplectomorphism when JIDUy(G)llI y 
inherits the usual symplectic structure of lP1{~w (with n = 1), and Oy is endowed 
with the (minus) Lie symplectic form (1.63). 

Equations (1.146), (1.143), (1.144), and (1.145) imply that (J(1/Iy»(X) equals 
y(X) for X E t and equals 0 for X E t.l. Hence J(1/Iy) is precisely the element 
8(y) E g* discussed after the proof of 1.10.4. proving the first claim. 

By (1.146), the stability group GJ(o/y) of J(1/Iy) consists of those x E G for 
which (Uy(x)llI y, dUy(Y)Uy(x)llIy) = (Illy, dUy(Y)llIy) for all Y E g. Since Uy 
is irreducible, this implies that Illy and Uy (x)llIy define the same element of lP1{y, 
proving that G J(o/y) S; Go/y • The opposite inclusion is trivial from the equivariance 
of J, which can either be checked directly from (1.146), or may more abstractly 
be inferred from 1.2.5, it having been realized from (1.72) (with r = 0) and 1.1.2 
that J is a Poisson map on lP1{y. • 

For general 11, one would have a factor 11, on the right-hand side of (1.146). 
It is actually quite easy to give an explicit description of the Lie algebra gy 

of Gy := GI!(y)' From (1.61) (or the above proof), 0.142), and the previously 
discussed fact that y(Ea) = 0 for all ex E ~ we infer that 

(1.147) 
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where g~ := 9 n (ga $ g-a)' It follows that the dimension dim(Oy) of the orbit 
through a dominant weight y is given by 

dim(Oy) = dim(g) - dim(t) - 2 Card {a E I::!.. +I(y, a) = O}. (1.148) 

It follows from Proposition 1.10.7 that PUy(G)Wy is a symplectic submanifold 
of P1i~w; this is not necessarily true if CWy is replaced by an arbitrary one­
dimensional subspace of 1i';. However, the same statement as in 1.10.7 evidently 
applies to any vector of the type Uy(w)Wy, where W is a lift ofw E W = N(T)IT 
to N (T) C G. For J maps all vectors of this type into the same coadjoint orbit. 
In fact, Uy(w)Wy has weight wy, showing that all weights wy, WE W, occur in 
'l../hw 
I ~y • 

1.11 Berezin Quantization of Coadjoint Orbits 

Coadjoint orbits of compact Lie groups are interesting partly because they lead to 
coherent pure state quantizations indexed by a discrete set 1 3 Ii; cf. 11.1.5.1 and 
II.1.3.3. We will use the label y to denote a dominant weight in Ad C t*, as well 
as the corresponding element O(y) of the coadjoint orbit Oy C g*. 

Theorem 1.11.1. Let G be a compact connected Lie group, and Oy an inte­
gral coadjoint orbit (cf 1.10.1), corresponding to a highest weight y E Ad' For 
Ii = II k, kEN, define 1i1i := 1i~ili' i.e., the carrier space of the irreducible rep­
resentation Uy/Ii(G) with highest weight y Iii = kyo The map qli : Oy ~ P1i1i, 
given by 

qli(Co(x)y) := T'lln ..... P1th(Uy/Ii(X)W y/Ii), 

is well-defined and injective. Together with 

Ji-Ii = dy/IiJi-L, 

(1.149) 

(1.150) 

where d}.. := dim(1i~W), this provides a pure state quantization ofOy (equipped 
with minus the Lie symplectic structure) on 10 := liN. 

One should note here that ky E Cd when y E Cd' since Weyl chambers are 
convex cones. In what follows, Oy stands for (Oy)_; see the notation introduced 
before (1.63). 

The map qli is well-defined and injective by the equation Gky = G y plus the 
argument on stability groups used in the proof of 1.10.7. In fact, if we define 
JIi: P1i1i ~ g* by (1.71), with Ii = 11k (equivalently, by (1.146) with the right­
hand side divided by k), it follows from 1.10.7 that JIi takes values in Oy' and is a 
left inverse of qli. 

We start from the fact that the Haar measure on G (with total mass 1) pushes 
forward to the Liouville measure derived from the Lie symplectic structure under 
the canonical projection G ~ Oy ~ GIG y. Using the invariance of the Haar 
measure and the unitarity of U ky, we then have 

1 dJi-da) p(PIi, ali)f(a) = ( dx I(Wky, Uky (X)Wky)1 2 fy(yx) (1.151) 
Oy 10 
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for all f E C(Oy), where fy = fC->-G/G y f E C(G) is a right-Gy-invariant func­
tion,andyissuchthatfG->-G/G/Y) = P E Oy. Choosing f = 1, the orthogonality 
relations (1.116) for compact groups and (1.150) then imply 11.(1.8). 

Equation 11.(1.10), even without the limit, follows from 1.10.7. To prove 11.(1.9) 
we need a lemma. 

Lemma 1.11.2. Let Yi be dominant weights with highest weight representations 
and vectors UYi and\llyi' respectively (i = 1,2). Thenfor each x E G one has 

(WYl' Uyl(x)W yl )' (W y2 , UYz(x)WYz ) = (W yl +y2 , UYI+Yz(X)WYI+Y2)' 

This is immediate from 1.10.6 and the connectedness of G. 

This lemma implies that 

(Wky, Uky(X)Wky) = (Wy, Uy(x)Wyi. 

Using (1.151), we can write the left-hand side ofIl.(1.9) as 

lim ( dI-LL(a) p(Ph, ah)f(a) = lim ( dl-Lk(X)fy(Yx), 
h->-O JOy k->-oo JG 

where I-Lk is a probability measure on G defined by 

dl-Lk(X) := dky dxl(Wy, Uy(x)W y )1 2k . 

(1.152) 

• 
(1.153) 

(1.154) 

It is obvious that each I-Lk is right-Gy-invariant. It follows from (1.144), (1.145), 
and the fact that the exponential map is surjective for compact Lie groups, that 
1(\11 y, U y (x) W y ) I, which is evidently ::::: 1, equals 1 iff x E G y. Hence for large k 
the support of I-Lk is increasingly concentrated on G y. This suggests that 

lim I-Lk(f) = ( dh f(h) 
k->-oo JG y 

(1.155) 

for all f E C(G), where dh is the normalized Haar measure on G y • This is 
confirmed by more detailed analysis (cf. the proof of 1.11.4 below). For the right­
Gy-invariant function fy E C(G)G y one therefore obtains 

lim I-Lk(fy) = fy(e). 
k->-oo 

This proves 11.( 1.9), which finishes the proof of 1.11.1. o 
The Berezin quantization Qg associated with the pure state quantization in 

1.11.1 (cf. 11.1.3.4) is defined on §to := COO(Oy)' By 11.(1.16), one has 

Qf/k(f) = dky L dx fy (X)[Uky (X)Wky]; (1.156) 

this is an element of Qt 1/ k = Vltdky (C). The most important property of Qg is its 
G-equivariance. For x E G we write 

(1.157) 
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where A E milk, and for f E mO we put 

a2(f) := Co(x-1)* f. (1.158) 

Proposition 1.11.3. For all kEN, x E G, and f E LOO(Oy) one has 

Qflk(a~(f» = a~/k(Qf/k(f»· (1.159) 

This is immediate from (1.156), (1.158), the fact that (Co(y)* f)y = L;/y, the 
right-invariance of the Haar measure, and (1.157). • 

Theorem 1.11.4. The Berezin quantization (1.156), defined on the space 
COO(Oy, 1R), is strict. 

Recall that Oy := (Oy)_. Rieffel's condition 11.1.1.1.1 follows from Theorem 
1.11.1 and Proposition 11.1.3.6. The completeness condition II. 1.1. 1.4 is an easy 
consequence of Schur's lemma and the irreducibility of Uky. 

We will now prove von Neumann's condition II. 1. 1. 1.2 and Dirac's condition 
II.l.l.i.3. We pick a unit vector <l>k in each 1t~~ and use the invariance of the Haar 
measure and (1.116) to write (using the notation of the proof of 1.11.1) 

where 

(<I>k' (Qf/k(f)Qf/k(g) - Qf1k(fg»<I>k) 

= dky fa dx fy(X)(<I>k, Uky(x)Wky)Ik(x), (1.160) 

Ik(x) := dky L dy (Wky, Uky(y)Wky)F;(y), 

F;(y):= (Uky(Xy)Wky, <l>k)[gy(XY) - gy(x)]. 

(1.161) 

(1.162) 

In the notation used after (1.151), the function F; on G corresponds to a function 
F X onOy • 

Using (1.153), we can write (Wky, Uky(y)Wky) = exp(-nSy(y», where 
Sy (y) : = - log(wy, U y (y) W y) (in view of the exponentiation, the choice of the 
branch cut of the logarithm is irrelevant). The function Sy is right-Gy-invariant; 
we denote the corresponding function on G / G y by S. We identify G / G y with 
0Y' so that the coset [G y] E G / G y is identified with y E Oy. 

Putting S:(y) := -log I(Wy, Uy (y)Wy )1, the absolute value of exp( -nS) is 
exp( -nS+). As in the argument preceding (1.155), we see that S+ takes values 
in [0,00] and assumes its unique absolute minimum 0 at y. Since F: in (1.161) 
is bounded, a standard argument implies that to O(exp(-n» we may replace the 
integration over G / G y by one over any neighborhood of y. 

We identify Ty Oy with 9/ 9y, and use complex coordinates {Za, Za }ae6t' where 
l:!..~ consists of those positive roots for which (y, a) =1= O. By the definition of 
a highest weight, this implies that (y, a) > 0 for all a E l:!..~. The coordinates 
(Za, Za) correspond to the point in Oy given by 

Co [ Exp (i a~t (ZaEa - ZaE-a») ] y. 
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A simple computation, using (1.142) and 1.10.6, leads to 

S(Za, Za) = E (y, a)ZaZa + O(ld). 
aet.t 

Hence to O(exp(-k» we may approximate ft(x) by 

d 1 ( n dzadza ) J( -) -kLaE,,+(y,a)ZaZa FX( -) ky 2 Za, Za e Y Za, Za , 
g/gy aet.t 1T 

(1.163) 

where J is a Jacobian, and F: has been extended to g/ gy by, say, the exponential 
map. If we omit the factor [. , .J in (1.162), the integral (1.161) can be evaluated, 
using the orthogonality relations (1.116). On the other hand, we can compute the 
above integral to lowest order in the steepest descent approximation; this avoids 
the need to compute J (0). Comparing the results computes the prefactor in the 
steepest descent approximation as unity. As a by-product we obtain the asymptotic 
expression for k ~ 00 

TIaet.+(y, a) I d' (0 ) d rv y k'i 1m y 
ky J(O) , (1.164) 

where dim( Oy) is given by (1.148). (Comparison with the Weyl dimension formula 
then yields J(O) = TIaet.+(a, 8), where 8 := ! Laet.+ a.) 

Thus the steepest descent approximation to the above integral, and therefore to 
(1.161), reads 

N 1 
ft(x) = ~ TfD1(J r)(O) + O(k-N - 1), (1.165) 

where, abbreviating aa := a/aZa and 8a := 8/8za, we have put 

(1.166) 

Substituting this expansion in (1.160) we see that 

(<I>ko (Qf/k(f) 0 Qf/k(g) - Qf/k(fg»<I>k) = 0(1/ k). (1.167) 

To analyze the remainder of 0(1/ k) we note that the Ith term in the expansion 
leads to an x-integrand in (1.160) of the form 

(Uky(X- 1 )<I>ko Wky )(Uky(X- 1 )<I>ko W(l,»!a I2 [j' gy(x), 

where Ij ::: I and the '11(/,) are given by the action of products of dUky(Ea) and 
dUky(E_a) on Wky ' The important point is now that the orthogonality relations 
(1.116) (applied to the x-integration) then imply that the O(k-N -I) term is bounded 
by ClI<I>k 112/ k N+1 for some constant C. Hence 1I.(1.2) follows by 1I.(2.77). 

To prove 11.(1.3) we need the I = 1 term in (1.165). We substitute (1.166), and 
perform some partial integrations in the remaining x -integral (using the invariance 
of the Haarmeasure). We abbreviate A := (<I>ko Uky(X)Wky); then (1.144) implies 
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that aaA and BaA vanish at Za = Za = O. Terms of the form aaBaA (or A) drop out 
in the commutator, as do contributions from] (whose first derivatives at 0 already 
vanish identically). What remains is 

(<I>b ik[Qf/k(f), Qf/k(g)] - Qf/k({J, g}-)<I>k) = O(1lk), 

where, in the realization of f, gas Gy-invariant functions f y , gy on G, 

. ~ 1 L L 
{Jy, gy}± := ±I ~ -( -);a fy Lagy· 

aE8y y, ex 

(1.168) 

(1.169) 

Here the left-invariant vector fields ;~a on G are defined as in (1.37), the element 
E±a of ge having been expressed in terms of elements of g. Also, ~y is ~~ u ~~, 
i.e., the set of all roots ex for which (y, ex) =I- O. 

To finish the proof, we remark that (1.169) is precisely the Lie-Poisson bracket 
on Oy; this may be verified at the point y E Oy (or e E G) by direct computation 
from (1.3), from which the general statement follows by the G-invariance of the 
Poisson structure. 

It is manifest that the right-hand side of (1.169) is left-G-invariant if fy and 
gy are; its right-Gy-invariance is not so obvious. The latter may be verified at the 
infinitesimal level from (1.147), (1.142), and the fact that for fJ =I- ±ex one has 

N_a -/3,/3 = -Na./3. (1.170) 

This follows from the Ad(g)-invariance of the inner product on ge, combined with 
the normalization of the Ea. Invariance of (1.169) under gy implies invariance 
under G y, which is connected. 

The higher-order terms in (1.168) are dealt with as in the above proof oflI.(1.2). 
This proves IL(1.3), finishing the proof of Theorem 1.11.4. • 

It is possible to regard ah := qh(a), defined in (1.149) for Ii = 11k, as a state 
an on the group algebra C*(G) by 

(1.171) 

The following result is analogous to IL(2.167). 

Proposition 1.11.5. With Q~ defined in 1.9.1,for all a E Oy and f E C~(g*) 
one has 

lim an(Q~(f» = f(a) 
n->-O 

(1.172) 

along the sequence Ii = 11k, kEN. 

This follows from a straightforward calculation. One starts by using (1.124), 
(1.125), and rescaling X f-+ XI k. The k-dependence is firstly in ](Xj k)K(XI k), 
which goes to 1 for k ~ 00. Secondly, one uses (1.153) and subsequently 

lim (Illy, Uy(Exp(Xjk»llIy)k = il/ly·dUy(X)l/Iy ). 
k->-oo 

This can be computed by (1.143) and (1.144). The result then follows from the 
well-known representation of the delta function as an oscillatory integral. • 
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Finally, we remark that the results in this section have an obvious yet somewhat 
cumbersome generalization: If the orbit Oy is not integral, but such that Oy/c is 
integral for some c E lR. \ {O}, we can construct a strict quantization for the values 
n= c/k,k E N. 

2 Internal Symmetries and External Gauge Fields 

2.1 Bundles 

Many constructions where some form of symmetry plays a role, and in partic­
ular the mathematical description of gauge field theories, involve the notion of 
a (smooth locally trivial fiber) bundle. We have already encountered the tangent 
bundle and the cotangent bundle of a manifold; here is a general definition. 

Definition 2.1.1. A bundle B(Q, F, r) consists of manifolds B (the total space), 
Q (the base), F (the typical fiber), and a smooth surjection r : P ~ Q with 
the following property: Each q E Q has a neighborhood Na such that there is 
a diffeomorphism 1{!a : r-'(Na) ~ Na x F C Q x F for which r = rQ 0 1{!a 
(where rQ : Q x F ~ Q is the projection onto the first factor). 

The maps 1{!a are called local trivializations. To avoid cumbersome expressions 
we shall often say "B ~ Q x F (locally)", omitting reference to N. Similarly, we 
then loosely write "1{! : B ~ Q x F (locally)". We factorize 1{!a = (r, 1{!:) so 
that 1{!: restricted to r-'(q) provides a diffeomorphism between the latter and the 
typical fiber F. Each subset r -, (q) is called a fiber of B. One may think of B as 
Q with a copy of F attached at each point. 

Throughout this chapter Q will be physically interpreted as the space on which 
a particle moves, or perhaps as some more general configuration space. 

Two bundles Bj(Qj, Fj , rj) (i = 1,2) are said to be isomorphic if there is a 
diffeomorphism 1{! : B, ~ B2 that preserves fibers. Such a bundle isomorphism 
defines a diffeomorphism of the base spaces and typical fibers in question. The 
bundle is said to be trivial if there is a bundle isomorphism 1{! : P ~ Q x F. Any 
bundle over a contractible base is trivial. 

By definition, a section of B is a map s : Q ~ B satisfying r 0 s = id. It can 
be shown that (Borel) measurable sections always exist, whereas the existence of 
smooth sections is not guaranteed (they certainly exist if B is trivial). However, 
one can always choose smooth local sections Sa : Na ~ B. In the spirit of the 
paragraph before the last, we may say "s : Q ~ B (locally)" when s is actually 
defined on some N c Q. 

Definition 2.1.2. Given two bundles B, and B2 over the same base Q, with 
projections r" r2 and typical fibers F, and F2 , respectively, the fiber product of 
B, and B2 is 

(2.1) 
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with manifold structure inherited from the Cartesian product. This may be regarded 
as a bundle over Q with projection rex, y) = rl(x) = r2(Y) and typical fiber 

FI x F2. 
Let B( Q, F, r) be a bundle over Q and let f : M ~ Q be a smooth map from 

some manifold M to Q. Then the pullback bundle 

f*B := B *Q M = {(x, y) E B x M I rex) = fey)} (2.2) 

is a bundle over M under projection r(2) onto the second variable and typical fiber 
F. 

Hence BI *Q B2 can be equipped with a bundle structure in three different ways: 
It is a bundle over Q as explained above, it is a bundle rtB2 over BI with typical 
fiber F2 under the projection r(l) onto the first variable, and finally it is a bundle 
r;BI over B2 with typical fiber FI under the projection r(2) onto the second variable. 

One can specialize the bundle structure. For example, in a vector bundle each 
fiber is a (topological) vector space (where the linear operations are smooth with 
respect to the ambient manifold structure), and the local trivializations respect the 
linear structure in the obvious sense. Clearly, T* Q and T Q are vector bundles. 
Even when it is nontrivial, a vector bundle always admits a smooth global section, 
namely the zero section so(q) := O. We will generically denote vector bundles by 
the letter V, unless the typical fiber is a Hilbert space, in which case we write H, 
and speak of a Hilbert bundle. 

When the Bi in 2.1.2 are both vector bundles Vi (with finite-dimensional or 
Hilbert fibers), one may form two different vector bundles over Q from VI *Q V2 
by declaring the typical fiber to be either the tensor product VI ® V2 or the direct 
sum VI EB V2. One accordingly writes VI ® V2 or VI EB V2. One can also form the 
dual bundle V* of a vector bundle V, whose typical fiber is the dual V* of V, and 
whose local trivializations are dual to those of V. 

Here is the "mother" of all bundles in which group actions playa role. 

Definition 2.1.3. A principal bundle P(Q, H, r) is a bundle for which the typical 
fiber is a Lie group H (the structure group) with smooth (left) action R on P such 
that Q = PI H, and 1/Ia 0 Rh = Rf 0 1/Ia, where the action Rf : Q x H ~ Q x H 

on the right-hand side stands for Rf(q, k) = (q, kh- I ). 

To stress the role of Hand Q, one may speak of a principal H -bundle over Q 
for clarity. It follows that the H -action Rh must be free, and that r(Rh(x» = rex). 
In agreement with the above, we will write Rh as x 1-+ xh- I for x E P. In 
contrast with a vector bundle, it can be shown that a principal bundle admits 
smooth global sections iff it is trivial. In a trivial bundle P = Q x H one obviously 
has Rh(q, k) = (q, kh- I ). 

In a principal bundle a given local trivialization 1/Is is equivalent to a smooth 
local sections: Givens one can put 1/Is(s(q» = (q, e) and subsequently extend 1/Is 
by H -equivariance; that is, 

1/Is(s(q)h) = (q, h). (2.3) 
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Conversely, given 1/1 = 1/Is one defines s(q) := 1/I-I(q, e). If various local sections 
Sa are involved, we will write 1/Ia for 1/Isa. 

If Q is covered by open sets of the type Na and q E Na n N fJ , it must be that 

(2.4) 

(no sum over ex), where the smooth maps gafJ : Na nNfJ ~ H are called transition 
functions. More generally, two different systems oflocal trivializations are related 
in this way. 

In an interesting special case one takes P to be the universal covering space Q of 
Q, so that H = 7r1 (Q) is the first homotopy group of Q (regarding discrete groups 
as zero-dimensional Lie groups). For another example the reader could now skip 
ahead to 2.7. 

Definition 2.1.4. Given a principal H -bundle P over Q and a smooth H -action 
L on some manifold M, the associated bundle M = P XH M is (P x M)/H, 
where the H-action on P x M is given by h : (x, m) 1-+ (xh- I, Lh(m». This is a 
bundle over Q with typical fiber M and projection rM-> M ([x , m]fI) = rex), which 
is well-defined in being independent of the representative (x, m) E P x M in the 
equivalence class [x, m]fI E (P x M)/ H. 

The following result will be used on many occasions. 

Proposition 2.1.5. A section W(L) : Q ~ M of a bundle M associated to a 
principal bundle P( Q, H, r) may alternatively be represented: 

• As a map W L : P ~ M that is H -equivariant in that 

(2.5) 

This is related to W(L) by W(L)(r(x» = [x, WL(X)]H, which is independent of 
the choice of x E r -lor (x) because of (2.5 ) . 

• Given a section s : Q ~ P, as a map WsL : Q ~ M, in terms of which 

W(L)(q) = [seq), W:(q)]lI; 

W:(q) = WL(s(q»; 

WL(X) = L(hs(x)WsL(r(x», (2.6) 

where hs(x) is determined by xhs(x) = s(r(x». 

This follows directly from the definitions involved. Note that hs(xk) = 
k- I h s (x), ensuring the consistency of the relation between W f and W L • • 

The space of smooth compactly supported sections of a vector bundle V (where 
compact support is defined with reference to the zero vector in each fiber) is denoted 
by reV); when M is a vector space V, the symbol r(P Xli V) will specifically 
refer to the first realization discussed above. The second realization will be called 
rs(p XH V). 

We will see that interesting classical phase spaces arise by taking M to be a 
coadjoint orbit of G in this construction. Alternatively, in classical as well as 
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quantum mechanics one encounters the case where M is a linear space V, carrying 
a linear H -action L; in that case one speaks of an associated vector bundle. The 
case relevant to quantum mechanics is that in which V is a Hilbert space 1i x 
carrying a representation Ux(H); cf. 2.9. 

A (local) trivialization 1/Ia = ('r, 1/1;;) of P leads to a (local) trivialization 1/1/: : 
M -+ Q x M of an associated bundle M by putting 

(2.7) 

This is well-defined, since 1/I;;(xh) = 1/I;;(x)h. Conversely, (1/I/:)-I(q, m) = 
[sa(q), m]H, in terms of the (local) section associated with 1/Ia; cf. 2.3. 

If two vector bundles V I, V2 are both associated to a principal H -bundle P over 
Q by H-actions L j , then VI ® V2 and VI E!) V2 are associated to P by the actions 
L I ® L2 and LIE!) L2, respectively. The dual bundle V* of an associated vector 
bundle V defined by an H -action L * is defined by the dual H -action q := (Lh-I)* 
on V*. 

2.2 Connections 

In preparation for the definition of a connection on a principal bundle, note that 
the tangent bundle TP of a principal bundle TP has a natural subbundle 

VP:= {v E TPI 't'*v = OJ. (2.8) 

Elements of V P are called vertical vectors, and the linear space Vx P : = Tx P n V P 
is called the vertical tangent space at x. It is easily seen that VP is stable under 
the lifted H -action R*. Indeed, V P is spanned by vector fields of the type ~ x given 
by the H-action on P; cf. (1.19). It is customary to define 

/:1 . /:p 
'iX·= -'iX' (2.9) 

referred to as a fundamental vector field. The vector ~1:(x) is evidently tangent 
to the curve x(t) = xExp(tX). One easily shows that 

(Rh)*~1: = ~{d(h)X· (2.10) 

A lift of X E Ty(x)Qtox E Pisanelementlx(X) E TxX for which t'*lx(X) = X; 
a lift is evidently unique up to the addition of vertical vectors. Each lift Hx of TT(X) Q 
to x E P satisfies Hx P E!) Vx P = Tx P, but there is no canonical choice of such a 
complement to VxP. 

Definition 2.2.1. A connection on a principal H -bundle is a smooth assignment 
x ~ HxP C TxP such that HxP E!) VxP = TxP and 

(2.11) 

Elements of Hx are called horizontal vectors, and each Hx is called the hor­
izontal subspace of Tx P. The collection of all Hx is the horizontal subbundle 
HP of TP. The horizontal lift ix(X) of X E TT(X)Q to TxP is the unique vector 
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in HxP satisfying ,*(ex(X» = X. From (2.11) we infer 

eRh(x)(X) = (Rh)*lx(X). (2.12) 

Similarly, a horizontallifU(q(·» of a curve q(.) in Q is a curve x(·) in P for which 
,(x(t» = q(t) and x(t) E Hx(r)P for all t. Such a lift is unique if one specifies 
x = x(O) (at which ,(x) = q(O». The parallel transport of x E P to Cl(q(t» 
along a C l curve q(.) in Q (with ,(x) = q(O» is by definition x(t), where x(·) is 
the horizontal lift of q(.) through x. 

These notions may be transferred to any bundle M associated to P. The horizontal 
lift of a C l curve q(.) in Q through [x, m]H E M (with ,(x) = q(O» is the curve 
[x(·), m]H, where xO is the horizontal lift of q(.) through x. Similarly, the parallel 
transport of [x, m]H to 'M~Q(q(t» is the point 

Pq-.+q(r)[x, m]H := [x(t), m]H, (2.13) 

where x(t) is as defined above. 

Proposition 2.2.2. There is a bijective correspondence between connections on P 
and smooth sections A of A I(p) ® fJ (i.e., fields offJ-valued i-forms on P), called 
connection I-forms, satisfying 

A(~{) = X, 

RZA = Ad(h)A 

for all X E fJ and h E H. 

(2.14) 

(2.15) 

Given the Hx, one defines A by (2.14) and Ax(X) = 0 for all X E HxP; equation 
(2.15) follows from (2.14), (2.10), and (2.11). Given A, one defines HxP as the 
subspace of Tx P annihilated by Ax; (2.11) follows from (2.15). • 

In a local trivialization 1/1 : P ~ Q x H (locally) associated to a section 
s : Q ~ P (locally; cf. (2.3» we can write 

(2.16) 

where s* A E A I(Q) ® fJ and etC is defined in (1.41). This expression is enforced 
by 2.1.3, (2.14), (2.15), and (1.53). Connections on a trivial principal bundle Q x H 
are, then, necessarily of the above form. 

A connection I-form A determines a projection 'v : TP ~ VP (mapping TxP 
onto VxP) by 

'v(X) = ~{(X). (2.17) 

The complementary projection 'h : TP ~ HP is given by 

'h(X) = X - ~{(X). (2.18) 

The curvature of A is an f)-valued 2-form F on P, defined by 

(2.19) 
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Some rearrangements lead to the expression 

F = dA + [A, A). (2.20) 

Writing s* A = Ii A~dqJL and s*F = Ii F~vdqJLdqV (in terms of coordinates qJL on 
Q and a basis {Ii) of ~, omitting explicit reference to the section s) one therefore 
has the physicists' formula 

j _ j j j j k 
FJLV - aJLA v - avAJL + CjkAJLAv' (2.21) 

A most important aspect of a connection on P is that it defines a certain first -order 
differential operator on all vector bundles associated to P. We write V := P x H V 
(defined relative to some H -action L on V). Recall that the space of all compactly 
supported smooth sections of V is denoted by r(V). 

As in 11.3.1.1, a covariant derivative on a vector bundle V( Q, V, r) is a linear 
association ~ ~ Y'~, where ~ E r(TQ) and Y'~ : reV) ~ rev) satisfies Y'n = 
fY'~ and Y'~ (f\ll) = Hf)\II + fY'~ \II for all f E COO ( Q) and \II E r(V). One 
may look at a covariant derivative as a map Y' : reV) ~ r(A I (Q) ® V), so that 
Y'~ IJI = Y'\II(~). 

We can (locally) choose a moving frame, that is, a collection of sections Sj : 
Q ~ V, such that {Si(q)}j=I, .... dim(V) is a basis of C1(q) for all q (in some open 
subset of Q). A function 1/1 : Q ~ lRdim(V) then defines a section IJI : q ~ 1/I i Sj(q) 
of V. With obvious abuse of notation we may then write 

(2.22) 

where A is a matrix-valued I-form on Q, defined by the property Y'Sj = Afsj; 
it evidently depends on the moving frame. This dependence is controlled by the 
transformation property 

(2.23) 

where A is the I-form determined by a moving frame Sj(q) := sj(q)M-1(q)f, 
where M : Q ~ GL(lRdim(V» (locally). This property, which is immediate from 
the definition of A, guarantees that Y' ~ = MY' 1/1, where ~ = M 1/1 defines the 
same section \II as 1/1 does, but in terms of the frame S. 

By slight abuse of terminology (cf. the case of a principal bundle) one often refers 
to A as a connection, and instead of saying that there is a covariant derivative on 
V one says that V has a connection. 

Proposition 2.2.3. A connection (with associated I-form A) on P(Q, H, r) de­
fines a covariant derivative Y' A on any vector bundle V (Q, H, r) associated to P 
by 

(2.24) 

when the limit exists; here q(.) is a curve through q with tangent vector ~q. and 
the limit is independent of the specific choice of the curve. 

In terms of the realization \ilL (cf 2.1.5) one then has (with abuse of notation) 

Y'tIJlL(x) := ~\(~T(x»\IIL(X). (2.25) 
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In terms of the realization Wf the covariant derivative is 

(2.26) 

where A := s* A. 

Here dL(X) := dL(Exp(tX»/dtlt = 0 for X E I); hence dL(s*A) E 

A I(Q) ® dL(I) (locally). Note that the right-hand side of (2.24) is well-defined 
as the difference between two elements of a vector space, in that both terms in the 
numeratorlie in the same fiber r,,-: Q(q) because of the parallel transport operation 
(2.13) involved. The properties of a covariant derivative then easily follow from 
the ordinary Leibniz rule. 

We take the horizontalliftx(·) of q(.) in V through x, and note that (2. 13) implies 
that 

(2.27) 

from which the equivalence of (2.24) and (2.25) is immediate. Note that (2.25) is 
well-defined in that VtWL(ph-l) = L(h)VtWL(p) because of (2.12). 

To derive (2.26), which is obviously a special case of (2.22), we notice that 
vtwf(q) = is(q)(X)WL(S(q», use (2.18) to write is(q)(X) = s*(X) - ~{(s.(X))' 
and then use the definition of ~ f and the equivariance of W L • • 

It follows most easily from (2.26) and a well-known identity for the exterior 
derivative d that in a given trivialization the curvature s*F of A is related to the 
covariant derivative by (cf. 11.(3.20» 

(2.28) 

In complete analogy to the special case of an affine connection (see 11.3.1), 
given a covariant derivative V on some vector bundle V(Q, V, r) one may define 
the horizontal lift i of a vector or of a curve. In terms of the matrix-valued 1-
form A appearing in (2.22) and the identification r-I(q) ::::::: lRdim(V) given by a 
moving frame (that is, the components Vi are defined by v =: ViSi(q», one has 
iv(X) = (-v j A~(X), X). 

The following construction will not be used until 3.1 0, but logically fits in at this 
point. We follow the notation of Definition 2.1.2, except that the general bundle B 
is now a vector bundle V. 

Proposition 2.2.4. Let f*V be the vector bundle defined by (2.2). Then a covariant 
derivative on V pulls back to a covariant derivative on f*V. 

Sections of f*V have the form W(x) = (WI (x), x), where WI(X) E r-I(f(x». 
Choose a (local) moving frame {Si} on V, with associated connection A, and define 
l/II : M -+ lRdim(V) (locally) by WI(x) = 1/Ii(x)s;{f(x». The desired covariant 
derivative is then given by VW(x) = (VW1(x), x), where 

(2.29) 
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This is well-defined (cf. (2.22) and subsequent text): A change of moving frame 
and corresponding change in A and 1/11 does not affect the total expression, because 
of properties like f* M = M 0 /. • 

The corresponding horizontal lift .e in f*V is given by 

(2.30) 

seen as an element of Tv V $ TxM :J 1(v,x)(V *Q M); one immediately sees that 
(2.30) is indeed tangent to V *Q M. 

2.3 Cotangent Bundle Reduction 

In preparation for the main theorem of this section we will first look at connections 
more specifically from the point of view of the cotangent bundle T*P and the 
momentum map. We start with a more general statement. 

Lemma 2.3.1. The pullback 0/ an H -action on a manifold M to the cotangent 
bundle T* M is strongly Hamiltonian, with momentum map J : T* M -+ ~~ given 
by 

Jx(er) = er(h). (2.31) 

Note that in order to obtain a (left) action on T* M one has to put h ~ RZ-1 , if 
the H-action on M is denoted by R. The claim most easily follows from 1.(2.24), 
(1.19), and (1.7) in canonical coordinates, in which 

Jx(p, q) = Pi~~(q). 

Here ~~ is defined by h(q) := ~~(q)a/aqi. 

The annihilator of VP (cf. (2.8» in T*P is 

VOp := (er E T*P I er(X) = 0 \IX E VP}. 

(2.32) 

• 
(2.33) 

Elements of VOp are called horizontal I-forms, and V~P is the horizontal cotan­
gent space at x. Let R* be the pullback of the H -action on P to T* P (if we speak 
of "the H -action R* on T* P" we mean the left action in question, i.e., we silently 
incorporate the shift h ~ h- I , as in the comment preceding (2.32». By the above 
lemma this action is strongly Hamiltonian, with momentum map J : T*P -+ ~~. 

From (2.9) and (2.31) we conclude that 

VOp = J-1(0). (2.34) 

The projection dual to Th : TP -+ HP is 'h* : T*P -+ VOp (that is, ,:(w) = 
w 0 Th)' From (2.18), (2.31), (2.14), and (2.9) we see that 

'h*(W) = W + J(w) 0 A; (2.35) 

here J(w) E ~* hits the ~-part of A E A I(p) ® ~. 
In a (local) trivialization we have T* P ~ T* Q x T* H (locally). We then put 

T* H ~ ~* x H in either the left or the right trivialization (see 1.4), and choose 



232 III. Groups, Bundles, and Groupoids 

coordinates ej (i = 1, ... , dim (H» on f) * such that e = ej ui in terms of a basis {ui } 
off)* dual to a basis {1j} off). Choosing also canonical coordinates (PIJ-, qIJ-) on T* Q 
(locally) we have the quadruple (p, q, h, ekR representing pIJ-dqIJ- + ejeLR(h). 
From 2.1.3, (1.49), (1.51), (1.55), and (1.57) we obtain 

RZ- 1 (p, q, e, h)L = (p, q, Co(k)O, hk- 1 )L, 

J(p, q, e, h)L = -e, 
RZ-1(p, q, e, h)R = (p, q, e, hk-I)R, 

J(p, q, e, h)R = -Co(h-1W. 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

Hence from (2.35), (2.16), (2.36) etc., and (1.42) one derives the coordinate 
expression of rh*: 

rh*(pIJ-, qIJ-, e j , h)L = (PIJ- - Ad(h- I )'A~(qWk. qIJ-, 0, hh; 

rh*(pIJ-, qIJ-, e j, h)R = (PIJ- - A~(qWj. qIJ-, 0, hk 

(2.40) 

(2.41 ) 

With (2.37) and (2.39) this confirms (2.34). In this trivialization the canonical 
Poisson bracket on T*P (cf. I.(2.24» reads simply 

{f, g} = {f, g} T' Q + {f, g} T' H , (2.42) 

where the first term is given by I.(2.24) and the second by (1.54) (with r = 0 and 
G replaced by H). 

The aim of the following considerations is to factorize f)* from T* P in an intrinsic 
way, so as to facilitate the study of the momentum map. Recall Definition 2.1.2. 

Definition 2.3.2. Let P be a principal H -bundle over Q. Then H acts on PH: = 
P *Q T Q and P~ := P *Q T* Q through its action on P (combined with the trivial 
action on T(*)Q); e.g., on P~ one has h : (x, a) 1-+ (xh- I, a). With this action, 

and projection onto the second factor, PH = rTQ-'>QP and P~ = rT'Q-'>QP are 
principal H -bundles over T Q and T* Q, respectively. 

Lemma 2.3.3. Regarding all spaces in question as bundles over P with the obvious 
projections, there are natural H -equivariant isomorphisms between 

• P x f) and VP, where H acts on the former by pA := R x Ad and on the latter 

by R*; 
• P~ and V O P, where H acts on the former as specified in 2.3.2 and on the latter 

by (R*)-I. 

The first isomorphism is given by (x, X) B- ~ {(x). The desired equivariance 
follows from (2.10). Given (x, a) E P~, the map r; : T,*(x)Q -+ Tx*P produces an 

element r;a E Vxop. Given WE VxOP one defines aw E T;(x)Q by 

aw(X) := w(lAX»; (2.43) 

the nonuniqueness of the lift does not matter, since w annihilates vertical vec­
tors. One easily checks that these maps are diffeomorphisms, and are each other's 
inverse. The H -equivariance follows from the property r 0 Rh = r. • 
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Further to 2.3.3, one has 

Lemma 2.3.4. For any given connection, HP is H -equivariantly isomorphic to 
PH as a bundle over P. 

The isomorphism is obtained by letting (x, v) E HP correspond to lAv). The 
equivariance follows from (Rh)*(,,(V) = lRh(x)(v) (see (2.11». • 

Let H act on P x ~* by pC := R x Co; that is, 

PK(x, a, 0) = (xh- I , a, Co(h)O). (2.44) 

Proposition 2.3.5. A connection on P leads to H -equivariant isomorphisms 

TP:::::: PH ED (P x ~); 

T*P :::::: P~ ED (P x ~*). 

(2.45) 

(2.46) 

Here all objects are seen as vector bundles over P, on which the associated 
diffeomorphism is trivial. 

All claims are immediate from 2.3.2, 2.3.3, and 2.3.4. • 
Corollary 2.3.6. Regarding the objects involved as manifolds (rather than 
bundles), (2.46) is an H -equivariant diffeomorphism 

T*P:::::: P~ x ~*, (2.47) 

and similarly for (2.45). The momentum map of the H -action (2.44) on P~ x ~* is 

J(x, a, 0) = -0. (2.48) 

To prove (2.48) one adopts a local trivialization, compares (2.44) with (2.36), 
and uses (2.37). • 

We shall need the explicit fOnD of the isomorphism 1{1 A : T* P -+ P~ x ~*, 
which follows from (2.35); one has 

1{IA(W) = ('PP-4p(w), aw+J(w)oA, -J(w», 

with a ... given by (2.43). The inverse is 

1{IA1(X, a, 0) = ';.p-4TQ(a) + 00 Ax. 

(2.49) 

(2.50) 

The canonical Poisson structure 1.(2.24) is invariant under the H -action on 
T*P (any diffeomorphism of a manifold M pulled back to T* M is a Poisson map). 
Consequently, one obtains a Poisson structure on (T* P) 1 H. The associated Poisson 
algebra is the classical algebra of observables of a particle moving on Q = PI H 
with all possible "classical" charges 0 C ~*. There is a natural isomorphism 
between COO«T*P)I H) and COO(T*p)H, the space of smooth functions on T*P 
that are invariant under the H -action R*. 

Theorem 2.3.7. Each symplectic leaf of the Poisson manifold (T*P)I H 
(inheriting the canonical Poisson structure ofT*P) is of the form 

(rp)" := J-1(0)1 H, (2.51) 



234 III. Groups, Bundles, and Groupoids 

where 0 C ~* is a coadjoint orbit of H. 
Any connection on P leads to a diffeomorphism 

(T*P)/H ~ P~ XH ~*, (2.52) 

seen as the vector bundle over T* Q associated to the principal H -bundle P~ (cf 
2.3.2) by the coadjoint representation on ~*. Consequently,for each 0 and a given 
connection A one obtains a diffeomorphism 

1//1: (PP)o ~ P~ Xli 0, (2.53) 

where (PP)o is a bundle over T* Q (with typical fiber 0) associated to P~. 

The first claim is clear from (2.38), (2.39), 1.4.4, and (2.42). The second and 
third follow from the first and 2.3.6. The map 1/1;( is simply the reduction of 1/1 A in 
(2.49); that is, the latter quotients to a map [1/1 A]lI from (T*P)/ H to P~ Xli, which 
provides the diffeomorphism in (2.52), and 1/1;( is then the restriction of [1/1 A]lI to 
the symplectic leaf T* pO in (T* P) / H . • 

The tilde on (PPP signifies that the quotient in (2.51) is taken with the entire 
group H, rather than with its identity component HO; cf. IY.1.6. 

From Corollary 1.2.6.10 we now have 

Corollary 2.3.8. Up to equivalence, each irreducible representation of the Pois­
son algebra COO«T*P),LH, JR) (in the sense ofl.2.6.6) is realized on a symplectic 
manifold of the type (T*PP, or, equivalently, of the type P~ XH 0 (ora covering 
space thereof). 

The space P~ x H ~* becomes a Poisson manifold by declaring the diffeomor­
phism (2.52) to be a Poisson map. Similarly: 

Definition 2.3.9. The symplectic space P~ XH-2, equipped with the2oisson 
structure that it inherits as a symplectic leaf of(T*P)o, is denoted by (T*P)~. 

Equivalently, the Poisson structure on (PP)~ could be defined by stipulating 
that the diffeomorphism 1/1;( in (2.53) be a Poisson map. 

The corresponding Poisson bracket is easily computed in a local trivialization 
of the associated bundles in question corresponding to a local trivialization of P 
(see (2.7». Both (T*P)/ H and P~ x H ~* trivialize to T* Q x ~* (locally), and 
from (2.49) with either (2.37) and (2.40), or (2.39) and (2.41) (the difference 
between these expressions fades when passing to the quotient by H and taking 
local trivializations), we infer that locally the diffeomorphism If A : (T*P)/ H ~ 
P~ X 1I ~* is given by 

lfA(p, q, (}) = (PIL - A~(q)(}j, qIL, (}i). (2.54) 

It follows from (2.42) and 1.4.2 that the Poisson bracket on P~ Xli 1)* is 

° af ag af ag i af ag 
{j, g}* = -a -a IL - -a IL -a - - (}iFILo(q)-a -a 

PIL q q PIL PIL Po 
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ck 0 (_ af ~ Ai ( ) af ~ Aj af ag ). 
+ ij k aOi aOj + J1, q apJ1, aOj + J1, aOi apJ1, , (2.55) 

for brevity we have omitted the argument (p, q, (J) on both sides. One notices that 
this is the sum of the canonical Poisson brackets on T* Q and ~~ and terms in 
which the connection A and its curvature F (see (2.21)) enter. 

As an immediate corollary one infers that 

(2.56) 

as symplectic manifolds, where T* Q is equipped with the canonical symplectic 
structure 1.2.23. 

2.4 Bundle Automorphisms and the Gauge Group 

We have seen in n.3.3 that when H is trivial the group gQ defined by 11.(3.12) 
plays an important role in the construction of observables on T* Q. In particular, 
the map J in 11.3.1.4 is the momentum map for the action of g Q on T* Q defined 
in 11.3.1.5 (this observation is a special case of the results below). 

If H is nontrivial and P is a principal H-bundle over Q, neither Diff(Q) ~ 
C~(Q, 1R) nor Diff(P) ~ C~(P, 1R) is sensitive to the bundle structure. We now 
prepare ourselves for the specification of the correct group. 

Definition 2.4.1. The group Aut(P) is the group of smooth bundle isomorphisms of 
P with compact support on Q .In other words, Aut(P) is the restriction of Diff(P) 
to those Coo diffeomorphisms cp that satisfy 

(2.57) 

for all h E H, and for which the projection (to Q under 'f) of the set where cp 
differs from the identity is compact. 

The gauge group Gau(P) C Aut(P) consists of those cp E Aut(P) satisfying 
'foCP='f· 

Proposition 2.4.2. The space Aut(P) is isomorphic to f(P x H P), that is, to the 
collection of sections of the bundle P x H P associated to P by the given H -action 
on P. Here the group operation in r(p x H P) (realized as H -equivariant maps 
cpM : P -+ P) is cp:dcp~d = cp~d 0 cp~d. 

The gauge group Gau(P) is isomorphic to r(p XH H), where the associated 
adjoint bundle P x H H is defined with respect to the adjoint action of H on itself. 
The group operation in f(P XH H) (realized as H-equivariant maps g := gM : 
P -+ H) is pointwise multiplication. 

Hencefor trivial P = Q x H the gauge group is isomorphic to C~(Q, H) (with 
pointwise multiplication as the group operation). 

The first claim is immediate from Proposition 2.1.5. Define a map g : P -+ H 
by the property 

Cpg(X) = Rg(X)-l(X) = xg(x). (2.58) 
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Since by definition one has 

g(xh-') = Ad(h)g(x) = hg(x)h-', 

the second claim follows. 

(2.59) 

• 
The relation between Aut(P) and Diff(Q) is described by the exact sequence of 

groups 

1 -+ Gau(P) -+ Aut(P) -+ Diff(Q) -+ 1; (2.60) 

that is, the image of each homomorphism is the kernel of the next one. The second 
arrow is given by inclusion, and the third is the map ({J ~ ({JQ, where ({JQ is the 
element of Diff(Q) defined by ({J through the bundle projection T; that is, 

T 0 ({J = ({JQ 0 T. (2.61) 

As in 11.3.3 we say, in a somewhat loose sense, that the Lie algebra ()iff(P) of 
Diff(P) is the collection r(TP) of smooth compactly supported vector fields on P. 
Since Aut(P) and Gau(P) are, equally loosely, Lie subgroups of Diff(P), we can 
discuss their respective Lie algebras. In preparation, note that the space (TP)/ H 
is a bundle over Q, with projection inherited from TTP->P->Q. The space r(TP)H 
consists of all H -invariant vector fields ~ on P for which T( supp (~» is compact. 
It is a Lie algebra under (minus) the commutator borrowed from r(TP). 

Proposition 2.4.3. One may identify r«TP)/ H) and r(TP)H, upon which the 
Lie algebra llut(P) of Aut(P) is isomorphic to r«TP)/ H). 

The Lie algebra gllu(P) ofGau(P) of the gauge group is isomorphic to r(P XH 
~), where P XH ~ is the vector bundle (over Q) associated to P by the adjoint 
representation of H on ~, and the Lie bracket on r(p XH ~) is the pointwise 
bracket in ~. 

Hence for trivial P = Q x H the Lie algebra of the gauge group is isomorphic 
to C~(Q,~) (with pointwise Lie bracket). 

Since an element ~P E llut(P) by definition satisfies 

(2.62) 

it is clear that llut(P) = r(TP)H. With [X]H denoting the equivalence class of 
X E TP in (TP)/ H, the map r(TP)H 3 ~ ~ ~ E r«TP)/ H) defined by 
~(q) = [~(S(q»]H is therefore independent of the sections : Q -+ P.Conversely, 
one puts ~(x) = rit->p(x) n Tit->(TP)/ H(~(rp->Q(x»); this intersection consists of 
one point, since the H -action is free. These two maps provide a bijection between 
r«TP)/ H) and llut(P). 

The Lie algebra gllu(P) of Gau(P) comprises all vertical H -invariant vector 
fields on P; the second claim therefore follows from Lemma 2.3.3. Alternatively, 
it is obvious from Proposition 2.4.2. • 

The relationship between P XH P and (TP)/ H will be elucidated in 3.8.8. 
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For later use, we record that elements).. := ).. Ad E rep x H ~) of gau(P) satisfy 
(cf. (2.59» 

)..(xh-1) = Ad(h»)"(x). (2.63) 

The diagram (2.60) infinitesirnalizes to an exact sequence of Lie algebras 

o -+ gau(P) -+ aut(P) -+ iliff(Q) -+ 0, (2.64) 

where we recall that iliff(Q) = r(TQ) (with minus the commutator as its Lie 
bracket). The corresponding exact sequence of vector bundles (allover Q) is 

o -+ P XH ~ -+ (TP)/H -+ TQ -+ 0; (2.65) 

taking sections, we recover (2.64). A connection A on P is then equivalent to a 
splitting of the sequence (2.64) (in the sense of a map from iliff(Q) to aut(P) that 
is a left inverse to the arrow in the opposite direction), since ~ E iliff(Q) has a 
horizontal lift e(~), which lies in aut(P) because of (2.11). 

As shown in (2.3), a (local) section s : Q -+ P is equivalent to a (local) trivial­
ization 1/1 S : P -+ Q x H. In a fixed such trivialization 1/1 s, a gauge transformation 
q;g : P -+ P then induces a (local) diffeomorphism gS : Q x H -+ Q x H by 
requiring that gS o1/ls = 1/Is 0 g ("active picture"). This yields 

gS(q, h) = (q, gs(q)h), 

where gs is related to g as in 2.1.5; that is, 

gs(q) = g(s(q». 

(2.66) 

(2.67) 

In the "passive picture" the gauge transformation q;g defines a new section Sg by 
the property 1/Isg = 1/Is 0 q;-;l. Using (2.59) this gives (cf. (2.4» 

Sg(q) = s(q)gs(q). (2.68) 

It easily follows from (2.14), (2.15), and (2.57) that q; E Aut(P) has the prop­
erty that the pullback (q;-I)*A is a connection I-form if A is. This particularly 
applies to q;g E Gau(P). It is interesting to compute the action of Gau(P) in a local 
trivialization given by a section s. 

Proposition 2.4.4. For q;g E Gau(P) (cf. 2.4.2) one has 

s* M(q) = Ad(gs(q»s* A(q) + gs(q)dg;l(q), (2.69) 

where Ag := (q;-;I)*A. The right-hand side of(2.69) describes both the value of 

(q; -; I )* A in the fixed trivialization 1/1 s defined by s (active picture). and the value 
of A in the trivialization defined by the transformed section Sg-I (passive picture). 

Alternatively, iJtwo sections Sa and sp are related by (2.4), and Aa := s~A etc., 
then, writing gpa = g;;J. one has 

Ap(q) = Ad(gpa(q»Aa(q) + gpa(q)dgaP(q). (2.70) 

The last claim follows from s* 0 (q;-;l)* = s* -I' as is immediate from (2.68). 
To derive (2.69), which should be comparelwith (2.23), one evaluates the left­

hand side on X = dq(t)/dtlt = 0; this yields A(d/dt s(q(t»g;l(s(q(t»lt = 0), 
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where we used (2.67). The differentiation dldt firstly hits s(q(t»; one uses (2.15) 
to obtain the first tenn on the right-hand side of (2.69). It secondly hits g;l( . .. ); 
this time one inserts gs(q)-lgs(q) after s(q), and uses (2.14) to find the second 
tenn. • 

The second tenn in (2.69) equals (g; I )*8fc (q), and is, of course, also equal to 
-dgs(q)g;l(q). Suppressing the dependence of g(q) on the section s, physicists 
write (2.69) as 

(2.71) 

In any case, the second tenn drops out in the transfonnation of the curvature: 
From (2.20) and (2.69), or (2.21) and (2.71), one infers that 

S*F8(q):= s* ° (rp,;-I)*F(q) = Ad(gs(q»s*F(q). (2.72) 

2.5 Construction of Classical Observables 

In this section we construct a complete set of classical observables on a symplectic 
leaf (,PP)o of(T*P)1 H in tenns of the momentum map of a certain group action. 
In preparation, consider the following general construction (which includes (2.78) 
below as a special case). 

Definition 2.5.1. Let Ll be an H -action on M, denoting the bundle associated to 
P through this action by Ml (here I is some label). Then Aut(P) acts on MI by 

(2.73) 

This action is well-defined on account of (2.57). 
Returning to the main theme, our basic group is the semidirect product 

g~ := Aut(P) ~ C~(Q, 1R), (2.74) 

which is defined through the action rp : g ~ (rpQI)*g, where rp E Aut(P) and 
g E C~(Q, 1R), and rpQ is the diffeomorphism of Q defined by rp; see (2.61). 

Theorem 2.5.2. Consider the g~-action on T*P defined by 

Po(g) : w ~ w - d-,;*g(w); 

Po(rp) : w ~ (rp-I)*w, 

(2.75) 

(2.76) 

and Po (rp , g):= Po(g) 0 Po(rp), where g E Cgo(Q, lR)andrp E Aut(P). This action 
is strongly Hamiltonian and commutes with the H -action R*, so that there is a 
reduced strongly Hamiltonian action p~ on C[;;-"P)o. 

Recall (2.53). The actions p~(g) := 1/Ir ° Po(g) and p~(rp) := 1/IA~ ° Po(rp), 
where A'" := (rp-I)*A, on P~ XH 0 are then given by 

p~(g) : [x, a, 8]H ~ [x, a - dg, 8]H; 

p~(rp) : [x, a, 8]H ~ [rp(x), (rpQI)*a, 8]H. 

(2.77) 

(2.78) 
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In particular, for a gauge transformation f/lg one simply has 

p~(f/lg) : [x, a, 8]H 1-+ [x, a, Co(g(X»e]H, 

where g E f'(P XH H) is ~ated to f/lJ!y (2.58). 
Finally, each p~(f/l) : (T*P)~ 1-+ (T*P)~~ is a Poisson map; cf 2.3.9. 

(2.79) 

Here [x, a, 8]H E P~ XH 0 is the H-equivaIence class of (x, a, 8) E P~ X o. 
Note that the reduced actions p~(f/l) and p~(g) are well-defined because of (2.57) 
and (2.59), respectively. Equation (2.77) is obvious. To derive (2.78) one uses the 
property f/l*~1 = ~1, which follows from (2.57). Specializing (2.78) to a gauge 
transformation, the associated diffeomorphism f/lQ of Q is the identity, so that f/lg 
maps (x, a, 8) into (xg(x), a, 8); cf. (2.58). Since [xh, a, O]H = [x, a, CO(h)e]H 
by definition of the H -equivalence class in question, (2.79) follows. 

The fact that the group action on T*P is strongly Hamiltonian follows from 
2.3.1, and from the existence of an equivariant momentum map: For Aut(P) one 
has (2.31), whereas for the C~(Q, 1R.)-action on T*P one has 

(2.80) 

Compare with 11.(3.7). 
Since the action Po on T* P commutes with the H -action on this space, the 

momentum map J for Po reduces to a well-defined map JO on the reduced space 
Cf;'p)o. Because of the definition of the Poisson structure and the reduced group 
action p~ on cr7pp, the map JO is an equivariant momentum map for p~. This 
shows that p~ is strongly Hamiltonian. 

The last claim is obvious from 2.3.9 and the rest of the theorem. • 

Let 1/1 : P -+ Q x H be a (local) trivialization of P; see the text preceding (2.36). 
A local expression for the action p~ (f/lg) : (,f";'p)o -+ Cf;'p)o of the gauge group 
m~ be derived from (2.66). Pulling this action back to T*P and subsequently to 
(T* P)o ~ T* Q x 0 (locally), one obtains 

p~(f/lg) : (aq, O)s 1-+ (aq + O(dg;'(q)gs(q», Co(gs(q»e)s. (2.81) 

Here aq E Tq*Q, and dg;'(q)gs(q) E I); cf. the proof of 2.4.4. Also, we have 
explicitly indicated the dependence on the section s. In other words, the point 
(PJL, qJL, OJ)s is mapped to (PJL + (oJLg(q )-' gs(q»iOj , q, Co(gs(q »{ OJ)s. 

Relative to a fixed section s, a p-form fA on T* Q x 0 (perhaps defined only 
locally), also depending on the connection A = s* A, is said to be gauge-covariant 
when 

(2.82) 

This ~operty, sacred in physics, states the fact that f is an expression of a function 
on (T* P)o, depending on the connection A, in a local trivialization. A case in point 
is the covariant momentum, which is a I-form defined by 

(2.83) 
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In coordinates this reads p~(p, q, 0) = Pll - OJ A~(q).1t then follows from (2.81) 
and (2.69) (or (2.71» that this function is indeed gauge-covariant. More generally, 
an expression of the type f 0 pA is gauge-covariant. 

Similarly, we could compare (local) expressions for a function on cF"pp in 
two (local) trivializations whose (local) sections are related by (2.4). With slight 
abuse of notation we define 

With the relation (2.70), the condition for gauge-covariance is 

fAp 0 p[?(g/Ja) = fAa. 

(2.84) 

(2.85) 

It follows from (2.54) and (2.82), or from direct calculation, that the local 
expression for p[?(f(Jg) : (PP)~ ---+ (PP)~go cf. (2.79) and (2.69), is simply 

(p[?(f(Jg»(aq , O)~ = (a, Co(gs(q)wtg
, (2.86) 

where the explicit dependence on the connection has been displayed. In other 
words, the momentum on P~ XH 0 is gauge-covariant. The fact that p[?(f(Jg) is a 
Poisson map may then be verified from 1.(2.15), (2.86), and (2.55). 

A (local) trivialization o/s, corr~onding to a (local) section s of P (cf. (2.3», 
induces a (local) trivialization (T* pp ~ T* Q x 0, whose inherited Poisson 
structure is simply the sum of the canonical bracket 1.(2.24) on T* Q and minus 
the Lie-Poisson bracket (1.3) on 0; that is, 

° af ag af ag k af ag 
{t, g} = apll aqll - aqll apll - CjjOk aOj aoj ' (2.87) 

Theorem 2.5.3. Relative to an arbitrary connection A on P and a (local) section 
s, the equivariant momentum map J O of the reduced g~-action p[? on (PP)o (cf 
2.5.2)isasfollows. With slight abuse of notation we simply write J O for (o/s-I)* J O, 
putting the s-dependence into the argument of JO. 

For the C~(Q, lR)-action (2.75) on (PP)o one has 

Jf(aq, O)s = g(q). (2.88) 

For general ~ E aut(P), identified with a vector field ~p on P, with (2.83), ~Q := 
'l"*~P, and A := s*A, one has 

J~q,(aq, O)s = P~q.IJ)(~Q) + () 0 As(q)(~p). 

For pure gauge transformations this specializes to 

Jf\aq , ()s = O(As(q», 

where A E rep x H I) and As := A 0 s; cf 2.4.3 and 2.1.5. 
Finally,for the horizontalliJt of some vector field ~ Q on Q one has 

Jl~~Q)(aq, O)s = P~q.IJ)(~Q)· 

(2.89) 

(2.90) 

(2.91) 
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The equivariance of J O is immediate from 2.5.2, and may be verified by explicit 
computation using the above formulae. The expression (2.80) for the momen­
tum map of the C~(Q, R.)-action on T*P entails (2.88). To derive the remaining 
expressions we decompose 

(2.92) 

where we recall that ~Q = r*~P, and t'(~Q) = s*~Q -~I(~Q)' This follows from the 

identity ~P = s*~Q +(~p -s*~Q), in which the second term is vertical, and (2.17). 
It is obvious from (1.19) and (2.9) that (1/Is)*~{ = ~*; with (2.31), this leads to' 
(2.90). Also, the property (1/Is 0 s )*~ Q = ~ Q, combined with the previous equation 
and (2.31), leads to (2.91). Equation (2.89) then follows from (2.92), (2.91), and 
(2.90). • 

One verifies that J O is gauge-covariant in the sense of (2.82); in case the section 
s explicitly occurs, according to Proposition 2.4.4 one should interpret the symbol 
M in (2.82) by substituting Sg-I for s; cf. (2.68). For example, the invariance 
of the last term in (2.89) may be checked using (2.15) and (2.62). Similarly, the 
gauge-invariance of (2.90) follows from (2.68) and (2.63). 

Since the map p~(cp) in (2.78) maps ('PP')~ to (PP)~., which has a different 
Poisson structure, there is no concept of a momentum map unless A'" = A (i.e., 
the connection is invariant under (cp-l)*). In that case the momentum map ]0 is 
given by 

(2.93) 

which is weB-defined, and easily follows from (2.89) and (2.50). 
The momentum map for p~(g) always exists, and, analogously to (2.88), is 

given by 

(2.94) 

2.6 The Classical Wong Equations 

We tum to the Hamiltonian. In the spirit of 11.3.3 we assume that there is a Rie­
mannian metric gQ on Q. On each symplectic space (PP)~ = P~ X H 0 one then 
has a natural Hamiltonian 

hO([x,a,8]H):= tgQl(a,a); 

cf. 11.(3.30). In coordinates this is simply 

hO(p,q,8) = ~g~V(q)P/LPV' 

(2.95) 

(2.96) 

where g~V = (ggv)-l. Since (2.95) explicitly depends neither on 8 E 0 nor 
on the connection A, the Hamiltonian hO is evidently invariant under the gauge 
transformation (2.79) or (2.86). Since, by Theorem 2.5.2, the diffeomorphism 
p~(cpg) is a Poisson map from (PP)~ to (PP)~g, it follows from 1.2.3.5 and the 
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gauge-invariance of hO that the Ham~nian flow on (PP)~g is the image under 
i/~(q;g) of the Hamiltonian flow on (T*P)~. 

From the Poisson bracket (2.55) one then obtains the equation of motion 

qJl = g~V(q)pv; 

. - I a pu() + Fi ( ) V(). PJl - -"2 JlgQ q PpPu JlV q P j, 

• k . 
()i = -Cij()kpJl A~(q). 

(2.97) 

(2.98) 

(2.99) 

These are known as the Wong equations, describing the motion of a "colored" 
particle in the external gauge field A. The word "color" refers to the classical 
charge, represented by the coadjoint orbit O. The equations have a simple geo­
metric interpretation. Firstly, the projection of the motion to T* Q (cf. the remark 
following (2.53» is cogeodesic motion distorted by the Lorentz force, that is, by 
the last term in (2.98). Secondly, the motion ()(t) in the fiber 0 is given by parallel 
transport in the bundle P x H 0 associated to P by the coadjoint action of H on 
O. Indeed, looked at as an equation in the vector bundle P~ x H 1)* , with covariant 
derivative VA defined by the connection A (see 2.2.3), equation (2.99) combined 
with (2.97) reads vt() = o. 

We will show that the Hamiltonian flow on each leaf is the reduction of a single 
Hamiltonian flow on T*P. 

Proposition 2.6.1. There is a bijective correspondence between H -invariant 
Riemannian metrics g on P satisfying 

~(~L(h)X' ~ld(h)Y) = ~(~1, ~t) (2.100) 

for all x E P and X, Y E I). and triples (gQ, (~I}qEQ' A). where gQ is a Rie­
mannian metric on Q, each g; is a bi-invariant Riemannian metric on H (the 
dependence on q being smooth in that g; (X, Y) E COO(Q)for all X, Y E TeH = 
I)), and A is a connection on P(Q, H, T). 

Given g, for each q E Q one defines a bilinear form on Te H = I) by 

g:(X, Y):= g.(q)(~l,~t); (2.101) 

by (2.10) and the right invariance of g this is independent of the section s. Since 
g: is Ad-invariant by (2.100), one subsequently obtains a bi-invariant metric (with 
the same name) on H by left or right translation. The smooth dependence on q is 
immediate from the smoothness of g. 

A connection on P is constructed by defining Hx P C Tx P as the orthogonal com­
plement of Vx P; condition (2.11) is satisfied because g is H -invariant. Equivalently, 
the connection I-form A may be directly constructed as 

Ax = (g:)u 0 J 0 gu, (2.102) 

where gu : TP -+ T*P is defined below II.(3.15), J is the momentum map for 
the H-action on T*P, and (g:)U : 1)* -+ I) is obtained from g~X) in the usual way. 
Equation (2.14) is then satisfied because of (2.31), whereas (2.15) is a consequence 
of the equivariance of J. 
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Finally, the metric gQ is constructed from g by gQ(X, Y) := g(e(X), e(Y», 
where the point to which one lifts X, Y horizontally is immaterial in view of 
the H -invariance of g. In other words, gQ is the unique metric on Q for which 
horizontal lifting is an isometry. 

In the opposite direction one defines g on VP by reading (2.101) from right to 
left, declares HP to be orthogonal to VP, and manufactures the metric on HP as 
in the previous paragraph. • 

In a trivialization P ~ Q x H (locally) the correspondence is 

gn = gij; 

A i ij 
p. = gHgP.j; 

gQ _ g _ gij g .g . p.v - p.v H p.j VI' (2.103) 

where g% is the inverse of gn (which may differ from gij). All expressions depend 
on q E Q but not on h E H. These comments equally well apply to the expressions 
below. In the opposite direction we obtain 

gij = gn; 
H . 

gip. = gp.i = gijA~; 
_ Q H i j 

gp.v - gp.v +gijAp.Av· (2.104) 

In preparation for the following theorem, we mention the obvious fact that 
any H-invariant function f on T*P is is well-defined on (T*P)/ H, and therefore 
defines a reduced function fO on each leaf (PP)o by restriction. 

Theorem 2.6.2. Let the equivalent data in 2.6.1 satisfy the condition that g: be 
independent ofq. Then the Hamiltonian h* on T*P, defined by 1I.(3.30) through 
the metric g on P, reduces to a function h~ on each leaf P~ x H 0 ~ (PP)o, 
which differs from hO in (2.95) by a constant. In other words, the equations of 
motion ofh~ are the Wong equations (2.97)-(2.99). 

This is most quickly established in local coordinates; inverting g using (2.104), 
one obtains 

h*(p, q, e, h)R = ~g1/(q)(pp. - eiA~(q»(pv - ejA~(q» + g%(q)()iej. (2.105) 

Using the inverse of (2.54), the reduced Hamiltonian on P~ x H 0 is 

h~(p, q, e) = ~g(/(q)PP.PV + g%(q)()iej. (2.106) 

When g%(q) is independent of q, one computes from (2.55) that the last term in 
(2.105) Poisson-commutes with every function on P~ XH 0. This computation 
exploits the fact that C}kgf{ is totally antisymmetric, which is a restatement of the 

Ad-invariance of gH. Since P~ x H 0 is a symplectic space, this means that the 
term in question must be a constant. • 

Rather than on (PP)~ one can work on (PP)O, equipped with the Poisson 
bracket (2.87); cf. (2.53). This is more natural when the bundle P is trivial, i.e., 
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P:::: Q x H, for in that case one has (PP)o :::: T*Q x O. Also, formulating the 
dynamics on (PPp is better suited for studying the relation between the classical 
and the quantum theory; see 2.11 below. The following considerations equally well 
apply to a local trivialization of a possibly nontrivial bundle P. 

Instead of (2.106), which generates the Hamiltonian flow on (PP)o as trans­
formed by the diffeomorphism (2.54), and relative to the Poisson bracket (2.55), 
one now uses the Hamiltonian h~ : = h ° 0 1{Ii]. By (2.96), the coordinate expression 
of h~ is 

(2.107) 

This may equally well be obtained from (2.105), omitting the last term (which 
does not contribute to the equations of motion). 

The comment following (2.83) evidently applies; one has 

h~g 0 p~(cpg) = h~, (2.108) 

so that the gauge transformation p~(cpg) maps the Hamiltonian flow on (PP)o 
generated by h~ into the Hamiltonian flow generated by h~g. 

From (2.107) and (2.87) one deduces the Hamiltonian equations 

(2.109) 

(2.110) 

(2.111) 

where P~ := PI-' - 8; A~(q), as before. A different form of (2.111) is obtained by 
transferring the motion on 0 to a certain flow h (.) on H; this correspondence wiIl 
be used in the proof of Theorem 2.11.1. We assume that 0 = O(J is the coadjoint 
orbit through 8, and note that hh -I and the connection form A are elements of the 
Lie algebra ~. 

Proposition 2.6.3. Let the flow h (.) in H be the solution of 

(2.112) 

with initial condition h(O) = h.lf8(t) and h(t) are related by 8(t) = Co(h(t»8, 
so that 

8j (t) = 8(Ad(h(t)-IT;), (2.113) 

then 8; (t) solves (2.Jll) if h(t) solves (2.112). 

One evaluates both sides of (2.112) in the coadjoint representation, acts on 8, 
and uses (1.20). • 

2.7 The H -Connection 

Let us illustrate the preceding concepts in the case that the principal bundle P is 
G (G / H, H, r), where G is a Lie group having H as a closed subgroup (hence H 
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is automatically a Lie group), r is the canonical projection from G to G I H, and 
the H -action on G is given by 

(2.114) 

Many nontrivial bundles are obtained in this way. The simplest and most famous 
one will be studied in 2.12. 

The restriction to H of the adjoint representation Ad(G) on 9 quotients to a 
representation Is(H) on g/f), called the isotropic representation. This leads to the 
vector bundle G XH (g/f) overGIH associated with G(GIH, H, r). Let f)0 C g* 
be the annihilator of f) c g; clearly, f)0 ~ (g/f)*. The coisotropic representation 
Ci(H) on f)0 is the restriction of the representation Co(G) on g* to H. This defines 
the associated vector bundle G x H f)0. 

Lemma 2.7.1. There are diffeomorphisms (which are bundle isomorphisms whose 
associated diffeomorphism of G I H is the identity) 

T(GI H) ~ G XH (g/f); 

r(GI H) ~ G XH f)0. 

Furthermore, there is an isomorphism 

G~ ~ G x f)0 

(2.115) 

(2.116) 

(2.117) 

as principal H -bundles over T*(G I H). Here the H -action on G x f)0 is given by 
Rh(x, e) = (xh- 1, Ci(h)(), which defines G x f)0 as a principal H -bundle over 
T*(GIH) through the isomorphism (2.116). 

Recall that G~ is defined by 2.3.2 (with P replaced by G). The canonical left 
action L of G on G I H pushes forward to a G-action L* on T(G I H). One identifies 
T[elH (G I H) with g/f) in the obvious way. Under the isomorphism (2.115) the point 
[x, Y]H E G XH (g/f) then corresponds to (Lx)*Y E T(GI H). One verifies the 
independence of the representative (x, Y). 

Similarly, T[;lH(GIH) ~ f)0, and [X,e]H E G XH f)0 corresponds to L;_,e E 

T*(GIH). 
Finally, (2.117) is obtained by letting (x, [y, e]H) E G~ correspond to the point 

(x, Is(x-1y)() E G x f)0; note that x-1y E H by the definition of G~, and that 
this is evidently independent of the choice of (y, e) "" (yh- 1, Is(h)(). • 

Recall (2.51). Using the right trivialization of T*G (see 1.4), and noticing thatthe 
momentum map for the H -action on T*G (from the right) is simply the restriction 
of the momentum map of the G-action to f) c g, we see from (1.51) and (1.57) 
that 

(2.118) 

Here [X]H := xH; since 0 is stable under Co(H), the right-hand side is 
independent of the choice of x. 

On the other hand, in the left trivialization of T*G (1.55) and (1.49) yield 

(T-;C)o = {[e, X]H elf) E -OJ, (2.119) 
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where the H -equivalence classes are the orbits of the H -action given by 

h : (e, x) ~ (Co(hW, Xh-l). (2.120) 

We note that G acts on itself by left multiplication; this action evidently com­
mutes with the H -action (2.114), allowing us to regard G as a subgroup of the group 
Aut(G) of all bundle automorphisms of G(G / H, H, T). According to (1.52), in 
the right trivialization the reduced G-action A ° on (T-;:'G)o is 

A~(e, [Y]H) = (Co(xW, [XY]H), 

whereas in the left trivialization, (1.50) yields 

A~([e, Y]H) = [e, XY]H. 

(2.121) 

(2.122) 

By (1.58) and (1.56), the momentum map J O : (i;'C)o -+ g~ for this action in 
the right and the left trivialization, respectively, is 

JO(e, [X]H) = e; 

JO([e,X]H) = Co(x)e. 

(2.123) 

(2.124) 

Choosing an orthonormal basis {Ta} of 9 (with ensuing coordinates ea on g*, cf. 
1.1) allows one to write (2.123) as 

Jao(e, [X]H) = eaR. (2.125) 

Here Ja°(-) := JO(.)(Ta) and e: is the coordinate function ea relative to the right 
trivialization, regarded as a function on (T-;:'G)o (it is, of course, equally well a 
function on T*G and on (T*G)/ H). 

We now further specialize the discussion to the following situation. 

Definition 2.7.2. A closed subgroup H eGis called reductive if there exists a 
linear space meg such that Ad(H)m = m and 

9 = I) E9m. (2.126) 

One calls (2.126) a reductive decomposition of g. Any compact subgroup is 
reductive, for one can equip 9 with an H -invariant inner product, and define m to 
be the orthogonal complement of I). 

Choose a basis {Ti} of I). Given a reductive decomposition (2.126) of g, let lei} 
be elements of g* with the properties ei(Tj) = 8~ for all i, j = 1, ... , dim(H) 
and ei(X) = 0 for all X E m. 

Proposition 2.7.3. Let H be a reductive subgroup ofG with associated reductive 
decomposition (2.126). The H-connection 

dim(H) 

AH(x):= L ei(x)® T; (2.127) 
i=l 

is independent of the choice of basis (within the class of bases considered), and 
defines a connection i-form on G( G / H, H, T). 
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Thus AH is the restriction of the left Maurer-Cartan form efc to ~ (see 1.4) 
in an adapted basis. The defining properties of a connection are easily verified: 
(2.15) follows from (1.53), whereas (2.14) is equivalent to [~, m] ~ m (which is 
immediate from the reductivity of H). The basis independence of A H will be clear 
from the proof of the following corollary. • 

Let us note that A H is a G-invariant connection, because 9fc is G-invariant 
under the canonical left action of G on T* G. 

Corollary 2.7.4. There is a bijective correspondence between reductive decom­
positions (2.126) and G-invariant connections on G(Gj H, H, 't'). 

We use the left trivializations TG ~ 9 x G and T*G ~ g* x G; cf. (1.46) 
and (1.47). The vertical tangent vectors in TxG are those of the form (X, X)L, 

where X E ~, whereas the horizontal ones are defined by A H to be the vectors 
(y, X)L, where Y E m. Hence the choice of m as a complement to ~ in 9 defines 
the connection, and vice versa. In view of (1.50), the G-invariance of a connection 
A forces it to be of the form A H • • 

Using (2.117), the diffeomorphism (2.47) implemented by AH assumes the 
simple form 

(2.128) 

Comparing with (1.47) one sees that this amounts to a factorization g* ~ ~o x ~* 
as a manifold; as a vector space this actually sharpens to g* ~ ~o E9 ~* .It is evident 
from (2.7.4) that an H -connection provides such a decomposition, for apart from 
the canonical embedding ~o ~ g* it defines an embedding ~* ~ g* through the 
identification of ~* with mO C g*. 

Using (2.128), we denote elements of G~ x ~* by (x, J.1" 9), where x E G, 
J.1, E ~o, and 9 E ~* = mO. The H-action on G~ x ~* is 

Rh(X, J.1" e) = (xh- 1, Ci(h)J.1" Co(h)e), (2.129) 

which is consistent with (1.49). The momentum map for this action, given in 
general form by (2.48), then simply reads J(x, J.1" 9) = -e, which complies with 
(1.55). Obviously, the references to (1.49) and (1.55) are on the understanding that 
the pertinent G-action on T*G is restricted to H. Hence by (2.53) one has the 
symplectomorphism 

(2.130) 

for the symplectic leaf (T7CJ.2. in (T*G)j H. For 0 = to} this reproduces (2.116). 
The bundle projection of (PGp onto T*(Gj H) is given simply by 

(2.131) 

In the present formulation, the reduced G-action (2.122) on (T7CJ)o is 

(2.132) 
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This is a special case of (2.78); the I-form a E T* Q appearing in the latter is 
not to be confused with /-L E 1)0 in (2.l32). In the present context and notation the 
momentum map (2.124) of this action reads 

JO ([x, /-L, (}]H) = Co(x)(/-L + (}). (2.l33) 

This depends on the connection, which enabled us to identify () E 1)* with an 
element of g* . 

It is often more informative to ~ve the momentum map relative to a (local) 
trivialization of P, and hence of (T*Gp ~ T*(G / H) x 0 (locally). Specializing 
(2.89) to the case at hand we obtain, using (2.127), (1.42), and (2.83), 

(2.134) 

where the index a on JO and ~Q stands for Ta. Specializing 2.6.1 to the situation 
at hand, we have 

Proposition 2.7.5. An Ad(H)-invariant inner product (, ) on 9 defines 

• a left-G-invariant and right-H -invariant Riemannian metric g on G; 
• a G-invariant Riemannian metric gG / II on G / H; 
• a bi-invariant Riemannian metric gH on H; 
• an H-connection AH on G(G/ H, H, r). 

The metric g satisfies (2.100), and the four objects listed are related as in 
Proposition 2.6.1, where g: is independent of q. 

The metric g is obtained from (, ) by left translation and the identification 
9 = Te G. The restriction of (, ) to m ~ g/I) yields an inner product on T[HJ G / H, 
and subsequently a G-invariant Riemannian metric gG/ II by left translation. The bi­
invariant metric on H is defined by left or right- translating the restriction of (, ) to 
I). The H -connection is obtained by declaring m to be the orthogonal complement 
of I); cf. 2.7.4. Equation (2.100) is a restatement of the Ad(H)-invariance of (, ). 
It is easily verified that gG/ JI, gH, and A defined in 2.6.1 coincide with the ones 
above. • 

We are therefore in the situation of Theorem 2.6.2. With respect to the basis 
{Ta} of 9 introduced earlier, the free Hamiltonian 11.(3.30) on T*G in the left 
trivialization is simply 

dim(G) 

h*«(}, X)L = i L ();. (2.l35) 
a=! 

If (, ) happens to be Ad(G)-invariant, the expression for h*«(}, X)R in the right 
trivialization is the same. In that case, equations (1.58) and (2.l35) imply 

dim(G) 

h* = i L (1/;)2, (2.136) 
a=! 

where JL is the momentum map for the left action of G on T*G. Being right-H­
invariant, this momentum map reduces to the momentum map JO of the reduced 



2 Internal Symmetries and External Gauge Fields 249 

G-action on (T""";"'GP; cf. (2.125). Hence the reduced Hamiltonian h~ on (T7i;)o , 
defined as in (2.106), is given by essentially the same expression: 

dim(G) 

h~ = ~ L (1;;)2. (2.137) 
a=l 

2.8 The Quantum Algebra ofObservables 

In 2.3 we defined the Poisson algebra COO«T* P)/ H), and noticed the isomorphism 
COO«T*P)/ H) ~ coo(T*p)H. We now tum to the quantization of this algebra. For 
simplicity we assume that we have an H -invariant measure JL on P that is locally 
Lebesgue. This may be the measure obtained from an H -invariant Riemannian 
metric g on P, cf. 2.6.1 and 11.(3.40). In any case, one may define the Hilbert space 
L 2(P) := L 2(P, JL). 

On L 2(p) we have a representation U R of H, given by 

UR(h)W{x) = W(xh). (2.138) 

Hence we can define the C* -algebras 23o(L 2(p»H and 23(L 2{p»H of compact and 
bounded operators on L 2(P) that commute with each U R(h), h E H. The latter is 
not particularly useful in the present context, whereas the former is empty unless 
H is compact. We will therefore proceed on the assumption that H is compact. 
This assumption leads to a particularly clean analogy with the classical case. The 
noncompact situation will be treated, with new techniques, in 3.7.1. 

According to II.3.4 one may think of 23o(L \P»IR as the quantization of the 
Poisson algebra C~{T*P, JR); a quantization map is provided by the generalized 
Weyl quantization QJi in 11.3.4.4. In analogy with Theorem 1.9.2 (corresponding 
to the special case P = H = G) we are led to 

Theorem 2.S.1. Let QJi : C~{T*P) ~ 23o{L 2(p» be as defined in 1l.3.4.4, and 
assume that H is compact and K is H -invariant. 

With~(o = C~«T*P)/H),sothat~O = Co«T*P)/H),and~h = 23o(L 2(P»1l 

forli E JR\ (O), the map QJi : ~o ~ ~h definesanondegenerate strict quantization 
of(T*P)/ H, with the possible exception of the completeness condition 1l.1.1.1.4. 

The H -invariance of K may be achieved by averaging over the compact group 
H, but this is not essential: Since for n small enough QJi (f) is independent of K, 

it would suffice to use any quantization that maps C~(T*P, JR)H into 23o{L2(P»: 
and coincides with QJi for small n. 

The theorem is immediate from Theorems I1.3.S.1 and 11.3.6.3. • 

It is not difficult at all to determine the structure of the (complexified) quantum 
algebra of observables 23o{L 2(p»H. In preparation, we note that the H -invariant 
measure JL on P defines a unique measure v on Q, satisfying 

i dJL{x) f(x) = k dv(q) 1 dh f{s(q)h) (2.139) 



250 III. Groups, Bundles, and Groupoids 

for any f ELI (P) and any measurable section s : Q -+ P. This measure is locally 
Lebesgue; if J1, comes from a Riemannian metric g, then v is just the Riemannian 
measure determined by gQ (cf. 2.6.1). This measure is used in the construction of 
L2(Q) := L2(Q, v). 

Proposition 2.8.2. Each measurable section s : Q -+ P determines an 
isomorphism Q3o(L 2(p»H ~ Q3o(L 2( Q» ® C*(H). 

Here the tensor product is defined as the norm-closure of the algebraic tensor 
product in the natural representation on L2(Q) ® L 2(H). 

The section s determines a trivialization of P by (2.3), which leads to a uni­
tary transformation Us : L2(P) -+ L2(Q X H) ~ L2(Q) ® L2(H) defined by 
Us qJ (q , h) := qJ(s(q)h). Considerthe space 1.B2(L 2(P»11 of H-invariantHilbert­
Schmidt operators on L \P), whose elements K are characterized by a kernel 
K E L2(P X p)H satisfying 

K(xh, yh) = K(x, y) (2.140) 

almost everywhere. We construct a map p : L2(P x P)1I -+ L2(Q X Q x H) 
by (p(K»(q, q', h) = K(s(q)h, seq'»~. We then identify L2(Q x Q x H) with 
1.B2(L2(Q» ® L2(H), where 1.B2(L 2(Q» and L2(H) are seen as (dense) sub­
spaces of I.BO(L2(Q» and C*(H) (in tum identified with C;(H), see l.7). It is 
then verified that UsK U; = p(K). Since the norm-closures of 1.B2(L 2(P»11 and 
1.B 2(L 2(Q» ® L 2(H) are l.Bo(L 2(p»H and Q3o(L 2(Q» ® C*(H), respectively, the 
claim follows. • 

Corollary 2.8.3. Up to equivalence there is a bijective correspondence be­
tween the irreducible representations rrX of I.BO(L 2(P»H and the irreducible 
representations U x of H, X E fi. 

This follows from 2.8.2, l.7.5, and 1.2.2.6. • 
An analogous statement holds for arbitrary representations, but the stated form 

is helpful in understanding the analogy with the classical result 2.3.8. 
The representations rr X(l.B o(L 2(P»H) may be explicitly realized in various 

forms. The first one is rr{ on 

1-l; = L 2(Q) ® l-lx ' 

The proof of Proposition 2.8.2 leads to 

rrsX(K)qJ;(q) = l dv(q') l dh K(s(q)h, s(q'»Ux(h)IJ1;(q'). 

(2.141) 

(2.142) 

One may realize 1-l x in a fashion that is directly analogous to the realization of the 
symplectic manifold (PP/) as the associated bundle P~ XII O. The following 
construction is valid as it stands whether or not H is compact, as long as H is 
unimodular. 

Definition 2.8.4. Consider the Hilbert bundle 

HX = P XII l-lx (2.143) 
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associated to P by the representation Ux of H on 1tx (here Ux may be reducible, 
but for convenience we use notation pertinent to the irreducible case). There is a 
natural inner product on the space of sections r(HX), given by 

(qJ(x), <I>(x):= fa dv(q)(qJ(x)(q), <I>(x)(q»x. (2.144) 

where (, )x is the inner product in the fiber rH"/~Q(q) :::: fix (different identifi­
cations of the fiber with rtx lead to the same inner product). The Hilbert space 
L2(HX) is the completion ofr(HX) under this inner product. 

As explained in 2.1.5, we may realize r(HX) as the set of smooth functions 
qJx : P -+ rtx satisfying the equivariance condition (2.5); that is, 

qJX(Xh-l) = Ux(h)qJX(x). (2.145) 

Moreover, the projection of the support of qJX to Q must be compact. in this 
realization the inner product is given by 

(qJX, <l>X):= fa dv(r(x» (qJX(x), <l>X(x»x; (2.146) 

the integrand indeed depends only on x through rex) because of (2.145). The 
Hilbert space rtx is the completion ofr(HX) in this inner product. 

We return to the case that H is compact. Then rtX is a subspace of L \P) ® rtx: 
the latter carries a representation UR ® Ux of H (cf. (2.138», and it follows by 
definition that rtX is the subspace of L 2(p) ® rtx transforming trivially under 
U R ® U X' We already encountered a special case of this in 1.8. 

Proposition 2.8.5. The representation rrx (~O(L2(p»H) on 1tx , defined by 

rrX(K)qJX(x) = i dJ.L(Y) K(x, y)qJX(y) (2.147) 

(initially defined on ~2(L2(p»H and extended to ~O(L2(p»H by continuity), 
corresponds to Ux(H) as in 2.8.3. 

Note that the left-hand side satisfies (2.l45), and that the integrand on the right­
hand side is a function of r (y) because of (2.140). The expression may therefore 
be rewritten as 

rrX(K)qJX(x) = fa dv(r(y» 1 dh K(xh, y)Ux(h)qJX(y). (2.148) 

To relate rr x to the realization (2.142) we realize r (HX) in the second manner 
mentioned in 2.1.5. In this realization the inner product on rsCHX) is simply the 
one in (2.141), which therefore is the closure of r s (HX). The relation (2.6) between 
qJ; and qJX defines a unitary map T/ : 1tx -+ rtf, given by 

T/qJX(q) = qJX(s(q»; 

(T/)-lqJf(x) = Ux(hs(x»qJf(r(x». 

For all A E I.BO(L 2(P»H one then has T/ rrx (A)(T/)-l = rrf (A). 

(2.149) 

(2.150) 

• 
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In the spirit of the idea of bundles, it is more elegant to take not a single (possibly 
discontinuous) section s, but rather a collection of smooth local sections Sa : Na -+ 
P, relative to a cover {Na} of Q; cf. 2.1. On regions of overlap Na n N p, the 
appropriate sections are related by (2.4). This leads to yet another realization of 
the carrier space 1tx , which we denote by 1tfs). This is defined as the closure (under 

the inner product (2.152) below) of the space of all objects wtl' defined as follows. 

A vector W t) consists of a collection {W;} of smooth functions W; : Na -+ 1t x ' 
which are related on overlap regions by 

(2.151) 

(no sum over fJ). Furthermore, one requires that (wt), wt) < 00 in terms of the 

inner product on Hr.), defined by 

(wt), <l>fs) := L ( dv(q)lPa(q)(W;(q), <I>~(q»x' 
a JQ 

(2.152) 

Here {lPa} is a partition of unity subordinate to the cover {Na}; the inner product 
is independent of its precise choice. 

Proposition 2.8.6. The realization Jrt) is given by (q E Up) 

Jrt)(K)W;(q) = L ( dv(q')lPa(q') ( dh K(sp(q)h, sa (q'»Ux (h)W;(q'). 
a JQ JH 

(2.153) 

If ga : Na -+ H is such that s(q) = sa(q)ga(q), the realizations Jr/~) and 

Jrl are intertwined by the unitary Vs,/s) : 1t; -+ 1tfsl' given by Vs,/s)W:(q) := 
Ux (ga(q»Wf (q). With (2.142) this leads to (2.153). • 

The classical inclusion ('f~p)o C (T* P)/ H has a quantum analogue; the Hilbert 
space 1tx carrying an irreducible representation Jr x (Q3o( L 2(p»H) may be naturally 
realized as a subspace of L 2(p). This is done through the following result (of which 
(1.111) is a special case). 

Proposition 2.8.7. For compact H one has the decomposition 

under which 

L 2(p) ~ E91tX ® 1tx:, 

XEH 

(2.154) 

Q3o(L 2(p»H ® JrR(C*(H» ~ E9 Jrx (Q3o(L 2(p»H) ® Jrx:(C*(H». (2.155) 

xE11 

Here one could replace JrR(C*(H» and Jrx:(C*(H» by UR(H) and Ux:(H), 
respectively. This proposition is proved by mapping 1tx ® 1tx: into a subspace of 
L2(P) so as to intertwine Jrx ® 1rx: with the defining representation of~o(L2(P»H 
tensored with U R(C*(H». Define VX : 1tx ® 1tx: -+ L2(P) by linear extension of 

(2.156) 
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where v E 1ix and dx = dim(1ix)' Note that V x is indeed linear, since 1ix = 1i X' 

Equation (2.139) and the orthogonality relations (1.116) then imply that VX is a 
partial isometry. Using (2.140) and (2.145) one verifies that 

VX 0 JrX(A) ® Ux(h) = A ® UR(h) 0 VX (2.157) 

for all A E lBo(L 2(p»H and h E H. 
The simplest way to prove that EBXEH VX = ][ is to use the isomorphism 2.8.2; 

the operator Us featured in the proof of 2.8.2 accomplishes 

UslBo(L 2(p»H ® JrR(C*(H»Us* = lBo(L 2(Q» ® JrdC*(H» ® JrR(C*(H», 
(2.158) 

where JrR and JrL are defined via (1.89) by the right- and the left-regular represen­
tations (1.98) and (1.83) of H on L2(H) (with c = 1), respectively. The desired 
result then follows from the Peter-Weyl decomposition (1.100) of L 2(H). • 

One may select a copy of1ix by picking a fixed unit vector v E 1ix' The operator 
Pf on L2(P) defined by 

Pf'l1(x) = dx L dh (v, Ux (h)v)x 'l1(xh) (2.159) 

lies in the commutant of lBo(L 2(p»H, and is a projection for which Pvx L 2(p) 
~ 1ix and Pf A ~ Jrx (A) for all A E lBo(L2(P»H. 

2.9 Induced Group Representations 

We tum to an important application of principal bundles and their associated vec­
tor bundles. In what follows we do not assume that H is compact, unless stated 
otherwise. 

Recall (2.73), which in the present case defines a H -action UX on the Hilbert 
bundle HX associated to P by a representation U x (H) on a Hilbert space 1ix . 

Definition 2.9.1. Let a principal bundle P( Q, H, i) and a representation U x (H) 
on 1ix be given. The induced representation U(x) of the group Aut(P) of 
automorphisms ofP on the Hilbert space L2(HX) is given by 

dv(rp(/(q» UX( )'l1(X)( -I( ». 
dv(q) rp rpQ q (2.160) 

It is essential here that the measure v on Q is locally Lebesgue, for this guarantees 
that v 0 rpQI and v are equivalent. This means that these measures have the same 
null sets; one says that v is quasi-invariant under Diff(Q). In view of the square 
root it is easily checked that U(x)(rp) is unitary, hence defines a representation. 

In the realization 1ix of H -equivariant functions \IIX : P ~ 1ix satisfying 
(2.145) this reads 

(2.161) 
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In the realization 1ifs) one has 

(2.162) 

where we assume that q E Na and qJQl(q» E N fJ , and hfJ(x) E H is defined by 
the property xhfJ(x) = sfJ(r(x»; cf.2.1.5. 

In the realization 1i; one of course has the same expression, with the indices a 
and fJ omitted. 

These representations of Aut(P) may be extended to representations of g~ (see 
(2.74». For any Ii =1= 0 the (additive) group C~(Q, R) is represented on L2(HX) 
by the appropriate analogue of 11.(3.81), namely 

Pkx\,g)W(x)(q) := e-;g(q)/hw(x)(q). (2.163) 

Essentially the same expression is valid on 1i; or on 1i~); on 1ix one has 

(2.164) 

We then obtain a representation P~ (9~) by letting P~ (Aut(P» coincide with 
UX(Aut(P», and putting p~(qJ, g) = p~(g)p~(qJ). These induc~epresentations 
are the quantum analogues of the reduced actions pg>(9~) on (T*P)o in 2.5.2; in 
the quantum case the relevant action is on the space of sections of the appropriate 
associated bundle, rather than on the associated bundle itself (as in the classical 
case). 

When H is compact this construction of induced representations can be refor­
mulated as follows. Firstly, g~ is contained in gp (see 11.(3.12» by the inclusions 
Aut(P) C Diff(P) and C~(Q, R) ~ C~(P, R)H C C~(P, R). Now define a 
representation Ph of g~ c gp = Diff(P) ~ C~(P, R) on L 2(P) by restriction of 
the representation Ph(9P) given by 11.3.6.2 (with Q replaced by P). Subsequently, 
extend Ph(9~) to a representation Ph ® Ix on L 2(P) ® 1ix , where [x is the unit 
operator on 1ix' The restriction of Ph(9~) ® [x to the subspace 1ix C L 2(p) ® 1ix 
is then given by p~. Note that this restriction is well-defined, because Ph(9~) lies 
in the commutant of UR(H). 

We give yet another description of P~ . 

Lemma 2.9.2. Let H be compact. Under the decomposition (2.154) the restriction 
of Ph(9~) to 1iX ® 1ix is p~ ® [x' 

This follows from (2.159) and the orthogonality relations (1.116). • 

As explained at the beginning of 11.3.6, one can extend the Weyl quantization 
prescription Q]i (initially defined on C~w(T*P, R» to certain unbounded func­
tions. This equally well applies to the restriction of Q]i to C~w(T*P, R)H, with H 
compact. A representation JrX(~O(L2(p»H) may be extended to the H-invariant 
unbounded operators on L 2(p) thus encountered in an obvious way. The following 
result is the "quantization" of Theorem 2.5.3, whose notation we use. 
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Theorem 2.9.3. Let J be the momentum map for the gp-action (2.75), (2.76) on 
T*P. Relative to an arbitrary connection A on P one has 

:n;X (Q~(Jg») = g; 
:n;x (Q~(J~p») = -in [vtQ +!v .~Q -dUx(A(~P»]; 
:n;x (Q~(h») = indUx(A); 

:n;x (Q~ (Jf(~Q») = -in [vtQ + !v . ~Q], 
defined as unbounded operators on the domain r(HX) C L 2(HX). 

(2.165) 

(2.166) 

(2.167) 

(2.168) 

It should be clear what these expressions stand for in the various realizations 
1tx, 1t;, and 1t&). For example, g and V . ~Q are functions on Q, which on 
1t; and 1t&) are realized as multiplication operators; on 1tx, though, one should 
pull these functions back to P with r~->Q' In all cases g should more properly 
be written as g ® lx' On 1tx the object dUX (F), where F is A(~P) or A, acts 
like dUX (F(x»'-li x (x), whereas on 1t; and 1trs) one should replace F by F 0 s 
(recall that A 0 s = As) and tensor with the unit operator on L2(Q). The covariant 
derivative V~Q is defined in 2.2.3; on 1t; one has, from (2.26), 

V~'-lI:(q) = (ajt + A~(q)dUxCf;))'-lI:(q), (2.169) 

where A = s* A. The corresponding expression on 'H&) is obtained by replacing 

'-lI; by '-lit and A by s~A. 
The proof of 2.9.3 starts with an equation of independent interest, namely 

indUX(X) = :n;X(Q~ (lx», (2.170) 

for all X in the Lie algebra gp of gpo This equation is defined on r(HX), and follows 
directly from 11.(3.82) and Lemma 2.9.2. Now note that on 1tx one simply has 
11.(3.73) and 11.(3.74). This easily leads to (2.165)---(2.168); for example, (2.166) 
follows from (2.25) and (2.92). • 

Equations (2.165), (2.166), (2.167), and (2.168) are to be compared with their 
classical counterparts (2.88), (2.89), (2.90), and (2.91), respectively. 

Proposition 2.9.4. The operators in (2. J 65 )-(2. J 68) are essentially self-adjoint 
on r(HX) C L 2(HX). 

This follows as in the proof of Proposition II.3.6.4. o 
Since J is equivariant (cf. 2.5.3) and UX is a representation, on account of 

(2.170) the following equation holds on r(HX) for all X, Y E gp: 

~ [:n;x (Q~ (Jx») , :n;X(Q~ (ly»] =:n;x (Q~ ({lx, Jy}); (2.171) 

this is a version of Dirac's condition 11.(1.3). 
This is the right place to mention the quantum-mechanical counterpart of the 

discussion on gauge covariance in 2.5. Firstly, the analogue of the classical con­
dition (2.82) in the "active picture" is as follows. Letsg-l(q) = S(q)g;l(q), as in 
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2.4.4,anddefinetheunitaryoperatorUg : L2(Q)®'lt x --+: L2(Q)®'ltx (regarded 
as a map from 'It; to 1t; -I) by Ug\llsx(q) := Ux (gs(q»\II; (q). An operator OA 

g 

that involves dUx (A), where A = s* A, is said to be gauge-covariant if 

U OAU* = OAg (2.172) g g , 

where Ag is related to A by (2.69). The covariant derivative (2.169) is a case in 
point. The meaning of this condition is similar to that of (2.82); it is satisfied when 
OA is of the form T/ OA(T/)-I; cf. (2.149) and (2.150). 

Secondly, the quantum counterpart of (2.85) in the "passive picture" is that an 
operator OA on 1t&J satisfy 

(2.173) 

where Ugafi \II~ := \II t, as defined as in (2.151). 
We now specialize the construction of induced representations to the case that 

the principal bundle P is G( G / 1/, 1/, 'f); see 2.7. Given a representation U x of 1/ 
on a Hilbert space 'ltx , we construct the associated vector bundle HX := G x Il'ltx 
as in the general case. A central ingredient in the definition of the induced Hilbert 
space 1tx is the measure v, which is constructed from an 1/ -invariant measure on 
G. We use a right-invariant Haar measure dx := dfL(x) on G for this purpose. In 
the present context, the space 1tx is the closure (in the inner product (2.146» of 
the space of smooth functions \II x : G --+ 'It x whose projected support on G / 11 

is compact and that satisfy (2.145). 
Recall from 2.7 that G C Aut(G). The induced action of Aut(P) on HX given 

by (2.73) specializes to G :3 Y by 

(2.174) 

Equation (2.161) then specializes to 

dV('f(y-I X » x -I 

dv('f(x» \II (y x). (2.175) 

We continue to denote points in the base space Q = G / 1/ by q, and denote the 
canonical left action of G on G/1/ by y : q f-+ yq, where y E G. On 1t&J we 
then have, in the notation of (2.162), 

dV(y-Iq) -I -I x-I 
dv(q) Ux(s,Aq) YStl(y q»\IItl (y q). (2.176) 

As in the general case, the realization of u,x (y) on 1t; = L 2 (G / 1/) ® 1t x (defined 
with respect to a single measurable section s : G / 1/ --+ G) is obtained from 
(2.176) by simply omitting the indices a and f3. 

This special case of induced group representations is called Mackey induction; 
compare with the corresponding classical theory described in 2.7. The formulae for 
Mackey induction simplify in the case that G and 1/ are unimodular, which implies 
that v is not merely quasi-invariant but actually invariant under the canonical left 
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action of G on G j H. Hence in that case the square roots in (2.175) and (2.176) 
are identically 1 and can be omitted. 

Combining (2.125) and (2.170), we infer that 

rr;X(Q';(8:» = ifidUX(Ta ), (2.177) 

where eaR is regarded as a function on (T*G)j H; cf. the comment after (2.125). 
To put this in perspective, let us return to Weyl quantization on T*G (where G 
is seen as a Riemannian manifold). Using 11.(3.74) (in which the divergence term 
vanishes in view of the invariance of the measure) and (1.58), we obtain 

(2.178) 

on C;o ( G) c L 2 ( G), in terms of the left-regular representation U L defined in (1.83) 
(with c = 1). In view of 2.8.7, equation (2.177) therefore follows from (2.178), at 
least when H is compact. For later reference (cf. (2.192» we give the corresponding 
formula in the left trivialization of T*G. Defining e/; as 8a relative to the left 
trivialization, we infer from (2.178) and the relation eaR(ax) = Ad(x-I)~e;(ax), 
where ax E Tx*G (cf. (1.42», that 

Q';( (e;) = -ilidUR(Ta ). (2.179) 

Combining (2.177) and (2.166), and assuming that G and H are unimodular, 
we obtain the geometric expression 

(2.180) 

on 'H.x; on 'H.; (and analogously on 'H.~}) one replaces \II X (y) by \II; (q) andAy(~:> 

by As(q)(~:). The right-hand side is, of course, independent of A. 
We now assume a reductive decomposition (2.126); reca112.7.3. Specializing to 

the associated H-connection AH on the bundle G(Gj H, H, r), equation (2.166) 
becomes (cf. the corresponding classical expression (2.134» 

rr;X (Q';( (Ja») = -in [v~; - CO(s(q»~dUx(Ii)]. (2.181) 

See IV.2.8 for applications of Mackey induction in physics. 

2.10 The Quantum Wong Hamiltonian 

We now look at the quantization of the Hamiltonian, assuming that H is compact. 

Definition 2.10.1. Given a Riemannian metric gQ on Q and a connection A on 
P(Q, H, r), the Laplace-Bochner operator D.~ is a second-order differential 
operator on the space a/sections l(HX) a/the Hilbert bundle HX associated to P. 
For \II X ,<l>x E r(HX) it is defined by the property 

(\II X , D.~<l>X) := - ~ dv(r(x»gQI(VA\IIX(x), VA<l>X(x»x. (2.182) 
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Cf. II.3.7.1; recall that elements of r(HX) by definition have compact support. 
An analogous definition can be given on fs(HX) or f{s}(HX), where 'l'(x) and x 
are replaced by q. In any case, the expression ( .. . )x in (2.182) is an element of 
Tq* Q ® Tq* Q, so that the integrand is a scalar. 

In coordinates, on fs(HX) or f{s}(HX) one has (cf. (2.169» 

L\~ = g~v(V/l + dUX (A/l»(8v + dUx(A v», (2.183) 

where V is the Levi-Civita connection defined by gQ. Here dUx(A/l) may be 
rewritten as A~dUx(1;), where A~ is a multiplication operator on L2(Q). Note 

that L\ ~ is gauge-covariant; cf. (2.172). 

Proposition 2.10.2. In the notation and circumstances of Theorem 2.6.2 the quan­
tum Hamiltonian H; := Jrx (Qf (h*» in the sector X (for the moment defined as 
an unbounded operator on the domain f(HX») is 

H X = _l/i? (AA - lR + ..lF2 - eX) It 2 X 3 Q 12 ' (2.184) 

where RQ is the Ricci scalar on Q, the Yang-Mills Hamiltonian is given in an 
arbitrary section and coordinate system by 

F2 '= g!~g/lPgvO' Fi Fj 
• IJ Q Q /l v pO" (2.185) 

and the constant e X is 

eX := e~ (H) + fig~je~ke!t. (2.186) 

Here the Casimir element e~ (H) in the representation U x (H) is defined 
through Li(dUx(T;»2 = -e~(H)[x; it is a (positive) constant, as Ux is irre­
ducible. It is possible to give an intrinsic definition of F2, but note that (2.185) is 
independent of the section in which F = s*F is computed because of (2.72) and 
the Ad-invariance of gH. The terms RQ and F2 in (2.184) depend on q, and are to 
be seen as multiplication operators on 1tx. 

Equation (2.184) follows from 11.(3.93) and two identities. Firstly, if L\ is the 
Laplace-Beltrami operator on P defined by g, one has 

A = L\~ - e~(H) (2.187) 

on 1tx (seen as a subspace of L 2(p) ® 1tx)' This easily follows from 2.6.1 if one 
decomposes \ltV and \leI> in 11.(3.91) in a horizontal and a vertical part; cf. the 
text surrounding (2.35). Secondly, the Ricci scalars on P and Q are related by the 
famous identity 

R R 1 F2 + I kl e i e j = Q - 4 4gH jk iI' (2.188) 

This may be verified from 11.(3.23), 11.(3.21), (2.21), and (2.104). One obtains 
some additional terms, whose sum vanishes on account of the Ad-invariance and 
q-independence of gH. • 

One tool in the analysis of the possible self-adjointness of H; is the following. 
If tV E (fh .. 1t).., then tV).. denotes the component of tV in 1t)... 
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Lemma 2.10.3. Let 1i = Efh 1ii.., and let a closed operator Ai.. be given for each A. 
The operator A := EDi..Ai.. is defined on the domain V(A) consisting of all \{I E 1i 
for which \{Ii.. E 'D(Ai..) and Li.. Ai.. \{Ii.. E 1i (this operator is easily seen to be 
closed). Then A is self-adjoint iff each Ai.. is self-adjoint. 

The adjointA* of A is easily seen to be A* = EDi..A~. If the equation A*\{I = ±i\{l 
has no solution in V(A*), then none of the equations A~\{I = ±i\{li.. can have a 
solution, and vice versa. • 

Corollary 2.10.4. If(P, g) is complete with Ricci scalar R bounded, then Hi is 

essentially selfadjoint on r(HX)for all X E fI. 
In particular, Hi is essentially self-adjoint on r(HX) when Q is compact. 

This follows from 11.3.7.4, 2.8.7, 2.10.3, and the inclusion C~(P) C D(EDx H~), 
where H~ is the closure of Hi as defined in 2.10.2. • 

When Q is compact the hypothesis is obviously satisfied. 
This result, and similarly Proposition 2.9.4, gives a hint as to why vector bundles 

are relevant in quantum mechanics. For one might question this relevance on the 
grounds that 1ix is the same for all vector bundles over Q with fiber 1ix; it is the 
dense subspace r(HX) that is sensitive to the topology of the bundle. We therefore 
conclude that this topology is relevant for the specification of the domain of the 
key observables of the quantum theory, such as the Hamiltonian. 

We may look at the quantum Hamiltonian Hi from a different point of view. If h* 
is the usual classical Hamiltonian on T*P (defined with respect to an H-invariant 
metric g on P), under the appropriate hypotheses the operator HI! = Qr (h*) de­
fines a self-adjoint operator on L 2(p), interpreted as the quantum Hamiltonian of 
a particle moving on P. This leads to an action of IR as a one-parameter automor­
phism group a~ on ~o(L 2(p», defined as in 11.(2.88). By the H -invariance of HI! 
this restricts to ~o(L 2(p»H. One may then ask whether at is implemented in a 
representation Jrx (~o(L 2(p»H), in that there exists a unitary group t 1-+ U;n(t) 
on 1t x for which 

(2.189) 

for all A E ~O(L2(p»H and all t E lR. This is evidently the case in the present 
circumstances, and the Hamiltonian remerges as the generator of U;n' that is, 
U;n(t) = exp(-itHi In). 

Specializing the theory to the case where the principal bundle P is chosen to be 
G(G I H, H, r), as in 2.7, allows one to give a purely group-theoretic formulation 
of the various geometric objects encountered. We first look at the situation on G 
itself. 

Lemma 2.10.5. Let a unimodular Lie group G be equipped with a left-invariant 
metric g, with corresponding orthonormal basis {Tal ofg = TeG. Then the La­
place-Beltrami operator ~ on C~(G) C L2(G) is given in terms of the Casimir 
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element 

(2.190) 

and the right-regular representation (1.98) (with c = 1) by 

(2.191) 

We start from the definition 11.(3.91), and write df = 8f~aL f (cf. 1.4). Since 
g-I(8a , 8b ) = sab, the Riemannian volume element defined by the metric must be 
proportional to a left-invariant Haar measure (unique up to scale), which is also 
right-invariant by unimodularity. Hence we can partially integrate in the right-hand 
side of 11.(3.91), and obtain (2.191) on account of dUR(X) = ~f, X E g. • 

Comparing (2.191) with II.(3.93) and (2.135), we infer that 

Q;;(h*) = i ~ Q;;«8aL)2) = -ill? (~dUR(Ta2) - ~RG); (2.192) 

note that the Ricci scalar RG is a constant. To put this in perspective, one should 
recall (2.179), inferring that QJi «8;)2) =I- (QJi (8;»2. 

We now assume that H is a reductive subgroup of G, so that we are in the situation 
of Proposition 2.7.5. Comparing (2.191) and (2.187), and using the H -equivariance 
of elements of 7{x , we conclude that 

(2.193) 

where the Ta occurring in the sum form a basis of m. This expression may be 
substituted into the Hamiltonian (2.184); in the present case the last three terms 
on the right-hand side of (2.184) are constants. If, in addition, the inner product 
(, ) on 9 is Ad(G)-invariant, one has 

dim(lJ) 

~~H = L dUX(Ta2 ) + Ci(H), (2.194) 
a=l 

which should be compared both with its classical counterpart (2.137) and with the 
more general quantum formula (2.187). 

2.11 From the Quantum to the Classical Wong Equations 

Let us now investigate the possible classical limit of the dynamics generated by the 
quantum Hamiltonian Hi on 7{x. As in Theorem 11.3.7.5 we assume that Q = IRn, 
so that the bundle P = IRn x H is necessarily trivial. Accordingly, given a coadjoint 
orbit 0 C ~*, one has (PP)o = T*Q x O. Also, 'HI = L2(Q)®7{x with respect 
to the natural section s : Q --+ P given by seq) = (q, e); cf. (2.141). 

Recall that H is a compact Lie group. As in 1.10, we assume that the object X 
labeling the irreducible representation Ux(H) is a highest weight, corresponding 
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to an integral coadjoint orbit Ox C f)*. We extend X E t* to an element (J(X) of f)*, 
as explained in 1.10, and denote the stabilizer of (J(X) under the coadjoint action 
by Hx. Then Ox :::::: HIHx' 

Inspired by 1.11 we put Ii = 11k, kEN, and study the Hamiltonians H;A 
on 'Hkx = L2(Q) ® 'Hkx as k --+ 00. The corresponding time evolution is then 
expected to converge to the flow on cF"p)o generated by the classical Hamiltonian 
h ~x given by (2.107). 

The precise formulation of this convergence will be in terms of pure state quan­
tizations, as in Theorem 11.2.7.2. Combining the coherent states 1I.(3.95) in L 20Rn) 
with their counterparts Ukx(h)'Pkx E 1ikx , where h E H (see (1.149», we define 
unit vectors in L 2(JR.n) ® 'Hkx by 

'P(p,q,h) '- 'P(p,q) (0, U (h)'P 
11k .- 11k '01 kx kx' (2.195) 

Recall that 'Pkx is a normalized highest weight vector in 'Hkx' 
Analogously to Iy in 1.11, for I E C(T*JR.n x Ox) we define Ix E C(T*JR.n x H) 

as the pullback of I under the canonical projection from T*JR.n x H to T*JR.n x Ox; 
the function Ix is right-Hx-invariant. The Berezin quantization corresponding to 
the pure state quantization (2.195) is then given by 

Q~(f):= dx/n l'JRn ~~:~~: l dh Ix(p, q, h) ['PhP,q'h)] , (2.196) 

defined for I E C~(T*JR.n x Ox' JR.), taking values in mn = lBo(L2(JR.n» ® 
9J1dX / h (C)JR. In (2.196) and all subsequent expressions in this section, Ii = 1 I k. 

Theorem 2.11.1 below generalizes Theorems 1I.2.7.2 and 11.3.7.5. As before, 
we write a?(f) for the function (p, q, (J) f-+ I(p(t), q(t), (J(t», where the time 
evolution is defined for t E (ti' t f) as the Hamiltonian flow on T*JR.n x Ox generated 

by h~x; in other words, (p(t), q(t), (J(t» is the solution of the system (2.109)­
(2.111) with initial conditions (p, q, (J). Since the terms tli2qRQ -izF2 + CX) 
in (2.184) do not contribute for Ii --+ 0 (as will be clear from the proof below), in 
what follows one may replace Hi ln by 

Here Ph~~ := -ili"VfL' P,~v := -iMfL (as in (11.2.24», and 

TP := iIidUx/n(Tj ); 

(2.197) 

(2.198) 

this is, of course, consistent with (2.107), 1I.(2.24), and (2.167) with (2.90). We 
assume that g and A are C3 near the classical trajectory (p(t), q(t), (J(t», and such 
that each multiplication operator occurring in Hi lh is O(exp(tx2» for x --+ 00. 

Then for Ii < 1 the operator Hen is symmetric on the domain Dc consisting of 
the linear span of all states (2.195). Subsequently, we assume that each operator 
Heh thus defined has at least one self-adjoint extension, which we denote by the 
same symbol. This abuse of notation is justified by the fact that as in 1I.2.7.2, for 
times that the classical flow exists different self-adjoint extensions will have the 
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same classical limit. We then put 

• i HX/~ i Hx/h 
a;'(A) := e',t ~ Ae-;;t ~ . (2.199) 

Theorem 2.11.1. Let g and A be as specified above. For given (p, q, h) E T*JR.n x 
H (corresponding to(p, q, Co(h)O(X» E T*JR.n x 0x»),/orall t E (ti> tf)andall 
/ E C~(T*JR.n x Ox, JR.), one has 

~~ (W~P.q.h>, [Qg(a~(f» - a~(Qg(f))]W~P.q.h)) = 0 

along the sequence (h = 1/ khEN. 

This may, of course, be restated as 

(2.200) 

(2.201) 

Equation (2.200) is proved along the lines of the proof of 11.(2.135), of which it 
is obviously a generalization. For simplicity we restrict the argument to the case 
where the metric g on Q is the flat Euclidean one; nontrivial metrics are easily 
incorporated by the method of proof of Theorem 11.3.7.5. 

As in 11(2.136), 11.(2.137) we expand H;/Ii = H(2)(t) + H3(t). Here 

o 
Ho := h / (p(t), q(t), O(t»H, (2.202) 

where the classical Hamiltonian h ~x (p, q, 0) is given by (2.107), and subsequently 
the argument (p, q, 0) is replaced by the solution (p(t), q(t), O(t» of the Wong 
equations (2.109)-(2.111) with initial conditions (p, q, 0). Also, 

A . . 
H\(t) := p/l(t)(8P/l - avA~(t)Oj(t)8Qv - A~(t)8Tj), (2.203) 

in which p~(t) := P/l(t) - Oi(t)A~(t), where A~(t) := A~(q(t»; furthermore, 

8P/l := PK./l - P/l(t), along with 8Qv := Q~'v - qV(t) (cf. 112.23» and 8Tj := 

Tjli - OJ (t); cf. (2.198). Finally, 

H2(t) := & (8P/l - aVA~(t)Oi(t)8Qv - A~(t)8T;)2 
- &p~(t)apatTA~(t)Oj(t)Oi(t)A~(t)8QP8QtT. (2.204) 

Generalizing 11.(2.154), we introduce the classical propagator 

U~p·q·h)(t) = eHS(,)-f A)U! (p(t), q(t»Ux/li(h(t»Ux/li(h)*U !(p, q)*, (2.205) 
~ ~ 

in which J A is shorthand for J~ ds q/l(s)A ~ (s )OJ (s); the classical action S(t) is 

given by 11.(2.152), with h replaced by h~x; andh(t) is the solution of(2.112) with 
initial condition h (the parameter appearing in (2.200». Using the Wong equations 
(2.109), (2.110), and (2.112), as well as 11.(2.155), the relation 

d . 1 
-Ux/Ii(h(t» = dUx/li(h(t)h(t)- )Ux/Ii(h(t)), 
dt 
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and (2.113), with () replaced by ()(X), one verifies that U}p,q,h)(t) satisfies II.(2.156) 

with initial condition U}p,q,h)(O) = ]L 
The next step in the proof of 11.2.7.2 is not as easily generalized, since there 

no longer exists a simple expression for the propagator of a Hamiltonian that is 
quadratic in pi,.., Q~'v, and T/,. In any case, we introduce 

in which 

H(2)(t):= ! (Pi,.. - avA~(t)()j(t)Q~'v - A~(t)t/'(t)f 
- ! p:(t)apaI1A~ (t)(}j(t)A~ (t)(}j(t)Q~'P Q~,I1, (2.206) 

(2.207) 

In view of (2.113), we could write «(}(X»(Ad(h(t)-I)T;) instead of (}j(t) on the 
right-hand side. It is not difficult to prove that H(2)(t) is essentially adjoint on V e , 

since each vector (2.195) is analytic for H(2)(t), and the linear span of such vectors 
is dense. 

The unitary operator ug)(t), which plays the role of pli(M(t» in the present 
context (cf. 11.(2.158», is defined as the solution of 

ih~U(2)(t) = H(2)(t)U(2\t) (2.208) 
dt D D 

with initial condition ug)(O) = I. An explicit form of this operator is 

ug\t) = f: (_i)k r dSI r dS2'" tH dSk H(2)(SI)'" H(2)(Sk), 
k=O h 1o 1o 1o 

(2.209) 
the sum converging strongly on 'Dc. As in 11.(2.157) we define 

Utq,h)(t) := U~P,q,h)(t)U! (p, q)Ux/li(h)ug)(t}Ux/h(h)*U! (p, q)*. (2.210) 
• • 

Using 11.(2.155) and the fact that U x /Ii is a representation, one obtains the relation 

H2(t) = U!(p(t), q(t»Ux/li(h(t»H(2)(t)Ux/li(h(t»*U!(p(t), q(t»*. (2.211) • • 
This suffices to prove 11.(2.159) and 11.(2.161), with the label (p, q) replaced by 
(p, q, h). 

The analogue of Proposition 11.2.7.3 may now be proved by the same method, 
substituting the series (2.209) for pli(M(s» in 11.(2.164) and replacing "'kO,O) by 

"'kO,O) ® "'x/Ii. The essential point is that piw Q~'v, and 'it\t) each contribute a 

"fluctuation" factor v'ii to the norm on the right-hand side of 11.(2.164). For 'it"'<t) 
this is a consequence of (1.142)-( 1.145) and the fact that 

-Ii 
("'x/Ii,1I (t)"'x/Ii) = o. (2.212) 

The appropriate generalization of 11.(2.170) is 

(2.213) 
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where fo(p, q, h) : (p', q', 0) ~ f(p'+p, q'+q, Co(h)(). This is a consequence 
of 11.2.4.3, (1.159), and the definition (2.196). As explained after the proof of 
11.2.7.2, this equivariance property lies at the heart of (2.200). To finish the proof 
of 2.11.1 we therefore need the analogue of 11.(2.171), namely 

lim (ug)(t)\}Iho.o.e), Q:(f)ug)(t)\}I~o.o.e») = fx(O, 0, e). (2.214) 
h~O 

This can indeed be proved from (2.209) and a lengthy combinatorial argument. 
Theorem 2.11.1 then follows from 11.2.7.3, (2.210), (2.213), and (2.214). 0 

2.12 The Dirac Monopole 

It is now time to illustrate some of the abstract concepts introduced in this chapter 
in an example that is simple yet instructive. We will work in the setting of 2.7, 
specializing to G = SO(3) and H = SO(2), seen as the subgroup of rotations 
around the z-axis. The coset G j H is a two-sphere S2, and the principal bundle 
SO(3)(S2, SO(2), r) is a quotient by the discrete group 112 of the famous Hopf 
fibration S\S2, SO(2), r). 

We use the standard generators Ta , a = 1,2,3, of the Lie algebra 9 = 50(3) ~ 
JR.3. The commutation relations in 50(3) are [Ta, Tb] = Eabe Te, where Eabe is the 
fully anti symmetric symbol with EI23 = 1. We label elements x of SO(3) by the 
Euler angles (¢, 0, 1/1), so that 

(2.215) 

where 0 :::: a < 21r, 0 :::: {J < 1r, 0 :::: y < 21r. Since H = (Exp( 1/1)} is 
the stability group of the point ez = (0, 0, 1) in JR.3 with respect to the defining 
action of S 0(3) on JR.3, we may realize G j H as Gez = S2. The bundle projection 
r : SO(3) ---+ SO(3)jSO(2) is then given by r(x) = xez. This yields 

r(R(¢, 0,1/1» = (sin¢ sine, - cos¢ sinO, cosO). (2.216) 

We denote this point in S2 by (¢, e). (These coordinates are related to the usual 
spherical coordinates (¢s, Os) by ¢s = ¢ - k1r, Os = 0.) 

The standard bi-invariant metric g on G is defined by declaring that {Ta} be 
an orthonormal basis. By Proposition 2.7.5 this defines an SO (3)-invariant metric 
gS2 on S2, as well as an SO(3)-invariant connection on SO(3)(S2, SO(2), i). 
The explicit form of the connection will be determined shortly. The metric gS2 is 
diagonal in (¢, e), and is easily seen to be given by 

gS2 = d0 2 + (sinO)2d¢2; (2.217) 

this coincides with the pullback of the Euclidean metric on JR.3 to the unit sphere. 
(One could introduce an arbitrary radius r of the two-sphere by multiplying g with 
r2, which leads to an overall factor r2 in (2.217) as well.) 

Choosing m to be the linear span of TI and T2, the decomposition (2.126) is 
reductive, as is easily verified from the commutation relations. This is consistent 
with 2.7.5, since the decomposition in question is indeed orthogonal with respect 
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to g. Hence by 2.7.3 and 2.7.4, or alternatively by 2.7.5, there is an associated H­
connection AH on the bundle SO(3)(S2, SO(2), r). To describe AH explicitly we 
introduce two sections s± : N± -+ S 0(3) of the bundle. Here N+ and N- consist 
of S2 minus the northpole «() = 0) and minus the southpole «() = Jl), respectively. 
The sections in question are defined by 

s±(CP, 0) = R(CP, (), ±CP); (2.218) 

evidently, L is discontinuous at the south pole, whereas s+ is so at the northpole. 
The transition function g_+ in (2.4) relating s+ and L is 

(2.219) 

Proposition 2.12.1. In the gauges s± the H -connection A± := slAII is given by 

cos() ± 1 
A±(CP, ()) = . () w'" ® T3 , 

sm 
(2.220) 

where w'" := sin()dcp. 

The result is stated in the given form because w'" rather than dCP has unit norm 
with respect to g. We see that A_ would be singular at the southpole «() = Jl), 

whereas A+ would be singular at the northpole «() = 0); happily, these points do 
not lie in the relevant domain of definition. Combining (2.127) with (2.14), one 
sees that 

(2.221) 

If x(n) are the coordinates of Exp(x(n)Ta) in an arbitrary Lie group G (whenever 
these coordinates, which are normal in the sense of 11.3.1, are defined), one has 
the relation 

(2.222) 

where 

M(x) := (1 - e-Ad(X)) Ad(x)-I, (2.223) 

regarded as a matrix acting on 9 relative to the basis {Ta }. For G = SO(3) the 
matrix M can be calculated explicitly, yielding 

M(x)a =8asinllxll + xtn)x(n) (1- sin IIxlI) + Eabcx<n)(I_Cosllxll) (2.224) 
b b IIxll IIxll2 IIxll IIxll2 ' 

where IIxll2 := x(n)x(n)' We now use the identity 

(2.225) 

Hence the normal coordinatesofL(cp, ()) are (-() sin cP, () cos cP, 0); note that there­
fore IIxll2 = 02• The object A_ can now be computed from (2.221), (2.222), and 
(2.224). To find A+ we apply the gauge transformation (2.70), using (2.219); cf. 
the comment following the proof of 2.4.4. This yields A+ = A_ + 2dCP ® T3, and 
one obtains (2.220). • 
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Being gauge-invariant (for an abelian structure group), the curvature F = 
slFH = dA± is the same for A+ and A_, and is given by 

F(q" e) = - sine de /\ dq, ® T3; (2.226) 

this is -T3 tensored with the volume 2-fonn on S2 with respect to the SO(3)­
invariant metric gS2 defined by g (cf. 2.7.5). The field A± describes a magnetic 
monopole (of unit strength) located at the origin oflR3• 

By the theory of the H-connection, in particular Corollary 2.7.4, combined 
with the uniqueness of the reductive decomposition (2.126) of 50(3), the mag­
netic monopole field is the unique SO(3)-invariant connection on the bundle 
SO(3)(S2, SO(2), r). (Note that the local fonns A± are only SO(3)-invariant 
up to a gauge transfonnation.) 

Since H = SO(2), whose coadjoint action on ~* = lR is trivial, the coadjoint 
orbits of H are simply points in lR. Physically being the electric charge, these orbits 
are traditionally denoted by the symbol e. From (2.53) or (2.130), combined with 
(2.116), we conclude that the reduced space (T*GY is simply T* S2 as a mani­
fold. Identifying (T* G)e with T* S2 automatically implements the diffeomorphism 
(2.53), so that the Poisson bracket on (T*GY is given by (2.55). Since H is abelian, 
the C~ in that expression vanish, so that from (2.226) we obtain (with q I = q, and 
q2 = e) 

e at ag at ag . (at ag at ag ) {f,g}*=-----+esme ----- . 
apit aqlt aqlt apit apo ap¢ ap¢ apo 

(2.227) 

We now compute the momentum map r for the reduced SO(3)-action on 
(T*G)e with respect to the sections s±. This is done by specializing (2.134) to the 
case at hand. Firstly, for e = 0 one has 

( 
- sinq, cot () p¢ + cosq, Po ) 

jO(p¢, Po, q" e)± = cosq, cote ~: + sinq, Po. (2.228) 

This follows from the well-known expression for the vector fields ~a := ~f 
generating the SO (3)-action on S2; these are nothing but jO, with P ... replaced by 
ala .... Because e = 0 in (2.81), the "free" momentum map (2.228) is independent 
of the section. 

Furthennore, since the coadjoint representation of S 0(3) is the same as its 
defining representation (as is its adjoint one), the tenn Co(s±(q" e»~e3 occurring 
in (2.134) is simply R(q" e, ±q,)a3' Seen as a vector in lR3 this is given by (2.216), 
and evidently coincides with the unit vector pointing at (q" e). Using (2.220) one 
therefore obtains (omitting the argument (p¢. Po, q" e» 

( 

sinq, 1 -.-(1 ± cose) 
sme 

j~ = jO+e -~osq,(1 ±cose) . 
sme 

±1 

(2.229) 
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Since by (2.81) the map P[,(f{Jg+_) sends (Pt/>' Po, ¢, () to (Pt/> + 2e, Po, ¢, (), one 
has the relation P[,(f{Jg+_)* J~ = J".... Hence Je is gauge-covariant, as it should be; 
cf. the comment following the proof of Theorem 2.5.3. 

The Hamiltonian he on Ge = T* S2 is equivalently given by (2.107) or by 
(2.137); using (2.217) and (2.220) one obtains 

(2.230) 

Using (2.229) it may be verified that (2.137) equals h~ + (egi; cf. the comment 
following (2.107). The gauge-covariance of h~ is verified as in the case of J±. 

By the third Wong equation (2.99), whose right-hand side evidently vanishes, the 
charge e is conserved in time; this is obvious anyway, because the motion cannot 
leave the coadjoint orbit O. The extra term in (2.227) then leads to a perturbation 
of the cogeodesic motion on T* S2. 

The fact that H is abelian allows the introduction of a free parameter g E 

lR\{O} in the definition of the principal bundle we started from. The group Hg , 

isomorphic to SO(2), but parametrized by fJ E [0, 2Jrg), acts on P = SO(3) by 
RfJR(¢, (),1/1) := R(¢, (), 1/1- fJIg). This leads to a modified bundle P(S2, Hg , 'l'), 
and has the effect that the right-hand side of (2.220) (and hence of (2.226» should 
be multiplied by g. Consequently, the parameter e in (2.227), (2.229), and (2.230) 
becomes ego 

In the general context of mechanics on the bundle SO(3)(S2, SO(2), 'l'), 
by Corollary 2.3.8 the significance of the classical parameter e E 50(2)* = 
lR is that it classifies the irreducible representations of the Poisson algebra 
COO«T* SO(3»1 SO(2),lR). As we have seen (cf. Theorem 2.8.1), one should think 
of the J LB-algebra~IR = iBo(L2(SO(3»>i°(2) as the quantization of this Poisson 
algebra. By Corollary 2.8.3, the irreducible representations of ~ are classified by 

the unitary dual SO(2) = Z of SO(2). Hence each integer n E Z corresponds 
to an irreducible representation Jrn of~. For g = 1 this integer is the quantum 
counterpart of the classical charge e E lR; the rescaling T3 1-+ T3 I g means that in 
this consideration e should be replaced by eg. 

Labeling elements of H = SO(2) by fJ E [0, 2Jr), the representation Un is 

(2.231) 

The Hilbert bundle Hn that the representation Un associates to the principal bundle 
SO(3)(S2, SO(2), 'l') (cf. 2.8) is a line bundle over S2 (that is, the typical fiber 
is C). The Hilbert space L 2(Hn) of square-integrable sections of this line bundle 
carries both the irreducible representation Jrn of the algebra of observables ~IR and 
the induced representation un of SO(3); cf. 2.8 and 2.9. It is therefore a central 
object in the quantum mechanics of a charged particle moving on S2. 

The first realization of L2(Hn) is the space 1{.n of L2-functions on SO(3) sat­
isfying the equivariance condition (2.145); in Euler angles this condition reads 
q,n(¢, (), 1/1 + fJ) = exp(in{3)q,n(¢, (), 1/1). Hence 'lin is exp(in1/l) times a function 
of (¢, (). Therefore, this realization has no particular advantage over the other two, 
which directly work with functions on S2. 
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The Hilbert space 1il := 1i:±, where one has to choose a sign, is 

1i~ = L 2(S2) = L 2 ([0, 2n] x [0, n], sin ededl/J) ; (2.232) 

cf. (2.141). The most important operators on 1il are the angular momenta 

i1iLiUn(Ta) = Jrn(Q]i(Ja»; (2.233) 

cf. (2.170). For n = 0 one obtains the well-known angular momentum operators 
(here expressed in shifted spherical coordinates; cf. (2.216» 

. a a 
- sm l/J cot e al/J + cos l/J ae 

a . a 
Jr1(Q]i(J» = -in cosl/Jcote al/J + sml/J ae (2.234) 

a 
a</> 

As with its classical counterpart (2.228), this is independent of the section. 
For general n, one may compute the left-hand side of (2.233) directly from the 

definition (1.69), or one evaluates the right-hand side using (2.181), (2.169), and 
(2.220). Either way, one obtains 

-.-(1 ± cose) 
sme 

( 

sinl/J 1 
n~(Q]i (J» = Jr\Q]i (J» + nn - ~os l/J (1 ± cos e) . 

sme 
(2.235) 

±1 

This expression, then, is the quantization of (2.229). It follows from Proposition 
2.9.4 that these operators are essentially self-adjoint on the domain r(Hn) of smooth 
sections of the line bundle Hn. For the specification of this domain in the realization 
of L 2 (Hn) as 1i~ one needs to take into account that the section s _ is discontinuous 
at the southpole. This complication may be resolved by observing that for e =1= 0, Jr 
the section \II~ E COO(N_) is related to \11+ E COO(N+) by 

\II~(l/J, e) = e-2in</>\II~(l/J, e), (2.236) 

compare (2.151) combined with (2.219) and (2.231). Accordingly, \II~ is in r(Hn) 
iff it is in COO«O, 2Jr) x (0, Jr» and in addition satisfies the boundary conditions 

lim ~\II~(l/J, e) = 0; (2.237) 
8 ..... 0 al/J 

lim (~ + 2in) \II~(l/J, e) = 0; (2.238) 
8 ..... 11' al/J 

ak ak 
lim -k \II~(l/J, e) = lim -k \II~(l/J, e) (2.239) 

</> ..... 0 al/J </> ..... 211' al/J 

for all k E {O UN}. It is interesting to verify that condition (2.238) guarantees 
that the operators Jr~(Q]i (J» are well-defined on r(Hn), in that the differential 
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operators conspire with the boundary condition so as to effectively replace (1 -
cos e) / sin e in the second tenn by (1 + cos e) / sin e near e = 1T • 

On H~ the conditions for 'l1~ to be in r(Hn) are analogous: One requires (2.237) 
for e -+ 1T rather than e -+ 0, and in (2.238) one replaces e -+ 1T bye -+ 0 and 
+2in by -2in. Condition (2.239) is the same. 

The story on H{,s} is entirely analogous: The pair ('l1~, 'l1~) comprising 'l1~} is 
related by (2.236), and to be in r(Hn) one imposes the above conditions for H±. 

The quantum Hamiltonian HI: is given by (2.184), which may be evaluated 
using either (2.194) or (2.183) with (2.217) and (2.220), as well as (2.226) and 
RS2 = 1, C~ (S 0 (2» = n 2 . There is not much point in writing down the resulting 
expression. The important facts are that HI: is essentially self-adjoint on r(Hn) 
(cf. Corollary 2.10.4), and that the parameter e, or, more generally, eg, in the 
classical Hamiltonian he is replaced by nn in the quantum Hamiltonian. The same 
substitution applies to the angular momentum (2.235). This phenomenon is the 
Dirac quantization condition eg = nn, expressing the fact that in quantum 
theory electric charge is quantized in the presence of a magnetic monopole field. 

3 Lie Groupoids and Lie Algebroids 

3.1 Groupoids 

A groupoid is a certain generalization of a group, in which multiplication is only 
partially defined. When it is defined, it is associative, and each element has an 
inverse in a suitable sense. Lie groupoids, which are groupoids with an appropriate 
smooth structure, and their infinitesimal objects, Lie algebroids, enable one to give 
a unified description of a large class of examples in quantization theory. Although 
the definition of a groupoid appears complicated, it will become clear through the 
examples that one is studying a most natural object. 

Definition 3.1.1. A groupoid G(Q, is, it, t, " I), sometimes written as G ~ Q, 
consists of a set G (the total space), a set Q (the base), a map is : G -+ Q (the 
source projection), a map it : G -+ Q (the target projection), a map t : Q '-+ G 
(the inclusion), and a multiplication· : G2 -+ G, where 

and a map I : G -+ G (the inversion). subject to the following conditions. We 
write Yt Y2 for Yt . Y2· 

1. If(Yt, Y2) E G2 (so that Yt Y2 is defined), then is(Yt Y2) = is (Y2) and it(Yt Y2) = 
it(Yt). 

2. If i,(Yt) = i t(Y2) and i s(Y2) = it(Y3) (so that (Yt Y2)Y3 and Yt(Y2Y3) are 
defined), then (YtY2)Y3 = Yt(Y2Y3). 

3. One hasrs(t(q» = it(t(q» = q far all q E Q, and yt(is(Y» = t(it(Y»Y = Y 
for all Y E G. 
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4. Writing y- I ;= I(y), the inversionsatisjiesrs(y- I ) = rl(Y)' rl(y- I ) = rs(Y), 
y-Iy = t(rs(Y», and yy- I = t(rl(Y». 

Note that the second equation in 3.1.1.3 is well-defined on account of its prede­
cessor; similarly, the third and fourth equations in 3.1.1.4 are meaningful because 
of the first and the second ones, respectively. It follows from 3.1.1.3 that rs and rt 
are onto (i.e., surjective). 

It can be shown from these axioms that the inverse is unique, so that one could 
omit I from the data specifying a groupoid, and require its existence subject 
to the last condition above. It also follows that I is involutive with respect to 
multiplication; that is, 

(y-I)-l = y; 

(YIYZ)-1 = Y2- IYI-l. 

In addition, 3.1.1.3 and 3.1.1.4 imply 

yy-Iy = y. 

(3.2) 

(3.3) 

(3.4) 

In fact, when Yo E t(Q) and(y, Yo) E G2, so that yYo is defined, then yYo = y. This 
follows since Yo = t(rs(YI» for some Yl; then Yo = YI-I Yl by 3.1.1.4, but since 
rs(Y) = rt(Yo) = rt(YI-lyj) = r,(YI), we see that Yo = t(r,(YI» = y-I y , so that 
finally YYo = yy-Iy = Y by 3.1.1.4, as claimed. Similarly, when (Yo, y) E G2, 
then YoY = y. 

Hence elements of t(Q) act like units for the partially defined multiplication, 
and one sometimes calls an element of the form t(q) a unit, referring to Go ;= t(Q) 
as the unit space in G. For Yo E G to be a unit it suffices to find one y for which 
yYo = y, for in that case the above argument implies that Yo = t(rs(Y». 

One thinks of elements of Q as "objects", and of elements of G as "arrows". 
The arrow y then points from rs(Y) to rt(y), and has an inverse y-I pointing in 
the opposite direction. Arrows are composed from right to left; two arrows YI, Y2 
can be composed to YI Yz iff the endpoint of Yz matches the starting point of YI. 
The arrow t(q) connects q with itself, but it may not be the only arrow to do so. 
The collection of all arrows connecting q with itself is the isotropy group 

(3.5) 

of q; this is clearly a group under the multiplication inherited from G. We conclude 
from the preceding paragraph that t(q) is the unit element of the group Gq in the 
usual sense. 

An equivalent definition of a groupoid is obtained by saying that a groupoid 
consists of a set G, a subset Gz C G x G, a map y f-+ Y -I from G to G, and a map 
. ; G2 --+ G, such that: (i) Gz contains {(y, y-I) lYE G}; (ii) if (YI, yz) E Gz and 
(yz, Y3) E G2, then (YI)'2, Y3) and (Yl, Y2Y3) are in Gz, and (YI Y2)Y3 = YI (YZY3); 
(iii)(y-l)-l = y;(iv)if(YI, yz) E Gz, then (YIYZ)Yz-1 = YI andYI-I(YIYz) = yz. 

The connection with Definition 3.1.1 is then established by identifying Q with 
Go throught, which in tum is identified with the set{yy- I lYE G}. The projections 
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it and is are given by it (y) = y Y -I and is (y) = Y -I y. The equivalence of the 
two definitions is then easily checked. 

We see that a group G = G is a special case of a groupoid, in which Q consists 
of one point e, identified with its image l( e) E G, which is the unit in the group. 
Since i,(y) = is(y) = e for all y E G, all elements can be multiplied, and the 
group axioms follow from 3.1.1. At the opposite extreme we have 

Definition 3.1.2. The pair groupoid Q x Q ~ Q is defined by the operations 
is(ql, q2) := q2, i,(ql, q2) := q" t(q) := (q, q), (q/, q2)' (q2, q3) := (q/, q3), and 
(q/, q2)-1 := (q2, ql). 

This time Gq = (q, q) consists of one point only. 
When H eGis closed under multiplication and inverses, we can form the 

subgroupoid H(is(H), is, iI, t,', I); note that i,(H) = is(H). A subgroupoid of 
the pair groupoid Q x Q that contains all identities is evidently the same as an 
equivalence relation on Q; this follows from straightforward definition-chasing. 

More generally, a groupoid G ~ Q gives rise to an equivalence relation on Q: 
the map it x is : G -+ Q x Q is a morphism (in the obvious sense) of G into 
the pair groupoid Q x Q ~ Q, whose image is a sub groupoid of the latter. By 
3.1.1.3 one has it X is(t(q» = (q, q), so that the image contains all identities. 
From the previous paragraph one therefore obtains an equivalence relation'" on 
Q. This relation is simply that q '" q' iff there exists ayE G for which is (y) = q 
and it(Y) = q'. Hence the equivalence class of q is the same as the orbit Gq of q 
under G, if we define the latter as the set of all q' E Q for which there is ayE G 
satisfying is(Y) = q and i,(y) = q'. If Gq = Q, then G is said to be transitive. 

Proposition 3.1.3 . 

• A groupoid is the disjoint union of transitive subgroupoids. 
• A transitive subgroupoid G ~ Q is isomorphic to a groupoid of the form 

Q x H x Q ~ Q, where the group H is isomorphic to the isotropy group GqO 
of an arbitrary point qo E Q. 

Here the groupoid operations in Q x H x Q ~ Q are is(ql' h, q2) := q2, 
i,(ql, h, q2) := ql, t(q) := (q, e, q), (q/, h, q2) . (q2, k, q3) := (ql, hk, q3), and 
(ql, h, q2)-1 := (q2, h- I, q,). 

When G is not transitive, each orbit Gq in Q gives rise to a transitive subgroupoid 
Gq := is-I(Gq) = it-I(Gq). When G ~ Q is transitive, one chooses an arrow 
yo(q): qo -+ q for each q, in terms of which (q/, h, q2) f-+ yo(qdhYo(q2)-1 is an 
isomorphism between Q x GqO x Q and G. • 

Definition 3.1.4. Let a group G act on a set Q. The action groupoid G x Q ~ Q 
is defined by the operations is (x, q) : = x -I q and i, (x , q) : = q, so that the product 
(x, q). (y, q') is defined when q' = x-1q. Then (x, q). (y, x-'q) := (xy, q). The 
inclusion is t(q) := (e, q), andfor the inverse one has (x, q)-I := (X-I, x-1q). 

Hence (x, q) is an arrow from x -I q to q. The isotropy group Gq coincides with 
the usual isotropy group G q of the G -action. 
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Definition 3.1.5. A Lie groupoid is a groupoid G(Q, 1's, rt , t, " I), where G and 
Q are manifolds, the maps 1's and 1't are surjective submersions, and multiplication 
and inclusion are smooth. 

Proposition 3.1.6. In a Lie groupoid: 

1. The inclusion t is an immersion. 
2. The inverse I is a diffeomorphism. 
3. G2 is a closed submanifold ofG x G. 
4. For each q E Q the fibers rs-I(q) and rt-l(q) are submanifolds ofG. 
S. The isotropy group of any point q is a Lie group. 

We omit the proof, which is a nontrivial exercise in differential geometry. 
In the second definition of a groupoid given above one obtains a Lie groupoid 

by requiring that G be a manifold and that inversion and multiplication be smooth. 
A Lie group is clearly a Lie groupoid. When Q is a manifold, the pair groupoid 

Q x Q ~ Q is a Lie groupoid. Thirdly, when the G ·action on Q is smooth, the 
action groupoid G x Q ~ Q is a Lie groupoid. 

A new example of a Lie groupoid may be constructed if one is given a principal 
H -bundle. Recall that the equivalence class [x, y]H is defined by the equivalence 
relation (x, y) ~ (xh, yh) for all hE H. 

Definition 3.1.7. The gauge groupoid P XH P ~ Q of a principal bundle 
P(Q, H, 1') is defined by the projections rs([x, y]H) := 1'(Y) and rt ([x , y]H) := 
rex), and the inclusion t(r(x» := [x, X]H. Accordingly, the multiplication 
[x, y]H . [x', y']lI is defined when y and x' lie in the same fiber of P, in which case 
[x', y']H = [y, Z]fl for some Z = y'h, h E H. Then [x, y]H . [y, Z]H := [x, Z]H. 
Finally, the inverse is [x, y]]/ := [y, X]fl. 

The isotropy group Gq consists of all [x, y] H for which r (x) = r (y) = q. Each 
y E Gq is of the form [s(q)h, S(q)]H' where s is an arbitrary section of P. Hence 
[s(q)hl, S(q)]H . [s(q)h2, S(q)]H = [s(q)hlh2, S(q)]II, so that for all q E Q one 
concludes that Gq c:::: H as a group. 

It is plain that a gauge groupoid is transitive. If the bundle P is trivial and brought 
into the form P = Q x H, there is a smooth isomorphism P x H P ~ Q c:::: 
Q x H x Q ~ Q (see 3.1.3). This is given by [(ql, h), (q2, e)]H t--+ (ql, h, q2). 
More generally, when P is nontrivial, a section s : Q --+ P leads to a nonsmooth 
isomorphism of the above type through Proposition 3.1.3. For one may choose 
yo(q) := [seq), S(qO)]H to obtain the isomorphism [s(ql)h, S(q2)]H t--+ (ql, h, q2). 

We learn frorr Proposition 2.4.2 that the space of sections of the total space 
P x II P of a gauge groupoid may be identified with the group of automorphisms 
of the bundle P(Q, H, r). 

Proposition 3.1.8. Let G (G / H, H, r) be the principal H -bundle defined in 2.7. 
Then the gauge groupoid G x H G ~ G / H and the action groupoid G x (G / H) ~ 
G / H are isomorphic (in the obvious sense). 

The correspondence [x, y]H ~ (xy-I, rex»~, combined with the identity map 
on the base Q, is easily seen to provide the desired isomorphism. • 
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3.2 Half-Densities on Lie Groupoids 

As we have seen in 1.7. one can associate a C*-algebra C*(G) with a Lie group G. 
and establish a correspondence between representations of G and representations 
of C*(G). One can generalize this to Lie groupoids. The material in this section is 
preparatory for this purpose. 

For a vector bundle V over a manifold M with n-dimensional typical fiber V. the 
bundle A(V) is defined as A nv minus the zero section. This is a principal C* -bundle 
over M. whose fiber at x is the n-fold antisymmetric tensor product of Vx (the fiber 
of Vat x). with 0 omitted (here C* is C\ {O}, seen as a multiplicative group). We 
write AM := A(T M). 

Definition 3.2.1. For a > O. the bundle of a-densities IA III (V) is the line bundle 
over M associated to A(V)(M. C*. r) by the representation Z ~ Izl-Il o/C* on 
C. An a-density on V is a section of the bundle of a-densities. We put IA III M := 
IAIIl(T M). 

A I-density is called simply a density; of interest to us are the cases a = I and 
a = ~. According to Proposition 2.1.5. we describe a section qJll of IAIIl M as 
a (smooth and compactly supported) map qJll : AM ---+ C satisfying qJll (AX) = 
IAlllqJll(X) for all A E R and all X E AM. Such a section may be represented 
by an equivalence class qJll = [f. v]ll. where f E C;;o(M) and v is a positive 
measure on M that is locally Lebesgue. The equivalence relation defining the 
class [f. v]1l is (f. v) '" (g. J1,) when g = f(dv/dJ1,)1l (the Radon-Nikodym 
derivative d v / d J1, is well-defined. since J1, and v are equivalent). It follows from 
the multiplicative property of the Radon-Nikodym derivative that this is indeed 
an equivalence relation. The section defined by the class [f. v]1l takes the form 

[f. v]Il(iJI A ... A an) := f(x) ( dv (X»)1l • 
dJ1,L 

(3.6) 

where al A ... A an E Ax M. and d J1,L := dx 1 ... dxn is the Lebesgue measure 
in the particular chart used. The point of introducing densities is that they can be 
integrated over M (even if it is not orientable) without specifying a measure, i.e., 
when qJ 1 is a density, the object 

L qJ1 := L dnx qJl (A7=1 a~i) (3.7) 

is independent of the choice of (local) coordinates; cf. the usual definition of the 
integral of an n-form over M. In the realization of qJll as an equivalence class [f, v]1l 
this simply reads fM[f. V]I = fM dVf. Similarly. since qJlll qJIl2 is an element of 
r(IAllll+1l2M), the product of two half-densities may be integrated on M; here 

L[f'V]~[g,J1,]~ = LdVJ~~fg= LdJ1,J::fg. (3.8) 

Accordingly. one can form the Hilbert space of half-densities L 2(M). 
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Proposition 3.2.2. Each bundle I A la M is trivial, and any measure p, on M that is 
locally Lebesgue defines a trivialization 1/1 Il of I Ala M. Accordingly, p, establishes 
a natural bijection between r(IAla M) and C~(M). 

Since the notation of 2.1.4 would contain no information about a, we write 
elements of IAla M as equivalence classes [X, Ala (rather than [X, A]c.). In a 
given local chart we define a local trivialization of IAla M by 

1/I1l([al 1\ ... 1\ an, Ala) := (d:;"L ) a A. 

By the C*-equivariance property [pX, Ala = [X,lpl-aAla 
independent of the chart, and defines a global trivialization. 

A section [f, vla then trivializes to f: : M --+ C, given by 

f;(x) = f(x) (:: (X») a 

(3.9) 

this is actually 

(3.10) 

Conversely, a function f : M --+ C corresponds to a section [f, P,la. • 

When applicable, integration of such trivialized sections is then done with 
respect to p" on which the numerical value of the integral does not depend. 

Let now G ~ Q be a Lie groupoid. Recall from 3.1 that q '"" q' on Q when 
there exists Y E G for which Ts(Y) = q and Tt(Y) = q'. 

Lemma 3.2.3. The fibers G~ := Ts-I(Ts(Y» and G~ := Tt-l(rt(Y» are 
diffeomorphic; their common dimension is denoted by d Y • 

The fibers G~ and G~, (and similarly G~ and G~, ) are diffeomorphic when rs (y) 
and rs(Y') are equivalent. 

If q ~ q' by such a y, then Ry , defind by 

Ry(Y') := y'y (3.11) 

when (y', y) E G2, maps Ts-1(Tt(Y» into rs-l(rs(Y»; since y has an inverse, this 
map is a diffeomorphism. Similarly, L y , defined by 

Ly(Y') := yy' (3.12) 

whenever (y, y') E G2, maps rt-I(rs(y» diffeomorphic ally to rl-I(r,(y». The 
inversion I : y t-+ y-I is a diffeomorphism between Ts-l(rs(Y» and rl-I(rs(y», 
which is equal to T,-I(rl(y-I). Thus we have 

Ry-l : G~ --+ G~_l; 

Ly-l : G~ --+ G~_l; 

I ·Gs --+Gs . y y-l· (3.13) 

Hence Ry 0 I : G~ --+ G~ is a diffeomorphism; its inverse is Ly 0 I : G~ --+ G~. 

Since rl(Y-') = rs(Y) and Tt(Y) are equivalent points in Q (namely by y), the 
last claim follows as well. • 
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Lemma 3.2.4. For YI E Tt- 1{Ts{Y» there are canonical isomorphisms 

Ty_,GS -I ~ Ty,Gty ; 
I 1'1 I 

Tyy, G~YI ~ TI'l G~I ; 
TYYlG~y, ~ TyG~; 

Ty_,Gt -I ~ TyGty. 
~ 1'1 

(3.14) 

These isomorphisms are given by the pushforwards of the inversion map, of 
Ly-" of Ry,-" and of Lyy, , respectively. • 

The space NG (or AtG) is defined as the line bundle over G whose fiber at Y 
is the complexified dY -fold antisymmetric tensor product of TyG~ (or TyG~); this 
fiber is evidently one-dimensional. Note that TyG~ is the kernel of (Ts)*, etc. We 
can then form the tensor product AS G ® AI G. 

Definition 3.2.5. The symbol N®tG stands for the line bundle ASG ® AtG with 
the zero section omitted; this is a principal C* -bundle over G. 

An s ® t -density on G is a smooth compactly supported section of the line bundle 
I 

.JjXfs®tG associated to As®tG by the representation z 1-+ Izl-2' ofC*. 

One may equivalently define .JjXfs®t G as .J1ATs ® .Jfi\f, where .JjXfs.t is 
the line bundle associated to As.tG, minus the zero section, seen as a principal 

I 
C*-bundle over G, by the representation z 1-+ Izl-2'. 

Pulling back, Lemma 3.2.4 leads to an isomorphism 

Al'l : M~y, G ® M~y, G ® M~,-, G ® M~,-, G 

-+- JiAT~G®M:G® IAI~,Gy. (3.15) 

Similarly, the pullback of the inversion map leads to an isomorphism 

A; : M~-,G ® My-,G -+- M~G ® MyG. (3.16) 

3.3 The Convolution Algebra of a Lie Groupoid 

After this preparation we come to the definition of convolution. 

Proposition 3.3.1. Let 'IIs®t, <l>s®t be s ® t-densities on G. Convolution on the 
groupoid is defined by 

Ws®t * <l>s®t(y) = 1 AI ('IIS®I<l>S®I), (3.17) 
1',-1(1',(1'» 

where AI ('IIS®I <l>S®I) is defined for YI E Tt-I{Ts(Y» by Al ('IIS®I <l>s®t) : YI 1-+ 

Al'l (ws®t{YYI) ® <l>s®t(YI-I».lnvolution is defined by 

('IIs®t)*(y):= A;('IIs®t{y-I». (3.18) 

With these operations. the vector space r(../lXTs®tG) is a *-algebra. 
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The fact that r<Jii\TS®IG) is closed under convolution follows from 3.1.6.3, 
the smoothness of groupoid multiplication (cf. 3.1.5), and the smoothness of the 
isomorphism AI. Similarly, c10sedness under involution is a consequence of the 
smoothness of inversion and of the isomorphism A - • 

To verify associativity of the convolution product, one uses the associativity of 
multiplication in the groupoid and a self-evident property of AI. 

The equalities (\IIS®I)** = ",s®t and (\IIs®t ® <l>s®t)* = (CI>s®t)*(\IIs®t)* follow 
from (3.2) and (3.3), respectively. • 

Up to the maps Al and A -, there is therefore a direct correspondence between 
the key properties of the groupoid operations (i.e., the associativity of multipli­
cation and the involutive nature of the inversion) and those in the corresponding 
convolution * -algebra (where the role of the inversion is played by the adjoint). 

Although it shows that one can always associate a convolution * -algebra 
with a Lie groupoid, the definition above is not easy to use in practice. Fortu­
nately, one may trivialize the bundle .JfATs®tG. What follows adapts the general 
considerations in 3.2 on measures and a-densities to groupoids. 

Definition 3.3.2. A t-system on a Lie groupoid G ~ Q is afamily {J-t~}qEQ of 
positive measures such that: 

1. The measure J-t~ is defined on 7:t- 1(q) C G (or, equivalently, on G with support 
in 7:t- l (q) C G). 

2. Each J-t~ is locally Lebesgue (recall from 3.1.6 that each fiber 7:t- l(q) is a 
manifold). 

3. For each f E C'g'"(G) the map q r-+ fr,-I(q) dJ-t~(Y)f(Y)from Q to C is smooth. 

Similarly, an s-system is defined as above, with t replaced by s. 
If, in addition, the family of measures defining a t-system is invariant under 

all maps L y , the t-system is called a left Haar system. Similarly, a right Haar 
system is an s-system invariant under all maps Ry • 

It is clear from (3.13) that the inversion I maps a given t-system {J-t~} into an 
associated s-system {J-t~} = {I*IL~}, by which a left Haar system is mapped into a 
right Haar system (and vice versa). This is possible because of the diffeomorphism 
G~ ~ G~ discussed in Lemma 3.2.3. 

Proposition 3.3.3. Every Lie groupoid G ~ Q possesses a left Haar system. 
Consequently, the bundle .JfATs®t G is trivial. 

The proof of the first claim will be given at the end of 3.8. For the second, it 
is enough to have a t-system. The construction of the global trivialization gen­
eralizes (3.9). For Y E G, choose local coordinates {Xi} and {yi} on G~ and 

G~, respectively, with associated Lebesgue measures dlL~ := dxl ... dxn and 

dJ-tL := dyl ... dyn. (These coordinates may be different even if G~ = G~.) The 
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map 

,I, ([!lX !lX!lY !lY ']) , dJ.Ll dJ.L~ 
'I'jt VI /\ .•. /\ vd ® vI /\ ..• /\ vd ,/I. := /I. -d --

y y J.L' dJ.L' 
(3.19) 

is well-defined (in not depending on the representative in the equivalence class), 
smooth, independent of the chart, and defines a global trivialization. • 

One may represent a section \II.®I of .JjAf.®1 G by an equiValence class that 
we denote by [j, {V~}l!®l' where f E Cgo(G) and {v~} is a t-system on G. With 

2 2 
{v~} the s-system associated to the given t-system, the equivalence relation is 
(i, {v~}) ,...., (g, {J.L~}) when for all Y E G one has 

g(y) = f(y) (dV~(y) dV:,(y) (y»)! 
dJ.Lr.ry) dlLr,(y) 

For af /\ ... a:y E A~®I G, the section in question is then duly given as a C*­
equivariant map from A·®IG to C by (cf. (3.6» 

(
dVS dv' )! 

[f {v'}] 1 1 (aX /\ ... /\ ax ® aY /\ ••• /\ aY ) := f(y) ~~(y) 
, q i®i I dy I dy dJ.Ll dJ.L~ 

(3.20) 
As in (3.10), a fixed t -system {v~} on G leads to a trivialization of s ® t -densities 

as complex-valued functions on G, tied to the trivialization of .JjAf.®1 G defined 
by {v~}. Generalizing (3.10), a section [j, {v~}]!®! as above is trivialized by 

2 2 
f~ : G ~ C given by 

(3.21) 

Proposition 3.3.4. A left Haar system {J.L~} on a Lie groupoid G ~ Q defines an 

isomorphism between the convolution * -algebra r<.JIAT.®1 G) and ego (G), turned 
into a *-algebra asfollows. Convolution and involution are defined as 

f * g(y) := 1 dJ.L~,(y)(YI) f(YYI)g(YI-I); 
r,-l(r,(y) 

(3.22) 

f*(y):= f(y- I). (3.23) 

The isomorphism is given by letting f E Cgo(G) correspond to the equivalence 
class [j, {JL~}l!®! in r<.JIAT.®I G). The fact that (3.22) is thus mapped into (3.17) 

2 2 
follows from the definition of AYl in (3.15) by Lemma 3.2.4, and the comment 
following 3.3.2. Similarly, the correspondence between (3.23) and (3.18) follows 
from the definition of A-in (3.16) and the fact that the right Haar system occurring 
in, e.g., (3.21) is defined from the given left Haar system by the inversion map. • 
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Let us look at some examples of the preceding abstract constructions. 

Proposition 3.3.5. ffG = G is a Lie group, then each locally Lebesgue measure 
defines a t-system, which in this case is the same as an s-system. A left-invariant 
Haar measure on G provides a left Haar system. The ensuing convolution algebra 
is the group algebra, restricted to C~(G). 

This is obvious, as G = <t-I(e) = <s-I(e). A measure on G defines a left Haar 
system iff it is left-invariant in the usual sense. • 

Note that the right Haar system defined by a left Haar system coincides with it 
when G is unimodular. 

Combined with 3.3.4, this proposition shows that one may define the group 
algebra of a Lie group without specifying a Haar measure, but since one still needs 
the isomorphism (3.15) in (3.17), there is not much advantage in this. 

Proposition 3.3.6. On a pair Lie groupoid Q x Q ~ Q any measure v on Q 
that is locally Lebesgue defines a left Haar system. 

The corresponding pair groupoid *-algebra is C~(Q x Q), with operations 

f * g(ql, q2) = L dv(q) f(q" q)g(q, q2); 

j*(q" q2) = f(q2, qd. 

(3.24) 

(3.25) 

To construct the left Haar system one identifies <,-1 (q) = {q} x Q with Q for 
each q. The above formulae then follow from (3.22), (3.23), and 3.1.2. • 

In particular, when Q is a finite set with cardinality n, the convolution algebra 
is simply Vltn (C). 

Proposition 3.3.7. On a gauge groupoid P x H P ~ Q an H -invariant measure 
/L on P which is locally Lebesgue produces a left Haar system. 

The corresponding gauge groupoid * -algebra C~(P x H P) is given by 

f * g([x, y]H) = 1 d/L(z) f([x, Z]H )g([z, y]H); 

f*([x, y]H) = f([y, X]lI)' 

(3.26) 

(3.27) 

When H is compact one may identify C~(P Xli P) with C~(P x p)H, seen 
as a subalgebra of the convolution algebra C~(P x P) of the pair Lie groupoid 

P x P ~ P; cf. 3.3.6. 

We identify <t-I(q) with P through the choice of a measurable section s : Q ~ 
P; that is, we let [seq), X]H E <t-I(q) correspond to x E P. Since [x, S(q)]H . 
[seq), y]H = [s«(x», yhs(x)]H, where hs is defined below (2.6), the first claim 
follows. The second follows from the above consideration and the H -invariance 
of the measure. • 
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3.4 Action * -Algebras 

We now look at the convolution algebra of an action Lie groupoid. 

Proposition 3.4.1. In an action Lie groupoid G x Q ~ Q each left-invariant 
Haar measure dx on G leads to a left Haar system. The operations in the action 
groupoid *-algebra C;:O(G x Q) are 

f*g(x,q)= fa dy f(xy,q)g(y-', y-Ix-Iq ); (3.28) 

f*(x,q) = f(x-',x-'q). (3.29) 

To construct the left Haar system one identifies <t- I (q) with G, letting (x, q) E 

<t-I(q) correspond tox E G. Equations (3.28) and (3.29) then follow from (3.22), 
(3.23), and Definition 3.1.4. • 

We will now construct a seemingly different * -algebraic structure on the function 
space C~(G x Q), which turns out to be isomorphic to the one above. The data 
for the definition still constitute a smooth action of a Lie group on a manifold Q; 
the associated action of G on C;:O(Q) is denoted by 

- - -I ax(f) : q H- f(x q). (3.30) 

We look at C;:O( Q) as a commutative * -algebra in the obvious way, i.e., as a dense 
subalgebra of the C* -algebra Co(Q). 

To exhibit the natural structure of the construction, we first consider the 
following generalization. Recall Definition 11.2.4.2. 

Definition 3.4.2. A smooth C* -dynamical system consists of a Lie group G, a 
dense subalgebra !it of some C* -algebra ~, and an automorphic action a of G on 
2(, such that for each fixed A E !it the function x H- ax (A) from G to 2( is smooth. 

It follows that x H- ax(A) is continuous for all A E 2(. (More generally, when G 
is merely locally compact and the latter continuity property is satisfied for !it = 2(, 

one speaks of a C* -dynamical system.) The term "dynamical system" comes from 
the example G = Rand 2( = Co(S), where R acts on S andat(f) : (1 H- (1 (t); cf. 
1.(2.13). Anotherexarnple is, of course, provided by 2( = Co(Q) with !it = C;:O( Q), 
where the G-action on 2( is defined as in (3.30). The smoothness of the G-action 
on Q then implies that one indeed has a smooth C* -dynamical system. In any case, 
given a smooth C*-dynamical system, one considers the space C~(G, !it), made 
into a * -algebra by the operations 

F * G(x):= fa dy F(y)ay(G(y-l x »; 
F*(x):= ax(F(x- I )*). 

(3.31) 

(3.32) 

In the nonunimodular case one here needs to assume that the Haar measure is left­
invariant. The *-algebra C~(G,!it) thus defined is called the (smooth) crossed 

product *-algebra, or simply the crossed product, of G and !it, and is denoted 
by C*(G, !it). If!it = C~(Q), we call C*(G, C~(Q» an action *-algebra. 
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Lemma 3.4.3. The action groupoid * -algebra C;;o (G x Q) is isomorphic to the 
action *-algebra C*(G, C;;o(Q». 

A function FE C*(G, C;;o(Q» defines f E C;;o(G x Q)by f(x, q) = F(x)(q). 
The definition of the function spaces in question easily implies that this correspon­
dence is bijective. Under this correspondence, a shift in the integration variable in 
(3.28) and the left invariance of the Haar measure reproduces (3.31). The equality 
of (3.29) and (3.32) is immediate. • 

Generalizing 1.7.3, we have 

Theorem 3.4.4. There is a bijective correspondence between 

• nondegenerate representations rr of the crossed product C*(G, it) that are 
bounded as in 

IIrr(F)1I :::: IIFIlI := £ dx IIF(x)lI; (3.33) 

• pairs (U, ir), where U is a representation of G, and ir is a nondegenerate 
representation of ~ that for all x E G and A E ~ satisfies the covariance 
condition 

U(x)ir(A)U(x)* = ir(ax(A». (3.34) 

This correspondence is given in one direction by 

rr(F) = £ dx ir(F(x»U(x); (3.35) 

in the other direction one defines AF : x t-+ AF(x) and ax(f) y t-+ 

aAf(x-1 y», and puts 

U(x)rr(F)Q = rr(aAF»Q; (3.36) 

ir(A)rr(F)Q = rr(AF)Q, (3.37) 

where Q is a cyclic vector for a cyclic summand ofrr(C*(G, it». 
The proof of this theorem is analogous to that of 1.7.3. The analogue of the 

Banach algebra L I(G, c) used in that proof is LI(G, ~), the closure of C;;o(G, it) 
in the norm (3.33). The rest of the proof may be read off from 1.7.3. 0 

We return to G-actions on a manifold Q. 

Definition 3.4.5. Given a G-action on Q, a smooth system ofimprimitivity of 
G on Q is a pair (U(G), ir(C;;o(Q»), where U is a continuous representation of 
G, and ir is a nondegenerate representation ofC;;o(Q) (seen as a commutative 
*-algebra in the obvious way), satisfying the covariance condition 

U(x)ir(j)U(x)* = ir(aAi». (3.38) 

The meaning of the conditions on the pair (U, ir) may be clarified by expressing 
them in infinitesimal form. For X E g, i E C;;o(Q) we put 

Q~(X):= ihdU(X); (3.39) 
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Qn (j) := it(j), (3.40) 

and obtain (on the domain H(J; see III.l.S.S) 

~[Qn(j), QnCg)] = 0; 

i - - -----h[Qn(X), Q~(Y)] = Qh(-[X, Y]); 

i - - -
h[Q~(X), Q~(f)] = Qn(hf). 

(3.41) 

(3.42) 

(3.43) 

As in 1.1 we have X E COO(g*, JR); also recall the definition (1.19) of gx. Equation 
(3.41) is evident from the fact that it (Cgo(Q» is a representation (but is a weaker 
property); equation (3.42) is equivalent to (1.70) (with r = 0); and finally, (3.43) is 
an infinitesimal restatement of the covariance condition (3.38). These commutation 
relations may be seen as a version of Dirac's condition 11.(1.3); cf. 3.11. 

Corollary 3.4.6. There is a bijective correspondence between 

• nondegenerate representations 1f of the action *-algebra C*(G, Cgo(Q» (or, 
equivalently, of the action groupoid *-algebra Cgo(G x Q» that are bounded 
as in 

1I1f(F)1I ::: IIFIII = sup { dx If(x, q)l; 
qEQJO 

• smooth systems of imprimitivity of G on Q. 

Further to 3.1.8 we naturally have 

(3.44) 

Proposition 3.4.7. The action groupoid * -algebra Cgo( G x (G j H» and the gauge 
groupoid *-algebra Cgo(G XH G) are isomorphic. 

For simplicity we prove this only for unimodular G. We identify COO( G x H G) 
with COO(G x G)H in the obvious way, so that Cgo(G XH G) is identified with a 
certain subspace of COO(G x G)H. One then establishes the desired bijection f ++ 
i between Cgo(G x (Gj H» and Cgo(G XH G) by i([x, y]H) = f(xy-I, rex»~, 
with inverse I(x, q) = i([s(q), x-1S(q)]H)' Here s : G j H -+ G is an arbitrary 
section, on which the right-hand side clearly does not depend. Using the invariance 
of the Haar measure under inversion and right translation, one verifies that this 
bijection duly intertwines the * -algebraic operations stated in 3.4.1 and 3.3.7. • 

Corollary 3.4.8. There is a bijective correspondence between nondegenerate rep­
resentations 1f of the gauge groupoid * -algebra Cgo( G x H G) that (for unimodular 
G) are bounded as in 

1I1f(f)1I ::: sup ( dx If([y, X]H )1, 
YEOJO 

and smooth systems ofimprimitivity (U(G), it (Cgo(G j H»). 

(3.45) 
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U sing the invariance of the Haar measure under inversion, it is easy to see that 
the bound (3.45) is equivalent to (3.44). • 

Using (3.27) and thefact that rr by definition satisfies rr(f*) = rr(f)*, one infers 
that the bound (3.45) is equivalent to the same expression in which f([y, X]H) is 
replaced by f([x, Y]H). The significance of this comment will become clear in the 
light of (3.57). See also Corollary 3.7.6. 

3.5 Representations of Groupoids 

In 1.7 the (reduced or full) C* -algebra of a Lie group G was defined in direct 
relationship with the representations of G. This motivates the following definition 
of a representation of a general groupoid. 

Definition 3.5.1. A representation U of a groupoid G =* Q consists of a family 
{1t}qEQ of Hilbert spaces indexed by the base Q and a collection (U(Y)}YEG of 
maps such that 

1. U (y) : 1tr,(y) --* 1tr,(y) is unitary. 
2. U(YIY2) = U(Yl)U(Y2) whenever (YI, Y2) E G2• 

3. U(y-l) = U(y)* for all Y E G. 

Hence, with reference to the third paragraph after (3.4), one thinks of a repre­
sentation of G ~ Q as a functor converting the points of Q into Hilbert spaces 
and the arrows in G into unitary maps connecting these Hilbert spaces. 

The simplest example of a representation is obtained by choosing 1tq = C for 
all q E Q and U(y) := 1 for all Y E G. This representation is evidently not 
faithful if there are nontrivial isotropy groups Gq • 

For all our applications, and also for the purpose of defining the groupoid C*­
algebra, it will be sufficient to assume that all 1tq are separable and of the same 
dimension. Let us give an example. Since each isotropy group Gq is a Lie group, 
we can form 1tq := L2(Gq, JL%), where JL% is a left or right Haar measure on Gq. 
For W E 1tr,(y) we then define Ulr(Y)W E 1tr,(y) by 

(3.46) 

The Radon-Nikodym derivative occurring here makes sense, since Gr,(y) and Gr,(y) 

are diffeomorphic by h 1-+ Y -I h Y , so that the measure class of the Haar measure 
is preserved (recall that a Haar measure on a Lie group is locally Lebesgue). It is 
easily verified that this indeed furnishes a representation of G in the sense of 3.5.1. 

In a variation on this example, in the base of each transitive sub groupoid one 
picks a point qo of G (cf. the proof of 3.1.3), and a function yo: Gqo :--* 1's-l(qO) 
satisfying 1'. (Yo(q» = qo and 1'1 (Yo(q» = q. One then replaces (3.46) by 

dJL:'(y)(y-1 hyo(1'1 (y »Yo( 1's(Y »-1 ) 
dJL~(y)(h) 
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Since it depends on the function Yo, this representation is not really intrinsic (unlike 
its predecessor), but different choices of Yo lead to equivalent versions. In any case, 
it will be reconsidered shortly. 

In the regular representation one takes 1tq := L 2(T,-'(q), JL~). Defined for a 
general Lie groupoid, this representation is given by 

(3.48) 

This makes sense, since y-'y' E T,-t(Ts(Y» when T,(y) = Tr(y'), and is unitary 
because of the left invariance of the left Haar measure. 

To relate representations of G ~ Q in the above sense to representations of 
the convolution algebra C~(G) by a * -algebra of bounded operator.s on a Hilbert 
space in the usual sense, one has to choose a measure v on Q. As we shall see, it 
is not sufficient to limit one's attention to measures that are locally Lebesgue. 

Definition 3.5.2. Let a Borel measure von Q and a left Haar system {JL~}qEQ on 
G, with associated right Haar system {JL~}, be given. One obtains measures v x JL' 
and v x JLs on G, defined by 

v X JL'(f):= ( dv(q) j dJL~(Y) fey); lQ <,-l(q) 
(3.49) 

VXJLS(f):= (dV(q)j dJL~(Y)f(Y). lQ <,-l(q) 
(3.50) 

The measure v is said to be quasi-invariant when v x 11' and v x f.Ls are equivalent, 
and invariant when they are equal. 

If v is quasi-invariant, the Radon-Nikodym derivative 

dv x JLs 
p.- ---'--

.- dv x f.L' 
(3.51) 

is well-defined on G, equaling unity in the invariant case. An example of a quasi­
invariant measure on the base of an arbitrary Lie groupoid is a measure that is 
supported and locally Lebesgue on an arbitrary orbit Gq • A measure that is locally 
Lebesgue on Q (so that it is supported on all of Q) is quasi-invariant as well, since 
v x JL' and v x JLs are both locally Lebesgue on G. More examples are given in the 
following proposition, whose main goal it is to examine when a quasi-invariant 
measure is invariant. Here the measure v on Q is as specified above. 

Proposition 3.5.3. 

• A left Haar measure on a Lie group G is invariant iffG is unimodular. 
• For a pair Lie groupoid Q x Q ~ Q, a measure is invariant iff it is a multiple 

of the fixed measure on Q defining the left Haar system (cf 3.3.6). 
• For a gauge groupoid P x H P ~ Q, a measure v is invariant when H is 

unimodular, and when v is related to JL (the measure defining the left H aar 
system, as in 3.3.7) by (2.139). 
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• For an action Lie groupoid G x Q =* Q, a measure v is invariant iff it is 
G-invariant. 

This follows directly from the definitions. • 
If in a given representation U of G =* Q one has 1tq = K for all q, one can 

form L 2( Q, v) ® K, which will be the Hilbert space carrying the representation :rr 
of the convolution algebra C;?,"(G) associated to U. 

In general, assuming that each 1tq is separable, the subset Qn ~ Q for which 
dim('Hq) = n for all q E Qn should be measurable for each n E N U 00. One then 
considers the space r of all functions '11 : Q -+ {'Hq } satisfying '11 q E 1tq ; such a 
function is called a section of the field {1tq }. The idea is to tum a suitable subset 
of r into a Hilbert space with inner product 

('11, <1»:= 10 dv(q) ('I1q, <l>q)q, 

where (, )q is the inner product in 1tq • 

(3.52) 

Such a suitable subset is obtained by specifying a sequence of sections 'I1n 
satisfying the two conditions that firstly the function q 1-+ ('I1n(q), 'I1m(q»q be 
measurable for all n, m, and secondly that for each fixed q the 'I1n span 1tq • There 
then exists a unique maximal linear subspace roof r that contains {'11 n }, and for 
which all functions q 1-+ ('I1q, <l>q)q are measurable. The direct integral 

1t = 10$ dv(q)1tq (3.53) 

is then by definition the subset of ro of functions '11 for which ('11, '11) < 00, as 
defined by (3.52). It depends on the choice of the sequence {'I1n}, but in all practical 
applications it is clear that all reasonable such choices lead to the same result, so 
that this dependence will be suppressed. 

The simplest example of a direct integral is 'H = fIR dx'Hx , where 1tx = C for 
all x. Choosing the sequence {'I1n} to consist of a single strictly positive measurable 
function then leads to 1t = L2(lR). When 1tq = K for all q, one takes {'I1n} to 
be a strictly positive measurable function on Q tensored with a basis in K. The 
corresponding direct integral is nothing but 1t = L2(Q, v) ® K. Since Q is a 
finite-dimensional manifold, 'H is separable. 

As an example relevant to Lie groupoids, we construct the direct integral 

'H(qo) = ($ dv(q) L 2(Gq , JL~/) (3.54) 
lGqo 

over the Hilbert spaces 1tq = L2(Gq , JL%) considered in the context of (3.46), 
with v supported on a given orbit Gqo. One picks the function Yo mentioned 
before (3.47) so that it is measurable, and identifies each stability group Gq with 
GqO through Gq 3 h 1-+ yo(q)-lhYo(q) E Gqo • Inserting the appropriate Radon­
Nikodym derivative, this leads to a unitary map Vq : L2(GqO ' JL~) -+ 1tq. One 

then picks a basis {en} in L2(Gqo ) and a strictly positive measurable function f 
on Q, and defines the sequence {'I1n} as 'I1n(q, h) := f(q)VqeJL(h). The resulting 
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direct integral clearly consists of those sections '" of the given field for which 
q ~ V;I"'q lies in L2(GqO x Gqo ). 

In a third example, we consider the field 1tq = L 2(.,-I(q), IL~) featured in 
(3.48), and a measure v on Q that is locally Lebesgue. One then tacitly chooses 
the sequence {'lin} in such a way that (cf. (3.49» 

10$ dv(q) L 2(.,-I(q), IL~) = L 2(G, v x IL'). (3.55) 

3.6 The C* -Algebra of a Lie Groupoid 

In preparation for the definition of the C* -algebra of a Lie groupoid we show 
how a representation of a Lie groupoid determines a representation of its groupoid 
*-algebra. 

Proposition 3.6.1. Assume that one has a Lie groupoid G ~ Q with 

• a left Haar system {IL~}; 
• a representation U of G on a collection {1tq} of separable Hilbert spaces 1t 

for which the function 

y ~ ('IIl,(y), U(y)'IIr,(y)hiT,(y) 

is measurable for all'll, <l> E 1t; 
• a quasi-invariant measure v on Q; 
• an associated direct integral1t = f~ d v(q) 1tq. 

For each f E C~(G) the operator 1t(f) on 1t, defined by 

1t(f)'IIq := ! dlL~(Y) #(y)f(y)U(y)'IIr,(y), (3.56) 
l,-L(q) 

where p is given by (3.51), is bounded, with 

111t(f)1I ~ IIflll := max{lIflls, IIfII,}; (3.57) 

IIflls., := sup! dlL~·'(Y)lf(Y)I. (3.58) 
qEQ l,~,L(q) 

Then 1t is a nondegenerate representation of the groupoid *-algebra C~(G) on 
1t. 

To derive the bound, we generalize the proof of Lemma 1.7.2. Writing F(y) := 
J p(y)lf(y)III'IIr,(y)1I and G(y) := Jlf(y)III"'r,(y)lI, we use 3.5.1.1 to majorize 
1('11, 1t(f)'II)1 by fGdv x IL' FG. Applying the Cauchy-Schwarz inequality and 
using the argument in the proof ofIl.1.3.5 then leads to (3.57). 

To verify that 1t preserves multiplication, one writes out 1t(f * g) using (3.56) 
and (3.22), changes variables YI ~ Y2 = YI-I and subsequently y ~ y' = yY2-1• 

The range of(y',)I2) is then y' E .,-l(q) and Y2 E .,-1 ('s (y'». Finally, one needs 
3.5.1.2 and the properties 

p(yy') = p(y)p(y'); 
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(3.59) 

The first is a nontrivial consequence of the left invariance of {JL~} and the right 
invariance of {JL~}, and the second is immediate from the definition of {JL~}. 

The proof that rr preserves the involution follows from 3.5.1.3 and the fact that 
the measure v x JL',JP on G is invariant under inversion. 

The nondegeneracy of rr is an easy consequence of the surjectivity of is,1 and 
the unitarity of U. • 

An important example of such a representation is the regular one. 

Theorem 3.6.2. 

1. The regular representation rri of C~(G) on H~ = L2(G, v x JL' ), given 
by (3.48), (3.56), and a locally Lebesgue measure v on Q, is equivalent to 
rrl<C~(G» on Hi := L2(G, v x JLS), given by 

(3.60) 

Here the convolution is given by (3.22). 
2. The regular representation is faithful on C~(G). It may be decomposed as a 

direct integral over the reduced regular representations rr~, q E Q, defined 

on L2(is-l(q), JL~) by rr~(f)\II = f * \II, that is, by the restriction of(3.60). 
3. For given qo E Q, the representation rr;o(C~(G» is equivalent to the 

representation rrqO on H(qo) (see (3.54)) given by (3.56) with (3.47). 
4. Finally, rr;o may be realized on the Hilbert space L 2( i s- I (qo» of half-densities 

on i s- I (qo), so that it can be defined without the choice of a (left or right) Haar 
system. 

The representation rri is given on H~ = L2(G, v x JLI) (cf. (3.55» by 

rri(f)\II(y) = ( dJL~,(y)(Yl),JP(Ydf(YI)'lI(YI-ly). (3.61) 
JG~ 

Now perform the unitary transfonnation V : H~ ~ Hi := L2(G, v x JLS), 
1 

defined by V'lI(y) := p(y )-2 'lI(y). Using (3.59), changing integration variables, 
and using the left invariance of JLI one obtains Vrri V* = rr[; cf. (3.60). 

(Incidentally, the price for the simplicity of (3.60) is that compared with (3.48) 
the corresponding representation U[ (G) on L2(is-l(q), JL~) now contains an addi­
tional Radon-Nikodym derivative.) In analogy to (3.55), one decomposes Hi as 
a direct integral over Q by 

L 2(G, v x JLS) = 1a(JJ dv(q) L 2(is- l(q), JL~); (3.62) 

rr[ = 1a(JJ dv(q)rr~. (3.63) 

The latter means that rr[(f)'lIq = rr~(f)'lIq for (almost) all q E Q, where rr~ is 
the operator on Hq = L2(is-l(q), JL~) specified in the theorem. 
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To prove the equivalence between 7r~o and 7rqO ' one uses 3.1.3 to realize both 
representations in the model Gqo x GqO x Gqo, where they coincide. 

Finally, analogously to (3.15), we can use (3.14) to obtain an isomorphism 

(3.64) 

In a slight modification of (3.17), if III is a half-density on 's-I (qo) and <l>s®t is an 
s ® t-density on G, we can write convolution as 

<l>s®t * lI1(y) = 1 XI(<I>s®t<l», 
.,-l(.,(y» 

(3.65) 

where the definition of XI in terms of XYl is analogous to that of Al in terms of Ai'" 
The left hand side is then by definition equal to 7r;(<I>s®t)lI1. • 

One should mention that 7r: mayor may not be reducible, and that these 
representations mayor may not be equivalent when q varies. 

For example, for a group there only is one q, and 7r% is the left-regular 
representation, which is reducible. 

For a pair groupoid Q x Q ~ Q the reduced regular representation 7r:o may 
be realized on L2(Q) (defined with respect to a locally Lebesgue measure v). For 
f E C~(Q x Q) it takes the form 

7rs(f)II1(q) = fo dv(q')f(q, q')II1(q'). (3.66) 

We have written tr s for 7r:o' since this representation does not depend on qQ. We 
see from Proposition 3.3.6 that 7r S is faithful and irreducible; the representations 
7r: are trivially equivalent for all q E Q. 

For an action groupoid G x Q ~ Q all possibilities may occur, depending 
on the group action. For unimodular G the regular representation is realized on 
L 2(G x Q). If, for simplicity, we assume that Q has a G-invariant locally Lebesgue 
measure, and define L2(Q) accordingly, we have 

7ri(f)II1(x, q) = 1 dy f(xy, q)lI1(y-l, y-Ix-Iq ). (3.67) 

By Corollary 3.4.6 there are representations Ui<G) and ii'i<C~(Q» associated to 
7ri (C~(G x Q». We infer from (3.36) that 

~=~®~, ~~ 

where UL is defined on L2(G) by (1.83) (with c = 1), and uF is (analogously) 
defined on L2(Q) by UF(x)lI1(q) := lI1(x- 1q). From (3.37) we see that 

ii'i(j)II1(x, q) = J(q)lI1(x, q). (3.69) 

To reduce this we perform a unitary transformation U on L2(G x Q), defined 
by VII1(x, q) := 111 (x , xq); this step is necessary because x and q are mixed up in 
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'S-I(q), and hence in (3.68). Then Jrl := VJrf V-I is given by 

JrI(f)\II(x, q) = 10 dy f(xy-I, xq)\II(y, q), 

with associated representations 

ul = UL ® ll; 

iil(j)\II(x, q) = j(xq)\II(x, q). 

(3.70) 

(3.71) 

(3.72) 

This evidently reduces as a direct integral over q; the representation Jr~o is simply 
obtained by fixing q = qo in (3.70). One sees that Jr~o and Jr~l are inequivalent 
when qo and ql lie in orbits of different type. 

We are now in a position to paraphrase Definitions 1.7.1 and 1.7.4. 

Definition 3.6.3. The reduced groupoid C*-algebra q(G) of a Lie groupoid 

G ~ Q is the completion ofC~(G) in the norm 

IIfll, := IIJrL(f)1I = sup IIJrq(f)II. 
qeQ 

(3.73) 

Here Jr L stands for any of the realizations of the regular representation discussed 
in 3.6.2; likewise for Jrq. 

The groupoid C*-algebra C*(G) of a groupoid G is the closure of C~(G) ill 
the norm 

IIfII:= IIJru(f)1I = sup II Jr (f) II , (3.74) 

where Jru is the direct sum of all nondegenerate bounded representations Jr of 
C~(G) satisfying (3.57). 

In the definition of C*(G) the bound (3.57), which depends on the choice of a left 
Haar system, may be replaced by an appropriate intrinsic continuity condition. In 
the presence of a given Haar system one obviously has the inequalities (cf. (3.57» 

1Ifll, ~ IIfII ~ IIfll/. (3.75) 

3.7 Examples olLie Groupoid C*-Algebras 

We will now determine the structure of the C* -algebras of some of the Lie 
groupoids we have been looking at so far. 

Theorem 3.7.1. 

• When G = G is a unimodular Lie group, the (reduced) groupoid C*-algebra 
ct)(G) coincides with the (reduced) group C*-algebra defined in 1.7.1 alld 
1.7.4. 

• For a pair Lie groupoid Q x Q ~ Q one has 

C*(Q x Q) ~ C;(Q x Q) ~ !Bo(L2(Q». (3.76) 
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• For a gauge groupoid P x H P ~ Q each measurable section s : Q ~ P 
determines isomorphisms 

C;(P x H P) ~ 23o(L 2(Q» ® C;(H); 

C*(P x H P) ~ 23o(L 2(Q» ® C*(H). 

In particular, lor compact H one has C*(P XH P) ~ ~0(L2(p»H. 

(3.77) 

(3.78) 

Note that there is no ambiguity in the definition of the tensor product, as one of 
the factors is 2300t). 

For a Lie group II I III = II I III, so the first claim is obvious from 1.7.4. 
The reduced regular representation JrS of C~(Q x Q) is faithful; cf. (3.66). The 

norm-closure ofJrS(C~(Q x Q» is 230(L2(Q), so that one infers (3.76) for C;. 
To prove the same result for the full groupoid C* -algebra, one needs to show that 

every nondegenerate bounded r-=presentation Jr of C~(Q x Q) on some Hilbert 
space 'It is a multiple of JrS on L 2(Q). This can be done by a method whose 
significance will emerge at the end of IV.2.4. 

Given (Jr, 'It), we equip the algebraic tensor product Cgo(Q) ® 'It with a 
sesquilinear form (, )0, defined by linear extension of 

(g ® \II, I ® c:J»0 := (\II, Jr(f x g)c:J>ht, (3.79) 

where I x g(q, q') := I(q)g(q'). This form is easily seen to be positive semidef­
inite; if No is its null space, the completion of (Cgo(Q) ® 'It)/No in the inherited 
inner product is a Hilbert space, denoted by 'ito. Subsequently, define a linear map 
V : C~(Q) ® 'Ito ~ 'It by linear extension of 

VI ® [g ® \II] := Jr(f x g)\II. (3.80) 

Here [g ® \II] E 'ito is the image of g ® \II E Cgo(Q) ® 'It under the canonical 
projection. The map V is well-defined: Firstly, if [g®\II] = 0 thenJr(f xg)\II = 0, 
as can be checked using (3.79). Secondly, Jr is bounded, so that the right-hand side 
exists for all \II E 'It, and accordingly for all [g ® \II] E 'ito. Moreover, using (3.79) 
and the property Jr(f x g)* = Jr(g x 7), as well as (3.24) and (3.25), one verifies 
that V satisfies 

(3.81) 

for all 0 1, 02 E C~(Q) ® 'ito. Since in addition, the image of V is dense in 'It as 
a consequence of the nondegeneracy of Jr , it follows that V can be extended to a 
unitary map from L 2(Q) ® 'Ito to 'It, which we call V as well. The point is that V 
intertwines Jrs ® n and Jr in that V Jrs (f) ® n = Jr (f)V, as is trivially verified from 
(3.80). One concludes that Jr is equivalent to the direct sum of dim('lt°) copies of 
Jrs. This implies (3.76). 

We now come to the last claim of the theorem, which obviously generalizes 
Proposition 2.8.2. The section s establishes an isomorphism 's-l(qO) ~ P by 
identifying [x, S(qO)]H E 's-l(qO) with x E P. Hence, using Proposition 3.5.3, 
we have L 2('s-l(qO» = L 2(P, JL) for some fixed H-invariant locally Lebesgue 
measure JL on P. The reduced regular representation Jrr := Jr~o onL2(p, JL) depends 
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neither on qo nor on s. It is faithful, and reads 

n'r(f)\I1(x) = i dJ,L(Y) f([x, Y1H)\I1(y). (3.82) 

As in the proof of 2.8.2, we in addition uses to map L 2(P) into L2(Q)®L2(H) 
(in case H is not unimodular, one should note that the measure dh occurring in 
(2.139) is a right Haar measure, whereas the one used to define L2(H) is a left 
Haar measure J,Ld. One then obtains 

Us7T,U)Us*\I1(q, h) = fa dv(q') L dJ,LLCk)fs(q, k, q')\I1(q', k-1h), (3.83) 

where fs(q, k, q') := f([s(q)k, S(q')1H). Hence Us7T,U; factorizes into the prod­
uct of the defining representation (3.66) in the argument (q, q') E Q x Q and the 
left-regular representation TTL in the argument h E H; cf. (1.84). With Definition 
1.7.1 this immediately implies the isomorphism (3.77). 

Let C~(Q x H x Q) be the image of C~(P XH P) under the map f ~ fs, and 
define C~(Q) as the space of functions on Q of the type f(q) = fP(s(q», where 
fP E C~(P); the space C~(Q x Q) is defined similarly. 

Rather than with C:(Q x H x Q), we may work with its subspace C:(Q x 
Q) ® C~(H). This is justified by the fact that the two spaces in question have the 
same closure in the norm II . III (cf. (3.57». In particular, C:(Q x H x Q) and 
C~(Q x Q) ® C~(H) have the same closure in the C* -norm (3.74). 

Transferring the * -algebraic operations from P x H P, one sees that as a * -algebra 
C:(Q x Q) ® C~(H) is the direct product of C~(Q x Q) (with operations (3.24) 
and (3.25» and C~(H) (with operations (1.80) and (1.81), in which c = 1). This 
reflects the fact that s leads to an isomorphism P x H P ~ Q x H x Q as groupoids 
over Q, as explained after Definition 3.1.7. 

The argument used to prove (3.76) works equally well when C~(Q) is replaced 
by C~(Q). Combining this with Theorem 1.7.3 and the above factorization, one is 
led to (3.78). The final claim then follows from Proposition 2.8.2 or 3.3.7. • 

Recall 2.8.4. Generalizing 2.8.3 and 2.8.5, we have 

Corollary 3.7.2. Up to equivalence there is a bijective correspondence between 
the nondegenerate representations 7T x ofC*(P x H P) and the representations Ux 
of H. Here 7T x is realized on 1ix by 

(3.84) 

The representation 7TX(C*(P XH P» is irreducible ijJUx(H) is irreducible. 

Choosing a section s : Q --+ P and following the proof of (3.78) above, one 
sees, by first restricting to C~(Q x Q) ® C~(H), that 

7TX(C*(P x H P» ~ ~o(L 2(Q» ® 7Tx (C*(H». 

Then use Corollaries 1.7.5 and 1.2.2.6. • 
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The C*-algebra of an action groupoid G x Q ~ Q is called an action C*­
algebra, denoted by C*(G, Q) (which is short for C*(G, Co(Q»). As a slight 
variation on Definition 3.4.5 we put 

Definition 3.7.3. A system of imprimitivity of G on Q in a Hilbert space 1t 
is a pair (U, jf) where U is a continuous representation ofG on 1t, and jf is a 
nondegenerate representation of Co ( Q), satisfying the covariance condition (3.38). 

There is, in fact, no real difference between 3.4.5 and 3.7.3. 

Corollary 3.7.4. There is a bijective correspondence between nondegenerate 
representations 7f of C*(G, Q) and systems of imprimitivity of G on Q. This 
correspondence is given by continuous extension of (3.35 H 3.37). 

Combine Corollary 3.4.6 and Definition 3.6.3. • 
The structure of action C* -algebras is in general fairly complicated, except for 

the following corollary to Proposition 3.4.7. 

Corollary 3.7.5. One has the isomorphisms 

C*(G, G/ H) ~ C*(G XH G) ~ fJ30(L2(G/ H» ® C*(H), (3.85) 

and similarly for the reduced C* -algebras (i.e., C* is replaced by C:). 

Since the *-algebras C;;"(G x (G/H» and C;;"(G XH G) are isomorphic by 
3.4.7, they in particular have the same representation theory. Hence all claims 
follow from Definition 3.6.3 and Theorem 3.7.1. • 

In particular, we may look at the C* -algebra fJ3o(L 2(Rn» in two different ways: 
It is the C* -algebra of the pair groupoid Rn x Rn ~ Rn, as well as the action 
C* -algebra defined by the canonical action of Rn on itself. 

What follows is the quantum transitive imprimitivity theorem. 

Corollary 3.7.6. There is a bijective correspondence between systems of imprim­
itivity (UX(G), jf(Co(G / H») and representations Ux of H. The system (UX, jfX) 
is irreducible (in the sense that the only bounded operators commuting with all 
UX(x) and jfX(j) are AlI, A E C) lffUx(H) is irreducible. 

Up to equivalence, the pair(UX, jfX) is realized on 1tx (cf. 2.8.4), where UX(G) 
is the induced representation defined in (2.175), and jfx is given by 

(3.86) 

In the realization of the carrier space as 1tfs) (cf. 2.8) one has (U{~), jff,), given 
by (2.176) and 

jf{~)(j)W:(q) = i(q)w:(q), 

and analogously on 1t; .. see (2.141). 

(3.87) 

Combine Corollaries 3.7.4, 3.7.5, 3.4.8, and 3.7.2. The irreducibility of(UX, jfX) 
is equivalent to the irreducibility of7fX(C*(G XH G». • 
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A deeper understanding of this result will be achieved in IV.2.7. 
We close this section with a remarkable consequence of Corollary 3.7.6, namely 

Theorem 11.2.1.4. We are going to apply 3.7.6 with H = {e} and G = Q = Rn, 
in which case there is only one irreducible system of imprimitivity, as iI consists 
of a single element. 

A representation UOo)(H") on a Hilbert space 1t for which 

(3.88) 

where A. E R\{O}, defines a system of imprimitivity (U(Rn), ii'(Co(R"))) on 1t by 

U(v) := Uo.)(Exp(vP)); 

ii'(j):= Ln d"u Up.) (EXP(-iQ)) j(u), (3.89) 

where j is the Fourier transform of f. (Here j E L'(R"), so that ii' thus defined 
is to be extended from the image of the Fourier transform of L'(Rn) in Co(Rn) to 
Co(R") by continuity.) This may be verified using 11.(2.6). 

Conversely, given a system of imprimitivity (U(Rn), ii'(Co(R"») on 1t and a 
real number A. =1= 0, one obtains a representation Up.)(Hn) on 1t for which (3.88) 
holds by 

UO.)(Exp( -u Q» := ii'(hu); 

Up.)(Exp(vP» := U(v), (3.90) 

where ep(x) := exp(ipx). Here the representation ii'(Co(Rn» has been extended 
to Cb(Rn) by the functional calculus obtained from the spectral theorem. 

These two constructions are each other's inverse; the uniqueness of the ir­
reducible representation satisfying (3.88) follows from the uniqueness of the 
irreducible system of imprimitivity (U(R"), ii'(Co(R"»). In summary, the clas­
sification of the irreducible representations of the Heisenberg group with nonzero 
central element follows from the uniqueness of the irreducible representation of 
the group with one element. • 

3.8 Lie Algebroids 

The construction of the Lie algebra of a Lie group as an "infinitesimal" object can 
be generalized to the setting of Lie groupoids. Like a Lie algebra, the object in 
question may be defined in its own right. 

Definition 3.8.1. A Lie a1gebroid V ~ Tg on a manifold Q is a vector bundle 
V(Q, V, T)over Q, which apartfrom the bundle projection T : V ~ Q is equipped 
with a vector bundle map Ta : V ~ T Q (called the anchor), as well as with a Lie 
bracket [, ]v on the space f'(V) of (smooth compactly supported) sections of V, 
satisfying 

(3.91) 
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where the right-hand side is the usual commutator of vector fields on reT Q), and 

[sJ, fS2]V = f[sJ, S2]V + (Ta 0 SJ/)S2 

for all SJ, S2 E reV) and f E COO(Q). 

(3.92) 

It is part of the definition of a bundle map that the anchor is fiber-preserving and 
linear on each fiber. 

When Q is a point, one has reV) = V := g, and the only nontrivial requirement 
is that [, ]9 be a Lie bracket. Hence in that case the Lie algebroid 9 is simply a 
real Lie algebra. The next simplest example is 

Definition 3.8.2. The pair algebroid T Q ~ TQQ consists of the tangent bundle with 
its usual projection and commutator, and anchor Ta = id. 

The property (3.92) then reads [~J, f~2] = f[~J, ~2]+(~J/)~2, which is, indeed, 
identically satisfied. 

Definition 3.8.3. Let P(Q, H, T) be a principal H-bundle over Q. The gauge 
algebroid (TP)/ H ~ TQQ is defined by the obvious projections (both inherited from 
T), and the Lie bracket on r«TP)/ H) obtained by identifying this space with 
r (T p)H (as in the proof of Proposition 2.4.3), and borrowing the commutator 
from r(TP). 

Thus the bundle V is the central term in the exact sequence (2.65). 

Definition 3.8.4. Suppose one has a g-action on a manifold Q,- see 1.1. The action 

algebroid 9 x Q ~TQQ has V = 9 x Q (as a trivial bundle over Q), with anchor 
Ta(X, q) := -h(q).ldentifying sections ofg x Q with g-valuedfunctions X(·) 
on Q, the Lie bracket on reg x Q) is 

[X, Y]gxQ(q):= [X(q), Y(q)]g + ~yX(q) - hY(q). (3.93) 

Similar to Proposition 3.1.8, we have 

Proposition 3.8.5. Let G (G / H, H, T) be the principal H -bundle defined in 2.7. 
The gauge algebroid (TG)/ H ~ TYl///) and the action algebroid 9 x (G / H)~ T~G///) 
are isomorphic (in the obvious sense). 

The quotient of the right trivialization T G c:::: 9 x G by H provides a 
diffeomorphism (TG)/H c:::: 9 x (G/H). • 

We now explain how one may associate a Lie algebroid Q; ~ Tg with a given 
Lie groupoid G ~ Q. 

A left-invariant vector field ~ L on G is a vector field satisfying (Tt )*~ L = 0 
and (Ly)*~L(y') = ~L(yy') for all (y, y') E Gz. Note that the second condition 
is well-defined because of the first one. The space of all left-invariant vector fields 
on G is denoted by r(TG)L. 

This definition may be restated in terms of the corresponding flow: If ~(y) = y 
for some flow yeA), then ~ is a left-invariant vector field iff Tt(Y(A» is independent 
of A and y'(y(A» = (y'y)(A) whenever y'y is defined; once again, the second 
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condition is well-defined because of the first one. We call such a y(.) a left­
invariant flow on G. 

Lemma 3.8.6. 

1. The vector space r(TG)L is a Lie algebra under the usual commutator 
borrowed from r(TG). 

2. A left-invariant vector field is determined by its values on the unit space Go = 
t(Q). 

3. The tangent bundle ofG at the unit space has a decomposition 

T,(q)G = T,(q)Go EB T.~q)G, 

T1G := ker(Tt )* C TG. 

(3.94) 

(3.95) 

To prove 3.8.6.1 it suffices to remark that since for any smooth map rp the 
commutator satisfies rp*[~t. ~2] = [rp*~" rp*~2], the space r(TG)L is closed under 
the commutator. 

Since y = y(y-'y), left invariance implies that ~L(y) = (Ly)*~L(y-'Y), 
which proves 3.8.6.2. 

Because nonzero elements of T,(q)(Go) are tangent to curves t(q(s», for which 
Tt(t(q(s») = q(s) =J:. q for small enough s, it follows that T,(q)Go n T.~q)G = o. 
Now note that the image of T,(q)G under ker( Tt )* on the one hand equals Tq Q, and 
on the other hand is isomorphic to the quotient T,(q)G/ T.Cq)G as a vector space. A 
dimension count then establishes (3.94). • 

Definition 3.8.7. The Lie algebroid (.5 ~ TQQ of a Lie groupoid G ~ Q is given 
by the following (cf Definition 1l.3.4.1). 

• The vector bundle V = (.5 over Q is the normal bundle Nt Q defined by the 
embedding t : Q ~ G; accordingly, the projection T : Nt Q -+ Q is given by 
Ts or Tt (these projections coincide on Go). 

• Identifying N:(q)Q with T.Cq)G by (3.94), the anchor is given by Ta := (Ts)* : 
TG -+ TQ (restricted to ker(Tt)*). 

• Identifying a section of N:(q) Q with a left-invariant vector field on G through 

the previous item and 3.8.6.2, so that ['«(.5) = ['(Nt Q) ~ [,(TG)L c r(TG), 
the Lie bracket [, ]0 is given by the commutator on r(TG) (this is consistent 
because of3.8.6.1). 

The required equality (3.91) is automatically satisfied (as it holds for all vector 
fields on G). To verify (3.92), note that from 3.1.1.4, for f E COO(Q) and ~ E 

r(TG) one has (LyMf~(Y-'Y» = f(Ts(y»(Ly)*~(Y-'Y). Hence the action of 
COO(Q) on r(TG)L is given by (f~L)(y) = f(Ts(y»~L(y). Equation (3.92) then 
follows as in the case of the pair algebroid. 

Rather than defining (.5 in terms of the normal bundle Nt, one may put 

(.5' := t*TtG = TtG *G Q = {(X, q) E TtG x Q I TTG-?G(X) = L(q)}; (3.96) 

cf. 2.1.2. This is simply the restriction of Tt G to t( Q), seen as a bundle over Q 
through projection onto the second variable. The anchor is defined as Ta := (Ts)*, 
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as above, and the Lie bracket is obtained by extending sections of ~' to left­
invariant vector fields on G. The isomorphism between ~ and ~' is then obvious 
from Definition 3.8.7 and (3.94). 

Proposition 3.8.8. 

• A Lie algebra 9 is the Lie algebroid 0/ a Lie group G. 
• The pair algebroid T Q ~ TQQ is the Lie algebroid o/the pair groupoid Q x Q ~ 

Q. 
• The gauge algebroid (TP)I H ~ TQQ is the Lie algebroid o/the gauge groupoid 

P XH P~ Q. 
• The action algebroid 9 x Q ~ TQQ is the Lie algebroid 0/ the action groupoid 

G x Q~ Q. 

For a Lie group G the base Q consists of a point, which t maps to e E G; the 
normal bundle is TeG. The construction of the Lie algebroid then amounts to the 
usual identification of 9 = TeG with the space of left-invariant vector fields on G. 

The Lie algebroid of a pair groupoid is identified by Lemma 11.3.4.3, since t is 
the diagonal embedding. The isomorphism Nt'(q) Q :::::: ~(q) G identifies X E Tq Q 
with O+X E T(q.q)(Q x Q) :::::: TqQ ED TqQ. Hence the anchor is the identity, the 
left-invariant vector fields are of the form ~ L (q, q') = O+~ (q'), and the Lie bracket 
is simply the usual one on r(T Q). 

In discussing the gauge groupoid, one first notes that when P(Q, H, r) is a 
principal fiber bundle, the tangent bundle T Q has the following description. One 
defines (TP)II as the bundle over P whose fiber at x is TxP/VxP; see (2.8). In 
view of (2.10), the H -action on (TP) 1 I (pushed forward from the H -action on P) 
is well-defined, and one has T Q :::::: «TP)I 1)1 H. (The dual of this isomorphism 
is (2.56).) 

We apply the same procedure to the principal H -bundle P x P over P x H P. 
Identifying T(x.y)P x P with TxPED TyP, the role of VxP in the definition of I is now 

played by the space of all vectors of the form ~i(xH~i(Y) E T(x.y)p x P, X E ~. 
The vector bundle Tr(p XH P) over Q is then a double quotient «VP x P)I /)1 H. 

The restriction of T r (P X H P) to Go equals the H -quotient of the restriction 
of (VP x P)I I to the diagonal. The fiber T(x,x)(VP x P)I I is isomorphic to TxP 
through the identification of the equivalence class [X + Y] E (VX P ED Tx P)I I with 
Y - X E TxP. Taking the H-quotient, and using the isomorphism Nt'(q)Q :::::: 
~(q)(P XH P) given by (3.94), we arrive at N'Q :::::: (TP)I H. 

Following the steps in the above derivation, one immediately infers from its 
definition that the anchor is the canonical projection from (TP 1 H) to T Q, and 
that the Lie bracket is as stated. 

In the action groupoid the identification Nt Q :::::: TeG = 9 is immedi­
ate from Definition 3.1.4; the normal bundle is automatically identified with 
TeG C T(e.q)G x Q. The anchor then follows from (1.19). To compute the 
Lie bracket on r(g x Q) one notes that since (y, q) = L(y,q)(e, y-lq), a sec­
tion ~ : q f-+ X(q) E 9 defines a left-invariant vector field on G x Q by 
~L(y, q) := L(y,q)*~(e, y-lq) = ~;(y-lq)(Y)' Here ~L is defined in (1.37), and 
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~.L(y) E TyG, regarded as a subspace of T(y,q)G x Q. The expression (3.93) then 
easily follows. • 

To close this section, we provide the missing proof of the first claim in Proposi­
tion 3.3.3. Indeed, a given strictly positive smooth density p on the vector bundle 
(8 associated to G ~ Q by 3.8.7 can be (uniquely) extended to a left-invariant 
density p on the vector bundle T'G, which in turn yields a left Haar system by 

J.L~(f) := J,,-I(q) pf· • 

3.9 The Poisson Algebra of a Lie Algebroid 

We saw in 3.6 that one can associate a C* -algebra to a Lie groupoid. The clas­
sical analogue is the construction of a Poisson algebra of a Lie algebroid. This 
generalizes the Lie-Poisson structure on COO(g*, R) introduced in 1.1. 

Proposition 3.9.1. Given a Lie algebroid V ~ TQQ with anchor ra , the dual vector 
bundle V* is a Poisson manifold V~ under the Poisson bracket on COO(V*, R) 
defined by the following special cases: 

{f,g}± = 0; 

{s, f}± = ±ra 0 sf; --{Sl' S2}± = ±[Sl, S2]V. 

(3.97) 

(3.98) 

(3.99) 

Here f := rvo-"Qi E COO(V*, R) is defined by j E COO(Q, R), and similarly 
for g. Also, S E COO(V*, R) is defined by a section s E J(V) through s(8) := 
8 (s(rvo-., Q(8»). 

Note that the function S is linear (in the sense of being linear on each fiber of 
V*), and that any such (smooth) function is of this form. Hence the collection 
of differentials df, ds spans the cotangent space at every point of V*, so that the 
Poisson bracket is indeed completely defined by (3.97)-(3.99). 

In a local trivialization of V one has s(q) = sa(q)ea (where lea} is a basis of 
the typical fiber V of V), hence s(q, 8) = 8asa (q) in terms of the coordinates 8a 
on V* defined by the dual basis. We write [ea, eb](q) = C~b(q)ec and ra(ea , q) = 
A~(q)a/aqlL, in terms of which the Poisson tensor is given by B(9,q)(dq lL, dqV) = 
0, B(9,q)(d8a, dqlL) = ±A~(q), and B(9,q)(d8a, d8b) = ±C~b(q)8c. The conditions 
(3.91) and (3.92) then lead to identities on C and A that are used to prove the 
Jacobi identity 1.(2,6). • 

Proposition 3.9.1 has the following converse. 

Proposition 3.9.2. If a Poisson manifold V* is a vector bundle over Q, such that 
the Poisson bracket of two linear functions is linear, then V* is the dual of a Lie 
algebroid V, and the Poisson bracket on COO(V*, R) is the one in 3.9.1. 

The Lie bracket on f'(V) is defined by reading (3.99) from right to left. To define 
the anchor, we note that the Leibniz rule yields 

(3.100) 
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We take f as described in 3.9.1. Since the left-hand side and the first term on the 
right are linear, as is S2, it follows that lSI, f} is constant on the fibers, defining a 
function on Q. Applying the Leibniz rule to {s, fg}, the map 1 H- {s, f} is seen 
to be a derivation on COO(Q, 1R), so it must be that lSI, f} = ~s 1 for some vector 
field ~s on Q. 

Hence s H- ~s is a map from reV) to reT Q). To prove that it is given by a 
bundle map ra : V -+ T Q, we must show that ~ js = 1 ~s for all 1 E C OO( Q). 
This follows from the Leibniz rule {fs, g} = f {s, g} + {f, g}s, which may be 
rewritten as ~ jsg -l~sg = {f, g }s. The left-hand side is a function on Q, whereas 
the right-hand side is linear; this is possible only when (3.97) holds. Therefore, 
~s = ra 0 s for some bundle map ra. 

The Jacobi identity on the Poisson bracket and the definition of ra imply (3.91). 
Finally, (3.100) is equivalent to (3.92). • 

Combining Propositions 3.9.1 and 3.9.2, we conclude that there is a com­
plete equivalence between Lie algebroids and linear Poisson structures on vector 
bundles. We now apply this to our usual list of examples; cf. 3.8.8. 

Proposition 3.9.3. 

• A Lie algebra g yields the ± Lie-Poisson structure ( J. J ) on g*. 
• The pair algebroid T Q ~ TQQ leads to ± the canonical Poisson bracket 1.(2.24) 

on T*Q. 
• The gauge algebroid (TP)/ H ~ TQQ is associated with ± the Poisson structure 

on (T*P)/ H specified prior to 2.3.7. 

• The ± Poisson bracket on g* x Q associated to the action algebroid g x Q ~ TQQ 

is given by 

(3.101) 

Compare 1.1 for the notation used in (3.101). 
The first claim is obvious. The second is most easily proved in a local trivial­

ization, using canonical coordinates. The section seq) = (8/8q iL, q) then leads 
to s(p,q) = Pw The brackets (3.97)-(3.99) thus spec~to {qiL,qV}+ = 0, 

{PiL' qV}+ = (8/8qiL)qV = 8~, and {PiL' Pv}+ = [8/8qiL, 8/8qV] = 0, respec­

tively. This proves the claim. Note that the linear function ~ E COO(T*Q, 1R) 
corresponding to ~ E reT Q) is simply the usual symbol of the vector field. 

The third point follows from the second, quotienting by H. 
To prove (3.101) one simply verifies that it includes (3.97)-(3.99) with (3.93) 

as special cases; do not forget the minus sign in the anchor. • 

It is worth giving the main special cases of (3.101). For X E g we regard i as 
a function on g* x Q by i(O, q) = O(X), and as before, 1 E C~(Q, JR) defines a 
function on g* x Q by f(o, q) = f(q). We then have 

{f, g}- = 0; 

{i, Yl- = -[X, V]; 

(3.102) 

(3.103) 
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{X, !}- = hi. (3.104) 

As will become clear in 3.11 below, these brackets are the classical counterpart of 
the commutation relations (3.41), (3.42), and (3.43). We denote the action Poisson 
algebra on g* x Q with bracket (3.101) by COO(g± x Q, Ill); the corresponding 
Poisson manifold is, of course, written as g± x Q. 

Proposition 3.9.4. The symplectic leaves of g~ x Q are classified by pairs 
(oG, OH), where OG is a G-orbit in Q, the group H ~ G is the stabilizer of 
an arbitrary point in OG, and OH is a coadjoint orbit in 1)*. The leaf L(oo ,OH) 
corresponding to (OG, OH) is given by 

L(OO,oH) = {(O, q) E g* x Q I q E OG, (-Co(S(q)-I)O r 1)*) E OH}, (3.105) 

where s : OG ~ G / H ~ G is an arbitrary section of the bundle G( G / H, H, r). 

One infers from (3.101) that any Hamiltonian flow starting in g~ x OG stays 
in this subspace. Using the right trivialization of T*G one sees that g* x OG is 
diffeomorphic to (T* G) / H. Equipping the latter, and therefore g* x OG, with 
the Poisson structure inherited from T*G, and comparing (1.54) with (3.101), 
one infers that the injection of g* x OG into g~ x OG is a Poisson map. The 
proposition then follows from Theorem 2.3.7, applied to the bundle P(Q, H, r) = 
G(G/ H, H, r), and (2.118). • 

We saw in 3.4 that an action *-algebra is a special case of a crossed product 
* -algebra. Similarly, the Poisson algebra of an action Lie algebroid is a special 
case of the following classical analogue of a crossed product * -algebra. 

Definition 3.9.5. Let a Lie group G act on a Poisson manifold P by Poisson maps 
L. The semidirect product of P and T*G (equipped with the canonical Poisson 
structure 1.(2.24)) is the quotient T*G XG P under the product action p x L of 
G (cf (1.51)), equipped with the unique Poisson structure making the canonical 
projection r : T*G x P ~ T*G XG P a Poisson map. 

The diffeomorphism [(0, X)R, a]G f-+ (0, xa) between T*G XG P and g* x P 
equips the latter with a Poisson structure; the associated Poisson algebra COO(g~ x 
P, Ill) is called a crossed product Poisson algebra. 

In self-evident notation, the Poisson bracket is explicitly given by 

(3.106) 

Hence putting P = Q with the zero Poisson structure shows that (3.101) is indeed 
a special case of (3.106); this is the classical version of Lemma 3.4.3. 

In the following classical analogue of Theorem 3.4.4 the boundedness condition 
(3.33) is replaced by an integrability condition. 

Theorem 3.9.6. There is a bijective correspondence between 

• Poisson maps J : S ~ g~ x P for which the associated g-action is integrable 
(here S is a symplectic manifold); 
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• Pairs consisting of a strongly Hamiltonian G-action on S and a Poisson map 
p : S ~ P such that the classical covariance condition 

~ip*{j) = p*{~: j) 

holds for all X E 9 and i E COO{P, JR.); cf (1.19). 

(3.107) 

It is not necessary that S be connected; the proof works for each component 
separately. Given J, one defines a g-action on S by X ~ ~J'x' where the definition 
of X is similar to the one given prior to (3.1 02). When this action is integrable, the 
corresponding G-action is strongly Hamiltonian by definition. Also, the restriction 
of J* to COO{P) evidently defines a representation on S. Condition (3.107) is then 
satisfied because of (3.106) and the fact that J is a Poisson map. 

Conversely, a strongly Hamiltonian G-action is associated with a Poisson map 
J(1) : S ~ g~ (see 1.2). Writing J(2) := p, one obtains a map J = (J(I), J(2» : 
S ~ g~ x P. Using (3.106) and an argument similar to the proof of 1.1.2 one 
shows that J is a Poisson map. 0 

One would like to sharpen this result by saying that there is a bijective correspon­
dence between representations J* of the Poisson algebra COO(g~ x P, JR.) (which 
by definition implies that the Poisson map J is complete) and pairs as stated in 
3.9.6, for which in addition the map p is complete (so that p* is a representation 
of COO(P ,JR.) on S). This works in one direction when G is simply connected, for 
in that case the completeness of f(l) 0 J : S ~ g* (where f(l) : g* x P ~ g* is 
the projection onto the first variable) implies that the g-action on S is integrable 
by Theorem 1.2.1. However, in the opposite direction it is in general not clear 
that the completeness of J(l) and J(2) = P implies that of J. Paraphrasing the first 
ingredient of 3.9.6, we obtain 

Definition 3.9.7. Given a G-action on Q, a classical system ofimprimitivity of 
G on Q consists of a symplectic manifold S, along with a strongly Hamiltonian 
G-action on S and a nonzero representation if : COO{Q,JR.) ~ COO(S,JR.) (where 
Q has the zero Poisson structure), such that the integrated classical covariance 
condition 

a~(if(j» = if(ap(i» (3.108) 

holds for all x E G and i E COO(Q,JR.). Here a~(f)(u) .- f{x-1u) and 
ap(j)(q) = i(x-1q). 

By I.2.6.5 there exists a complete Poisson map J(2) : S ~ Q for which if = J(i). 
Condition (3.108) is evidently equivalent to the G-equivariance of J(2)o that is, one 
has J(2)(XU) = xJ(2)(U) for all x E G and u E S. Moreover, equation (3.108) 

implies that ~iif(1) = if(~~ 1>, cf. (3.107), and is equivalent to this condition 
when G is connected. 

This time we have spoken of a representation of COO(Q), rather than merely a 
Poisson map p : S ~ Q. This is justified by the classical version of Corollary 
3.4.6, which specializes and sharpens Theorem 3.9.6: 
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Corollary 3.9.8. When G is connected there is a bijective correspondence be­
tween classical systems of imprimitivity of G on Q and representations 1C of the 
Poisson algebra CCXl(g~ x Q, R) whose associated g-action is integrable. 

As remarked above, the integrability condition is automatically satisfied when G 
is simply connected. The new issue relative to the proof of3.9.6 and the subsequent 
comment is that in this special case the completeness of J(l) and J(2) = p does 
imply the completeness of J. The proof of this requires advanced techniques in 
symplectic geometry that we have not developed. 0 

In analogy to Proposition 3.7.5 we have a result suggested by 3.8.5. 

Proposition 3.9.9. The Poisson manifolds (T*G)/ H and g~ x (G / H), and the 
Poisson algebras COO«T*G)/ H, R) and COO(g~ x (G / H), R), are isomorphic. 

The isomorphism mentioned in the proof of 3.8.5 can be "dualized", defining a 
Poisson map. • 

Paraphrasing the comment after 3.7.5, it therefore follows that we may look at 
the Poisson algebra coo(T*Rn , R) in two different ways: It is the Poisson algebra 
of the pair algebroid TR", as well as the Poisson algebra of the action algebroid 
defined by the canonical action of Rn on itself. 

The classical analogue of 3.7.6 is 

Corollary 3.9.10. When G is connected, each coadjoint orbit q!!f H leads to an 
irreducible classical system ofimprimitivity of G on G / H in (T*G)o. 

Recall the definition (2.51), with P = G, of (T7G)o, as well as (2.118) and 
(2.130). The claim follows from Corollaries 2.3.8 and 3.9.8. • 

In view of the possibility of covering spaces in 2.3.8, this analogy is not 
quite perfect. The connectedness assumption and the restriction to irreducible 
representations will, however, be removed in IV.l.6.4. 

In order to generalize Theorem 1.1.7, we need an appropriate concept of the 
action of a Lie algebroid on a manifold. 

Definition 3.9.11. A (left) groupoid action ofG ~ Q on a space S consists of 
maps Jp : S --+ Q and L : G *Q S --+ S, where 

G *Q S := {(y, a) E G x S I Ts(Y) = Jp(a)}. 

Writing ya := L(y, a), these maps must satisfy 

Jp(ya) = r,(y); 

£(Jp(a»a = a; 

y(y'a) = (yy')a, 

whenever (y', a) E G *Q Sand (y, y') E G2. 

(3.109) 

(3.110) 

(3.111) 

(3.112) 

When G is a Lie groupoid, one speaks of a smooth groupoid action if S is a 
manifold and J p and L are smooth. 
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As to the last definition, note that the surjectivity of rs implies that G *Q S is a 
submanifold of G x Q. 

For example, taking S = G and Jp = rt leads to G *Q S = G2, and L is 
simply multiplication in the groupoid. Alternatively, choosing S = Q and Jp = id 
reproduces the action of G on its base. 

In the smooth case one obtains a linear map s 1--+ ~s from r(<!5) to r(T S) 
(where <!5 is the Lie algebroid of G), defined as follows. Identifying the section 
s E r(<!5) with a left-invariant vector field ~L on G, which in tum corresponds to 
a left-invariant flow yO on G (i.e., ~L(y) = y), we put 

d -I 
~s(a) := d)" (t(Jp(a»)()..) aIA=O· (3.113) 

It follows from 3.1.1.4, the left invariance ofy(·), and (3.111) that (t(Jp(a »)()..)-I a 
lies in G *Q S, so that ~s is well-defined. The definition of the Lie bracket on r (<!5) 
implies that s 1--+ ~s is a Lie algebra homomorphism. Finally, (3.110) and the 
definition of the anchor ra in 3.8.7 entail 

(3.114) 

for all s E r(<!5). Thus we are led to 

Definition 3.9.12. An action of a Lie algebroid V -=+ TQQ on a manifold S consists 
of a smooth map Jp : S --* Q and a Lie algebra homomorphism s 1--+ ~s from 
r(V) into r(TS) such that (3.114) holdsfor all s E r(V). 

This definition is further motivated by the thought that the pair algebroid T S is the 
most natural Lie algebroid; to express the idea that an action should "preserve" 
the anchor ra one in addition needs the map Jp • One could, equivalently, use 
an antihomomorphism s 1--+ ~s, in which case the condition on the anchor reads 
(Jp)*gs = -ra 0 s. Thus one has generalized the definition of an action of a Lie 
algebra 9 on a manifold; cf. 1.1. 

Proposition 3.9.13. Let V -=+ Tg be a Lie algebroid with associated Poisson al­
gebra COO(V*, JR.). A representation Jr : COO(V*, JR.) --* COO(S, JR.) (in the sense of 
/.2.6.1), where S is a symplectic manifold, leads to a V-action on S. 

Given Jr, one obtains a Poisson map J : S --* V* by 1.2.6.5, and subsequently 
defines the V-action by Jp := r 0 J and gs := ~vs (i.e., the Hamiltonian vector 
field of J*s). Equations 1.(2.15) and (3.99) then imply that [gSI' ~S2] = [Sl, S2]V, 

whereas 1.(2.8), 1(2.15), and (3.98) imply the condition on the anchor. • 

One may then define a strongly Hamiltonian V -action on a symplectic manifold 
essentially as an action given by a "momentum map" J as above. This, then, leads 
to the obvious generalization of Theorem 1.1.7 from Lie algebras to Lie algebroids, 
which is a classical counterpart of the correspondence between representations of 
a Lie groupoid and representations of the associated C* -algebra; cf. 3.6. 
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3.10 A Generalized Exponential Map 

The theory of Lie groupoids and algebroids suggests a unifying principle behind 
the various strict quantizations we have discussed so far. It turns out that these may 
be formulated in terms of a generalized exponential map Exp W : ~ ~ G from a 
Lie algebroid into a corresponding Lie groupoid. 

Lemma 3.10.1. The vector bundles rtG and "Cs*~ (over G) are isomorphic. 

Recall (3.95) and 2.1.2. The pullback bundle 

"Cs*~ := {(X, y) E ~ x G I "C(X) = "Cs(Y)} (3.115) 

is a vector bundle over G with projection onto the second variable. The isomorphism 
of 3.10.1 is proved via the vector bundle isomorphism ~ :::: ~'; see (3.96) and 
subsequent text. Thus replacing ~ in (3.115) by ~', one checks that (Ly-l)* : 
T~G ~ T;_lyG is the desired bundle isomorphism (note that the inverse is (Ly)*, 
and cf. Lemma 3.2.3). • 

For a Lie group G we have T' G = T G, and Lemma 3.10.1 simply reproduces 
the left trivialization T G :::: {I x G. For a pair Lie groupoid Q x Q ~ Q we 
identify T' (Q x Q) with Q x T Q, where the first Q is seen as the zero section 
in T Q; the projection is "CT'(Qx Q)--> QxQ(q, Y) = (q, "CTQ-->Q(Y»' On the other 
hand, the lemma says that Q x TQ should be isomorphic to {(Y, q', q) E TQ x 
Q x Q I "CTQ-->Q(Y) = q}, with projection "Cr:TQ-->QxQ(Y, q', q) = (q', q). This 
isomorphism is immediately obvious. Similarly for a gauge groupoid. 

For an action Lie groupoid G x Q ~ Q we identify T' (G x Q) with T G x Q 

(where Q is the zero section of TQ), with projection "CT'(GxQ)-->GxQ(Y, q) = 
("CTG-->G(Y), q). The lemma identifies TG x Q with {(Y, x-1q, X, q) E {I x Q x 
G x Q} with (Y, x, q) through the left trivialization of TG. 

Let us now assume that ~ has a covariant derivative (or, equivalently, a con­
nection), with associated horizontal lift lf8; cf. the paragraph following (2.28). By 
Proposition 2.2.4 and Lemma 3.10.1 one then obtains a connection on T'G (seen 
as a vector bundle over G, whose projection is borrowed from TG). Going through 
the definitions, one obtains that the associated horizontal lift l of a tangent vector 
X = Y := dy(t)/dtlt = 0 in TyG to Y E T~G is 

ly(y) = :t [LY(')*"~y_ll.y("Cs(y(t)))l=o' 
which is an element of Ty(TIG) (here lf8( ... ) lifts a curve). 

Example 3.10.2. 

(3.116) 

• For a Lie group G = G the base space is a point, so that no connection needs to 
be chosen, and a horizontallijt is always zero. In the left trivialization (where 
(X, x) := d/dt(xExp(tX)/dt)lt = 0; cf. (1.37», the expression (3.116) then 
reads 

d 
l(y.x)(X, x) = dt (Y, xExp(tX»,=o = (0, Y, X, x). (3.117) 
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Here T(TG) ~ T(g x G) ~ g x g x TG ~ g x g x g x G. 
• A connection in a pair Lie algebroid T Q ~ TQQ is the same as an affine con­

nection, with horizontal lift lTQ : T Q ---+ T(T Q); cf. ][.3.2.1. Using the 
identification Tt(Q x Q) ~ Q x TQ as above, the left-hand side of (3.116) 
is of the form l(q,.y)(q', q), where Y E TqQ. The right-hand side then assumes 

the form d/dt(q'(t), l~Q(q(t»lt = 0, so that 

l(q'.rM', q) = (q, l~Q(q». (3.118) 

This is a vector in T(Tt (Q x Q» ~ T Q x T(T Q), as it should be. An analogous 
computation may be done for gauge groupoids . 

• For an action Lie groupoid G x Q ~ Q we just saw that Tt(G x Q) ~ 
TG x Q ~ g x G x Q. Using the notation of(3.117), the right-hand side of 
(3.116) is a vector in 'r(r,x)(TG) x TqQ, namely 

fO",x,q)(X, x, q) = (0, Y, X, x, q). (3.119) 

Since the bundle Tt G ---+ G has a connection, one can define the geodesic flow 
X 1-* X(t) on TtG in precisely the same way as on a tangent bundle with affine 
connection; see 11.3.1. To recapitulate, the flow X(t) is the solution of 

X(t) = lX(t)(X(t», 

with initial condition X (0) = X. 

(3.120) 

Definition 3.10.3. Let the Lie algebroid ~ ~ TQQ of a Lie groupoid G ~ Q 
be equipped with a connection. Relative to the latter, the left exponential map 
ExpL : ~ ---+ G is defined by 

EXpL(X) := Yx,(I) = rT'G~G(X'(I», (3.121) 

whenever the geodesicjiow X'(t) on TtG (defined by the connection on TtGpulled 
back from the one on ~) is defined at t = 1. Here X' E ~' = TtG I Go is the 
image of X under the isomorphism ~' ~ ~; cf. (3.96) etc. 

Our goal, however, is to define a "symmetrized" version of EXpL . 

Lemma 3.10.4. For all X E ~ for which EXpL(X) is defined one has 

rt(ExpL(X» = reX). (3.122) 

We write X for X' in (3.121). One has rt(yx(O» = reX) and 

d 
dt <t(yx(t» = (rt 0 rTIG~G)*lx(t)(X(t» = (rt)*X(t) = 0, 

since lx(Y) covers Y, and X(t) E TtG = ker«t)* n TG. 

We combine this with the obvious «tX) = r( -tX) to infer that 

rt(ExpL(tX» = rt(ExpL(-tX» = rs(ExpL(-tX)-I). 

Thus the (groupoid) multiplication in (3.123) below is well-defined. 

• 
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Definition 3.10.5. The Weyl exponential map Expw : ® -+ G is defined by 

Expw (X):= EXpL(_~X)-lExpL(~X). (3.123) 

The following result is closely related to the tubular neighborhood theorem 
11.3.4.2, and includes Lemma 11.3.4.3 as a special case. 

Theorem 3.10.6. The maps EXpL and Exp ware diffeomorphisms from a neigh­
borhood N' of Q c ® (as the zero section) to a neighborhood N; of t(Q) in G, 
such that EXpL(q) = Expw (q) = t(q)for all q E Q. 

The property EXpL(q) = t(q) is immediate from Definition 3.10.3. The push­
forward of ExpL at q is Exp~ : Tq® -+ 7;(q)G. Now recall the decomposition 
(3.94). For X tangent to Q C ® one immediately sees that Exp~(X) = t*X. 
For X tangent to the fiber r-1(q), which we identify with T.(q)G (cf. (3.96) 

etc.), one has Exp~(X) = XI, as follows by the standard argument used to 
prove that eXPq in the theory of affine geodesics is a local diffeomorphism: FOI 

a curve Xes) = sX in T.(q)G one has EXpL(X(S» = yx'(s)(l) = yx,(s), so that 

d/ds[ExpL(X(s»]ls = 0 = XI. Since Exp~ is a bijection atq, the inverse function 
theorem implies that ExpL is a local diffeomorphism. Since it maps Q pointwise to 
t( Q), the local diffeomorphisms can be patched together to yield a diffeomorphism 
of the neighborhoods stated in 3.10.6; we omit the details of this last step, since it 
is identical to the proof of the tubular neighborhood theorem. 

As for Expw, we have Exp: (X) = t*X for X E Tq Q c Tq®. Also, 

:s [EXpL(_~SX)-lExpL(~SX)]s=o = -F*XI + ~XI, 
where 1* is the pushforward of the inversion in G. The right-hand side lies in 
ker«rs )* + (r/)*) C TG, and every element in this kernel is of the stated form. 
Similarly to (3.94), one may prove the decomposition 

(3.124) 

It follows that Exp: is a bijection at q, and the second part of the theorem is 
derived as for ExpL . • 

Our standard list of examples illustrates Definition 3.10.5. 

Proposition 3.10.7. 

• For a Lie group G no connection is needed, and one has 

EXpL(X) = Expw (X) = Exp(X), (3.125) 

where X E 9 and Exp : 9 -+ G is the usual exponential map. 
• For a pair Lie groupoid Q x Q ~ Q one chooses an affine connection 'V on 

T Q, with associated exponential map exp : T Q -+ Q. Then 

EXpL(X) = (r(X), eXPr(X)(X»; 

Expw (X) = (exPr(x/ -~X), eXPr(X)(~X», 

(3.126) 

(3.127) 
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where X E T Q and T := TTQ-+Q. 

• For a gauge groupoid P x H P ~ Q one chooses an H -invariant affine connec­
tion on TP, with exponential map exp : TP -+ P. This induces a connection 
on (TP)/ H, in terms of which 

EXpL([X]H) = [T(X), eXPr(X)(X)]I/; 

Expw ([X]H) = [exPT(X)( -~X), eXPT(X)(~X)]H' 

(3.128) 

(3.129) 

where T := TTP-+P, and [X]H E (TP)/ H is the equivalence class of X E TP 
under the H -action on T P. 

• For an action groupoid G x Q ~ Q the trivial connection on 9 x Q -+ Q 
yields 

EXpL(X, q) = (Exp(X), q); 

Expw (X, q) = (Exp(X), Exp(~X)q). 

(3.130) 

(3.131) 

We infer from (3.117) and (3.120) that the geodesic flow in TtG = TG ~ gxG 
is determined by the differential equation (Y, i) = (0, Y); this suggestive notation 
should actually read (0, Y, Y, x). Recalling that we work in the left trivialization, 
this equation is solved by (Y(t), x(t» = (Y, xExp(tY». Now X Egis identified 
with X' E TeG, so that (3.125) follows. 

The geodesic flow on Tt(Q x Q) is (X(t), Y(t» = (X(O), Yet»~, where Y(t) is 
the flow on T Q determined by the affine connection. This immediately leads to 
(3.126), and hence to (3.127), since (x, y_)-I(X, y+) = (y_, y+). 

An H-invariant connection on TP by definition satisfies (Rh)* V~YJ = V~TJ for 
all h E H and all~, TJ E nTP)H. This implies H-invariance of the geodesic flow 
on TP in that (RhMX(t» = «Rh)*X)(t) for all h and X. The exponential map is 
then H-invariant in the sense of 11.(3.90), which, with (3.126), leads to (3.128). 

Equation (3.130) follows from (3.119), in analogy with the derivation of (3.126). 
Subsequently, (3.131) is derived from (3.123) and the definitions of multiplication 
and inversion in an action groupoid (see 3.1.4). • 

3.11 The Groupoid C* -Algebra as a Strict Quantization 

Theorem 11.2.6.1 shows that C~(T*Rn), regarded as a subalgebraofthe complex­
ified Poisson algebra coo(T*Rn), is quantized by Q3o(L2(Rn». This is generalized 
to arbitrary Riemannian manifolds Q in Theorem 113.5.1, in which C~(T*Q) 
is quantized by Q30(L2(Q». For compact G, in Theorem 1.9.2 the complexified 
Lie-Poisson algebra C~(g~) is quantized into the group C* -algebra C*( G). When 
P(Q, H, -r) is a principal fiber bundle with compact structure group H, we saw in 
Theorem 2.8.1 that the complexified Poisson algebra C~«T*P)H) is quantized 
by Q30(L2(p»H. 

If we look at this list, as well as at Propositions 3.8.8 and 3.9.3 and Theorem 
3.7.1, we discern that in all cases an appropriate subspace of the Poisson algebra 
COO(~*) canonically associated to a given Lie algebroid ~ ::;T~ (see 3.9.1) is 
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quantized by the C*-algebra C*(G) (defined in 3.6.3) of a Lie groupoid G whose 
Lie algebroid is ~. In the cases at hand one has C*(G) = C:(G). 

In all cases the quantization map Q/i is a special case of the following construc­
tion. We start by defining a fiberwise Fourier transform j E C<'O(~) of suitable 
f E COO(~*). This transform depends on the choice of a family {JL~}qEQ of 

Lebesgue measures, where JL~ is defined on the fiber .-l(q). We will discuss the 

normalization of each JL~ in due course; for the moment we merely assume that 
the q-dependence is smooth in the obvious (weak) sense. 

For a function j on ~ that is Lion each fiber we put 

f(O) = 1 dJL;(X)e- i9(X) j(X), 
r-I(q) 

(3.132) 

where. := '~->Q and X E .-l(q). Each JL~ determines a Lebesgue measure JL~* 

on the fiber .;a/-+Q(q) of ~*, whose normalization is fixed by requiring that the 
inverse to (3.132) be given by 

j(X) = I-I dJL;*(8)ei9(X) f(O). (3.133) 
T0'~Q(q) 

The fiberwise Fourier transforms 11.(3.42) and (1.124) are clearly special cases 
of (3.133). On the action Lie algebroid 9 x Q, equipped with the trivial connection, 
we simply have 

J<X, q) = { (~:~n ei9(X) f(8, q). (3.134) 

As in (1.124), the normalization of dn8 is determined by the normalization of the 
Haar measure on G. 

Having constructed a Fourier transform, we define the class C~(~*) as con­
sisting of those smooth functions on ~* whose Fourier transform is in C;;o(~); 
cf. 11.(3.49). Generalizing the procedure in Definition 11.3.4.4, we pick a function 
K E COO(~, R.) with support in Nt (cf. 3.10.6), equaling unity in some smaller 
tubular neighborhood of Q, as well as satisfying K( -X) = K(X) for all X E ~. 

Definition 3.11.1. Let G be a Lie groupoid with Lie algebroid ~. For Ii =1= 0 the ± 
Weyl quantization of f E C~(~*) is the element Q~ (f)± E C;;o(G) (regarded 
as a dense subalgebra of C*(G) or C:(G), defined by Q~ (f)±(y) := 0 when 
Y tt N.., and by 

(3.135) 

Here the Weyl exponential Expw : ~ -+ G is defined in (3.123), and the cutoff 
function K is as specified above. 

This definition is possible by virtue of Theorem 3.10.6. By our choice of 
C~(~*), the operator Q~ (f)± is independent of K for small enough Ii. 

Proposition 3.11.2. For real f the operator Q~ (f)± is selfadjoint in Ct)(G). 
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This is immediate from (3.23) and (3.123). • 

It is evident from Proposition 3.10.7 that the previously constructed Weyl quanti­
zation maps 11.(2.108) with 11.(2.109) on T*]Rn ,11.(3.50) withll.(3.51) on T* Q, and 
the map defined in Theorem 2.8.1 on (T*P)/ H correspond to Q'!r (f)-, whereas 
the quantization defined in (1.127) on g* corresponds to Q'!r(f)+. In all cases, 
Q'!r O± defines a strict quantization of the appropriate subalgebra of COO(I5~, ]R) 

into C*(G). A new case is the action Lie groupoid G x Q ~ Q. Here the cutoff 
K is independent of q, and coincides with the function appearing in (1.127). 

Theorem 3.11.3. For small enough Ii, afunction I E C~(g* x Q) is quantized 
according to (3.135) by 

1 dnfJ i 

Q'!r (f)±(Exp(X), q) = --~- e iil1(X) 1(±fJ, Exp(-tX)q). 
g* (2n n)n 

(3.136) 

When G = ]Rn and Q has a G-invariant measure, Q'!r O± defines a strict 
quantization 01 the Poisson algebra C~(g~ x Q, 1R) olthe action Lie algebroid 
IRn x Q into the action C* -algebra C*(lRn, Q) = q(lRn, Q) on I = R 

Equation (3.136) follows from (3.135), (3.131), and (3.134). Conditions 
1I.1.l.1.1 and 2 hold by Theorem 3.11.4 below. We prove 1I.1.l.l.3. For an action 
C*-algebra C*(G, Q) the bound (3.75) reads 

11111 :::: IIfIIl = sup 1 dx I/(x, q)l, (3.137) 
qEQ G 

where I E C;;o(G x Q); cf. (3.44) and (3.57). We put Q'!r (f) := Q'!r (f)+, and 
substitute (3.136) and (3.137) in II Q'!r (f)Q'!r (g) - Q'!r(fg)lIl (do not confuse 
I E C*(G, Q) in (3.137) with I E C~(g"'- x Q) used in this step). One rescales 
some integration variables so that Ii occurs only in expressions of the generic form 
I (fJ, Exp(/iX)q), where X E 9 = ]Rn. One then Taylor-expands I and g in Ii, e.g., 

l(fJ, Exp(liX)q) = l(fJ, q) + liXa~p l(fJ, q) + O(li2); (3.138) 

cf. (1.19). Expressions of the form xa exp(ifJbXb) in the O(Ii) term in (3.138) are 
rewritten as -i8/8fJa exp(ifJbXb), upon which one partially integrates in fJ. Two 
integrations in the O(Ii) term can then be done explicitly, and using (3.101) (in 
which the structure constants C of course vanish) and j, g E C~(lRn x Q) one 
proves 11.(1.3) via (3.137). • 

When Q = G/ H, one may use Proposition 3.9.9 and Corollary 3.7.5 to show 
that the prescription (3. 135) applied to C~(g"'- x Q) (mappingitintoC*(G, G / H», 
that is, (3.136), coincides with its application to C~«T*G)/ H) (thereby mapped 
into C*(G XH G». Specifically, one should use Q'!rO+ on g"'- x (G/H) and 
Q'!r 0- on (T*G)/ H; this is because the two relevant Poisson brackets stated in 
3.9.3 differ by a sign. Taking G = ]Rn and H trivial, we see that Theorem 3.11.3 
is essentially Theorem 11.2.6.1. 

To further understand the prescription (3.136), we pass to some representation n 
of C*(G, Q), for example, to the regular representation nf, cf. (3.67). This has the 
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advantage that Q::' may be extended to certain unbounded functions. With X and 

j as defined prior to (3.102), and U(G) and n(Co(Q» associated to Jr(C*(G, Q» 
as in 3.4.6 or 3.7.4, easy formal manipulations (which in the case of Jri are valid, 
on, say, C~(G x Q) c L2(G x Q» yield 

w - . 
Jr(Q/i (X)+) = lIUlU(X); (3.139) 

Jr(Q::' (j)+) = n(j). (3.140) 

Comparing this with (3.39) and (3.40), we see that Q~(g) = Jr(Q::'(g» when 
g is either X or j. In particular, if we omit the arbitrary representation Jr, eqs. 
(3.41)-(3.43) and (3.102)-(3.104) lead to a strong version of Dirac's condition 
II.( 1.3), 

(3.141) 

To reiterate, this is valid when f and g are of the form j or X, and strictly speaking 
holds in any representation Jr of C*(G, Q) on a suitable domain (e.g., 1irJ) of the 
carrier space of Jr . 

Motivated by these examples, one would like (3.135) to provide a strict quanti­
zation for any Lie groupoid G. However, Dirac's condition 11.(1.3) has been proved 
only in cases featuring a good correspondence between the symplectic leaves of <!S* 
and the irreducible representations of C;(G); cf. the proofs of Theorems 11.2.6.1, 
11.3.5.1, 1.9.2, and 2.8.1. The other conditions, though, always hold. 

Theorem 3.11.4. The map (Q::')± : C:(<!S~, R) ~ C;(G)1R defined by (3.135) 
satisfies conditions lI.l.l.l.l and 2 of Rieffel and von Neumann. 

3.12 The Normal Groupoid o/a Lie Groupoid 

The essence of the proof of Theorem 3.11.4 is to regard <!S as a Lie groupoid, and 
glue it to G so as to obtain a new Lie groupoid containing both G and <!S. 

Definition 3.12.1. Let G =* Q be a Lie groupoid with associated Lie algebroid 
<!S ~ TQQ as defined in 3.B.7. The normal groupoid GN is a Lie groupoid with base 
R x Q, defined by the following structures . 

• As a set, GN = <!S U {R\{O} x G}. We write elements OfGN as pairs (n, u), 
where u E <!S for n = 0 and U E Gfor n "1= O. Thus <!S is identified with {OJ x <!S . 

• As a groupoid, GN = {O x <!S} U {R\{O} x G}. Here <!S is regarded as a Lie 
groupoid over Q, with 'Cs = 'Ct = 'C and addition in the fibers as the groupoid 
multiplication. The groupoid operations in R\{O} x G are those in G.ln other 
words, 

'Cs(O, X) := 'Ct(O, X) = (0, 'C(X»; 

'C,(n, y) := (n, 'Cs(y»; 

'Ct(n, y) := (n, 'Ct(Y»; 

(3.142) 

(3.143) 

(3.144) 
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t(O, q) := (0, q); 

t(n, q) := (n, t(q»; 

(0, X) . (0, Y) := (0, X + Y); 

(n, y.) . (n, Y2) := (n, YI Y2); 

(0, X)-I := (0, -X); 

(n, y)-I := (n, y-I). 
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(3.145) 

(3.146) 

(3.147) 

(3.148) 

(3.149) 

(3.150) 

Here n =1= 0; in (3.145) it is understood that Q c (!S as the zero section . 
• The smooth structure on GN is as follows. To start, the open subset 0 1 := 

R\{O} x G c GN inherits the product manifold structure. Let Q C Nt C (!S 

and t(Q) c.N; c G, as in Theorem 3.10.6. 
Let 0 := {(n, X) I nX E Nt}; this is an open subset ofR x (!S, containing 
{OJ x (!S. Define l/J : 0 ~ GN by 

l/J(O, X) := (0, X); 

l/J(n, X) := (n, Expw (nX». (3.151) 

Since Expw : Nt ~ .N; is a diffeomorphism (cf 3.10.6), we see that 0 is a 
bijection from 0 to O2 := {O x (!S} u {R\{O} x .N;}. This defines the smooth 
structure on O2 in terms of the smooth structure on O. Since 0 1 and O2 cover 
GN , this specifies the smooth structure on GN • 

The fact that GN is a Lie groupoid follows from the corresponding property of 
G. The given chart is defined in terms of the Weyl exponential, which depends 
on the choice of a connection in (!S. However, one may verify that any (smooth) 
connection, or, indeed, any (Q-preserving) diffeomorphisms between Nt and.N;, 
leads to an equivalent smooth structure on GN • For example, we could have used 
ExpL instead of Expw . Also, the smoothness of Expw makes the above manifold 
structure on GN well-defined, in that open subsets of 0 1 n 02 are assigned the 
same smooth structure. 

The normal groupoid of a pair Lie groupoid Q x Q ~ Q is known as the 
tangent groupoid of Q, and is sometimes described by saying that one "blows up" 
the diagonaI8(Q) in Q x Q. Convergence in (Q x Q)N in the manifold topology is 
as follows: If nn ~ ° then (/in, qn, q~) ~ (0, X) iff qn ~ r(X), q~ ~ r(X), and 
Yn (t) / /in ~ X, where Yn is an affinely parametrized geodesic with Yn (0) = qn and 
Yn (1) = q ~. This convergence is independent of the affine connection defining the 
geodesic in question. In local coordinates, where X = (vI-', ql-'), the convergence 
condition is simply that q~ ~ ql-', (q~)1-' ~ ql-', and «q~)1-' - q~)//in ~ vI-'. 

We now pick a left Haar system {J.L~ }qeQ on G =* Q; cf. 3.3.3. The vector bundle 
(!S, regarded as a Lie groupoid as in 3.12.1, has a left Haar system consisting of the 
family {J.L~ }qeQ of Lebesgue measures on each fiber, already used in the construc­
tion of the Fourier transform. Since we have a Lie groupoid, the Radon-Nikodym 
derivative Jq(X) := dJ.L~(Expw (X»/dJ.L~(X) is well-defined and strictly positive 
onNt (since both measures are locally Lebesgue on spaces with the same dimen­
sion). We now fix the normalization of the J.L~ by requiring that limx-> 0 Jq(X) = 1 
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for all q. This leads to a left Haar system for GN , given by 

lit • ilL. 
""'(O,q) .= ""'q' 

t I;:-n t 
f-t(h.q) := n f-tq, (3.152) 

where n is the dimension of the typical fiber of (!S. The factor fi-n is necessary in 
order to satisfy condition 3.3.2.3 at fi = 0, as is easily verified using the manifold 
structure on GN defined in 3.12.1. 

To avoid confusion between functions on GN and on (!S* , we denote the former 
by f, g. Thus the * -algebraic structure on C~(GN) defined by (3.22) and (3.23) 
with 3.12.1 and (3.152) becomes 

f * g(O, X) = ( df-t~(x)(Y)f(O, X - Y)g(O, Y); 
IT-1oT(X) 

f * g(fi, y) = fi-n 11 df-t~,(y)(YI)f(fi, YYI)g(fi, YI- 1); 
T,- (r,(y» 

-:=--:= 
f*(O, X) = f(O, -X); 

f*(fi, y) = f(fi, y- l ). 

(3.153) 

(3.154) 

(3.155) 

(3.156) 

The reduced normal groupoid C* -algebra C;(GN ) is the closure of the * -algebra 
C~(GN) in the norm (3.73); cf. Definition 3.6.3. 

Let 'Jh be the ideal in C;(GN) generated by those functions in C~(GN) that 
vanish at fi. The canonical map f t-+ [flh from q(GN) to q(GN )/'Jh is given by 
[fhO = f(fi, .). However, in view of the factor fi-n in (3.154), for fi #- ° this map 
is only a * -homomorphism from q(GN ) to q(G) if we add a factor fi-n to the 
definition (3.22) of convolution on G. Since we would like to identify q(GN )/'Jh 
with q(G), in which convolution is defined in the usual, fi-independent, way, we 
should therefore renormalize the canonical projection. 

For fi = ° one has C*(GN )/'Jo ~ q«(!S), which in tum is isomorphic to Co«(!s*) 
by the fiberwise Fourier transform (3.132). This motivates the definition of 'Po : 
q(GN) ---+ Co«(!s*) for fi = 0, and 'Ph : C;(GN) ---+ C;(G) when fi #- 0, by 
continuous extension from f E C~(GN) of 

'Po(f) : 0 t-+ f(O, 0), 

'Ph(f) : Y t-+ fi-nf(fi, y). 

Here f(O, 0) and f(O, X) are related as f(O) and I(X) are in (3.132). 

(3.157) 

Theorem 3.12.2. Let G =* Q be a Lie groupoid, with associated Lie algebroid 
(!S -=+ TQQ. The triple (q(GN), (Qth, 'PhhelR), where Qto = Co«(!S*), andQth = q(G) 
for fi #- 0, is a continuous field of C* -algebras. 

To prove this, we need some standard concepts in the theory of C* -algebras. 
A primitive ideal in a C* -algebra Qt is an ideal that occurs as the kernel of an 
irreducible representation of Qt. 

Definition 3.12.3. The primitive spectrum Prim(Qt) of a C* -algebra Qt is a 
topological space whose elements are the primitive ideals in Qt, and whose topology 
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is defined by the following closure operation: The closure of S C Prim(~) is the 
set of all primitive ideals of ~ containing the intersection of the elements of S 
(which is an ideal in ~). 

The topology defined here is known as the Jacobson topology; it can be defined 
in a much wider context. We let 1f) be the irreducible representation annihilating J; 
i.e.,J = ker(1f). One seesthatJn ~ JintheJacobsontopologywhen1f).(A) = 0 
for all sufficiently large n implies 1f)(A) = O. For example, when X is a locally 
compact Hausdorff space, one may identify Prim(Co(X» with X by identifying 
J x := (f I f(x) = O} with x. The Jacobson topology then coincides with the 
original topology on X. 

Lemma 3.12.4. Let fl be a C* -algebra, and let 1/1 : Prim(fl) ~ X be a continuous 
and open map from the primitive spectrum Prim(fl) (equipped with the Jacobson 
topology) to a locally compact Hausdorff space X. Define Jx := n1/l-1(x); i.e., 
A E J x ijJ1f)(A) = Ofor all J E 1/1-1 (x). Note that J x is an ideal in fl. 

Taking ~x = fl/Jx and Ox : fl ~ ~x to be the canonical projection, the triple 
(f!, {~x, Ox }XEX) is a continuous field ofC*-algebras. 

We omit the long and difficult proof of this lemma, and instead apply it, with 
f! = C;(GN ) and X = I = R. In order to verify the assumption in 3.12.4, we first 
note that Jo ~ Co(lR\{O}) ® C;(G), as follows from a glance at the topology of 
GN • Hence Prim(Jo) = R\{O} x Prim(C;(G», with the product topology. Since 
C*(GN )/Jo ~ Co(~*), one has Prim(C*(GN )/Jo) ~ ~*. 

We need a second lemma, proved by straightforward definition-chasing. 

Lemma 3.12.5. Let J be an ideal in a C* -algebra ~, and decompose 

(3.158) 

where Prim)(~) consists of those primitive ideals containing J, and Prim)(~) 
is its complement. Then one has the homeomorphisms Prim)(~) ~ Prim(~/J) 
and Prim)(~) ~ Prim(J). Moreover, Prim)(~) is closed and Prim\~) is open in 
Prim(~). 

We apply this lemma with ~ = C;(GN ) and J = J o. Then C;(GN )/Jo ~ 
Co(~*), and a glance at the topology of GN shows that Jo ~ Co(R\ to}) ® C:(G). 
Thus the decomposition (3.158) reads 

(3.159) 

For example, when G = Q x Q ~ Q is a pair Lie groupoid, the right-hand 
side of the decomposition (3.159) is T*Q U R\{O}. In that case the topology is 
easily computed: The closure of a set (0, 141) is T* Q U (0, 141]. This illustrates the 
fact that in general, the primitive spectrum is not Hausdorff. 

Equation (3.159) with 3.12.5 does not provide the full topology on Prim( C;(GN », 
but it is sufficient to know that ~* is not open. If it were, R\ (OJ x Prim(G) would be 
closed, and this possibility can be excluded using the convergence criterion men­
tioned after 3.12.3. Using (3.159), we can define a map 1/1 : Prim(C;(GN» ~ R 
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by 1/10) = 0 for all J E 18* and 1/I(n, J) = n for n =I- 0 and J E Prim(c;(G».1t is 
clear from the preceding considerations that 1/1 is continuous and open. Using this 
in Lemma 3.12.4,one sees thatJh is indeed the ideal in C:(GN) generated by those 
/ E C~(GN) that vanish at n. Hence ~o :::::: Co(I8*) as above, and ~h :::::: C:(G) 
for n =I- O. Theorem 3.12.2 then follows from Lemma 3.12.4 and the argument 
leading to (3.157). • 

We now prove Theorem 3.11.4. Recalling the cutoff K in 3.11.3, for each / E 

C~(I8*) we define a function Q(f) on GN by 

Q(f)(O, X) := i(X); 

Q(f)(n, Expw (X» := K(X)i(X/n); 

Q(f)(n, y) := 0 Vy f. N;. (3.160) 

It is clear from Definition 3.12.1 that Q(f) is smooth on GN • Although Q(f) 
does not have compact support in n, using (3.75) and (3.152) one may argue that 
it lies in c;(GN)' Comparing (3.160), (3.157), and (3.135), we have Q':(f)+ = 
rph(Q(f». Hence {Q': (f)+helR is a section of the continuous field of Theorem 
3.12.2. Definition 11.1.2.1 then implies Rieffe1's condition 11.1.1.1.1, as well as 
II.(1.4), which in turn implies von Neumann's condition 11.1.1.1.2. 

To also cover functions of the type Q~ (f)-, one equips GN with a differ­
ent smooth structure, obtained by replacing Expw(X) in 3.12.1 by Expw(-X). 
The original "+" smooth structure is equivalent to the modified "-" one by the 
diffeomorphism (0, X) ~ (0, - X) and (n, y) ~ (n, y). • 

Corollary 3.12.6. When 11.(1.3) holds, the field (c;(GN), {~h, rphhelR) o/Theo­
rem 3.12.2, the space §to = C~(I8*), and the map Q in (3.160) define a continuous 
quantization 0/18* (cf 11.1.2.5). 

We now see that the continuous field of Theorem II.2.6.5 is a special case of the 
one in Theorem 3.12.2, with G given by the pair groupoid IRn x IRn, so that GN 

is the tangent groupoid of IRn. More generally, the continuous field generated by 
Wey 1 quantization on a Riemannian manifold Q (cf. Theorem II.3.5.1) is given by 
putting G = Q x Q in 3.12.2. 



CHAPTER IV 

Reduction and Induction 

1 Reduction 

1.1 Basics of Constraints and Reduction 

We start with a geometric description of symplectic reduction in a rather general 
form, and subsequently relate this to the notion of a constraint. 

Recall Definition 1.2.4.1 and subsequent paragraph. 

Definition 1.1.1. Let (S, w) be a symplectic manifold, and let C be a closed 
submanifold of S. The null distribution Ne on C is the kernel of the restriction 
We = t*w ofw to C (here t : C,-* S is the canonical embedding). 

Note that although w is by definition closed and nondegenerate, its restriction to 
C, while closed, may be degenerate. Namely, given a vector X E TuC, no vector 
Y E Tu S for which w(X, Y) '# 0 may be tangent to C. 

We denote the annihilator in T*S of a subbundle VeTS by Vo. For example, 
~ consists of all I-forms a on S that satisfy a(X) = 0 for all X ENe. The 
symplectic orthogonal complement in TS of V, on the other hand, is called V.L; 
it consists of all Y E TS such that w(X, Y) = 0 for all X E V (assuming, of 
course, that X and Y lie in the same fiber of TS). In this notation we obviously 
have 

Ne = TC n TC.L. (1.1) 

Theorem 1.1.2. When the rank of We is constant on C. the null distribution Ne 
is smooth and completely integrable; hence Ne defines the null foliation cl>e of 
C. When the space 

(1.2) 
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of leaves of this foliation is a manifold in its natural topology, there is a unique 
symplectic form (IF on SC satisfying 

(1.3) 

where r := rc->sc maps a to the leaf of the null foliation in which it lies. 

We omit the technical proof that.Nc is smooth (when the rank. of Wc varies on 
C the null distribution is not necessarily smooth). Use of the well-known iden­
tity dwc(Xo, X), X2) = Xo wc(X) , X2) - ... - w([X), X2], Xo) for any 2-form 
Wc, combined with dwc = 0, shows that.Nc is involutive. Consequently, it is 
completely integrable by Frobenius's theorem. 

Using the identity Lx = dLx + Lxd, one shows that w is invariant under any 
flow along the leaves of <l>c. Thus we can define wC by 

c - -w (X, Y) := wc(X, y), (1.4) 

where X is a preimage of X in TC under r*. By construction, wC does not depend 
on the particular choice of the preimage, since any two possible choices differ 
by an element of .Nc , which is annihilated by Wc. The 2-form wC satisfies (1.3) 
by construction, and is then seen to be closed because Wc is closed and r* is 
surjective (alternatively, one uses the identity above). Finally, wC is nondegenerate 
by construction; or note that its rank is equal to the dimension of SC . The uniqueness 
of wC is obvious, for any wC satisfying (1.3) must satisfy (1.4). 0 

We now pass to the elementary theory of constraints. In an expression of the 
type "g ETC" one refers, of course, to the restriction of a vector field g to C. 

Lemma 1.1.3. For f E COO(S, JR} the property df = 0 on C is equivalent to 
gj E TCl.. 

Here gf is the Hamiltonian vector field of f; recall 1.(2.8}. The claim is 
immediate from 1.(2.21}. • 

Lemma 1.1.4. The property df E (TCl.}o is equivalent to gf ETC. 

The condition df E (TCl.}o implies that Xf = 0 for all X E TCl.. Now take 
X = gg (at some point), and use Lemma 1.1.3 and the equality gf g = -gg/. This 
proves that~f ETC, because the map g f-+ ~g is surjective, since S is symplectic. 
This argument works in the opposite direction as well. • 

Definition 1.1.5. A function fP E COO(S, JR} satisfying fP = 0 on C is called a 
constraint. A first-class constraint is a constraint satisfying dfP E (TCl.}o. A 
constraint that is not first class is called second class.~ 

This definition is of great significance, as there is a fundamental difference 
between situations with first- and second-class constraints. 

Proposition 1'.1.6. Each of the following conditions is necessary and sufficientfor 
afunction fP E COO(S, JR) to be afirst-class constraint (up to a possible constant): 

1. Its Hamiltonian vector field gl{! lies in TC n TCl.. 
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2. The Poisson bracket {({J, ({J'} with any other constraint ({J' is itself a constraint. 

Moreover, at each point ofC the space TC n TCl- is spanned by the Hamiltonian 
vector fields offirst-class constraints. 

The first characterization is immediate from 1.1.5, 1.1.3, and 1.1.4. The second 
follows from 1.(2.19), 1.(2.8), and the first one (using 1.1.3 once again). The final 
claim holds because S is symplectic, so that f 1-+ ~f is surjective onto TC; then 
use 1.1.3 and 1.1.4 in the opposite direction. • 

Hence the Hamiltonian flow generated by the first-class constraints sweeps out 
the leaves of the null foliation of C. In physics this flow is regarded as unphysical, 
corresponding to the fact that the Hamiltonian equations of motion are underde­
termined on C. Passing from C to SC is then a means of eliminating redundancy 
and indeterminism. Note that using the comment after 1.(2.16), one may reconfirm 
the invariance of w under flows tangent to the null distribution. 

There are four special cases of interest (which are neither exhaustive nor 
mutually exclusive). 

Definition 1.1.7. A submanifold C ofa symplectic manifold (S, w) is called 

• isotropic when T C ~ T C l-; 
• coisotropic when TCl- ~ TC; 
• Lagrangian when it is at the same time isotropic and coisotropic, in other 

words, when T Cl- = T C, so that Wc = 0; 
• symplectic when TC n TCl- = 0, so that Wc on C is symplectic. 

Some authors ascribe theomorphic status to Lagrangian submanifolds, but in 
this book they hardly play a role. Locally a symplectic submanifold C may be 
described as the set on which a collection of second-class constraints vanishes, 
whereas a coisotropic submanifold is locally described as the null set of a set of 
first-class constraints. 

Definition 1.1.8. A weak observable on S is afunction f E COO(S, lR)for which 
df r C lies in.N2:. 

The restriction of a weak observable to C is evidently constant on the leaves of 
the null foliation of C. 

Proposition 1.1.9. A smooth function f is a weak observable 

1. iff~f lies in TC + TCl-; 
2. iffits Poisson bracket with any first-class constraint vanishes on C. 

The proof of the first characterization is like that of 1.1.4, adding the fact that 
(TCnTCl-l equals TC + TCl-. The second follows from the equation {({J, f} = 
~rpf in combination with (1.1) and 1.1.6.1. • 

Proposition 1.1.10. When C is coisotropicaUy embedded in S, the collection Ql~ 
of weak observables is a Poisson algebra. 
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Since Qt~ is characterized by a differential condition, it is obvious that it is closed 
under the pointwise product as well as under linear operations. Closure under the 
Poisson bracket is proved as follows. In the coisotropic case, Proposition 1.1.9 
states that f is a weak observable iff ~f ETC. To check whether ~{f.g} E TC 
when ~f and ~g are, we compute ~(f.g}qJ for an arbitrary constraint that is first class 
by assumption. Using 1.(2.8), the Jacobi identity, and then applying 1.1.9.2 twice, 
one shows that ~{f.g}qJ = 0 on C. • 

Now assume that the reduced space SC constructed in 1.1.2 is a manifold. 

Definition 1.1.11. The reduced representation ll c (f) of a weak observable f 
is the unique element of COO(Sc, JR) that satisfies 

r~-,>scllc(f) = f r c. (1.5) 

The Poisson algebra of observables of the system whose constraint hypersurface 
is S is then defined as 

(1.6) 

Using the tubular neighborhood theorem, one easily sees that any smooth function 
on a submanifold C may be extended to a smooth function defined on a neighbor­
hood of C. When C is closed, a further smooth extension to S is always possible. 
Hence Qtc ~ COO(S, JR) as Poisson algebras. 

It follows from 1.1.9 that when C is coisotropic, so that TC + TC.L = TC, 
the Hamiltonian flow of f does not leave C when it starts there, and that this flow 
projects onto the flow of ll c(f) in SC. For general C, it can be shown that one 
can always decompose f = fl + h (at least in a neighborhood of C) such that 
fl satisfies ~ft E TC (so that its Hamiltonian flow stays in C) and h vanishes on 
C. In physics one is given a Hamiltonian h on C that should be a weak observable 
by construction (of C), and one subsequently tries to extend h to S such that ~h is 
tangent to C. 

1.2 Special Symplectic Reduction 

We are now going to describe a special case of the construction in the previous 
section that includes many physically relevant examples. 

Definition 1.2.1. In special symplectic reduction one starts from: 

• A pair of symplectic manifolds (S, ws) and (Sp, wp). 
• A Poisson manifold P (we denote the same manifold equipped with minus the 

Poisson bracket by P-). 
• A pair of Poisson morphisms J : S --+ P- and Jp : Sp --+ P. 

The total space is then S = S x Sp, equipped with the symplectic form w := 
Ws + wp , and the constraint manifold C in S is 

C = S *p Sp := {(a, a) E S x SpIJ(a) = Jp(a)}. (1.7) 
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This situation is denoted by 

J Jp 
S~ P+--Sp' (1.8) 

The reduction of S by C is described by the following 

Theorem 1.2.2. Let either J* or (J p)* (or both) be surjective at all points relevant 
to S * p S p. Then S * p S p is a coisotropic submanifold of S x S p, and Wc is (locally) 
of constant rank. 

The null distribution Nc of S * p S p is spanned by the collection of vector fields 

~f' where f E C'O(P, R.) and 

(1.9) 

Here the Poisson bracket is the one corresponding to the symplectic form w. 

We first show thatC is asubmanifold. Define f : Sx Sp ~ P x Pby f(a, a) := 
(J(a), Jp(a», and let D be the diagonal in P x P. Then C = f-I(D) and 
f*-I1(p,p)D = 1(u,a)C whenever J(a) = Jp(a) = p. The surjectivity condition 
implies that f intersects D transversally, which in tum guarantees that C is a 
submanifold of S. 

We next prove that C is coisotropic. Let X E Tu S and Y E Ta Sp; then X + Y E 

T(u,a)C iff J*X = (Jp)*Y. The dimension of T(a,a)C at any point (a, a) E C equals 
dim S + dim Sp - (rank J*)(a), so that 

dim(T(u,a)C.L) = (rank J*)(a). (1.10) 

Let Mu,a) denote the linear span of the collection of vector fields ~ f taken at (a, a), 
where f runs through COO(P, R.). Then 

dim(Mu,a» = (rank J*)(a). (1.11) 

We now argue that Mu,a) ~ T(u,a)C.L, so that(1.11) and (1.10) imply that 

Namely, let X + Y E T(u,a)C, as above; then, since J*X = (Jp)*Y, one has 

w(u,a)(X + Y, ~f) = d(J* f - J; f)(u,a)(X + y) = O. 

(1.12) 

Moreover, Mu.a) C 1(u.a)C by a similar calculation, which uses Proposition 
1.2.3.5. Therefore, according to (1.12) the submanifold C is coisotropically im­
mersed in S x SP' and one has N = Nc . It then follows from (1.11) and the 
condition stated in the theorem that Wc has constant rank on each connected 
component of S x Spo The above argument is symmetric in J and Jp ' • 

We are therefore in a position to apply Theorem 1.1.2, obtaining a reduced 
symplectic space (Sc, wc), which we assume to be a manifold. To indicate the 
dependence on the given data, we will denote the reduced space by (sj, wj), 
where 

(1.13) 
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Here <I> = <l>c is the null foliation generated by Nc. When S and J are fixed, we 
sometimes simply write (SP, wP) for (sj, wj). The collection of weak observables 
is then called ~~. 

It follows from 1.1.5 or 1.1.6 that the constraints defined by C (cf. (1.7» are 
precisely the functions of the form J* f - J; f, where f E COO(P, R). 

Inspired by the theory of von Neumann algebras, we define the Poisson 
commutant of some subspace ~s c COO(S, R) by 

~~ := {g E COO(S, R) I {j, g} = 0 V f E ~s)}. (1.14) 

It follows from the Jacobi identity and the Leibniz rule that ~~ is a Poisson algebra 
(even when ~s isn't). The operation ~s f-+ ~; plays the role of the "weak closure" 
of ~s; the previous remark implies that ~~ is always a Poisson algebra. In general, 
~s may be strictly contained in ~; even when the former is a Poisson algebra. 
Similary, one defines the Poisson center of ~s as ~s n ~~. This may not be a 
Poisson algebra, but its "weak closure" ~; n ~~ is. 

An important subspace ofCOO(S, R) is J*COO(P, R)'. This maybe regarded as a 
Poisson subalgebra of COO(S x SP' R) under the obvious embedding of COO(S, R) 
in the latter. Combining 1.1.8 and 1.1.5 (or 1.1.9 and 1.1.6), one infers that 

rcOO(p, R)' ~ ~~. (1.15) 

Hence Definition 1.1.11 applies. We write 

rrj : rCOO(p, R)' ~ COO(SP, R), 

or simply rr P, for rrc. Denoting a point in SP by an equivalence class [a, a]ct> under 
the null foliation, one has simply 

(1.16) 

Because f E J*COO(P, R)', this is independent of the choice of a in the given 
equivalence class. The same construction applies, of course, to Poisson subalgebras 
~s of J*COO(P, R)'. 

Corollary 1.2.3. In the context of Definition 1.2.1, suppose one has a second 
Poisson manifold P2 and a Poisson map h : S ~ P2 such that JiCOO(P2, R) ~ 

h JI Jp 

P2 • 
S PI • Sp 

~ j reduction 

sP 
I 

FIGURE 1. Special symplectic reduction; Sf := S~l etc. 



J*CXJ(P, R)'. The map JP : SP ---+ P2 defined by 

JP([a, a]<I» = J2(a) 

is well-defined, and is a Poisson map. 
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(1.17) 

Relabeling (J, P) as (it, Pd for clarity, and writing Si and Ji for SP = Sj, 
and J P, respectively, we can summarize this situation pictorially as in Figure 1. 
Equivalently, there is a reduced representation rri := (Ji>* of COO(P2, R) on SP 
that is given in terms of rr P by 

P P J* rr2 = rr 0 2' (1.18) 

1.3 Classical Dual Pairs 

In this section we define various duality relationships of increasing strength 
between Poisson manifolds. The strongest of these will relate the respective 
representation theories of these manifolds to each other. 

A foliation <Il of S is always understood to be smooth in the sense that its 
associated distribution T <Il (consisting of the vectors in T S which are tangent to 
the pertinent leaf of <Il) is smooth as defined in 1.2.4.1. 

Definition 1.3.1. A symplectically complete foliation <Il of a symplectic manifold 
S is afoliation with the property that the distribution T <Il.L is completely integrable. 

Here is an alternative characterization. 

Proposition 1.3.2. A foliation <Il is symplectically complete iff the space 
COO(S, R)<I> of all smooth functions on S that are constant on each leaf of <Il is 
a Poisson algebra. 

A function f is constant along <Il iff df E T<Il°. As in 1.1.4, this is equivalent 
to ~f E T<Il.L. As in 1.2.4, when COO(S, R)<I> is a Poisson algebra one uses 1.(2.9) 
and Lemma 1.2.4.2 to show that the distribution T<Il.L is completely integrable. 

Conversely, complete integrability implies that T<Il.L is involutive, so that the 
first step of the proof establishes the claim in the opposite direction. D 

The foliation generated by T <Il.L is called <Il.L. Recall (1.14). 

Proposition 1.3.3. Let <Il be a symplectically complete foliation, and assume that 
the functions in COO(S, R)<I> separate the leaves of<ll. 

Then (COO(S, R)<I>)' = COO(S, R)<I>.L. 

As before, one shows that f E COO(S, R)<I>.L implies ~f E T<Il. Hence, without 

the additional assumption, one has COO(S, R)<I>.L ~ (COO(S, R)<I>)' by 1.(2.8). 
Let g E (COO(S, R)<I>)'; by 1.(2.8) this is equivalent to ~gf = 0 for all f E 

COO(S, R)<I>. The assumption now implies that ~g E T<Il. Since <Il is smooth, so is 
<Il.L. Hence any two points in a connected leaf of <Il.L can be joined by a (piecewise) 
smooth curve c(·). Using 1.(2.21) one computes dg(c(t))/dt = w(~g, c(t». This 

vanishes when~g E T<Il, so thatg is constant along c(·), sog E COO(S, R)<I>.L. • 
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The assumption in 1.3.3 is satisfied when the leaf space S / <I> is a manifold. 
We now look at the case where P is a Poisson manifold, and J : S ---+ P- is a 
Poisson map for which the level sets of J define a foliation <I> of S; that is, the 
leaf of <I> through a E Sis J-l(i(a». This is, for example, the case when J is a 
submersion, which guarantees that each subspace J-I(a) is a submanifold of S. 
In addition, we assume that S / <I> is a manifold. When all this holds, one has the 
equality 

(1.19) 

Since J*COO(P, lR) is evidently a Poisson algebra, the foliation <I> is symplectically 
complete by Proposition 1.3.2. 

The situation is particularly neat when the associated foliation <I>.L is itself given 
by the level sets of a Poisson map h : S ---+ P2• In view of the symmetry between 
(J, P) and h P2 we relabel the former as (iI, PI) in what follows. 

Definition 1.3.4. A classical dual pair (S, PI. P2, h h) consists of a con­
nected symplectic manifold S and a pair of Poisson manifolds PI, P2, together 
with Poisson maps J I : S ---+ PI- and h : S ---+ P2, such that: 

1. The level sets of J I and h define foliations <1>1 and <1>2 of S, respectively, with 
the property that <1>2 = <l>t (and hence <I> I = <l>t). 

2. The leaf spaces S / <I> I and S / <1>2 are manifolds. 
3. The maps J I and h are surjective submersions. 
4. The level sets Jil(al) and J2- I(a2) are connected for all ai E Pi (i = 1,2). 
5. The level sets J1-I(al) and J2- I(a2) are simply connectedfor all ai. 
6. The maps J I and h are complete. 

We denote classical dual pairs by 

(1.20) 

using this notation also when not all of the above conditions are satisfied. 
It follows from 1.3.3 and (1.19) that when 1.3.4.1-3 are obeyed one has 

J;COO(PI' lR)' = J;COO (P2, lR), 

J;COO (P2, lR)' = J;COO(PI' lR). 0.21) 

As in the comment after (1.19), we infer that <1>1 and <1>2 are symplectically 
complete. 

Lemma 1.3.5. When conditions 1, 3, and 4 in 1.3.4 are satisfied, the foliation <1>2 
(or <1>1) coincides with the foliation defined by all Hamiltonian vector fields of the 
form ~J: j, (or ~J; j), where f E COO(PI , lR) (or f E C OO (P2, lR»). 

This is immediate from the proof of 1.3.2. • 
Corollary 1.3.6. In a classical dual pair with connected leaves there is a bijective 
correspondence LI ++ L2 := h(J-I(L» between the symplectic leaves LI and 
L2 in PI and P2, respectively. 
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Givena E Ph Lemma 1.3.5 for <1>1 shows that the leaf JI-I(a) of <1>1 is generated 
by the Hamiltonian flow of the vector fields g lr f' where f E COO ( P2, JR.). By 1.2.3.5 

and 1.2.4.3 the set h(JI-I(a» is a (connected) symplectic leaf in P2. When a' lies 
on the same leaf as a, there is a (piecewise) smooth Hamiltonian curve c in PI that 
connects a' and a. Using 1.2.4.3 once again, and subsequently 1.3.5 for <1>2, we 
infer that JI-I(C) lies in a single leaf of <1>2. Hence h(JI-I(a» = h(J,I(a'», and 
J I- I(L I)/<I>2 ~ J 2(JI- I (L I ». Thus we obtain a bijection between the symplectic 
leaves reached in this way. Because JI and h are surjections, all symplectic leaves 
are included. • 

We saw in 1.2.6 that a symplectic leaf in P may be regarded as an irreducible 
representation of the Poisson algebra COO(P, JR.), so that (up to possible cov­
ering spaces of the symplectic leaves in question) Corollary 1.3.6 expresses a 
bijective correspondence between the irreducible representations of two Poisson 
algebras connected by a classical dual pair. This result can be generalized to all 
representations. The following concept is central to this generalization. 

Definition 1.3.7. Two Poisson manifolds PI, P2 are called Morita equivalent 
when theyformpartofa classical dual pair (S, PI. P2, JI, h). 

Despite the terminology, this definition fails to define an equivalence relation 
in the class of all (finite-dimensional) Poisson manifolds, because not all Poisson 
manifolds are Morita equivalent to themselves. 

Proposition 1.3.8. Morita equivalence defines an equivalence relation in the 
subclass of all Poisson manifolds that are Morita equivalent to themselves. 

Reflexivity (i.e., P ~ P) being satisfied by definition, symmetry (that is, PI ~ 
P2 implies P2 ~ PI) holds because from the diagram P2 1;:.. S ~ PI one obtains 

PI 1..!- S- ~ P2. Finally, transitivity is true by the following argument. When 
M M 

PI '" P2 by SI and P2 '" P3 by S2, so that one has 

P III S ll2 n h2 S l23 n 
I +--- I ----+ '2 +- 2 ----+ '3, 

one obtains a symplectic manifold Sri by special symplectic reduction from the 
middle three spaces in the diagram. Using Corollary 1.2.3 with respect to Jll and 
h3, this leads to the classical dual pair PI +- Sri -4 P3. • 

Here are some simple examples of Morita equivalence. 

Proposition 1.3.9. 

• If S is a connected and simply connected symplectic manifoLd, and P is a 
connected manifold with the zero Poisson structure, then S x P is Morita 
equivaLent to P.In particular, S is Morita equivalent to a point . 

• Two connected symplectic manifolds SI and S2 are Morita equivalent iff their 
fundamental groups are isomorphic. 
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In the first case the pertinent classical dual pair is 

S x P /.!- S x T* P ~ P, 

with h = «(1), <pp->p 0 «2» and h = <pp->p 0 «2) (here <(i) is the projection 
onto the ith variable). 

We pass to the second example. Let (SI, wd and (S2, W2) have isomorphic 
fundamental groups Jl'1(SI) ~ Jl'2(S), with isomorphism ¢ : Jl'1(Sd -+ Jl'2(S), 
and denote the universal covering spaces by 5i • Then Jl'1 (S) acts on 51 X 52 by 
x : (UI, U2) ~ (XUI, ¢(X)U2). Since Jl'i(Si) is discrete, the form Wi := rii-,>Si Wi on 

5i is symplectic (i = 1,2). Equip 51 x 52 with the symplectic formw12 := W2 -WI' 
The quotient S12 := (51 x 52)/Jl'I(SI) has a unique symplectic form Wl2 whose 
pullback to 51 x 52 under the canonical projection is W12. 

The classical dual pair is now given by 

with the obvious projections Ji : SI2 -+ Si. One easily verifies all pertinent prop­
erties. For example, the completeness of the Ji follows from the path lifting lemma 
of homotopy theory. Also, for each UI E SI the leaf JI-I(UI) is homeomorphic to 

52, which is indeed connected and simply connected; analogously, J2- I(U2) ~ 51. 

Conversely, assume that one has a classical dual pair S2 ::- S ~ SI. Some 
algebraic topology then shows that Jl'1 (Si) ~ Jl'1 (S) for i = 1, 2. 0 

1.4 The Classical Imprimitivity Theorem 

We now state and prove the classical imprimitivity theorem. 
Recall the definition of completeness after 1.2.6.1. In the situation of 1.3.7 

the pullbacks Jt and J{ are representations of COO(PI, JR) and C OO (P2 , JR) on 
S, respectively (cf. 1.2.6.1). 

Theorem 1.4.1. Let PI and P2 be Morita-equivalent Poisson manifolds. There 
is a bijective correspondence between the representations of COO ( PI, JR) and 
C OO (P2, JR) preserving irreducibility. Equivalently (by Corollary 1.2.6.5), there is 
a bijection between complete Poisson maps Jp : Sp -+ PI and Ja : Sa -+ P2 pre­
serving symplectic leaves (or their covering spaces). This correspondence arises 
as follows. 

Let P2 ::- S ~ PI be a classicaL duaL pair impLementing the Morita equivalence 
between PI and P2. When Ja : Sa -+ P2 is a compLete Poisson map (where Sa 
is sympLectic), there exist a symplectic manifoLd Sp and a complete Poisson map 
Jp : SI -+ PI such that Sa is symplectomorphic to the reduced space Si obtained 
by special symplectic reduction (and Ja ~ Jt'), where Si and Jf are defined in 
Figure 1. 

In the opposite direction, given a complete Poisson map Jp : Sp -+ PI (where 
Sp is symplectic) there exist a symplectic manifold Sa and a complete Poisson map 
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Jp 

S PI • Sp 

~ I 

S- P2 • Sp·- S 1·- U 

~ 2 

PI • SU 
2 

FIGURE 2. Classical imprimitivity theorem: Sf ~ Sp and J2 ~ Jp 

Ju : S2 --+ P2 such that Sp is symplectomorphic to the reduced space (S-)~ (and 

Jp :::::: Jf ), dejined as in Figure 1, but now with respect to PI :::.. S- ~ P2. 
Taking Su = Sf and Ju = Jf asjustdejined, one has (S-)~ :::::: Sp and Jf :::::: Jp. 

Conversely, taking Sp = (S-)~ and Jp = Jf, one has sf:::::: Su and Jf :::::: Ju. 

See Figure 2. We write S~ for (S-)~. 
The existence of the Poisson maps Jf : sf --+ P2 and Jf : S2 --+ PI follows 

from Corollary 1.2.3. The reinterpretation of the data (1.20) as PI :::.. S- ~ P2 
will be used again in the proof of Theorem 1.8.1. 

Starting from Jp : Sp --+ PI, constructing Jf : Sf --+ P2 as indicated, which we 
relabel as Ju : Su --+ P2, and subsequently defining Jf : S2 --+ PI. the essence 
of the proof of the theorem consists in the construction of a symplectomorphism 
cp : S2 --+ Sp. 

Consider the space S*P, SP*P2 S, defined as the subset of Sx Sp xS- consisting of 
triples (ai, a, a2) satisfying J I (al) = Jp(a) and h(al) = h(a2). By construction, 
the space SU is obtained from this by a double foliation (cf. 1.2.2). The first 
one, <1>/ on S x Sp, is generated by the Hamiltonian vector fields defined by 
the functions Jj f - J; f, where f E Coo(PI, JR); we denote points of the leaf 
space SP by [ai, al<!>/. The second foliation, <1>11 on S x S-, is generated by 
the Hamiltonian vector fields defined by the functions «i/i g - <t2)Ji g, with 
g E C oo (P2, JR) and <(I), «2) the projections onto the first and second variables 
in S x S-, respectively. Its leaf space has elements [al,a2]<I>1/" By (1.17) the 

p 

equivalence classes [(ai, al<!>l' a2l<!>11 correspond to elements of S1. 
Take a triple (al,a,a2) E S *P, Sp *P2 S, projecting to [(al,a]<I>l'a2l<!>11" By 

Lemma 1.3.5 the Hamiltonian vector fields defined by the functions Jj f, with f E 

Coo (PI, JR), generate a foliation that coincides with the foliation by the connected 
level sets of h. Recall that h(ar) = h(a2); for simplicity we initially assume 
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that there is a smooth Hamiltonian curve CI1I~1120 in S connecting 0"1 and 0"2. 
whose tangent vector is ~J: f. for some f E cOO(PI. R). Using a cutoff function if 
necessary, we may pick an f with compact support, so that ~f is complete in PI. 
Let a2 = CI1I~112(tO) (and, of course, al = CI1I~112(0». We can move a in Sp along 
the Hamiltonian curve Ca (-) that is generated by - J; f and starts at Ca (0) = a. 
Let i'x := ca(to); this makes sense, since by assumption the map Jp is complete. 
The definition of [ .. . ]<1>1 then implies that 

(1.22) 

Let now a2 move around a closed Hamiltonian curve CI12 ->112(-)' generated by 
some J;g, where g E COO (PI , R), and, say, CI12~112(0) = CI12 ->112(1) = a2. We put 
Cl1r?112 := {CI12 -> 112 (t)1 t E [0, I]}. According to 1.2.3.5 with J = JIo the curve 
CIO := JI(CI12~112('» in PI is Hamiltonian, being generated by g. The curve 
CI := {c1(t)1 t E [0, I]} is closed, since CI(O) = CI(1) = JI(y). Our assumption 
that the level sets of lz are simply connected implies that C112 -> 112 , and hence Clo is 
contractible. Using 1.2.3.5 with J = Jp , one infers that the Hamiltonian curve cp 

in Sp that is generated by J;g and starts at cp(O) = ii, covers CI. The latter being 
contractible, the monodromy lemma of homotopy theory (or a direct argument) 
implies that cp (1) must be closed; i.e., cp (1) = ii. This, in tum, guarantees that 
ii is independent of the Hamiltonian path from a I to y. which in addition implies 
that ii is independent of the choice of (aI, a) in the class [ai, a]<I>/. Finally, it is 
clear from the construction that ii does not change when a different representative 
of the given class [ .. . ]<1>/1 is chosen. 

When the Hamiltonian curve CI1I -?I12(') is merely piecewise smooth, one simply 
uses the above argument for each smooth piece, with the same conclusion. Thus 
we may define 

(1.23) 

where i'x is determined by (1.22). We have just seen that this map is well-defined. 
We now use Lemma 1.3.5 once more, this time saying that the foliation determined 
by the Hamiltonian vector fields ~Ji f' where f E cOO(P2, R), coincides with the 
foliation by the level sets of h Since JI(a2) = Jp(ii), we infer that the equivalence 
class [ .. . ]<1>/1 is uniquely determined by ii, and conclude that ({J is a bijection (this 
could alternatively be established by a dimension count; cf. the proof of 1.2.2). 
Moreover, ({J is a Poisson map, as is obvious from Theorem 1.2.2. Hence ({J is a 
symplectomorphism. By (1.17) we have 

Jf ([[a2. ii]<I>1' 0"2]<1>/1) = iJ(a2)' 

But JI (a2) = Jp(ii), so that under the above symplectomorphism the map J2 is 
transformed into J p • 

The construction can, of course, be carried out in the opposite direction as well. 
All relevant constructions preserve completeness, and the proof of bijectivity is 
finished. 

When Sp = L is a symplectic leaf of PI and Jp = l is the inclusion map, the 
fiber product S *P1 L coincides with JI-I(L), and the foliation <1>/ is nothing but 
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the foliation <1>2 by the level sets of h By (1.17) we have J{([a]<I>2) = }z(a) 
for a E J1-1(L); since }z(Jil(L» ::::: J 1- 1(L)/<1>2 = sf, we conclude that J{ 
injects Sf into P2. The proof of Corollary 1.3.6 then shows that }z(JI-I(L» is a 
symplectic leaf in P2, so that sf is symplectomorphic to such a leaf by J{. 

When Sp = L is a covering space of L, one analogously obtains that Sf covers 
}z(JI-I(L». Theorem 1.2.6.7 then shows that the bijection preserves irreducibility, 
as claimed. • 

1.5 Marsden-Weinstein Reduction 

We will now look at a further specialization of the reduction procedure in 1.2; 
under suitable assumptions this will produce examples of classical dual pairs as 
well. Throughout this section H is a Lie group, and until the last paragraph we 
consider a strongly Hamiltonian H -action on a symplectic manifold (S, w), with 
Co-equivariant momentum map J : S ---+ ~~. 

Lemma 1.5.1. The map J* : T(fS ---+ TJ«f)~* ::::: ~* is surjective iff the stabilizer 
H(f is discrete. 

By III.(1.7) an element X E ~ is annihilated by the image ofJ*(a) iffh(a) = O. 
Hence the dimension of H(f equals the dimension of the annihilator of this image. 
This common dimension is 0 when J*(a) is surjective. • 

We now take a coadjoint orbit 0 in ~*, and specialize Definition 1.2.1 to the 
case P = ~~ and Sp = 0+, with Jp = to the inclusion map (we will omit the "+" 
whenever it is convenient). In other words, the situation is 

S J h* to /,..., 
---+ 'J+ ~ v+. (1.24) 

Recall that a map between two manifolds is proper when the inverse image of 
every compact set is compact. 

Definition 1.5.2. A Lie group action L : H x S ---+ S on a manifold is called 
proper when the map (x, a) ~ (xa, a)from H x S to S x S is proper. In other 
words,for sequences {an} in Sand {xn} in H the convergence of{an} and of {Xnan} 
must imply that {xn} has a convergent subsequence. 

Roughly speaking, this means that nearby points in S can be mapped into each 
other by x E G only if x is near e. We collect some relevant properties of proper 
group actions. 

Proposition 1.5.3. 

• The action of a compact group is always proper. 
• Under a proper action the stabilizer H(f of every point a E S is compact. 
• The quotient of a manifold by a proper and free action is a manifold. 

The first claim is immediate from the definition. The second follows because 
(a, a) E S x S is compact, so that its inverse image {(H(fa, a)} must be compact, 
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too. The third statement is a nontrivial theorem of differential geometry, whose 
proof we omit. 0 

Theorem 1.5.4. Given a strongly Hamiltonian action of a Lie group H on a 
symplectic manifold (S, w), with Co-equivariant momentum map J : S -+ ~~, 
assume that there is a () E 0 such that H acts freely and properly on J-I«(). 
Then the hypothesis in Theorem 1.2.2 is met, and the reduced space S? := S~o is 
a symplectic manifold. There are symplectomorphisms 

(1.25) 

where HO is the identity component of H, and Ho is the stabilizer of () under the 
coadjoint action. 

Since the H-action is free, Lemma 1.5.1 and the equivariance of J (cf. III.1.2.5) 
imply that the hypothesis of Theorem 1.2.2 is satisfied. 

We first take 0 = to}, in which case (1.9) and preceding text implies the first 
isomorphism in (1.25); recall that the functions J* X generate the HO-action. For 
general orbits we perform a shifting trick that reduces the situation to the zero orbit. 
Namely, we consider S = S x 0, on which H acts by the product of the original 
action and the coadjoint action. By III.1.4.6 the momentum map j : S -+ ~~ is 

given by j(a, () = J(a) - (), so that S *~. 0 = j-I(O). This trick establishes the 
first isomorphism in (1.25) in the general case. The second isomorphism follows 
from the transitivity of the H -action on 0 and the equivariance of J. • 

It should be mentioned that although under the stated assumptions J-1(0) can 
be shown to be coisotropically embedded in S, the quotient J-1(0)1 HO does not 
coincide with the quotient J- 1(0)/4> by the null foliation 4>; in fact, when H 
and Ho are connected, it can be shown that r l (O)/4> ~ (1-1(0)1 HO) x O. 
Also, unless Ho is connected, the space J-1«()/(Ho n HO) is not the same as the 
quotient of J-I«() (which is equally well coisotropically embedded in S) by its 
null foliation, for the latter quotient is J-1«()/(Ho n HO)o. 

The reduced space J-1(0)1 H is called the Marsden-Weinstein quotient of S 
with respect to 0 (and the given group action). As expressed by (1.25), when H is 
connected, this quotient is essentially the same as the reduced space S? To show 
how they are related when H fails to be connected, we form the discrete group 
1fo(H):= HIHo, and see that 

S? := J-'(O)I H ~ S? 11fo(H). (1.26) 

Hence S? is symplectic, as is S? (this follows only because 1fo(H) is discrete). 
One may look at Marsden-Weinstein quotients from a different angle. 

Theorem 1.5.5. Let the H -action on S be free, proper, and strongly Hamiltonian. 
Then the space S 1 H is a manifold with a unique Poisson structure for which the 
canonical projection T : S -+ S 1 H is a Poisson map. 

The symplectic leaves of S 1 H are the connected components of the Marsden­
Weinstein quotients J-1(0)1 H, where 0 C ~* is a coadjoint orbit. 
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The Poisson structure on SI H is obtained by identifying COO(SI H, R) with the 
space COO(S, R)H of H -invariant smooth functions on S; this space is a Poisson 
algebra, since the symplectic and hence the Poisson structure on S is H -invariant 
(see III. 1.2). The proof of the second claim uses the following 

Lemma 1.5.6. Let <I> I and <1>2 be the foliations of S by the level sets of J and by 
the H -orbits, respectively. Then <1>+ = <1>2 (hence <l>f = <1>1)' 

By the definition III.(1.7) of the momentum map, the distribution T<I>2 is gen­
erated by the vector fields ~Jx' where X runs through f). The claim is then obvious 
from 111.(1.8). • 

Corollary 1.5.7. Under the assumptions of 1.5.4, specializing (J .20) to the case 

S I H :- S ~ f)~ satisfies conditions 1.3.4.1-3. 

Continuing the proof of 1.5.5, Lemmas 1.3.5 and 1.5.6 show that T<I>I is spanned 
by Hamiltonian vector fields of the form ~" t, where f E COO(SI H, R}. Using the 
equivariance of J, one sees that 1'(J- I «(}» = J-I(O)I H; cf. (1.25). Since l' is a 
Poisson map, Proposition 1.2.3.5 applies, showing that all Hamiltonian vector fields 
in S I H are tangent to the subs paces J -I (0) I H. It follows that each connected 
component of the latter must be a symplectic leaf, and it is plain that all leaves are 
then of this form. • 

For later use we collect more precise information about this situation. 

Proposition 1.5.8. In the situation of 1.5.4 and 1.5.7 the maps l' and J are 
complete. 

Pick a function g E COO(SI H, R) with complete Hamiltonian flow [a ]HO, and 
take any smooth curve cO covering [a]HO. For the Hamiltonian flow a(·) of 
1'*g E COO(S, R)H through c(O) we make the ansatz a(t) = x(t)c(t), where x(·) 
is some curve in H starting at the identity. Using the equation of motion 1.(2.11) 
(with h replaced by 1'*g) and the H-invariance of ~r'h, one obtains the equation 

~!-lX = i: - ~r'h ( 1.27) 

along cO; here ~1(a) := -d Exp(AX)a IdAIA = 0 for X E f) (cf. III.(2.9», and 
we have written X-I X for the cumbersome (Lx-l )*x; cf. 111.(1.43). 

Applying 1.2.3.5, one sees that 1'*(i: - ~r'h) = 0, so that there exists a curve 
XO in f) for which i: - ~r'h = ~1 along c(·). Comparing with (1.27), we see that 
x (t)-I x (t) = X (t). This can be solved for all t, so that a (t) exists for all t as well. 
Hence l' is complete. 

We tum to the question of the completeness of the momentum map J. Choose a 
function f E COO(f)*, R) with complete Hamiltonian flow in f)~. Denote the flow 

of J* fin S by a(·). According to Lemma 1.3.5, the J* X generate the group action 
on S, so we can make the ansatz a(t) = x(t)a for some flow xO in H. Applying 
J to both sides and using its equivariance as well as Proposition 1.2.3.5, we obtain 
x(t)(} = (}(t), where (}O is the Hamiltonian flow of f in f)~. Using III.(1.54) 
(with r = 0) and III.(1.58) we infer that x(t) = 1'pll.-+H(a(t», where aO is the 
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Hamiltonian flow on T* H (with its canonical symplectic structure) generated by 
(JL)* f. 

The momentum map JL : T* H -+ ~"- for the left action of H on T* H coin­
cides with the projection r P : T* H -+ (T* H)I H, when we identify the quotient 
(T* H)I H under the right action with ~* (using the right trivialization of T* H). 
Hence J L is complete by the first part of the proposition. 

It follows that xO and therefore a(·) is defined for all t. • 

We now recognize that the projective Hilbert space JP"H, looked at in 1.2.5 as a 
symplectic leaf in the Poisson manifold 1-{* 1 U (1), may alternatively be described 
as a Marsden-Weinstein quotient. The group U(l) acts on 1-{ by z : \II H- z\ll 
(where z E C with Izl = 1). Using 1.(2.35), 1.(2.37), and m.(1.8), as well as the 
standing convention T = -i for the single generator T of u( 1), one easily derives 
that the momentum map J = h for this action is 

J(\II) = (\II, \II). (1.28) 

Thus JP"H :::::: J- 1(1)1 U(l); cf. the closing comment 0fI.2.5. 
To close this section, we remark that the Marsden-Weinstein reduction pro­

cedure is easily generalized to the case where the momentum map J is 
CoY -equivariant; cf. m.1.2.5. Instead of a coadjoint orbit in ~* we simply take 
a CoY -orbit (cf. IlL 1.4.4), and proceed as in the Co-equivariant case. 

1.6 Kazhdan-Kostant-Sternberg Reduction 

We can now see the theory in m.2.3 in the light of Marsden-Weinstein reduction. 
Indeed, given a principal bundle P(Q, H, r), the hypotheses in 1.5.4 evidently 
apply to the case S = T* P, and we infer that the spaces ('f~p)o defined in IlI.(2.51) 
are nothing but Marsden-Weinstein quotients. 

We may generalize the construction of the reduced space (rp)o, in replacing 
the inclusion LO : 0 -+ ~~ by a general Poisson map Jp : Sp -+ ~~, where Sp 

is symplectic. Such maps usually come from a strongly Hamiltonian H -action on 
Sp whose associated momentum map is minus Jp ; we assume that we are indeed 
in this slightly more special situation. Hence we fill out Figure I as in Figure 3, 
where J is the momentum map for the H -action on T* P pulled back from the 
given action on P, and rR := rT*P-->(T*P)/H is the canonical projection. We refer 
to this situation as (generalized) Kazhdan-Kostant-Sternberg reduction. 

We may look at this instance of special symplectic reduction as a special case 
of Marsden-Weinstein reduction: As in the proof of 1.5.4 we take S : = T * P x S p , 

equipped with the product H -action. The associated momentum map] : S -+ ~"'­
is simply] = J - Jp , so that the submanifold T*P *~. Sp of T*P x Sp (defined 
as in (1.7» coincides with ]-1(0). Hence for connected H the reduced space is 

(1.29) 
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7: R J 

(T*P)/H -+-- T*P --..... ~~ .. ---

I reduction 

(T*P)P 

FIGURE 3. Kazhdan-Kostant-Stemberg reduction 

We will use the right-hand side as the definition of the reduced space also when 
H is not connected; as in (1.26) we write the reduced space as 

(1.30) 

Theorem m.2.5.2 then generalizes: The group Qp defined in III.(2.74) acts on 
CPP)P in strongly Hamiltonian fashion by the obvious generalization ofIII.(2.75}­
I1I.(2.76). Theorem I1I.2.3.7 generalizes to 

Theorem 1.6.1. E~ connection A on a princ!I!E1 bundle P(Q, H, 7:) defines 
a projection 7:A : (T*P)P ~ T*Q that makes (T*P)P a bundle over T*Q with 
typical fiber Sp. 

Using the (A-dependent) factorization III.(2.47), we denote points of T*P by 
triples (x, a, e); recall that x E P, a E T*Q, and e E ~*, with the constraint 
7:T*Q-->Q(a) = 7:P-->Q(x). From m.(2.48) and Definition III.2.3.2 we have 

Cp"'Pt ~ (P *Q T* Q x Sp)/ H, (1.31) 

where the H-action is h : (x, a, a) ~ (xh- 1, a, hOI). Hence 7:A(X, a, a) := a is 
the desired projection. • 

Theorem 1.4.1 leads to the following classical imprimitivity-type theorem. 

Theorem 1.6.2. Let P and H be connected and simply connected. Given a com­
plete Poisson map Jp : Sp ~ ~~, one obtains a strongly Hamiltonian H -action on 
Sp and a complete Poisson map JP from the corresponding reduced space (T*P)P 
to (T*P)/ H. 

Conversely, for any complete Poisson map J : S ~ (T*P)/ H (where S is 
symplectic) there exists a symplectic manifold Sp and a strongly Hamiltonian H­
action on Sp, with momentum map -Jp, such that S is symplectomorphic to the 
reduced space (T* P)P. 

This correspondence is bijective. 

By Corollary 1.5.7, the diagram (T*P)/H ~ T*P ~ ~~satisfiesconditions 
1,2,3, and 6 in 1.3.4; the maps 7: R and J are complete by Proposition 1.5.8. When 
P and H are connected and simply connected, we see from 111.(2.48) and from the 
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fact that the level sets of r: R are the H -orbits (as the H -action is free) that the level 
sets of J and r: R are connected and simply connected. Hence we have a classical 
dual pair, and Theorem 1.4.1 applies. 

This almost leads to the theorem: Rather than H -actions one obtains f)-actions. 
However, the f)-action on (T*P)P is integrable, because it is derived from an inte­
grable f)-action on T*P (namely the H -action pulled back from the given H -action 
on P). At the other side, the f)-action on Sp is integrable by Theorem 111.1.2.1, for 
H is simply connected and Jp is complete. • 

We now take P = G = H in the bundle P(Q, H, r:), where G is a Lie group, 
so that the base is a point. Recall the momentum maps J L and J R for the left and 
the right action of G on T* G, respectively; cf. II1.I.4, and in particular III. ( 1.55}­
III.(1.58). The top line 

(T*P)/ H :.::- T*P ~ f): 

of Figure 3 then specializes to 

(1.32) 

(1.33) 

since the momentum map JL : T*G -+ g~ for the left action of G on T*G 
coincides with the projection r: R : T*G -+ (T*G)/G, when we identify the 
quotient (T*G)/ G under the right action with g*; cf. the proof of 1.5.8. 

The structure of (1.33) is illuminated by an easy calculation. 

Proposition 1.6.3. Pick a coadjoint orbit 0+ in g~, and specialize Figure 3 to 
P = 1/ = G and Sp = ~with Jp = LO the inclusion map. 

The reduced space (T*G)o+ is symplectomorphic to 0+, and J O is equivalent 
to -LO : 0+ -+ g~. 

Using the left trivialization, we identify T*G with g~ x G, with Poisson bracket 
IlI.(3.101); cf. Proposition III.3.9.9. From 111.(1.55) we then obtain 

T*G *0+ 0 = {(-O, y.O)1 y E G. 0 EO}. (1.34) 

The reduced space (T7(;)o is the orbit space of the G-action x : (-0, y. e) f--* 

(-Co(x)O, yx-', Co(x)01..,cf. III.(1.49). One easily sees that the desired sym­
plectomorphism from (T*G)o+ to 0+ is given by [-0, y. O]G f--* yO, so that 
[-y-'e, y, y-'O]o f--* O. 

From (1.17) one has JO([-y-10. y. y-'O]o) = JL(-y-'O, y)L; on account of 
III.(1.56), this equals -0. • 

We now assume that the bundle P( Q. H. r:) is of the form G (G / H. H. r:). where 
G is a Lie group with closed subgroup H acting on G from the right; see 111.2.7. 
This time we use the right trivialization T*G ~ g~ x G, so that (1.32) becomes 

(1.35) 
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compare with Prop,?sition III.3.9.9. Here 

,R(O,x) = (0, (X]H); (1.36) 

Jt~(O,x) = -(Co(x-1)0) r~, (1.37) 

where (X]H is the cosetxH E GJ H,and JR is the momentum map for the H-action 
on T*G from the right; see III.(1.57). As always, the restriction Jt~ of J R to ~ is 

just the momentum map for the right action of H on T*G. Writing ,R = (,(1), '(~»' 
we see from III.(1.58) that ,tt) : T*G -+ g~ equals the momentum map of the left 
action of G on T* G, that is, 

R JL 
'(I) = . (1.38) 

Given a strongly Ham1!!0nian H-space Sp, with momentum map -Jp : Sp -+ 
~~, the reduced space (T*G)P (cf. (1.26) or (1.30» consists of equivalence classes 
[0, x, a]H, where 

Jp(a) = -(Co(x-1)0) r ~, 
and the H-action is given by (cf. III.(1.51)} 

h : (0, x, a) H- (0, xh-1, ha). 

(1.39) 

(l.40) 

Since G C Aut(G) C go (cf. the paragraphs following III.~} 18) and (1.30», 
one obtains a "reduced" action)...P of G on the reduced space (T*Gy. By III. ( 1.52) 
the explicit fonn of this action is 

)...i([O, y, a]H} = [Co(x)O, xy, a]H; 

this generalizes III.(2.121}. By III.(1.58) the momentum map for)...P is 

J0)([0, y,a]H) = 0. 

(1.41) 

(1.42) 

Given (l.40), this is clearly well-defined, generalizing 111.(2.123). See Figure 4, 
in which J; = -J0)' The minus sign in front of JL is explained by Proposition 
1.6.3: It changes -to to to. 

Specializing to the case where Sp is a coadjoint orbit 0+ in ~~ and Jp = to is 
the inclusion map, we recover the reduced space (f;:G)o+ already encountered in 

J~ 
g~ ... --- T*G ---.... ~~ ... ---

-(T*G)P 

FIGURE 4. The reduced space (T7G)P 
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111.(2.118). From our present perspective one has 

(T7GP+ := (Jr~rl(O)j H :::: (T*G)(h j7ro(H). (1.43) 

Recall Definition III.3.9.7. A classical system of imprimitivity for a given Lie 
group G is called transitive when the G-action on Q is transitive; hence Q = G j H 
for some (closed) subgroup H c G. Theorem 1.6.2 now has a refinement, in which 
the special assumptions on P = G and H are dropped. In particular, we do not 
assume that G or H is connected. The following classical transitive imprimitivity 
theorem is the classical analogue of Corollary III.3.7.6. 

Theorem 1.6.4. Let Sp carry a strongly l!pmiltonian H -action. Then the 
Kazhdan-Kostant-Sternberg reduced space (T*G)P carries a (transitive) classical 
system of imprimitivity for G on G j H. 

Conversely, each symplectic manifold carrying a transitive classical system of 
imprimitivity for G on G j H is a reduced space of the type CPG)P (!!E, to a G­
equivariant symplectomorphism), and the correspondence Sp ~ (T*G)P thus 
achieved is bijective. 

1.7 Proof of the Classical Transitive Imprimitivity Theorem 

This section contains the proof of Theorem 1.6.4. 
Since the proof of 1.4.1 as it stands breaks down without the connectedness 

assumptions, we seek a modification of the construction of the respective reduced 
spaces. We have already replaced the reduced space (T*G)P as originally defined 
by the Marsden-Weinstein quotient (T7G)P :::: (T*G)P j7ro(H). 

When H is connected, Corollary 1.2.3 yields a complete Poisson map J P : 

(T*G)p ~ (T*G)j H :::: g~ x Gj H. Using the explicit description of (T*G)P in 
the previous section, as well as (1.17) and (1.36), this map is explicitly given by 

JP([e, x, a]H) = .R(e, x, a) = (e, [X]H). (1.44) 

One sees from (1.40) that this map is indeed well-defined, and remains so when 
H is no longer connected. Hence we obtain (using the same notation) a complete 
Poisson map J P : (T7G)P ~ g~ x G j H. 

Splitting JP into 1~) : (T7G)P ~ g~ and J&) : (T7G)P ~ G j H, we see that 

J~) is the momentum map for the G-action).,P on (T7G)P specified in (1.41). In 

particular, it follows that the strongly Hamiltonian g-action on CFC)p defined by 
J~) is integrable. Thus one obtains a classical system of imprimitivity on (T7G)P 
defined by the G-action ).,P and the representation if = (1&)* of COO(G j H. R); 
the covariance property is easily verified from (1.44) and (1.41). 

Reducing in the opposite direction, we will exploit the following insight. 

Lemma 1.7.1. Consider the situation in Figure 5, where 

J = (J(1). 1(2) : S ~ g:' x G j H 

is a complete Poisson map corresponding to a given classical system of 
imprimitivity of G on G j H. The space g~ x G is T* G - in the right trivialization. 
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J 

I)~ ... --- g~ x G ---" g~ x GjH ... --- S 

j reduction 

T*G J ,R 

When G is connected, the reduced space T*G;R is a manifold that is 
symplectomorphic to 

(1.45) 

where <f>G/H is the foliation of S generated by the distribution NG/H spanned by 

all Hamiltonian vector fields of the form ~J* f-' where j E CXJ(G j H, JR). 
(2) 

Moreover, minus the reduced Poisson map -J;R : T*G;R -+ I)~ is equivalent 
to the well-defined quotient 

J(12) := [J(I)r~ r J(2/([e]H)]4>GIH (1.46) 

of the momentum map J(I) r I) of the restriction of the G-action on S to H. 

The reduced space T*G;R by definition consists of equivalence classes 
[e, x, a]4>, where e is determined by J(l)(a) = e, and x is constrained by 
J(2)(a) = [X]H' 

Recall that <f> is the foliation defined by all vector fields ~(,R)' f - ~J* f' where 
f E COO(g* x G j H, JR). Since G is connected, the distribution spanned by these 
vector fields is simply the sum of NG/H and the vectors tangent to the G-orbits 
of the action x: (e, y, a) t--+ (Co(x)e, xy, xa). This action is derived from (1.38) 
and 111(1.52). By m.( 1.54) in the right trivialization, the flow of ~(,R)' f leaves x 
in (O,x) E T*G inert. 

The constraints on (e, x, a) and the G-covariance of J(2) (which holds by def­
inition of a classical system of imprimitivity) imply that J(2)(x- 1a) = [e]H. It is 
then easily verified that the map [0, x, a]4> t--+ [x-1a ]4>GIH defines a symplecto­

morphism from T*G;R to J(2/([e]H )j<f>G/H (given that these spaces are manifolds, 

see below). Note that J(2/ ([e]H) is indeed stable under the Hamiltonian flow of any 

J(~J, j E COO(G j H, JR). Denoting this flow by a(·), we use Proposition 1.2.3.5 
to compute 

d d 
dt J(2)a(t) = dt q(t) = 0, 

where q(t) is the Hamiltonian flow of j in GjH. Since COO(GjH,JR) is 
commutative as a Poisson algebra, one has q(t) = q(O) for any initial condition. 
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By (1.17), III.(1.57), and the equivariance of J(l) we have 

J;R([(), x, a]CI» = JR«(), x) r I) = -J(l)(x-Ia) r I). (1.47) 

Hence under the above symplectomorphism, under which J;R is transformed to, 
~ ~ I say, JrR , we find that JrR([a]H) = -J(l)(a) r I), where a E J(2) ([e]H). 

It is instructive to verify that J(J) r I), restricted to J(2)1 ([e]II), is constant on the 

leaves of the foliation <POI II. Picking X E I) and j E COO(G / H, JR) we compute, 
using the notation in the paragraph before the last, 

d - s -
dt J(l)x(a(t» = (J(~)f, J(I)x}(a(t» = -hJ(~)f(a(t», 

where we have used the antisymmetry of the Poisson bracket and III.(1.7). By 
1.2.3.5 (as above) and the equivariance of J(2) under the action of G, and hence 
of H, this equals _~~/H f(q(O», where, for general X E g, the vector field ~~/H 
is defined by the left action of G on Gj H. This vanishes, since q(O) = [e]H and 
X E I). 

Finally, J(2)1([e]H)/<PoIH is a manifold. It is immediate from its equivariance 

that J(2) is a surjective submersion, so that J(2)I([X]H) is a submanifold of S for 
any x E G (this is, of course, consistent with the fact that T*G *(T*O)/H S is a 
submanifold of T*G x S, since rR is a surjective submersion; cf. the proof of 
Theorem 1.2.2). 

It follows from 1.(2.9), the fact that J(2) is a Poisson map, and the commutativity 
of the Poisson algebra COO(G / H, JR) that ~r ,- 1--+ dj([e]H) is an isomorphism 

(2) 

between the abelian Lie algebra spanned by the ~J(iJ' restricted to J(2/([e]H), 

and the vector space T[;lH (G / H). Under this isomorphism the foliation <POI H of 

J(2)1 ([e]H ) is given by the orbits of a Lie group that acts freely and properly; hence 
the quotient space is a manifold. • 

In view of this lemma, we declare that even when G is not connected, the reduced 
space defined by the triple 

T*G- ~ (T*G)/H ~ S (1.48) 

is P'G:R rather than T*G:R. As in the proof of Lemma 1.7.1 ,one obtains a Poisson 

map J(J) r I) : P'G:R ~ I)~, which is complete when J is. 
Following the proof of Theorem 1.4.1 (with JI and h interchanged) we now 

construct the reduced space depicted in Figure 6. Here g~ x G / H is (T*G)/ H in 
the right trivi~,?~ whereas g~ x Gis T*G in the left trivialization. The tilde 
in the name g~ x G JR of the reduced space has the same significance as in (1.30). 

r~ 

Elements of this reduced space have the form [(), x, [a]CI>G/H]H, where () E g*, 
--J 

X E G, and [a]CI>G/H E T*G rR (where a E S) are constrained by 

J(l)(a) r I) = () r I), 
J(2)(a) = [e]H. 

(1.49) 

(1.50) 
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,R 
g~ x G I H - g~ x G fJ~ ... ---

I reduction 

_____ (12) 

g+. X GJR 
I~ 

------ (12) _ 
FIGURE 6. Classical imprimitivity: 9~ x G JR :::::: Sand Jjt;) :::::: J 

I~ I~ 

The H -action defining the orbit space is given by 

h : (e, x, [O']"'G/H) ~ (Co(h)e, xh- I , [hO' J"'G/H); (1.51) 

see III. ( 1.49). Equation (1.49) has the implication that there exists a unique lift O'(J E 

S of [O']"'G/H satisfying J(1)(O'(J) = e. This follows by regarding j E COO(GIH, R) 

as a function on g~ x G I H, so that J* j = J(2/; according to Proposition I.2.3.5, 

the flow 0' (t) of J* jon S projects to the flow of j on g~ x G I H under J. Using 
III.(1.54) with "L" and III.(1.37), one sees that the variable in GIH as well as 
e r fJ remain fixed, whereas any e with given restriction to fJ can be reached with 
such a flow. This implies the existence of O'(J; uniqueness follows, for example, 
from the argument at the end of the proof of Lemma 1.7.1. 

----- (12) 
Consider the map ({J : g+. x G JR ~ S, defined by 

r~ 

(1.52) 

This is clearly independent of the particular point in the H -orbit, and a dimension 
count shows that ({J is locally a diffeomorphism. To prove that ({J is injective, assume 
thatxO'(J = X'O'O,. Equation (1.50) implies thatx' = xh- I for some h E H;applying 
J(l) to both sides and using the G-equivariance of this map leads to e' = he, and 
applying J(2) finally shows that the primed variables are related to the unprimed 
ones by the H-action (1.51). Hence ({J is injective. The G-covariance of J(2) implies 
that ({J is surjective; hence ({J is a diffeomorphism. The definition of the Poisson 

----- (12) 
bracket on g+. x G JR and the fact that G acts on S by Poisson maps easily imply 

r~ 

that ({J is a Poisson map. In conclusion, ({J is a symplectomorphism. 
By (1.17) and III.(1.48) the map j~~2) in Figure 6 is given by 

r~ 

(1.53) 

Using (1.49), (1.50), and the G-equivariance of both J(1) and J(I), one sees that the 
right-hand side of (1.53) equals J(xO'(J). Hence by (1.52) the map ({J intertwines 
-(i2) 

JJR andJ. 
r~ 
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This proves Theorem 1.6.4, except for the bijectivity claim. To prove this claim 
we have to show that when we start from a Poisson map J p : S p ~ ~~, construct 
J p : (T7i:J)P ~ g~ x G / H, and subsequently put S = ('Pay and J = J p in 
(1.48), the ensuing reduced space is symplectomorphic to SP' with J(I) f ~ being 
equivalent to - J p' 

We use the description of S given around (1.40). One has 

(1.54) 

from which we see that the constraint J&) = [e]H forces x E H. Hence we can 
label points in (J&»-I([e]H) by (e, e, a); by (1.39) one has 

Jp(a) = -e r ~. (1.55) 

Once again using the argument at the end of the proof of Lemma 1.7.1, we conclude 
that the map [e, e, a]C\lG/H 1-+ a from (J&)-I([e]H)/<I>G/H to Sp is a symplecto­
morphism. Using the final claim in Lemma 1.7.1 (and the comment ending the 
paragraph following the lemma) and (1.42), we infer from (1.55) that this symplec­
tomorphism intertwines J(l) f ~ and -Jp , so that it intertwines the corresponding 
integrated H -actions as well. 

This finishes the proof of 1.6.4. • 

1.8 Reduction in Stages 

For the time being we return to the setting of special symplectic reduction in order 
to prove a theorem on (special) symplectic reduction in stages. The statement 
appears to be rather complicated, but the thrust of the result will become obvious 
when the application to Marsden-Weinstein reduction is considered. 

Let S ~ P ~ Sp be as specified in 1.2.1; since there will be quite a few spaces 
• J: I b' III lp and maps m what lollows, we re abel these 0 ~ects as S I ~ PI +- S p' Now assume 

that Sp is itself a reduced space; this means that there are data S2 ~ P3 ~ S3 as 
in 1.2.1, so that Sp = sij := s;;;. The right-hand side is, of course, defined as 
in (1.13), and in what follows one could replace equality by symplectomorphism. 
In addition, we require that there be a map J21 : S2 ~ PI for which the reduced 
Poisson map Jij : si3 ~ PI (defined as in (1.17» coincides with Jp : Sp ~ PI. 

II 

The reduced space SP is consequently called Sfl' 
Since in particular we are given Poisson maps J 11 : SI ~ PI- and hi : S2 ~ 

PI, we are in the setting of Definition 1.2.1 for the third time, now with data 

S2 ~ PI- ~ S I. Theorem 1.2.2 then leads to a reduced symplectic space that we 
denote by SJf . 
Theorem 1.8.1. With the above notation: 

1. There is a Poisson map J,j} : sJI ~ P3-. We are in the setting of 1.2.1 and 

1.2.2 for thefourth time, with data Sn ~ P3 ~ S3. 
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33 

2. The resulting reduced space S~3 is symplectomorphic to Sn . 
21 

3. Suppose one has a Poisson manifold P2 and a Poisson map 112 : Sl ~ P2, 
such that li2COO(P2, JR) ~ J*COO(PI, JR)'. By 1.2.3 this leads to a Poisson map 

33 33 In : sg ~ P2. 
33 

There exists a Poisson map 11~3 : S~3 ~ P2 that is equivalent to lf~ (under the 
21 21 

symplectomorphism mentioned above). 

See Figure 7. 
The Poisson map lil is constructed as in Figure 1, with (clockwise) P2, 12, S, 

h, PI, lp, SP' Sf, and lP replaced by P3, h3, S:;, hi, PI, 111 , SI, sJL and lN, 
respectively. 

33 

The symplectomorphism S~3 ~ Sf~ is a consequence of the fact that both spaces 
21 

are symplectomorphic to (SI *PI S2*P3 S3)/cfJ. Here SI *PI S2*P3 S3 consists of those 
triples (x, y, z) in SI x S2 X S3 for which lII(X) = hl(y) and h3(y) = h3(Z), 
and cfJ is the foliation generated by the distribution spanned by all vector fields of 
the form liJ - l;J + 1;3g - 133g, where f E C"'(PJ, JR) and g E C OO (P3, Ii). 
This follows from the definition of the reduced space, as well as from the equations 
(in self-explanatory notation) lil([y, zb) = hl(Y) and IN([x, yh) = h3(Y); cf. 
(1.17). 

To define 11~3 we notice that there is a Poisson map l?l : SJf ~ P2 that 
21 

. b· db· . th d S ht P- JII S S JII P hi S d IS 0 tame y remterpretmg e ata 2 ~ I <E- I as I ~ I <E- 2, an 
subsequently looking at SJf as Sf: . One is then back at Figure 1, with the clockwise 
data listed a paragraph ago replaced by P2, 112. SI, 111, PI, hi, S2, Sf:, and l?l­
The Poisson map liP is then constructed once again as in Figure 1, this time with 

21 

entries P2, If}, SJ:, lN, P3, h3, S3, S~3, and liP. • 
21 21 

Thus the theorem is in essence a consequence of the associativity of the fiber 
product, namely, 

(1.56) 

We apply Theorem 1.8.1 to the Marsden-Weinstein case. Given a strongly 
Hamiltonian H-space SP' with equivariant momentum map -lp : Sp ~ I:J~, 

the reduced space (,PG)P has been defined in 1.6; cf. Figure 4. 
Given a strongly Hamiltonian G-space S, with equivariant momentum map 

1: S ~ g~, we specialize (1.8) to S ~ g~ ~ (T7G)P, denoting the reduced 
space defined by these data by 

_P -' P 

S~ := (S *g. (T*G)P)/ G ~ S~ /1I:0(G). (1.57) 

Here the G-action on S x (T7G)P is the product of the given action and the action 
p 

')..P given in (1.41), and S~ is defined as in (1.13). where the foliation cfJ coincides 
with the foliation by the orbits of the GO -action. 
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JI~3 
33 

S23 
11 

33 
J23 

11 P2 ~. ________ ~2~1 ________ _ S33 
II 
21 

33 33 

FIGURE 7. Reduction in stages: s~? :::: sg and ll~3 :::: ltt 
21 21 

Instead of T*G one may consider an arbitrary strongly Hamiltonian H-space 
S with equivariant momentum map JH , and specialize the diagram in (1.8) to 

JH Jp • 
S -+ f:J~ +-- Sp. TIus leads to a reduced space 

(1.58) 

whose elements are equivalence classes [a, a]H, constrained by JH(a) = Jp(a), 
where the equivalence relation on S x Sp is given by the orbits of the H -action 
h : (a, a) H- (ha, ha). Compare with (1.13). 

Theorem 1.8.2. Suppose one has a strongly Hamiltonian G-action on a sym­
plectic manifold S, with equivariant momentum map J, as well as a strongly 
Hamiltonian H -space Sp, with equivariant momentum map -Jp. 

-P -

The reduced space S~ defined in (1.57) is symplectomorphic to the space sjrlJ 
defined in (1.58), where J H = Jrf) is the momentum map for the H -action on S 
obtained by restricting the given G-action. 

Consider the specialization of Figure 1 shown in Figure 8. 

Lemma 1.8.3. In Figure 8 one has the symplectomorphism f"";;G"'~JL ~ S that 
leads to the equivalence J!JL ~ JrlJ' 
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J 

~~ ..-.--- T*G ---.... g~ "-4--- S 

I reduction 

T7(;j _jL 

~J 

FIGURE 8. PO _JI. ::::::: S and J~JL ::::::: Jrb 

Using (1.7) and III.(1.58), one sees that in the right trivialization of T*G one 
has 

T*G *9. S = {(-J(a), y, a)1 a E S, Y E G}. 

By 1.2.2, specifically (1.9), and 111.(1.52), for connected G the null foliation 4> of 
this space coincides with the foliation by the orbits of the G-action x : (e, y, a) ~ 
(Co(x)e, xy, xa). This also defines the equivalence classes for general G. The 
equivariance of J and the fact that the G-action preserves the symplectic structure 
of S then imply that the map [(-J(a), y, a)]<\> ~ y-1a is a symplectomorphism. 

Choose H = G. Using (1.17), and subsequently III.( 1.57) and the equivariance 
of J, one obtains 

J!jL([(-J(a), y, a)]<\» = JR(-J(a), y) = Co(y-l)J(a) = J(y-1a). 

For H = G the last claim of the lemma is then immediate from the previous 
paragraph. For general H one simply restricts J to ~. • 

Using this lemma, we fill out Figure 7 as in Figure 9; this immediately leads 
to Theorem 1.8.4 for connected H and G (where Marsden-Weinstein reduction 
coincides with special symplectic reduction). 

To proceed for general H and G we take a closer look at the proof of Theorem 
1.8.1. In the case at hand the space Sl *P, S2 *P, S3 consists of those triples 
(a, w, a) E S x T*G x Sp for which J(a) = -JL(w) and Jr~(w) = Jp(a). In the 
right trivialization of T*G, where w = (e, y), these conditions read J(a) = -e 
and -(Co(y-')e) r ~ = Jp(a); see III.(1.57) and 111.(1.58). The foliation 4> 
coincides with the foliation by the orbits of the GO x HO-action 

(x, h) : (a, e, y, a) ~ (xa, Co(x)e, xyh-', ha); 
p 

cf. III.(1.51) and III.(1.52). The symplectomorphism S; ~ Sjr~ is then given by 
1.8.1 as 

[a, -J(a), y, al<\> ~ [y-'a, a]Ho. 

From this we see that replacing (T*G)o+ by rFGP+ amounts to replacing HO 
by H in the last-mentioned equivalence class, too. This is precisely what is needed 
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J j / ~ 
g~ • (T*G)p- I)~ 

JP 

-J'1 
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J, 1 ~ 
T*G Jp 

o 
FIGURE 9. Marsden-Weinstein reduction in stages: s~ ~ s~~ 

to prove the theorem, which now follows, because Lemma 1.8.3 holds whether or 
not G is connected. • 

Applying Theorem 1.8.2 to the special case (1.43) we obtain 

Corollary 1.8.4. Suppose one has a strongly Hamiltonian G-action on a symplec­
tic manifold S with equivariant momentum map J, leading to the reduced space 
~O S1 defined in (1.57). 

This reduced space is symplectomorphic to the Marsden-Weinstein quotient 
~o -I 
SJr~ = Jr~ (0)/ H. 

A different application of Theorem 1.8.1 leads to 

Proposition 1.8.5. Let G I and G2 be Lie groups, and let S carry a strongly 
Hamiltonian action ofG t x G2, with equivariant momentum map J = J1 EB h : 
S -+ g~ EBg~. (When Gland G2 are compact this is equivalent to having commuting 
actions ofGt and G2, both of which are strongly Hamiltonian.) 

Then the Marsden-Weinstein quotient S? := J11(O)/G 1 carries a strongly 
Hamiltonian G2-action, with equivariant momentum map Jf. and similarly for 
1 B- 2. One has the symplectomorphisms 

(J?)-I(O)/G 1 ~ (Jf)-I(O)/G2 ~ J-1(O)/G 1 X G2. (1.59) 
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s o 
o 0 

FIGURE to. Reduction in stages: S,~ ~ S,~ 

The G I X G2-equivariance of J implies that JI is G I-equivariant and G2-
invariant, and similarly for 1 ~ 2. (When two commuting and strongly 
Hamiltonian actions of compact Lie groups G I and G2 are given, one may con­
versely achieve that J = J1 $ his G 1 x G2-equivariant by averaging JI over 
G2 and hover G 1.) With III.(1.19), 111.(1.7), and 1.(2.8), the invariance property 
guarantees that JrCOO(g1, R) and J;COO(g;, R) Poisson-commute. The first sym­
plectomorphism in (1.59) now follows by specializing Figure 7 to Figure 10; the 
second follows from the proof of Theorem 1.8.1. • 

1.9 Coadjoint Orbits of Nilpotent Groups 

We will now look at a situation where (T-::(:;)o+ (see (1.43» is (symplectomorphic 
to) a coadjoint orbit of G, and where every coadjoint orbit is of this form. In 
such a situation Corollary 1.8.4 is particularly useful, stating that any Marsden­
Weinstein quotient with respect to G may more simply be constructed by reducing 
with respect to a suitable subgroup H C G. 

As we shall see in this section, such a scenario applies when G is nilpotent; 
recall that this means that [X J, [X2 • ... [Xk-I. Xk] ... J] vanishes for all Xi E g 
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and all integers k :::: ko, for some ko :::: 1. For example, the Heisenberg group fIn 
is nilpotent. 

Theorem 1.9.1. Let a Lie group G be nilpotent, connected, and simply connected, 
and pick a coadjoint orbit O~ through 0 E g*. 

There exists a subgroup Po ~ G of dimension dim(G) - ~ dim(O~), and a 
pointa E P~ (which is stable under Co{Po)' and therefore is a coadjoint orbit),for 

which the reduced space (T7G)o+, defined as in (1.43) with H = Pol!!!9 0 = a, 
is symplectomorphic to (O~)+. Moreover, the reduced G-action on {T*G)a (with 
associated momentum map -J~, where J~ := J;R ) is equivalent to the coadjoint 

IPo 
action on O~ (with momentum map -tof)' 

Note that Po is a proper subgroup unless O~ is zero-dimensional. 
The idea of the proof is that the map J~ in Figure 4 (with Sp ---+ a, ~ ---+ Po' and 

J; ---+ J~) is a symplectomorphism. To show this, one relies on a fundamental 
fact in the theory of nilpotent Lie groups, which we state without proof. 

Lemma 1.9.2. For every 0 E g* there exists a subalgebra Po of g of dimension 

Hdim(g) + dim(go» (where go is the Lie algebra of the stabilizer Go ofe under 

the coadjointaction) that contains go' and has the property that e([X, YD = Of or 
all X, Y E Po. 

The Lie algebra Po is called a polarizing subalgebra of g. Its defining property 

is equivalent to the stabilityofa := 0 r Po underCo(Po), where Po is the connected 
and simply connected Lie group with Lie algebra Po' Indeed, in the theorem we 
take Po and a as indicated above. 

According to III.(2.1l9), in the left trivialization of T*G the reduced space 
(T7G)a consists of H -equivalence classes [-0, X )Pti' with 0 r Po = a and x E G. 
The Po-action defining the equivalence classes is given by III.{2.120). 

The crucial technical point is the equality 

{O E g*1 (0 r Po) = 0 r Po} = Co(Po)O. 

It is obvious that the right-hand side is contained in the left-hand side, for 

(CoG(h)O) r Po = CoPO(h)(e) r Po) 

(1.60) 

(1.61) 

for all h E Po; for clarity we have denoted the coadjoint action on g* and on p& 

by CoG and Co Po , respectively. The opposite inclusion is proved by observing 
that the left-hand side of (1.60) is a copy of jRdim(9)-dim(po). It is a nontrivial fact 
about connected, simply connected, and nilpotent groups that the orbit Co(Po)O is 
homeomorphic to jRdim(Pii)-dim(9ii). By Lemma 1.9.2 the dimensions match, so that 
(1.61) has been proved. 

By (1.17) and I1I.(2.124) one has 

J~([-O, x]po) = Co(x}8. (1.62) 
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Combining the information collected so far, one infers from Corollary 1.2.3 that 
J; is a symplectomorphism between rFiJ)a and O~ . 

The reduced G-action on (T-;;;:;)a is given by 111.(2.122); the final claim in 
Theorem 1.9.1 is then immediate from (1.62). D 

Consider, for example, the Heisenberg group fIn introduced in 11.2.1; its coad­
joint orbits are listed after 11.(2.11). For the zero-dimensional orbit e = (p, q, 0) 
one has go = Po = ~n, so that the claims of the theorem are self-evident. Accord­
ing to 11.(2.13), a 2n-dimensional orbit through e = (0,0, c #- 0) has stabilizer 
go = RZ, and one may choose Po = RQ E9 RZ, which is abelian. (Alternatively, 
one could pick, e.g., RP E9 RZ, which illustrates the fact that polarizing subalge­
bras are not necessarily unique.) The left-hand side of (1.60) is {(O, R, c)}, which 
by 11.(2.13) indeed coincides with the right-hand side. Thus one verifies without 
any difficulty that the coadjoint orbits of fIn are indeed as described by Theorem 
1.9.1. 

We return to the general case. The quantum counterpart of Theorem 1.9.1 is the 
following. Recall Mackey induction from III.2.9. 

Theorem 1.9.3. Let U be an irreducible representation of a connected and simply 
connected nilpotent Lie group G. There exists a point e E g* and a polarizing 
subalgebra Po such that U is equivalent to the representation UO inducedfrom the 
one-dimensional representation 

Uo(Exp(X» := e-iO(X) (1.63) 

of the connected and simply connected group Po with Lie algebra Po' 
Two induced representations Uo; (i = 1,2) of this type are equivalent iffel and 

e2 lie in the same coadjoint orbit. In particular, different choices of the polarizing 
subalgebra Po lead to equivalent representations. 

Note that Uo is indeed a representation of Po as a consequence of the property 
mentioned at the end of Lemma 1.9.2. 

We will not prove this theorem, merely illustrating it for the Heisenberg group. 
Choosing e = (0,0, c i= 0) and Po = RQ E9 RZ as above, one computes from 
11.(2.6) and III.(2.176), in which one takes the section s(q) = (0, q, 0), that U(o,o·c) 

coincides with Uc as defined in 11.(2.19), with A = c. The one-dimensional rep­
resentation 11.(2.27) corresponds, of course, to e = (p, q, 0). Theorem 11.2.1.4 is 
now seen to be a corollary of Theorem 1.9.3. 

1.10 Coadjoint Orbits of Semidirect Products 

Another illustrative and physically relevant situation where Corollary 1.8.4 applies 
with force is given by semidirect product Lie groups G = L ~ p V, where V is 
a vector space carrying a linear L-action p. Following the habit of physicists, we 
denote elements x of G by pairs x = (A, v) E L x V; elements of the dual V* are 
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generically called p. The multiplication rule in G is 

(AI, V)(A2, V2) := (A)A2 , v) + p(A I)V2). (1.64) 

The Lie algebra g = [EEl V then has the bracket 

[(X, v), (Y, w)] = ([X, y], dp(X)w - dp(Y)v). (1.65) 

The coadjoint action of G on g* = [* EEl V* is 

CoCA), v)(e, p) = (Co(A)e + (p*(A)p) 1\ v, p*(A)p), (1.66) 

where p' is the dual action of G on V*; that is, (p*(A)p)(v) := p(p(A -)v). For 
p E V* and v E V, the element p 1\ V E [* is defined by 

P 1\ veX) := p(dp(X)v). (1.67) 

In terms of the dual p; of the map Pp : g --+ V*, defined for fixed p E V* by 
pp(X) := -dp*(X)p, one has the equivalent definition p 1\ V = p;v. 

The stabilizer of p E V* under p* is denoted by Lp (as usual), with Lie alge­
bra [po Now recall Definition 111.2.1.4 and the first paragraph of m.2.7. Given a 
coadjoint orbit OLp in [;, we can form the bundle L XLp OLp associated to the 

principal bundle L(L/Lp, L p, r) by the coadjoint action of Lp on OLp. This as­
sociated bundle has base L/ Lp, which we identify with the L-orbit O~ = p*(L)p 

in V*, and typical fiber OLp. 

We now fix a pair (8, p) E g*, for simplicity denoting the coadjoint orbit O~(rp 

in [~ by O~p. The first characterization of the coadjoint orbits of L ~ p V is as 
follows. Note the similarity with Proposition III.3.9.4. 

Proposition 1.10.1. The coadjoint orbit O~.p) ofG = L ~ p V through (8, p) E g* 

is a fiber bundle over L XLp O~p with typical fiber [~(the annihilator of[p in [*). 
This provides a bijection between the set of coadjoint orbits in g* and the pairs 

(OL, O~p) consisting of an L-orbit OL in V* and a coadjoint orbit O~p in [~ 
(where L p is the stabilizer of an arbitrary point p in OL ). 

The bundle projection roc : O~.p) --+ L XLp O~p is given by 

roc (Co(A, v)(8, p»:= [A, 8 r [p]Lp- (1.68) 

This projection is well-defined because of a property analogous to (1.61). The coad­

joint orbit O~.p) in g* determines a pair (Ot, O~p); conversely, a pair ( OL, O~p) 
as stated corresponds to an orbit CO~.p) with the property that 8 r [p lies in O~p, 
and p has L p as its stabilizer. The fact that this correspondence is bijective and 
independent of all choices follows from elementary verifications, using the equality 

{p 1\ vi v E V} = ~, 

which is easily checked. 

(1.69) 

• 
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We now tum to an alternative description of the coadjoint orbits of L ~ p V that 
places the bijective correspondence stated in Proposition 1.10.1 in a new light. 
To formulate this result, we first infer from (1.66) that for each p E V* and each 
coadjoint orbit CJLp in I; the set CJL p + pel; EI1 V* is a coadjoint orbit of L p ~ p V*. 

Theorem 1.10.2. The coadjoint orbit CJGe- _ (with the H+" Lie symplectic struc-
(.p) ~ 

ture) is symplectomorphic to the reduced space (T*G)o+, defined as in (1.43) with 
G = L ~p V, 

H:= Lp ~p V, (1.70) 

and CJ = CJ~P + p. Moreover, the reduced G-action on d-;(])o+ (with associated 

momentum map -Jr; := -Jr:;) is equivalent to the coadjoint action on CJ(~ _) 
~ ,p 

(with momentum map -Loc; ). 
9 

What follows is a more complicated version of the proof of Theorem 1.9.1. 
We see from III. (2. I 19) that in the left trivialization of T*G the reduced space 

(T7G)o+ consists of H -equivalence classes [-e, - p, A, V]H, with e I Ip E CJ~P, 
and according to III.(2.120), (1.64), and (1.66) the H -action is given by 

(A[, w): (-e, -p, A2 , v) t-+ (-Co(A,)I1-pAw, -p, A2AI', V-p(A2AI')W). 
(1.71) 

According to (1.17) and III. (2. 124) one has 

Jr;([-e, -p, A, V]H) = CoCA, v)(e, p), (1.72) 

which is given by (1.66). Using (1.69), it is now easily verified th~r; is injective. 
Since (A, v) varies freely in G, it is obvious from (1.72) that Jr;«T*G)o+) contains 

CJGe- _ • Combined with Proposition 1.10.1, the restriction 8 I Ip E CJe~P implies 
( ,p) 

that the image of Jr; is precisely CJ~.p)' 

Hence Jr; : (T--;:-'G)o+ --+ CJGe- _) is a diffeomorphism that is even a 
( ,p 

symplectomorphism by Corol~ 1.2.3. 
The reduced G-action on (T*GP+ being given by III.(2.122), the final claim is 

immediate from (1.66) and (1.72). • 

To state the quantum versions of Proposition 1.10.1 and Theorem 1.10.2, we 
take p E V* and a E Lp, so that Uu(Lp) is an irreducible representation of Lp. 
Define H as in (1.70), and note that U u (L p) extends to an irreducible representation 
Up,u(H) by 

(1.73) 

Theorem 1.10.3. Suppose that the semidirect product G is regular in that each 
L-orbit in V* is (relatively) open in its closure. Then the representation UP,U(G) 
induced by an irreducible representation U p,u (H) of the above type is irreducible 
for any choice of p and a, and for every irreducible representation U (G) there 
exists a pair (p, a) such that U is equivalent to U p,u . 
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Two representations uPI.al(G) and u h a2(G) are equivalent iff the Pi lie in 
the same orbit OL (so that P2 = p*(A)PI for some A E L), and Ua2 0 AdA is 

equivalent to Ual' In other words, the unitary dual G is parametrized by pairs 
(OL, a), where OL is an L-orbit in V* and a is a member of the unitary dual of 
the stabilizer of an arbitrary point in OL. 

Let U be a representation of G on a Hilbert space 1f. One easily sees from (1.64) 
that 

U(A)U(v)U(A)* = U(p(A)v), (1.74) 

where A := (A,O) and v := (e, v) etc. By III.(1.89) the restriction of U to V 
defines a representation 1r of the group C*-algebra C*(V). Using III.(1.88) with G 
replaced by V, this yields a representation if(Co(V*». We see from (1.74) that the 
pair (U(L), if (Co(V*») is a system ofimprimitivity of Lon V* in 1f; cf. Definition 
III.3.7.3. Conversely, such a system determines a representation U(G) on 1f, and 
the correspondence thus obtained is bijective. Theorem 1.10.3 then follows from 
Theorem 2.7.3 below and Corollary III.3.7.4. • 

The general description of the explicit form of induced representations in I1I.2.9 
simplifies somewhat. because G / H is n~w equal to L / L P ~ O~. To obtain a 
(measurable global, or smooth local) sectIOn s : G / H ~ G we merely need to 
choose a ( ... ) section b : L/ Lp ~ L (where the name "b", standing for "boost". 
comes from physics), in terms of which s is given by s(p) := (b(p), 0). The carrier 
space of the realization uta (cf. the text below III.(2.176)) is then 

(1.75) 

where 1fa is the carrier space of Ua(Lp), and we have replaced the suffix s by b. 
Assuming that O~ possesses an L-invariant measure (which will be the case in 
our applications), one is able to simplify m.(2.176) to 

uta (A, v)wt·a (p) = eiPVUa (b(p)-I Ab(p*(A -I)p») w{a (p*(A -I)p). (1.76) 

Note that the argument of Ua indeed lies in L p. 
We return to the classical setting. From 1.10.2 we are led to a third description 

of the coadjoint orbits in question. Recall that we identify the L-orbit O~ in 
V* with L/ Lp; this leads to an embedding (i.e., an injective homomorphism) 
X: V ~ COO(L/Lp,R) (as additive groups),givenby X(v): p H> -p(v), 
where p E Oft. Using the natural embedding L C Aut(L), where L is seen as the 
total space of the principal bundle L(L/ L p, L p, -r) (cf. 111.2.7), we observe that X 
extends to an embedding X : L ~p V ~ Aut(L) ~ COO(L/ L p, R). This enables us 
to regard G as a subgroup of Aut(L) ~ COO(L/ L P' R). In particular, G acts on the 

reduced space (PL)o;P by restriction of the action Po of Aut(L) ~ COO(L/ L p, R) 
defined in Theorem m.2.5.2. 

Theorem 1.10.4. The coadjoint orbit ( O~'P») + is symplectomorphic to the re-

- OLp L-
duced space (T*L) 9 ,defined as in (1.43) with G = L, H = L p, and 0 = 0/. 
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_ Lp 
The G-action on (T* L)o& explained above is equivalent to the coadjoint action 

on O~.ji)" 
Given p E V*, we regard T* L as a submanifold of T*G by the embedding 

(e, I) ~ (e, -p, I, 0); this is a Poisson map. The momentum map Jr1, is simply 

the restriction of J r~ (where ~ is the Lie algebra of the group H specified in 1.10.2) 
to [ji, regarded as a subalgebra of ~ by the embedding e ~ (e, 0). One then easily 

infers from (1.71) that (Jr1.)-I(O~')/ Lji is diffeomorphic to (Jr~)-I(O~' +p)/ H 

under the bijection P 

(1.77) 

where e r [ji E O~p. Since the embedding T* L "--+ T*G above is a Poisson 
map, this diffeomorphism is a Poisson map, and therefore a symplectomorphism, 
by definition of the quotient Poisson structure. The first claim then follows from 
Theorem 1.1 0.2. 

Comparing (1.72) with (1.77), and using (1.66) with v = 0, one sees that the 
_ l.p 

pertinent symplectomorphism ip : O~.ji) --+ (T* L)o& is given by 

(1.78) 

We now prove that ({J intertwines the G-actions in question. Firstly, it is obvious 
from (1.77), (1.64) and III.(2.122) that ({J intertwines the L-actions. Secondly, 
we note that in the left trivialization the one-form df(x) E Tx*G (where f E 

COO(G, R» is represented by (ef' X)L, where ef(X) := ~f f. Regarding xCv) as a 
right-L p-invariant function on L, it then follows from III.(l.37) and (1.69) that in 
the left trivialization, dX (v) at A is represented by (p /\ peA -I )v, A)L. Hence the 
action III.(2.77) reads v: (-e, A)L ~ (-e - p /\ peA -I)V, Ah., This quotients 
to the action 

v: [-e, AlLp ~ [-e - p /\ peA -I)V, AlLp 
_ Lp 

on (T* L)oe . The second claim in 1.10.4 then follows from (1.77), (1.71), 
111.(2.122), (1.66), and (1.72); cf. the end of the proof of 1.10.2. 

As a check on this computation we note that by definition of X , the momentum 
map 111.(2.80) reads Jx(a)([-e, A]Lp) = -(p*(A)p)(a). By (1.66) and Corollary 
III. 1.4.6 this coincides with J(O.a)(Co(A, O)(e, p», where J is the momentum map 

for the coadjoint action of G on its coadjoint orbit ( O~.ji») +' We conclude from 

(1.72) and (1.77) that JCj 0 ({J intertwines Jx(a) and J(O.a)' • 
_ Lfi 

We infer from this proof that the G-action on (T* L)o& is given by 

(AI, v): [-e, AZ]Lp ~ [-e - p /\ p(AIAz)-lv, A I AzlL;;- (1.79) 

This formula may alternatively be derived from (1.66) and (1.78). 
Applying Theorem 111.2.3.7 (or its generalization 1.6.1), we conclude that O~. ji) 

is a bundle over T*O~ with typical fiber O~p; the bundle projection depends on 
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the choice of a connection on the principal bundle L(L/L p, L p, r). When Lp is 
reductive one may choose the H -connection; see 111.2.7. 

Alternatively, since (PL)o;p is by definition equal to (irfp)-I(Otp)/ L p' it may 

be regarded as a bundle L XLp rr- 1( -otp), where rr : [* ~ [ft is the restriction 

map rr(t9) := t9 r [po As always, we identify L/ Lp with the L-orbit O~ through 
p in V*. This is the bundle over L / L p that is associated to the principal bundle 

L(L/ L p, L p, r) by the coadjoint action of Lp on rr- 1( -otp) c [*; note that this 
subset is indeed stable under the restriction of Co(L) to L p. This bundle structure 
is evidently independent of the choice of a connection, and may also be derived 

from Proposition 1.10.1. For example, when eo E [~, so that O~p = {O}, one infers 
p 110 

from 111.(2.116) that 

(1.80) 

By 111.(2.56) this is even a symplectomorphism. 
As a simple example, consider L = SO(3) and V = JR.3, with p the defining 

representation of SO(3). The latter coincides with the coadjoint action of SO(3) 
on [* = JR.3, as well as with the action p* on V* :::' JR.3 (where JR.3 and its dual have 
been identified through the Euclidean inner product). Hence both the coadjoint 
orbits in [* and the p*(SO(3»-orbits in V* are either spheres S; with radius r > 0 
or the origin (r = 0). The expression p 1\ v in (1.67) is easily seen to coincide with 
the usual exterior product of p and v. 

We take G = £(3) := SO(3) ~p JR.3, which is the Euclidean group. When 
p = 0 one has Lo = SO(3), so that the G-coadjoint orbit O~ 0) is simply the 

( , 

S o (3)-orbit through iJ, whose Lie symplectic structure is r times the volume form 
on S2. For p =1= 0 we may choose p = r3 := (0,0, r), so that Lp = SO(2). By 

Theorem 1.10.4 the orbit O~,r3) is a bundle over T* S2 with typical fiberiJ3 =: e E 

JR., which is just a point. Thus oC!. is T* S2 as a manifold, which as a symplectic 
(lI,r3) 

space is the space T* Ge discussed in III.2.12. In particular, the Poisson bracket on 
O~ is III.(2.227). 

(0,r3) 

For a more complicated illustration of the formalism see 3.1. 
We close this section with a result on reduction in stages for semidirect products. 

Theorem 1.10.2 and Corollary 1.8.4 have the 

Corollary 1.10.5. Let G = L ~ p V act on a symplectic manifold S in strongly 
Hamiltonianfashion, with equivariant momentum map J : S ~ g~, and choose 

d ·· b' //"1 ,"'IG . * a coa 'JOint or It v := v(8,p) In g+. 

The Marsden-Weinstein quotient S?+ = J-1(O)/G is symplectomorphic to 
---- OLp 

(irl} (p)/ V) J r Lp' that is, to the symplectic space obtained by first reducing S by V 
with respect to the coadjoint orbit p E V*, and then reducing by Lp with respect 
to the coadjoint orbit OLp C [ft. 
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Applying 1.10.2 and 1.8.1 in succession shows that we need to prove only that 
--- c/p 

(Jr"\/(p)1 V)JrLp coincides with the reduction of S by H = Lp ~p V with respect 

to the orbit 0 = O~P +p in I)~. 
The G-equivariance of J implies that Jry(la) = p*(I)Jrv(a). It follows that Lp 

maps Jr"\}(p) into itself. Moreover, the rule (1.64) easily implies that the action of 

L p quotients to an action on the reduced space J -I (p) 1 V. It is quite straightforward 
to verify that the reduced L p-action is strongly Hamiltonian, with equivariant 
momentum map given by the quotient of Jrlp-

Hence the second reduction is well-defined. By the same argument, the map 
[[a]V]Lp 1--+ [alLp><pv,wherea E Jrvl(p),iswell-defined,andisalmosttrivially 
seen to be a diffeomorphism. Using Theorem 1.5.4 one infers that it is even a 
symplectomorphism. • 

Note that Theorem 1.1 0.4 follows from 1.1 0.5 by taking S = T* G and observing 
that Jrv1(p)1 V is symplectomorphic to T* L; in our derivation of 1.1O.4from 1.10.2 
this was used in the opposite direction. 

1.11 Singular Marsden-Weinstein Reduction 

In this section we look at what happens to Theorem 1.5.4 when H does not act 
freely. We do assume that the strongly Hamiltonian H -action on S is proper, 
as reasonable results are available only in that case. We look only at reduction 
from 0 E 1)*; by the shifting trick in the proof of 1.5.4 this entails no loss of 
generality. The reduced space is therefore SO = J-I(O)I H; for simplicity we omit 
the subscript J in the notation S~ (cf. (1.26». 

When the H -action fails to be free, but each stabilizer Hu is discrete for a E 

J-1(0), the space J-I(O) is still a submanifold of S by Lemma 1.5.1, and the 
possible singularities in the reduced space J- I (0)1 H come from taking the quotient 
by H. This case is, of course, included in what follows. 

When the dimension of some stabilizer is greater than zero, there is no guarantee 
that J-I(O) is a submanifold of S. For a given subgroup K ~ H, define 

SK := {a E SI Hu = K}; 

S[KJ := HSK = {a E SI Hu is conjugate to K}. 

( 1.81) 

(1.82) 

These spaces are empty when K is not compact; cf. Proposition 1.5.3. Using 
the compactness of each stabilizer Hu, it can be shown that SK and S[KJ are 
submanifolds of S. We can say more: 

Lemma 1.11.1. The space SK is a symplectic manifold, with symplectic form 
inherited from S. 

The subspace Tu S K of Tu S, where a E S K , consists of the K -invariant vectors 
(since a is K -invariant, the pushforward of the K -action maps Tu S into itself). 
Since K is compact, we can choose a K -invariant inner product (, ) on Tu S, and 
by linear symplectic geometry there exists an invertible linear map J on Tu S such 
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that (X, JY) = wu(X, Y) for all X, Y. By the K-invariance of the symplectic 
form w and of the inner product, the map J commutes with the K -action, so 
that the restriction of J to Tu SKis well-defined. Then the assumption that for 
some X E TuSK the number wu(X, Y) vanishes for all Y E TuSK implies that 
(X, JY) = 0 for all Y E TuSK; hence (X, X) = 0, so that X = O. The claim 
follows. • 

This lemma will be used in the proof of Proposition 1.11.3. 

Proposition 1.11.2. Let a(·) be the Hamiltonian flow of f E COO(S, R)H. For 
any t for which the flow exists, the point a(t) lies in J-1(0) n S[I/a]' where a = 
a(O). Moreover, any two points in a connected component of J-1(0) n SK may 
be connected by a piecewise smooth Hamiltonian curve, where the pieces are 
generated by H-invariant Hamiltonians. 

By Proposition III.1.2.2 the set J-1(0) is invariant under the flow. The H­
invariance of f implies that h(a(t» = (ha)(t) for all h E H, so that Hu(t) ~ Hu. 
Inverting the flow leads to the opposite inclusion, so that Hu(t) = Hu. It follows that 
the flow preserves J-1(0) n SI/a. Using the stability of J-1(0) under H resulting 
from the equivariance of the momentum map and the second equality in (1.82), 
one obtains 

(1.83) 

Since we have just seen that the right-hand side is preserved by Hamiltonian flows, 
the first claim follows. The second claim results from the equality 

(1.84) 

Here the inclusion of the right-hand side in TuJ-1(0) follows from Noether's 
Theorem (Proposition 111.1.2.2). Its inclusion in TuSHa follows from the first line 
in the proof of 1.11.1 combined with 1.(2.8) and the H -invariance of the Poisson 
bracket. The proof of Corollary 1.5.7 then yields the equality in (1.84). • 

The reduced space SO is trivially a disjoint union 

-0 -0 
S = U[K]S[K]' (1.85) 

where [K] varies over all conjugacy classes in H, and 

-0 -I 
S[K] := (J (0) n S[K])/ H. (1.86) 

Proposition 1.11.2 suggests that from a Hamiltonian point of view this is an inter­
esting decomposition, since the flow of an H -invariant Hamiltonian on S projects 
to a flow that stays inside a given subspace SPK]" 

Proposition 1.11.3. Let S~ be the union of those components of S K whose 
intersection with J-1(0) is not empty. 

The natural action of the group NH(K)/ K on S~ is free and strongly 
Hamiltonian; denote its equivariant momentum map by h. The (regular) 
Marsden-Weinstein quotient Jil(O)/(NI/(K)/ K) is homeomorphic to SPK] (with 
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the quotient topology). Since the former is a symplectic manifold, the space SfKl 
thereby becomes a symplectic manifold as well. 

Here N H(K) is the nonnalizer of Kin H (that is, the collection of elements of H 
that commu te with all members of K). It is clear from the definitions that N H (K) / K 
acts on S K by restricting and quotienting the H -action, and that this action is free. 
From the second equality in (1.82) we then infer that S[KI/ H ~ SK/(NH(K)/ K). 
Taking intersections with J-1(0) leads to the desired homeomorphism. 

To interpret (J-I(O) n SK )/(N H(K)/ K) as a Marsden-Weinstein quotient, we 
first note that Lemma 1.11.1 implies that S~ is symplectic. Secondly, since J is 
equivariant and S~ consists of K -stable points, the momentum map for the H­
action restricted to S~ takes values in the space (I)*)K of Co(K)-invariant points 
in 1)*. Since Jx for X E t generates the K -action on S~, which is trivial, each Jx 
must be constant on each component. The constants are all zero, as S~ intersects 
J-1(0). Hence J r S~ takes values in (I)*)K n to, where to is the annihilator of t 
in I). 

Now observe that (I)*)K n to is naturally isomorphic to the dual of the Lie algebra 
of N H (K) / K: This is immediate from the definition of the nonnalizer and of the 
(co) adjoint action, combined with the isomorphism T[;lx (H / K) ~ to (cf. the 
proof of Lemma 111.2.7.1). 

We conclude that J r S~ may be interpreted as the momentum map h for the 
NH(K)/ K -action on S~. Since this action is free (and evidently proper), Theorem 
1.5.4 applies. • 

Since the reduced space SO is not (necessarily) a manifold, there is no self­
evident definition of the space of "smooth" functions COO (So , JR). In the present 
context the following approach is appropriate. 

Definition 1.11.4. A continuous function f on SO is said to be smooth when there 
exists an H -invariant smooth function on S whose restriction to J -I (0) quotients 
to f.In other words, 

(1.87) 

where JoH := .10 n cOO(S, JR)H, and .10 is the ideal of smooth functions on S that 
vanish on J -I (0). 

When SO is a manifold, one recovers the usual definition of cOO(So, JR). Oth­
erwise, the main advantage of Definition 1.11.4 is that one obtains a Poisson 
algebra. 

Proposition 1.11.5. The space COO (So , JR) is a Poisson algebra under the Poisson 
bracket inheritedfrom cOO(S, JR). This bracket coincides with the one correspond­
ing to the symplectic structure on each subspace SfKl.In other words, the inclusion 

of each symplectic manifold SfKl in SO is a Poisson map. 

We already know that cOO(S, JR)H is a Poisson algebra under the bracket inher­
ited from cOO(S, JR); cf. the proof of Theorem 1.5.5. We need to prove that JoH 

is a Poisson ideal in cOO(S, JR)H. It is trivially an ideal with respect to pointwise 
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multiplication. To show that in addition it is a Lie algebra ideal under the Poisson 
bracket, we pick f E coo(S, ~)H and g E JOH , and study {j, g}. This function is 
in coo(S, ~)H because of the H -invariance of the Poisson bracket, and vanishes 
on J-I(O) by 1.(2.8), 1.5.7, and 1.3.5. 

This proves the first claim. The remainder is obvious from Proposition 
1.11.3. • 

In the case that SO is not a manifold, one cannot define the Hamiltonian flow 
of h E coo(So,~) as the solution of 1.(2.11), since the notion of a tangent vector 
is problematic at singular points. However, one can simply say that a(·) is the 
Hamiltonian flow of h iff 1.(2.14) is satisfied for all f E coo(So, ~). Existence 
of the flow may be proved by lifting the flow to S, and uniqueness is eventually 
a consequence of the fact that due to the properness of the H -action on 5, the 
function space coo(So,~) separates points in So. 

We sum up. 

Theorem 1.11.6. Assume that one has a proper and strongly Hamiltonian H­
action on a symplectic manifold 5, with equivariant momentum map J. 

• The Marsden-Weinstein quotient SO = J-I(O)/ H can be decomposed as a 
(disjoint) union of symplectic manifolds SrK]' defined by (1.86) with (1.82), 
referred to as the symplectic pieces of SO. 

• The function space coo(So, ~), defined by ( 1.87), is a Poisson algebra. 
• The inclusion of each SrK] in SO is a Poisson map. 

• Any Hamiltonian flow on Sa preserves the decomposition in question; in fact, 
any two points in a connected component of a given subspace SrK] can be 
connected by a piecewise smooth Hamiltonian curve. 

Combine (1.85) with Propositions 1.11.3 and 1.11.5. The second claim in the 
final item follows from Proposition 1.11.2. • 

It follows that the pair (So, '2tIR = COO (So , ~» is a Poisson space in the sense of 
Definition 1.2.6.2. 

The abstract theory may be illustrated by what is probably the simplest nontrivial 
example. Consider the standard action of H = 50(2) on Q = ~2, given by 

e : (ql, q2) f-+ (ql cose - q2 sine, ql sine + q2 cose). 

According to Lemma III.2.3.1 this lifts to a strongly Hamiltonian action on 5 = 
T*~2, in which (PI, P2) transforms in exactly the same way as (q I, q2). This lifted 
action is not free at the point (0, 0, 0, 0), whose stabilizer is 50(2); the stabilizer 
of all other points is trivial. The momentum map is 

(1.88) 

Hence the level set J -I (0) consists of those (p, q) for which p = t q or q = 0 for 
some t E ~; this set is {(lR.2\(O, 0» x ~}U~2, where (ql, q2, t) in (~2\(0, 0» x ~ 
stands for (ql, q2, tPI, tP2), and the second ~2 represents the points (PI, P2, 0, 0). 
Hence the quotient J- I (0)/50(2) may be identified with ~+ x~, which may be 
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thought of as the cotangent bundle T*JR.+. The singularity in the reduced space 
takes the form of a boundary. 

The topology on the reduced space may be computed by noting that the copy 
of JR.2 in T*JR.2 defined by the equations P2 = q2 = 0 is contained in J-I(O), 
and has the property that every SO(2)-orbit in J-I(O) cuts it in two points. These 
are related by the action of 'Z} that maps (PI, ql) to (±pI, ±ql). Since the JR.2 
in question evidently has the canonical symplectic structure, and Z2 acts on it by 
Poisson maps, one infers that 

(1.89) 

as symplectic spaces. Here 1R2/Z2 is seen as a topological space with the quotient 
topology, at the same time being the union of the symplectic manifolds (0, 0) and 
(1R2\(0, 0»/Z2. Thus the isomorphism (1.89) means that one has a homeomor­
phism in the usual sense, under which the appropriate symplectic subspaces are 
mapped into each other symplectomorphically. 

In summary, the decomposition (1.85) consists of (0,0) and (1R2\(0,0»/Z2, 
each of which is a symplectic manifold in its own right. Using invariant theory, it 
may be shown that smooth functions on SO (in the sense of 1.11.4) must correspond 
to smooth functions h on S that depend only on the SO(2)-invariants (p, p) := 
pi + p~, (q, q), and (q, p). Since dh = 0 at (0, 0, 0, 0), one verifies that the two 
symplectic pieces of SO are indeed stable under Hamiltonian flows; cf. Proposition 
1.11.2. 

This example illustrates a deeper property of singular Marsden-Weinstein 
reduction, which we will not prove. 

Proposition 1.11.7. Under the assumptions of 1.11.6, in each connected 
component of 05° one of the symplectic pieces SPKO] is open and dense. 

Since the Poisson bracket on COO(So, 1R) is evidently determined by the sym­
plectic form on S~KO]' Proposition 1.11.5 implies that the symplectic structure on 

all other symplectic subspaces is determined by S~KO]. 
Finally, we give an example in which the group action is not proper, but the claims 

of Theorem 1.11.6 nonetheless hold. We continue with the symplectic manifold 
S = T*JR.2, but now consider an action of H = JR., namely 

t : (PI, P2, ql, q2) 1-+ (PI, P2, ql + Pit, q2 - P2t). (1.90) 

An equivariant momentum map for this action is 

J(pJ. P2, ql, q2) = t(pi - p~). (1.91) 

It follows that J* fails to be surjective at all "singular" points of the form 
(0,0, q I , q2), at which it is identically zero; the lR-action is not proper precisely at 
these singular points. The singular points have stabilizer JR., whereas the stability 
group of all other points is trivial. This opens the possibility that J -I (0) might not 
be a submanifold of S, and this is indeed the case. 

The Marsden-Weinstein quotient SO = J-I(O)/IR is connected as a topological 
space, but it does not have a constant dimension as a "manifold": if we look at SO 
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as fibered over the subspace PI = ±P2 of 1R2, then the fiber above (0,0) is two­
dimensional, whereas at all other points it is one-dimensional. By Definition 1.11.4, 
the space COO(So, 1R) consists of smooth functions f E COO(S, 1R), restricted to 
J-I(O), that satisfy {J, f} = 0 on J-1(0). It follows that such an f arbitrarily 
depends on the Pi, but depends on the qi through the combination q I P2 + q2 PI. 
A study of the Hamiltonian flow on S defined by such functions, and therefore 
of the corresponding flow on SO obtained by projection, shows that SO may be 
decomposed into five symplectic pieces. These are given by the equations PI = 
P2 > 0, PI = P2 < 0, PI = - P2 > 0, PI = - P2 < 0, and PI = P2 = O. Any 
point in a given piece cannot leave the piece under a Hamiltonian flow. Hence we 
have the same situation as for proper group actions. 

2 Induction 

2.1 Hilbert C* -Modules 

What follows is the most important mathematical concept in the quantization 
theory of classical systems obtained by special symplectic reduction (see 1.2). 

Definition 2.1.1. A Hilbert C* -module over a C* -algebra 23 consists of 

• A complex linear space E. 
• A right action JrR of23 on E (i.e., JrR maps 23 linearly into the space of all linear 

operators on E, and satisfies JrR(AB) = JrR(B)JrR(A»,for which we shall write 
q,B:= JrR(B)q" where q, E E and BE 23. 

• A sesquilinear map (, )'13 : E x E -+ ~, linear in the second and antilinear in 
the first entry, satisfying 

(q" <1»; = (<I>, q,)'13; 

(q" <l>B)'13 = (q" <I>)S]3B; 

(q" q,)'13 2: 0; 

(q" q,)S]3 = 0 ¢> q, = 0, 

for all q" <I> E E and B E 23. 

The space E is complete in the norm 

We say that E is a Hilbert 23-module, and write E r= 23. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

One checks that (2.5) is indeed a norm: 1Iq, 112 equals sup{w( (q" q,)'13)}. where the 
supremum is taken over all states w on 23. Since each map q, ~ ..jw«(q" q,)'13) is 
a seminorm (i.e., a norm except for positive definiteness) by (2.3), the supremum is 
a seminorm, which is actually positive definite because of Corollary 1.1.4.4 (which 
applies because (q" q,)'13 is self-adjoint by (2.1) or (2.3» and (2.4). 
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The ~-action on £ is automatically nondegenerate: The property \II B = 0 for 
all B E ~ implies that (\II, \II).BB = 0 for all B, hence (\II, \II)!B = 0 (when ~ 
is unital this follows by taking B = ][; otherwise, one uses an approximate unit in 
~), so that \II = 0 by (2.4). 

When all conditions in 2.1.1 are met except (2.4), so that II • II defined by (2.5) 
is only a seminonn, one simply takes the quotient of £ by its subspace of all null 
vectors and completes, obtaining a Hilbert C* -module in that way. 

It is useful to note that (2.1) and (2.2) imply that 

(\IlB, <I»!B = B*(\II, <l>h. (2.6) 

Example 2.1.2. 

1. Any C* -algebra 2l is an 2l-module 2l ~ 2l over itself, with (A, B)<.1 : = A * B. 
Note that the norm (2.5) coincides with the C* -norm by 1.(1.15). 

2. Any Hilbert space 'It is a Hilbert C-module 'It ~ C in its inner product. 
3. Let H be a Hilbert bundle over a compact Hausdorff space Q. The space of 

continuous sections £ = ro(H) ofH is a Hilbert C*-module ro(H) ~ C(Q) 
over ~ = C(Q);for \II, <I> E ro(H) the function (\II, <I»C(Q) is defined by 

(\II, <I>)c(Q) : q 1-+ (\II(q), <I>(q», (2.7) 

where the inner product is the one in the fiber .-l(q). The right action of 
C(Q) on ro(H) is defined by stipulating that \II f is the section that maps q to 
f(q)\II(q)· 

I 
In the third example the nonn in ro(H) is II \II II = SUPq(\II(q), \II (q»2" ,so that it is 
easily seen that £ is complete. 

Many Hilbert C*-modules of interest will be constructed in the following way. 
A pre-C* -algebra is a * -algebra satisfying all properties of a C* -algebra except 
perhaps completeness. Given a pre-C* -algebra ~,define a pre-Hilbert ~-module 
e ~ ~ as in Definition 2.1.1, except that the final completeness condition is 
omitted. 

Proposition 2.1.3. In a pre-Hilbert ~-module (and hence in a Hilbert ~-module) 
one has the inequalities 

II'IIBII ~ II'IIIIIIBII; 

(\II, <I»!B(<I>, \II)!B ~ 11<1>112 (\II, \II)!B; 

II(\II,<I»!BII ~ 11'111111<1>11· 

(2.8) 

(2.9) 

(2.10) 

To prove (2.8) one uses (2.6), 1.(1.42), 1.(1.41), and 1.(1.15). For (2.9) we sub­
stitute <1>(<1>, \Ilh - \II for \II in the inequality (\II, \II)!B ~ O. Expanding, the 
first tenn equals (\II, <I»!B(<I>, <l>h(<I>, \II)!B. Then use 1.(1.42), and replace <I> by 
<1>/11<1>11. Equations 1.(1.15), (2.1), and (2.9) then imply (2.10). • 

Corollary 2.1.4. A pre-Hilbert ~-module e ~ ~ can be completed to a Hilbert 
~-module. 
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One first completes t in the norm (2.5), obtaining c. Using (2.8), the ~-action 
on t extends to a ~-action on c. The completeness of ~ and (2.10) then allow 
one to extend the !.B-valued sesquilinear form on t to a ~-valued one on c. It is 
easily checked that the required properties hold by continuity. • 

In Example 2.1.2, it is almost trivial to see that m, 'H, and r o(H) are the closures 
of§{ (defined over Q{), of a dense subspace t, and of r(H) (defined over C~(X», 
respectively. 

A Hilbert C*-module £ :;=: ~ defines a certain C*-algebra C*(c,~) that plays 
an important role in the induction theory in 2.2. A map A : c ~ c for which there 
exists a map A * : c ~ £ such that 

(111, Aet>hB = (A*III, et»!B 

for all 111, et> E C is called adjointable. 

Theorem 2.1.5. 

(2.11) 

1. An adjointable map is automatically C-linear, ~-linear (that is, (AIII)B = 
A (111 B) for all 111 E £ and B E ~), and bounded. 

2. The adjoint of an adjointable map is unique, and the map A ~ A * defines an 
involution on the space C*(c, ~) of all adjointable maps on c. 

3. Equipped with this involution, and with the norm 1.(1.17), defined with respect 
to the norm (2.5) on C, the space C*(c,~) is a C*-algebra. 

4. Each element A E C*(c, ~) satisfies the bound 

(Alii, AIII)!B :s: II A 112(111, III)!B (2.12) 

for all 111 E c. 
5. The (defining) action ofC*(£,~) on £ is nondegenerate. 

We write C*(c, ~) ~ c :;=: ~. 

The property of C-linearity is immediate. To establish ~-linearity one uses 
(2.6); this also shows that A* E C*(£,~) when A E C*(c, ~). 

To prove boundedness, fix 111 E C and define T\jJ : c ~ ~ by T\jJet> := 
(A * A 111, et»!B' It is clear from (2.10) that II T\jJ II :s: IIA* A 11111, so that T\jJ is 
bounded. On the other hand, since A is adjointable, one has T\jJet> = (111, A* Aet»!B, 
so that, using (2.1 0) once again, one has II T \jJ et> II :s: II A * A et> II 1111111. Hence 
sup{ II T \jJ III 1111111 = I} < 00 by the principle of uniform boundedness (here it 
is essential that c is complete). It then follows from (2.5) that IIA II < 00. 

Uniqueness and involutivity of the adjoint are proved as for Hilbert spaces; the 
former follows from (2.4), the latter in addition requires (2.1). 

The space C*(c,~) is norm-closed, since one easily verifies from (2.11) and 
(2.5) that if An ~ A then A~ converges to some element, which is precisely A *. 
As a norm-closed space of linear maps on a Banach space, C*(c, ~) is a Banach 
algebra, so that its satisfies 1.( 1.14). To check the remaining axiom, one infers from 
(2.5) and the definition (2.11) of the adjoint that IIA 112 :s: IIA* A II; using 1.(1.14) and 
the argument leading to 1.(1.16), one first obtains IIA*II = IIAII, and subsequently 
1.(1.15). 
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Finally, it follows from (2.3), 1.(1.39), and (2.11) that for fixed lJ1 E C the map 
A ~ ('II, AlJ1)!B from C*(c,~) to ~ is positive. Replacing A by A* A in 1.(1.40) 
and using 1.(1.15) and (2.11) then leads to (2.12). 

To prove the final claim, we note that for fixed'll, <I> E C, the map Z ~ 
'11(<1>, Z)!B is in C*(c, ~). When the right-hand side vanishes for all'll, <1>, it 
follows from (2.2) that A (<I>, Z)!B = 0 for all A in the C*-algebra in ~ generated 
by (c, c)!B. In any C*-algebra, the property AB = 0 for all A implies B = 0; 
use an approximate unit if necessary. Hence (<I>, Z)!B = 0 for all <I> E c. Taking 
<I> = Z, we conclude that Z = 0 by (2.4). • 

Under a further assumption (which is by no means always met in our examples) 
one can completely characterize C*(c, ~). A Hilbert C*-module over ~ is called 
self-dual when every bounded ~-Iinear map cP : c ---+ ~ is of the form cp('II) = 
(<I>, 'II)!B for some <I> E c. 

Proposition 2.1.6. In a self-dual Hilbert C* -module C ~ ~ the C* -algebra 
C*(c, ~) coincides with the space £(c)!B of all bounded C.-linear and ~-linear 
maps on C. 

In view of Theorem 2.1.5 we need to show only that a given map A E £(c)!B 
is adjointable. Indeed, for fixed'll E C define CPA,1jI : C ---+ ~ by CPA,IjI(Z) := 
('II, AZ)!B' By self-duality this must equal (<I>, Z)!B for some <1>, which by definition 
is A*'II. • 

In the context of Example 2.1.2.1, one may wonder what C*(2l, 2{) is. The map 
p : 2{ ---+ ~(2{) given by 1.(1.27) is easily seen to map 2{ into C*(2{, 2{). This map 
is isometric (hence injective). Using (2.11), one infers that Ap(B) = p(AB) for all 
A, B E 2{. Hence p(2{) is an ideal in C*(2{, 2l). When 2{ has a unit, one therefore 
has C*(2{, 2{) = p(2{) :::::: 2l; cf. the proof of 1.1.2.1. 

When 2{ has no unit, C*(2{, 2{) is the so-called multiplier algebra of 2{. One 
may compute this object by taking a faithful nondegenerate representation 1f : 

2{ ---+ ~('Jt); it can be shown that C* (2{, 2{) is isomorphic to the idealizer of 1f (2{) 
in ~(1t) (this is the set of all B E ~(1t) for which B1f(A) E 1f(2{) for all A E 2{). 

One thus obtains 

C*(Co(X), Co(X» = Cb(X); 

C*(~o(1t), ~o(1t» = ~(1t). 

(2.13) 

(2.14) 

Equation (2.13) follows by taking 1f(Co(X» to be the representation on L2(X) by 
multiplication operators (where L 2 is defined by a measure with support X), and 
(2.14) is obtained by taking 1f(~o(1t» to be the defining representation; see the 
paragraph following 1.1.6.3. 

In Example 2.1.2.2 the C*-algebra C*(1t, C) coincides with ~(1t), because 
every bounded operator has an adjoint. Its subalgebra ~o(1t) of compact operators 
has an analogue in the general setting of Hilbert C* -modules as well; see 2.4. 
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2.2 Rieffel Induction 

Given a Hilbert ~ -module E, the goal of the Rieffel induction procedure described 
in this section is to construct a representation 1C x of C* (E, ~) from a representation 
1C x of ~. In order to explicate that the induction procedure is a generalization of 
the GNS-construction I.1.5.4, we first induce from a state Wx on ~, rather than 
from a representation 1C x . 

Construction 2.2.1. Suppose one has a Hilbert C* -module E ~ ~. 

1. Given a state Wx on ~, define the sesquilinear form f.)~ on E by 

----x 
(\II, cf»o := wx({\II, cf»!B). (2.15) 

Since Wx and {, )!B are positive (cf. (2.3)), this form is positive semidefinite. Its 
null space is 

- ----x Nx = {\II EEl (\II, \11)0 = OJ. (2.16) 
-x -x -

2. The form (, )0 projects to an inner product (,) on the quotient E / Nx . If 

Vx : E ~ E /Jilx is the canonical projection, then by definition 
_ _ x ----x 

(Vx \II, Vxcf» := (\II, cf»o. (2.17) 

The Hilbert space i£x is the closure ofE/Jilx in this inner product. 

3. The representation ii"X(C*(E, ~» is firstly defined on E/Jilx c i£x by 

1C X(A)Vx\ll := VxA\II; (2.18) 

itfollows that ii'x is well-defined and continuous. Since E /Jilx is dense in i£x, 

the operator ii'X(A) may be defined on all ofi£x by continuous extension of 
(2.18), where it satisfies 1.(1.19) and 1.(1.20). 

The GNS-construction I. 1.5.4 is a special case of 2.2.1, obtained by choosing 
E = ~ = m, as explained in Example 2.1.2.1. 

The analogue of I.(1.58) and the property (2.11) imply that AJilx £;; Jilx , so 
that (2.18) is well-defined. The continuity of :if x follows from (2.18) and (2.17), 

- ---- x which imply that llii'x (A)Vx \11112 = (A \II, A \11)0. Using (2.15), (2.12), and (2.10) 
in succession, one obtains 

(2.19) 

On the other hand, 1.(1.51) applied to ~, used with the definition of IIAII for 
A E C*(E, ~), implies that 

IIAII = sup{IIii'X(A)II, Wx E S(~)}. (2.20) 

As a corollary, one infers a useful property that will be used, e.g., in the proof 
of Theorem 2.3.3. 

Lemma 2.2.2. Let A E C*(E, ~) satisfy (\II, A\II)!B ~ 0 for all \II E E. Then 
A ~O. 
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It follows from (2.20) that E9wx ES(')3)ii x is faithful; the condition on A implies 
that ii x (A) :::: 0 for all wX• • 

An illustration of the construction of the induced space is obtained by special­
izing Example 2.1.2.3 to the case H = HX, which is a vector bundle over Q with 
typical fiber 1ix; cf. III.(2.143). Hence we take £ = ro(HX), the space of contin­
uous sections fo(HX) of HX, and 1)3 = C(Q), made into a Hilbert C*-module by 
(2.7) and the canonical right action of C(Q) on ro(HX). For any pure state Wx = q 
on C(Q), the induced space is just 1ix• 

When one starts from a representation 1T x (1)3) rather than from a state, the general 
construction proceeds as follows. 

Construction 2.2.3. Start/rom a Hilbert C*-module £ ;:=': 1)3. 

1. Given a representation 1T x (1)3) on a Hilbert space 1i x' with inner product (, >X' 
the sesquilinear form (, )~ is defined on £ ® 1ix (algebraic tensor product) by 
sesquilinear extension of 

(2.21) 

where v, W E 1ix. This form is positive semidefinite, because (, >x and ( , )')3 
are. The null space is 

Nx = {Ijt E £ ® 'Hx I (Ijt, Ijt)~ = OJ. (2.22) 

As in 1.(1.58), we may equally well write 

(2.23) 

2. Theform (, )~ projects to an inner product (, )X on the quotient £ ® 1ix/Nx, 
defined by 

(2.24) 

where Vx : £ ® 1ix -+ £ ® 1ix/Nx is the canonical projection. The Hilbert 
space 1ix is the closure off ® 1ix/Nx in this inner product. 

3. The representation 1T x (C*(£, 1)3» is then defined on 1ix by continuous extension 
of 

(2.25) 

where lIx is the unit operator on 1ix; this is well-defined, and the extension in 
question is possible, since 

(2.26) 

To prove that the form defined in (2.21) is positive semidefinite, we assume 
that 1T x (1)3) is cyclic (if not, the argument below is repeated for each cyclic 

summand; see 1.1.5.2). With q, = Li \IIi Vi and Vi = 1T X (Bi)Q (where Q is 
a cyclic vector for 1Tx(I)3», one then uses (2.21), (2.6), and (2.2) to obtain 
--x . --x 

(\11,\11)0 = (V,1TX«<P,<P)')3)v)x Wlth<P:= Li\lljBj. Hence (\11,\11)0 ~ Oby 
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(2.3) and the positivity of 1l' X' By (2.11) and (2.23), the operator A ® lix maps N x 
to itself, so that (2.25) is well-defined. 

To prove continuity, one computes II1l'X(A)Vx q, 112 = (v, 1l'x«A<I>, A<I>}!8)v>X 
from (2.24) and (2.25); according to (2.12) and the property 1I1l' x (A)Il ::: IIA II 
(cf. the text after 1.1.5.1), this is bounded by IIAII2(v, 1l'x«(<I>, <I>}!8)v)x' Since the 

second factor equals II Vx q, 11 2, this proves (2.26). • 

Similarly, 1l'x is faithful and nondegenerate when 1l'x is. 
To interrelate the above two formulations, one assumes that 1l' x is cyclic, with 

cyclic vector Ox' Then define a linear map {j : e ~ e ® 'ltx by 

(jw:=w®Ox' (2.27) 

According to (2.15), (2.21), and 1.(1.57), this map has the property 

(2.28) 

By (2.17) and (2.24) the map (j therefore quotients to a unitary isomorphism 
U : i£x ~ 'ltx, which by (2.18) and (2.25) duly intertwines if x and 1l'x. 

Of course, any subspace of C*(e, IB) may be subjected to the induced represen­
tation 1l' x. This particularly applies when one has a given (pre-) C* -algebra 21 and 
a morphism 1l' : 21 ~ C*(e, IB), leading to an induced representation 1l'X(21) on 
1tx. Further to an earlier comment, one verifies that 1l'x is nondegenerate when 1l' 
and 1l'x are. With slight abuse of notation we will write 1l'X(A) for 1l'X(1l'(A». The 
situation is depicted in Figure 11. 

We tum to a practical method of obtaining alternative and more explicit 
realizations of 1l'X(C*(e, IB». 

Proposition 2.2.4. Suppose one has a Hilbert space 1t; (with inner product 
denoted by (, )!) and a linear map {j : e ® 1tx ~ 1t; satisfying 

(2.29) 

forallq" <i> E e®1tx' Then {j quotientstoanisometricmapbetweene®1tx /Nx 
and the image of {j in 'It;. When the image is dense this map extends to a unitary 

1l' 1l'x 
21 e ~ 

IB 1tX 

~ I induction 

1tX 

FIGURE 11. Rieffel induction 
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isomorphism U : 'H.x -+ 'H.;. Otherwise, U is unitary between 'H.x and the closure 
of the image of U. 

In any case, the representation Jr x (C* (£, ~» is equivalent to the representation 
Jrf(C*(£, ~», defined by continuous extension of 

(2.30) 

It is obvious that NX = ker( U), so that, comparing with (2.25), one indeed has 
U 0 Jrx = Jr: 0 U. • 

As an abstract illustration of this technique, consider the space eel, 'H.x)'13 of 
all antilinear maps f : £ -+ 'H.x satisfying 

f('IIB) = Jrx(B*)f('II) (2.31) 

for all 'II E £ and B E 23. Define a map U : £ ® 'H.x -+ e(l, 'H.x)'13 by linear 
extension of 

(2.32) 

Taking the inner product of (U ('II ® v»( ct» with an arbitrary vector W E 'H. x' one 
sees from (2.21) that U (q/) is the zero map iff q/ E Nx• The image of U may be 
equipped with an inner product designed to satisfy (2.29), i.e., we put 

(U(\II ® v), U(Cf> ® w»! := (v, Jrx«('II, Cf»'13)w>X. (2.33) 

Comparing with (2.21), one sees that (2.29) is indeed satisfied, so that the comple­
tion of U(£ ® 'H.x) in this inner product may be identified with the Hilbert space 
'H.; of the preceding paragraphs. As we shall see, in practical applications one can 
sometimes obtain a direct characterization of the space 'H.; thus defined. 

So far, we have presented the simplest version of Rieffel induction, in which £ 
is a Hilbert C*-module. One may consider the following generalizations. 

Firstly, it is not necessary that £ ;::::! 23 be complete. When t ;::::! 23 isn't, 
an operator A satisfying (2.11) need neither be bounded on t, nor automatically 
satisfy (2.12). Let an adjointable operator A on t satisfy 

(A'll, A'II)'13:::: C~('II, '11)'13 (2.34) 

for some positive number CA. Using the reasoning leading to the bound (2.19), one 
sees that this bound is still satisfied, with II A II replaced by CA. Moreover, defining 
II A II as the smallest number C A for which (2.34) holds, one can still derive the 
equality (2.20) in the same way. This equality, then, implies that II . II thus defined 
is a norm on the space C*(t, 23) of all maps on £ satisfying (2.11) and (2.34). 
The proof that C*(£, 23) is a C* -algebra in the complete case may then by copied, 
showing that in the above norm C*(t, 23) is a pre-C*-algebra. 

Using (2.24), (2.15), and (2.5), one shows that II V'll II :::: 11'1111, where the norm 
on the left-hand side is in i£x, and the norm on the right-hand side is the one defined 
in (2.5). It follows that the induced space 'H.x (or i£X) obtained by Rieffe1-inducing 
from a pre-Hilbert C* -module is the same as the induced space constructed from 
its completion. 
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Secondly, whether or not t ~ ~ is complete, one may drop the positivity 
condition (2.3), as long as Jr x( (lit, 1It)'8) is a positive operator on 1{x for all lit E t. 
For the latter condition is sufficient to guarantee that the form (2.21) is positive 
semidefinite. In that case t ~ ~ is called Jr x-positive. 

This suggests that one may generalize the Rieffel induction procedure by alto­
gether omitting the C* -algebra ~ and its representation Jr x. The price one pays for 
the absence of a ~-action on e is the stringent positivity condition (2.36) below 
(which in Rieffel induction is automatically satisfied). 

Construction 2.2.5. Suppose one has a vector space t and a Hilbert space 1{ x' 
where t is equipped with a sesquilinear form (, ) '8(1tx) that takes values in ~ (1{ x), 

and for all lit, <I> E t satisfies 

(lit, <I»;(1tx) = (<1>, 1It)'8(1tx); (2.35) 
n 

L(v;, (lit;, IItj}Vj)x ::: 0 
;,j=1 

(2.36) 

for each n EN and all VI, ••. , Vn E 1{x and lit I , .•• , IItn E t.In other words, the 
matrix M E VJtn(~(1{x» with entries M;j = (lit;, IItj }'8(1tx) is positive (cf II. I A). 
Then 

1. The form (, )~ on £ ® 1{x is defined by 

(lit ® v, <I> ® w)~ := (v, (lit, <I»'8(1tx)wh. (2.37) 

2. The induced Hilbert space 1{x is the closure of £ ® 1{x /Nx (where the null 
space Nx is defined as in (2.22» in the inner product (, )X inherited from (, )~, 
defined as in (2.24). 

3. The induced action Jrx (A) on Rx of an adjointable operator A on £ satisfying 
(2./1) and (2.12) with ~ """"* ~(1{x) is defined as in (2.25). 

4. The induced action JrX(B) on Rx of an operator B E ~(1{x) satisfying 

B(IIt, <I>}'8(1tx) = (lit, <I>}'8(1tx)B 

for all lit, <I> E £ is defined by continuous extension of 

JrX(B)Vx~:= VxlI® B~, 

where II is the unit operator on t. 

(2.38) 

(2.39) 

The form (, )~ is positive because of the assumption (2.36). Equation (2.38) 
implies that B maps Nx into itself, so that Jrx (B) is well-defined. Using 1.(1.40), 
one easily proves the inequality 

(lI® B~, lI® B~)~ ~ IIBII2(~, ~)~; (2.40) 

as in the proof of (2.26) this leads to the bound 

IIJr X(B)1I ~ IIBII· 

This equally well holds for adjointable operators A on t. 
(2.41) 

• 
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This generalized induction procedure is known as Fell induction. Construction 
11.1.4.3 is a special case of 2.2.5: Given a completely positive map Q : Il ~ ~ 
and a representation rr x (~) on 1{ x' we take t = Il, and define 

(A, B)'13(1f.x) := rrx(Q(A* B)). (2.42) 

The Hilbert space 1{x and the representation rrX constructed in 11.1.4.3 are then 
exactly the same as the objects defined in 2.2.5. 

Interestingly, the map W in 11.(1.29) is a special case of a map intrinsically 
defined in Fell induction in general. Namely, in the setting of Construction 2.2.5, 
pick a <I> E t, and define Wei> : 1{x ~ 1{x by 

WeI>V:= Vx<l> ® v. (2.43) 

Using (2.35) and (2.37), one computes its adjoint W; : 1ix ~ 1ix as 

W; Vx \11 ® v = (<1>, \I1)'13(1f.x)v. (2.44) 

Comparing (2.43) and (2.44) with 11.(1.29) and 11.(1.30), respectively, one sees 
that in the special case 11.1.4.3 one has to put <I> = lL 

One may pass from Rieffel induction to Fell induction by defining 

(2.45) 

Condition (2.36) then holds by the argument in the proof of 2.2.3, and may alterna­
tively be derived from Lemma 2.2.2. This is especially useful when one has found 
a candidate for (, )'13 that fails to be positive, but that is rr x -positive. Alternatively, 
one may have a family of C*-algebras ~(n) and sesquilinear forms (, )'13(0) for 
which one would like to take a limit n ~ 00, which makes no sense at the level 
of C* -algebras. It may then nonetheless be the case that the expressions (2.37), 
defined via (2.45), do converge. We will see Fell induction in action in 2.10, 3.3, 
3.5, and 3.8. In these applications one has 1{x = C, for which condition (2.36) 
reads simply 

(\11, \11k :::: o. (2.46) 

A detailed comparison between classical reduction and quantum induction will 
be given in 2.9. 

2.3 The C* -Algebra of a Hilbert C* -Module 

In preparation for the quantum imprimitivity theorem in the next section, and also 
as a matter of independent interest, we introduce the analogue for Hilbert C*­
modules of the C* -algebra ~o(1{) of compact operators on a Hilbert space. This 
is the C*-algebra most canonically associated to a Hilbert C*-module. 

Definition 2.3.1. The collection Co(c, ~) of "compact" operators on a Hilbert 
C* -module c ~ ~ is the C* -algebra generated by the adjointable maps of the 
type T:'eI>' where \11, <I> E C, and 

T::eI>Z:= \11(<1>, Z)'13. (2.47) 



364 IV. Reduction and Induction 

We write Co(£' s.B) ~ £ ~ s.B, and call this a quantum dual pair. 

The word "compact" appears between quotation marks because in general, ele­
ments of Co (£, s.B) need not be compact operators. The significance of the notation 
introduced at the end of the definition will emerge from Theorem 2.3.3 below. 
Using the (trivially proved) properties 

(T~4»* = T!\,; (2.48) 

AT~4> = Tl",,4>; 

T~4>A = T~A'4>' 

(2.49) 

(2.50) 

where A E C*(£, s.B), one verifies without difficulty that Co(£' s.B) is a (closed 
2-sided) ideal in C*(£, s.B), so that it is a C*-algebra by Theorem 2.1.5. From (2.8) 
and (2.10) one obtains the bound 

II T: 4> II ~ II \1111 II <I> II. (2.51) 

One sees from the final part of the proof of Theorem 2.1.5 that CO (£, s.B) acts 
nondegenerately onE. When CO(£, s.B) has a unit, it must coincide with C*(£, s.B). 

Proposition 2.3.2. 

1. When £ = s.B = ~ (see Example 2.1.2.1) one has 

Co(~,~) ~~. 

This leads to the quantum dual pair ~ ~ ~ ~ ~. 
2. For £ = 11. and s.B = C (see Example 2.1.2.2) one obtains 

Co(11., C) = s.Bo(11.), 

whence the quantum dual pair s.Bo(11.) ~ 11. ~ C. 

(2.52) 

(2.53) 

One has T;ff 4> = p(\II<I>*); see 1.(1.27). Since p : ~ -+ s.B(~) is an isometric 
morphism, th~ map f{J from the linear span of all T:' 4> to ~, defined by linear 
extension of f{J(T;ff 4» = \11<1>*, is an isometric morphism as well. It is, in particular, 
injective. When i has a unit it is obvious that f{J is surjective; in the nonunital case 
the existence of an approximate unit implies that the linear span of all \II <1>* is 
dense in~. Extending f{J to Co(~'~) by continuity, one sees from 1.1.3.10.4 that 
f{J(CQ(~, ~)) = ~. 

Equation (2.53) follows from Definition 1.1.6.3 and the fact that the linear span 
of all T~.4> is s.B /(11.). • 

In Example 2.1.2.3 one derives that CQ(ro(H), C(Q» is the C*-algebra of the 
continuous field of C*-algebras over Q determined by H (in which ~q = 9'Jtn(C) 
for all q E Q). 

A Hilbert C*-module £ over s.B is called full when the collection {(\II, <I>)~}, 
where \II, <I> run over £, is dense in s.B. A similar definition applies to pre-Hilbert 
C* -modules. 

Given a complex linear space £, the conjugate space e is equal to £ as a real 
vector space, but has the conjugate action of complex scalars. 
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Theorem 2.3.3. Let e be a full Hilbert f13-module. The expression 

(\II, cl>)co(t:.~) := T:'<I> (2.54) 

in combination with the right action 1l'R(A)\II := A*\II, where A E C~(e, (13), 

defines £ as a full Hilbert C* -module over CO(e, (13).ln other words, from e ~ f13 

one obtains £ ~ C~(e, 1J3).Theleftaction1l'L(B)\II:= \IIB*ojf13 on £ implements 
the isomorphism 

(2.55) 

We define l.2l to be CO(e, 1J3); in the references to (2.1) etc. below one should 
substitute l.2l for f13 when appropriate. The properties (2.1), (2.2), and (2.3) follow 
from (2.48), (2.50), and Lemma 2.2.2, respectively. 

To prove (2.4), we use (2.54) with cl> = \II, (2.47) with Z = \II, (2.2), (2.6), 
and (2.5) to show that (\II, \II)!! = 0 implies 11('11, 'II)~II = O. Since ('II, 'II)~ is 
positive by (2.3), this implies (\II, 'II)~ = 0; hence'll = 0 by (2.4). 

It follows from (2.6) and (2.50) that each 1l'L(B) is adjointable with respect to 
(, }!!. Moreover, applying (2.5), (2.54), (2.51), and (2.8) one verifies that 1l'L(B) is 
a bounded operator on £ with respect to II . II!!, whose norm is majorized by the 
norm of B in 1J3. The map 1l'L is injective because e is nondegenerate as a right 
f13-module. 

Let £e be the completion of £ in II . II!!; we will shortly prove that £e = £. 
It follows from the previous paragraph that 1l'L(B) extends to an operator on £e 
(denoted by the same symbol), and that 1l'L maps f13 into C*(£e, l.2l). It is trivial 
from its definition that 1l'L is a morphism. Now observe that 

1l'L«'II, cl>}~) = T::'<I>' 

for the definitions in question imply that 

T::'<I>Z = 'II(cl>, Z}!! = Tl<l>'II = Z{cl>, 'II}~. 

(2.56) 

(2.57) 

The fullness of e ~ IJ3 and the definition of CO(£e, l.2l) imply that 1l'L : I.B ~ 
C~(£co l.2l) is an isomorphism. In particular, it is norm-preserving by 1.1.3.10.5. 

The space e is equipped with two norms by applying (2.5) with IJ3 or with l.2l; 
we write II . II~ and II . 11'<1' From (2.54) and (2.51) one derives 

(2.58) 

For'll E e we now use (2.5), the isometric nature of 1l'L' and (2.56) to obtain 
1 

11'11 II ~ = II T::' ",11 2 • From (2.51) with f13 replaced by l.2l one then derives the converse 

inequality to (2.58), so that lI'IIh = II'IIII~. Hence £e = £, as e is complete in 
II'II~ by assumption. In other words, the completeness of e as a Hilbert f13-module 
is equivalent to the completeness of £ as a Hilbert l.2l-module. 

We have now proved (2.55). Finally, noticing that as a Hilbert C*-module over 
l.2l the space £ is full by definition of CO(e, 1J3), the proof of Theorem 2.3.3 is 
complete. • 
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For later reference we record the remarkable identity 

(Z, <I>)c;(t:,~)W = Z(<I>, W)~, 

which is a restatement of (2.57). 

2.4 The Quantum Imprimitivity Theorem 

(2.59) 

Our aim in this section is to prove an operator-algebraic version of Theorem 
1.4.1, in which special symplectic reduction is replaced by Rieffel induction. This 
theorem will be based on the following concept. 

Definition 2.4.1. Tho C* -algebras !2l and ~ are Morita equivalent when there 
exists a full Hilbert C*-module £ over ~ under which!2l ~ CQ(£, ~). We write 

!2l ~ ~ and!2l ~ £ ~ ~. 

This definition is better behaved than its classical counterpart 1.3.7, for we have 

Proposition 2.4.2. Morita equivalence is an equivalence relation in the class of 
all C* -algebras. 

The reflexivity property ~ ~ ~ follows from (2.52), which establishes the 
quantum dual pair ~ ~ ~ ~ ~. Symmetry is implied by (2.55), proving that 
!2l ~ £ ~ ~ implies ~ ~ "£ ~ !2l. 

The proof of transitivity is more involved. When !2l ~ ~ and ~ ~ Q: we have 
the chain of quantum dual pairs 

!2l ~ £1 ~ ~ ~ £2 ~ Q:. 

We then form the linear space £1 ®~ £2 (which is the quotient of £1 ® £2 by the 
ideal I~ generated by all vectors of the form WIB ® '112 - WI ® BW2), which 
carries a right action 7r:>(Q:) given by 

7r~(C)(WI ®~ '112) := WI ®~ (W2C), (2.60) 

Moreover, we can define a sesquilinear map (, )~ on £1 ®~ £2 by 

(WI ®~ '112, <1>1 ®~ <l>2)~ := ('112, ('lit. <l>lh<l>2}e:. (2.61) 

With (2.60) this satisfies (2.1) and (2.2); as explained prior to (2.6), one may 
therefore construct a Hilbert C* -module, denoted by £® ~ Q:. (Remarkably, if 
one looks at (2.61) as defined on £1 ® £2, the null space of (2.5) is easily seen to 
contain I~, but in fact coincides with it, so that in constructing £® one only needs 
to complete £1 ®~ £2.) 

Apart from the right action 7r:> (Q:), the space £® carries a left action 7r f (!2l): The 
operator 

7r~(A)(Wl ®~ '112) := (A 'Ill) ®~ '112 

is bounded on £1 ®~ £2 and extends to £®. We now claim that 

q(£®, Q:) = 7rf(!2l)· 

(2.62) 

(2.63) 
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Using (2.47), the definition of ®'ll, and (2.2), it is easily shown that 

n~(T:'(1/I2.<t>2)'lI.<t»OI ®'ll Q2 = \III ®'ll (\112, <1>2(<1>1, OI)'ll)'l102. (2.64) 

Now use the assumption CQ(£2,1t) = ~; as in (2.54), with ~ and £ replaced by 
It and £2, this yields (\II, <I»'ll = T$.<t>. Substituting this in the right-hand side of 
(2.64), and using (2.47) with ~ replaced by It, the right-hand side of (2.64) becomes 
\III ®'ll \112(<1>2(<1>1, Ol)'ll, 02k Using \II B* = ndB)\II (see 2.3.3), (2.11) with It 
instead of~, (2.61), and (2.47) with ~ replaced by It, we eventually obtain 

(2.65) 

This leads to the inclusion Co(£®' It) £ nT(Q1.). To prove the opposite inclusion, 

one picks a double sequence {\II~, <I>~} such that L~ T:, <t>i is an approximate unit 
2' 2 

in ~ = CQ(£2, It). One has limN L~ \II~(<I>~, Z)( = Z from (2.47), and a short 
computation using (2.47) with (2.61) then yields 

N 

lim " T.~ "" .hi ... "" ... i = n~(T: <t> ). N L...J "'1 ""'lI'" 2."'1 ""'lI"'2 " 1 
i 

Hence nT(~l) £ CQ(£®, It), and combining both inclusions one obtains (2.65). 

Therefore, one has the quantum dual pair m ~ £® ~ It, implying that m ~ It. 
This proves transitivity. • 

The following simple example of this concept will have nontrivial consequences. 

Proposition 2.4.3. For any Hilbert space 11., the C* -algebra ~o(11.) of compact 
operators on 11. is Morita equivalent to C, with quantum dual pair ~o(11.) ~ 11. ~ 
C. In particular, the matrix algebra VRn (C) is Morita equivalent to C. 

This is immediate from (2.53). In the finite-dimensional case one has VRn(C) ~ 
cn ;=! C, where VRn (C) and C act on cn in the usual way. The double Hilbert 
C* -module structure is completed by specifying 

(z, w)c = ziw i ; 

«(z, w) m.(c»ij = Zi wi , (2.66) 

from which one easily verifies (2.59). • 
In practice, the following way to construct quantum dual pairs, and therefore 

Morita equivalences, is useful. 

Proposition 2.4.4. Suppose one has 

• two pre-C* -algebras !it and ~; 
• a full pre-Hilbert ~-module e; 
• a left action offit on e, such that e can be made into afull pre-Hilbert fit-module 

with respect to the right action nR(A)\II := A*\II; 
• the identity 

(2.67) 
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(for all \II, <1>, Z E t) relating the two Hilbert C* -module structures; 
• the bounds (for all A E §l and B E ~) 

(\liB, \IIB}Q ~ liB 112(\11, \II}Q; 

(A\II, A\II)~ ~ IIAII2(\II, \II)~. 

(2.68) 

(2.69) 

Then!2l !!'!- ~, with quantum dual pair!2l :r=: c :r=: ~, where c is the completion 
of t as a Hilbert ~-module. 

Using Corollary 2.1.4 we first complete t to a Hilbert ~-module C. By (2.69), 
which implies II A \1111 ~ II A II II \1111 for all A E §l and \II ~ t, the action of §l on t 
extends to an action of!2l on c. Similarly, we complete t to a Hilbert !2l-module 
ec; by (2.68) the left action nL(B)\II := \II B* extends to an action of ~ on ec• As 
in the proof of Theorem 2.3.3, one derives (2.58) and its converse for ! E t, so 

that the ~-completion c of £ coincides with the !2l-completion ec of £; that is, 
ec=e. 

Since e is a full pre-Hilbert §l-module, the !2l-action on c is injective, hence 
faithful. It follows from (2.67), Theorem 2.3.3, and (once again) the fullness ofe 
that!2l ~ q(c, ~). In particular, each A E !2l automatically satisfies (2.11). • 

Clearly, (2.67) is inspired by (2.59), into which it is turned after use of 2.4.4. 
For example, one may take m = ~O(L2(Q» (where Q is a manifold), whose 

dense subalgebra §l consists of the Hilbert-Schmidt operators with kernel in 
C~(Q x Q). This subalgebra acts on t = C~(Q) in the obvious way. Further 

taking ~ = ~ = C, with self-evident action on t, one generalizes (2.66) to 

(\II, <I>}c = (\II, <1»; 

(\II, <I>}cgo(QxQ)(q, q') = \II(q)<I>(q'). (2.70) 

The bounds (2.68) and (2.69) are trivially satisfied, so that in this case Proposition 
2.4.4 reconfirms 2.4.3. 

After this preparation, we pass to the quantum imprimitivity theorem; cf. its 
classical analogue Theorem 1.4.1. 

Theorem 2.4.5. There is a bijective correspondence between the nondegener­
ate representations of Morita-equivalent C* -algebras !2l and~, preserving direct 
sums and irreducibility. This correspondence is as follows. 

Let the pertinent quantum dual pair be m :r=: c :r=: ~. When no (m) is a repre­
sentation on a Hilbert space 11.0 , there exists a representation nx(~) on a Hilbert 
space 11.x such that no is equivalent to the Rieffel-induced representation nX 
defined by (2.25) and the above quantum dual pair. 

In the opposite direction, a given representation nx(~) is equivalent to the 
Rieffel-induced representation nO, defined with respect to some representation 
no(m) and the quantum dual pair ~ :r=: e :r=: !2l. 

Taking no(m) = nX(m) as just defined, one has nO (~) ~ nx(~)' Conversely, 
taking nx(~) = nO(~), one has nX(!2l) ~ no (!2l). 
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1fx 
~ 

IB 1{x ~ ~ 

~ 
~ £ ~ 

~ 1{x := 1{u ~ 

~ 
IB 1{u 

FIGURE 12. Quantum imprimitivity theorem: 1t" :::: 1tx and 1f" :::: 1fx 

See Figure 12. The idea of the proof is the same as in 1.4.1; its execution is, 
in fact, simpler. Starting with 1f x (IB), we construct 1f x (~) with Rieffel induction 
from the quantum dual pair~ ~ e ~ IB, relabel this representation as 1fu(~), and 
move on to construct 1fu (IB) from Rieffel induction with respect to the quantum 
dual pair IB ~ £ ~ ~. We then construct a unitary map U : 1{u ~ 1{ x that 
intertwines 1fU and 1f X' 

We first define U : £ ® e ® 1{x ~ 'fix by linear extension of 

(2.71) 

Note that U is indeed (:-linear. Using (2.71), the properties 1.(1.20) and 1.(1.19) 
with qJ replaced by 1fx' (2.21), and (2.47), one obtains 

- - 'B X (UWI ® q>l ® VI, UW2 ® q>2 ® V2)X = (q>l ® VI, T1iI1 •1iI2 q>2 ® V2)O' (2.72) 

Now use the assumption ~ = CQ(e, IB) to use (2.59), and subsequently (2.24) 
and (2.25), all read from right to left. The right-hand side of (2.72) is then seen 
to be equal to (Vxq>, ® V"1fX«w,, W2).<t)VXq>2 ® V2)X. Now put 1fx = 1fu and 
1{x = 'fiu , and use (2.21) and (2.24) from right to left, with X replaced by u. This 
shows that 

(UWI®q>I®V" UW2®q>2®V2>X = (Vu(W,®Vxq>,®v,), Vu(W2®Vxq>2®V2»u. 
(2.73) 

In particular, U annihilates W ® ci>, where ci> E e ® 1{x, whenever ci> E Nx or 
W ® Vx ci> E Nu. Hence we see from the construction firstly of 1{x = 'fiu from 
e ® 'fix, and secondly of 'fiu from £ ® 1{u (cf. 2.2.3), that U descends to an 
isometry U : 'fiu ~ 1{x, defined by linear extension of 



370 IV. Reduction and Induction 

Using the assumptions that the Hilbert C* -module £ ~ ~ is full and that the 
representation Jr x (~) is nondegenerate, we see that the range of [; and hence of 
U is dense in ?ix, so that U is unitary. 

To verify that U intertwines Jr q and Jr x' we use (2.74) and (2.25), with X replaced 
by a, to compute 

(2.75) 

where the left action of B E ~ on \II E "£ is as defined in 2.3.3. Thus writing 
JrL(B)\II = \IIB*, using (2.6), 1.(1.19) with rp replaced by Jrx ' and (2.74) from 
right to left, the right-hand side of (2.75) is seen to be Jr x (B)U Va (\II ® Vx <I> ® V). 
Hence UJrq(B) = Jrx(B)U for all B E~. 

Using the proof that the Morita equivalence relation is symmetric (see 2.4.2), 
one immediately sees that the construction works in the opposite direction as well. 

It is easy to verify that Jrx = Jrx' $ JrX2 leads to JrX = Jrx' $ JrX2. This also 
proves that the bijective correspondence Jr x (~) ~ Jr x (!X) preserves irreducibility: 
When Jrx is irreducible and Jrx isn't, one puts JrX = Jrq as above, decomposes 
Jrq = Jrq' $ Jrq2, then decomposes the induced representation Jrq(~) as Jra = 
Jra' $ Jr q2 , and thus arrives at a contradiction, since Jr q ~ Jr X. • 

Combined with Proposition 2.4.3, this theorem leads to a new proof of Corollary 
1.2.2.6. Furthermore, in the light of the example given after the proof of Proposition 
2.4.4, the first part of the proof of Theorem III.3. 7.1 is now seen to be an application 
of Theorem 2.4.5. 

2.5 Quantum Marsden-Weinstein Reduction 

We come to a class of examples of Hilbert C* -modules and Rieffel induction which 
is of central importance to applications in physics. What follows may be seen as the 
quantum counterpart of the Marsden-Weinstein symplectic reduction procedure 
in l.5. For simplicity, proofs are given only for the unimodular case (recall that 
every compact group is unimodular). 

For clarity of presentation, we do not start with the most general assumptions; 
the following result will be generalized in due course. 

Theorem 2.5.1. Let U be a representation of a compact Lie group H on a Hilbert 
space?i, with corresponding representation Jr of the group C*-algebra C*(H); 
cf III. ( 1.89). The formula 

JrR(f) = L dh f(h)U(h)-1 (2.76) 

defines a right action JrR of C*(H) by continuous extension from f E Crgo(H). In 
conjunction with the map (, }c'(H) : ?i x ?i ~ C*(H), defined by 

(\II, <I>}c'(H) : h ~ (\II, U(h)<I», (2.77) 

one obtains a pre-Hilbert C* -module?i ~ C*(H). Completion therefore produces 
a Hilbert C*(H)-module. 
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Using III.(1.80) with c = 1, it is trivial to check that (2.76) defines a right 
action. The verification of (2.1) and (2.2) is equally straightforward. Because U is 
continuous, the function defined by (2.77) lies in C(H), and therefore in C*(H). 
For \11 i= 0 this function is nonzero, as it is nonzero at least at the identity e. Hence 
(2.4) follows. 

To prove (2.3), consider the isomorphism C*(H) ~ 7rL(C*(H»; this follows 
from III.(1.95) and the fact that compact groups are amenable, so that C*(H) ~ 
C;(H). Picking Q E L 2(H), a shift of variables shows that 

(2.78) 

on the right-hand side Q is regarded as an element of C*(H), which is justified, 
since for compact H one has the inclusion L2(H) C C*(H). This proves the 
desired positivity. 

A different proof of positivity, which does not use the isomorphism between 
C* (H) and C;( H), is as follows. Consider the function 1 H. Assuming that the Haar 
measure dh is normalized to unit volume, one sees from 111.(1.80) that 1 H * 1 H = 
IH, whereas III.(1.8l) shows that IH is self-adjoint in C*(H). Hence IH lies in the 
positive cone ofC*(H) by 1.(1.39). Accordingly, for any representation7rp (C*(H» 
on a Hilbert space 1f.P' with inner product (, )p, one has 

Applying this with 7r p = 7r ®7r x' where 7r x is arbitrary, and choosing \11 p = \11 ® \11 x 
for some \11 x E 1f. x' one obtains 

(\11 x' 7r X «\11, \I1)c'(H»\I1 x)x 2: O. 

Hence (\11, \I1)c'(H) 2: 0 by the proof of Theorem 1.1.1.8. We have now verified 
all conditions for a pre-Hilbert C*-module; completion is possible by Corollary 
21A • 

To see what the completion may look like, consider the example H = U(1) 
in the regular representation 7r = 7rL on 1f. = L2(U(1». Fourier-transforming 
L2(U(l» to 12, one infers that C*(U(l) ~ lo; cf. 1.1.6.1 and III.(1.86). From 
(2.77) one derives that on 12 one has 

(W, <1»£0: n ~ Wn-<l>n. (2.79) 

Since the norm in lo is the sup-norm, it follows that the Hilbert C* -norm (2.5) on 
12 is the sup-norm as well. We conclude that the completion of 12 ~ lo is lo ~ lo 
(sine the commutative C*-algebra lo is already complete). 

In Theorem 2.5.6 we will generalize this example to arbitrary Lie groups with 
multiplier. Partly in preparation for this generalization, and partly as a matter of 
interest for physics, we first consider a generalization of 2.5.1 to representations 
with multiplier (see III. 1.3 and III. 1.5). 
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Proposition 2.5.2. Let c be a multiplier on a compact Lie group H, and let U (H) 
be a c-representation on a Hilbert space ?to Replacing C*( H) by the twisted group 
algebra C*(H, c), all statements andformulae of Theorem 2.5.1 hold. 

The argument is essentially the same as for 2.5.1. In the first proof of positivity 
one should, of course, include the factor c in 111.(1.83). Using 111.(1.65), 111.(1.92), 
and III.(1.29), which leads to the cancellation of all factors c, (2.78) still follows. 
In the second proof of positivity one should take :rr x to be a representation of 
C*(H, c), so that:rrp is a representation of C*(H) (since U and Ux have mUltiplier 
c and c, respectively, and cc = 1). • 

Here it is crucial that (2.76) contains U(h)-I rather than U(h- I). In view of 
Theorems III.1.4.4 and 111.1.9.5, and the last paragraph in 1.5, we may regard the 
above "twisted" version of the construction in 2.5.1 as a quantum analogue of 
Marsden-Weinstein reduction for momentum maps that are not Co-equivariant. 

We now tum to Rieffel induction in the case at hand. While an almost trivial 
matter, this is nonetheless fairly instructive, especially for the purpose of com­
parison with the noncompact case treated below. For simplicity we look only at 
ordinary representations (c = 1). 

Proposition 2.5.3. In the situation of Theorem 2.5.1, apply Construction 2.2.3 
with ~ = C* (H) and a non degenerate representation :rr x (C* (H», or, equivalently, 
a representation Ux(H). 

The induced space?tx is isomorphic to P;d(?t ®?tx ), where P;d is the projection 
onto the subspace of?t ®?tx transforming trivially under the representation 
U ® Ux(H). 

Any bounded operator A on 1t commuting with U(H) satisfies (2.11) and 
(2.12), so that its induced representative :rrX(A) on ?tx may be defined. Under 
the isomorphism of the previous paragraph, :rrX(A) is the restriction of A ® llx to 
P;i?t ® ?tx )· 

By the discussion surrounding (2.34), we may start from the pre-Hilbert C*­
module?t ~ C*(H). Using III.(1.89) with :rr replaced by :rrx and (2.77), one 
computes the inner product (2.21) as 

(\II ® v, ct> ® w)& = i dh (\II, U(h)ct»(v, Ux(h)wh· (2.80) 

For arbitrary q" <I> E ?t ®?tx one therefore has 

(q" <1»& = i dh ("'. U ® Ux(h)<I»1i®1ix • (2.81) 

Since the integrand is bounded and J H d h = 1, one may bring the integral over H 
inside the inner product. The well-known expression 

P;d = i dh U(h) (2.82) 



2 Induction 373 

for the projection on the trivial representation of a compact group gives 

- - x - -
(\11, <1»0 = (\11, P;d <I> hUsH, . (2.83) 

Hence the null space N"x is the orthogonal complement (P;d('It ® 'ltx))1., and since 
for a closed subspace K; c 'It one has 'It/K;1. ~ K;, the first claim follows. 

To prove (2.12) for A E U(H)' we take a vector state Wx on C*(H) such that 
wx(B) = (Qx ' Jtx(B)Qx)x' and use (2.83) to obtain 

Wx «(A \11, A \I1)c'(H» = (A ® lIx \11 ® \11 x' p;d(A ® lIx \11 ® \11 x )ht®H, . (2.84) 

The assumption A E U(H)' implies that A ® lIx commutes with P;d' so that the 
right-hand side is bounded by II A 112(\11 ® \11 X' P;d(\I1 ® \11 x ))H®Hx • In this expression 
we rewrite the second factor by using (2.84) with A = 1I from right to left. This 
yields 

wx«(A\I1, A\I1}C*(H»:::: IIAII 2wx«(\I1, \I1)c·(H». 

Since this is true for all vector states, (2.12) follows. 
Finally, the identification of Jt x (A) with A I P;d('It ® 'ltx ) is obvious. • 

Let us now examine a possible generalization of the construction in Theorem 
2.5.1 to the case where the Lie group H is merely locally compact. When H is 
noncompact, the function defined by (2.77) will not, in general, lie in C*(H) for 
all \11, <I> E 'It. For example, for 'It = L2(JR) and U = UR, equation III.(1.94) 
and its derivation implies that (\11, \I1)c'(lR) as defined by (2.77) lies in C*(JR) iff 
\11 is such that its Fourier transform lies in Co(JR). There certainly exist functions 
\11 ¢ L 1 (JR), \11 E L 2 (JR), for which this is not the case. 

The way out is simply to try to find a dense subspace of 'It that does have the 
required property. As this subspace will not be stable under the action of C*(H), 
one in addition needs to identify a suitable dense subalgebra of C*(H).1t simplifies 
the discussion to do this once and for all, taking C'g"(H). 

Theorem 2.5.4. Let U be a representation of a Lie group H on a Hilbert space 
'It containing a dense subspace E that for each f E C'g"(H) is stable under JtR(f) 
(as defined by (2.76)) andfor which the function h ~~ (\11, U(h)<I» lies in C'g"(H) 

for all \11, <I> E E. 
For all \11 E E the function h f-+ (\11, U(h)\I1) is a positive element of the reduced 

group algebra q(H). 
Hence when H is amenable, the operator (\11, \I1)c'(H), defined as in (2.77), 

is positive for all \11 E E, so that the right action (2.76) makes E ;=: C'g"(H) 
a pre-Hilbert C'g"(H)-module, which may be completed to a Hilbert C*-modu/e 
e ;=: C*(H). Under the assumption of amenability, a bounded operator A on 'It 
that, along with its adjoint A *, leaves E stable and commutes with U (H) satisfies 
(2.11) and (2.12). 

More generally, the diagram E ;=: C'g"(H) defined by (2.76) and (2.77) 
is Jtx-positive when Ux(H) is weakly contained in the (left or right) regular 
representation. 
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The first proof of positivity of Theorem 2.5.1 generalizes to the noncompact 
case; the only change is that one should take <I> E C'g"(H) c L2(H). (For a 
bounded operator, positivity on a dense subspace of a Hilbert space implies posi­
tivity.) The second proof of positivity has to be modified by the introduction of an 
approximation method, as follows. 

It can be shown that an amenable group H has a family of subsets {Uj}jEJ, 
where J is a directed index set, with the following properties: 

• Each Uj is measurable, with finite Haar measure /L(Uj) . 
• The Uj eventually fill up H in the precise sense that the family of functions gj E 

Ll(H) C C*(H) defined by gj = (/L(Uj»-1/2 XUj (with XE the characteristic 
function of a Borel set E) satisfies lim j g j * gj = 1 H pointwise on H. 

Clearly, each gj * gj is a positive element of C*(H). 
In the second proof of positivity one now replaces IH by gj * gj. Using the 

bound gj * gj ::::: 1 H and the Lebesgue dominated convergence theorem, one can 
interchange lim j and the H -integration, and the result follows. 

The first part of the second claim follows from our definition "C*(H) = C;(H)" 
of amenability. The fact that A as specified satisfies (2.11) is trivial. The proof 
of (2.12) uses the above approximation technique as well. The operator p~ := 
IH dh U ® Ux(h)gj * gj(h) is well-defined, as gj has compact support. One then 

proceeds as in the proof of Proposition 2.5.3, replacing Pid by p~. Taking the limit 
in j yields the claim. 

The final point is obvious from Proposition 111.1.7.7, according to which one 
may work with C;(H) even when H is not amenable. • 

As in the noncompact case, the above construction may be generalized. 

Proposition 2.5.5. Let c be a multiplier on a Lie group H, and let U(H) be a 
c-representation on a Hilbert space 1i. Replacing C'g"(H) by the space B'g"(H) of 
bounded measurable functions with compact support that are smooth near e (cf. 
1/1.1.7). regarded as a dense subalgebra of the twisted group algebra C*(H, c), 
all statements andformulae of Theorem 2.5.4 hold. 

The verification of this claim is similar to that of 2.5.5. D 

The amenability of H is sufficient, but by no means necessary, for the positivity 
of (\II, \II)c'(H). 

Theorem 2.5.6. Let c be a multiplier on a Lie group H, and apply the construction 
in 2.5.4 to the case 1i = L2(H) and the c-representation U = U R, defined by 
1Il.(1.98), and £ = B'g"(G) (or, when c = 1, by C'g"(H». 

The ensuing Hilbert C*-module is C*(H, c) ~ C*(H, c); cf. Example 2.1.2.1. 
In particular, the completion of £ in the norm (2.5) is C*(H, c). 

Let Wx be a vector state on C*(H, c), as in the proof of 2.5.3. Analogously to 
(2.78), one derives 

(2.85) 
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This firstly proves positivity, and secondly shows that the norm (2.5) of \II coincides 
with its norm as an element of C*(H, c). The rest is obvious from III.(1.99) and 

(\II, <I»C'(H,c) = \11* * <1>, (2.86) 

which follows from 111.(1.80), III.(1.81), and lll.(1.29). • 

The C* -algebra of "compact" operators is therefore given by (2.52). 
Rieffel induction with noncompact groups differs essentially from the compact 

case. Proposition 2.5.3 breaks down, because the H -integration may no longer be 
brought inside the inner product, and the would-be projection Pid does not exist. 
However, (2.80) and (2.81) are still valid, and are often computable. A simple 
example is given around (2.123). 

2.6 Induction in Stages 

This section parallels its classical counterpart 1.8. We return to general induction 
in order to prove a theorem on Rieffel induction in stages. The comments on its 
classical version Theorem 1.8.1 apply here as well. 

Theorem 2.6.1. Suppose that 23 and It are C* -algebras, and that one has a Hilbert 
C*-module e2 ;:::: It, a homomorphism 1f2 : 23 -+ C*(e2' It), and a representation 
1fy(lt) on a Hilbert space 1iy. On Rieffel induction, these data lead to an induced 
space 1iY and an induced representation 1f y (23) on 1iY ; cf. Figure 11. 

Now assume that one in addition has a Hilbert C* -module el ;:::: 23 and a 
morphism 1f1 : 2l -+ C*(eJ, 23) (where ~ is a C*-algebra), and take 1ix and 
1fX in Figure 11 (with e and 1f replaced by el and 1f1) to be equal to 1iY and 
1f Y , respectively. We denote the corresponding induced Hilbert space 1ix and 
representation 1fX by 1iHY and 1fHY , respectively. 

Define a It-valued sesquilinear form (, )~ on el ® e2 by sesquilinear extension 
of(cf. (2.61) 

(2.87) 

and let It act on el ® e2 from the right by [ ® 1fR (where 1fR is the given right 
action oflt on e2). Then the conditions (2.1) and (2.2) (with 23 replaced by It) 
are met,formula (2.5) defines a seminorm on el ® e2, and one obtains a Hilbert 
C*-module el®e2 over It by removing the null space and completing; cf. the text 
preceding (2.6). Moreover, the given action 1f1 of~ on el leads to a morphism 
1f~ : ~ -+ C*(el®e2, <1:), obtained by quotienting and extending 1f1 ® [. 

The induced space 1i~ defined by Rieffel induction from the Hilbert <1:-module 
e I ®e2 and the representation 1f Y (<1:) is equivalent to 1iH Y , and the corresponding 
induced representation 1f~(~) is equivalent to 1fHY (~). 

All statements except those in the final paragraph are easily verified from the 
pertinent definitions. The situation is summarized in Figure 13, which should be 
compared with its classical counterpart Figure 7. 

Let \IIj, <l>j E ej (i = 1, 2), and v, W E 1iy. We denote the element Vy \112 ® v E 

1iY by [\112 ® v]ll, and, similarly, for Q E 1iY we denote the projection of \III ® Q 
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1iY •• ---

FIGURE 13. Rieffel induction in stages: 1C'Y :::::: 1t~ and 7r"Y :::::: 7r~ 

to 1i7CY by [w ® Q]/. Also, the projection ofwl ® W2 to el®e2 is called Wl®W2, 
and the projection of a ® v (where a E el®e2) to 1i~ is written as [a ® v]l/I. 
The essential point is the equality 

([Wl®[W2®V]/J]/, [<I>l®[<I>2®W]/J]/)7C Y = (v. rry({w2. rr2«(Wl. <l>lha)<I>2)e:)W)y. 
(2.88) 

where the left-hand side is an inner product in 1i7CY , the right-hand side being in 
1iy • This follows by applying (2.21) twice. Using (2.21), (2.87), and (2.1) (for 
(. )e:), one computes that the right-hand side coincides with the inner product of 
[Wl®W2 ® V]III and [<I>l®<I>2 ® w]I/1 in 1i~. 

From this, one easily infers that the map from the pertinent dense subspace of 
1i7CY to 1i~ that sends [W 1 ® [W2 ® V]I 1]/ to [W 1 ® W2 ® V]I 1 1 is well-defined, and 
extends to a unitary isomorphism U between 1i7CY and 1i~. One then trivially sees 
from their definitions that rr 7CY and rr~ are intertwined by U. • 

With trivial modifications, the theorem might equally well have been formulated 
and proved in terms of pre-Hilbert C*-modules and pre-C*-algebras. 

In complete analogy with the classical case (cf. 1.8), we may specialize Theorem 
2.6.1 to the case of quantum Marsden-Weinstein reduction in stages. We repeat 
the setting of Theorem 2.5.4, with H replaced by G. 
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C*(G) -----. 1tX "0--- C*(H) 

FIGURE 14. Quantum Marsden-Weinstein reduction in stages: 1t[l) ::::: 1tb) and 1r(~) ::::: 1r(~) 

Theorem 2.6.2. Suppose G is a Lie group, with closed subgroup H. Let U be 
a representation of G on a Hilbert space 1t containing a dense subspace t that 
for each f E C~(G) is stable under JrR(f) (as defined by (2.76) with H replaced 
by G), andfor which the function (\11, ct>)c*(G) : x t-+ (\11, U(x)ct» lies in C~(G) 
for all \11, ct> E t, such that (\11, \11) C*(G) is positive for all \11. This defines a pre­
Hilbert C* -module t ;= C~(G), which may be completed to a Hilbert C* -module 
£;= C*(G). 

Now choose a representation U x (H), and apply Rieffelinduction to £ ;= C* (G) 
from the representation JrX(C*(G» on 1tx (cf. DefinitionIIl.2.8.4 with P replaced 
by G), corresponding to the representation UX(G) induced from Ux(H); see 
//I. (2.175). Call the doubly induced Hilbert space 1tb), with Jr &) the corresponding 
doubly induced representation of some (pre) C*-algebra ~ ~ C*(£, C*(G». 

Restrict U(G) to H, and Rieffel-induce on £ ;= C*(H)from Ux(H), obtaining 
a Hilbert space 1t2l) and an induced representation Jr(1)(~). 

There exists a unitary U : 1tb) ~ 1t2l) intertwining Jrft)(~) and Jra)(~). 

We specialize Figure 13 to Figure 14. In this specialization we have replaced 
£\®£2 by 1t, andJr? by Jr\. This is justified by the following quantum counterpart 
of Lemma 1.8.3. 
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Lemma 2.6.3. Define the pre-Hilbert C*-module £®C~(G) ;::= C~(H) as in 
the proofof2.6.1, with £1 replaced bye as specified in 2.6.2, and £2 = C~(G) C 
L2(G) carrying the left-regular representation 11:L ofCrgo(G) C C*(G). 

This module is equivalent (in the obvious sense) to £ ;::= Crgo(H), defined by 

restricting t;::= Crgo(G)from G to H. 

Using (2.87) with ~ = C*(G) and 11:2 = 11:L, one easily shows that 

(\}II ® \}I2. <1>1 ® <l>2k,?"(JI) = (11:R(\}I2)\}II.11:R(<I>2)<I>lk,?"(H). (2.89) 

where 11:R is defined as in (2.76) with H replaced by G. Hence we define V : 
£ ® Crgo(G) --+ £ by linear extension of 

(2.90) 

By (2.89) this map quotients well to V : £®Crgo(G) -+ £, and carries the pre­
Hilbert C*-module £®C;:"(G) ;::= C;:"(H) into £ ;::= C~(H). • 

Theorem 2.6.2 now follows from 2.6.1 and 2.6.3. • 
This particular case of Theorem 2.6.1 has a further specialization that historically 

was the first example of a theorem on induction in stages. 

Corollary 2.6.4. Let K be a Lie group, and let H C G C K be closed subgroups. 
The representation UY(K) induced from a representation Uy(G) that is itself in­
ducedfrom a representation Ux(H) (so that Uy(G) ~ UX (G» is equivalent to the 
representation UX(K) directly induced from Ux(H). 

Apply Theorem 2.6.2 with m = C*(K), 1-£ = L2(K), £ = C;:"(K), and 11:\ = 
11: L. We will show in the next section that the positivity condition is met; see the 
argument following (2.92), with H replaced by G and P by K. • 

2.7 The Imprimitivity Theorem/or Gauge Groupoids 

Recall the gauge groupoid P x H P ~ Q defined by a principal bundle P( Q, H. r) 
(cf. 111.3.1.7) and its C* -algebra C*(P x H P) (see III.3.6.3). Using Proposition 
2.4.3 and Theorem 111.3.7.1, particularly III.(3.78), one may infer that C*(P x H P) 
and C*(H) are Morita equivalent. The aim of this section is to restate this result 
with the machinery developed in this chapter, by directly constructing a quantum 
dual pair. This provides considerable insight into the situation, using the material 
of 2.4 in an instructive way. 

Theorem 2.7.1. For any principal bundle P(Q, H. r) with associated gauge 
groupoid P XH P ~ Q. the groupoidC*-algebra C*(PXH P) is Morita equivalent 
to C*(H). 

We apply the construction of Theorem 2.5.4 with 1-£ = L 2(P), U = U R, and 
t = C~(P); see III.2.8 and III.(2.138). The presence of an H-invariant measure 
IL on P is not essential, but simplifies some of the formulae. For the same reason, 
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we retain our standing assumption that H is unimodular. Hence the right action 
1fR(C~(H» is given by specializing (2.76), yielding 

1fR(f)'II(x) = L dh 'II(xh-1)f(h), (2.91) 

and the map ('II, <I>}c*(H) is defined by (2.77), which specializes to 

('II, <I>}c-(H) : h 1--+ l dt-t(x) 'II(x)<I>(xh). (2.92) 

It is easily shown that ('II, 'II}c-(H) is positive in C*(H) (whether or not H is 
amenable). Indeed, we may proceed as in the proof of positivity in Theorem 2.5.6. 
Generalizing (2.85), we derive 

wx«('II, 'II}c-(H) = L dv(q) II L dh 'II(s(q)h)Ux(h)Qx 11 2, (2.93) 

where s : Q --* P is an arbitrary measurable section, and we have used III. (2. 139). 
Thus one obtains a pre-Hilbert C* -module C~(P) ~ C~(H), which by Corol­

lary 2.1.4 may be completed to a Hilbert C* -module that in analogy with 2.5.6 is 
denoted by C(P) ~ C*(H). (When q is a point, the above construction reduces to 
2.5.6, so that C(P) = C*(H). However, when P(Q, H, r) = G(Gj H, H, r), the 
space C(G) is different from C*(G).) 

Applying (2.47) to the case at hand, one derives that for'll, <1>, Z E C~(P) the 
T.C-(H). • b operator "',<I> IS gIVen y 

with 

CO(H) ( CO(H) 
T",,<I> Z(x) = Jp dt-t(y) K",,<I> (x, y)Z(y), 

C*(H) 1 -­
K",,<I> (x, y):= H dh 'II(xh)<I>(yh). 

(2.94) 

(2.95) 

Since the H -action on P is proper, the integrand in (2.95) has compact support in 
h. Noting that Kf,~~H) is invariant under the H-action h : (x, y) 1--+ (xh- 1, yh-1), 

one infers that Kf,:~H) lies in C~(P x H P). 
In view of the bound (2.51) (from whose derivation one sees that it holds in a 

C*(H) pre-Hilbert C*-module as well), the operator T", <I> may be extended to C(P) by 
continuity, and may be defined for all'll, <I> E C(P). In particular, one obtains the 
bound (2.12). 

Since Kf~H) E C~(P XH P), we may regard T;,~H) as an element of C*(P XH 
P). However, in order to identify Co(C(P), C*(H» with C*(P XH P), we need 
to show that the norm of T;,~H) in Co(C(P), C*(H» coincides with its norm 
III.(3.74) in C*(P XH P). This indeed follows from the isomorphism 111.(3.78). 

C*(H) C*(H) 
Choosing a section s : Q --* P, one passes from K",,<I> (x, y) to K",,<I>,s (q, h, q') 
as indicated in 111.(3.83), and computes its operator norm 1.(1.17) using (2.5) with 
~ = C*(H). This computation yields a norm that coincides with the norm in 
~O(L2(Q» ® C*(H), proving the claim. 
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Passing to the C* -algebra generated by all T;,~H), Definitions 2.3.1 and III.3.6.3 
show that CO(C(P), C*(H» is isomorphic to C*(P XH P). Hence the theorem 
follows from Definition 2.4.1. • 

It follows from this proof that one has a quantum dual pair 

C*(P XH P) ;= C(P) ;= C*(H) 

in which 7rR(C*(H» and (, )c.(H) are given by (2.91) and (2.92), respectively, 
and the left action 7rL(C*(P XH P» coincides with the representation 7r, given in 
III.(3.82). Finally, according to (2.95) and (2.59) one has 

('11, <1>)c·(px H P) : (x, y) ~ In dh qs(xh)<1>(yh). (2.96) 

These formulae are all understood to be defined on the pre-quantum dual pair 
used above, namely C~(P XH P) ;= C~(G) ;= C~(H), and extended to the 
completion displayed above by continuity. 

In particular, Corollary III.3.7.2 follows from Theorem 2.4.5. Moreover, the 
theory of induced group representations of III.2.9 may be reinterpreted in the 
light of Theorems 2.7.1 and 2.4.5. To do this, we explain how the construction in 
Definitions III.2.8.4 and III.2.9.1 is a special case of Rieffel induction. 

We start from Construction 2.2.3, in which we take the Hilbert C* -module & ;= 

~ to be C(P) ;= C*(H), defined by (2.76) and (2.77). Furthermore, we take 11.x 
to be the carrier space of a representation Ux(H) (or, equivalently, of 7rx(C*(H». 
As explained in 2.2, one obtains the same induced space 11.x if one starts from 
suitable dense subspaces C(P) and C~(H) of C(P) and C*(H), respectively. 

When H is compact, we are in the situation of Proposition 2.5.3. Hence we start 
from the pre-Hilbert C*-module L 2(P) ;= C*(H), and obtain the induced space 
11.x as the subspace of all * E L 2(P) ® 11.x satisfying Pid* = *. Since U = U R, 

this condition is nothing but the equivariance condition III.(2.145). For 'P E Aut(P) 
and'll E L 2(P) we define UL('P)qs by the right-hand side ofIII.(2.161), with qsx 
replaced by'll. This defines an operator U d'P) on L 2(p), which is easily seen to 
be adjoin table as a consequence of the fact that elements of Aut(P) by definition 
commute with the H-action on P. We identify L 2(P) ® 11.x with L 2(P, 11.x), and 
use the description of tr x (A) in 2.5.3. It is then obvious that 7rX(U L('P» coincides 
with UX('P) as defined in III.(2.161). 

The noncompact case is slightly more involved, since the induced space is no 
longer a subspace of L 2(p) ® 11.x' We are now in the situation of Theorem 2.5.4, 
with 11. = L 2(P),t = C~(P), and U = UR • To identify the reduced space, we use 
the method of Proposition 2.2.4. We take 11.~ to be what is, prophetically, called 
11.x in Definition III.2.8.4. Consider the map V : C~(P) ® 11.x --1- 11.~ defined by 
linear extension of 

V'll ® v(x):= In dh qs(xh)Ux(h)v. (2.97) 

Note that the equivariance condition I1I.(2.145) is indeed satisfied by the left-hand 
side, as follows from the invariance of the Haar measure. Using (2.80) or (2.81), 
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one verifies the fundamental equation (2.29). It is clear that (;(C~(P) ® 1tx) is 
dense in 1tx, so by Proposition 2.2,4 one obtains an isomorphism U : 1tx ~ 1t!. 
Morover, using (2.30), one may repeat the last sentence of the discussion of the 
compact case. 

Had we not known Definition m.2.8,4 beforehand, it would have been possible 
to obtain the form of 1tx on the basis of the method explained after (2.31). For 
the image of {; as defined in (2.32) coincides with the image of (; as defined in 

(2.97), under the identification of 1t! with a subspace of C(£, 1tx)'13 via the inner 
product in L 2(p). 

As in the second half of m.2.9, we now specialize to Mackey induction, where 
the principal bundle P(Q, H,.) is G(G/H, H, .); cf. m.2.7. As always, the 
explicit expressions below apply to the unimodular case. 

Corollary 2.7.2. The action C*-algebra C*(G, G/ H) is Morita equivalent to 
the group C*-algebra C*(H), with quantum dual pair C*(G, G / H) .= C(G) .= 
C*(H). ThispairisobtainedbycompletingC~(GxG/ H).= C~(G).= C~(H), 
defined by the maps (2.91), (2.92), and 

JrL(f)IJI(x) = L dy f(xy-l, [X]H )1JI(y); (2.98) 

(1JI,4>)c'(G,G/H) : (x, [y]H) 1-+ L dh lJI(yh)4>(x-1yh). (2.99) 

Every nondegenerate representation rr ofC*(G, G/ H) is equivalent to an in­
duced representation rr x, realized on 1tx (see Definition III.2.B,4 with P replaced 
by G), where U x is a representation of H. Explicitly, one has 

(2.100) 

cf. (2.98). The representation rrX(C*(G, G / H» is irreducible iff Ux(H) is 
irreducible. 

This follows upon combining Theorems 2.7.1 and 2,4.5, including the explicit 
construction of induced representations above, with Corollary 111.3.7.5. Equations 
(2.98) and (2.99) are derived from the formulae stated after Theorem 2.7.1, spe­
cialized to the case at hand using Proposition 111.3,4.7. Similarly, the stated form 
of Jrx follows from 111.(3.84). • 

Corollary III.3.7.6 is then seen to be a consequence of Corollaries 2.7.2 and 
III.3.7,4, combined with Definition III.3.7.3. 

Under a regularity assumption on the group action (which is always satisfied 
when G is compact), it is possible to classify the irreducible representations of an ar­
bitrary action C* -algebra. This classification is the quantum version of Proposition 
III.3.9,4. 

Theorem 2.7.3. Let a smooth action of a Lie group G on a manifold Q be 
regular, in that each orbit is (relatively) open in its closure. Then the irreducible 
representations ofC*(G, Q) are classified by pairs (0, Ux(H», where 0 is a 
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G -orbit in Q, the group H is the stabilizer G qo of an arbitrary point qo in 0, and 
U x is an irreducible representation of H. 

The representation rrfj corresponding to such a pair may be realized on the 
Hilbert space 'Hx defined inlll.2.8.4, and is given by (2.100), with [X]H replaced by 
xqo. Equivalently, the system ofimprimitivity (U(G), if X (Co(Q))) corresponding 
to the representation rrX(C*(G, Q» by Corollary 1ll.3.7.4 is given by U = ux 
(cf. Ill. (2. 175 )) and 

(2.101) 

We start from a given irreducible system of imprimitivity (U(G), if(Co(Q») on 
some Hilbert space 'H. Since G is a Lie group and Q is a manifold, it can be shown 
that C*(G, Q), and therefore 'H are separable. Using the spectral theorem applied 
to if (Co(Q», one can bring 'H into the form 

(2.102) 

where the Vi are mutually singular Borel measures, and the 'Hi are multiplicity 
spaces. The representation if is then given in terms of multiplication operators in 
the obvious way. The fact that if can be extended to a system of imprimitivity 
easily implies that each measure Vi is quasi-invariant under G (that is, its measure 
class is G-invariant). 

A measure V on a G-space Q is said to be ergodic when a G-invariant Borel 
function is constant almost everywhere. Equivalently, for a G-invariantBorel set B 
either its complement Q\B or B itself must have measure zero. It is quite obvious 
that (U, if) can be irreducible only when there is a single term in (2.102) in which 
the measure V is ergodic; for otherwise one could decompose the carrier space as 
L2(Q, v) = L2(Q\B, v) ED L2(B, v). 

Let S be the smallest closed set in Q for which v(Q\S) = 0; this set is auto­
matically G-invariant, and we can write L2(S, v) instead of L2(Q, v). Suppose S 
contains two orbits Gql i- Gq2. First assume that [qllG (i.e., the closure of Gql 
regarded as a point [qdG in Q/G) does not contain [q2]G. Then rQ~Q/G([qdG)' 
which is a closed G-invariant subset of S, does not contain Gq2. This contradicts 
either ergodicity or the definition of S. Hence [q2]G E [qIlG' We combine this 
inclusion with the regularity assumption. Accordingly, there is an open set N in S 
that contains Gq, (the closure of Gql in Q, hence in S) but is disjoint from Gq2' 
The G-translate GN of N has the same properties, so that its complement S\ GN 
is a closed G-invariant subset of S, which does not contain Gq I. This again leads 
to a contradiction with either ergodicity or the definition of S. Hence v must be 
concentrated on a single orbit in Q. 

Furthermore, the regularity assumption turns out to be equivalent to the statement 
that each orbit (equipped with the topology inherited from Q) is homeomorphic to 
G /Gqo ' Hence if(Co(Q» ~ Co(Gqo) ~ Co(G / Gqo )' so that the situation reduces 
to the representation theory of the action C*-algebra C*(G, G / H), with H = Gqo • 

The theorem now follows from the second half of Corollary 2.7.2. D 
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2.8 Covariant Quantization 

Let us return to quantization theory, and ask in some generality what happens to 
Berezin quantization in the presence of a classical symmetry group. The following 
notion, which generalizes Definition III.3.7.3, is natural in this context. 

Definition 2.8.1. Given a smooth G-action on a manifold X, a generalized sys­
tem of imprimitivity of G on X in a Hilbert space 11. is a pair (U, Q) in which 
U is a representation of G on 11., and Q : Co(X) -+ ~(11.) is a positive map, 
satisfying the covariance condition 

U(x)Q(j)U(x)* = Q(aAi», (2.103) 

where ax(j) : y H- i(x-1y). The system is called transitive when X = G/ H 
with the natural G-action. 

When X is compact, or when Q may be extended to CO(X)I, this condition may 
be equivalently stated in terms of the POVM t!. H- A(t!.) associated to Q (cf. 
11.1.4.8) as 

U(X)A(t!.)U(X)-1 = A(xt!.). (2.104) 

Every (ordinary) system of imprimitivity is evidently a generalized one as well, 
since a representation is a particular example of a positive map. A class of exam­
ples of truly generalized transitive systems of imprimitivity arises as follows. Let 
(U(G), it (Co(G/ H») be a system ofimprimitivity on a Hilbert space JC, and sup­
pose that U(G) is reducible. Pick a projection p in the commutant of U(G); then 
(pU(G), pit p) is a generalized system of imprimitivity on 11. = pJC. Of course, 
(U, it) is described by Corollary III.3.7.6, and must be of the form (UX, itX). Under 
an innocent technical assumption, this class turns out to exhaust all possibilities. 
What follows generalizes Corollary III.3. 7.6 (or the second part of Corollary 2.7.2) 
to the case where the representation it is replaced by a positive map Q. 

Theorem 2.8.2. Let (U(G), Q(Co(G / H))) be a transitive generalized system of 
imprimitivity on 11., where Q may be extended to the unitization ofCo(G / H) such 
that the extension preserves the unit. 

There exists a representation Ux(H), with corresponding induced representa­
tion UX (G) on 11.x and system ofimprimitivity (UX, itX) as described in Corollary 
111.3.7.6, and a projection p on 11.x in the commutant of UX(G), such that 
(pUX(G), pit x p) and (U(G), Q(Co(G/ H») are equivalent. 

We apply Theorem 11.1.4.2. To avoid confusion, we denote the Hilbert space 
11.x and the representation]f x in Construction 11.1.4.3 by i{x and it x, respectively; 
the space defined in III.2.8.4 and the induced representation of III.(2.175) will still 
be called 11.x and ]fx, as in the formulation of the theorem above. Indeed, our 
goal is to show that (it X , i{X) may be identified with (]fx, 11.X). We identify ~ in 
11.1.4.2 and 11.1.4.3 with ~(11.), where 1t is specified in 2.8.2; we therefore omit 
the representation ]fx occurring in 11.1.4.2 etc., putting 1tx = 1t. For x E G we 
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define a linear map U (x) on Co( G / H) ® 'li by linear extension of 

U(x)f ® \II := (Xx (f) ® U(x)\II. (2.105) 

Since (Xx 0 (Xy = (Xxy, and U is a representation, U is clearly a G-action. Using the 
covariance condition (2.103) and the unitarity of U(x), one verifies that 

(U(x)f ® \II, U(x)g ® <I»~ = (f ® \II, g ® <I»~, (2.106) 

where (, )~ is defined in 11.( 1.25). Hence U (G) quotients to a representation U x (G) 

on ilx. One checks that (UX, fiX) is a system ofimprimitivity on ilx (compute on 
Co( G / H) ® 'li and then pass to the quotient). By Corollary 111.3.7.6, this system 
must be of the form (UX, fiX) (up to equivalence). 

Finally, the projection p defined in 11.1.4.2 commutes with all UX(x). This is 
verified from 11.(1.29), 11.(1.30), and (2.103). The claim follows. • 

The power of this result is clear in the following application. Let a phase space 
S be a coadjoint orbit in g*, so that S ~ G / H, equipped with the Lie symplectic 
structure (see3.1 for examples). A pure state quantization {q/i, 'li/i, IL/i} (cf. 11.1.3.3) 
of S leads to an associated Berezin quantization Qg. This quantization is called 
covariant when each 'li/i carries an irreducible representation U/i(G), such that 

(2.107) 

for all f E Co(G/H) and x E G, where (XO is defined by 111.(1.158). We have 
already seen examples of this in 111.1.11. Theorem 2.8.2 then implies 

Corollary 2.8.3. The representation U/i(G) occurring in a covariant Berezin 
quantization of Co( G / H) must be an irreducible sub representation of an induced 
representation U x (G). When p is the corresponding projection on 'li/i C 'lix, the 
Berezin quantization Qg must have the form Qg(f) = pfix(f)p, where 

(2.108) 

Cf. III.(3.86). In particular, if 'lix = L 2( G / H) (i.e., one has induced from 
the trivial representation of H), then fiX (f) is simply f, seen as a multiplication 
operator, and its Berezin quantization consists in squeezing this operator into a 
subspace. 

In view of (2.104) and the discussion following 11.1.4.9, Theorem 2.8.2 and 
its Corollary 2.8.3 describe covariant localization in phase space. There is a 
corresponding theory of covariant localization in configuration space, which 
we now briefly discuss. To set the stage, we start on Euclidean space Q = 1R3• 

In elementary quantum mechanics, a particle moving on 1R3 with spin j E N is 
described by the Hilbert space 

'li j = L \1R3) ® 'li j , (2.109) 

where'lij = C2j+1 carries the irreducible representation Uj(SO(3». The basic 
physical observables are represented by the unbounded operators Q% (position), 
pl (momentum), and Jl (angular momentum), where k = 1, 2, 3. These operators 
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satisfy the commutation relations (say, on the domain S(R.3) ® Hi) 

[Q%, Q!] = 0; 

[Pt, Qt] = -iMkl; 

[Jt, Qt] = iMklmQ!; 

[Pt, p/] = 0; 

[Jt, J/] = iMklmJ~; 
[Jt, p/] = iMklmP~, 

justifying their physical interpretation. 

(2.110) 

(2.111) 

(2.112) 

(2.113) 

(2.114) 

(2.115) 

The momentum and angular momentum operators are best defined in terms of 
a unitary representation U i of the Euclidean group E(3) = SO(3) ~ R3 on Hi, 
given by 

(2.116) 

In terms of the standard generators Pk and Tk of R3 and SO(3), respectively, 
one then has pt = ihdUi(Pk) and Jt = ihdUi(Tk); the commutation relations 
(2.113)-(2.115). follow from III.(1.70) and (1.65). 

Moreover, we define a representation fri of CoOR,3) on Hi by 

(2.117) 

where j is seen as a multiplication operator on L 2(R3). The associated PVM 
/:l. ~ E(ll.) on R3 in Hi (see 11.1.4.8) is E(/:l.) = XI!. ® Hio in terms of which the 
position operators are given by Q% = JR.] dE(x)xk; cf. the spectral theorem for 
unbounded operators. Equation (2.110) then reflects the commutativity of Co(R3), 
as well as the fact that fr i is a representation. 

Identifying Q =]R.3 with Gj H = E(3)jSO(3) in the obvious way, one checks 
that the canonical left action of E(3) on E(3)jSO(3) is identified with its defining 
action onR3. It is not hard to then verify from (2.116) that (U i (E(3», fri(Co(R3») 
is a system of imprimitivity as defined in III.3.7.3. The commutation relations 
(2.111), (2.112) are a consequence of the covariance relation III.(3.38). 

Rather than using the unbounded operators Q%, pt, and JkS and their commuta­
tion relations, we therefore state the situation in terms of (U i (E(3», fri (CO(R3»). 
Such a pair, or, equivalently, a nondegenerate representation rri of the action C*­
algebra C*(E(3), R3) (cf. III.3.7.4), then by definition describes a quantum system 
that is localizable in R3 and covariant under the defining action of E (3). It is natural 
to require that rri be irreducible, in which case the quantum system itself is said 
to be irreducible. 

Proposition 2.8.4. An irreducible quantum system that is localizable in R3 and 
covariant under E(3) is completely characterized by its spin j E N. The corre­
sponding system oJimprimitivity (U i (E(3», fri(Co(R3))) is equivalent to the one 
described by (2.109), (2.116), and (2.117). 

This follows from Corollary III.3.7.6. The induced representation ul (E(3» 
defined by the section s : R3 ~ E(3) given by seq) := (e, q) (see III.2.9) 
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is precisely (2.116); cf. Lemma 3.3.2 below. The corresponding representation 
111.(3.86) of CO(R.3) is (2.117). • 

This is a neat explanation of spin in quantum mechanics, though it would be a 
mistake to think that spin has no classical counterpart. 

Generalizing this approach to an arbitrary homogeneous configuration space 
Q = G I H , a nondegenerate representation 1T of C* (G, G I H) on a Hilbert space 
1t describes a quantum system that is localizable in G I H and covariant under 
the canonical action of G on GI H. By Corollary 111.3.7.4 this is equivalent to a 
system of imprimitivity (U(G), ir(Co(GI H») on 1t, and by Proposition 11.1.4.8 
one may instead assume that one has a PVM I:!.. Ho E (I:!..) on G I H in 1t and a 
unitary representation U(G) that satisfy 

U(X)E(I:!..)U(X)-l = E(xl:!..) (2.118) 

for all x E G and I:!.. E ~; cf. (2.104). The physical interpretation of the PVM 
is given by 11.(1.36); the operators defined in 111.(3.39) play the role of quantized 
momentum observables. Generalizing Proposition 2.8.4, we have 

Theorem 2.8.5. An irreducible quantum system that is localizable in Q = G I H 
and covariant under the canonical action of G is completely characterized by an 
element X E iI of the unitary dual of H. The corresponding system ofimprimitivity 
(UX(G), irj(Co(GI H») is equivalent to the one described by III.2.B.4, III. (2. 175 ), 
and 1II.(3.B6). 

This is immediate from Corollary 111.3.7.6. • 
With an analogous notion of classical localization, the corresponding situation 

in classical mechanics is described by Theorem 1.6.4. Thus the different possibil­
ities allowed by Theorem 2.8.5 do not correspond to inequivalent quantizations 
of the classical phase space T*(G I H) (for which notion cf. 3.9), but rather to 
quantizations of various symplectic leaves in (T*G)I H. For by Theorem 1.5.5 the 
latter coincide with the spaces defined in (1.43), which in tum carry all irreducible 
transitive classical systems of imprimitivity for G on G I H (up to possible covering 
spaces). 

It is suggested by 111.1.11 and 1II.2.10 that for n E N the Hilbert space 1tnx 
carrying a system ofimprimitivity (UX(G), irX(Co(GI H») should be seen as the 
quantization of the symplectic1eaf(T7'GiJx of(T*G)1 H for the value Ii = lin of 
Planck's constant; here X is an integral weight. In particular, for fixed Ii = 1, differ­
ent values of X correspond to the quantization of different symplectic manifolds. 
The phase space T*( G I H) is quantized by L 2( G I H); none of the nontrivially 
induced representations should be seen as the quantization of T*(G I H). 

2.9 The Quantization of Constrained Systems 

We will now look at Rieffel induction as a quantum analogue of the classical special 
symplectic reduction procedure of 1.2. For the purpose of comparing the two, the 
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second approach in 2.2 to Rieffel induction is more appropriate; see Construction 
2.2.3. 

Firstly, ~lR should be regarded as the quantization of the Poisson algebra 
COO(P, R), whereas the Hilbert ~-module e is the simultaneous quantum analogue 
of the Poisson map J : S ~ P- and its pullback J* : COO(P, R) ~ COO(S, R). 
The representation 1f x (~) on 1t x is the quantum counterpart of the Poisson map 
Jp : Sp ~ P; under favorable conditions, the Hilbert space 1tx may even be 
thought of as the quantization of the symplectic manifold Sp. Quotienting e ® 1tx 
by the null space Nx' which is the decisive step in the construction of the induced 
Hilbert space 1tx , is clearly the analogue of quotienting by the null foliation <I> in 
(1.l3). 

Recall Definition 1.1.8. A suitable quantum analogue is given by 

Definition 2.9.1. A weak quantum observable is a linear map A on e ® 1tx 
that for all q, , <i> E e ® 1tx satisfies 

- -x - -x (A \II, <1»0 = (\II, A <1»0 ; (2.119) 
- -x 2--x (A\II, A\II)o :5 IIAII (\II, \11)0' (2.120) 

The collection of all weak quantum observables is called m~. 

Using (2.23), we see that (2.119) implies that ANx £ N x. Hence we may 
define 1f X(A)Vq, := VA q" generalizing (2.25). Because of (2.120), the analogue 
of (2.19) still holds. 

If we weaken 2.9.1 to allow for operators defined on a dense domain e ® 1tx , 
thereby giving up (2.120), the operator 1fX(.4) may be unbounded, with (initial) 
domain V(e ® 1tx). In view of (2.24), condition (2.119) guarantees that 1fX(A) 
is then symmetric on this domain. Moreover, the vector space m~ (defined with 
or without (2.120» is easily seen to be a Jordan-Lie algebra under the operations 
1.(1.22). 

The quantum version of (1.15) is the inclusion 

(2.121) 

where C*(e, 23) is identified with C*(e, 23) ® Hx' This follows, because (2.11) 
and (2.21) guarantee that a self-adjoint element A of C*(e,~) satisfies (2.119). 
Finally, (2.25) is evidently the quantum analogue of (1.16). 

It is instructive to reconsider the example e = ro(HX) (given after 2.2.2) in the 
light of the analogy with special symplectic reduction. In Definition 1.2.1 we take 
S = CFp)x, which is defined as in (1.30), in which we replace Sp by Sx to avoid 
notational ambiguity, and P = Q (with zero Poisson structure). Regarding S as 
a bundle over T*Q (cf. Theorem 1.6.1), and therefore over Q, the Poisson map 
J : S ~ Q is the bundle projection. Finally, we reduce from Sp = q, seen as a 
symplectic leaf in Q, and p the inclusion map. To compute the reduced space we 
look locally: By Theorem 1.6.1 we locally have S ~ T* Q x S X' The constraint 
hypersurface S *Q Sp is the fiber J-I(q) of S above q. The null distribution N is 
tangent to the fibers of T* Q, so that finally the reduced space is sq ~ S x. 
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However, mesmerized by the analogy between special symplectic reduction 
and Rieffel induction, one should not overlook a cardinal difference between the 
classical and the quantum reduction procedure. In the classical case one had to 
restrict the full space S x Sp to the constraint hypersurface S *p Sp before taking 
the quotient by the null foliation; the latter would, indeed, not even be defined 
without this restriction. In the quantum case, on the other hand, one passes straight 
from £ ® 1t x to the quotient £ ® 1t xl N x. There is no analogue of the constraint 
hypersurface; in other words, in quantum mechanics there is no need to impose 
the constraints. (This comment applies only to the case where all constraints are 
first class, which is appropriate here in view of Theorem 1.2.2 and the comment 
preceding 1.1.8.) 

In an effort to better mimic the classical procedure, one may introduce an ad­
ditional step in Rieffel induction, in which one at the very beginning passes from 
£ ® 1t x to £ ®Q3 1t x . Here the tensor product over IB means that £ ®Q31t x consists of 
equivalence classes [\II ® v h under the equivalence relation \II B ® v ~ \II ®n x (B)v 
for all B E lB. In other words, this new first step would consist in dividing £ ® 1t x 
by the vector space generated by all expressions ofthe form \II B®v - \II®n x(B)v. 
Although there is a notational similarity between S *p Sp and £ ®Q31tx, this step 
still amounts to taking a quotient rather than imposing the constraints in some way 
or another. More importantly, this first step is entirely unnecessary, because all 
vectors \liB ® v - \II ® n x (B)v lie in the null space Nx , as a simple computation 
shows. Hence they automatically disappear in the construction of 1tx. 

In physics one would interpret the above discussion in the light of the quan­
tization of constrained systems. Here "quantization" may refer to any procedure 
deserving that name (such as the methods of strict or pure state quantization dis­
cussed in this book). The problem is to quantize the symplectic manifold SC 
defined by (1.2), given that it has been obtained by symplectic reduction from S. 
One could, of course, try to quantize SC without this knowledge, but in case it is 
simpler and less problematic to quantize S, it makes sense to try to quantize S first, 
and then use some method that mimics symplectic reduction in order to construct 
what should be the quantization of SC. See Figure 15. 

For the purpose of this discussion we assume that C is coisotropically embedded 
in S; in other words, that all constraints are first class (we also put Ii = 1). The 
traditional approach is to quantize S as if there were no constraints. This yields 

reduction 

S SC 

quantization j j quanH",Hon 

induction 
Q(S) Q(Sc) 

FIGURE 15. Constrained quantization: Q is some quantization procedure 
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a Hilbert space Q(S) = H and some quantization Q(COO(S, JR.» of the classical 
observables as operators on H. In particular, the constraints C{Ji are quantized by 
operators Q(C{Ji), which are usually unbounded and symmetric on some common 
dense domain. For example, when C is defined by Marsden-Weinstein reduction at 
zero, that is, when C = 1 -I (0) for some strongly Hamiltonian H -action on S with 
equivariant momentum map 1 : S -* f)~, the constraints C{Ji are the components 
1i , i = 1, ... , dim(H). In that case one hopes that Q(Ji) = idU(T;), where U is 
a representation of H on H; cf. 111.(1.128) and III.(2.167). 

The Dirac method of quantizing systems with first-class constraints now 
consists in defining the "physical state space" Q(Sc) = HD as 

(2.122) 

When f E COO(S, JR) is a weak observable, it is hoped that [Q(f), Q(C{Ji)] is 
proportional to a linear combination of the Q(C{Jj); cf. 1.1.9.2. If so, Q(f) leaves HD 
stable, so that one may define the "physical observable" QC (f) as the restriction 
of Q(f) to 'H D · 

The Dirac method attempts to quantize the first step of classical reduction, 
namely imposing the constraints. The second step of quotienting by the null fo­
liation, i.e., passing from C to C / ct>c, has no counterpart. Compare this with the 
opposite state of affairs in the method based on Rieffel induction. 

In the case C = 1-1(0) with H compact, the Dirac method is successful. The 
condition dU(T;)\II = 0 for all i (where the T; form a basis of f) is equivalent to 
U(h)\II = \II for all h E HO (the component of e in H); in other words, the physical 
state space HD is the subspace Ho of'li that transforms trivially under HO. When 
Q(f) commutes with all U (h), the physical observable QC (f) is the restriction 
of Q(f) to H o· Indeed, we see from Proposition 2.5.3 that Ho coincides with 
the Hilbert space HO obtained by Rieffel induction from the trivial representation 
Uid of H on 'H.d = C, and that the physical observable QC (f) is nothing but the 
induced representative Jrid(Q(f». 

However, when the quantum constraints Q( C{J j) fail to have zero in their discrete 
spectrum or fail to have a joint eigenvector for this value, the space HD is empty. 
For Marsden-Weinstein reduction at zero this habitually happens when H is not 
compact. Examples are provided by Theorem 2.5.4. However, probably the sim­
plest example is S = T*JRn, with its standard symplectic structure, equipped with 
the constraint PI = O. Analogously to Example III.I.2.11, this constraint is the 
momentum map for the JR-action given by 

.( I 2 ) ( I 2) a. PI, P2, ... , q ,q , ... f-+ PI, P2, ... , q + a, q , .... 

It is easy to show that Marsden-Weinstein reduction at zero leads to the re­
duced phase space SC :::::: T*JRn-l. All functions of (P2, ... , q2, ... ) are weak 
observables, their reduced action on SC being the obvious one. 

Quantizing S by the Hilbert space H = L2(JRn), with Q(PI) = -i8/8x l , it is 
clear that the spectrum of the quantized constraint is absolutely continuous, and 
equal to JR. Hence HD = {O}, which is not the desired quantization L 2(JRn-l) of 
SC. 
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The method based on quantum induction handles this problem quite effortlessly. 
In the context of Theorem 2.5.4 we take 1i = L 2(Rn ), as in the Dirac method. The 
representation U(R) is taken to be 

U(a)\II(x', x 2 , ••• ) := \II(x' - a, x 2 , ••• ); (2.123) 

this representation satisfies Q( h) = i d U (T) = Q(p,), where T is the standard 
generator of R. Choosing £ = C~(Rn), one verifies the properties required in 
2.5.4. We now induce from the trivial representation Uid ofR, so that 1ix = 1iid = 
C. Hence 

(\II,<I»~= {da ( d nx\ll(x'-a,x2 , ... )<I>(x',x2 , ... ) 

JR JR" 
A A 2 

= \11(0, x 2 , ••• )<1>(0, x , ... ), (2.124) 

where the Fourier transform (indicated by the hat) is taken only in the first variable. 
To identify the induced space 1iid we use Proposition 2.2.4. Our guess is 1i~ = 
L 2(Rn-'), consisting of the square-integrable functions of (x 2 , ••• ). This is proved 
by constructing (; : £ ~ L 2(Rn-' ) as 

- 2 A 2 
U\II(x , ... ):= \11(0, x , ... ). (2.125) 

It is evident from (2.124) that (2.29) is satisfied. 
We identify L2(Rn) with L2(R) ® L2(Rn-') in the well-known way. Bounded 

operators A on L2(Rn) that do not act on the first variable in \II have the form 
A = 1I, ® A2, where 1I, is the unit operator on L2(R), and A2 E ~(L2(Rn-'». 
Such operators lie in C*(£, ~) (cf. the text following (2.34», and may be Rieffel­
induced to bounded operators Jrid(A) on 1-{'d. One easily sees from (2.30) thatJrid(A) 
is simply A2. 

Thus we have a satisfactory quantization of the classical situation, which, de­
spite its simplicity, is not so easily amenable to treatment by other constrained 
quantization techniques. 

2.10 Quantization of Singular Reduction 

Basing constrained quantization on Rieffel induction allows one to quantize sin­
gular Marsden-Weinstein quotients. It is interesting to see how the singularities 
in the reduced space, and particularly its decomposition into symplectic pieces, is 
reflected in the quantum theory. In the absence of a general theory of this reflection, 
we approach this matter through specific examples. 

Consider the case S = T*R2 and H = SO(2) discussed in 1.11. A suitable 
quantization of S is given by the Hilbert space 1i = L2(R2), carrying the rep­
resentation of SO(2) given by U(h)\II(q) := \II(h-'q), in terms of the defining 
action of SO(2)onR2. Mapping L2(R2) to L2(R+, r dr)®L2(SO(2» in the usual 
way, the representation U is the tensor product of the unit 1I on L2(R+, r dr) and 
the left-regular representation U L on the second factor. We then induce from the 
trivial representation Uid of SO(2), reflecting the zero in SO = J-'(O)/ H. Ac­
cording to Proposition 2.5.3, the induced space 1iid is L 2(R+, r dr). Adjointable 
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operators on 1£ are necessarily SO(2)-invariant, so that they are linear combina­
tions of operators of the form A = A I ® A2, where A2 commutes with U L. The 
induced representation is then given by linear extension of 

(2.126) 

The identification of l£id with L 2(JR+ , r dr) is a pleasant result, since we have seen 
that the reduced space SO was T*JR.+. On the other hand, the origin 0 is a null set 
with respect to the measure r dr, so that at first sight the quantum theory contains 
no analogue of the lower-dimensional symplectic piece of So. 

However, the singular structure of the classical reduced phase space is reflected 
in the domains of unbounded observables. It is remarkable that unbounded oper­
ators, notably differential operators, of the form ;rid(A) on l£id that would not be 
essentially self-adjoint on the natural domain C~(JR+\{O}) are often essentially 
self-adjoint on the domain Vx C~(JR2) inherited from 1£ (where Vx is defined be­
low (2.24». The domain of self-adjointness will then generically be such that wave 
functions in this domain vanish near the origin, providing a quantum analogue of 
the fact that motion in the highest-dimensional (and, indeed, in any) symplectic 
piece of SO cannot cross the barrier to the lower-dimension piece(s). 

For example, the Hamiltonian H = -~ + V(r) on L2(JR2) is SO(2)-invariant 
and essentially self-adjoint on C~(JR2). The unitary map U : L2(JR+, rdr) --+ 
L2(JR+, dr), defined by UqJ(r) := .jTqJ(r), transforms ;rid(H) into 

d * d 2 1 
U;r' (H)U = - dr2 - 4r2 + V(r). (2.127) 

While the analysis of this expression is quite straightforward for any reasonable 
potential V, the free case V = 0 already suffices to illustrate the main point. 
Defined on C~(JR+\{O}), the operator (2.127) then has deficiency indices (1, 1), 
so that it is not essentially self-adjoint. However, defined on Vx C~(JR2), which 
consists offunctions of the type qJ (r) = .jT f (r2) with f E C~(JRt), the operator 
in question is indeed essentially self-adjoint. The closure of the latter operator is 
an extension of the closure of the former, to whose domain one adds functions 
of the indicated type in order to achieve essential self-adjointness. The boundary 
condition qJ(O) = 0 corresponds to a hard wall potential at the origin. 

We now turn to the quantization of the example at the end of 1.11. As above, 
the quantization of S = T*JR2 is taken to be 1£ = L 2(JR2), of which we take the 
Fourier transform qJ 1-+ *, so that we work in p-space. The JR-action (1.90) on S 
is quantized by the representation (; (JR), given by 

(2.128) 

This is motivated by the fact that the generator idU(T) (where T is the standard 
generator of JR) on 1i is 

'- i dU T - - --- --1 (a2 a2 ) 
Q(<p) .- () - 2 a(xl)2 + a(x2)2 , (2.129) 
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which is the quantization of the single classical constraint rp = J in the SchrOdinger 
representation; cf. (1.91). 

It is possible now to follow the procedure of Theorem 2.5.4 with H = R, with 
a suitable replacement of C~(H). However, it is easier to approach this situation 
using Fell induction rather than Rieffel induction. Hence we apply Construction 
2.2.5, in whichE c .c2(R) is taken to consist of those 4t E C~(R2) for which there 

exists an E > 0 (depending on \II) such that 4t = O(lpn for Ipl := J pi + p~ ~ 
O. The motivation for this choice of E will emerge shortly. Since the classical 
reduced phase space is ]-I(O)/R, we put 'Hx = 'Hid = C in 2.2.5, so that also 
~('Hx) = C. With v = w = 1 in (2.37), the form (\II, <1»& then coincides with 
(\II, <I>)c. Proceeding as if we were performing Rieffel induction from the trivial 
representation ofllt, we define (\II, <I»~ by (2.80) with Uid(h) = 1. Using (2.128), 
this yields 

(2.l30) 

defined as an oscillatory integral. This can be computed as such, resulting in 

1 dk ~A A A ] (\II, <I»~ = -- \II(k, k)<I>(k, k) + \II(k, -k)<I>(k, -k) . 
IR 211' Ikl 

(2.l31) 

This expression is well-defined by virtue of our choice of E. 
Using the method of Proposition 2.2.4, the induced space 'Hid may be identified 

with 

'H~:= L2(R,dk/211'IkD®C2. 

For we may define fj : E ~ 'H~ by 

fj\ll(k) := (f/, \II)+(fk-' \II), 

where the functions f k± E coo(R2) are defined for k E R by 

f k± (x 1 , x 2) := eik(xl'FX2) , 

(2.l32) 

(2.l33) 

(2.l34) 

and the pairing on the right-hand side of (2.133) is defined as if \II and f k± both 
were in L2(R2). The right-hand side of (2.133) equals 4t(k, k)+4t(k, -k), so that 
one easily verifies (2.29) from (2.l31). (Equation (2.125) may be rewritten in a 
similar way, since the right-hand side equals (fx2 .... , \II), where fx2 .. ..<;I,;2, ... ) 
is 8(x2 - ;2, ... ), but the gain in doing so is small.) 

This way of writing the map fj is of fundamental importance, as the f k± form the 
complete set of linearly independent solutions of the quantum constraint equation 
Q( rp) f = 0; cf. (2.129). These solutions do not lie in L 2, so that the Dirac method 
fails in this example, but we see that the solutions of the quantized constraint 
equations still playa formal role in the quantization procedure. 

An operator A that commutes with all U(t) is adjointable. Now suppose that 
A : E ~ E satisfies the stronger condition of commuting with Q(rp). When the 
action of A may be extended to an action on each fk± , it follows that Aft is again a 
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solution of the quantized constraint equations, so that it may be expanded in terms 
of the solutions ik±' The induced representation Jrid(A) may then be expressed in 
terms of the expansion coefficients. To make this argument precise, suppose that 
A as above is such that (ik, A\II) = (A* ik, \II), where A* ik := (A(k, .), f.)*, for 
some kernel A. Here ik is regarded as a 2-component vector, so that each A(k, k') 
is a 2 x 2 matrix, the inner product (, )* being in L 2(R, dkj2Jr Ikl) ® (:2. It then 
follows from (2.30) and (2.133) that 

Jr!d(A)\IIid(k) = (A(k, .), \IIid)*. (2.135) 

We now examine the question to what extent the quantum theory reflects the 
decomposition of the classical reduced phase space SO into its symplectic pieces; 
see the final paragraph of 1.11. Firstly, as in the previous example, the lowest­
dimensional piece PI = P2 = 0 does not occur in the quantum theory. Secondly, 
we have seen that smooth functions on SO have to descend from smooth functions 
on S that depend only on PI, P2, and q I P2 +q 2 p, . In the SchrOdinger representation 
on L2(R2) (position space) these are quantized by 

Q(Pl) = -i8j8xl; 

Q(P2) = -iajax2; 

Q(ql P2 + q2p,) = -i(x I 8j8x2 + x 28j8x'), (2.136) 

respectively. The induced action on 1t~ is then given by 

Jr!d(Q(pd) = diag (k, k); 

Jr!d(Q(P2» = diag (k, -k); 

Jr!d(Q(ql P2 + q2 PI» = -ik diag (:k' - :k) . (2.137) 

Here k is seen as a multiplication operator on L 2(R, dk j2Jr Ik I), and the diagonal is 
meant to be of a 2 x 2 matrix. The operators in (2.137) are defined and essentially 
self-adjoint on the space of C~-functions in 1t~.It is obvious from these expres­
sions that the four subspaces L2(R+, dkj2Jrlkl) ® ej, L 2(R-, dkj2JrlkD ® ej, 
where i = 1,2, of L2(R, dkj2Jrlkl) ® (:2 do not mix under the action of these 
operators. More precisely, each of these spaces is stable under the group generated 
by the Lie algebra spanned by the operators in (2.137). Each of these four sectors 
is plainly the quantum counterpart of the appropriate symplectic piece in SO. 

3 Applications in Relativistic Quantum Theory 

3.1 Coadjoint Orbits of the Poincare Group 

We will now apply the formalism of 1.10 to the case that G is the Poincare group. 
Assuming that the reader is familiar with the theory of special relativity, we recall 
some notation. Minkowski space M is R4 equipped with the metric tensor ~ : = 
diag(l, -1, -1, -1); this tensor is used to raise and lower indices as explained 
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in 11.3.2. Greek indices run from 0 to 3, whereas Latin ones go from 1 to 3. The 
pairing between M and its dual M* is pv := p(v) := P/Lv/L = povo + PiVi, 
but p2 := gM(P, p) = P5 - p2, where p2 := PiPi, etc. In general, p stands for 
(PI, P2, P3). 

Furthermore, 0(1, 3) is the subgroup of G L( 4, JR.) consisting of elements that 
leave g,M invariant. For convenience of notation, the Lorentz group L is defined 
as the connected component of 0(3, 1) containing the identity (this subgroup of 
0(3, 1) is often called Lt). The Lie algebra ( of the Lorentz group consists of 
those real 4 x 4 matrices M~ for which the components M/Lv are antisymmetric. 

The dual (* is identified with ( under the pairing M(N) := M/Lv N /LV' This is 
useful, because P /\ V defined in (1.67) is now the matrix with entries 

(3.1) 

Moreover, the coadjoint action of L is given by Co(M) : N f-+ M N MT. 
A convenient basis of [ is {Ji, Bd, where Ji := €ijkEjk and Bi := EOi -

Ejo; here E/Lv is the matrix with entry 1 at position jLV, and 0 elsewhere. The 
commutation relations are [Jj, h] = €jjkJko [Bi, Bj] = -€jjkJk, and [Ji , Bj ] = 
€ijk Bk· Physically, the J j generate rotations, whereas the Bi generate boosts. Hence 
( has the reductive decomposition 

( = .50(3) EEl b, (3.2) 

in which .50(3) and b are the linear spans of the Ji and of the Bi , respectively. 
The Poincare group is P = L~pM,inwhichpisthedefiningactionp(A)q/L = 

Aq/L := All;,qV of L c 0(3, 1) on M. The dual action is p*(A)pl-' = API-' = 
A; PV' We will often omit the symbols p and p*. 

In principle, each coadjoint orbit of P is the "covariant" phase space of some 
relativistic particle. As we have seen in Proposition 1.10.1, the first step in the clas­
sification of these orbits is the study of the p*(L)-orbits in M*. The classification 
of the latter is well known: The orbit types are 

P'lL ._ P'lL - (OJ' 
\../0 .- \../(0,0.0,0) - , 

O~2.± := ot±m,O,o.O) = {p E M* I p2 = m2, ±po > O} ~ L/SO(3); 

o~± := Ot±I.O.O,-1) = {p E M* I p2 = 0, ±po > O} ~ L/ E(2); 

O~m2 := O~.O.O.m) = {p E M* I p2 = _m2} ~ L/SO(I, 2), (3.3) 

where m > O. Here SO(3) is a subgroup of L in the obvious way (which corre­
sponds to the decomposition (3.2». The embedding in L of the Euclidean group 
E(2) := SO(2) ~p JR.2 in dimension 2 is specified by looking at its generators: A 
basis {T;} of E (2) is obtained by putting 

T1 := BI - J2; 

T2 := B2 + JI; 

T3:= h. (3.4) 
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This time [ has the decomposition 

[= e(2) (£) m, (3.5) 

where m is the linear span of T4 := B, + h, T5 := B2 - J" and T6 := B3. This 
decomposition fails to be reductive, but on the other hand m is a Lie subalgebra of 
[, unlike the subspace b in the massive case (3.2). 

To further describe the data called for in 1.10.1, one should classify the coadjoint 
orbits of SO(3), £(2), and SO(1, 2). The P-orbits related to the L-orbit O~m2 
describe tachyonic particles, which are believed not to exist in nature. In what 
follows, we will therefore look only at the coadjoint orbits that are related to the 
L-orbits O~2.± and O~.±; the vacuum O~ is relevant to (quantum) field theory, but 
not to particle dynamics. 

Proposition 3.1.1. The physically relevant coadjoint orbits of the Poincare group 
are as follows . 

• One family, O~.±.s' related to the p*(L)-orbits O~2.± with m > 0, is further 
labeled by a parameter s ::: O. Each value of the spin s labels a coadjoint orbit 
s1 of SO(3). One has dijfeomorphisms 

",.,p "-' T*1Ill3 S2 v m.±.s - ~ X s' (3.6) 

• A secondfamily Ot,±.s' related to the p*(L)-orbits O~.±, is further labeled by a 
parameter hER Each value of the helicity h labels a coadjoint orbit (0,0, h) 
of E(2). There are difJeomorphisms 

Ot,±.s ~ T*(L/ E(2». (3.7) 

We start with the massive case; the parameter m is the mass of the particle 
living on any of the P-orbits to be described. The stabilizer of p = (±m, 0, 0, 0) 
is Lp = SO(3). As we have seen in 1.10, the coadjoint orbits of SO(3) are the 
two-spheres S; with radius r; the case r = 0 is included here as the origin. By 
Proposition 1.10.1 the orbit type of the P -orbit 0MP.. _ depends on the restriction of 

.p 

Nt to -50(3) ~ JR.3. This restriction passes through a unique SO(3) co adjoint orbit 
S;, and we correspondingly label the P-orbit as O~.±.s' 

The simplest case is s = 0; the orbit O~.±.o is the one through (0, p) E p*. 
We infer from (1.66) and (3.1) that the stability group of the above point in this 
orbit is SO(3) x JR., where JR. c M is the zeroth copy JR.eo. By (1.80) we then 
simply have O~.±.o ~ T*(L/ SO(3». The space L/ SO(3), and therefore the orbit 

O~2.±' is diffeomorphic to JR.3, because SO(3) is the maximal compact subgroup 
of L. Hence O~.±.o ~ T*JR.3. This is the usual phase space of a spinless particle, 
with the difference that in the present description the base JR.3 is momentum space, 
whereas the fiber of the cotangent bundle is position space. 

For s f. 0 the stability group is SO(2) x JR., where SO(2) c SO(3) is the 
stabilizer of some point in s1, and JR. is as above. We are now in a position to use 
Theorem 1.10.4 (and especially the subsequent comments) in its full glory. Since 
(3.2) is a reductive decomposition, there exists an L-invariant connection on the 
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principal bundle L(L/SO(3), SO(3), r), namely the H-connection; see III.2.7. 
Hence Theorem III.2.3.7 asserts that there is an L-equivariant identification of 
O~,±,s with a bundle over T*JR3 with typical fiber S;, providing a Lorentz-invariant 
splitting of spin and orbital degrees of freedom. Since the base of this bundle is 
contractible, we therefore obtain (3.6). Note that the symplectic structure on the 
right-hand side of (3.6) does not factorize; this is what physicists call spin-orbit 
coupling. 

We pass to the massless case. As we have seen, the stabilizer of p = 
(± 1,0,0, -1) is E(2). Its coadjoint orbits may be described either in analogy 
to those of E (3) (cf. 1.1 0), or by using Proposition 1.1 0.1, or by direct calculation 
from (1.66), in which P 1\ v equals the number PI v2 - p2V I . Either way, identifying 
t(2)* with JR3 using the basis {Ii} (cf. (3.4», one derives that each point (0, 0, h) 
is an orbit, and that the remaining orbits are cylinders C, = S; x JR, where the 
circle S; of radius r > ° lies in the p-plane, and JR is the z-axis. The stabilizer of 
(0,0, h) is E(2) itself, whereas the stabilizer of a point in Cr is JR (embedded in 
the JR2 of S 0(2) ~ p JR2 in a way depending on the choice of the point). 

The only orbits that are believed to be of physical relevance are the points 
(0,0, II). The P-orbit corresponding to such a point is denoted by Or; ± h' The 
stabilizer of a point in Ot,±,h is conjugate to E(2) ~ p JR, where JR lies 'i~ M as 
JR(l, 0, 0, -1). This group is equal to SO(2) ~ p JR3, where the SO (2)-action p on 
JR3 is given by rotations in the (x, y)-plane. By Theorems 1.10.4 and 111.2.3.7 we 
infer that Ot,±,h is diffeomorphic to T*(L/ E(2». • 

However, since E(2) is not a reductive subgroup of L, one cannot choose an 
L-invariant connection A on the bundle L(L/ E(2), E(2), r). Hence the pertinent 
diffeomorphism cannot be chosen in a Lorentz-invariant way. Moreover, the Pois­
son structure on T*(L/ E(2» is not the canonical one; it depends on h. Indeed, 
using coordinates p, q on the cotangent bundle that are canonical with respect to 
the standard symplectic form, but interchanging p and q in the light of the comment 
concluding the treatment of O~,±,o above, the Poisson bracket on T*(L/ E(2» is 

h at ag at ag at ag 
{j, g} = -a -a" - -a ,'-a - hFij(p)-a -a ' 

qi P P qi qi qj 
(3.8) 

where F is the curvature of the connection A; cf. III.(2.55). In particular, the 
canonical position coordinates do not Poisson-commute. 

3.2 Orbits from Covariant Reduction 

According to Theorem 1.10.2, the coadjoint orbits oP of P may be obtained 
by Kazhdan-Kostant-Sternberg reduction from a particular coadjoint orbit of a 
subgroup H c P of the form (1.70). It is interesting to see what happens when 
one instead reduces from a coadjoint orbit of the Lorentz group. In particular, we 
shall investigate how one may recover the orbits OP in that way. Apart from being 
an illustration of symplectic reduction and the theory of constraints, this turns out 
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to be the classical analogue of a standard procedure in relativistic quantum theory, 
to be discussed in the next section. 

Lemma 3.2.1. Let OL be a coadjoint orbit of the Lorentz group L. The reduced 
space (T* p)()L , defined by (1.43) with G replaced by P and H by L, is symplec­
tomorphic to T* M* x O~, in such a way that the reduced P-action 1ll.(2.122) on 

(T* p)()L becomes the natural action on T* M* x O~. 

Here the "natural P-action" is the product of the pullback to (T* M)- ::::: T* M* 
of the defining action on M and the coadjoint L-action on OL (on which M acts 
trivially). The symplectic structure on T* M* x O~ is not the direct product one, 
although its restriction to each factor is the one indicated by the notation; see below. 

The proof is a simple calculation; as in the proof of 1.1 0.2 one uses the left 
trivializationofT* P. The space I f"[1 (OL) consists of points (M, p, A, v) in _OL x 
M* x L x M; elements of the reduced space are equivalence classes of such points 
under the L-action derived from III. (1. 49) and (1.64). The map [M, p, A, V)]L t--+ 

(-Ap, v, -OL(A)M) is a diffeomorphism from I f"[I(OL)/ L to M* x M X OL. 

(This map is a combination of minus the momentum map J L and the identity on 
M; cf. III.(1.56), (1.66), and Figure 4.) 

The symplectic structure on this space may be computed from III.(1.54) and 
(1.65). The claim about the reduced P-action may be verified from III.(1.50) and 
(1.64). • 

Our aim is now to construct the physically relevant coadjoint orbits of P by 
symplectic reduction of T* M* x O~. In the simplest case O~ = to} this is done 
by imposing the constraints 

(3.9) 

and ±po > O. The constraint ({J is a momentum map for the JR.-action on T* M* 
given by 

t : (PIL' qIL) t--+ (PIL' qlL - pILt). 

The symplectic reduction (T* M*)'I' of T* M* with respect to this constraint is 
symplectomorphic to T*JR.3 (with p-space as the base); for one may map (PIL' qIL) E 

C (the subspace of T* M* where ({J = 0) to (Pi, qi - qO pi / Po). Similarly, one 
has T*0!;2,± ::::: T*JR.3, so that finally (T* M*)'I' ::::: O~,±,o by (3.6). One may put 
m = o here. 

This construction may be generalized to arbitrary values of the spin. We use 
the matrices M as parameters on 0, in addition employing Ki := MOi and Ri := 
~€ijkMjk> as well as K2 .- KjKj and R2 := RjRj. It may be shown that the 
conditions 

KjRj=O; 
R2 _ K2 = S2 (3.10) 

select a coadjoint orbit O~ in [*; this is the only type of orbit we shall need in order 
to reach the physical orbits in p*. These orbits are plainly four-dimensional. 
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The massive case is qualitatively different from the massless situation, but we 
present the results in united fashion. 

Theorem 3.2.2. Let m ~ O. and consider the constraints rp in (3.9) and rpv := 
p/L M/Lv, In addition. impose ±po > O. 

• The symplectic reduction ofT* M* x O~ by rp is T*0;'2.± X O~. Thefunctions 
rpv are well-defined on this reduced space (and in what follows are regarded as 
junctions on T*0;'2.± x Of J. 

• For m > 0 the constraints rpv = 0 are second class. and the subspace of 
T*0;'2.± x O~ on which they hold is symplectomorphic to the coadjoint orbit 

(O~.±.s)+ of P. 
• For m = 0 the constraints rpv = 0 are first class. and the symplectic reduction 
ofT*O~.± x Of by these constraints is symplectomorphic to the union of the 

coadjoint orbits (0c'±.s)+ and (oc,±.-s)+' 
• The reduction of the natural P-action on T* M* x Of (cf. 3.2.1) to the reduced 

spaces above is equivalent to the coadjoint action. 

The first claim of the proposition is immediate from the calculation preceding 
3.2.2. In what follows p is either (±m, 0, 0, 0) or (± I, 0, 0, -1), and L p denotes 
either S 0(3) (for m > 0) or £(2) (when m = 0). In the former case [~ may be 
identified with b (cf. (3.2». 

We identify T*OL 2 ± with L XL- [op.; cf. (3.2) and 111.(2.116). The constraints m. P 

p/L M /LV = 0 are then the components of <I> : (L x Lp ~) X 0; --+ M*, defined by 
<I>([A, N]Lp' M):= MAp. 

Contracting <I> with p, or rpv with pV, one immediately sees that at most three 
components of rpv are independent. Since M itself satisfies the condition of lying 
in 0;, only two components of <I> are actually independent. The solution set 
C;' of these constraints consists of those ([A, N]Lp' M) for which N E (~ and 

M E A([p nO;). This is well-defined, for Lp maps (p n Of into itself, so that 
changing A by AA makes no difference as long as A E L p. 

For m > 0 the set (p n 0; contains all matrices M in ( for which K j = 0 and 
R2 = S2; with (p = 50(3), identified with its dual, it is clear that this set is the 
coadjoint orbit S; of SO(3). We now define 1/1 : C;' --+ L xSO(3) rrl(S;) (where 
rr : (* --+ (T is the restriction map) by 

1/1 ([A , N]SO(3), M) := [A, N - A-I M]so(3)' (3.11) 

It is obvious from the above description of C;' that 1/1 is a diffeomorphism. 

Now recall from 1.10 that L XLp rrl(-O~p) is symplectomorphic to O@.P); 

see the paragraph preceding (1.80). Applied to the case at hand, this means 
that L XSO(3) rrl(S;) is symplectomorphic to O~.±.s' Chasing the definitions 
of the relevant symplectic structures, one may (tediously) verify that C;' is in fact 
symplectomorphic to O~.±.s' This proves, in particular, that C;' is symplectic. 

For m = 0 the set Ip nO; consists of all matrices M in ( for which K I = - R2, 
K2 = RI, R3 = ±l, and K3 = O. Hence C? is the union of two components 
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c~'±. This time the analogue of (3.11) fails to be a diffeomorphism. The selection 
of two independent constraints <I> I, <1>2 is made via the choice of a (local) section 
b: L/ £(2) ~ 0k± ~ L. The <Pj in question are then simply the first and second 
components of <l>b, defined by <l>b([A, N]E(2). M) := b(Ap)-I<I>([A, N]E(2), M). 

The following claims may be verified by a straightforward but tedious local 
analysis. The two independent constraints generate a free and proper action of 
]R2 on T* 0k± x 0;; the momentum map J of this action is, of course, given by 
Jj = <1>7. We are therefore in the situation of Marsden-Weinstein reduction at zero. 
concluding from Theorems 1.5.4 and 1.2.2 that J-1(0) = c~ is coisotropically 
embedded in T*Ok± x 0;. While the explicit form of the ]R2-action depends 
on b, the Marsden-Weinstein quotient J- 1(0)/]R2 does not. The analogue of the 
map (3.11) quotients well to J- 1(0)/]R2, and is a diffeomorphism. The remainder 
of the argument is then as in the massive case. It is elementary to verify that the 
pertinent P-actions are intertwined by the symplectomorphism between C:Z and 
O~ ± s constructed above. D 

3.3 Representations of the Poincare Group 

In this section we relate the irreducible representations of the Poincare group P 
to its covariant representations; these are by definition the ones that are in­
duced from some finite-dimensional representation of the Lorentz group L. We 
will first quickly go through the classification and realization of the irreducible 
representations of p. assuming that the reader has seen this material before. 

In order to apply Theorem 1.10.3 we need to verify that P is a regular semidirect 
product. All L-orbits in M* are closed. except 0k±. The closure of the latter is 
obtained by adding the origin. so that it is obvious that the regularity condition is 
met. Hence the irreducible representations of P are classified by 1.10.3. As in the 
classical case, we will concentrate on the representations related to the L-orbits 
0;'2,±. for m2 ::: O. 

The orbits 0;'2.± possess an L-invariant measure v, which, upon identification 

of 0;'2,± with JR.3 by simply omitting the variable 

(3.12) 

is dv(p) = dp1dp2dp3/(161'(3Wp)' Hence we can form the representation space 
(1.75) and the representation (1.76). For m > 0 and Lp = SO(3) the label C1 is the 
spin s. taking values in N U 0, so that 1-£s = C2s+1 is the space carrying the well­
known irreducible representation Us(SO(3». For m = 0 we are interested only 
in irreducible representations of Lp = £(2) that correspond to the SO(2)-orbit 
(0,0) in ]R2. Such representations Uh are labeled by the helicity h E SO(2) = Z, 
and are realized on 1-£h = C. 

Comparing these representations with the coadjoint orbits of the classical theory 
in 3.1, one sees that the only difference in the parametrization lies in the fact that in 
quantum theory spin and helicity assume integral values. (It can be shown that the 
projective representations of P are given by representations of its covering group 
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P = SL(2, C) ~p M, where the action jj projects to an action of L via the well­
known covering projection from SL(2, C) onto L. For the above classification the 
replacement of L by SL(2, C) has the consequence that s and h may now be half­
integers as well.) The following summary should be compared with Proposition 
3.1.1. 

Proposition 3.3.1. 

• The Poincare group P is a regular semidirect product. 
• For m > 0, P has a family of irreducible representations V m.±,s, where s E 

N U 0, which is realized on 'It;,±,s = L 2(O~2,±) ® C2s+1 by (1.76). 
• For m = 0, P has, among others, the series of irreducible representations 

VO.±.h, where h E Z, realized on 'It~.±.h = L 2( O{;,±). 

Here b : O~2.± ~ Lj Lp -+ L is a measurable section, as explained above (1.75). 
The explicitform of these representations is given by (1.76). 

Our goal is now to relate these representations to the covariant representations 
of P. These are defined by taking G = P and H = L in III.2.9 and taking the 
representation V)..(L) from which one induces to be finite-dimensional. This is 
motivated by relativistic field theory, in which the basic fields of a theory generi­
cally transform according to such a covariant representation. However, since L is 
semisimple and noncompact, it can be shown that its finite-dimensional representa­
tions are all nonunitary, except the trivial one. Thus we discard the symbols 'It).. and 
V).., suggesting unitarity, in favor of S).. and R).., respectively. The corresponding 
induced representations R)..(P) are nonunitary as well, except the trivially induced 
representation Rid. 

This is not a problem, because the induced space 'It).. will be regarded primarily 
as a symplectic manifold, henceforth called S)... The point, then, is that R).. defines 
a strongly Hamiltonian action of P. The relationship between the covariant and 
irreducible representations will, accordingly, be achieved by symplectic reduction. 
The notion of irreducibility, however, is the one from unitary representation theory 
(rather than the transitivity of the P-action). 

In any case, one may construct the induced space S).. = 'It).. as a Hilbert space in 
the same way as for unitary induction; see, in particular, the text below III.(2.176). 
The next lemma should be compared with 3.2.1. The analogue of (3.14) for E(3) 
instead of P has already been encountered in (2.116). 

Lemma 3.3.2. The Hilbert space S).. and the induced representation R)..(P) may 
be realized as 

S).. = L 2(M) ® S)..; 

R)..(A, v)'I1)..(q) = V).. (A)'I1).. (A -I(q - v», 

or, after a Fourier transform on '11).., as 

S).. = L 2(M*)® S)..; 

n)..(A, v)q,\p) = eipv V).. (A)q,)..(A -I p). 

(3.l3) 

(3.14) 

(3.15) 

(3.16) 
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Here we have simply written S').. for S;, etc.; the inner product on S').. (and similarly 
on S').. ) is given by 

(3.17) 

One notes that P / L ~ M, so that L2(p / L) = L 2(M) := L 2(JR4), and chooses 
the section s : P / L --* P to be s(q) = (1, q). Since the Lebesgue measure on M 
is Lorentz-invariant, 111.(2.176) then simplifies as stated. • 

The definition of the symplectic form with respect to which the action R}(P) 
is strongly Hamiltonian, and the corresponding identification of the canonical 
variables, depend on the form of 'R')... We shall discuss only two cases, of relevance 
to physics. Firstly, we take 'R').. = 'Rid, where 'Rid (A) = 1 for all A E L. The 
inner product on Sid = (; is the usual one, so that 1.(2.35) with (3.17) defines a 
symplectic form relative to which the action 'Rid(P) is strongly Hamiltonian; cf. 
Theorem III.l.6.1. As we have already remarked, this case is rather atypical, in 
that 'Rid(P) is unitary. 

Secondly, we pick the vector representation 'R').. = 'Rv , defined on Sv := (;4 

by 

(3.18) 

Elements of Sy are traditionally denoted by A, since in physics gauge fields are 
examples of fields transforming according to 'R y. The complex structure and inner 
product on Sy are not the usual ones on (;4, however; they are defined by 

i(Ao, AI, A2, A 3):= (-iAo. iA I, iA2• iA3); (3.19) 

(A, B)v := AoBo + A,B, + A2B2 + A3B3. (3.20) 

The point of these definitions is that 1.(2.35) now defines a Lorentz-invariant 
symplectic form on Sv, for (with slight abuse of notation) one has 

(3.21) 

The same definition, but now applied to the inner product (3.17), then defines a 
symplectic form on SV that is invariant under the P-action 'R v. Consequently, this 
action is strongly Hamiltonian. 

In both cases the identification of S').. as a phase space is equivalent to regard­
ing L 2(M) ® (;N, where N = 1 or 4, as the cotangent bundle of L2(M. JRN); 
cf. 111.(2.28)-(2.31). This comment, however, would not apply to arbitrary 
representations 'R')... 

In all cases, the first step of the reduction of S').. is performed by imposing the 
infinite number of constraints 

(3.22) 

on S').., where 0 := 8/.L8/.L is the d' Alembertian. On S').. these constraints read 

(3.23) 
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cf. (3.9). Unfortunately, this equation has no solutions in the given phase space. 
Although conceptually this situation is purely classical, one is reminded of the 
discussion about Dirac's constrained quantization method in 2.9. In the present 
context the problem arises because of the infinite number of degrees of freedom. 

Regarding ",A as an infinite-component coordinate qi, i E M*, the form (3.23) 
shows that the constraints in question amount to putting qi = ° for a certain subset 
i E M~ c M*. If the index set M* were finite, the reduced phase space would 
simply be T*JRM·\Mc. Formally regarding M~ as the set where (3.12) holds, the 
space M*\M~ may be identified with JR3 through the elimination of Po as an 
independent variable. To make this argument precise, one first expands solutions 
of (3.23) with given sign ± of the energy Po by 

\lJA(q) = ( d 3 p e-ipqq,A(p), 
± JR.J 16rr3wp ± 

where Po = ±wp • One subsequently declares the reduced space to be 

sm,±,A := {\IJ~ E S'(M) ® SA I 
(D+m2)\lJA =0, q,~ E L2(JR3,d3p/(16rr3wp»®SA); 

(3.24) 

(3.25) 

the inner product (\IJ±, <l>±) in sm,±,A is by definition equal to the one (q,±, <I>±) in 
L2(JR3, d 3 p/(16rr 3wp»®S),. Here the fact that all solutions of (3.23) inS'(M)®S), 
admit an expansion of the type (3.24) is a consequence of (3.23) and the fact that the 
Fourier transform maps S'(M) into S'(M*), The extension of L2(M) to S'(M) 
is possible, since in classical physics one is not tied to the choice of L 2(M*) as 
the unconstrained phase space, and is free to enlarge it. 

It follows that one may identify sm,±,A with L2(O~2,±) ® SA' The reduced 

P-action Rm,±,A is given as in (3.16), with the understanding that Po is given 
by (3.12), We look at sm,±,A as a symplectic manifold in a manner analogous 
to the interpretation of SA explained above, and we regard Rm,±,A as a strongly 
Hamiltonian action, rather than as a representation. 

Notice, however, that sm,±,id = 1tm,±,o and Rm,±,id = Um,±,o, which is, excep-
tionally, a unitary representation. This brings us in a position to justify the choice 
of (3.25) as the reduced phase space by a completely different argument. Here SA 

and UA "go along for the ride", so we omit them. 

Proposition 3.3.3. Regarding L 2(M) as a Hilbert space, Fell induction on the 
basis of the quantum constraint (3.22), supplemented by ±po > 0, yields the 
induced Hilbert space L2(O~2,±). 

The representation (3.14) on L2(M) is thereby induced to a representation on 
L2(O~2.±)' which coincides with the irreducible representation Um,±,o(P). 

The following construction may be seen as the quantum counterpart of the re­
duction of T* M* by the constraint (3.9). The construction is possible, and provides 
an unexpected quantum twist to an otherwise classical situation, because the action 
Rid(P) is not merely strongly Hamiltonian, but unitary. 
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The quantum reduction procedure is essentially the same as the one discussed 
in 2.10 for the constraint ~(pi - p~) on T*R2; see (2.128) etc. Thus we consider 
the representation V(R) on L2(M*) defined by 

V(f)W(p) := e~it(p2-m2)W(p). (3.26) 

We then perform Fell induction, applying Construction 2.2.5. This time we may 
simply take t c L2(M*) to be Cgo(M*). Adding the condition ±po > 0, and 
rescaling the inner product by a factor of 4 (which could have been avoided by 
rescaling the constraint if desired), the induced space then emerges as S1 = 
L2(O~2.±)' on which the representation U~(p) Fell-induced from Uid(P) is equal 
to the irreducible representation Um.±.o(P). • 

We have added the suffix F here in order to distinguish between induction from 
representations of L and Fell induction. In the current analogue of the functions 
(2.134), the label k is replaced by p, and one now has Jp±(ql1) = eipq , where 
Po = ±wp • These functions do not lie in 'Ji, yet they nonetheless form a complete 
set of linearly independent solutions of the constraints (3.22). 

3.4 The Origin a/Gauge Invariance 

For scalar fields we have achieved our goal of relating the covariant action Rid(P) 
to the irreducible representation Rm.±.id(P). For nontrivially induced actions R).. 
it is necessary to impose further constraints in order to achieve irreducibility. This 
will eventually bring us to the main theme of this section, namely the relationship 
between masslessness and gauge invariance. 

The first step towards irreducibility consists in defining new variables by means 
of the (bounded and invertible) map Ub, defined on sm.±.).. by 

-).. 1 -).. 
UbW±(p) := R)..(b(p)- )W±(p), (3.27) 

where p = (±wp, p), and b : O~2.± --+ L is a section, as before. This map is 
obviously not unitary, but it is a symplectomorphism when the symplectic form 
on sm.±.).. has been defined appropriately. It is customary in physics to denote the 
left hand side of (3.27) by a~(p), suppressing the b-dependence. The point of the 
transformation (3.27) is that the P-action R;·±·).. := UbRm·±·)..U; is given by 

R;·±·)..(A, v)a~(p) = eipvR).. (b(p)-I Ab(A -I p») a~(A -I p). (3.28) 

Compare with (1.76), recalling that the argument of U(j in that formula, and there­
fore the argument of R).. in (3.28), lies in L jj (which, we recall, is S 0(3) for m > 0 
and £(2) for m = 0). The only difference is that U(j in (1.76) is a unitary irre­
ducible representation of L jj , whereas the restriction R)..(L r Ljj) ofR)..(L) to Ljj 
is possibly nonunitary and reducible. 

Let us briefly discuss the massive case, which is well understood. 

Proposition 3.4.1. Suppose that R)..(L r SO(3» contains Us(SO(3», and let 
P)..-->s be the projecforon S).. whose image is the subspace carrying Us(L r SO(3». 
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The constraints 

(3.29) 

are Poincare covariant, in that W~ satisfies (3.29) ijfRm·±·J..(A, v)W~ satisfies 
(3.29). In particular, the left-hand side of(3.29) does not explicitly depend on the 
section b. 

The subspace of sm.±.J.. satisfying the constraints (3.29) is precisely the Hilbert 
space 1tm.±.s carrying the irreducible representation Um.±.s (P). Tn particular, this 
subspace is symplectic, so that the constraints (3.29) are second class. 

The first point is obvious from (3.28) and the fact that pf--.s commutes with all 
RJ..(-)' The remainder follows from the discussion after (3.27). • 

For example, the representation Rv(L r SO(3» reduces as Uo EB UI, under 
which the carrier space C4 decomposes as Ceo EB C3 • The projection PJ--..+ I equals 
[eo], so that with p = (m, 0, 0, 0), we may write pil- Ail- = ° for P-t ...... 1 A = O. 
Since (A -I): = Ail-v' and by definition of b one has b(p)lL"pv = Pil-' (3.29) may 
be written as the covariant equation Pil-AjJ.(p) = O. 

Returning to our original starting point, one may impose (3.29) and (3.23) or 
(3.22) on SJ.., and, choosing a sign of the energy Po, conclude that the reduced 
phase space is 1tm.±.s. All values of sEN can be reached in this way, and any 
covariant wave equation for massive fields is of this form. (To reach s E N/2 one 
needs to start with a representation of SL(2, C) rather than of L.) Wave equations 
are usually posed in M rather than M*; for example, in the situation discussed 
above, the complete set of constraints consists of (0 + m 2)AjJ. = 0 and ajJ.AjJ. = O. 

For massless fields a similar procedure may be used: For any given helicity 
h E Z there exist representations of L whose restriction to E(2) contains Uh. For 
example, to reach U±I one may use the representation on antisymmetric tensor 
fields FjJ.v' However, in physics a key role in the description of massless fields 
with helicity ±1 is played by vector fields Aw Let us therefore investigate the 
restriction of Rv(L) to E(2). 

Proposition 3.4.2. Equip Sv = C4 with the symplectic form (3.21); the repre­
sentation Rv(L) defined in (3.18) defines a strongly Hamiltonian L-action on Sv. 
Seen as a representation, the restriction ofRv to E(2) is indecomposable. 

The symplectic reduction se of Sv by the constraint pjJ. AjJ. = 0, where p = 
(1, 0, 0, -1), is C2 with its usual symplecticform 1.(2.35). The reduced E (2)-action 
on Se is the representation UI EB U-I. 

Choosing a basis {UI := e}, U2 := e2, U± := !(eo ± e3)}, and taking the 
generators (3.4) in the defining representation, one calculates that P : = Cu_ = C P 
is invariant under E(2), as is the span :r of {u}, U2, u-l. The representation is 
indecomposable, because Ta Ua = u_ for a = 1, 2. 

Since pjJ. = (1, 0,0, 1), the solution of the constraints is :r. One computes that 
the null space of the symplectic form on :r is p, so that S~ = :r IP ~ C2• Explicit 
computation of the action of the generators yields the final claim. 0 
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This reduction of S~ is of the Marsden-Weinstein type: With H = C acting on 
C4 by 

>.. : AIL t-+ AIL - i>"PIL' 

one computes from 111.(1.8) and 1.(2.32) and the subsequent text line that 

J(A) := _2pIL AIL 

(3.30) 

(3.31) 

is an equivariant momentum map for this action. Hence 3 = J-1(0) and S~ = 
J-1(0)/ H. The space P consists precisely of those vectors in Sy that are "pure 
gauge", that is, of the form AIL = >"PIL for some>.. E H. 

The symplectic orthogonal complement of a subspace V (which is not necessar­
ily linear) of a linear symplectic space x:; (such as a Hilbert space with symplectic 
form 1.(2.35» is (cf. 1.1) 

Vi := {z E x:; I w(z, w) = OVw E V}. (3.32) 

Applying this to x:; = Sy and V = P, one sees that pi = 3. 
Before proceeding on the basis of these insights, we should first pay attention 

to a subtle point concerning real fields. The representation ny(L) is real, in that 
lR.4 C (:4 is invariant under L. In physics one defines a real vector field with mass 
m 2: 0 as an element of 

(3.33) 

The Fourier coefficients A± are now dependent variables, related by A_(p) = 
A+(p). This leads to an identification of the real Hilbert space sm.V.JR. with the 
complex Hilbert space sm.+. v, endowing sm.lR. v with the structure of a complex 
Hilbert space, as well as with the action nm.+. v (P) (rather than with the restriction 
ofnm.+. v $nm.-. y to the real subspace in question, as might have been expected). 
This juggling is justified by the physical requirement of positive energy. In any 
case, the symplectic form on sm.JR.. Y may be expressed as 

(3.34) 

where E C M is an arbitrary Cauchy surface for (3.22), and we have written A 
for V(A), etc. The norm in sm.JR.. V (seen as a Hilbert manifold) is 

2 1 d3 p ~ - 2 
IIAII:= 16 3 L.J IAIL(p)1 . 

JR.3 7r Wp IL=O 
(3.35) 

This norm is not Poincare invariant, but the topology it induces is. A similar 
procedure applies to scalar fields. 

After these preparations we come to our main point of relating masslessness to 
gauge symmetry. 

Definition 3.4.3. Let Qc c S'(R4)/lR. consist 0/ all real solutions>.. o/the wave 
equation 0>.. = 0 on M, modulo the constants, and let the gauge group Q consist 
o/those>.. E Qc whose (weak) derivative a>.. (seen as a/our-vector with components 
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all A) lies in SO.RV. The Lie algebra 9 is identified with Q, which becomes a Hilbert 
space in the norm 

2 [ d 3 P - 2 
IIAII = (A, A)g := (aA, aA)so.Rv = JJR3 (2n)3 wpIA(p)1 . (3.36) 

Here wp = n, and). equals ).+, defined as in (3.24). 

The following result transfers the setting of Proposition 3.4.2 from Sv to S := 
SO.R v, at the same time being an infinite-dimensional analogue of the part of 
Theorem 3.2.2 concerning m = O. 

Theorem 3.4.4. The action of the gauge group Q on SO,JR, v , given by 

(3.37) 

is strongly Hamiltonian. The Marsden-Weinstein quotient SO := J-1(0)/Q with 
respect to this action is symplectomorphic to the Hilbert space '}-{O,+,I EI7 '}-{O.+.-I 

(cf 3.3.1), with symplecticform 1.(2.35). The action nO,+,v of Pan S reduces to 
an action on SO that is equivalent to the representation UO,+,I $ UO,+,-I, 

The last-mentioned representation of P is reducible, but becomes irreducible 
when spatial reflections are included. Particles transforming under UO,+,1 $UO,+,-I 

are called photons. 
Our choice of the (Hilbert) manifold structure on S and Q implies that the action 

(3.37) is smooth, since addition in a Hilbert space is smooth. Following the steps 
leading to (3.31), one then verifies that a momentum map for (3.37) is given by 

1W: p f--)- -pIlAIl (p)/p2, (3.38) 

where PO = n. When A lies in SO.R v , the function JW is indeed an element 
of g* :::::: Q. Since the coadjoint action is trivial, one verifies that J is equivariant. 

In the setting of (real) Hilbert manifolds, the theory of Marsden-Weinstein 
reduction is essentially the same as for finite-dimensional manifolds. Definition 
3.4.3 and (3.37) easily imply that the Q-action is free. However, since Lemma 1.5.1 
was proved using a dimension-counting argument, which does not generalize to 
the infinite-dimensional case, we now prove directly that 0 is a regular value of 
J. The derivative J*(B) at A is independent of A, and equal to J(B). Hence J* is 
surjective for all A, so that 0 is regular by definition. 

U sing the second formulation of properness in Definition 1.5.2, one immediately 
shows thatthe (I-action on S is proper, for An ---+ A in (I precisely when allAn ---+ allA 
in S. 

The Marsden-Weinstein quotient SO therefore exists as a symplectic manifold 
by Theorem 1.5.4. The set J-1(0) consists of all A E S satisfying all All = 0, 
or, equivalently, pll A(p) = O. (In the present context this equation should not 
be thought of as a gauge-fixing condition, but as Gauss's law.) This is a closed 
subspace of S, which easily implies that SO is a Hilbert space. The identification 
of the reduced space and the reduced P -action proceeds in complete analogy with 
the proof of Proposition 3.4.2. • 
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The comments following (3.31) may be repeated verbatim: defining P C SO,JR, v 
as the fields that are pure gauge, i.e., of the form AJ.L = 8p.A for some A E g, and 
putting:r := J-1(0), one has :r = pi. and SO ~ :r jP. 

3.5 Quantum Field Theory of Photons 

On the basis of the general idea that symplectic reduction is to be quantized by 
induction (in the sense of Rieffel or Fell), we shall formulate an analogue of 
Theorem 3.4.4 in quantum field theory. In preparation, we define an important 
class of C* -algebras. 

Definition 3.5.1. The CCR algebra 2!1(K) over a Hilbert space K is the twisted 
group C* -algebra C*(Kd, c), where Kd is K as an additive group, equipped with 
the discrete topology, and the multiplier is 

(3.39) 

Here the symplectic form w on K is defined by 1.(2.35). 

It is customary to write W(z) forthefunction f satisfying f(z) = 1 and f(w) = 
o for all w =1= z. We assume that the Haar measure on Kd is normalized so that 
each point has measure 1. From III.( 1.80) and 111.(1.81) we then have the relations 

W(z)W(w) = e-!iW(Z,W)W(z + w); (3.40) 

W(z)* = W( -z). (3.41) 

Equation (3.40) describes the canonical commutation relations in Weyl form, 
which explains the names CCR and 2!1. Note that substitution of (3.41) into~) 

shows that W(z) is unitary. We will denote the linear span of all W(z) by 2!1(K); 
this is plainly a dense subalgebra of 2!1(K), playing an important role in what 
follows. 

It can be shown that the CCR-algebra is simple, so that all nondegenerate 
representations are faithful. A most important representation of 2!1(K) is the 
Fock representation 7rF on the bosonic Fock space exp(K) defined in 11.(2.61). 
Recalling 11.(2.67) etc., this representation is defined by continuous extension of 

7rF(W(Z» := ea(z)'-a(z) (3.42) 

from the span IE of the exponential vectors; cf. 11.(2.62). On use of the CBH­
formula, 11.(2.69), and 11.(2.70), this is equivalent to 

I 
7rF(W(z»JExp(w) = e-i(z.z}-(z.w) JExp(w + z). (3.43) 

For example, whenK = en, the operator7rF(W(z» coincides with UI(Z) as defined 
in 11.(2.71). 

While the preceding paragraph in conjunction with 11.2.3 relates the CCR­
algebra to Berezin quantization (at least when K is finite-dimensional), there 
are equally close links between the CCR-algebra and Weyl quantization; cf. the 
comments following 11.(2.112). 
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Proposition 3.5.2. Let U be an operator on K that preserves the symplectic 
form 1.(2.35); this is the case,for example, when U is unitary. Then linear and 
continuous extension of au (W(z» := W(U z) defines an automorphism ofW(K). 

Linear extension of uF ,JEXP(z) := ,JEXP(Uz) defines an operator U F on 
IE c exp(K). When U is unitary, the map U F i~ unitary, so that it may be extended 
to all ofexp(K). It then implements au, in that UFlfF(A)(U F)* = lfF(au(A» 
for all A E W(K), In particular, a group representation Ux(G) on K leads to a 
representation U: (G) on exp(K). 

It is clear that (3.40) is preserved by au, and so is (3.41) by the linearity of U. 
The unitarity of U F for unitary U is immediate from 1l.(2.63). 

It is not obvious that U F as given is well-defined, since the exponential vectors 
form an overcomplete set. However, putting UF(WI ®s .. , ®s wn) := UWl ®s 
... ®s U W n, and using 11.(2.62), defines the same operator in an unambiguous way. 
The implementing property follows from a simple calculation, using (3.43). • 

The following result will be used in relationship to the weak algebra of observ­
abIes of the quantum field theory of photons. Restricting w to V, one obtains a 
C*-algebra W(V) by Definition 3.5.1. It is clear that the linear span of all W(z), 
z E V, may be regarded as a subspace of W(K) by extending the functions in 
question to K with the value 0 outside V. Looking in the Fock representation, one 
sees also that the completion W(V) is a subalgebra of W(K). Similarly, W(V.l) 
may be defined as in 3.5.1; cf. (3.32). 

Proposition 3.5.3. The commutant W(V)' ofW(V) in W(K) is W(V.l), 

The inclusion W(V.l) ~ W(V)' is immediate from (3.40); the hard part of the 
proof is the opposite inclusion. 

For f E lOO(Kd ) one has the inequalities 

lI!IIoo ::: 1I!II2 ::: II !II , (3.44) 

where the first norm is the sup-norm, the second norm is in l2(Kd) (with respect 
to the Haar measure on Kd ), and the third is in W(K). The first inequality is 
obvious (given the discreteness of the underlying measure space), and the second 
follows from the existence of the state wo, defined by continuous extension of 
wo(f) = f(O); indeed, II f II~ = wo(f* f). It follows that W(K) as a Banach space 
(with its C*-norm) is continuously embedded in lo(Kd) (with sup-norm), for any 
element of the former is the limit of a Cauchy sequence in le(Kd); by (3.44) this 
sequence must also converge in the sup-norm, so that its limit must lie in lo(Kd). 

Now take an arbitrary f E W(K), and a Cauchy sequence fn in le(Kd) con­
verging to f in W(K). It then follows from (3.40) that the commutator [fn, W(z)] 
is the function f~z) : W H- 2ifn(w - z) sine -4w(w, z». Now, limn f~z) exists in 
W(K), hence in lo(Kd)' The function W H- sine - iw(w, z» lies in lb(Kd), which 
is the multiplier algebra of lo(Kd); cf. (2.13). Hence f~z) ---* f<z) (defined like 
f~z), with fn replaced by f) is in lo(Kd)' By uniqueness of the limit, we infer 
f~z) ---* f<z) in W(K). We conclude that [f, W(z)] = f<z). 
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Now, f is in2U(V)' iff[f, W(z)] vanishesforallz E V. The preceding paragraph 
then yields II f<z) II = 0, whereupon (3.44) implies that f<z) identically vanishes for 
such z. Therefore (evaluating f<z) at w = w' + z, and using w(z, z) = 0), f must 
vanish whenever its argument does not lie in Vl. ,and the proposition follows. • 

Applied to the cases /C = Sv and /C = so. JR. v of the preceding section, we see 
that in either case Proposition 3.5.3 implies the equality 

2U(P)' = 2U(3). (3.45) 

Note that 2U(P) is abelian, because w vanishes on P. For P c Sv this is because 
piJ. piJ. = 0, and for P C SO.JR. v the reason is that aiJ.aiJ.).. = O. 

To interpret this result, we look in the Fock representation; in what follows /C 
is either Sv or SO.JR. v, and H is C or g, respectively. The Hilbert space exp(/C) 
carries a representation U F(H), defined by 

(3.46) 

where).. E P; we have identified H with the corresponding subspace P c /C. It is 
obvious from (3.40) and the fact that w vanishes on P that U F defines a linear action 
of H, and the unitarity of each W()") implies that this action is unitary. (Note that 
U F is not an example of a representation of the type U: mentioned in 3.5.2.) The 
explicit form (3.43) shows that U F()..) performs the gauge transformation (3.37) on 
the argument of .JEXP; the remaining term may be thought of as a factor included 
to make U F()..) unitary. Identifying 2U(/C) with its faithful Fock representative, 
(3.45) then means that the gauge-invariant subalgebra of 2U(/C) is 2U(3). 

We are now going to "quantize" Proposition 3.4.2 and Theorem 3.4.4. We would 
like to use the specialization of Rieffel induction to quantum Marsden-Weinstein 
reduction explained in 2.5. In particular, we take our cue from Theorem 2.5.4, in 
which we put 1i = exp(/C), U = U F, and t = ~; recall from 11.2.3 that ~ is 
the linear span of all exponential vectors. However, for /C = Sv and H = C it is 
not clear how to construct a pre-Hilbert C~(H)-module that is stable under the 
action of a suitable subalgebra of 2U(Sv). For /C = SO.JR. v and H = 9 the group 
C* -algebra does not even exist; infinite-dimensional topological vector spaces do 
not support nontrivial translation-invariant Borel measures, so that 9 does not have 
a Haar measure. We therefore use Fell induction, in which we fill out the data as 
if we were performing Rieffel induction from the trivial representation Uid(H); cf. 
(2.81). 

We first specialize to /C = Sv and H = C; the following theorem is the quantum 
counterpart of Proposition 3.4.2. 

Proposition 3.5.4. In Construction 2.2.5, put t = ~, 1ix = Sl3(1ix ) = 1iid = C, 
and 

id._ [d)"dI (\II, <1»0 .- --. (\II, UF()..)<I». 
c 2m 

(3.47) 

Here we have written (\II, <1»0 for (\II, <I>}c, which is the same by (2.37), in order 
to stress the analogy with (2.80) or (2.81). 
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1. This form is finite for'll, <I> E ~, and satisfies (2.35) and (2.46). 
2. The induced space 1{~ := 1{x may therefore be constructed as in 2.2.5.2. This 

space is naturally isomorphic to exp(S~); recall that :1 jP ~ S~ is the classical 
reduced space. 

3. Each gauge transformation U F()..) is adjointabLe, and acts trivially on the 
induced space, in thatfor aLL)" E C one has 

(3.48) 

-----4. The pre-C*-aLgebra TCF(!ID(:1» Leaves IE s~ and consists of adjointabLe 

operators. The induced representative TC~(211(:1» defined by 2.2.5.3, where ----TC~(A) := TCid(TCF(A», is isomorphic to 211(S~). 
5. Defining R~(E(2» on ~ by taking U = Rv(A) in 3.5.2, where A E E(2), 

each R~(A) leaves ~ stabLe and is adjointable. The induced action U~ on 1{~, 
given by U~(A) := TCid(R~(A», is linear and unitary, and equivaLent to the 
representation (UI $ U_I)F (cf 3.5.2). 

6. Since the E (2)-action Rv on Sv is sympLectic, it defines an automorphic action 
a of E(2) on 211(Sv), as expLained in 3.5.2. Because:1 C Sv is stabLe under 
Rv(E(2», this action restricts to 211(:1). In the representation TC~ the Latter 
automorphism group is impLemented by U~. 

We will show that (3.47) is finite by explicit calculation. The property (2.35) 
holds because H = C is unimodular. Equation (2.46) follows as in the proof of 
Theorem 2.5.4 (as C is amenable); a different proof is given below. 

Claim 3 follows from the property 

(3.49) 

for all ).. E 9 and'll, <I> E ~. This is a simple consequence of (3.47) and the 
translation invariance of the Haar measure on C. 

To express (3.47) in a convenient form, we decompose A = A L + AT, where 
AT = (0, AI, A2, 0) lies in the orthogonal complement (in the Hilbert space sense) 
in:1 of p, and AL = (Ao, 0, 0, A3) is the orthogonal complement of AT in Sv. 
Recall that n is defined below 11.(2.61). A Gaussian integration results in 

(JEXP(A), JEXP(B»): = (JEXP(A L ), n): (n, JEXP(B L »): e(AT,BT). 

(3.50) 
The identification of the reduced space uses the method of Proposition 2.2.4. 

Our guess is 1i~ = exp(S~), and this is proved by defining [; : IE -+ exp(S~) by 
linear extension of 

(3.51) 

where [AT]p is the equivalence class of AT E :1 in :1 jP ~ C2; cf. 3.4.2. Since 
(AT, BT) equals ([AT]p, [BT]p)l(;2, it is obvious from (3.50) that (2.29) holds. 
Moreover, this construction establishes (2.46), for 1{~ is a Hilbert space. It is clear 
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that (j ~ is dense in exp(S~), so that the guess of the latter as the induced space 
has been vindicated, proving 3.5.4.2 

It is easily seen that an operator on ~ is adjointable iff it commutes with all 
U F(A.). By (3.45) the intersection of lI'F(2U(Sv» with the space of all adjointable ------operators on ~ is 11' F(2U(..1»; this implies the first part of 3.5.4.4. 

All remaining claims in 3.5.4 easily follow from (2.30); the use of exponential 
vectors has reduced these verifications to Proposition 3.4.2. • 

After this warm-up we tum to the quantization of Theorem 3.4.4. Thus we 
specialize the discussion preceding 3.5.4 to the case K, = SO,R,V and H = g. In 
order to define an integral of the type (3.47), we first use (3.46), (3.43), and (3.36) 
to compute the integrand in the attempted generalization of (3.47) as 

(v'EXP(A), U F(A)v'EXP(B») = e(A,B)e-!1I'·1I 2 e<A,o>.)-(o>'.B). (3.52) 

Knowing that topological vector spaces support certain Gaussian measures, this 
suggests combining the Gaussian factor in (3.52) with the nonexistent flat measure 
on g. Unfortunately, the ensuing combination defines a set function on 9 that is 
merely finitely additive, and therefore fails to be a measure (which by definition 
is countably additive). To have a measure, it is necessary to enlarge g. Partly for 
later use, we present the general setting. 

Recall Definition 11.1.5.6 and the subsequent theory. 

Theorem 3.5.5. Let 1i be a real Hilbert subspace of a quasi-complete locally 
convex Hausdorff vector space V, and take y > O. Suppose that V carries a 
Radon measure JLy whose Fourier transform is given by 

Iv dJLy(v)ei9(V) = e-!YQ(9,9). (3.53) 

Here() E V*, and the quadraticform Q on V* is defined by 11.(1.49). A measure with 
this property is called Gaussian, with covariance Q, and is uniquely determined 
by its Fourier transform (3.53). 

1. The map 01--+ y-I/2e from V* to L2(V, Ji.y), defined by O(v) := O(v), is well­
defined and isometric, so that it extends to an isometry w 1--+ y-I/2W from 1i 
to L2(V, Ji.y). For each W E 1i this defines w as an element of L2(V, JLy); we 
write (w, v) := w(v), which makes sense for almost all v E V with respect to 
JLy. 

2. In (3.53) one may replace 0 by W, yielding 

(3.54) 

3. The translate of JLy by W E V is disjoint from JLy when W ¢ 1i, and equivalent 
to JLy when W E 1i, with Radon-Nikodym derivative given by the general 
Cameron-Martin formula 

(3.55) 
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An elementary computation yields (e, e)LZ(V,/Ly) = yQ(fJ, 19), so that the first 
claim follows by 11.(1.49). In particular, the property fJ(v) = 0 for all v E 1-£ 
implies (}(v) = 0 for JLy-almost all v E V, so that the map 01-+ e is well-defined. 

To derive (3.54), take a sequence {On} in V* for which en -+ w in 1-£, so that 
en -+ win L 2(V, JLy) by 3.5.5.1. Hence exp(ien) -+ exp(iw). Since In -+ I in 
L 2 implies (In, 1) -+ (j, 1) when 1 E L2, one obtains (3.54) from (3.53). 

The last claim is the general Cameron-Martin theorem. The proof of the 
disjointness property is beyond the scope of this book. In view of its importance 
for what follows, we do outline the proof of (3.55). For simplicity we put y = 1 
and JL : = JL I· First take w = ij, where rJ E V*, and take the Fourier transform of 
each side of (3.55). Using (3.53), the left hand side is immediately found to be 

Iv dJL(v + ij)eiO(v) = e-!Q(O,O)-iQ(1/,O). (3.56) 

The right-hand side of (3.55) may be heuristically computed by formally applying 
(3.53) with 19 replaced by 19 + irJ. The result indeed equals the left-hand side. 

To proceed rigorously, we remark that a continuous linear (hence measurable) 
map rp : VI -+ V2 between two quasi-complete locally convex Hausdorff vector 
spaces pushes a Radon measure JL on VI forward to a Radon measure rp*JL on V2; 
the definition rp*JL(B) := JL(rp-1 (B» (where B is a Borel set in V2) implies that 
for each IE L I (V2, rp"JL) one has 

( dJL(v) I(rp(v» = ( dqJ*JL(u) I(u). 
lv, lvz 

(3.57) 

In particular, the pushforward of a Gaussian measure on VI is again Gaussian, 
with covariance Q", given by Q",(a, fJ) = Q(qJ*a, qJ* fJ). Here rp* : Vi -+ V~ is 
the transpose of qJ : VI -+ V2. 

We apply this with VI = V and V2 = lR?, with rp : V -+ ]R2 given by rp(v) := 
(O(v), rJ(v». Since 19 and rJ lie in V*, this map is continuous. Applying (3.57) and 
11.( 1.49), the Fourier transform of the right-hand side of (3.55) becomes 

e-!(ij,ij) ( dJL(v)eiO(v)-1/(v) = e-!Q(1/,1/) { dqJ*JL(x)eiX,-xz. (3.58) 
h kz 

Inspecting all possibilities, one verifies that 

( dv(x)eia(x)-fJ(x) = e-!Qz(a+ifJ,a+ifJ) 
llRz 

(3.59) 

for any Gaussian measure v on ]R2 with covariance Q2; in other words, for V = ]R2 

equation (3.53) is correct also for complex 0 E Vc' Note that Q2 is seen as a bilinear 
(rather than a sesquilinear) form, as we have assumed that 1-£ is real. To compute 
(3.58), we now take a = (1,0) and fJ = (0, 1), so that rp*a = 0 and rp* fJ = rJ. 
Combining (3.58) and, (3.59), one recovers the right-hand side of (3.56). 

Hence (3.55) follows for w E V*. For general W E 1-£ the result then follows by 
a continuity argument similar to the one used in proving (3.54). 0 
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Key differences with the finite-dimensional situation are that generically one 
has l1y(H) = 0, and that the measures l1y tend to be disjoint for different y. In 
applying induction methods to the quantization of gauge theories, one is given the 
gauge group as a Hilbert Lie group H, but the space V in 3.5.5 has to be guessed, 
and is generally not unique. However, any successful choice leads to (3.55) for 
W E H, and this turns out to guarantee that the gauge group acts trivially in the 
induced space. 

Corollary 3.5.6. The inclusion Q ~ Qc (cf 3.4.3) is continuous, and V = Qc 
carries a Radon measure satisfying (3.53). Hence for A E Qc and 17 E Q one has 

1 dI11(A)ei(~.A) = e-~1I~1I2; 
9, 

(3.60) 

dl1l(A + 17) = e-~1I~1I2-(~.A)dl1l(A). (3.61) 

The dual of Qc is Q: = So(lR,4)/Io, where So(lR,4) consists of those f E S(lR,4) 

whose Fourier transform / vanishes at 0, and Io is the annihilator in S(lR,4) of 
the space of solutions of DA = 0 in S'(lR,4). The first claim then follows from the 
estimate I(A, f)1 S IIAII 11]11, where ](p) := /(wp , p)/w~, and 11]11 is defined by 

the right-hand side of (3.36). Note that 11]11 < 00 because /(0) = 0, so that the 
constant term in the Hermite expansion of / vanishes. 

The existence of 111 eventually follows from the fact that Q: is a nuclear space 
(a property it inherits from S(lR,4», so that its dual Qc = Q:* is conuclear. 0 

By 3.5.5.1, the right-hand side of (3.52) is meaningful for A E Qc. For 
example, (A, aA) stands for -ia(A), where a E Q is defined by (cf. 3.4.3) 
a(p) := (Ao(p)/wp) + PiAi(P)/W~. We then postulate that the counterpart of 
(3.47) is 

(3.62) 

The following theorem closely parallels Proposition 3.5.4, and quantizes Theo­
rem 3.4.4. This time Q; stands for the pertinent subspace of exp(SO.R, v); the spaces 
J and P are defined at the end of 3.4. 

Theorem 3.5.7. Apply Construction 2.2.5 with £ = Q;, Hx = Il3(Hx) = Hid = C, 
and define (\II, <I»~ by sesquilinear extension of(3.62). 

1. Thisform is finite for \II, <I> E Q;, and satisfies (2.35) and (2.46). 
2. The induced space H~ is naturally isomorphic to exp(So), where the classical 

reduced space SO ::::::: HO.+. 1 EElHo.+.- 1 is defined in 3.4.4. 
3. Each gauge transformation U F(A) is adjointable, and, satisfying (3.48), acts 

trivially on the induced s~ 

4. The pre-C* -algebra Jl'F(W(J» leaves Q; ~, and consists of a:!l!!!!:!able 

operators. The induced representative Jl'~(W(J» is isomorphic to W(SO). 
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5. Each (no.+Y (A, V»F, where (A, v) E P, leaves <E stable and is adjointable. 
The induced P-action (no.+. v)} is unitary, and equivalent to the representation 

(Uo.+. 1 $ Uo.+.-Il. 
6. The automorphic P-action a on W(S) obtained/rom the symplectic P-action 

nO.+. v on S restricts to 2l1(.J). In the representation Jr~ this restriction is 
implemented by U~. 

Compared with the proof of Proposition 3.5.4, the components AL,T of A are 
now given in momentum space by 

-T 2 
A (p) = (0, Ai(p) - PiPjAj(p)/p ); 
-L 2 
A (p) = (Ao, PiPjAj(p)/p ). (3.63) 

The integral in (3.62) is computed by transforming the Gaussian integration over 
9c to one over lR2 with the aid of (3.57) and the subsequent expression for Q",; cf. 
the proof of 3.5.5. Moreover, (3.61) guarantees that (3.49) still holds. Otherwise, 
similar steps as in the proof of 3.5.4 lead to a tedious verification of all claims. 0 

In view of this theorem we conclude that the induced Hilbert space and the 
various representations it carries describes a quantum field theory of photons. 

3.6 Classical Yang-Mills Theory on a Circle 

In order to explain certain topological features of quantum field theory in the 
simplest possible model, we shift our attention from Minkowski space in dimension 
3+ 1 to the cylinder lR x SI. Here lR stands for the time axis, whereas the circle 
SI represents space. The field theory to be studied comes from a relativistically 
invariant model, but this time we are not interested in aspects of special relativity 
and the Poincare group. The model will therefore be presented in a partial gauge 
fixing (" Ao = 0") that breaks relativistic invariance. We look at the circle S 1 as 
the interval [0, 1] with boundary points identified; it is parametrized by a E [0, 1). 

Any principal H -bundle over the circle is isomorphic to the trivial bundle P = 
SiX H. Recall from the comment after III.(2.l6) that a connection on a trivial 
bundle P = Q x His an element of A I(Q)®~. When Q = SI, the space A I(SI) 
of smooth I-forms is simply C OO(SI, lR), so that a (smooth) connection on SI x H 
is an element of COO(SI, ~). Similarly, according to Proposition III.2.4.2, the space 
of smooth gauge transformations may be identified with COO(S', H). 

Although the classical theory can be defined on the basis of smooth connections 
and gauge transformations, the corresponding quantum theory requires a more 
general class. It clarifies matters to include certain nonsmooth connections and 
gauge transformations already at the classical level. For the following definition 
we equip ~ with an Ad(H)-invariant inner product; by the compactness of H, 
this is always possible. The real Hilbert space L2(SI,~) = L2([0, 1]) ® ~ is then 
defined with respect to the Lebesgue measure and the above inner product on ~. 

Definition 3.6.1. Let H be a compact connected Lie group. 
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• The configuration space AIR of classical Yang-Mills theory on a circle with 
structure group H is L 2(SI, fJ). The phase space is S = T* AIR . 

• The gauge group 9 of this theory is the Hilbert manifold HI (Sl, H), consisting 
of all g E C(SI, H) whose (weak) derivative g := g-Idg Ida lies in L2(SI, fJ). 

Elements g of 9 are loops in H, so that 9 is a (Sobolev) loop group of H. 
It can be shown that g E 9 is absolutely continuous, and that g exists almost 
everywhere. Physically, one could say that 9 consists of all continuous loops with 
finite kinetic energy. To obtain an alternative characterization of 9, take a faithful 
representation U(H) on some cn; then Wln(C) is a normed space in the usual 
way, so that one can define the Hilbert space HI (Sl, Wln(C» as the completion 
of COO(SI, Wln(C» in the p = 1 Sobolev norm. The gauge group HI (Sl, G) 
is the subset of HI (Sl, Wln(C» consisting of those functions that take values 
in U(H). This endows Hl(SI, H) with the structure of a Hilbert manifold. The 
continuous inclusion 'Hl(SI, H) C C(SI, H) is then a consequence of the Sobolev 
embedding theorem, from which it also follows that HI (Sl, H) is not contained 
in any CP(SI, H) for p > O. 

The Lie algebra 9 of 9 is H1(St, fJ), with dual g* = HI(St, fJ*). We will often 
use the notation 

(3.64) 

We write elements of S as pairs (E, A), where E E L2(SI, fJ*) and A E AIR. 
Using the inner product on fJ, we identify fJ* with fJ, and subsequently identify S 
with A = L 2(St, fJc). Rather than 11.(2.28), we use the convention 

Z:=A+!iE. (3.65) 

This has the advantage that the complex connection Z behaves in the same way as 
A under gauge transformations; cf. 3.6.2 below. (Whereas in the previous sections 
no confusion was possible, we will now denote complex connections by Z or W, 
and real ones by A.) 

Lemma 3.6.2. The action Ill. (2. 69) of9 on AIR pulls back to a 9-action on S. 
Writing Ad(g)A for the junction a t--+ Ad(g(a»A(a), and similarly for Co(g)E, 
this action is given by 

g : (E, A) t--+ (Co(g)E, Ag), 

Ag := Ad(g)A + gdg- t = g(A _ g)g-l. 

(3.66) 

(3.67) 

On complex connections (3.65) this reads Z t--+ zg, where zg is defined as in 
(3.67). This action is smooth, proper, and strongly Hamiltonian. 

The smoothness of this action is a technical exercise in Hilbert manifold theory 
that we omit. The main point is that AIR and 9 have been defined precisely so that 
g lies in AIR when g E 9; cf. 3.4.4. Properness follows as in 3.4.4. The last point 
follows from Lemma III.2.3.1, as usual. 0 

The 9-action is not free, unless H is abelian. This may be handled by realizing 
that 9 is isomorphic to the semidirect product H ~ p ge, where ge is the subgroup 
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of based loops or based gauge transformations, i.e., loops starting and ending 
at e E H. The structure group H acts on ge by 

r(h)g : ct ~ hg(ct)h- I. (3.68) 

A homomorphism from 9 to H ~ p ge is given by g ~ (g(O), gg(O)-I), with 
inverse (h, g) ~ g h. Now the action of ge on AR is free, and Marsden-Weinstein 
reduction (at 0) of S by the above 9-action, which is our goal, may be carried out 
in two steps; see Corollary 1.10.5. One firstly reduces by the ge-action, yielding 
a Marsden-Weinstein quotient that is duly a manifold, and secondly performs 
singular reduction by 9 1ge ~ H. As we shall see, the first step yields a finite­
dimensional reduced space, and the second step is easy. 

Another interesting feature of Marsden-Weinstein reduction in the present 
situation is that 9 may well be disconnected. 

Proposition 3.6.3. The group JroW) := 9190 (where 90 is the identity component 
of9) is isomorphic to the first homotopy group JrI(H) of H. 

To put this in perspective, consider the loop group LH = C(st, H), equipped 
with the topology of uniform convergence (with respect to the metric topology of 
H inherited from the Riemannian structure, or from H ~ U(H) as above). This 
topology coincides with the compact-open topology, so that one has Jro(LH) = 
Jrl (H) by definition of Jrt. 

The group Jrl (H) is isomorphic to a discrete subgroup D of the center of the 
universal covering group H of H (i.e., H = HID). Under this isomorphism an 
element [8] E Jrl (H) is the equivalence class of loops in H that are homotopic 
to the projection (from H to H) of a path from e to 8 in H. We thus label the 
components L H [8] of L H by 8 ED. Since the inclusion 9 c L H is continuous 
with respect to the manifold topology on 9, the proposition will follow if each 
intersection 9[8] := 9 n LH[8] is connected in the topology of 9. By the reasoning 
in the previous paragraph, this follows from the obvious fact that any two paths 
with finite kinetic energy in H between e and 8 are homotopy-equivalent in the 
topology of Ht (S', H). • 

For later use, we infer from this proof that 

LH!e] := LHe n LH[e] ~ LHe, (3.69) 

where the based loop group LHe is defined similarly to ge. 
Elements of 9[e] are called small gauge transformations. whereas members 

of the other 9[8] are large gauge transformations. For example, if H = U (1), it 
follows that 

JroW) = Jro(LU(l» = Z. (3.70) 

The members of a given component 9[n], nEZ, are labeled by the winding number 
of the loop. An example of an element of 9[n] is, of course, 

(3.71) 
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The fact that 9 is disconnected when 11", (H) is nontrivial is important mainly in 
the quantum theory of this model, but even in the classical theory it is enlightening 
to calculate both s~ and S~; cf. (1.26). We put 9Je] := ge n 9[e]. 

Lemma 3.6.4. Under the 9-action 1/1.(2.69) on AIR, there are the diffeomorphisms 
AIR/9!e] ~ iT, AIR/ge ~ H, and AIR 19 ~ HI Ad(H). 

We shall first sketch the proof of the second diffeomorphism; the first is then 
obvious from (3.69). We define a map W : AIR --+ C([O, 1], H) as the solution of 
the differential equation (valid for almost every a) 

(a~ +A)WA(a)=o, (3.72) 

with initial condition WACO) = e; we have written WA for W(A). According to 
the theory of product integration, the solution is absolutely continuous in a, and 
may be written as a uniform limit 

WA(a) = J~moo TI Exp [PA (0 - n ~ l)a) - PA ((1- ~)a) J. (3.73) 

Here PA(a) := foa df3 A(f3) is the primitive of A. 

Simple manipulations show that the function gWA : a t--+ g(a)WA(a) on S' 
satisfies d(gWA)lda = A8gWA, where A8 is given in III.(2.69) or 3.6.2. When 
g E ge one has the initial condition gWA(a) = e, so that gWA = W AK . Since 
g(l) = g(O) = e, this implies WA(l) = WAK(l). Accordingly, the Wilson loop 

(3.74) 

is invariant under based gauge transformations. In other words, for all g E ge one 
has W(Ag) = W(A). 

Suppose that W(A) = WeB). Then g := WAW;' lies in ge. Using (3.72), one 
sees that dglda = -Ag + gB; in other words, A = Bg. Noting thatfor compact 
connected groups Exp is surjective, we conclude that A t--+ W(A) induces a 
bijection from AIldge to H. It is a nontrivial technical task to prove that this 
bijection is a diffeomorphism; we omit this part of the proof. 

The third diffeomorphism follows from the isomorphism H ~ 91ge (by the 
discussion following the proof of 3.6.2) and the intertwining property 

W(Ad(h)A) = hW(A)h-'. (3.75) 

Here h E H, seen as a subgroup of 9. This is the case a = 1 of the property 
WAd(h)A(a) = hWA(a)h-', which is immediate from (3.72). 0 

Hence a gauge-invariant function of A E AIR is a function of W(A). 

Theorem 3.6.5. An equivariant momentum map for the 9-action (3.66) is given 
by 

(3.76) 
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where A. E 9 and DAE := dE + [A, E]. 
There are symplectomorphisms 

rl(O)/g!e] :::::: T* if; 

rl(O);ge :::::: T* H; 

rl(O)/g:::::: T*(H/Ad(H». 

(3.77) 

(3.78) 

(3.79) 

The d in dE above is a weak derivative; the integral (d E, A. )AR is well-defined, 
since dA. lies in L 2(SI, I). Similarly, ([A, E], A.)AR is well-defined because A and 
E are in L2(SI, I) and A. E C(SI, I). 

In somewhat symbolic notation, the Poisson bracket on COO(T* AIR, JR) is 

( 8f 8g ) (8f 8g ) 
{f,g} = 8E' 8A AR - 8A' 8E AIR' 

(3.80) 

One derives from (3.66) that the generator of A. is given by 

1;>./ = (8f , CO(A.)E) - (8f , D AA.) . 
8E AR 8A AIR 

(3.81) 

Combining (3.80), (3.81), 111.(1.7), and 1.(2.8), one verifies (3.76). 
The symplectomorphisms all follow from I1I.(2.S6), which is valid also for 

Hilbert manifolds, and Lemma 3.6.4; see below for comments on the potentially 
singular third case. • 

An explicit expression for the symplectomorphism (3.78) may be derived as 
follows. By (3.76), the condition (E, A) E J-I(O) forces DAE = 0; in physics 
this is seen as the Gauss law constraint of Yang-Mills theory; for abelian Hone 
simplyhasdE = O. Gauss's law implies thatE(a) = Co(WA(a»E, where E E 1)* 
is independent of a. 

This suggests that it is convenient to use the variables (E, A), where 

(3.82) 

Define a map fPs : T*AJR -+ T*H by fPs(E, A) := (EI' W(A», where EI := 
101 da E(a), and T* H is identified with 1)* x H through the left trivialization. 
As in the proof of (3.6.4), one verifies that on J-I(O) this map quotients to a 
diffeomorphism from J-'(O)/ge to T* H, and checks from (3.80), and III.(l.S4) 
that this diffeomorphism is a Poisson map. 

We may implement (3.78) in a more elegant way (which will be essential in 
quantum theory) on the basis of the following notion. 

Definition 3.6.6. Let H be a compact connected Lie group. The complexification 
He of H is the unique Lie group that contains K as a closed subgroup, and has 
the property that for any complex-analytic Lie group K and real Lie group ho­
momorphism 1/1 : H -+ K there exists a unique complex-analytic homomorphism 
1/Ie : He -+ K that on H (regarded as a subgroup of He) coincides with 1/1. 
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The Lie algebra of He is the complexification I)e of I) (avoiding a potential 
ambiguity of notation); when H is simply connected, He is the connected and 
simply connected Lie group whose Lie algebra is I)e. For H = U(l) one has 
He = C*. It can be shown that H is always a maximal compact subgroup of He, 
and that every finite-dimensional representation of H extends to a holomorphic 
representation of He. In the present context the following property of He is crucial. 

Proposition 3.6.7. The cotangent bundle T* H is diffeomorphic to He. 

Identifying T* H with 1)* x H (in the left trivialization), and subsequently 
equating 1)* with I) through the Ad-invariant inner product on I), it turns out that 
<PH : (X, h) f-+ hExp(-iiX) is a diffeomorphism from T* H to He. 0 

This diffeomorphism equips He with a symplectic structure. 
The differential equation (3.72) still makes sense when A E AIR is replaced by 

a complex connection Z E A. Thus the Wilson loop map W : AIR ---+ H may be 
analytically continued to a map We : A ---+ He. 

Proposition 3.6.8. The map We, restricted to J- l (O) (seen as a subspace of A 
through the identification of A with T* AIR explained after (3.64)), quotients to a 
symplectomorphismJrom J- l (O)/Ye to He. 

We regard E(a) as an element of I) rather than of 1)* (cf. 3.6.7); replacing Co 
in (3.82) by Ad, this applies to E as well. Given (E, A) E T* AIR and Z E A, 
related to (E, A) by (3.65), consider the functions f, g : [0, 1] ---+ He defined by 
f(a) := WA(a)vh;i(a) and g(a) := Wz(a). Using (3.82), with Co replaced by 

2 
Ad, and (3.72), one verifies that f and g satisfy the same first-order differential 
equation. Since f(O) = g(O) = e, it follows that f(1) = g(l). On J-1(0) the 
function E is constant, so that W!;£(1) = Exp(-iiEd. Hence 

2 

f(l) = W(A)Exp(-iiEd = g(l) = WdZ). 

The claim then follows from the proof of 3.6.7 and the paragraph below 
(3.82). • 

Note that (3.75) with A replaced by Z reconfirms (3.79). When H is nonabelian, 
the space H / Ad(H) is not a manifold; the cotangent bundle is then defined as 
follows. Let Ad* be the pullback to T* H of the adjoint action of H on itself; in a 
trivialization T* H ~ 1)* x H this is given by Ad*(h) : (e, k) f-+ (Co(h)(), hkh- l ). 

The momentum map JAd for Ad* is given by Jtd(a) = a(~: - H). One then 
puts T*(H / Ad(H» := (J Ad)-I(O)/ Ad*(H) as a topological space; away from the 
singularities of H / Ad(H), this is the usual cotangent bundle. 

The structure of T*(H / Ad(H» may be described with the theory in 1.11. We 
will not do so here, other than saying that by Lemma III. 1. lOA, the space H / Ad(H) 
is homeomorphic to the StietTel chamber T / W. For example, for H = S U (2) 
the latter is the closed interval [0, 1], so that the singularities are merely boundary 
points. This is true in other cases as well. In the abelian case this phenomenon 
does not arise; for example, for H = U(l) we simply have S~ ~ T* SI. 
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In any case, Theorem 3.6.5 is spectacular, showing that the reduced phase space 
of a particular field theory is finite-dimensional. In the present model this feature 
is peculiar to the one-dimensionality of space. 

3.7 Quantum Yang-Mills Theory on a Circle 

We now tum to the quantum theory of the model in the previous section, expecting 
to see that quantum induction naturally leads to L 2(H) or L 2(H / Ad(H». 

The CCR-algebra 2!J(A) is defined as in 3.5.1. The gauge group 9 acts on 2!J(A) 
by automorphisms, defined by (extension of) 

(3.83) 

The analogue of the gauge-invariant algebra 2!J(.J) in the quantum field theory of 
photons is now the sub algebra 2!J(A)9 of 2!J(A) consisting of those B E 2!J(A) 
for which Clg(B) = B for all g E g. 

Proposition 3.7.1. There exists a representation U F(Q) of the gauge group on 
the Fock space exp(A) that on exponential vectors takes the form 

(3.84) 

and implements the automorphism (3.83) in the Fock representation Jr F(2!J(A». 

Here and in what follows, inner products of the type (g, Z) are in A. After the 
proof of 3.7.3 below we show that (3.84) is indeed the restriction of an operator 
on exp(A). Granted this, unitarity follows from 11.(2.63), the representation prop­
erty comes from (3.67), and finally (3.83) with (3.43) leads to the implementing 
property JrF(Clg(W(Z))) = UF(g)JrF(W(Z»UF(g)*. 0 

As in (3.46) (combined with (3.43», we see that U F performs a gauge transfor­
mation on the argument of .y'EXp, with additional factors guaranteeing unitarity. 
It is not of the form (3.46), because the automorphisms (3.83) are not inner. 

Apart from the fact that it has led us to (3.84), which plays a central role in what 
follows, the CCR-algebra is hardly of any use in quantum Yang-Mills theory. This 
is because it fails to contain such crucial observables as the quantized functions of 
the Wilson loop. In order to construct the latter, as well as to verify that (3.84) is 
well-defined, we return to the setting of Definition 11.1.5.6 and Theorem 3.5.5. 

Proposition 3.7.2. 

1. The obvious inclusion of 1t = AIR = L \0, 1) ® IJ into the Schwartz space 
V = V'(O, 1) ® IJ is continuous. 

2. The ensuing map from (V'(O, 1) ® IJ)* = V(O, 1) ® IJ to AIR, defined after 
Il.l.5.6, is the natural inclusion. 

3. The assumption of Theorem 3.5.5 is satisfied. 
4. The support of J..iy is contained in the set of distributions that are the (weak) 

derivative of a continuous function. 
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The first claim is immediate from the Cauchy-Schwarz inequality, and the second 
is obvious. The third claim follows because V'(O, 1) ® ~ is conuclear. The fourth 
statement is a well-known property of white noise, whose proof we omit. 0 

We may, accordingly, construct the Hilbert space L2(V'(0, 1) ® ~,JLy). The 
map A 1-+ Ad(g)A may be extended from AR to V'(O, 1) ® ~ by dualizing its 
restriction to 1)(0, 1) ® ~ C AIR, so that the gauge transformation (3.67) applies 
to L 2(1)' (0, 1) ® ~, JLy) as well. For each g E g we then define an operator U y (g) 
on L 2(V'(0, 1) ®~, JLy) by 

Uy(g)'l1(A) := e[ -~lIgIl2_!(A.dgg-I)]/y 'l1(AK- 1 ). (3.85) 

It follows from the uniqueness of a measure satisfying (3.53), and the invariance 
of the inner product in AIR, that JLy is invariant under A 1-+ Ad(g)A. Using this 
in conjunction with (3.55), which applies in view of Definition 3.6.1, one shows 
that Uy(g) is unitary. It is then easily checked that (3.85) defines a representation 
of the gauge group g on L 2(V'(0, 1) ®~, JLy). 

Lemma 3.7.3. There exists a unique unitary operator Vy : exp(A) -. 
L2(V'(0, 1) ®~, JLy) that maps JEXp(Z) to 

(3.86) 

Here (A, Z) is defined as in 3.5.5.1. The uniqueness of Vy is clear, as the expo­
nential vectors are total in exp(A). The fact that Vy is well-defined follows from 
an alternative expression. Note that the linear span of all vectors of the form ®n Z, 
where Z E A with II Z II = 1, and n EN, is dense in exp(A). We put 

Vy ®n Z : A 1-+ ~Hn (y-I/2(A, Z») , (3.87) 
vn! 

where Hn is a Hermite polynomial. This operator is clearly well-defined, and 
easily shown to be bounded, hence extendible to exp(A). A somewhat lengthy but 
elementary computation then shows that Vy = Vy. 0 

Since one computes from (3.84)-(3.86) that VI/4UF(g)Vij! = UI/4(g), it is 
clear that (3.84) is well-defined. 

We now tum to the construction of the quantized Wilson loop. Using Propo­
sition 3.7.2.4, it can be shown that the limit in (3.73) exists for almost every 
A E V'(O, 1) ® ~ with respect to JLy. In particular, the Wilson loop W(A) is 
well-defined for such A. 

Definition 3.7.4. Let f E COO(H, R), and define WI E COO(AIR) by 

W/(A):= f(W(A». (3.88) 

The observable QI/4(W I) on L 2(V'(0, 1) ® ~, JLI/4) is the operator defined by 

(3.89) 
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On exp(A) one has the operator 

QF(W f) := ViI! Q1/4(W f) V1/4. (3.90) 

To understand the choice y = 1/4, consider the abelian case. When H = U (1), 
identified with l' C C, the (classical) Wilson loop is a numerical function on AIR 

(or on S), which coincides with the function A t-+ exp(-A1). Here A1 := J01 A; 
more generally, for I E AIR one has the linear functions 

Af(E, A) := (A, f); 

Ef(E, A) := (E, f). 

(3.91) 

(3.92) 

Note that {Ef' Ag} = (f, g) by (3.80). These linear functions are quantized on 
Fock space exp(A) by 

QF(A f) := ! (a(f) + a(f)*) ; 

QF(Ef):= -i (a(f) - a(f)*). 

(3.93) 

(3.94) 

It follows from 11.(2.68) and the above Poisson bracket that Dirac's original con­
dition i[QF(Ef)' QF(Af )] = Q({Ef , Ag}) is satisfied. For H = U(1) we define 
Q1/4(W) as in (3.89), with the function I simply omitted (or taken to be the iden­
tity map), and subsequently define QF(W) by (3.90). A partial justification of 
Definition 3.7.4 then lies in the equality 

QF(W) = e-QF(A1). (3.95) 

This may be derived on a vector y'EXp(Z) by use of (3.93), the CBH-fonnula, 
11.(2.68),11.(2.69),11.(2.70),3.7.4, and (3.86). 

Our aim is to quantize Theorem 3.6.5. Since the motivation for the steps to 
follow is similar to that for the steps leading from Theorem 3.4.4 to 3.5.7, we will 
not repeat the arguments given there. The counterpart of (3.52) for Yang-Mills on 
the circle is found, from (3.84), 11.(2.63), and (3.67), to be 

(VEXP(W), UF(g)VEXP(Z») = e-!lIgI1 2 e(W,z8)+(g,Z). (3.96) 

In the situation of Definition 11.1.5.6, we take 1t = AIR and V = C([O, 1], ~)o, 
seen as a Banach space in the sup-nonn; the suffix 0 indicates that V consists of the 
continuous paths in ~ satisfying X(O) = O. Here AIR is seen as a Hilbert subspace 
of C([O, 1], ~)o by identifying it with the set of all X E C([O, 1], ~)o whose nonn 
with respect to the inner product 

(X, Y)1 := 11 da X'(a)Y'(a) (3.97) 

is finite. Equivalently, AIR is injected into C([O, 1], ~)o by the primitive mapping 
A t-+ 'P A defined below (3.73). The pertinent analogue of Corollary 3.5.6 is then 
as follows. 

Proposition 3.7.5. The inclusion AIR ~ C([O, 1], ~)o by'P is continuous, and 
lor each y > 0 there is a Radon measure JL~o on C([O, 1], ~)o satisfying (3.53). 
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Since PA(a) = (A, X[O.al), one has IIPAlioo ::: IIAII by the Cauchy-Schwarz 
inequality. The second claim, whose proof we omit, defines the Wiener measure 
on C([O, 1], £)0 with variance y. 0 

Our interest, of course, lies in a suitable measure on a completion of the gauge 
group 9 in some topology, rather than of its Lie algebra AIR. For this completion 
we take the loop group LH = C(SI, H). Assuming that H C mtn(C) for some 
n, this loop group is seen as a submanifold of the Banach space C([O, 1], VJ'tn(C». 
The same comment applies to its subspace C([O, 1], H)e of continuous paths that 
start at e. We define Ito's map i : C([O, 1], £)0 ~ C([O, 1], H)e by 

A • N-I [( n + 1) ( n)] 'Ix(a) := J~oo !] Exp X (1 - ---,;-)a - X (1 - N)a . (3.98) 

It can be shown that the limit exists for almost every X with respect to IL~o. The 

image of IL~o under Ito's map is the Wiener measure IL~' on C([O, 1], H)e with 

variance y. Ito's map is a bijection up to null sets of IL~o and IL~" Comparing 

(3.98) with (3.73), it is clear that i 0 P = W; cf. the comment preceding 3.7.4. 
Hence the Wiener measure IL~' may equivalently be defined as the image of the 

measure ILy on'D'(O, 1) ® £) under W; see Proposition 3.7.2. 
Let C([O, 1], H)~ be the space of continuous paths g in H for which g(O) = e 

and g(l) = h. Each such space carries a Radon measure IL~:' characterized by 
the disintegration property 

1 J 1 Wh 
dIL~' f(y) = dh dILy' f(y) 

C([O.II.H). H e([O.II.Ht. 
(3.99) 

for all f E LI(C([O, 1], H)e, IL~e). In particular, this assigns a measure to the 
based loop group LHe = C([O, 1], H):. As to the loop group LH itself, as in the 
case of 9 (cf. 3.6), we can write LH = H ~ p LHe as groups. 

Definition 3.7.6. Writing LH ~ H x LHe as Borel spaces, the Wiener measure 

on LH with variance y is the direct product IL~ = ILH x IL~: of the Haar measure 
Wh 

ILH on H and the measure ILy' on LHe. 

Note that neither IL~: nor IL~ is a probability measure, unlike IL~o and IL~" 
The behavior of all these Wiener measures under translations follows from the 

general Cameron-Martin formula (3.55) for IL~o (which applies because of 3.7.5) 

and the (almost sure) bijectivity of Ito's map. For example, for X E HI (SI, H) 
one obtains 

dIL~:X(I) (g X) = e -[!IIXIl 2+(g.Ad(X)X)]IY dIL~: (g), (3.100) 

where the second term in the exponential is defined by Theorem 3.5.5.1 and Propo­
sition 3.7.2. The Radon-Nikodym derivative d IL~ (g X) / d IL~ (g), where once again 
X E HI (SI, H), will be equally important; it is given by the same expression. The 
translate of IL~ (etc.) by X ¢ HI (SI, H) is singular with respect to IL~. 



424 IV. Reduction and Induction 

After this intermezzo we return to Yang-Mills theory. Motivated by (3.96) 
and the surrounding discussion, we define (, )~ on (!! C exp(A) by sesquilinear 
extension of 

(3.101) 

The expressions of the type (g, Z), which in (3.96) were well-defined for g E 

HI(SI, H) as inner products, make sense for general g E LH by 3.5.5.1 with 
3.7.2; cf. (3.100) and subsequent comment. Indeed, the justification of (3.101) lies 
in the property (3.49), with A replaced by g; this follows from the counterpart of 
(3.100) for JLf. As in 3.5.7.3, it will follow that the gauge group 9 is trivially 
represented in the induced space (to be defined in Theorem 3.8.1 below). Since the 
Cameron-Martin formula, and therefore (3.49), is not valid for all h E LH, the 
choice of the gauge group in 3.6.1 (instead of LH) has hereby to some extent been 
justified. In this connection it is worthwhile to remark further that the representation 
U F in (3.84) cannot be extended from 'HI (Sl, H) to C(SI, H). 

3.8 Induction in Quantum Yang-Mills Theory on a Circle 

We now come to our main result on quantum Yang-Mills theory on a cylinder. 
The context of the following theorem is the same as in 3.5.7, and the notation is 
similar. We write H'} for the induced space and n id for the corresponding induced 
representation; this convention is used in order to be able to write n:(A) := 
nid(QF(A» for the quantization of some observable given as an operator QF(A) 
on exp(A). 

Theorem 3.8.1. Apply Construction 2.2.5 with t = (!! c exp(A), 'Hx 
~(Hx) = Hid = C, and define ('l1, <l»~ by sesquilinear extension of(3.101). 

1. Thisform isfinite on (!!, and satisfies (2.35) and (2.46). 
2. The induced space Hit is naturally isomorphic to L 2( H)Ad(H); this is the 

subspace of L 2(H) that is invariant under U Ad(H), defined by 

UAd(k)'l1(h) := 'l1(k- l hk). (3.102) 

3. For each g E 9 the gauge transformation U F(g) is adjointable, and acts trivially 
on the induced space. 

4. Let f E COO(H) be a class junction, and recall (3.90). The operator n:(Wf ) 
is the restriction of the multiplication operator f on L2(H) to L2(Htd(H). 

5. Replacing LH by LHe in (3.101) yields an induced space 'Hit,e that is natu­
rally isomorphic to L2(H). For all f E COO(H) one has n~e(Wf) = f as 
multiplication operators on L 2(H). . 

6. Replacing LH by LHrlleads to the induced space L2(lf). 

The first item is proved as in 3.5.7, granted that a map [; may be constructed; this 
will be done below. We compute the integral in (3.101) in two steps. According to 
Definition 3.7.6, the integration over LH factorizes into an integral over of LHe, 
and an additional integration over H. We start with the former. 
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The computation will be based on the connection between the Wiener measure 
and the heat equation on H. For fixed y > 0, this is the PDEdfldt-!y L\H f = 0, 
where L\H := Li T? is the Laplacian on H. Here the orthonormal basis {T;} of 
~, seen as a set of right-invariant vector fields on H, is defined with respect to the 
Ad(H)-invariant inner product on ~ already used in the definition of L2([0, 1], ~); 
the Laplacian depends on this inner product, but not on the basis. It can be shown 
that the fundamental solution Py is in COO(H) for t > 0. 

Givenk Borel sets BI, ... , Bk in H, and k elements al, ... , ak in [0,1], define 
a class of subsets of C([O, 1], H)e by 

C~I:.:'.:~k := {g E C([O, 1], H)e I g(al) E BJ, ... , g(ak) E Bd. (3.103) 

Using the theory of stochastic processes, it can be shown that 

k 1 k /L~' (C~I:.:::~k) = n dh i npy(hjhj~l'aj -aj-I), 
i=1 Bi j=1 

(3.104) 

(3.105) 

where, of course, ak := 1 and hk := h. Therefore, one has 

Wh ( h) /Ly' C([O, 1], H)e = py(h, 1) = PI(h, y). (3.106) 

Lemma 3.8.2. The integral (3.101) over LHe yields 

1 d/L~: (g)e(W,ZS)+(g,Z) = e![(W,W)+(Z,Z)]PI(WdZ)-IWdW), 1). (3.107) 
Life 

To derive this result, one starts with Z, W E AIR. Then substitute the identity 
Z = -(dWz/da)WZ- 1 (which is immediate from (3.72», and use (3.100) with 
X = Wz.Intermsofthenewvariableg = gX theintegraiisoverC([O, 1], H),{,,(Z), 

since X(O) = e and X(I) = Wz (l) = W(Z). Perform the transformation g t-+ 

g-I, under which the Wiener measure is invariant. The integral is now over the 
space C([O, 1], H),{,,(Z)-I. Repeating the above trickfor W, and using (3.106), leads 
to (3.107). Of course, at this stage one has W = W and Z = Z. 

We now use the nontrivial fact that the fundamental solution Py (', t) of the 
heat equation on H has a unique analytic continuation to He (containing H as a 
subgroup; see 3.6.6). Since we know from 11.(2.62) and (3.101) that the left hand 
side of (3.107) is analytic in Z and antianalytic in W, and that the complexified 
Wilson loop We : A --+ He is analytic, the result follows. (Alternatively, one may 
extend the Cameron-Martin formula by analytic continuation in X). 0 

We refer to the induced space defined by (3.101), with LH replaced by LHe, 

as 7-l~,e' with corresponding induced representation 7r~,e of the set of adjointable 
operators on IE. We now wish to apply Proposition 2.2.4. In order to put the result 
in a neat form, we define an appropriate analogue of the coherent states 11.(2.47) 
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for compact connected Lie groups. We formulate this in terms of He rather than 
T* H; cf. Proposition 3.6.7. 

Definition 3.8.3. Let H be a compact connected Lie group. For z E He, the Hall 
coherent state ~~ in L2(H) is the function h 1--+ p/i(h-1z, 1), where Py is the 
analytic continuation of the fundamental solution of the heat equation on H. 

The linear span of all ~~ (as Z varies in He) is dense in L 2(H). The Hall coherent 
states are not normalized, and mayor may not provide a pure state quantization 
of T* H in the sense of 11.(1.3.3); in the present context this is entirely irrelevant. 
Note that p/i(h-'z, 1) = Pl(h-1z, Ii). 

Our guess for 1t},e is L 2(H); this plays the role of 1t~ in 2.2.4. We define 

Ue : ~ ~ L2(H) by linear extension of 

UeJExp(Z):= e~(Z,Z)~m(Z)· 

Equation (2.29) follows from (3.107) and the identity 

py(h, 1) = L dk py(hk-1, Vpy(k, ~). 

(3.108) 

(3.109) 

This identity follows from the definition of the heat kernel, as well as from the 
properties py(hk, t) = py(kh, t) (from the Ad-invariance of the Laplacian 6.H) 
and py(h-1, t) = py(h, t) (from the invariance of 6.H under 1'; 1--+ -Tj). One 
should compare (3.108) with its classical analogue 3.6.8. 

The definition of the Wiener measure JL~: on L He and the invariance of the inner 

product on AIR under Ad(H) imply that JL~: is invariant under the (outer) automor­
phisms r(h) defined in (3.68). It follows that for h E H, identified with a constant 
function on Sl, the operator U F(h) on exp(A) is adjointable with respect to the 
inner product (3.101), with LH replaced by LHe. By (3.84) and (3.64) one sim­
ply has UF(h).JEXi)(Z) = .JEXi)(Ad(h)Z), as h = O. Using (2.30), (3.108), and 
the Ad(H)-invariance of the complexified heat kernel, the representation U F(H), 
induced to L 2(H), is equal to U Ad; see (3.102). 

To complete the induction with respect to (3.101), the integration over H men­
tioned in the second paragraph of the proof must still be performed. This is done 
at the present stage, and is a special instance of quantum Marsden-Weinstein re­
duction (itself a special case of Rieffel induction; see 2.5). We are in the setting of 
Theorem2.5.1,with1t = L2(H)andU = UAd. Inducing from the trivialrepresen­
tation of H, Proposition 2.5.3 leads to the induced space L 2(H)Ad(H) announced 
in 3.8.1. This proves 3.8.1.2. 

The claim 3.8.1.3 follows from the Cameron-Martin formula (3.100) for JLf, 
as we explained at the end of 3.7. 

To prove 3.8.1.5, which immediately implies 3.8.1.4, we first note that 3.8.3, 
(3.106), and (3.100) imply that Ue in (3.1 08) may be rewritten as 

(3.110) 
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Now recall Lemma 3.7.3. By (3.86), with y = 1/4, and (3.110), the action of the 
operator Ue.l/4 := Vl/4Ue Vi/~ on '11 E Vl/4~ is given by 

Ue.l/4'11(h) = ( I dJ.L~r (g)'I1(g). (3.111) 
JC([O.II.Ht.-

Hence by (2.30), (3.90), and (3.88) one has 

JT!d(QF(Wt»Ue,I/4'11(h) = 1 I dJ.L~r (g) f(W(g»'I1(g). (3.112) 
C([O.I].Ht.-

However, one rapidly derives from (3.74) and (3.72) that W(g) = g-I(1). Since 
g(l) = h- I by definition of the space over which one integrates in (3.112), we 
conclude that f(W(g» = f(h).1t follows that 

JT;d(QF(Wt »Ue.I / 4'11(h) = f(h)Ue.I / 4'11(h). 

Since the vectors Ue.I /4'11 are dense in L2(H) and f is bounded as a function, 
hence as a multiplication operator, this proves 3.8.1.5. 

If in (3.101) one integrates over LHJe1 rather than LHe, the isomorphism (3.69) 
shows that the above argument still goes through, with H replaced by its universal 
covering group H. It follows from the structure theory of compact Lie groups that 
H is the direct product of Rm and a compact group; in the former, one uses the 
coherent states 11.(2.47), and in the latter, one employs those of Hall. 

This proves 3.8.1.5, concluding the proof of Theorem 3.8.1. • 

3.9 Vacuum Angles in Constrained Quantization 

In this final section we will explain why the discussion so far of the quantization of 
Yang-Mills theory on a cylinder has been incomplete. More generally, whenever 
the classical reduced space is given as a Marsden-Weinstein quotient with respect 
to a disconnected group H, there turns out to be a certain freedom in the induction 
process quantizing the reduced space. 

For simplicity, we initially assume that H is a finite-dimensional unimodular 
Lie group, acting on a symplectic manifold S in strongly Hamiltonian fashion, 
with equivariant momentum map J : S -+ 9*. Recall that HO is the component 
of H containing the identity e, and that JTo(H) := HI H O• One then considers the 
reduced spaces S~ = J-1(0)1 H and S~ = J-1(0)1 H O• By (1.26) the former may 
be obtained by a two-step reduction process: one firstly reduces S by H O, which 
results in S~, and secondly reduces S~ by JTo(H), which yields S~ ~ S~/JTo(H). 
Note that the incompletely reduced space S~ is already symplectic. 

We now abstract the second step, and consider the reduction of a general sym­
plectic manifold So by a discrete group D whose given action on So consists of 
Poisson maps. We regard D as a zero-dimensional Lie group, with Lie algebra {O}. 
The momentum map J of the D-action may then be thought of as being identically 
zero, so that J-1(0) = So. The reduced space is then simply Sol D. In particular, 
there are no constraints. 
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Following our general strategy, we wish to quantize SolD by Rieffel (or Fell) 
induction. Hence we assume that we have a unitary representation Uo(D) on some 
Hilbert space Ho that "quantizes" the D-action on So. Although on the classical 
side D possesses only the trivial coadjoint orbit {O}, on the quantum side it will have 
nontrivial irreducible representations. At first sight, one should Rieffel-induce from 
the trivial representation of D, but in the absence of classical constraints there is 
actually no good reason not to induce from an arbitrary (irreducible) representation 
Ue(D) defined on a Hilbert space He. 

The induced space Hg is constructed as in Proposition 2.5.3, amended if nec­
essary when D is not compact (cf. the end of 2.5). One chooses a suitable dense 
subspace £ c Ho (when D is compact one may take £ = Ho), and considers the 
sesquilinear form on £ ® He defined by 

(W, <i»g = })w, Uo ® Ue(8)<i»'Ho®'H8; (3.113) 
&ED 

cf. (2.81). Quotienting by the null space of this form and completing then leads 
to the induced space Hg in the standard way. This space carries an induced repre­
sentation 77:g of the algebra of weak observables mw of the model in question; see 
2.9.1. The algebra of observables 

(3.114) 

in general explicitly depends on () E D, even when Ue is one-dimensional. 
For example, take a not simply connected Lie group G with universal covering 

group G, so that G ~ G 177:1 (G). Here D = 77:1 (G) is a discrete subgroup of the 
centerofG. The cotangent bundle T*G is then symplectomorphicto (T*G)I77:I(G), 
where 77:1(G) acts on T*G by pullback of its action on G. Physically, this describes 
a particle moving on Q = G, with phase space S = T*G. 

To quantize, we take Ho = L 2(G), on which Uo (77: 1 (G» acts as the right-regular ---representation; that is, Uo(8)'II(x) := 'II(x8). We now choose a () E 77:1(G), and 
realize that we are in the situation discussed in the paragraph containing (2.97), 
with P = G, £ = C~(G), H = 77:1(G), and Ux = Uo. It follows from that 
discussion that the induced space Hg obtained from the induction process on 
L2(G) is isomorphic to the Hilbert space 1i() carrying the representation U() of G 
that is Mackey-induced by U()(77:I(G». 

In the realization 1i~ given by a section s : G 4 G (cf. the text after III.(2.162», 
the induced space is simply L 2( G)®Ho. The corresponding induced representation 
77:!(G) is then given by 111.(2.176). Moreover, according to Corollary 2.7.2 the space 
1{() carries an irreducible representation 77:() of the action C*-algebra C*(G, G). 
Conversely, every irreducible representation of C*(G, G) is equivalent to one of 
this form. 

Noting that C*( G, G)]R may be thought of as the quantum algebra of observables 
of a particle moving on G, we see that a quantum particle moving on a not simply ---connected Lie group has a family of superselection sectors labeled by 77: 1 (G). 

For a simple illustration of this scheme, we take G = Rand D = 277:Z, so 
that G = U (1). This is the setting for a particle moving on a circle. Note that the 
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group U (1) plays a double role: It is the configuration space Q of the particle, 
as well as the unitary dual Z. A configuration space variable will be called {3, 
whereas an element of Z is denoted by O. Both variables take values in [0, 21r). 
The representation Ue(Z) corresponding to 0 E Z is 

Ue(n) := eine , (3.115) 

defined on ?te = C. Hence we obtain a family of induced representations Ue OR) 
and JTe(C*(IR, U(1))), the latter irreducible. As recalled above, these representa­
tions may be realized on the Hilbert space rtf, which is the same for all 0 and 
equal to L2(U(I». We choose the section s : U(I) -+ IR to be s({3) = {3. From 
III. (2. 176) the explicit form of U: (1R) is 

U:(2JTn + {3/)"':({3) = eine "':({3 - {3/) (3.116) 

when {3 - {3' E [0, 2JT); in the case that {3 - fJ' E (-2JT, 0) one has 

(3.117) 

The corresponding representation JT!(C*(IR, U(1») is most easily described 
through Corollary III.3.7.4 and Theorem III.3.4.4. With U!(IR) given above, it 
remains to state the representation ir!(Co(U(1))). By III.(3.87) and subsequent 
comment, this is given by 

(3.118) 

It follows from (3.116), (3.117), and III.(1.69) that the associated representation 
d U: of the generator T of IR is 

(3.119) 

The O-dependence of this operator lies in its domain; by Proposition III. 1.5.6 one 
should initially define Pe on the space of smooth vectors for U: (1R), on which it 
is essentially self-adjoint. It is a simple technical matter to show that the domain 
of the self-adjoint closure Pe of Pe thus defined is 

V(jj9) = Ve := {'" E AC([O, 2JT]) I "'(2JT) = e-ie",(O)}, (3.120) 

where AC stands for the space of absolutely continuous functions. 
Physicists like to see the O-dependence of Pe in the explicit form of the operator. 

This is achieved by the unitary transformation Ve : L2(U(1» -+ L2(U(I»,defined 
by Ve"'(fJ):= exp(ifJO/(2JT»"'(fJ). One obtains 

V. -v:-1 . d 0 (3 121) ePe =-1--- . 
(J dfJ 2JT' 

which is self-adjoint on the domain Vo; cf. (3.120). 
Comparing (3.121) with the classical covariant momentum III.(2.83), one is 

tempted to interpret the term 0/ (2JT) as an external electromagnetic potential A. 
This interpretation is correct, and provides a physical realization of the superselec­
tion sector o. The fact that the particle undergoes scattering despite the fact that the 
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field strength F of the potential in question vanishes is called the Aharonov-Bohm 
effect. At a time when it was thought that only the field strength (rather than more 
general gauge-invariant functions of the potential A) was an element of "physical 
reality", this effect was considered very surprising. (The Wilson loop defined by 
this A is nontrivial.) The truly surprising feature of the Aharonov-Bohm effect is 
its periodicity in e with period 2Ir. In the above description this is an immediate 
consequence of the periodicity of (3.115). 

After this intermezzo we return to the main theme. The discussion at the be­
ginning of this section suggests that the space S~ admits a family of inequivalent 

quantizations 'Hg, where () E ;;(ii). These are defined as follows. As always, 
one starts with a representation U (H) on a Hilbert space 'H that quantizes the 
given H -action on S. Then take a representation Uo of Iro(H) on 'Ho, leading to a 
representation Uo(H) by 

(3.122) 

Rather than inducing from the trivial representation of H, one now induces from 
Uo(H). As we have seen, classical Marsden-Weinstein reduction from a discon­
nected group may be split into two steps. The quantum induction procedure may be 
split up in a similar way. In the first step one induces from the trivial representation 
of HO. This is done by putting the form 

(\II, <1»8:= { dh (\II, U(h)<1» 
JHO 

(3.123) 

on some domain t ~ 'H and constructing the induced space, now called 'Ho, and 
the induced representation Iro as usual. The operator U(h) is adjointable for all 
h E H (and not merely for all h E HO). Since HO is trivially represented on 'Ho, 
it follows that 

(3.124) 

defines a representation of Iro(H) on 'Ho. The second step of the induction proce­
dure then consists in induction on 'Ho with respect to the representations Uo and 
Uo of D = Iro(H), in the way explained prior to (3.113). 

It is instructive to illustrate this two-step procedure in the example of Yang-Mills 
theory on a cylinder, with structure group H = U(1). Recall (3.70) and (3.115); it 
follows that the inequivalent quantizations of S = T* AIR are labeled by e E U (1). 

In the first step of the induction procedure we integrate over L U (1)° = L U (1 )[0]. 

We denote the left-hand side of (3.101), with LU(1) replaced by LU(1)o, by (, )8. 
With A = L2(Sl), this leads to the expression 

(v'Exp(W), v'EXP(Z»)O = e(w,Z) ( dl-tf (g) e(g·z-W). ° JW(l)O 
(3.125) 

We see from (3.69) that for the present purpose we may put H = JR. 
In that case the fundamental solution of the heat equation is Py(x, t) = 
(2Iryt)-l/2 exp(-x 2/(2yt». Using this in Lemma 3.8.2, or calculating directly, 
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one obtains 

(JEXP(W), JEXP(Z»): = (21l')-1/2e4[(WL,W/')+(ZL,ZL)]+WIZI. (3.126) 

We put 1l'~(A) := 1l'o(QF(A», where QF(A) is some adjointable operator on 
exp(A). Recall (3.93) and (3.94). 

Proposition 3.9.1. The induced space 1to is naturally isomorphic to L 2 (JR.). On 
this space one has 

(3.127) 

(3.128) 

(3.129) 

Here we have identified the generator of U(1) with -i, as usual. The first two 
operators are defined and essentially self-adjoint on the linear span eH of all 
Hermite polynomials. 

Compare the first two expressions with II.(2.23) and 11.(2.24). 
As always, we employ Proposition 2.2.4, this time omitting the suffix *. The 

guess 1to = L 2(JR.) is substantiated by defining Uo : <e -+ L 2(JR.) by linear 
extension of 

(3.130) 

One checks (2.29) from (3.126) and a standard Gaussian integration. Since Uo<e 
coincides with eH as defined above, and the latter is dense in L2(JR.), we conclude 
that the guess of L 2(JR.) for the induced space was a good one. 

In the classical abelian theory both Al and EI are gauge-invariant under small 
gauge transformations. In the quantum theory this is reflected by the fact that on 
the domain <e the operators QF(A I ) and QF(EI) (see (3.93) and (3.94» commute 
with U F (g), where gEL U (1)°, and are therefore adjointable. The induced action 
of a(1) is found from 11.(2.67), (2.30), and (3.130) to be 

d 
1l'o(a(I» = x + ~ dx; (3.131) 

by construction, this operator is defined on the domain Uo<e. Since the induction 
procedure preserves the adjoint of adjointable operators, it follows from (3.131) 
that 1l'o(a(1)*) = x - ~d/dx. From (3.93) and (3.94) we then obtain (3.127) and 
(3.128), respectively. Recalling the definition of QF(W) in the abelian case, given 
prior to (3.95), Equation (3.129) is then obvious. • 

We now compute the representation Uo(Z) defined in (3.124). Any g E LU(l)[n] 
isoftheformg = gOgn, where gO E LU(I)o,andgn is defined in (3.71). By (3.84), 
(2.30), and (3.130) one obtains 

Uo(n)'I1(x) = 'I1(x + 21l'n). (3.132) 
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Theorem 3.9.2. The induced space 1-lg defined by induction from the representa­

tion Uo(LU (1», given by (3.122) and (3.115), is naturally isomorphic to L2(U(I». 
Writing 1l'~(A) := 1l'g(QF(A», one has 

(3.133) 

seen as a multiplication operator. Moreover, the quantized "electric.field" is 

(3.134) 

cf (3.119). This operator is defined and essentially self-adjoint on the domain 
provided by Rieffel induction, and its closure is p(). 

Since (3.132) is the right-regular representation of 1l',(U (1» = 21l'Z on G = JR, 
we are exactly in the situation leading to (3.115). In the present case, (3.113), with 
1-l() = C, reads 

(\II, <I»g = 2rr I: einO r dx \II (x ) <I> (x + 2rr n), 
nEZ Ja 

(3.135) 

where we have normalized the Haar measure on Z as 2rr times the counting mea­
sure. Bothrr~(E ,) andrr~(W) are adjointable withrespectto (3.135). (The operator 
rr~(A ,) isn't, because among the multiplication operators on L 2(JR) only functions 
with period 2rr are adjointable.) The map (2.97), transferred from 1-lx to 1-l; , then 
reads 

U:\{I(f3) = 2rr I: einO \{I (f3 + 2rrn), (3.136) 
nEZ 

where \II E £H C L2(JR). Equation (3.133) then follows from (3.129), (2.30), and 
(3.136). Similarly, from (3.128), (2.30), and (3.136) one obtains (3.134). It is crucial 
that this unbounded operator is defined on the natural domain U: £H provided by 
Rieffel induction. It follows from (3.136) that functions in this domain are smooth, 
and satisfy the boundary condition \{I(2rr) = exp(-iO)\{I(O). The final claim then 
follows from standard functional analysis. • 

On the basis of these considerations one expects that any quantum gauge theory 
on a compact space whose gauge group 9 is disconnected possesses inequivalent 
quantizations labeled by the unitary dual of rroW). In physics one refers to elements 

of ,r;;(Q) as vacuum angles or O-angles. Such angles do not label superselection 
sectors (defined as inequivalent representations of the algebra of observables). 
Rather, each vacuum angle defines its own algebra of observables (3.114). What­
ever their physical interpretation, in the description suggested here, vacuum angles 
emerge if one constructs the algebra of observables by induction from a nontrivial 
representation of the gauge group. 



Notes 

Chapter I 

1.1.1 Jordan algebms were introduced by Jordan [1932] in connection with quantum me­
chanics (of which Jordan had been one of the founders), and were further studied by Jordan et 
a1. [1934]. There is a substantiallitemture on such algebms; an interesting modern textbook 
is Faraut and Koninyi [1994]. 

Jordan-Lie algebms appeared in Orgin and Petersen [1974], who claimed that in certain 
cases the associator identity (1.6) follows from the other axioms. It was added as an extm 
postulate by Emch [1984], who also noted that for /i2 i= 0 the Jacobi identity (1.5) follows 
from the other axioms. Also cf. Ayupov et a1. [1997]. For Poisson algebras see the notes to 
2.3. 

The study of infinite-dimensional Jordan algebras was initiated by von Neumann [1936]. 
J B-algebms were introduced by Alfsen et al. [1978]. See Emch [1972] and especially Emch 
[1984] for a nice overview with historical perspective. Axiom (1.7) can actually be derived 
from (1.9) and (l.lO); see the comment on p. III of Alfsen and Shultz [1976], Alvermann 
[1985], and Rodriguez Palacios [1988]. Hanche-Olsen and St0rmer [1984] is a textbook 
on Jordan algebra and J B-algebms, and Upmeier [1987] presents an overview with many 
applications. These works also describe a structure theory (mostly already present in Alfsen 
et a1. [1978]), whose main conclusion is that any J B-algebm 2l contains an ideal 'J such 
2lj'J is isomorphic (as a J B-algebra) to a norm-closed Jordan subalgebra of ~(1-l)R for 
some Hilbert space 1-l. 

The history of C' -algebms is told by Kadison [1982, 1994]; also see the Introduction in 
Bmtteli and Robinson [1987]. Standard references are Dixmier [1977], Pedersen [1979], 
Takesaki [1979], and Kadison and Ringrose [1983, 1986]. The most extensive analysis of 
the Oelfand-Neumark Theorem l.l.8 is in Doran and Belfi [1986]. See Connes [1994], 
Domn [1994], Fillmore [1996], and Davidson [1996] for modern surveys of C*-algebms. 
Introductions that relate C*-algebms to quantum mechanicsand that are more oriented to­
wards physicists are Bmtteli and Robinson [1987, 1981], Thirring [1981, 1983], Emch 
[1972, 1984], Haag [1996], and Landi [1997]. 
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As shown by Araki and Elliott [1973], axiom (1.14) can actually be derived from (1.15); 
see Doran and Belfi [1986] for an exhaustive study of the axioms and their consequences. 
The relevance of C*-algebras to quantum mechanics was recognized by Segal [1947], and 
received considerable impetus from the work of Haag and his collaborators on algebraic 
quantum field theory; see Haag and Kastler [1964] and Haag [1996]. 

Theorem 1.1.9 is taken from Landsman [1997], who provides an alternative proof of the 
second half. Namely, as shown by Wright [1977], the complexification 2( of a J B-algebra 
2(1R can be normed and made into a so-called Jordan C*-algebra (alternatively called J B*­
algebra). One then adds the Lie structure and uses the result of Rodriguez Palacios [1988] 
that if the Jordan product in a J B* -algebra 2( is the anticommutator of an associative product, 
then 2(, equipped with this associative product and the original norm, is a C* -algebra. 

If liZ < 0 one can tum 2( itself into an associative algebra through (1.23) with the i 
omitted. This leads to a so-called real C*·algebra, or R*·algebra, which is isomorphic to 
an algebra of bounded operators on some real or quaternionic Hilbert space; see Goodearl 
[1982]. Attempts to model quantum mechanics on such spaces have been unsuccessful; cf. 
Beltrametti and Cassinelli [1984) and references therein. 

1.1.2 This material may be found in all textbooks on C* -algebras. Takesaki [1979], 
Kadison and Ringrose [1983), and Davidson [1996] are particularly efficient. Palmer [1994] 
is an encyclopedic treatise on Banach algebras. 

Most of the theory holds for general J B -algebras; see Alfsen et al. [1978] and Hanche­
Olsen and St0rmer [1984]. 

1.1.3 Recall that a partial ordering ::: on a set is a binary relation von satisfying: (i) 
x ::: x for all x; (ii) if x ::: y and y ::: x then x = y; (iii) if x ::: y and y ::: z then x ::: z. 

One writes x < y if x ::: y and x of. y; also, y ? x (or y > x) is the same as x ::: y (or 
x < y). The general theory of partially ordered topological vector spaces is given by Wong 
and Ng [1973] and by Asimow and Ellis [1980]. 

All C* -algebraic results in this section may be found in the standard textbooks. 

1.1.4 Definition 1.4.1 is due to von Neumann [1932] (for 2( = ~(H» and Segal [1947) 
(for general C*-algebras); both were motivated by quantum mechanics. 

All books on C* -algebras discuss the basic properties of states and state spaces. The 
general theory of compact convex sets may be found in in Alfsen [1971] and Asimow 
and Ellis [1980]. Kadison and Ringrose [1983] discuss unital C'-a1gebras and their state 
spaces in the light of this general theory; Alfsen et al. [1978], Asimow and Ellis [1980], 
and Hanche-Olsen and St0rmer [1984] do so for general unital J B-algebras. 

The use of more general compact convex sets and partially ordered Banach spaces than 
those provided by C* -algebras is central to the so-called operational approach to quantum 
mechanics, for which we refer to Haag and Kastler [1964], Schwinger [1970], Davies and 
Lewis [1971], Hartkiimper and Neumann [1974], Mielnik [1974], Davies [1976], Gudder 
[1979], Beltrametti and Cassinelli [1981], Holevo [1982], Ludwig [1985], Lahti and Buga­
jski [1980, 1985], and Busch et al. [1995]. The starting point is the duality between the state 
space K, assumed to be a compact convex set, and the partially ordered Banach space of 
observables A(K, 1R) or Ab(K, 1R). Theorem 1.4.5 is a special case ofthis theory, and should 
be seen in its light. The connection between this approach and the theory of J B-algebras 
has been studied by Kummer [1991]. 

The decomposition of rp used in the proof of 1.4.5 is Thm. 4.3.6 in Kadison and Ringrose 
[1983]. The final step of the proof of Theorem 1.1.9 was inspired by the proof of Lemma 
8.5 in Alfsen et al. [1978]. 
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l.l.S Representations and the GNS- (Gelfand-Neumark-Segal) construction are dis­
cussed in all books on C' -algebras. For more on the universal representation and the closely 
related proof of Theorem 1.1.8, see Dixmier [1977], Pedersen [1979], or Kadison and 
Ringrose [1983, 1985). 

1.1.6 For the Riesz representation theorem see, for example, Pedersen [1989]. A detailed 
proof of Theorem 1.6.5 may be found in Reed and Simon [1972], Takesaki [1979], or 
Pedersen [1989]. 

1.1.7 For the history of von Neumann algebras cf. Kadison [1958,1982]. Von Neumann 
developed his theory of "rings of operators" partly in order to generalize his own Hilbert 
space formalism of quantum mechanics (von Neumann [1932]). He eventually came to 
believe that quantum mechanics should be described by so-called type 111 factors; see von 
Neumann [1981). Bub [1981] provides historical comments. 

A clear discussion of the various topologies on m(1t) is in Takesaki [1979] or Pedersen 
[1989]. The theory of von Neumann algebras, which started with Theorem 1.7.2 due to von 
Neumann himself, is covered by Pedersen [1979], Thkesaki [1979], Kadison and Ringrose 
[1983, 1985], and Connes [1994]. In addition to the first three of these books, cf. Dixmier 
[1977] for the description of the bidual of a C' -algebra 21 as a von Neumann algebra, Le., 
Proposition 1.7.4. Proposition 1.7.5 is Theorem 10.1.12 in Kadison and Ringrose [1985]; 
equivalent statements are in Pedersen [1979] and Takesaki [1979]. It states the "universal" 
property of the universal representation. Some authors use the term W' -algebra for an 
abstract C* -algebra that is the dual of a Banach space, a von Neumann algebra then meaning 
a W' -algebra realized on a Hilbert space. 

1.2.1 The insight that an extreme point of a convex set (as defined by Minkowski) is 
precisely a pure state in the sense of quantum mechanics is due to von Neumann. Extreme 
points of general compact convex sets are studied in Alfsen [ 1971], Asimow and Ellis [1980], 
and Pedersen [1989]; in connection with C' -algebras see Pedersen [1979], Takesaki [1979], 
and Bratteli and Robinson [1987]. Kadison and Ringrose [1983] is particularly efficient, 
and contains a proof of the Krein-Milman Theorem 2.1.5. For (2.2) see Dixmier [1977], 
§3.2.4. 

1.2.2 Most of this section is standard; for the reduced atomic representation see Pedersen 
[1979], Kadison and Ringrose [1983], and Akemann and Shultz [1985]. Proposition 2.2.8 
is given, for example, in Kadison and Ringrose [1986], Prop. 6.6.6, and in Davidson [1996], 
Thm. III. 1. 1. 

1.2.3 Poisson algebras and Poisson manifolds in the setting of function spaces go back 
to Lie [1890]; the modem era started with Kirillov [1976] and Lichnerowicz [1977]. See 
Marsden and Ratiu [1994] (p. 293) for historical comments, and Huebschmann [1990] for 
extensive references. The abstract concept of a Poisson algebra appeared implicitly in Falk 
[1951]; Dirac [1950,1964] deserves major credit as well. The theory of Poisson manifolds 
can be found in Weinstein [1983], Libermann and Marie [1987], Marsden and Ratiu [1994], 
and Vaisman [1994]; also see the survey by Weinstein [1998]. 

Equation (2.5) is equivalent to the statement that the so-called Schouten (or Nijenhuis) 
bracket of B with itself vanishes; see the books quoted in the previous paragraph. 

For technical properties of flows in connection with classical mechanics, see Abraham 
and Marsden [1985]. For the theory in infinite dimension, cf. Marsden [1974] and Chernoff 
and Marsden [1974]. A symplectic structure of the type we consider is called a strong 
symplectic structure in the literature (see the two books just quoted). A closed 2-form lJ) is 
called strongly symplectic if the map Bu, defined by reading (2.18) from right to left, is an 
isomorphism. In contrast, for a weak symplectic structure this map is merely injective. 
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There is a huge literature on symplectic manifolds; Abraham and Marsden [1985), Arnold 
[1989], Arnold and Givental [1990]. and Slawianowski [1991] are particularly useful in the 
context of classical mechanics. 

1.2.4 For Definition 2.4.1 see, for example. Libermann and Marie [1987), App. 3. Here 
one also finds the singular Frobenius theorem 2.4.2 (due to Sussmann [1973)) as Thm. 3.10. 
The ordinary Frobenius theorem is included as Thm. 4.2; for the latter also cf. Choquet­
Bruhat et aI. [1982), A readable review ofthe theory of (singular) distributions and foliations 
is Dazord [1985]. 

Theorem 2.4.7 is due to Kirillov [1976]; our discussion follows Marsden and Ratiu 
[ 1994], § 10.6, where further details concerning the connection with singular foliation theory 
may be found (note that these authors use the terminology "symplectic stratification theo­
rem", although the singular foliation obtained is not a stratification in the sense of Goreski 
and McPherson [1988] or Sjamaar and Lerman [1991)). Other detailed treatments are in 
Libermann and Marie [1987], §III.12, and Vaisman [1994], Ch. 2, who includes examples. 

1.2.5 The insight that the (normal) pure states of an irreducible quantum system corre­
spond to points in lP1-i goes back (at least) to Weyl [1931], p. 75. For lP''H as a symplectic 
manifold see, e.g., Cirelli et al. [1983], Abbati et al. [1984], Cirelli et al. [1994], or Mars­
den and Ratiu [1994]. For infinite-dimensional manifolds in general see Marsden [1974], 
Abraham and Marsden [1985], Choquet-Bruhat et al. [1982], or Lang [1995]. 

Proposition 2.5.2 is due to Cirelli et al. [1983]. It follows from (2.68) and Prop. 2.6.15 
of Bratteli and Robinson [1987] that the norm-topology relative to both lP''H c ~o('H)* 
and lP1-i c ~('H)' coincides with the manifold topology on lP''H as well. Theorem 2.5.4 is 
similar to Prop. 4.2 in Roberts and Roepstorff [1969]; we have added the appearance of lP''H 
with its manifold topology. 

Our construction of lP''H as a symplectic leaf in 'H*I U (1) is not standard, but forms an 
instance of the general procedure of reduction; see IV.1.5, in particular Theorem IV. 1.5.5. 
If a compact Lie group G acts smoothly on a manifold M, then MH (the collection of points 
in M with stability group H) and MHIG are manifolds (MIG may not be). See Bredon 
[1972]. We could have worked with 'HI U(I); this is not a Poisson manifold, but a Poisson 
space in the sense of Definition 2.6.2. Also see IV.I.II. 

The projected Schrodinger equation (2.46) in the given (symplectic) context goes back 
at least to Hermann [1973]. It is physically not very interesting for bounded H. If the 
Hamiltonian H is unbounded, the function il and its Hamiltonian vector field ~ (j are 
defined only on a dense submanifold of lP''H, namely the projection of the domain of H. 
This situation can be handled by the theory of densely defined vector fields on infinite­
dimensional manifolds, see Marsden [1974] and Chernoff and Marsden [1974]. Even in 
that case the flow 1/I(t) is defined on all of lP''H. 

Using the standard complex structure J on'H (defined by JV(<<I» = V(i«l») or on lP1-i 
(where similarly, J = i in each local chart (2.28», one can define a Kahler metric g by 

g(X, f) = ~w(X, Jf). 

See, e.g., Griffiths and Harris [1978] (N < 00) and Marsden [1974] (N = 00) for the 
mathematics, and Strocchi [1966], Hermann [1973], Marsden [1974], Cirelli et aI. [1983], 
Cirelli and Lanzavecchia [1984], Abbati et al. [1984], Marsden and Ratiu [1994], Cirelli et 
al. [1994], Hughston [1995], and Ashtekar and Schilling [1997] for applications in quantum 
mechanics. On 'H the Kahler metric is given by 

g(V(<<I», V(Q» = liRe (<<I>, Q). 
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On P1l one has the remarkable equation, found by Cirelli et al. [1990], 

fig(~A' ~iJ)(l/I) = AoB(l/I) - A(l/I)B(l/I). 

This relates the Fubini-Study metric on IP'1l to the Jordan product 0 on !B(1l), much as the 
Fubini-Study symplectic form on P1l is related to the Poisson bracket on !B(1l), cf. (1.22). 
Since this relation is not easily generalized to other C· -algebras than !B(1l) or 230(1l), it 
plays no role in our approach. 

1.2.6 The point of view in this section, as well as Proposition 2.6.4, originate in Lands­
man [1996a]. The definition of a Poisson space was partly inspired by that of a stratified 
symplectic space in Sjamaar and Lerman [1991]. 

Here is the technical argument alluded to at the end of the proof of Proposition 2.6.4. 
If necessary, one adds the unit function I p to !2l, and extends n by linearity and the rule 
n( 1 p) = Is; this still defines a representation, and j remains multiplicative on the extended 
algebra 2t (cf. Lemma 2.3.26 in Bratteli and Robinson [1987]). Evidently, X,(lp) = I. The 
multiplicativity of j immediately implies that it is positive on 2tnC(p), and by the previous 
equation j must therefore be continuous with norm 1. Hence it can be extended to all of 
C(P), where it remains multiplicative. By continuity, l(n(j))(u)1 ::: IItII"" for all u E S, 
so that IIn(j)II"" ::: 11/1100. Hence n : !2l ~ Cgo(S) c Cb(S) is continuous as a map 
between Banach spaces. We extend n to all of C(P) by putting (n(j))(u) = J(u)(j); this 
is precisely its extension by continuity. Since multiplication is continuous in the sup-norm, 
n = J* is a Jordan morphism of C(P) into Cb(S) (where the Jordan product 0 is pointwise 
multiplication). The continuity of J now follows (cf. Thm. 3.4.3 in Kadison and Ringrose 
[1983]): Since P, being compact and Hausdorff, is completely regular, a subbase for the 
topology of P is given by (f-I(O)}, where I and 0 range over C(P) and the open sets 
in JR, respectively (cf. Kelley [1955], p. 117). Now, J- 1(j-l(O)) = n(j)-l(O), which is 
open since n(j) is continuous. Hence J is continuous. 

If P is not compact, the proof undergoes only minor changes. The Stone-Weierstrass 
theorem (see, e.g., Pedersen [1989]) now says that!2l n Cc(P) is dense in Co(P). It follows 
that Xr is normalized, and the remainder of the argument is the same. Note that general 
positive functionals defined on a dense subalgebra of Ca( P) may not be extendible to positive 
functionals on the unitization of this subalgebra; the argument needs the preservation of 
multiplicativity on this extension to conclude positivity (and hence boundedness). 

Definition 2.6.6 is taken from Landsman [1996a] (written in 1992); it was rediscovered 
in Gotay et ai. [1996]. Theorem 2.6.7, in the special case that P is a Poisson manifold, is 
in Landsman [1996a]. 

1.2.7 Transition probabilities were introduced by Born [1926] in the context of quantum­
mechanical collision theory. Curiously, he initially thought that (in modern notation) the 
transition probability between two unit vectors \II and <I> was given by the inner product 
(\II, <1», and stated the correct expression 1(\11, <1»1 2 only as a note added in proof. The abstract 
notion of a transition probability space is due to von Neumann [1981], who thereby went 
beyond the general situation in quantum mechanics laid out in von Neumann [1932]. The 
condition of symmetry (which has nothing to do with the invariance of the laws of physics 
under time-inversion, cf. Haag [1996]) was not included in his definition of a transition 
probability space. The concept was revived by Mielnik [1968], who introduced the notion 
ofa basis and proved Proposition 2.7.4. Further work is in Zabey [1975], Belinfante [1976], 
and Pulmannova [1986]; see Beltrametti and Cassinelli [1984] for a concise review. 

Here is an example of a transition probability space that is not well-behaved (mentioned, 
with an error, in Zabey [1975], who attributes it to Mielnik). The elements of Pare equiv-
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alence classes of subsets of R of the type P ~ [0, n] (where the integer n 2: 3) of Lebesgue 
measure /-L(p) = 1; two subsets are equivalent when they differ by a null set. The transition 
probabilities are defined by pep, u) = /-L(p n u). Note that dim(P) = n. For Q ~ P, let 
Q ~ [0, n] denote the union of all members of Q. Then Ql. consists of all elements of P 
that are disjoint (up to null sets) from Q. If /-L(Q) > n - 1 there are no such elements, so that 
Ql.l. = P in that case. If /-L(Q) :s n - 1, on the other hand, Ql.l. consists of all elements 
of P that are contained in Q. Therefore, if Q c [0, n] is a given subset and Q is defined as 
the collection of all elements of P that lie in Q, then Q is orthoclosed iff /-L(Q) :s n - I. 
However, Q has a basis only if /-L( Q) is integral. For another example see BeJtrametti and 
Cassinelli [1984]. 

Any orthogonal subset of P is a sample space in the sense of classical probability theory. 
The second requirement of 2.7.5 may then be rephrased by saying that any maximal "clas­
sical" subspace of P is complete, in the sense that an arbitrary point in P must make a 
transition to some member of the given subspace. Moreover, this kind of completeness 
continues to hold if one restricts to orthoclosed subspaces. 

The existence of a multitude of maximal classical subspaces in a nontrivial transition 
probability space is very hard to interpret. In the case of quantum mechanics, the so-called 
Copenhagen interpretation (see Jammer [1974]), which is based on the somewhat obscure 
philosophy of complementarity of Niels Bohr, says that the choice of some such subspace 
is determined by the experimental arrangement set up by a physicist. The author's opinion 
is laid out in Landsman [1991, 1995b]. 

1.2.8 The expression (2.63) was proposed by Mielnik [1969] for arbitrary convex sets K, 
but this formula does not actually define a transition probability without the extra condition 
we have added. The expression is motivated by operational considerations about filters and 
preparation procedures in quantum mechanics (see the references in the notes to 1.4). We 
will not give this motivation here, since in our approach transition probabilities are funda­
mental and irreducible properties of pure state spaces, from which a possible operational 
interpretation of the theory is to be derived, rather than the converse. 

Theorem 2.8.2 may be generalized, stating that the pure state space of a J B-algebra QlJR 

is a symmetric transition probability space under (2.63). Firstly, it follows from equation 
(4.3) and Cor. 7.3 in Alfsen and Shultz [1978] that every pure state in a J B-algebra is norm­
exposed, so that by 2.8.1, equation (2.63) indeed defines a transition probability. Secondly, 
we need to show that the transition probabilities thus defined are symmetric. As explained 
on p. 159 of Alfsen and Shultz [1978], and also in Prop. 1.13 of Alfsen and Shultz [1979], in 
J B -algebras there is a bijective correspondence between pure states p of QlR and minimal 
idempotents (projections) p in QlR*; here an idempotent p in a J B-algebra is an element 
satisfying p2 = P (hence ° :s p :s 1I), and the minimality of p means that there is no 
nonzero projection q such that q :s p (our notation is different from the reference cited). 
This correspondence is given by the equation pep) = 1, which uniquely determines one 
entry given the other. It then follows from Thm. 2.17 in Alfsen and Shultz [1976] that the 
transition probability pep, u) as defined by (2.63) is given by &(p). The symmetry of the 
transition probabilities then follows from equation (4.5) and Cor. 7.3 in Alfsen and Shultz 
[1978]. 

Equations (4.3) and (4.5) in Alfsen and Shultz [1978], which are central to the above 
proof, are two of the three "pure state properties", which they show to be satisfied by the 
pure state space of a J B -algebra. In a slightly more general context, these or closely related 
properties were first postulated by Gunson [1967] and Pool [1968]. 
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There is an alternative way of looking at the symmetry of the transition probabilities for 
J B-algebras. If 2(R is a finite-dimensional J B-algebra, there exists a (real) inner product 
(, ) on 2(R ::::: Rn such that the positive cone 2(~ is self-dual. Using the inner product to 
identify 2(a with 2(it, this means simply that 2(~ = (2(it)+. The symmetry of the transition 
probabilities then eventually follows from the symmetry of the inner product. The close 
relationship between the self-duality of the positive cone and the symmetry of the transition 
probabilities in a finite-dimensional (formally real) Jordan algebra has been stressed by 
Haag [1996] in connection with the foundations of quantum mechanics. It turns out that 
finite-dimensional J B-algebras are characterized by the self-duality of the positive cone, 
plus the fact that the subgroup of G L(2(IR) that maps 2(~ into itself acts transitively on 
the interior of 2(~. See, for example, Faraut and Koninyi [1994]. An infinite-dimensional 
analogue of this result is discussed in Iochum and Shultz [1983] and Iochum [1984]; the 
central property of facial homogeneity (originally due to Connes) occurring in their work is 
further analyzed in Ajupov et al. [1990], in which it is admitted that the physical relevance 
of this property is obscure. 

Equation (2.67) appears in Roberts and Roepstorff [1969], who also prove the related 
result that the spaces f"Ha in the decomposition P(2() = Uaf"Ha (cf. 2.5.4) are precisely the 
components ofP(2() in the norm-topology. The result that lip-a Ii = 2 for inequivalent pure 
states is due to Glimm and Kadison [1960]; the statement actually holds for arbitrary disjoint 
states (these are states whose GNS-representations have no equivalent subrepresentations), 
see Cor. 10.3.6 in Kadison and Ringrose [1986]. 

The transition probabilities (2.65) can be expressed in terms of the Fubini-Study metric 
g on f"H. This metric can be normalized in such a way that 

pep, a) = ~(l + cosd(z, w», 
where d is the distance defined by g. For example, for 11. = (:2 the Fubini-5tudy distance 
d(z, w) is just the angular distance measured along the (shortest) great circle connecting z 
and w (cf. 3.7.1). This expression has led to interesting connections with information theory, 
entropy, uncertainty, and statistical inference; cf., e.g., Hilgevoord and Uffink [1991], Petz 
[1994], and Brody and Hughston [1998]. In a different direction, the ensuing connection be­
tween quantum mechanics and Riemannian geometry has been exploited by Anandan [1991] 
and Ashtekar and Schilling [1998]. Another way to look at (2.65) relates this transition 
probability to the projective cross-ratio of algebraic geometry; see Hughston [1995]. 

Continuity properties of the transition probabilities (2.65) are studied in Archbold and 
Shultz [1989]. 

Although it is somewhat contrary to the spirit of the present work, one can define transition 
probabilities between mixed states (the physical relevance of such transition probabilities 
has been questioned by Roberts and Roepstorff [1969]). For general '-algebras this was 
done in Uhlmann [1976]; it was shown by Alberti [1983] that for unital C'-algebras 2( 

Uhlmann's general expression reduces to 

P(Wl, W2) = inf {wl(A)W2(A- l)IA > 0, A E 2(, A-I E 2(}. 

For density matrices on a Hilbert space 11. (that is, states on 930(11.» this is equivalent to a 
formula due to Araki [1972], namely 

Further information and references may be found in Uhlmann [1993]. Cantoni [1975] defines 
transition probabilities between arbitrary states in the context of lattice theory (cf. 3.6); see 
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Gudder [1979] for a review. The equivalence between Cantoni's and Uhlmann's transition 
probabilities on state spaces of unital C* -algebras is shown in Raggio [1982] and Araki and 
Raggio [1982]. In more general situations the various approaches do not even coincide on 
the pure state spaces; see Pulmannova [1989]. 

1.3.1 This material is mainly taken from Landsman [1997]. Following a seminar the 
author gave in Gottingen, 1995, A. Uhlmann informed him that in his lectures on quantum 
mechanics ~(P) had long been employed as the space of observables; also see Uhlmann 
[1996]. 

1.3.2 Theorem 3.2.1 originates in the following result of Shultz [1982]: If A E p~** 

is such that A, A* A, and AA* are in C.(P(~», then A E p~. It was then shown by 
Brown [1992] that the hypothesis on A* A and AA* can be dropped. Our proof is based on 
that of Brown [1992], which also contains the corollary of the Stone-Weierstrass theorem 
that is used in the proof. The original Stone-Weierstrass theorem for CO-algebras, due to 
Glimm (see Dixmier [1977] for a very detailed presentation), states that if ~ is a unital 
C* -subalgebra of a unital C* -algebra IB which separates P(IB)- , then ~ = lB. The usual 
Stone-Weierstrass theorem then follows by taking IB to be commutative. 

Equation (3.5) follows from the property that the predual determines the order ofIDt (that 
is, w(A) 2: 0 for all pure normal states w implies A 2: 0), and Lemma 3.4.1 in Dixmier 
[1977]. There is no such result for arbitrary von Neumann algebras, which may even have 
no pure normal states at all. In the given setting the pure normal states are abundant, because 
N(IB**) = S(IB). 

If~ has no unit, Theorem 3.2.1 can be adapted in two essentially equivalent ways. Firstly, 
one has (~[)a = ~R(P(~» n Cu(P(~), R); this follows from the proof as given, plus 
Corollary 8 in Brown [1992]. Secondly, ~R = ~R(P(~» n Cu(P(~) U 0, R) (cf. Theorem 
6 of Brown [1992]). Indeed, the Stone-Weierstrass theorem for nonunital C· -algebras is as 
in the unital case, but with P(IB)- replaced by P(IB)- U O. 

Perfect C*-algebras were introduced in Shultz [1982], and studied in detail in Ake­
mann and Shultz [1985]. For nonunital algebras the definition is that ~ is perfect if 
~R = ~1R(P(~» n C(P(~) U 0, R); this means that ~ is perfect iff its unitization is. 
The main motivation was that if~ is perfect, the Stone-Weierstrass theorem can be sharp­
ened so as to state that ~ = IB if ~ separates P(IB) U 0 (where "U 0" may be omitted in 
the unital case). The perfectness of lBo(1t) is a special case of the following result (Shultz 
[1982]): If P(~)- consists of multiples of normal states on 1l"rd(~)"' then ~ is perfect. Also, 
arbitrary direct sums of perfect C* -algebras are perfect. 

The physical meaning of uniform structures on state spaces in quantum mechanics is 
discussed by Werner [1983]. 

1.3.3 This material is from Landsman [1997]; the second half of the proof of Proposition 
3.3.3 is based on the proof of Thm. 12.12 in Alfsen and Shultz [1976]. For the proof of 
Lemma 3.3.4 see Alfsen et ai. [1978], Shultz [1979], or Hanche-Olsen and St0rmer [1984]. 

1.3.4 Proposition 3.4.1 is taken from Landsman [1997]. Exhaustive information on deriva­
tions and one-parameter automorphism groups on Banach spaces may be found in BratteH 
and Robinson [1987]. 

Corollary 3.4.2 was inspired by Thm. 18 in Shultz [1982], but is phrased in different 
language and has an entirely different proof. In Shultz's result the condition that a* be a 
Poisson map is replaced by the requirement that a* preserve the orientation of P(~). 

There are similar results relating properties of an (auto )morphism a of a unital C* -algebra 
~ to properties of its dual a* , seen as a map on the entire state space S(~). Kadison [1965] 
showed that a is a Jordan automorphism of~ iff a* is an affine (w*-) homeomorphism of 



Observables and pure states 441 

S(Qt) (also cf. Bratteli and Robinson [1987]). Shultz [1981] extended this by proving that 
a is a morphism of Qt iff a* in addition preserves orientation. 

Corollary 3.4.3 is a famous theorem due to Wigner [1931]. An antiunitary operator U 
is an antilinearbijection on 'H (i.e., UclJl = cUlJI for all cEq that satisfies (UlJI, U<1» = 
(<1>, lJI)foralllJl, <1> E 'H. See Bargmann [1964],RobertsandRoepstorff[1969], Varadarajan 
[1985], Beltrametti and Cassinelli [1984], Shultz [1982], Cirelli et a1. [1983], or Thynman 
and Wiegerinck [1987] for various alternative approaches to this theorem. 

Lemma 3.4.4 goes back to Kadison, but we here refer to Bratteli and Robinson [1987] 
(Example 3.2.14) for a detailed presentation. The following generalization is due to Alfsen 
et a1. [1980] (Prop. 2.4): if 7f; : Qt ~ ~('H;)1R (i = 1,2) are irreducible Jordan-equivalent 
representations of a J B-algebra Qt, then there exists a unitary or an antiunitary map from 
'HI to 'H2 that implements the equivalence (here Jordan equivalence means that there is a 
Jordan automorphism f3 : ~('HI)R ~ ~('H2)1R such that 7f2 = f3 o7fI). 

1.3.5 A classic on lattice theory is Birkhoff [1967]. For orthomodular lattices see Maeda 
and Maeda [1970] or Kalmbach [1983] (which is highly readable and contains many attrac­
tive historical quotations and excursions). The connection between Hermitian forms and 
orthocomplementations is thoroughly discussed in Baer [1952], and Varadarajan [1985], as 
well as in Maeda and Maeda [1970]; recent reviews are Piziak [1991] and Holland [1995]. 
The fact that C(V) is not modular in infinite dimension follows, after an elementary but 
somewhat lengthy argument, from the existence of closed subspaces whose sum is not 
closed; cf. Kalmbach [1983] or Beltrametti and Cassinelli [1984]. 

A division ring Jl)) (sometimes called a skew-field) is a ring in which the equations 
xa = band ay = b can be solved for x and y whe~ever a i- O. An involution of Jl)) 

is a linear bijection A ~ I satisfying A/l = iiI and I = A. For general division rings, 
the definition of a sesquilinear form is the same as for Jl)) = C, namely a bilinear map 
(, ) : V x V ~ Jl)) satisfying (AlJI, /l<1» = I(lJI, <1»/l and (<1>, lJI) = (lJI, <1». Such a form is 
said to be nondegenerate if (lJI, <1» = 0 for all <1> implies lJI = O. 

A detailed proof of Proposition 3.5.7 is in Kalmbach [1983], Thm. 3.1; also cf. Birkhoff 
[1967], §8. 

1.3.6 For a direct proof of Proposition 3.6.1 cf. Kalmbach [1983]. Detailed discussions of 
projections in von Neumann algebras are in Takesaki [1979] and in Kadison and Ringrose 
[1983]. It can be shown that C(9R) is irreducible iff 9R is a factor, that is, 9R n 9R' = ICH. 
This is because the center C(C(9R» consists of the projections in 9R n 9R'. One should 
therefore be aware that 9R may not act irreducibly on a Hilbert space (in the sense of 2.2.1), 
while C(9R) is nonetheless irreducible. 

A modem reference on the lattices C(Qt**) and F(S(Qt» is Akemann and Pedersen [1992], 
where Proposition 3.6.3 may be found; it goes back to Prosser [1963] and Effros [1963]. 
The "technical argument" on left ideals used in the proof is due to Effros [1963], and also 
appears in Pedersen [1979], Thm. 3.6.11. As shown by Topping [1967], these lattices have 
the property of semimodularity (also called M-symmetry), cf. Birkhoff [1967] or Maeda 
and Maeda [1970]. Call (y, z) a modular pair if (3.12) holds for all x ::: z. Semimodularity 
then means that (z, y) is a modular pair whenever (y, z) is. In an orthocomplemented atomic 
lattice, semimodularity is equivalent to the covering property defined in 3.7, cf. Thm. 30.2 
in Maeda and Maeda [1970]. 

Proposition 3.6.3 can be generalized to a certain class of partially ordered Banach spaces 
(which includes unital J B-algebras and C*-algebras); see Alfsen and Shultz [1976] and 
Edwards and Riittimann [1985]. 
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Proposition 3.6.4 is due to Zabey [1975] and Belinfante [1976]; also cf. Beltrametti and 
Cassinelli [1984] and Pulmannova [1986]. 

A third lattice associated with a unital C' -algebra 2l, which is not isomorphic to either 
£(2l") or £(2lR(P», is the lattice F(2l) of w' -closed faces of S(2l) (where ~ is ~). Since 
a w' -closed face is norm-closed, one can associate a projection p to each such face by 
the construction in the proof of 3.6.3. Any projection thus associated to a w' -closed face is 
called closed; ifll - p is closed, then p is said to be open. There is a bijective correspondence 
between open projections p and norm-closed left ideals 2l" p n 2l in 2l. The lattice F(2l) 
is isomorphic to the lattice .c(2l) of all closed projections, but note that the latter is not a 
sublattice of £(2l"), since x v y is not necessarily closed if x and yare. Hence x v y has to be 
redefined as the smallest closed projection containing x and y. An intrinsic characterization 
of an open projection is that it is the ultraweak limit of an increasing net in 2l. It can be shown 
that all open and closed projections lie in 2lR (P). The terminology comes from the special 
case where 2l is abelian: In that case the open projections are precisely the characteristic 
functions of open sets in P(2l) (with the w' -topology). It is clear from this example that the 
lattices .c(2l) and F(2l) do not admit a (natural) orthocomplementation. 

More information on this subject, sometimes called noncolDDlutative topology, may be 
found in Akemann [1969], Giles [1970], Giles and Kummer [1971], Borceux and van den 
Bossche [1989], and Akemann and Pedersen [1992]. 

Yet another lattice (the fourth) associated with 2l consists of all projections in a(2l), which 
is the so-called sequential completion of 2l. This is defined as the smallest a -complete C'­
algebra on Hra containing Jrm(2l); here a C'-algebra concretely acting on a Hilbert space 
H is called a-complete if it contains the limits of all weakly convergent sequences in 
it. See Plymen [1968]. This lattice is generally neither atomic nor complete, though it is 
orthocomplemented. Also cf. Roberts and Roepstorff [1969] for the use of a-complete 
CO-algebras in algebraic quantum mechanics. 

Proposition 3.6.5 and Theorem 3.6.6 are from Landsman [1997]. From the point of view 
of quantum logic, the first claim of Theorem 3.6.7 is that each A E 2l is an observable 
on the lattice £(P(2l» if the Borel sets Bj are mutually disjoint; an observable on a a­

complete orthocomplemented lattice £ is defined as a lattice homomorphism A : B(lR) --+ £ 
satisfying A(v~1 B i ) = V~I A(Bj ), cf. Varadarajan [1985], §1II.2. The study of observables 
on lattices is closely related to measure theory on lattices; see Varadarajan [1985], Rilttimann 
[1985], and Schindler [1990]. Yet another way of looking at this situation is that a given 
observable A defines a map p t-+ tL~ from (pure) states into probability measures on lR 
(supported on the spectrum of A). 

Theorem 3.6.7 places our approach in the context of Mackey 's [1963] axioms for quantum 
mechanics. See Plymen [1968], Roberts and Roepstorff [1969], Gudder [1979], and Holland 
[1995] for further development of Mackey's methodology. 

1.3.7 The two-sphere property was inspired by Alfsen et al. [1980] and Shultz [1982]. 
Theorem 3.7.2 is from Landsman [1997]. The exclusion of dim(Pa ) = 3 is a consequence 
of the use of Theorem 3.7.4, which leads to the desired result for dim(P,,) 2: 4 only (the 
case dim(P,,) = 2 is covered directly by the axiom). 

The covering property in atomistic lattices is equivalent to the exchange property, stating 
that if a and b are atoms and x is such that x 1\ a = 0, then a ~ x v b implies b ~ x Va. 
This, in tum, is equivalent to BirkhotT's exchange axiom; cf. Thm. 7.10 in Maeda and 
Maeda [1970] or Prop. 10.1 in Kalmbach [1983]. 

Lemma 3.7.3 is taken from Landsman [1997]. The final step in the proof is as follows. 
According to Ramsay [1965], a complete orthocomplemented lattice £ with the covering 
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property is a so-called dimension lattice (cf. Kalmbach [1983, 1986] for a detailed discus­
sion). This implies that there is a function d : [, ~ JR+ with certain properties; in our 
case, [, = ['(P), it is easily verified that d is proportional to the dimension defined in 2.7. 
More precisely, our proof of the finite-dimensional covering property (which was inspired 
by the proof of Prop. 6.15 in Alfsen et al. [1980]) implies that each interval [0, Q], where 
dim(Q) < 00, is a dimension lattice. 

By Thm. 13.2 in Kalmbach [1983] (or, equivalently, Prop. 8.2 in Kalmbach [1986]), a 
complete orthomodular lattice is modular iff it is a dimension lattice in which d(l) < 00. 

Thus each [0, Q] is modular as long as dim(Q) < oo,as is 1:= {Q E [,(P) I dim(Q) < oo}. 
The sub lattice I is an ideal of [,(P) (in the sense that y ::: x and x E I imply y E I), which 
is supremum-dense (this means that an arbitrary x E [,(P) may be written as x = VjXj for 
some Xj E I). The existence of a supremum-dense modular ideal means, by definition, that 
[,(P) is locally modular. Thm. 8.17 in Kalmbach [ 1986] states that a complete orthomodular 
and locally modular lattice is a dimension lattice. Thm. 8.20 in Kalmbach [1986] says that 
a dimension lattice has the exchange property (we use only the implication (i)~(ii) of 
this theorem, since the converse, while true, has an incomplete proof). As remarked in 
the previous paragraph, in our context the exchange property is equivalent to the covering 
property. This completes the proof of Lemma 3.7.3. 

Theorem 3.7.4 originated in projective geometry; the main contributions were by von 
Staudt, Hilbert, von Neumann, and Birkhoff (junior). Complete modem proofs may be found 
in Baer [1952], Freyer and Halperin [1956], and Varadarajan [1985], who also explain 
the connection between lattice theory and projective geometry (the connection between 
quantum mechanics and projective geometry clearly fascinated von Neumann; cf. Piron 
[1976] and Varadarajan [1985] for a full explanation of this connection). Summaries are in 
Maeda and Maeda [1970], Birkhoff [1967], BeItrametti and Cassinelli [1984], Kalmbach 
[1986], and Holland [1995]. The fact that length 3 is excluded is caused by the existence of 
so-called non-Desarguesian projective geometries in dimension 3; see Freyer and Halperin 
[1958] for a certain analogue of the coordinatization procedure in that case. Various other 
generalizations exist; for example, when [, is not necessarily atomic, but modular, one can 
coordinatize [, in terms of a so-called (von Neumann) regular ring (instead of a division 
ring). If [, has no atoms at all, this leads to the subject of continuous geometry (cf. Maeda 
[1958] and von Neumann [1981]), created by von Neumann in connection with quantum 
mechanics and his work on rings of operators. 

Lemma 3.7.5 is due to Kolmogorov [1932], and was used in exactly the same way in 
Zierler [1961] and in Cirelli and Cotta-Ramusino [1973]. 

The criteria setting out when a definition of convergence defines a topology are given in 
Kelley [1955]. They are almost trivially verified in Lemma 3.7.6, since our convergence is 
defined through convergence in R 

Lemma 3.7.7 is taken from Landsman [1997]; the first argument in the proof is Lemma 
3.3 in Cirelli and Cotta-Ramusino [1973]. 

The classification of topological division rings used in the proof of Lemma 3.7.8 is due 
to Pontrjagin [1946] (also cf. Weiss and Zierler [1958]). The classification of (continuous) 
involutions of JR, C, and lIll is discussed in Varadarajan [1985] (§1I.2 and Lemma IV.4.5); 
also cf. Wilbur [1977] for conditions guaranteeing the continuity of the involution. 

Proposition 3.7.9 is due to Amemiya and Araki [1966] (it had previously been stated, with 
an incorrect proof, by Piron); also cf. Maeda and Maeda [1970] (Thm. 34.9), Varadarajan 
[1985] (Lemma 4.42), or Kalmbach [1986] (Thm. 11.9). 

The generalization of Wigner's theorem used at the end of 3.7 is Theorem 4.29 in 
Varadarajan [1985]. For dim(1t) ~ 4, it is equivalent to the fact that the group of lattice 
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automorphisms of P(1t) (for separable 'It) is precisely the group of unitary and antiu­
nitary operators on 'It. More precisely, for any automorphism rp of C('It) there exists a 
unitary or antiunitary operator U on 'It such that rp(K) = UK, where K is a closed sub­
space of 'It (if we look at C('It) as the lattice C(~('It» of projections p on 'It, one would 
have rp(p) = UpU*). This is also derived in Varadarajan [1985], §IV.3 (the results are 
stated for infinite-dimensional 'It, but this restriction is not essential). The proof is not easy, 
relying on several steps in the proof of the coordinatization theorem 3.7.4. Wigner's gen­
eralized theorem (like its weaker counterpart) holds in any dimension, for one can embed 
a low-dimensional Hilbert space isometrically in a higher-dimensional one, and choose the 
bijection so that the embedded space is mapped into itself. 

Section 3.7 should be seen in the light of a large body of work in which axioms on an 
orthocomplemented lattice C are given so as to make it isomorphic to Celt). This program 
goes back to Birkhoff and von Neumann [1936], and received considerable impetus from 
Mackey [1963]. See Zierler [1961], Wilbur [1977], Piron [1976], Gudder[1979], Beltrametti 
and Casinelli [1984], Kalmbach [1986], Piziak [1991], and Holland [1995]. The orthomod­
ularity of C is somewhat justified from Mackey's layout of the logical structure of quantum 
mechanics. The covering property can to some extent be physically motivated in an opera­
tional framework (cf. Gunson [1967], Pool [1968], and Beltrarnetti and Casinelli [1984]), 
whereas irreducibility amounts to the absence of superselection rules. Completeness and 
atomicity seem more a matter of mathematical convenience. 

Having arrived at a lattice of the type C( V), the main difficulty in the traditional approach 
lies in the determination of the division ring lDl. An important mathematical breakthrough 
is the work of Soler [1995] (reviewed in Holland [1995]), who gave surprisingly minimal 
conditions on C implying that V must be a Hilbert space over R C, or JEll. Her main condition 
on C is equivalent to the existence of an infinite orthogonal sequence in V, and therefore 
her theorem applies only to infinite-dimensional separable Hilbert spaces (moreover, her 
conditions are very hard to interpret physically). 

Since the fields Rand 1HI are as irrelevant to quantum mechanics as other more exotic 
division rings, our approach has been to put in the choice of C as early as possible. Since it 
enters through an axiom on the transition probabilities, this has been done in a physically 
meaningful way (this was inspired by Schwinger [1970], who introduces C through the 
properties of filters). As an added bonus, the covering property did not have to be postulated 
separately, but could be derived. 

1.3.8 This material, like that of the next section, is taken from Landsman [1997]. A 
simplified version appeared in Landsman [1998b]. 

1.3.9 Theorems 3.9.1 and 3.9.2 should be compared with the work of Alfsen et al. [1980], 
who characterized unital CO-algebras in terms of their state spaces (cf. Alfsen [1977] and 
Asimow and Ellis [1980] for reviews); see Landsman [1997] for such a comparison. Araki 
[1980] provides a certain simplification of this characterization in the finite-dimensional 
case. The general program has been continued by Alfsen and Shultz [1998]. 

An interesting argument leading from J B-algebras to C'-algebras is that only C*­
algebras admit a satisfactory notion of a tensor product, allowing one to combine physical 
systems; see Araki [1980] and Hanche-Olsen [1985]. 

The normal state space of a J BW -algebra or a von Neumann algebra has been character­
ized by Iochum and Shultz [1983]. The situation is qualitatively different from J B -algebras 
or C' -algebras, since a normal state space may have no extreme points. 
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Chapter II 

11.1.1 The quotation in the Introductory Overview is from Simon [1980]; it is sometimes 
displayed in papers and seminars, and R. Haag has repeatedly expressed similar sentiments. 

For the early history of quantization and the classical limit, based on Bohr's 
correspondence principle, cf. Jammer [1974] and Mehra and Rechenberg [1982]. 

In condition F of sections III. I and III.5 of von Neumann [1932], it is stated that if a self­
adjoint operator R "corresponds" to a function !R on classical phase space, and F : R -+ R 
is an arbitrary function, then F(R) (defined by the functional calculus) should correspond 
to F 0 !R. Construing the correspondence !R 1-+ R as a quantization map R = Q/i(!R), this 
stringent condition cannot hold in general, not even for F(t) = /2. For this choice, in view 
of 1.(3.10) the condition is equivalent to (1.2) without the limit, explaining our terminology. 
Dirac's condition (1.3), also without the limit, is proposed in §21 of his [1930] book; Dirac 
did recognize that his condition could not always be satisfied, and added the qualifying 
remark that the condition should be satisfied only by "the simpler" commutators. 

The idea of deformation quantization, which appreciates the fact that the conditions 
of von Neumann and Dirac can hold only asymptotically, goes back to Berezin [1974, 
1975a,b] (also cf. Vey [1975] and Bayen et al. [1978]). The mathematical framework was 
developed in a series of papers starting with Gerstenhaber [1964J. In the original setting 
one constructs a "deformed" associative product ./i on a given Poisson algebra, in such a 
way that f .r. g -+ f· g for Ii -+ 0 and j(f .r. g - g ·Ii f)/Ii converges to {f, g} in the same 
limit. Here f . Ii g is defined by a formal power series expansion, and the Ii -+ 0 limit is 
handled accordingly. 

This subject of "formal" deformation quantization reached a high point in the work of 
Fedosov [1994, 1996], who showed that every regular Poisson manifold P (or rather its 
associated Poisson algebra COO(P, R» is quantizable in the given sense (regularity here 
means that the rank of B~ is constant; cf. 1.2.3). Also cf. Weinstein [1994]. The culmination 
of the subject is Kontsevich [1998], who proved that every finite-dimensional Poisson 
manifold can be quantized in the sense of formal deformation quantization. 

In its current development, formal deformation quantization is remote from quantum 
mechanics and even from Hilbert space theory, using essentially different techniques from 
the ones described in this book. Moreover, no version of von Neumann's condition is 
imposed. 

Strict deformation quantization was introduced by Rieffel [1989a, 1994], who in partic­
ular proposed what we call Rieffel 's condition. In his approach the norm and the product in 
the C· -algebras 2(1i depend on Ii; in particular, the product in 2(/i is analogous to the product 
.r. in formal deformation quantization. Further work in this setting, especially on Rieffel's 
condition, may be found in Nagy [1992,1997, 1998a] and Blanchard [1996]. These papers 
contain applications to the theory of quantum groups (in the C' -algebraic setting introduced 
by Woronowicz [1987, 1995]; also cf. Lance [1995]), as do Rieffel [1993b, 1995], Nagy 
[1993, 1998b], and Sheu [1996,1997]. Related work may be found in Landstad [1994] and 
Landstad and Raeburn [1997]. 

Definition 1.1.1 is taken from Landsman [1993b]. The reformulation of strict (deforma­
tion) quantization in terms of the maps Q/i simply adopts the perspective of a physicist, who 
looks at quantization in precisely this way. Mathematically, this reformulation is closely 
related to the concept of E-theory and its associated asymptotic morphisms (see Connes 
[1994]). The connection between E -theory, quantization, and operator K -theory is further 
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developed by Nagy [1996, 1997] and Rosenberg [1996]; for the last two topics also see 
Rieffel [1993c]. 

We shall not discuss geometric quantization or prequantization in this book, referring 
the interested reader to Souriau [1969, 1997], Kostant [1970], Sniatycki [1980], Kirillov 
[1990], Woodhouse [1992], and Chernoff [1995]. The construction of the prequantization 
line bundle provided by this technique is often useful in the context of Berezin-Toeplitz 
quantization on Kahler manifolds (cf. the notes to 1.5). On the other hand, the prequantiza­
tion of functions on phase space does not easily fit into a C· -algebraic framework, because 
the prequantization of a bounded function is always an unbounded operator, a property that 
may persist even after the second step of quantization. Moreover, one works at a fixed value 
of Ii. 

11.1.2 See Fell [1962] or Dixmier [1977] for the traditional theory of continuous fields 
of C· -algebras. Definition 1.2.1 is taken from Kirchberg and Wassermann [1995]; Lemma 
1.2.2 and Proposition 1.2.3 show that their definition is equivalent to Dixmier's. 

Blanchard [1996] defines a continuous field of C'-algebras over a locally compact 
Hausdorff space X as a C*-algebra 11: equipped with a nondegenerate morphism from 
Co(X) to the center of the multiplier algebra of 9 (cf. IV.2.1), such that 1.2.1.1 holds 
with 21"" := I1:/Co(XYI1: (where Co(XY is the ideal in CoCX) of functions vanishing at x, 
and ({J" the canonical projection. Condition 1.2.1.2 is then automatically satisfied, so that 
one obtains a continuous field in the sense of Definition 1.2.1. Conversely, given 1.2.1, one 
has ker«({Jx) = Co(XYI1:, so that the canonical isomorphism ((J,,(I1:) ~ 11:/ ker«({Jx) leads to 
the equivalence between the two definitions in question. 

The connection between strict (deformation) quantization and continuous fields of 
C· -algebras was recognized by Rieffel [1989a]; it was initially thought that any such quan­
tization would define a continuous field, but it was quickly realized (Rieffel [1993a)) that 
further assumptions were needed. Definition 1.2.5, which is a slight variation on a definition 
proposed in Rieffel [1998], seems a good compromise between Rieffel's earlier definitions 
and those in Landsman [1993b]. Results analogous to Theorem 1.2.4 are given in Nagy 
[1992, 1998a]. 

Somewhat against the spirit of the founding fathers, one could omit Dirac's condition 
from Definition 1.2.5. In some cases the ensuing continuous fields of C· -algebras (in which 
210 is commutative) may nonetheless be seen as quantizations. For examples see Matsumoto 
[199Ia,b], Matsumoto and Tomiyama [1992], Borthwick et al. [1993], and Exel [1994]. A 
unified approach to these examples is developed in Abadie and Exel [1997], where Dirac's 
condition reappears through the back door. 

Partitions of unity are discussed in Pedersen [1989] and Jiinich [1994]. Since these will 
often be used, we recall their definition. Let Q be a Hausdorff space, and let {NalaEl be 
a locally finite open cover of Q (i.e., each point of Q has a neighborhood that intersects 
only a finite number of the sets Na ). A partition of unity subordinate to the given cover is 
a collection of positive functions (UalaEl such that u" E Cc(N" , R) and LaEl U" = 1. A 
partition of unity always exists when Q is paracompact; Hormander [1983] proves that the 
u" may be taken to be smooth when Q is a manifold. 

11.1.3 Definition 1.3.1, anticipated by Emch [1984], Rieffel [1989b], and Landsman 
[1993a], is due to Nagy [1992, 1998a] and Blanchard [1996]. The last two authors look at 11: 
as a Co(X) module, so that each set (w~ IXEx defines a Co(X)-linearfunction cp~ : 11: ~ Co(X) 
by ((J~(A) : x ~ w~(Ax)' 

Suppose one has a triple (11:, {21X , ({Jxl"Ex) as in Definition 1.2.1, that satisfies conditions 
2 and 3. One may then still use Definition 1.3.1. Under the assumption that each 21"" is 
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separable and nonzero, Blanchard [1996] proves that such a triple satisfies 1.2.1.1 (so that it 
is a continuous field of C*-algebms) iff it admits a continuous field of states. The proof uses 
Kasparov's [1981] generalization of Stinespring's Theorem 1.4.2 (also see Lance [1995]). 
Analogous results are given in Nagy [1992, 1998a]. Previous applications of continuous 
fields of states by Rieffel [1989b] and Landsman [1993a] in proving Rieffel's condition 
(1.1) in certain models may be seen as embryonic versions of these results; Proposition 
1.3.6 is a case in point. 

Definition 1.3.3 is an abstmction of the notion of a coherent state, rewritten in the language 
of tmnsition probabilities. For the standard theory of coherent states and their various 
generalizations, see Klauder and Skagerstam [1985], Perelomov [1986], Zhang et a1. [1990], 
and Ali et al. [1995]. The usual definition stipulates as a minimal requirement that coherent 
states form a family {nO'la E S} for which the map a H- nO' is (strongly) continuous, 
and fsdp,(a)[nO'] = [weakly, for some measure p, on S; various requirements may be 
added. For example, pammetric dependence on Ii and good behavior for Ii ~ 0 were 
already studied in a special example by SchrOdinger [1926]. Further work on the role of 
coherent states in the classical limit of quantum mechanics is cited in the notes to 2.7; also 
cf. Simon [1980], Yaffe [1982], as well as the first two books cited above. From our point 
of view, equation (1.11) is of centml conceptual importance, for it shows that the tmnsition 
probabilities on qr.(S) that are inherited from JP'Hr. become classical when Ii ~ O. 

The main ideas of what is here called Berezin quantization go back to Davies and Lewis 
[1970], Holevo [1973] (cf. Davies [1976] and Holevo [1982] for a textbook presentation 
of the approach in these papers), and Berezin [1972, 1974, 1975a,b] (also cf. Perelomov 
[1986] for a summary of these four papers). Whereas the other authors concentrated on 
operational ideas and measurement theory, it was the specific contribution of Berezin to 
study operators of the type Qg (f) in connection with quantization theory and the classical 
limit, in particular analyzing their Ii-dependence. In doing so he discovered, for example, 
the "quantization" of Planck's constant when one quantizes a compact phase space. In view 
of this, and of Berezin's premature death in a drowning accident (cf. Bogolyubov et a1. 
[1981] and Dobrushin et al. [1996]), it seems reasonable to name the quantization method 
involving Qg after him. 

Equation (1.16) appears in Ali and Doebner [1990] under the name prime quantization 
(with weaker conditions on the coherent states). Berezin [1972] calls f the contravariant 
symbol of Qg (f); for an arbitmry bounded opemtor on 'It, the covariant symbol of an 
opemtor A is the function on S defined by a H- (q,,(a»(A) (the terminology lower and 
upper symbol, respectively, is also found in the litemture, e.g., Simon [1980]). Berezin 
actually looks for operators whose covariant symbol is well-behaved for Ii ~ 0, and 
regards such an operator as the quantization of the Ii ~ 0 limit of its covariant symbol. The 
Berezin transform 

Bf(p) = Is dp,,,(a) p(q,,(p), qr.(a»f(a), 

which is well-defined as map from L ""(S) to itself, maps the contmvariant symbol into the 
covariant one. Our condition (1.9) evidently states that the Berezin transform becomes the 
identity for Ii ~ O. For a study of the Berezin transform on so-called bounded symmetric 
domains (these are certain bounded subspaces of eN; cf. Helgason [1978]) see Berezin 
[1975a], Peetre [1990], Unterberger and Upmeier [1994], and Englis [1996]. 

A different approach to quantization theory based on coherent states is due to Klauder 
[1988, 1995]. For the connection between geometric quantization and coherent states see 
Rawnsley [1978], Thynman [1987b], Odzijewicz [1988,1992], and Rawnsley et al. [1990]. 
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The coherent states constructed in these papers should satisfy Definition 1.3.3; on those 
Kahler manifolds that are not coadjoint orbits the limit in (1.10) is strictly necessary, 
and (1.13) does not hold. In fact, starting from Berezin-Toeplitz quantization on Kahler 
manifolds (see the notes to 1.5), the easiest way to find J1,h is to use (1.18). 

Bochner integrals, such as (1.16), will frequently occur in this chapter. The theory of 
such integrals may be found in Yosida [1980]. A function! : S ~ B taking values in a 
Banach space B is Bochner-integrable with respect to a measure J1, on S iff (i) ! is weakly 
measurable (that is, for each functional WE B* the function a ~ w(f(a» is measurable), 
(ii) there is a null set So C S such that {f(a)la E S\So} is separable, and (iii) the function 
defined by a t-+ 1I!(a)1I is integrable. It will always be directly clear from this whether 
a given operator- or vector-valued integral may be read as a Bochner integral; if not, it is 
understood as a weak integral, in a sense always obvious from the context. The Bochner 
integral Is dJ1,(a)!(a) may be manipulated as if it were an ordinary (Lebesgue) integral. 
For example, one has 

11.1.4 Theorem 1.4.2 is due to Stinespring [1955]; also cf. Paulsen [1986] (where the 
nonunital version may be found) and Kadison [1994]. Stinespring also proved 1.4.4. 

Proposition 1.4.6 is equivalent to Theorem V.I. I in Berezanskii [1968]. Positive-operator­
valued measures are discussed abstractly by Riesz and Sz.-Nagy [1990], Appendix, and, in 
the context of quantum mechanics, by Davies [1976], Holevo [1982], Busch et al. [1995], 
and Schroeck [1996]. The measure theory in the proof of Proposition 1.4.8 is discussed in 
Pedersen [1989], §4.5. Corollary 1.4.9, due to Neumark, is actually valid for any space X 
with a a-algebra; see Schroeck [1996], §II.lI.F. 

11.1.5 For coherent states see the notes to 1.3. The theory of Hilbert spaces with a 
reproducing kernel may be found in Aronszajn [1950] or Meschkowski [1962]; also see 
Ali [1985] for a summary. Schroeck [1996] contains a generalization to matrix-valued 
reproducing kernels. Definition 1.5.6 and the ensuing theory are due to Schwartz [1964], 
who develops a far-reaching generalization of the theory of reproducing kernels. Overviews 
of the connection between coherent states, reproducing kernels, and POV-measures are given 
by Davies [1976] and Ali and Doebner [1990]. 

If S is a complex manifold, (usually taken to be homogeneous and Kahler in this type 
of application), and itt! consists of (anti-) holomorphic functions, operators of the type 
(1.44) are known as (generalized) Toeplitz operators. (Strictly speaking, the term "Toeplitz 
operator" refers to the case where S = SI and p projects onto the Hardy subspace of 
functions with positive Fourier coefficients only.) The reproducing kernel in ith is then 
known as a Bergman kernel, and p is sometimes called the Szego projection; we refer to 
Meschkowski [1962] and Helgason [1978] for the first steps in the theory of this kernel. 

See Boutet de Monvel and Guillemin [1981], Guillemin [1984], and Upmeier [1996] for 
the theory of generalized Toeplitz operators (the latter book is particularly relevant, since 
it describes the CO-algebras generated by these operators in great detail). More generally, 
the projection p in (1.44) may project onto the space of (anti)holomorphic sections of 
a holomorphic line bundle over S. In either case, the quantization procedure defined by 
(1.44) is known as Berezin-Toeplitz quantization. In the context of homogeneous Kahler 
manifolds this quantization was introduced by Berezin [1974, 1975a]; also cf. Guillemin 
[1984], Berger and Coburn [1986], and Tuynman [1987a,b] for early work. More recent 
work on Berezin-Toeplitz quantization is cited in the notes to 2.4. 
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11.2.1 For exhaustive information on the Heisenberg group, and nilpotent Lie groups 
in general, see Corwin and Greenleaf [1989] or Leptin and Ludwig [1994]. Much useful 
information on fin and its irreducible representations is also contained in Folland [1989]. 

The representation theory of Lie algebras by unbounded operators on infinite­
dimensional Hilbert spaces, which is relevant here as well as in the remainder of this 
chapter, may be found in Warner [1972] or Barut and Ra~ka [1977]; some relevant notions 
are also reviewed in 1II.!.5. For G = fin and U = Uf (or Uc) on 1t = L 2(Rn), it is not 
difficult to see that the space of smooth vectors is S(Rn); see Howe [1980] or Corwin and 
Greenleaf [1989]. 

11.2.2 Proposition 2.2.1, as well as the construction of ph in 2.2.2, go back to van Hove 
[1943]. In this context the Groenewold-van Hove theorem should be mentioned: This 
states, roughly speaking, that there exists no decent map dph from Coo (T*Rn , R) to some Lie 
algebra of unbounded operators on a Hilbert space for which (2.38) can be extended beyond 
p:S2 and the restriction to p:S1 gives an irreducible representation of ~n. See Groenewold 
[1946], van Hove [1943], Guillemin and Sternberg [1984b], Abraham and Marsden [1985], 
and Gotay et al. [1996]. 

Equation (2.32) is a special case of the momentum map; see Ill!.!. 
For 9 = .sp(n, R) and R = dpn on 1t = L2(Rn) a dense set of analytic vectors is given 

by the linear span of the Hermite polynomials. By the integrability conditions proved in 
the references cited in the notes to 2.1, there exists a unitary representation ph of Sp(n, R) 
whose derivative in the sense explained above is indeed dpl!. The explicit form of pI! and the 
metaplectic group Mp(n, R) are discussed in, e.g., Segal [1959], Bargmann [1961], Shale 
[1962], Voros [1977], Guillemin and Sternberg [1984b], Littlejohn [1986], Folland [1989], 
and Kirillov [1990]. A different approach to the construction of pn(Mp(n, R» is based on 
the fact that Sp(n, R) is contained in the automorphism group of fin. Therefore, for each 
M E Sp(n, R) the map h ~ UI/h(Mh) defines an irreducible representation of fin. which 
in view of 2.!.4 is equivalent to Ul/Ii. The unitary implementer is ph(M); cf. (2.40). In any 
case, it turns out that ph and pr.: are equivalent iff Ii and Ii' have the same sign. 

11.2.3 The coherent states of 2.3.1 were discovered by SchrOdinger [1926]; also see the 
notes to 1.3. In this case the Berezin transform becomes simply 

cf. (2.117), where the prefactor of 1i!:l.2n is different. 
Proposition 2.3.2 is due to Bargmann [1961]. He absorbs exp( -iii Ii) into the measure on 

Cn , so that the elements of fi/i are entire functions. Like many other authors, he actually uses 
holomorphic rather than antiholomorphic functions, but the latter choice is more natural in 
the context of coherent states (cf. Klauder and Skagerstam [1985]). The Hilbert space of 
entire analytic functions in L2(Cn, exp( -zz)dzazl(2Jl'i» is often called the Bargmann­
Fock space, since the use of this space in the context of the canonical commutation relations 
goes back to Fock [1928] (who defined the inner product directly in terms of the Taylor 
coefficients of a function, rather than through a Gaussian measure on cn). See Folland 
[1989] for a thorough discussion. 

Exponential Hilbert spaces, called bosonic Fock spaces by physicists, go back to Segal 
[1956]; also see Guichardet [1972], who proves all claims we make on exponential vectors. 
The realization of the "canonical" coherent states in such spaces is due to Klauder [1970]. 
Also cf. Klauder and Skagerstam [1985]. A very detailed analysis of creation and annihila­
tion operators is in Bratteli and Robinson [1981]. These operators derive their name from 
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their action on the subspaces ®~ JC of exp(JC), which we do not need; it turns out that a(z) 
maps ®~JC to ®~-lJC (for n = 0 one has a(z)O = 0), whereas a(z)* maps it to ®~+lJC. 

The Riemannian geometry of qr.(JC) as a submanifold of JP'exp(JC) is studied in Field 
[1996]; the most interesting result is that qr.(JC) has zero intrinsic curvature with respect to 
the induced Fubini-Study metric (the extrinsic curvature is nonzero). 

11.2.4 Theorem 2.4.1 is due to Coburn [1992] and Borthwick et al. [1993]; both ac­
knowledge Klimek and Lesniewski [1992a] for the organization of the proof. Using less 
crude estimates they show that (2.76) is even O(Ii). Our proof of 0.1) is different from these 
references; the proof of non degeneracy is taken from Berger and Coburn [1986]. By the non­
degeneracy of Qg and the open mapping theorem, (2.73) implies that IIflloo :::: en Qg(f)1I 
for some C > 0, and f E Co(S). See Berger and Coburn [1994] for a study of the constant 
C, and for deeper inequalities. 

One can study Qg for function spaces larger than Co(cn), so that one leaves the compact 
operators. This is not particularly useful for physics (it introduces spurious superselection 
sectors), but leads to fascinating mathematical structures; see Guillemin [1984], Berger and 
Coburn [1986], Coburn and Xia [1995], and Upmeier [1996]. 

Theorem 2.4.1 has an analogue for the Berezin-Toeplitz quantization of bounded sym­
metric (Cartan) domains: See Borthwick et aI. [1993], and Borthwick et al. [1995]. Riemann 
surfaces have been treated in Klimek and Lesniewski [1992a,b, 1994, 1996]. The analysis 
aspects of the proofs are similar to the one for e" , but one has to add detailed information 
about the structure of such domains (which are related to Jordan algebras; cf. Upmeier [1987, 
1996]). Also see Cahen et al. [1994, 1995] for an approach through formal (rather than strict) 
deformation quantization. Bordemann et al. [1994] and Sheu [1996] apply Berezin-Toeplitz 
quantization to certain compact Kiihlermanifolds. Here Ii can assume only quantized values 
(cf. (1.12», as we will confirm in certain special cases in III.I.ll. See Cahen et al. [1993] 
for the same problem in formal deformation quantization. A strict Berezin quantization of 
the upper half-plane is given by Radulescu [1998]. In all cases discussed so far, one does 
not obtain a strict deformation quantization from Berezin-Toeplitz quantization. 

Theorem 2.4.3 is due to Berezin [1974, 1975a]. 

11.2.5 Weyl quantization is due to Weyl [1931], whose definition was (2.111). There is a 
huge mathematical literature on this subject in the context of the theory of pseudodifferential 
operators; principal sources are Grossmann et al. [1968], Voros [1977, 1978], Hormander 
[1979, 1985a], Howe [1980], Robert [1987], Folland [1989], and Rieffel [1993a]. 

IdentifyingT*JRn withJR2n , one initially defines an isomorphism Q}r : S(JR2n) -+ S(JR2n) 
by (2.107). By duality, one then immediately has Q}r : S(JR2n) -+ S'(JR2n). The Schwartz 
kernel theorem (cf. Reed and Simon [1975] or Hormander [1983]) identifies S'(JR2n) with 
the space of continuous maps from S(lRn) to S'(JRn), so one eventually has a continuous 
map Q}r (f) : S(JRn) -+ S'(JRn) for each f E S'(JR2n). 

To get back into the realm of (possibly unbounded) operators on L 2(JRn), as well as other 
instances of good behavior (relevant to the theory of partial differential equations), one has 
to impose certain restrictions on f. One firstly assumes that f E COO(JR2n), and secondly 
imposes conditions on the behavior of f and its derivatives at infinity. If these are satisfied, 
the expression (2.110), already meaningful as the Fourier transform of a distribution, makes 
direct sense as a so-called oscillatory integral (Hormander [1983]), and defines the kernel 
(2.109) as an element of S'(JR2n ). The corresponding operator Q}r(f) then maps S(JRn) 
into itself (rather than into S'(JRn), as for general f). For example, Q}r (f) thus defined 
lies in !Bo(L2(JRn» if f E CO'(T*JRn) (see Voros [1977]); as mentioned in the main text, 
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QJi : CQ'(T*]Rn) ~ !Bo(L2(Rn)) is not continuous. Oscillatory integrals have routinely 
and correctly been computed by physicists since Dirac [1930]. 

In Rieffel [1993a] a similar procedure is used to define QJi (f) for functions f, all of 
whose derivatives (including the zeroth) are bounded. Such functions form a dense subspace 
of Cb(T*Rn), and the image of this space under QJi is contained in the C'-algebra of 
pseudodifferential operators of order 0 (see, e.g., Cordes [1987, 1995]). Rieffel [1993a, 
1994] shows that this defines a strict deformation quantization. 

The more traditional calculus of pseudodifferential operators, which goes back to Kohn 
and Nirenberg [1965], uses the "quantization" 

Q~N(f)II1(x):= ( dn pdny eip(x-y)/fl f(p, x)II1(y), 
JT*Rn (2n Ii)n 

rather than (2.107). This is not useful for quantum mechanics, because Q~N does not preserve 
self-adjointness. It is, however, local in x, so that it may effortlessly be extended to manifolds 
(unlike QJr); see Taylor [1984]. 

Early mathematical studies of Weyl quantization are Segal [1963] and Pool [1966J. 
Among other things, these authors showed that the map f ~ QJi (f) is unitary from 
L2(T*Rn) to !B2(L2(Rn»; this follows from a straightforward calculation. More recent 
work is, for example, Daubechies [1980, 1983] and Gracia-Bondfa and Varilly [1988]. 

The deformed product defined by the Weyl quantization (which first occurred in von 
Neumann [1931]) may formally be written as (Groenewold [1946]) 

[ Ii (a 8 a 8)] (f 'flg) = f exp --:- -- - -- g. 
21 op oq oq op 

This is (historically inaccurately) sometimes called the Moyal product, after Moyal [1949]. 
Though an attractive formal expansion, the Moyal product plays no role in our setting, but 
it can be given a precise meaning in various ways; see Voros [1977, 1978], Bayen et al. 
[1978], Folland [1989], Gracia-Bondfa and Vanlly [1988], and Estrada et al. [1989]. 

The expression (2.95), and the ensuing connection between Weyl quantization, the parity 
operator, and the Dirac delta function, are due to Grossmann [1976]. Equation (2.102) was 
first written down by Royer [1977]. The idea of inverting expressions of the type (2.95) by 
(2.97) goes back to Stratonovic [1957]. See Gadella [1995] for a review ofWeyl quantization 
and Wigner functions from this perspective. Theorem 2.5.1 goes back to van Hove [1951]; 
also cf. Voros [1977], Hormander [1979, 1985a], Folland [1989], Graffi and Parmeggiani 
[1990], and Borsari and Graffi [1994]. Our proof stresses the role of the parity operator. 

Wignerfunctions were introduced in Wigner [1932]. Moyal [1949] was the first torecog­
nize the connection between Weyl's quantization and Wigner's function. One may evidently 
define the Wignerfunction ofa mixed state through (2.101) as well; in fact, in physics these 
functions are often used in quantum statistical mechanics. See Hillery et al. [1984] for a sur­
vey ofWignerfunctions in nonrelativistic physics (cf. de Groot et al. [1980] and Carinena et 
al. [1990] for the relativistic case), and Folland [1989] for mathematical aspects. The physi­
cal interpretation of the Wigner function is that it is to some extent a probability distribution 
on phase space. For the right-hand side of (2.10 I) is of the form IT*Rn P f, which looks like 
the expectation value of f in a mixed state p in classical mechanics. However, in classical 
mechanics p is a probability measure, which the Wigner function fails to define because 
of its potential non~ositivity. This failure is a consequence of the uncertainty relations of 
quantum mechanics, which forbid sharp localization in phase space; see, e.g., Schroeck 
[1996]. 
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Positivity of the Wigner function is actually quite rare: Hudson [1974] shows that for 
pure states WhL", J is positive iff \11 is a complex Gaussian; also cf. Folland [1989], and see 
Brocker and Werner [1995] for the case of mixed states. 

11.2.6 Theorem 2.6.1 is due to Rieffel [1993a, 1994], who actually proved it for the larger 
function space ila = Cg"(T*IR", 1R) of smooth functions that together with all derivatives 
are bounded (cf. the notes to the previous section). Our proof is different from Rieffel's, 
and derives from Landsman [1993b]. A third approach to results of this type may be found 
in Elliott et al. [1996]. Equation (2.117) was found by Berezin [1974]. 

A sharper version of Lemma 2.6.2 was originally proved by Calderon and Vaillancourt 
[1971] in the setting of the Kohn-Nirenberg calculus; a simple proof may be found in 
Hwang [1987]. See the references at the beginning of this section for the Weyl version. 
Both versions playa central role in the theory of pseudodifferential operators. 

The smearing (2.116) goes back to Husimi [1940]; his motivation was that it leads to 
a positive phase space distribution function (which in our setting is the analogue of the 
Wigner function for Berezin quantization) W~ L", J : (p, q) ~ Ii-II p( ",~P.q), "'), which is 
sometimes called the Husimi function; cf. Lee [1995] for a recent survey of its applications 
in physics. It is easily shown (cf. Prop. 1.99 in Folland [1989]) that replacing",g in (2.116) by 
an arbitrary pure state"', where \11 E L2(IR"), defines a collection of positive maps as well. 
These more general maps may not always correspond to a strict deformation quantization, 
though. 

Proposition 2.6.3 is due to Helffer et al. [1987]. 
Convolution algebras of may be defined for any locally compact group; see Ill. 1.7. 
The unitary transformation W is the Plancherel transform for fIn, and the measure 

dhlliln /(27f)2n is the Plancherel measure on the unitary dual of fIll (up to a set of Planche rei 
measure zero, namely the collection of one-dimensional representations of fIll)' See Dixmier 
[1977] for this transform for locally compact unimodular groups in general, and Corwin 
and Greenleaf [1989] for the details for nilpotent Lie groups. 

Proposition 2.6.4 has its roots in Dixmier [1960]; for a modem approach see, e.g., Packer 
and Raeburn [1992], Thm. 1.2 and Example 1.4.(2). Lemma 2.6.6 and Corollary 2.6.7 are 
stated without proof in Elliott et al. [1993]. 

11.2.7 Proposition 2.7.1 is the easiest version of a number of results in the literature that 
may be seen as adaptions of Egorov's theorem in the theory of pseudodifferential operators 
(cf. Taylor [1984] or Hormander [1985a]) to the setting of quantization theory. Our approach 
follows Rieffel [1996], who considered the special case QJj = QJr, and proved the stronger 
version in which hand f are allowed to be in Cg"(T*IR", 1R). The strongest result is Thm. 
IV-9 in Robert [1987] (also cf. Prop. 1.5 in Helffer et al. [1987]), who proves (2.131) for 
Qn = QJr and f E Cg"(T*IR", 1R) under the following assumption on Hh: There is a 
classical Hamiltonian h E C""(T*IRn , 1R) satisfying 

for each multi-index (a, (3) (the notation is explained below (2.114», and II Hn - QJr (h)1I = 
D(Ii). This includes all Hamiltonians considered by Rieffel [1996], as well as certain 
unbounded ones; cf. Theorem 2.5.1. 

In all these cases, the convergence in (2.131) may actually be shown to be uniform in t; 
the same comment applies to (2.135) and (2.162). The completeness of the classical flow 
of h follows from Prop. 2.1.21 in Abraham and Marsden [1985]. 
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Under similar assumptions, one may show that Qh(ot~(f» '" ot~(Qh(f» + O(Ii) as an 
asymptotic expansion in the sense of pseudodifferential operators; see Wang [1986], Robert 
[1987, 1998], and Paul and Uribe [1995]. 

The theory of SchrOdinger operators may be found in Reed and Simon [1975, 1978], 
Cycon et aI. [1987], and Hislop and Sigal [1996]. For a positive potential, self-adjointness 
in an external magnetic field is guaranteed by a theorem of Leinfelder and Simader [1981] 
(also cf. Cycon et aI. [1987]), which states that (2.134) is essentially self-adjoint on C,:"'(lRn) 
when V ~ 0, V E L~(lRn),Ai E L!c(Rn)foreachi,and8iAi E L~(Rn).Alsocf.Combes 
et al. [1978] and Hogreve [1983]. 

Theorem 2.7.2 generalizes a result of Hepp [1974], who proved the special case A = 0, 
Qh = Q:-, and !(p, q) = expi(uq - pv). For the inclusion of abelian as well as nonabelian 
(Yang-Mills) gauge fields see 111.2.11 and its notes. 

Hepp assumes only V E c2+8(lRn) for some 8 > 0; the proof then uses the Holder 
continuity of V(2) rather than the second-order Thylor series of V. The meaning of the 
various steps in Hepp's proof needed some clarification. Much useful information on small 
fluctuations, coherent states, and their connection with the metaplectic representation may 
be found in Littlejohn [1986]. The theory of linearizing Hamiltonian equations of motion 
is in Marsden et al. [1991]; also cf. Marsden and Ratiu [1994] for a quick review. For 
arbitrary symplectic spaces S, the linearization in terms of h 1 proceeds exactly as in the case 
S = T*Rn. However,linearization along a classical trajectory with h2 is more complicated 
in the general case, as one needs a so-called symplectic connection to identify the tangent 
spaces TO'(I)S with TO'S, as well as to define the second derivative h". 

Proposition 2.7.3 is of interest in its own right, as it shows that the quantum fluctuations 
around the classical path are controlled by the quadratic term in the expansion of H/i around 
this path; see Hepp [1974] and Littlejohn [1986]. 

Further work in the direction of Theorem 2.7.2 is Yajima [1979], Hagedorn [1980,1981, 
1985], Robert [1987, 1998], Robinson [1988a, 1988b, 1993], Wang [1991], Combescure 
[1992], and Arai [1995]. Heuristic work includes Kurchan et al. [1989], Barnes et al. [1994], 
and Nauenberg et aI. [1994], who review experiments on the semiclassical evolution of 
coherent states). 

Hepp's approach differs fundamentally from the time-dependent WKB method (cf. 
the Introductory Overview), for which we refer to Truman [1976, 1977], DeWitt-Morette 
et al. [1979], Schulman [1981] (these two references explain what happens to the WKB 
approximation beyond caustics; also cf. DeWitt-Morette et al. [1983]), Maslov and Fedoriuk 
[1981], Saksenaet al. [1991], Maslov [1994], and Robert [1998]. As in the time-independent 
case, rigorous work on the WKB approximation has been submerged into the theory of 
Fourier integral operators (see Hormander [1985b]); the connection between the two is 
discussed in Guillemin and Sternberg [1977], Voros [1977, 1978], Robert [1987, 1992, 
1998], and Paul and Uribe [1995]. Rather then follow any of these authors, a C* -algebraist 
would rather introduce Ii into microlocal analysis through the theory of pseudodifferential 
operators on a tangent groupoid; cf. Nistoret al. [1997] and Monthubert and Pierrot [1997]. 

A sample of other approaches to the semiclassical behavior of nonstationary states is 
Marsden [1974], Albeverio and H0egh-Krohn [1977], Voros [1977, 1978], Berry and Balazs 
[1979], lona-Lasinio et al. [1981], Blanchard and Sirugue [1985], Slawianowski [1991], 
Saksena et al. [1991], Omnes [1994, 1997a], Osborn and Molzahn [1995], Paul and Uribe 
[1995], Werner [1995], and Rezende [1996]. References to literature on the connection 
between the classical limit of quantum mechanics and the small-time limit of diffusion 
processes may be found in the notes to 3.7. 
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The semiclassical approximation of eigenvalues and eigenstates of Schrooinger operators 
is a topic with a different flavor, and a huge literature. The traditional theory of the time­
independent WKB method is contained in Maslov and Fedoriuk [1981], and is summarized 
in Arnold [1989]. Geometric aspects of Maslov's version of the time-independent WKB 
method are discussed in Guillemin and Sternberg [1977], Arnold and Givental [1990], 
Woodhouse [1992], Littlejohn [1992], and Bates and Weinstein [1995]. An interesting 
heuristic overview may be found in Gutzwiller [1990]. Analytical aspects, closely related 
to microlocal analysis (cf. Hormander [1985a,b]), are reviewed in Robert [1987, 1992, 
1998] and Helffer [1988]. Different analytical techniques, closer to the usual theory of 
Schrooinger operators, are described in Hislop and Sigal [1996]. 

A given (normalized) energy eigenfunction II1Eh (with eigenvalue Eli) defines a pure 
state Wfh on mh = 1B0(L2(jRn» by 1.(1.46). In the context of Definition 1.3.1, in which 
the continuous field of CO-algebras is given by Theorem 2.6.5, one may try to choose the 
sequence (EIi}h in such a way that Wfh converges to a state wg on mo = Co(T*jR"), that is, 
to a probability measure J-Lg on T*jRn. A necessary condition for this to happen is that the 
sequence {En} converges to some E; there is a formidable literature on the behavior of such 
sequences of eigenvalues, reviewed in Robert [1992, 19981. It follows from Lemma 1.3.2, 
Theorem 2.6.5, and (2.52) that wg, if it exists, is the weak (vague) limit of the sequence 
(J-LEh In of measures on T*Rn, defined by dJ-L Eh(p, q) := (21T n)-" p(1{!AP.q) ,1{!Eh )d" pdnq. 

For example, if Hn = Q:i(h) and the flow of the classical Hamiltonianh on h-1(E) C 
T*Rn is ergodic, then under suitable assumptions almost all sequences of the above type 
converge to the Liouville measure on h-1(E); see Helffer et at. [1987]. WKB states II1n "­
exp(i Sin), on the other hand, converge to measures supported on the so-called Lagrangian 
submanifold defined by S; cf. Colin de Verdiere and Parisse [1994] and Werner [1995]. 
Further work in this direction may be found in Knauf [1989], Duclos and Hogreve [1993], 
and Paul and Uribe [1996]. It is quite remarkable that pure quantum states may well converge 
to mixed classical states. 

11.3.1 The necessary background in affine and Riemannian geometry may be found in, 
for example, Helgason [1978], Klingenberg [1982], Gallot et a1. [1990], Choquet-Bruhat et 
a1. [1982], or Lang [1995]. 

For the group gQ and its action on T* Q cf. Guillemin and Sternberg [1984b] or Isham 
[1983]; also cf. the notes to 3.6. For the topology of Diff( Q), and some of its modifications, 
see Ebin and Marsden [1970], Marsden [1974], Ismagilov [1996], and Omori [1997]. 

11.3.2 In the Riemannian case, geodesics satisfying (3.4) are automatically affinely 
parametrized; this means that t is an affine function of the length of the geodesic. The 
equation satisfied by arbitrarily parametrized geodesics contains additional terms. 

A proof of Proposition 3.2.2 may be found in most books on the subject; e.g., Helgason 
[1978] (Thm. 1.6.2), Gallot et a1. [1990] (Thm. 2.92), or Klingenberg [1982] (Thm. 1.9.7). 
Theorem 3.2.3 is named after Hopf and Rinow; a proof may be found in Klingenberg 
[1982], Thm. 2.1.3, or Gallot et a1. [1990], Thm. 2.103 and Cor. 2.105. Theorem 3.2.5 is 
in Klingenberg [1982] (Thm. 2.1.14) and Gallot et at. [1990] (prop. 2.113 and Scholium 
3.78). 

11.3.3 An extensive treatment of Riemannian geodesic and cogeodesic motion is in Klin­
genberg [1982]; also cf. Abraham and Marsden [1985]. Theorem 3.3.4 is closely related 
to Lemma 3.1.17 in Klingenberg [1982], and is suggested by comments in Marsden et a1. 
[1991]. Linearization in the second sense explained in 2.7 (Le., using the quadratic Hamilto­
nian (2.143» is possible but awkward in the general Riemannian case, since the symplectic 
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connection needed to identify the tangent spaces along a geodesic will usually not coincide 
with the Levi-Civita connection. This leads to cumbersome expressions. 

One may equip T Q with a metric 9 such that the Hamiltonian flow on T Q is geodesic 
with respect to g. Using the decomposition (3.3), the metric 9 is simply defined by declaring 
the two copies of Tq Q to be orthogonal, and putting 9 = g on each copy. It follows from the 
construction of 9 that the projection i : T Q ~ Q is an isometric submersion in the sense 
that i * is an isometry between the orthogonal complement of its kernel and its image. This 
implies that the horizontal lift of a curve is a geodesic in T Q iff the curve is a geodesic. 
It is then immediate from this property, combined with the definition of horizontal curves 
in T Q and the description of the flow in T Q in 3.3.3, that the Hamiltonian flow on T Q is 
geodesic with respect to g. 

11.3.4 This section is mostly adapted from Landsman [1993b]. 
For the normal bundle see, e.g., Klingenberg [1982], 1.3.11-1.3.14 (which includes a 

detailed discussion of the diagonal map 8), and many other books on differential geom­
etry. Theorem 3.4.2 is the tubular neighborhood theorem; see Lang [1995]. The proof 
uses a partition of unity argument; recall that our definition of a manifold includes para­
compactness. Our choice (3.48) corresponds to the choice of {X + - X} as a complement 
to 1(q,q)8(Q) in 1(q,q)(Q x Q). The more commonly used map v';(Xq) = (exPq(Xq ), q) 
corresponds to the complement T. Q ffi 0 = {X +O}. 

The geometric meaning of vi ~ explained after Lemma 3.4.3 may be used to give an 
elegant direct proof of the tubular neighborhood theorem. 

The abbreviation C~ in (3.49) stands for Paley-Wiener, and 210 consists of the COO 
functions I on T* Q satisfying the following conditions: (i) the support of I, projected to 
Q, is compact; (ii) for each fixed q E Q the function 1(', q) on T; Q has an extension to 
Tq* Qc ~ 1C" as an entire analytic function Iq such that for every N there are constants 
CN and H (independent of N) such that Ilq(z)1 :::: CN(l + Izl)-N exp(H Imz). These are 
simply the conditions of the Paley-Wiener theorem, which characterizes functions whose 
Fourier transform is in C~(JR.n); see Reed and Simon [1975] or Hormander [1985a]. 

When Q is compact, one can show that the Wigner function (3.53) is continuous. The 
proof is analogous to the flat-space case (cf. the comment following (2.102»; see Landsman 
[1993b]. In the noncompact case one shows that W" E Co(T*Q, JR.) if the following condi­
tion is satisfied by the metric g on Q: The constant SUPQloQ2 [dp,(p(q,; q2»/dp,(q2)] should 
be finite. Here the supremum is taken over all pairs of points that can be connected by a 
unique geodesic, and p(q,; q2) is the geodesic reflection of q, inq2 (that is, p(q,; q2) = y(I), 
where y is the affinely parametrized geodesic for which y(O) = q, and y(l/2) = q2). 

There are alternative attempts to generalize Weyl quantization to Riemannian manifolds. 
The proposal by Underhill [1978] (who only assumes the existence of an affine connection 
on T Q) corresponds to a Wigner function where, compared with (3.53), the factor J is 
absent. Liu and Qian [1992], on the other hand, have our factor J as well as an additional 
factor j(y(q, v, t), v; -/0'/2. As mentioned in their paper, this quantization is not always 
self-adjoint, which can be traced back to this extra factor. Different from all these is the 
proposal of Emmrich [1993a], who did not compute the Wigner function (but cf. the notes 
to 3.7). For yet another Wigner function in curved space see Habib and Kandrup [1989]. 

A different approach is due to Upmeier [1991], who generalized the definition (2.91) 
of flat-space Weyl quantization (rather than (2.107»; also cf. Unterberger and Unterberger 
[1988]. This requires that the Riemannian structure on Q admits the analogue of the parity 
operator P, that is, Q must be a symmetric space (see Helgason [1978]). One may also 
attempt to generalize (2.99), (2.100); this turns out to be possible if the phase space is 
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a homogeneous symplectic manifold, see Vanlly et aJ. [1990], Figueroa et aI. [1990], 
and Gracia-Bondia [1992]. Another generalization ofWeyl quantization requiring a group 
structure may be found in Manchon [1993]. 

If one is interested merely in quantizing functions on T* Q that are independent of, 
or linear in p, one does not even need an affine connection; the manifold structure of Q 
suffices. See Abraham and Marsden [1985]. The analogue of the (non-self-adjoint) Kohn­
Nirenberg "quantization" (cf. the notes to 2.5) on a manifold with connection is developed 
by Bokobza-Haggiag [1969], Widom [1980], and Pflaum [1995]. 

11.3.5 The proof is from Landsman [1993b], with certain improvements added. Much 
useful computational information on Jacobi fields and their associated determinants is in 
Azencott et a1. [1981] and in Molzahn et aJ. [1990]. The Jacobians (3.59) and (3.61) may 
alternatively be expressed through the derivative of the exponential map, which itself may 
be written in terms of Jacobi fields. 

A different way to construct a positive quantization on a Riemannian manifold is given 
in Colin de Verdiere [1985], who uses a so-called Friedrichs "quantization" (see Thylor 
[1984]). A general construction of coherent states on Riemannian manifolds may be found 
in Paul and Uribe [1995,1996]. 

11.3.6 Proposition 3.6.2 goes back (at least) to Goldin [1971] and Goldin et aJ. [1980], 
who see quantization theory on Q as the problem of finding general unitary representations 
of 9Q. A closely related approach is developed in Doebner and Tolar [1975] and Angermann 
et aJ. [1983]. See Isham [1983] and Ali and Goldin [1991] for reviews; also cf. Albert in 
[1991], Chernoff [1995], and Ismagilov [1996]. 

Theorem 3.6.3 is due to Landsman [1993b]. When I{J is not an isometry, the classical and 
the quantum action of 9Q are related only in the limit Ii ~ 0; see the above reference, and 
Lemma 3.7.6 for a special case. 

Proposition 3.6.4 is stated without proof in Abraham and Marsden [1985], which contains 
the lemma used in the proof as Lemma 2.6.13; also cf. Theorem VIII. 1 0 in Reed and Simon 
[1972]. 

11.3.7 Quantum theory on Riemannian manifolds was discussed almost immediately after 
the birth of modern quantum mechanics; cf. Dowker [1974] for early references. 

The coefficient ~ in (3.93) is sensitive to the precise quantization scheme that is used; 
the scheme in Liu and Qian [1992] produces i, Underhill [1978] finds fi, whereas the 

value i has been found from geometric quantization (cf. Sniatycki [1980], Woodhouse 
[1992], and Wu [1998]). Emmrich [1993a] obtains the value zero. Our 1 seems somewhat 
preferred by physicists: It is equivalent to having an extra term -iii R in the classical 
Lagrangian, which is "naturaIIy" induced by the measure in the path integral on curved 
space (see Dowker [1974]). The need to have the Ricci scalar in the quantum Hamiltonian 
was apparently first recognized by Pauli in 1950 (see Pauli [1973], pp. 161-174). 

The proof of Theorem 3.7.3 is mainly based on Strichartz [1983]; also cf. Davies [1989]. 
Alternative proofs are in Chernoff [1973], Cheeger et al. [1982], and Cordes [1987]. These 
references, as well as Rosenberg [1997], should also be consulted for additional results in 
the analysis of the Laplace-Beltrami operator. Aspects of the theory of unbounded operators 
used in our proof may be found in Reed and Simon [1975]. The existence of \111 in case 
that"K is not self-adjoint follows from the Corollary to their Thm. X.I on p. 137. For 
elliptic regularity see §IX.6 of this reference. Completeness is sufficient but not necessary 
for essential self-adjointness on C~(Q): For examples where (Q, g) is incomplete but f). 

is nonetheless essentiaIIy self-adjoint on C~(Q), see Horowitz and Marolf [1995]. On the 
other hand, it is easy to give examples where (Q, g) is incomplete and f). fails to be essentially 
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self-adjoint on C~(Q). The simplest one is Q = (0, I) with flat metric (cf. Reed and Simon 
[1975], p. 178). More generally, boundary value problems always involve Laplacians whose 
different self-adjoint extensions describe the possible boundary conditions one imposes on 
the solutions. See, e.g., Berezanskii [1968] or Cordes [1987] for a modem treatment. 

For the Kato-ReUich theorem see Reed and Simon [1975]. It states that A + B (where A 
and B are densely defined linear operators on a Hilbert space) is self-adjoint on D(A) (and 
essentially self-adjoint on any core of A) if D(A) 5; D(B) and IIBIIIII :::: a II A 111 II + blllllil 
for all III E D(A) and some a < I (called the relative bound) and arbitrary b. In our 
application A = d, and B = R is bounded, so its domain as a multiplication operator is all 
of L2(Q). Hence a = ° and b = IIRlloo = SUPq IR(q)l. 

Theorem 3.7.5 is analogous to a result of Hogreve [1983], which does not involve Wey] 
quantization and is a direct generalization of Hepp's version of Theorem 2.7.2 (cf. the notes 
to 2.7). His proof is somewhat different from ours; a third proof, using the time-dependent 
WKB approximation to the kernel of the propagator, is in Landsman [1993b]. A major 
advantage of the present proof along the lines of Hepp [1974] is that there are no difficulties 
with caustics (see below). As in the entire chapter, the metric is assumed to be smooth, 
though for the proof to go through this could be relaxed to be CS• It would be interesting 
to generalize 3.7.5 to arbitrary, and particularly to incomplete Riemannian manifolds. See 
Paul and Uribe [1995] for a micro local approach. 

Elworthy and Truman [1981] give a certain analogue of Proposition 2.7.3 that for suf­
ficiently small t is valid for arbitrary Riemannian manifolds, but holds for initial wave 
functions of the WKB type III = p exp(i S / h) rather than for coherent states; also cf. 
DeWitt-Morette et al. [1979], Schulman [1981], and Elworthy et a1. [1985]. In general, the 
time-dependent WKB approximation in curved space that is used in these papers suffers 
from similar problems with caustics as in the flat case. In contrast to the flat case, the 
geodesic WKB-like approximation to the kernel of the propagator now has problems with 
caustics as well because of the cut locus. See Molzahn et a!. [1990, 1992] for the approxi­
mation up to the cut locus, and DeWitt -Morette et al. [1979] and Azencott et a1. [1981] for 
the situation beyond it. 

The limit h -+ 0 in quantum mechanics is similar to the limit t -+ 0 of a diffusion 
process; cf. Nagasawa [1993] for the general connection between the Schrodinger equation 
and diffusion theory. The relation between small-time diffusion and the classical limit of 
quantum mechanics on Riemannian manifolds is analyzed in DeWitt-Morette et al. [1979], 
Elworthy and Truman [1981], and Azencott and Doss [1985]. 

We have not studied the connection between eigenfunctions of the Laplace-Beltrami 
operator and geodesic flow; the enormous literature on this topic is reviewed in Robert 
[1992, 1998]. In fact, the ergodicity result of Helffer et a1. [1987] quoted in 11.2.7 was di­
rectly inspired by an analogous theorem concerning ergodic geodesic flow on a Riemannian 
manifold, whose final proof is due to Colin de Verdiere [1985]. Further references may be 
found in the notes to III.2.11. 

Chapter III 

111.1.1 The Lie-Poisson structure, coadjoint orbits, and the momentum map (in a special 
case) are all in Lie [1890], but were rediscovered in the sixties in the work of KirilIov, 
Souriau, Kostant, Smale, and others. The momentum map, whose original definition was 
(1.8), plays a central role in modem symplectic geometry. For textbook accounts, which 
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contain most results in this section, as well as in 1.2 and 1.4, see Guillemin and Sternberg 
[1984b], Abraham and Marsden [1985], Libermann and Marie [1987], Marsden and Ratiu 
[1994] (which contains historical notes, as well as a generalization of the momentum map 
to Poisson manifolds), and Souriau [1969, 1997]. These accounts all start from actions of G 
rather than g, but much of the theory depends only on the g-action, and is valid even when 
it is not integrable to a G-action. 

General references for the cohomology of Lie groups and Lie algebras are Guichardet 
[1980] and de Azcarraga and Izquierdo [1995] (which contains many interesting applica­
tions to physics, particularly to the theory of anomalies). In the present context also cf. 
Guillemin and Sternberg [1984b] and Libermann and Made [1987], as well as Varadarajan 
[1985] for central extensions of Lie algebras. The vanishing of H1(g, JR.) and H 2(g, JR.) for 
semisimple Lie algebras is known as the Whitehead lemma(s). 

111.1.2 Symplectic group actions are "canonical" in the terminology of classical me­
chanics, and are therefore a "classical" subject. See the notes to the preceding section for 
references. Theorem 1.2.1 is due to Palais [1957], which contains the full proof. A text­
book account is in Hector and Hirsch [1986], §3.1.3. This result is particularly interesting 
in comparison with the well-known theorems on (essential) self-adjointness of unbounded 
symmetric operators on Hilbert spaces (for which see Reed and Simon [1972, 1975]). 

The construction starting with (1.21) was introduced by Souriau [1969, 1997]. A good 
account is also in de Azcarraga and Izquierdo [1995]. 

Corollary 1.2.9 is due to Gotay and Thynman [1991], whose proof is entirely different. 
Our proof relies on a theorem of van Est [1953] (also see Guichardet [1980]) to the effect 
that for a compact Lie group the cohomology with coefficients in any (linear) representation 
space is trivial. 

The examples in 1.2.11 are "classical", but the modern formulation is due largely to 
Souriau [1969, 1997]. 

111.1.3 The analytic theory of multipliers for Lie groups and Lie algebras may be found 
in the book by Varadarajan [1985]. Our Theorem 1.3.3 is Thm. 7.21 of that book, and 
our Corollary 1.3.7 is a special case of Thm. 7.37. The last part of our Proposition 1.3.4 is 
Varadarajan's Cor. 7.30. Also cf. Guichardet [1980] and de Azcarraga and Izquierdo [1995]. 

The geometric approach to multipliers and central extensions may be found in the en­
lightening article of Thynman and Wiegerinck [1987], who introduced the cohomology 
group H2(G, U(l» as defined in our main text (the analogous and better-known cohomol­
ogy group defined on the basis of smooth cocycles is only relevant to topologically trivial 
central extensions). In particular, H2(G, U(l» is not necessarily isomorphic to H2(g, JR.), 
since not all r E Z2(g, JR.) can be integrated to an element C E Z2(G, U(l». 

Proposition 1.3.6 is from Neeb [1996b], who reformulated a condition due to Thynman 
and Wiegerinck [1987]. There are two alternative formulations of the condition stated in the 
second item. Firstly, regard r as a 2-form on G by left translation, and identify X with the 
corresponding right-invariant vector field ~: on G. A necessary and sufficient condition for 
r to define a U(l)-extension of G with Lie algebra gr is that for each X E 9 the I-form ix r 
be exact. Secondly, consider the group a c appearing in the proof of 1.3.6. The adjoint action 
of JR. Cae on the Lie algebra gc = gr is trivial (since JR. is central in a), so that the adjoint 
action of ac quotients to a well-defined action of a = aclJR. on gc. Since G = a /1fl(G), 
we obtain an action of 1fJ(G) on gc by restriction of the a-action. The second equivalent 
criterion is that this 1f} (G)-action be trivial. 

From the proof of 1.2.9 we therefore infer that H2(G, U(l» = 0 for compact simply 
connected G, and H2(g, JR.) = 0 for a Lie algebra 9 whose associated simply connected Lie 
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group is compact. Since this restriction implies that g is semisimple (see, e.g., Thm. 3.8.2 
in Barut and Ra\=ka [1977]), the latter statement alternatively follows from the more general 
property stated after the proof of 1.1.12. 

111.1.4 For the initial part of this section cf. Abraham and Marsden [1985], Libermann 
and Marie [1987], and Marsden and Ratiu [1994]. 

Theorem 1.4.4 is due to Kirillov [1976]. Corollary 1.4.8 has an alternative version, 
in which transitive symplectic G-spaces correspond to orbits in the space of 2-cocycles 
Z2(g, JR.); this has the advantage that only a single G-action on Z2(g, JR.) needs to be con­
sidered, and the disadvantage that Z2(g, R) is less intuitive than g*. See Guillemin and 
Sternberg [1984b]. 

Martinez Alonso [1979] proved that given G, there exists a single central extension 0 
(which was first constructed by Carinena and Santander [1975] in the context of projective 
representations) such that any transitive symplectic G-space is a coadjoint orbit of 0 (or a 
covering space thereof). 

111.1.5 Projective unitary group representations have a long history; the traditional theory 
may be found in Varadarajan [1985]. Our Proposition 1.5.1 is essentially his Thm. 7.5. 

A modem presentation is given by Rieffel [1979], whose work, among other things, 
removes a number of separability assumptions in Varadarajan [1985]. In particular, the 
approach based on (1.64) is due to Rieffel. 

For smooth vectors for U see Warner [1972] and Barnt and Ra\=ka [1977]. A seemingly 
alternative treatment of dU(g) is in terms of the Garding subspace HG C H, which 
consists of all vectors of the type fG dx/(x)U(x)\If, where / and \If run through C~(G) 
and H, respectively. The density of H't/ in H is then most easily proved by showing that 
HG ~ H't/, and subsequently that HG is dense in H. However, it is shown in Dixmier and 
Malliavin [1978] that for connected G one actually has the equality H't/ = HG. 

Sufficient conditions for the integrability ofrepresentations of Lie algebras by unbounded 
operators are reviewed in Barut and Ra\=ka [1977]. 

111.1.6 The seminorms Pal"'"n \If := IIdU(Tal)· .. dU(Tan)\If II define a topology on H't/, 
relative to which each dU(X) is a continuous map on H't/, and U (seen as a map from 
G x H't/ to H't/) is separately continuous; see Corwin and Greenleaf [1989], Appendix. 

The analysis of the momentum map on H't/ is done in Michor [1990], who uses a 
particular notion of smoothness in infinite-dimensional manifolds due to Frohlicher and 
Kriegl [1988]. He shows that the G-action on H't/ (and hence on Ini.'t/) is smooth, and that 
the momentum map (1.71) is smooth as well. The manifold lP'H't/ is weakly symplectic. 

A great deal is known about the image of the momentum map for infinite-dimensional 
group representations; see Wildberger [1992], Arnal and Ludwig [1992], and Neeb [1995, 
1996a]. Also cf. the notes to 1.10. 

For the usual enveloping algebra see, e.g., Warner [1972] or Barnt and Ra\=ka [1977]. 
The author is indebted to A. Kent for the proof of Proposition 1.6.4. 

Definition 1.6.5 is taken from Landsman [1993c]. Theorem 1.6.7 goes back to Berezin 
[1967]; alsocf. Gutt [1983]. 

111.1.7 The theory in this section is usually discussed in the general setting of locally 
compact groups. For a discussion of unimodularity see, e.g., Gaal [1973]. A sufficient 
condition for a locally compact group G to be unimodular is that the identity e have a compact 
neighborhood that is invariant under inner automorphisms. It follows that all compact and 
all locally compact abelian groups are unimodular. Also, G is unimodular if it coincides 
with its commutator subgroup; this applies to all semisimple Lie groups. 
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A detailed discussion of group C' -algebras may be found in Dixmier [1977] and in 
Pedersen [1979]. Twisted group CO-algebras were introduced in Auslander and Moore 
[1966], and further studied in, e.g., Kleppner and Lipsman [1973], Green [1978], and Packer 
and Raeburn [1992]; also consult the review by Rosenberg [1994]. Theorem 1.7.3 is a special 
case ofThm. 3.3 in Busby and Smith [1970]. Twisted group C' -algebras belong to the class 
of twisted covariance algebras; references on the structure of such algebras are Green 
[1978] and Packer and Raeburn [1989, 1990]. For (untwisted) covariance algebras, also 
called crossed products, see the notes to 3.4. 

Amenability is discussed, e.g., in Pedersen [1979] and Paterson [1988]. The original def­
inition (due to von Neumann) is different from the one above, and amounts to the existence 
of an invariant mean on the C'-algebra Cb(C). The fact that the amenability of C implies 
C;(C, c) = C'(C, c) follows from Thm. 3.11 in Packer and Raeburn [1989]; see Packer 
[1994] for more general results in this direction. 

111.1.8 For the Peter-Weyl theorem and the Plancherel transform in the unimodular case 
see Dixmier [1977], The nonunimodular case is treated in Kleppner and Lipsman [1972, 
1973], which also contains various results equivalent to Theorem 1.8.1 and Corollary! .8.3. 
For the theory of induced representations see the notes to 2.9. 

Lemma 1.8.2 is a rather trivial case of the "Mackey machine", in which one constructs 
representations of a group extension by inducing from representations of the normal sub­
group defining the extension; see Mackey [1958], Green [1978], Rieffel [1979J, and the 
review by Rosenberg [1994]. 

Proposition 1.8.4 is well known, and contained (usually in practically unrecognizable 
generalizations) in all references for twisted group C'-algebras given above. The equality 
C*(lE2 n, c) = C;(lR2n, c) alternatively follows from the fact that JR2n is amenable; see the 
notes to the preceding section. 

Equation (1.121) has the following generalization to the case where c is degenerate. 
Define r by (1.34), and decompose JR2n = Vo EB Vlo such that r vanishes on Vo and is 
nondegenerate on V j (hence Vo and V j are even-dimensional). Then 

Here we have written Vo in order to indicate that one has taken the Fourier transform in the 
variables in Vo. This degenerate case is investigated in Kastler and Mebkhout [1990]. 

111.1.9 The map Q~ in 1.9.1 is due to Rieffel [1990a], who was the first to recognize 
that the group C'-algebra C'(C) should be thought of as the quantization of the Lie­
Poisson algebra COO(g~). He also proved a version of Theorem 1.9.2 for exponential groups. 
Theorems 1.9.2 and 1.9.5 are due to Landsman [1998d]. For Lemma 1.9.3 see Helgason 
[1978], Ch. II.3, and Milnor [1976], §5. The general theory of (Riemannian and other) 
connections on Lie groups may be found in Kobayashi and Nomizu [1963, 1969]. 

111.1.10 The Cartan-Weyl theory is discussed in a large number of textbooks; good 
modem presentations are, e.g., Wallach [1973], Brocker and tom Dieck [1985], and Knapp 
[1986]. The reformulation ofthe Cartan-Weyl theory in terms of coadjoint orbits is due to 
Kostant [1970]. An explicit construction of Uy from Oy is done through the Borel-Wei! 
theory (see Wallach [1973], Knapp [1986], or Vogan [1987]), which in this application 
coincides with the approach through geometric quantization; see the notes to II.I.I for 
references, and in the present context in particular cf. Hurt [1983]. 

Equation (1.147) is closely related to Prop. 4.12 in Knapp [1986]. 
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In the context of 1.10.7 one may ask which properties single out the coadjoint orbit Oy 
through J (1/Iy) among all coadjoint orbits contained in J (IP'?-{y)' This question was answered 
by Kostant [1973] and Atiyah [1982] in terms of convexity properties. A brief summary 
of the situation is as follows. One has a natural projection 'l' := 'l'0*-+1* given by restricting 
a (J E g* to t; the object 'l' 0 J is then evidently the momentum map for the T -action on 
lP'1ty given by restricting Uy to T. A general theorem, due to Atiyah [1982] and Guillemin 
and Sternberg [1982, 1984a], states that the image ofthe momentum map ofa torus action 
on a compact connected symplectic manifold is a convex polytope (see Kirwan [1984] for 
a generalization and Audin [1991] or Guillemin [1994] for reviews). Applying this to the 
situation at hand, it turns out that Oy is singled out by the property that it contains the 
extreme points of 'l' 0 J (lP'1t y ); these extreme points are precisely the imgages of the highest 
weight state 1/Iy and its transforms under the Weyl group. 

An overview of the role of coadjoint orbits in the representation theory of noncompact 
Lie groups is given in Guichardet [1985], Vogan [1987, 1992], and Kirillov [1990]; see the 
notes to 11.2.1 for analogous references relevant to the nilpotent case. 

111.1.11 Coherent states of the type studied in this section were introduced by Klauder 
[1963], and were rediscovered by Perelomov [1972], who added the perspective of the 
Cartan-Weyl theory. See Perelomov [1986] and Klauder and Skagerstam [1985] for more 
references, reprints of the original papers, and a general overview. A wealth of rigorous 
information is contained in Simon [1980]. The connection with the Borel-Weil theory is 
explained in Onofri [1975]. 

The fundamental idea of rescaling the label of an irreducible representation by multiply­
ing with lin (which accordingly has to be quantized in the compact case) is due to Berezin 
[1975a,b]. He in addition investigated certain noncompact Lie groups; also cf. Perelomov 
[1986]. In a more intuitive setting, this rescaling was explicit in the early years of quantum 
mechanics, and seems to comprise one of the faces of Bohr's correspondence principle; see 
Mehra and Rechenberg [1982]. 

One would expect that Qg(X) equals iIidUy/n(X), but after an arduous calculation (due 
to Simon [1980]) one actually obtains 

B - i 
QI/k(X) = k + c(y) dUky(X), 

where c(y) := 2(y, 8)/(y, y); recall that {) was defined after (1.164). While this result is 
expected to be true in general, Simon [1980] acknowledges that his proof is limited to the 
case that y is a multiple of a fundamental weight. 

Lemma 1.11.2 is from Gilmore [1979] (whose proof, as remarked in Simon [1980], 
is unnecessarily complicated). A detailed proof of (1.155) is in Duffield [1990], Prop. 4. 
Related results are in Berezin [1972], Lieb [1973], Simon [1980], and Hogreveet al. [1983]. 
For the Weyl dimension formula see, e.g., Wallach [1973], Brocker and tom Dieck [1985], 
or Knapp [1986]. 

Theorem 1.11.4 is due to Landsman [1998c]. An entirely different proof of Dirac's 
condition, valid for arbitrary compact Klihlermanifolds, is given by Bordemann et a!. [1994]. 
Another relevant paper, which stresses the Kahler geometry behind Berezin quantization 
on coadjoint orbits of compact Lie groups, is Barmoshe and Marinov [1994]. 

The steepest descent method used in the proof of 1.11.4 is in Hormander [1983]. 

111.2.1 A standard introductory reference for bundles and connections is Kobayashi and 
Nomizu [1963, 1969]; for a full meal see Greub et al. [1972, 1973]. Choquet-Bruhat et a!. 
[1982] and de Azcarraga and Izquierdo [1995] are presentations directed at physicists. 
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Much of the theory of bundles (with the evident exception of the theory of connections) 
applies to general topological spaces and groups. 

In the construction of principal bundles one may start with Q, H, a cover of Q by suitable 
open sets N", and a collection of transition functions satisfying the relation hap( q )h py (q) = 
h"y(q) whenever q EN" n N p n Ny. The bundle P(Q, H, r) can then be reconstructed 
from these data. 

111.2.2 The insight that the physicists' gauge fields are the mathematicians' connections 
on a bundle goes back to Hermann [1975], Wu and Yang [1975], and Konopleva and Popov 
[1983] (relevant parts of which apparently date back to the sixties). The entire theory of 
elementary particle interactions is currently based on gauge fields; see Weinberg [1995, 
1996]. 

111.2.3 The history of cotangent bundle reduction is described in Marsden [1993]; 
applications of this construction are surveyed in Marsden .1l992]. 

A more common way of obtaining the reduced space (T*P)" is via Marsden-Weinstein 
reduction; see IV. 1.5. 

Lemma 2.3.1 is "classical"; see, e.g., Cor. 4.2.11 in Abraham and Marsden [1985]. Con­
nections are discussed from the cotangent bundle point of view in Guillemin and Sternberg 
[1984b]. 

Theorem 2.3.7, straightforward as it is in its final formulation, is the culmination of a de­
velopment involving the work of Smale [1970] (who did the abelian case), Sternberg [1977], 
and Weinstein [1978]. The Poisson bracket (2.55) was first computed by Montgomery et al. 
[1984]. The symplectic form on P~ XH 0 is discussed in Guillemin and Sternberg [1984bj. 

Writing 0 = H / Hj.L' it is possible to embed Cr. .... P)" as a symplectic submanifold of 
T*(P / Hj.L)' equipped with a modified symplectic structure; see Abraham and Marsden 
[1985], Thm. 4.3.3, Kummer [1981], and Marsden [1992]. 

111.2.4 The exact sequences (2.60) and (2.64), along with the pertinent interpretation 
of connections, are due to Atiyah [1957]; cf. Mackenzie [1987a], App. A, for a detailed 
discussion. Propositions 2.4.2 and 2.4.3 are from Atiyah and Bott [1983]. In identifying 
aut(P) as the Lie algebra of Aut(P) it is worth mentioning that an H -invariant vector field 
on P is complete iff its projection to Q is complete; see Kumpera and Spencer [1972], 
§33. Since the latter condition is satisfied as a consequence of the compact support on Q, 
elements of aut(P) are automatically complete on P. 

111.2.5 The construction of observables on P~ x H 0 through the momentum map of 
the 9~-action on T*P is taken from Landsman [1993b]; also see Meinrenken [1994] and 
Robson [1994, 1996]. This generalizes the approach ofIsham [1983] and Guillemin and 
Sternberg [1984b] to nontrivial structure groups; cf. the notes to 11.3.1. 

The second term on the right-hand side of (2.89) can be understood from a Lagrangian 
point of view as the contribution to the Noether conserved charge due to the gauge field. In 
general, if the Lie derivative L~pA vanishes for some vector field ~ P on P, it does not follow 
that L~Qs' A is zero, too. This leads to the above-mentioned contribution, see Jackiw and 
Manton [1980]. 

Cotangent reduction for more general symplectic structures on T*P than the canonical 
one is discussed in Alekseevsy et al. [1994]. 

111.2.6 The Wong equations were first proposed by Wong [1970] on the basis of a heuristic 
study of the classical limit of the equation of a scalar quantum field coupled to a Yang­
Mills field. The symplectic formulation is due to Sternberg [1977] and Weinstein [1978]; 
Montgomery [1984] related this to the construction of these equations due to Kerner [1968], 
and thereby proved Theorem 2.6.2. 
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The Wong equations are generalized to spinning particles in Kiinzle [ 1972] (which covers 
the abelian case), Arodz [1988], and Hamad and Pare [1991]; also cf. Linden et al. [1996]. 
Other aspects of the Wong equations are treated in, for example, Duval and Horvathy [1982], 
Balachandran et al. [1983, 1984], Chiang et al. [1985], Feher [1986], and Chrusci6ski and 
Kijowski [1996]. 

Proposition 2.6.1 is known in physics as the Kaluza-Klein construction. It is, in fact 
valid in the more general situation that gil is merely right-invariant (in which case (2.100) 
is, of course, not valid). An amazing aspect of this construction is that the Einstein equations 
for g are equivalent to the coupled Einstein-Yang-Mills equations for gQ and A; this follows 
from (2.188), interpreting Q as space-time rather than space. This has led to the physical idea 
that all Yang-Mills fields as well the gravitational field on four-dimensional spacetime are 
shadows of the gravitational field in a higher-dimensional world, some of whose dimensions 
are compact, and so small as to be invisible. (The original version of Kaluza and Klein 
described the electromagnetic field in this way, assuming that the universe is 5-dimensional.) 
This idea is also fundamental to string theory, but there is no evidence that it is correct 
other than as a mathematical artifact. With certain restrictions, the construction is valid in 
the pseudo-Riemannian case as well; see Choquet-Bruhat and DeWitt-Morette [1989] for 
a precise statement. For an overview of "Kaluza-Klein physics" see the reprint volume 
Appelquist et al. [1985]; mathematical aspects are discussed in Coquereaux and Jadczyk 
[1988]. 

The correspondence between (2.112) and (2.111) is a special case of the passage between 
Lie-Poisson equations on 0* and second-order equations on TG; see Marsden and Ratiu 
[1994]. 

111.2.7 For the H -connection see Kobayashi and Nomizu [1963J, §II.11. The more gen­
eral theory of connections invariant under some group action is in Kobayashi and Nomizu 
[1969J, applications to physics being discussed in Forgacs and Manton [1980], Jackiw and 
Manton [1980], Hamad et al. [1980J, and Cant [1981]. 

The main reason for the popularity of the H -connection among physicists is that it solves 
the Yang-Mills equations; see, e.g., Laquer [1984]. In particular, many famous "topological" 
Yang-Mills configurations, such as instantons and monopoles, are special cases of the 
H -connection. See Bais and Batenburg [1985] and the notes to 2.12. 

A different type of application of the H -connection is to the theory of the Berry phase; 
see Vinet [1988] and Giavarini and Onofri [1990]. For quantization theory on homogeneous 
spaces see the notes to IV.2.8. 

11I.2.S This material is mainly adapted from Landsman [1993b] (which generalizes the 
treatment of the homogeneous case in Landsman [1990a, 1992]), but 2.8.2 is an elementary 
special case of Thm. 3.1 in Muhly et al. [1987], with a different proof. The special case 
P = G is Thm. 2.1 in Green [1980]. Corollary 2.8.3 is discussed in IV.2.7. 

For the existence of the measure v in (2.139) cf. Bourbaki [1963J, Prop. VII.2.3 and 4. 
Equation (2.154) is Lemma 5.3 in Guillemin and Uribe [1986]. 

When 1tx is separable, an equivalent construction of 1tx starts from the vector space 
ilx of all Jl-measurable functions ~x : P ~ 1tx that satisfy the properties that (2.145) 
holds, the function x ~ (~x (x), ~ x (x)x) is locally integrable, and (~x, ~ X) < 00. The 
Hilbert space 1tx is then the quotient of ilx by the vectors of zero norm. This is proved in 
Moscovici [1969]; to apply his proof, note that the action of a structure group on a principal 
bundle is always proper. 

111.2.9 An even more general construction of induced representations, which applies 
when P and H are merely locally compact, and the H -action on P is not necessarily free, 
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is presented in Moscovici [1969] (though no bundle-theoretic interpretation is given). One 
then tries to define an induced representation of some group G that acts on P; the G- and 
H -actions must commute. For the construction (which is entirely analogous to the one in 
our main text) to apply, the H -action must be proper, and Q = P / H must possess a positive 
measure v that is quasi-invariant under the natural G-action. 

A detailed description of Mackey induction for locally compact groups may be found 
in Warner [1972], Gaal [1973], Barut and Rar;:ka [1977], Varadarajan [1985], or Knapp 
[1986]. The formulation in terms of vector bundles appeared in Hermann [1966], following 
special cases in Bott [1957]. A discussion of harmonic analysis on vector bundles of the type 
G XH 1ix may be found in Wallach [1973]. Attractive general overviews with applications 
and history, by the founder of the modem theory of induced group representations, are 
Mackey [1968, 1978, 1992]. Also cf. the notes to IV.2.8. 

In the special case A = AH , equation (2.180) is due to Doebner and Tolar [1990]. A 
different perspective on the quantum analogue of the classical momentum map for the 
9~-action on T*po is offered by Meinrenken [1994]. 

111.2.10 For the Laplace-Bochner operator cf. Wallach [1973] (who simply calls it the 
Laplacian) and Kuwabara [1982]. Equation (2.187) is due to Berline and Vergne [1985] and 
Guillemin and Uribe [1986]. For (2.188) see the notes to 2.6. An intrinsic definition of F2 
is presented in Atiyah and Bott [1983]. 

Lemma 2.10.3 is a special case ofThm. 3 in Nussbaum [1964]. 
An explicit expression for the Ricci scalar RG on a Lie group G may be found, e.g., in 

Coquereaux and Jadczyk [1988], §2.5. 
The identity (2.193) appears, e.g., in Strathdee [1983], Siebarski [1987], and in the present 

context of quantization theory also in Landsman [1992]. 

111.2.11 Theorem 2.11.1 is a reformulation of Theorem 6.1 of Hogreve et al. [1983]. 
Their derivation of their (6.33) provides a detailed proof of the claim preceding our (2.212), 
and their proof of their (6.35), in particular their Lemma 4.7, also proves our (2.214). The 
theorem and the given proof still apply if one includes a scalar potential V(q) and a term 
Ao(q i Zi in the Hamiltonian (as is done in the above reference). Our proof relates to that of 
Hogreve et al. [1983] in much the same way that our proof of Theorem 11.2.7.2 stands to the 
proof of the corresponding result in Hepp [1974]; cf. the notes to 11.2.7. Moschella [1989] 
claims to simplify the proof of the convergence of the quantum equations of motion to the 
classical Wong equations, but in fact his argument proves convergence in a certain class of 
mixed states, and with respect to different observables from the ones we are interested in. 
Accordingly, he does not obtain a quantization condition on n. 

The right-hand side of (2.209) may be written as T exp ( -i J~ H(2)(s)/n), where T 

stands for "time-ordering"; see Dollard and Friedman [1979], and cf. Iy'(3.73). 
There is an impressive body of mathematical literature on the semiclassical asymptotics 

of the eigenfunctions and eigenvalues of the Laplace-Bochner operator, and their connec­
tion with Hamiltonian trajectories given by solutions of the classical Wong equations. For 
example, Schrader and Taylor [1984, 1989] and Zelditch [1992] extend the work on clas­
sical limits of energy eigenstates cited in the notes n.2.7 to the case at hand. Eigenvalue 
asymptotics are investigated in Guillemin and Uribe [1985, 1986, 1989, 1990], Taylor and 
Uribe [1992], Brummelhuis and Uribe [1992], and Brummelhuis et al. [1995]. Other aspects 
of the motion of a quantum particle in a Yang-Mills field are discussed in Arodz [1983], 
Belov and Maslov [1990], and Oh [1996]. 

111.2.12 The quantum theory of magnetic monopoles started with the paper by Dirac 
[1931], who arrived at the quantization condition eg = 1nn. The factor 1 corresponds to 
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the use of the covering groups SU(2) and U(l) of SO(3) and SO(2). This leads to the Hopf 
fibration SU(2)(S2, U(1), T); see, e.g., any of the books cited in the notes to 2.1. 

There exists a gigantic body of literature on monopoles. The modem understanding of 
the quantum case in terms of the line bundles Hn is due to Greub and Petry [1975] and 
Wu and Yang [1975, 1976]. The description in terms of induced representations is due to 
Langlands [1987]. Much information about both standard angular momentum and the role 
of SO(3) in the theory of magnetic monopoles may be found in Biedenharn and Louck 
[1981a,b]. The fact that rotational symmetry forces the field to be a monopole configuration 
may be found in, e.g., Cant [1981] and Horvathy [1981]. 

One should actually start with the theory on R3, on which the monopole field potential 
is given by A(r,,p, () = A(,p, ()/r. The magnetic field is B = -gT3 ® er /r 3, which 
is evidently singular at the origin O. Hence one declares that the configuration space of 
a charged particle moving in a monopole field is R3\{0} :::: S2 x R+. The theory on S2 

contains all essential features of the situation on R 3\{0}. 
Our treatment mainly follows Landsman [1990b], which includes a detailed discussion of 

the passage from S2 to R 3\ {O}. The proof of Proposition 2.12.1 is taken from Landsman and 
Linden [1991]; the ancillary result (2.224) may be found in Choquet-Bruhat et al. [1982], 
Problem III.5(8), in which we corrected a sign error. 

The eigenfunctions of the operator d vn( C2(SO(3))), which is usually taken as the quan­
tum Hamiltonian, are so-called monopole harmonics; see Wu and Yang [1976], Biedenham 
and Louck [1981b], Kuwabara [1982, 1984], and Landsman [1990b]. In the realization of 
the theory on the space 1{n of S o (2)-equivariant functions on S 0(3), a monopole harmonic 
is simply a matrix element Uj (x)':,., where Vj (S 0(3» is the usual irreducible representation 
of spin j, and m runs from - j to j. It may be checked that the corresponding functions in 
1{± are indeed in r(Hn). 

As in the general case, the justification for using a Hilbert space of sections of a line 
bundle in quantum theory is that the smooth sections provide a domain of essential self­
adjointness of the relevant operators (angular momentum and Hamiltonian). The topology 
of the line bundle enters the quantum-mechanical description in this way; the total Hilbert 
space L2(H") is not sensitive to this topology. 

ID.3.1 For an overview of the theory of groupoids cf. Brown [1987] and Weinstein 
[1996a], as well as Renault [1980] and Mackenzie [1987a]. The shortest definition is that a 
groupoid is a small category with inverses. In the context of group representation theory a 
groupoid is sometimes called a virtual group; see Ramsay [1971] for an interesting account. 
Most of the theory that is not purely algebraic is done in the context of topological or 
measurable groupo ids. 

Lie groupoids were introduced by Ehresmann [1958]. The main modem sources are 
Mackenzie [1987a], Coste et al. [1987], and Albert and Dazord [1988]. Mackenzie refers 
to differentiable groupoids, reserving the name Lie groupo ids for transitive differentiable 
groupo ids. Weinstein [1996b] remarks that one can omit the smoothness of the inclusion 
from Definition 3.1.5. The theory of gauge groupoids is developed in Mackenzie [1987a, 
1989]. 

DI.3.2 For half-densities etc. see Guillemin and Sternberg [1977]; our treatment is some­
what different. For the Hilbert space of half-densities, due to Mackey, see Abraham and 
Marsden [1985]. The bundle v'fATs®'G is mentioned in Weinstein [1991] and Connes 
[1994], following a special case in Connes [1980] (involving the holonomy groupoid of 
a foliation). 
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111.3.3 Convolution of sections of v'JAjs®t G was introduced by Connes [1980, 1994]. 
He symbolically writes convolution on a Lie groupoid as 

With an isomorphism similar to A in (3.17) added, the equivalence between Connes's expres­
sion and (3.17) is easily established, using Prop. 1.1.2 in Mackenzie [1987a]. An equivalent 
construction of the convolution algebra of a Lie groupoid appears in Bigonnet [1988], 
whereas a third approach is in unpublished lecture notes by Renault (see Ramazan [1998]). 

For left Haar systems and the corresponding convolution see Hahn [1978b] (who ac­
knowledges Westman [1968]) and Renault [1980], who work in the context of topological 
groupoids. As in lhe group case, one can introduce a twist (cocycIe) into lhe convolution; 
see Renault [1980]. The first part of Proposition 3.3.3 is due to Ramazan [1998]. 

111.3.4 Crossed products were introduced by Doplicher et al. [1966]. A crossed product 
is usually defined as the C*-completion of C*(G, 21), denoted by C*(G. 21); see Pedersen 
[1979] for lhe basic theory, and Green [1978] and Packer [1996] for advanced results. It is 
not necessary to assume that G is unimodular; the standard definition of a crossed product 
C* -algebra contains a factor ~(x )-1 on the right-hand side of (3.32), but our definition leads 
to an isomorphic algebra. 

A complete proof of Theorem 3.4.4 may be found in Busby and Smith [1970], Thm. 3.3; 
a slightly different approach is in Pedersen [1979], Prop. 7.6.4. All these authors work in 
the L 1 rather than C':' context, allowing general locally compact groups G. 

Action C* -algebras are usually called transformation group algebras; see the notes to 
3.7. 

Systems of imprimitivity (for general locally compact groups) were introduced by 
Mackey in his study of induced group representations; see Barut and Rat;ka [1977] and 
Mackey [I 968](forthe case Q = G/ H), Varadarajan [1985], Mackey [1978], and Mackey 
[1992]. The definition in lhese books is stated in terms of projection-valued measures on Q; 
see IV.(2.118) and surrounding text. The equivalent approach we use goes back to Glimm 
[1962] (who, in the locally compact setting, of course worked with Co(Q) rather than 
C':'(Q». 

111.3.5 Representations of locally compact groupoids in the sense of Definition 3.5.1 are 
studied in Hahn [1978b] and Renault [1980]. For lhe more general case of an action of a 
groupoid on some space see 3.9.11 or Mackenzie [1987a]. Quasi-invariant measures are 
studied in Hahn [1978a]; also cf. Renault [1980]. The regular representation is developed 
in Hahn [1978b]. 

Our definition of a direct integral Hilbert space (originally due to von Neumann) follows 
Bratteli and Robinson [1987], §4.4.1. Also cf. Takesaki [1979] or Kadison and Ringrose 
[1986], among others. 

111.3.6 The C* -algebra of a locally compact groupoid first appeared in Connes [1980] 
and Renault [1980]. The structure of such algebras is beginning to be analyzed, cf. Muhly 
et al. [1987] and the series of papers by Muhly and Williams [1990,1992,1995]. 

Renault [1980], 11.1.22, shows that every representation of C':' (G) on a separable Hilbert 
space that is continuous with respect to the inductive limit topology on C':'(G) and the weak 
topology on s.B(H) is automatically bounded in lhe sense of (3.57); his proof is for locally 
compact groupo ids, involving an additional condition that is automatically satisfied for Lie 
groupoids. A detailed proof of (3.59) is in Hahn [1978a], Thm. 3.8. 
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The groupoid analogue of the Banach algebra L 1 (G) is L I (G), defined as the space of 
measurable functions on G for which q t-+ 1, -l( )dJ1!q·t(Y)lf(Y)1 is essentially bounded 

'rS.1 q 

with respect toa locally Lebesgue measure on Q. It is a Banach algebra under the norm 11·111 
defined in (3.57) and the continuous extension of multiplication and involution in C~(G). 
It follows from Proposition 3.6.1 that every nondegenerate representation of C~(G) on a 
separable Hilbert space that is bounded (in the sense of (3.57» extends to L I (G). See Hahn 
[1978b] for the proof of these claims. The appropriate generalization of Theorem 1.7.3 
holds here, in that each such representation corresponds to a representation U of G as in 
3.6. I. This result is due to Renault [1987] (following a special case in Renault [1980]). 

The first two points of Theorem 3.6.2 are in Hahn [1978b] and Renault [1980]. The 
fourth point was inspired by Connes [1994], which contains a version of (3.65). 

Parallel to the group case there is a concept of amenability of (locally compact) groupoids, 
which is expressed by the equality C;(G) = C*(G), either as a theorem or as a definition; 
see Renault [1980]. 

111.3.7 Theorem 3.7.1 is a special case of Thm. 3.1 in Muhly et al. [1987], with a 
different proof. Equation (3.76) is proved in Renault [1980] via the correspondence between 
representations of C*(G) and those of G, as mentioned above. Our proof is based on Rieffel 
[1972]. For P = G, equation (3.78) is a special case ofThm. 2.13 in Green [1980] (who 
states the result for the transformation group C*-algebra C*(G, G / H». 

Starting with Effros and Hahn [1967], transformation group C'-algebras (which we 
call action C* -algebras) are much studied by C' -algebraists; see the review by Packer [1994] 
for history and references. Corollary 3.7.4 is a special case ofThm. 7.6.6 in Pedersen [1979]. 

Corollary 3.7.6 is Mackey's (transitive) imprimitivity theorem; see the books listed in 
the notes to 3.4. Like Corollary 3.7.2, it is a special case ofRieffel's imprimitivity theorem, 
and will be rederived as such in IV.2.7. 

The special case C*(G, G/ H) of the CO-algebra C'(G, Q) was introduced by Glimm 
[1962]. See the notes to IV.2.8 for applications to physics. 

The proof of the Stone-von Neumann uniqueness theorem at the end of the section is 
due to Mackey [1963, 1968, 1978]. The technical details of Mackey's proof are slightly 
different, because he uses a different (equivalent) notion of systems of imprimitivity. In any 
case, the argument can be generalized to arbitrary locally compact abelian groups. 

111.3.8 Lie algebroids were introduced by Pradines [1966], who also showed how they 
could be constructed from Lie groupoids. References and further development of the theory 
until 1987 may be found in Mackenzie [1987]; a more recent reference is Vaisman [1994]. 
Pradines's "grand scheme to generalise the standard construction of a simply connected 
Lie group from a Lie algebra to a corresponding construction of a Lie groupoid from a Lie 
algebroid" was completed by Mackenzie [1987] in the locally trivial case, and by Brown 
and Mucuk [1995, 1996] in general. Unlike the case of Lie algebras, there is a potential 
cohomological obstruction, so that not every Lie algebroid corresponds to a Lie groupoid. 
Apart from principal fiber bundles, the main context is the theory of foliations. 

Equation (3.93) appears in Mackenzie [1987b], who attributes it to A. Weinstein (our 
derivation in the proof of Proposition 3.8.8 is different). 

111.3.9 Propositions 3.9.1 and 3.9.2 are due to Courant [1990]. A different approach to 
the correspondence between Lie algebroids and linear Poisson structures, including a more 
intrinsic definition of the Poisson structure on ~', may be found in Coste et al. [1987]. 

Definition 3.9.5, which includes the Poisson bracket (3.101) on g x Q as a special case, 
is due to Krishnaprasad and Marsden [1987], and was further studied by Weinstein [1987]. 
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Theorem 3.9.6 is due to Xu [1992], as is Corollary 3.9.8 (which is a special case of his 
Cor. 4.1). We now sketch the remaining part of the proof of the latter; this depends on the 
concept of a symplectic groupoid discussed in the notes to IV. 1.2. We have to show that 
the completeness of the map p : S ~ Q associated to it : C""(Q) ~ C""(S) by p* = it 
implies that J = (1(1), p) : S ~ g~ x Q is complete. 

Thinking of Q as a Poisson manifold with zero Poisson structure, it is integrable, with 
symplectic groupoid T* Q. The existence of an equivariant momentum map for the pullback 
G-action on T*Q (see Lemma 2.3.1) implies that one may equip G := T*G x T*Q with 
the structure of a symplectic groupoid with base g~ x Q; when the G-action on Q is 
trivial this would be the direct product with respect to the groupoid structures mentioned in 
the notes to IV. 1.2. Applying Thm. 3.1 in Xu [1991 b) in the direction "complete Poisson 
map ~ symplectic groupoid action" to p, there exists a symplectic T* Q-action on S. The 
covariance condition (3.107) implies that p intertwines the G-actions on Sand Q. By Thm. 
4.1 in Xu [1992] this in tum entails that there exists a symplectic G-action on S associated 
to J. Applying Thm. 3.1 above in the opposite direction then leads to the desired conclusion 
that J is complete. 

Corollary 3.9.10 is a special case of the classical transitive imprimitivity theorem IV. 1.6.4. 
Definition 3.9.11, originally due to Pradines, may be found in Mackenzie [1987]. How­

ever, Mackenzie's notion of a Lie algebroid action (which he calls a representation) is 
different from ours. A representation in his sense is a morphism of r(V) into the Lie al­
gebra of derivations on sections of some vector bundle. This concept is not appropriate in 
relationship with the representation theory of the Poisson algebra C""(V*, R). 

A different line of research relating Lie groupoids to Poisson structures is discussed in 
the notes to IV. 1.2. Here the generalized momentum map associated to an action of a Lie 
groupoid G on a symplectic manifold takes values in the base Q rather than in the dual of 
the Lie algebroid~, as in our approach. 

111.3.10 Lemma 3.10.1 is Prop. I1I.3.3 in Mackenzie [1987]. The map ExpL was 
introduced by Pradines [1968]. 

111.3.11 The role of Lie algebroids and groupoids in strict quantization as explained in 
this section originates with Landsman [1993b, 1996a). 

In the context offormal deformation quantization, Dirac's condition has been proved for 
arbitrary Lie groupoids by Nistor et al. [1997], and by Ramazan [1998]. 

Theorem 3.11.3 was first mentioned by Rieffel [1989a], though not in the context of Lie 
algebroids and groupoids or Weyl quantization. This paper gives many interesting examples 
of strict deformation quantizations that do not fit into our scheme, such as the quantization of 
the Poisson algebra of functions on the 2-torus, equipped with a suitable Poisson structure, 
by the so-called noncommutative torus. As these examples show, a given C* -algebra may 
be a strict deformation of more than one Poisson algebra. 

An "unbounded" version of this deformation, generalizing the procedure in 1.6 from Lie 
algebras to Lie algebroids, may be found in Nistor et al. [1998]. 

111.3.12 The normal groupoid is constructed in Hilsum and Skandalis [1987], §3.1, and 
is further discussed in Weinstein [1989]. These authors use I = [0, 1] instead of I = R, and 
construct the manifold structure in a slightly different way. The special case of the tangent 
groupoid (again, for I = [0, I)) is due to Connes [1994] (circulating in the eighties). 

Lemma 3.12.4 is due to Lee [1976]. As explained in Elliott et al. [1993], it can be used 
to simplify the proof of Rieffel's condition in certain examples in Rieffel [1989b]. For the 
primitive spectrum and the Jacobson topology cf. Dixmier [1977], who gives our Lemma 
3.12.5 as §§3.2.1,2. 
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The realization of C;(GN ) as the C' -algebra of a continuous field has the following 
generalization (G. Skandalis, private communication, June 1997). Let G be a Lie groupoid 
with base Q, and let p be a continuous and open map from Q to some Hausdorff space X 
which is G-invariant in the sense that p 0 rs = port. Define Gx := (p 0 rs)-l(x) (this is 
a subgroupoid of G because of the G-invariance of p), and 2(x := C*(Gx ). Then the triple 
(C;(G), (C;(Gx), IPx}xEX), where IPAf):= f f Gx, is a continuous field of CO-algebras at 
those points x where C*(Gx ) = C;(Gx )' 

We apply this to our situation by taking G = GN and X = JR, whence Q = JR x Q, 
and p is just projection onto the first variable. Continuity away from Ii = 0 follows from 
the triviality of the field for Ii =1= 0 (whether or not C;(G) = C*(G». The result above 
may be used to prove continuity at Ii = 0 by noticing that C;(<5) = C*(<5); this follows 
because both sides are isomorphic to Co(<5*). In other words, from this point of view it is 
the amenability of <5, regarded as a Lie groupoid as explained in 3.12.1, that lies behind 
Theorem 3.11.4. 

An interesting application of Corollary 3.12.6 would lie in the development of gener­
alizations of the Atiyah-Singer index theorem, noting that recent proofs of this theorem 
through deformation quantization (see Connes [1994], Fedosov [1996], and Elliott et al. 
[1996)) may be interpreted in the light of the special case of 3.12.6 in which GN is the 
tangent groupoid of a manifold. The first step towards such generalizations, namely a good 
definition of the analytical index, has already been taken in Monthubert and Pierrot (1997]. 

An entirely different application of the normal groupoid to the classical limit of quantum 
mechanics is given Bellissard and Vittot [1990]. 

Chapter IV 

IV.t.t The theory of constraints and reduction has a venerable tradition; the modem era 
started with the work of Dirac [1950, 1964]. Efforts to put his approach on a geometric and 
rigorous footing were initiated by the Warszaw school of ThJczyjew and collaborators in the 
sixties and seventies; see, e.g., the books by Kijowski and ThJczyjew [1979] and Binz et al. 
[1988], and references therein. Further contributions were made by Lichnerowicz [1977] 
and Gotay et al. [1978] (also cf. Gotay and Nester [1980)). The approach of the latter starts 
from a presymplectic manifold S, and is therefore more general than the one presented in 
the main text. Also, the infinite-dimensional case is included. 

In physics the constraints on the phase space S are usually derived from a Lagrangian; the 
so-called constraint algorithm then leads to the final constraint hypersurface C, on which the 
equations of motion defined by a Hamiltonian h are well-defined. Hence our C is supposed 
to be the endproduct of this algorithm. Apart from the references above, see Sundermeyer 
[1982] or Henneaux and Teitelboim [1992]; these books contain a wealth of information 
and examples from physics. 

Theorem 1.1.2 goes back to Cartan [1958]; a heuristic version is implicit in Dirac [1950, 
1964]. The given formulation may be found, e.g., in Libermann and MarIe [1987], §14, 
which contains a proof that the null distribution is smooth in App. 4, Prop. 3.7. 

The concept of a weak observable is due to Dirac and Bergmann (see Sundermeyer 
[1982] for an extensive list of references to the original literature ). 
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The decomposition mentioned in the last paragraph of the section is well known to 
physicists; as a theorem it is proved, e.g., by Lichnerowicz [1977] (also cf. Thm.III.14.11 
in Libermann and Marie [1987]). 

IV.l.2 Theorem 1.2.2 is a reformulation of Prop. 2.1 in Xu [199Ia], which in tum gen­
eralizes Thm. 3.12 in Mikami and Weinstein [1988]. In these papers special symplectic 
reduction is approached through the following theory, due to Karasev [1987], Weinstein 
[1987b], and Zakrzewski [l990a,b]. We give only a brief summary (following Weinstein 
[1991]); for more information we refer to Coste et a1. [1987], Albert and Dazord [1990], 
Karasev and Maslov [1993], Vaisman [1994], and Weinstein [1998]. 

A symplectic groupoid (G, w) is a Lie groupoid G ~ Q with a symplectic form w, with 
the property that the graph {(y, y', yy')} (where y, y' E G) of groupoid multiplication is 
a Lagrangian submanifold of G x G x G-. This entails that the inversion J : G ~ G­
is a Poisson map. The most important consequence of the definition is that there exists a 
Poisson structure on Q for which !(Q) is a Lagrangian submanifold of G, and Ts : G ~ Q 
and Tt : G ~ Q- are Poisson maps. Moreover, the Poisson subalgebras T;cOO(Q) and 
T;cOO(Q) of COO (G) commute; when the fibers of Ts (and hence of T/) are connected, these 
subalgebras are even the Poisson commutants of one another. 

The simplest example is G = T* Q (with its canonical symplectic form), where Ts = 
T/ = TpQ--+Q' and groupoid "multiplication" is addition in a fiber of r* Q. The associated 
Poisson structure on Q is the zero bracket. When Q is a Lie group G, still using the canonical 
symplectic form, one can put a different groupoid structure on T* G by identifying T*G with 
G x g* in the right trivialization (cf. 111.1.4), and regarding G x g* as an action groupoid 
with respect to the coadjoint action (cf. I1I.3.1.4). Hence Ts = _JR and Tt = JL; this 
assigns the (+) Lie-Poisson structure to g* . 

One may ask whether a given Poisson manifold P is integrable, in that there exists a 
symplectic groupoid whose base is P. As we just saw, any manifold P with the zero bracket 
and any dual Lie algebra g* with the Lie-Poisson structure are integrable; not every Poisson 
manifold is. 

Recall Definition I1I.3.9.11 of a smooth action of a Lie groupoid G ~ Q on a manifold 
S. For later use, define the orbit Ga of a E S under a G-action on S in the obvious way, i.e., 
Ga := {ya I (y, a) E G *Q S}. Mikami and Weinstein [1988] define such a Lie groupoid 
action to be symplectic when the graph fey, a, ya)} of the groupoid action is a Lagrangian 
submanifold of G x S x S- . It easily follows that J p : S ~ Q is a Poisson map. (Compare 
this with Proposition I1I.3.9.13, where as an alternative proposal we associate a generalized 
momentum map J : S ~ 18* to the G-action on S.) A deeper result is that J p is necessarily 
complete, and that conversely, when the Ts -fibers of G are connected, the completeness of 
a given Poisson map Jp : S ~ Q implies that there exists a symplectic G-action on S 
associated with Jp ; see Thm. 3.1 in Xu [199Ib]. The main example of such a symplectic 
groupoid action is derived from an ordinary group action with equivariant momentum map 
J : S ~ g~ by putting Jp = -J. The action of (0, X)R E T*G on a E S is then defined 
when (1 = J(xa), and (J(xa), x)Ra = xa. 

Let now P be an integrable Poisson manifold, so that there exists a symplectic groupoid 
G ~ P. Xu's [199Ia] formulation of special symplectic reduction starts from a pair of 
symplectic G-actions on Sand Sp. Using the above definition of an orbit, one can form 
the quotient space (S *p Sp)/G under the diagonal G-action on S *p Sp. When the G­
orbits are connected, Prop. 2.1 in Xu [\99Ia] then shows that this quotient coincides with 
the reduced space sj as defined in (1.13). When there are disconnected orbits one has 
a situation similar to the one discussed around (1.26). As Mikami and Weinstein [1988] 
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remark, this formulation of special symplectic reduction "turns out to be purely groupoid­
theoretic, involving no symplectic geometry at all". (They work in the special situation that 
Sp is a symplectic leaf of P, with Jp the inclusion map.) 

In the form given here, Definition 1.2.1 and Theorem 1.2.2 appear in Landsman [1995a]. 
Our formulation without symplectic groupo ids is motivated by the clean analogy with 
the quantum situation; this analogy is obscure in the version cited above. For our use of 
transverse intersections see, e.g., exercise 1.6E in Abraham and Marsden [1985], or §27 in 
Guillemin and Sternberg [1984]. The dimension counting in the proof goes back to Kazhdan, 
Kostant, and Sternberg [1978]. 

Theorem 1.2.2 can actually be generalized to the case where Sand Sp are Poisson 
manifolds. As in the symplectic case, the reduced space SP is defined as the quotient of 
S *p Sp by the foliation defined by the vector fields ~f' j E COO(P, R); the alternative 
description in terms of the null foliation of We is, of course, not available here. Rather 
than being symplectic, the manifold SP is a Poisson space, which carries a reduced Poisson 
structure in the sense of Marsden and Ratiu [1986]. Exactly as in the proof of 1.2.2, one first 
shows thatN eTC. Secondly, one has BU(.Nlj) C TxC. To show this local property, take 
a = dg l +dg2, withg; = r;'h;, where the 7:; are the natural projections rl : SxSp ~ Sand 
7:2 : S x Sp ~ Sp, and hI E COO(S), h2 E COO(Sp)' Then the property that a E BU(Nlj) is 
equivalent to the equality {J* j, hd = {pO j, h2} for all j E COO(P). Hence J.~gl = P.~g2' 
which proves the claim. The Poisson generalization of Theorem 1.2.2 now immediately 
follows from the "Poisson Reduction Theorem" in Section 2 of Marsden and Ratiu [1986]. 

IV.l.3 Symplectically complete foliations were first defined by Libermann [1983], which 
contains Proposition 1.3.2; also see Prop. III.9. 7 in Libermann and MarIe [1987]. See Dazord 
and Delzant [1987] for further developments. 

Proposition 1.3.3 is given by Weinstein [1983] for the case where S/cf) is smooth. Our 
proof of the more general statement follows the proof of Thm. I in Karshon and Lerman 
[1997]. 

When conditions I and 2 in 1.3.4 are satisfied, one speaks of a Weinstein dual pair; the 
attribute "Weinstein" is sometimes omitted. When in addition 1.3.4.3 is met, one has a full 
dual pair. The theory of such dual pairs is due (independently) to Karasev [1989] (whose 
unpublished Russian original is from 1981) and Weinstein [1983] (the latter contains 1.3.2 
as well). For a review also see Vaisman [1994] and Choquet-Bruhat and DeWitt-Morette 
[1989]. Weinstein [1990] introduces the concept of a symplectic affinoid space, which is 
a generalization of a full dual pair. 

A symplectic groupoid G ~ Q (cf. the notes to 1.2) provides an interesting example of 
a dual pair: The diagram in (1.20) then becomes Q ~ G ~ Q-. 

Weinstein [1983] remarks that his dual pair is the classical analogue of a Howe dual 
pair; this is a pair of reductive subgroups of a symplectic group Sp(2n, R), which are each 
other's centralizer. Such pairs were introduced by Howe [1989] (which had been around 
for a decade prior to publication). Howe dual pairs are studied from the perspective of 
constrained quantization in Landsman [1994] and Bowes and Hannabuss [1997]. In the 
author's opinion, the true quantum analogue of a classical dual pair is a quantum dual pair; 
cf. Definition 2.3.1. Corollary 1.3.6 is due to Weinstein [1983], who acknowledges Kazhdan 
et a!. [1978]. 

Definition 1.3.7 and Proposition 1.3.9 are due to Xu [199Ib] (which contains a great 
deal of additional information on Morita equivalence in the present context, as does Xu 
[1992]). The second example in 1.3.9 is attributed to Weinstein. The algebraic topology 
needed to complete the proof is the exact sequence (see Bott and Tu [1982], equation 
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(17.4» 7l'1(Jj-I(O";» -+ 7l'1(S) -+ 7l'1(Sj) -+ 7l'O(Jj-I(O"j». By assumption, the first and the 
last entry are the trivial group, so that the claim follows. 

IV.I.4 Theorem 1.4.1 is due to Xu [199Ib]. Our proof, however, is taken from Landsman 
[1995a]; the relevant homotopy theory may be found in Janich [1994]. The proof in Xu 
[199Ib] is based on the theory of symplectic groupoids. Xu assumes that the Poisson 
manifolds in question are integrable; combining Thms. 4.18 and 5.2 in Weinstein [1990], 
one infers that this is always the case in the given situation. Xu's proof follows the lines of 
first showing that integrable Morita-equivalent Poisson manifolds have Morita-equivalent 
symplectic groupoids, which in tum have equivalent categories of complete symplectic 
realizations. 

IV.1.S Lemma 1.5.1 is due to Smale [1970]. For proper group actions and a proof of 
Proposition 1.5.3 see Abraham and Marsden [1985], particularly Prop. 4.1.23, or Cushman 
and Bates [1997], App. B. 

Marsden-Weinstein reduction is due to Meyer [1973] and Marsden and Weinstein [1974]; 
it has a long pedigree in classical mechanics. Our formulation as a special case of special 
symplectic reduction coincides with the construction of Marsden-Weinstein quotients in 
Kazhdan et al. [1978]. There is a great deal more to say about this subject. For example, 
the construction may be carried out under less stringent conditions than the surjectivity of 
J. (Le., the regularity of 8). Extensive treatments may be found in Guillemin and Stern­
berg [1984], Abraham and Marsden [1985], and Libermann and Marie [1987]. Marsden 
[1992] gives an overview of applications of Marsden-Weinstein reduction in mechanics. 
A generalization to general Poisson manifolds is presented in Marsden and Ratiu [1986, 
1994]. 

Theorem 1.5.5 is due to Marle; see Libermann and Marie [1987], prop. IV.6.8.1t is also 
mentioned by Weinstein [1983]. 

Proposition 1.5.8 is implicit in, e.g., Weinstein [1983] and Xu [1992]. The completeness 
of J is explicitly proved in the latter paper using a different method based on Thm. 3.1 in 
Xu [199Ib]. The procedure to (re)construct dynamics on S given the dynamics on SI H 
used in the proof of the completeness of r is due to Marsden and Weinstein [1974]; also 
see Marsden et al. [1990] and Marsden [1992]. The existence of a complete solution of the 
equation X(t)-I.i(t) = X(t) is proved, e.g., in Dollard and Friedman [1979], Ch. I. 

When H does not act freely on S one may still ask whether 1.3.3 holds in the context 
of Marsden-Weinstein reduction. For compact H this is analyzed by Karshon and Lerman 
[1997]. 

IV.I.6 In the special case P = G the reduced space T' pP of Figure 3 appeared in 
Kazhdan et al. [1978]; also see Guillemin and Sternberg [1984] and Zakrzewski [1986]. In 
this context one usually speaks of symplectic induction. 

Theorem 1.6.1 is due to Duval et al. [1992]. Many interesting generalizations of Theorem 
1.6.2 may be found in Xu [1992]. Theorem 1.6.4 is due to Ziegler [ 1996]. 

IV.I.7 Our proof of 1.6.4 is based on Theorem 1.4.1 (which was not used by Ziegler). 
The last part of the proof of Lemma 1.7.1, however, is based on Ziegler's [1996] proof of 
Theorem 1.6.4. 

IV.I.S Theorem 1.8.1 is due to Landsman [1995a]. It is motivated by Theorem 2.6.1 on 
Rieffel induction in stages. Theorem 1.8.2 is a straightforward generalization of Corollary 
1.8.4, which appeared in Landsman [1995a]. Many special cases were known; see, for 
example, Marsden et al. [1984] and Guillemin et al. [1996]. Lemma 1.8.3 is Prop. A.4 in 
Weinstein [1987a]. 
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Proposition 1.8.5 is taken from Sjamaar and Lerman [1991], who prove it for singular 
reduced spaces as well. Extensive information on strongly Hamiltonian product actions may 
be found in Libermann and MarIe [1987]. 

IV.I.9 All unproved statements in this section may be found in Leptin and Ludwig [1994] 
or in Corwin and Greenleaf [1989]. The latter contains Lemma 1.9.2 as Thm. 1.3.3 or Prop. 
3.1.18, whereas the "nontrivial fact" (due to Chevalley and Rosenlicht) used in the proof 
of 1.9.1 is Thm. 3.1.4. Finally, Theorem 1.9.3, which combines the work of Dixmier and 
Kirillov, is Thms. 2.2.2-4. 

Theorem 1.9.1 is taken from Landsman [1995a]. Our use of the structure of the coadjoint 
orbits of nilpotent Lie groups should be distinguished from the "orbit philosophy" of Kirillov 
[1962, 1990], Souriau [1969], Kostant [1970], and others; oursole aim is the correspondence 
between symplectic reduction and the theory of induced representations, which is seen to 
be quite perfect in the case of connected, simply connected nilpotent Lie groups. 

IV.I.IO Proposition 1.10.1 is due to Rawnsley [1975]. Theorem 1.10.2 appeared in Lands­
man [1995a] and in Guillemin etal. [1996]. Theorem 1.10.3 was first given byWigner [1939] 
for the case that G is the Poincare group. Barut and Ra~ka [1977] and Varadarajan [1985] 
are good sources for the theory of induced representations of semidirect products. Our proof 
is a straightforward C' -algebraic reformulation of the proof given in these references. 

Theorem 1.10.4 appeared in Marsden et al. [1984], which includes extensive references 
to related results, as well as applications; also cf. Guillemin and Sternberg [1984]. Both 
groups of authors use the equality in the opposite direction. 

The quantization theory of Isham [1983] may be reconsidered in the light of 1.10.4. 
Given a homogeneous configuration space Q = L / H, he first looks for a vector space 
V with an L-action p, such that Q is diffeomorphic to some p*(L)-orbit in V*. He then 
accepts any irreducible representation of G = L D< p V as a possible quantization of the 
cotangent bundle T* Q. However, having found aft E V* for which H = Lp, the space T* Q 
is symplectomorphic to f:L 0 = (Jr1p )-' (0)/ Lp, which by 1.10.4 is symplectomorphic to 

the coadjoint orbit og,P)' Hence Isham's proposal amounts to accepting any irreducible 
representation of G as a possible quantization of this particular coadjoint orbit. Cf. Robson 
[1994, 1996] for a related discussion. 

Corollary 1.10.5 is due to Leonard and Marsden [1997], who provide a very detailed 
proof, as well as giving applications to the motion of underwater vehicles. 

Baguis [1998] gives a detailed study of the symplectic geometry of the coadjoint orbits 
of semidirect products. 

IV.I.ll The mathematical theory of singular Marsden-Weinstein reduction started with 
Arms et al. [1981], who proved that the singularities in J-'(O) are conical. Arms etal. [1990] 
look at the singular case of general symplectic reduction, comparing various approaches, 
and include a good bibliography. A very detailed treatment is given in Cushman and Bates 
[1977], App. B. 

Lemma 1.I1.1 is Lemma 27.1 in Guillemin and Sternberg [1984]. Proposition 1.11.2 is 
taken from Cushman and Bates [1977], App. B.5.17 (our proof is a trifle different). Propo­
sition 1.11.3, which in our presentation is of fundamental importance, is due to Sjamaar and 
Lerman [1991]. Definition 1.11.4 was first proposed by Arms et al. [1991], which contains 
the first half of Proposition 1.11.5; the second half is due to Sjamaar and Lerman [1991]. 

Theorem 1.11.6 summarizes results of Arms et al. [1981], Otto [1987], Arms et al. [1991], 
and Sjamaar and Lerman [1991]. Using more sophisticated techniques, the latter prove that 
the decomposition (1.85) is locally finite and satisfies the condition of the frontier; that is, 
the closure of each piece is the union of other pieces in the decomposition. Indeed, they show 
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that the decomposition in question is a stratification in the sense of Goreski and MacPherson 
[1988]. Note that none of these properties is in general satisfied by the decomposition of a 
Poisson manifold into its symplectic leaves, which otherwise is somewhat comparable with 
the decomposition of a singular Marsden-Weinstein quotient into its symplectic pieces. 

The S o (2)-example was given in Gotay and Bos [1986], who also generalize itto S O(n). 
Lennan et al. [1993] further analyze this example (among many others), and refer to Schwarz 
[1975] for the proof of the claim on smooth functions on So. Proposition 1.11.7 is due to 
S jamaar and Lennan [1991]. 

The second example is taken from Landsman [1998a], who also explains its relevance 
to cosmology. Similar examples appear in the literature; see, e.g., Sniatycki and Weinstein 
[1983] and Anns et al. [1990]. 

Singular Marsden-Weinstein reduction is of great importance to general relativity and 
Yang-Mills theories, where field configurations with symmetry project to singular points of 
the physical phase space (obtained by fonning a Marsden-Weinstein quotient with respect to 
the gauge group; see IV.3). These applications are studied in Fischer et al. [1980], Isenberg 
and Marsden [1981], Anns [1981, 1986], Anns et al. [1981], and Emmrich and Romer 
[1990]. The two-dimensional case enables one to perfonn explicit calculations; see IV.3.6 
and notes thereto. 

Moduli spaces of flat connections on a compact Riemann surface provide closely related 
examples; from the large body of literature on this topic, starting with Atiyah and Bott 
[1983], we select Hitchin [1990], Weinstein [1995], Huebschmann [1996], and Jeffrey and 
Weitsman [1997] (and references therein to earlier work of these authors). For the moduli 
space of all Yang-Mills connections on a compact Riemann surface see the review by 
Sengupta [1997], and references therein. 

IV.2.1 The theory of Hilbert C" -modules over commutative C' -algebras was initiated by 
Kaplansky [1953]. The generalization to the noncommutative case was studied by Paschke 
[1973], containing all results in this section except Corollary 2.1.4. Simultaneously, Rieffel 
[1974a] introduced pre-Hilbert CO-modules. A recent textbook is Lance [1995], which 
contains 2.1.4. 

For multiplier algebras in the present context see Wegge-Olsen [1993] or Lance [1995]. 
The advanced theory of Hilbert C" -modules, which we do not cover, is mainly due to Kas­
parov [1980,1981]. In his work, Hilbert C"-modules are a basic tool in the K-theory of 
C" -algebras, which is a noncommutative generalization of the theory of vector bundles. See 
Wegge-Olsen [1993] for a "friendly introduction" to this topic, and Connes [1994] for a 
high-level treatise. Blackadar [1986] and Skandalis [1991] review Kasparov's [1981] gener­
alization of operator K -theory, known as K K -theory. Frank [1998] contains an exhaustive 
bibliography on all aspects of Hilbert C* -modules. A detailed study of self-duality is in 
Frank [1990]. 

IV.2.2 Rieffel induction is due to Rieffel [1974a], which contains historical comments. He 
works entirely in the setting of pre-Hilbert C'-modules on which (2.4) does not necessarily 
hold (which he refers to as pre-~-Hilbert spaces). 

The construction revolving around (2.32) is taken from Hannabuss [1984]. Fell induction 
is due to Fell [1978]; also cf. Fell and Doran [1988] (which is an encyclopedic treatment 
of induction techniques in representation theory, including a vast bibliography). A related 
induction procedure is given by Bennett [1978]. 

IV.2.3 Operators of the type (2.47) appear in Rieffel [1974a], and the C"-algebra 
q(E, ~) is defined in Paschke [1973]. Theorem 2.3.3 is a "completion" of Prop. 6.18 
in Rieffel [1974a]; an essential step in the proof, namely the equality 11"'1121 = II "'1I'lI, is 
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equivalent to Prop. 3.1 in Rieffel [1979]. In the present fonn, Theorem 2.3.3 is a special 
case of Prop. 7.1 in Lance [1995]. 

IV.2.4 For the history of the concept of Morita equivalence see Morita's obituary by 
Arhangel'skii et al. [1997]; see, e.g., Bass [1968] for a textbook treatment. Morita's theorem 
in pure algebra states that two rings 2l and !B have isomorphic categories of (left) modules 
iff 2l is isomorphic to the endomorphism ring of a !B-module £, where £ and !B are each a 
direct summand of some (possibly different) power of each other. In that case 2l and !B are 
said to be Morita equivalent. An appropriate version of this concept is applied to C* -algebras 
and W*-algebras in Rieffel [1974b], and to general Banach algebras in Gr~nbrek [1995]. 
With an appropriate definition of modules and category equivalence, Rieffel [197 4b] shows 
that two von Neumann algebras 9Jt and IJ1 have isomorphic categories of (left) modules iff 
9Jt = C'(£, 1J1) for some Hilbert C'-module £ ~ 1J1. 

What we (following, e.g., Skandalis [1991] and [Lance [1995]) for simplicity call Morita 
equivalence in the main text should more properly be called strong Morita equivalence, 
which is indeed the tenninology used in most of the literature. The original definition of 
this equivalence relation by Rieffel [197 4a] consisted in the conditions of Proposition 2.4.4, 
on the basis of which he fonnulated and proved Theorem 2.4.5. Various generalizations of 
Rieffel's imprimitivity theorem are studied in Fell [1978] and Fell and Doran [1988]. 

The correspondence between the representations of 2l and !B established in Theorem 
2.4.5 can be shown to preserve weak containment, but not cyclicity. 

An interesting result, due to Brown et al. [1977], is that two C* -algebras 2l, !B with 
countable approximate identity (this is automatic when the algebras are separable) are 
strongly Morita equivalent iff they are stably isomorphic; that is, when 2l ~ !B ® !BoO-£) 
for separable 1t. Also cf. Lance [1995]. The notion of stable isomorphism appearing here 
is a noncommutative generalization of the same concept for vector bundles. 

IV.2.S The idea of looking at Hilbert CO-modules coming from a group representation 
first appeared, in a different context, in Rieffel [1988]. It was rediscovered in Landsman 
[1995a], which contains most results in this section. 

It would be interesting to have a criterion on U or H guaranteeing that the dense subspace 
t C 1t assumed in Theorem 2.5.4 exists. More generally, one could ask for conditions 
guaranteeing the existence of an t such that the function defined by (2.77) lies in L I(H) for 
all \II, ¢ E t. This question is well known when Ll is replaced by L2; see, e.g., Dixmier 
[1977]. 

The fact about amenable groups used in the proof of Theorem 2.5.4 may be found in 
§3.6 of Greenleaf [1969], or in §II.3 of Renault [1980] (where the existence of the Uj is 
even given as the definition of amenability). 

One may generalize the construction to the case where U is a representation of a Lie 
groupoid as defined in III.3.5.1, with associated direct integral Hilbert space III.(3.53). The 
generalization of (2.76) is 

Equation (2.77) becomes 

(\II, ¢}cgo(G) : Y ~ (\II't(Y)' U(Y)¢"(Y»'t(Y)' 

For <I> = \II this is positive when r is amenable as defined by Renault [1980]; the relevant 
part of the proof of Theorem 2.5.4 may simply be copied. 
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IV.2.6 Theorem 2.6.1 is due to Rieffel [1974a]; also cf. Fell and Doran [1988]. The 
special case Corollary 2.6.4 is due to Mackey, and holds for locally compact groups. For the 
original proof see the books cited in the notes to III.2.9. A somewhat different derivation of 
Theorem 2.6.1 may be found in Rieffel [197 4a] and Fell and Doran [1988]. The intermediate 
case Theorem 2.6.2 incorporates the generalization of 2.6.4 given by Moscovici [1969]. 

IV.2.7 A different derivation of Mackey's transitive imprimitivity theorem from Rieffel's 
imprimitivity theorem may be found in Rieffel [1974a] and Fell and Doran [1988]. These 
authors do not use the groupoid C* -algebra C*(P x H P) and then specialize to P = G, 
but directly construct an equivalence bimodule between C*(G, G I H) and C*(H). A very 
efficient proof of the transitive imprimitivity theorem is given by 0rsted [1979]. 

Theorem 2.7.3 is contained in Glimm [1961, 1962]. Our proof combines the easy part 
of the proof of Thm. I in Glimm [1961] (namely the implications I ---+ 2 and 3 ---+ 4) with 
§V1.5 of Varadarajan [1985] and some elements of the proof of Prop. 8.1 in Rieffel [1979]. 
A different approach to the proof is contained in the proof of Thm. 2.2 in Glimm [1962], 
which could be somewhat simplified by using Lemma 1.1 in Effros and Hahn [1967]. 

The fact that Gqo is homeomorphic to GIG qO under the regularity assumption is con­
tained in Thm. I of Glimm [1961]. A simpler proof may be given by first noting that the 
orbit is Hausdorff (which is a trivial consequence of the regularity assumption), and then 
proceeding as in the proof of Prop. 7.1 in Rieffel [1979]. 

An interesting application of Theorem 2.7.3 to the theory of quantum groups is contained 
in Koomwinder and Muller [1997]. 

When the regularity assumption on (G, Q) does not hold, the classification of the ir­
reducible representations of C*(G, Q) appears to be impossible, and the right object to 
study is the primitive ideal space of C*( G, Q). This study was initiated by Effros and Hahn 
[1967], whose main conjecture on the structure of this space was proved by Gootman and 
Rosenberg [ 1979]. 

IV.2.8 Definition 2.8.1 is usually given in terms of covariant POV-measures; see all 
books on POV-measures cited in the notes to 11.1.4 also for the covariant case. Theorem 
2.8.2 is due to Poulsen [1970], and was rediscovered in physics by Neumann [1972], with 
further contributions by Scutaru [1977], Cattaneo [1979], and Castrigiano and Henrichs 
[1980]. Applying this theorem to the covariant Berezin quantization of the coadjoint orbits 
of compact Lie groups studied in III.I.II, one is naturally led to the Borel-Wei! theory (cf. 
the notes to 1II.1.1 0), in a way independent of geometric quantization. 

The analysis of covariant localization on ]R3 was initiated by Newton and Wigner [1949], 
and was reformulated in terms of systems of imprimitivity by Wightman [1962]. He used 
the original definition of these systems, namely (2.118). The generalization to arbitrary 
homogeneous spaces is due to Mackey [1968, 1978]; see Varadarajan [1985] for a detailed 
technical account, and consult Mackey [1992, 1998] for historical comments. 

The Mackey-Wightman approach was further developed in Doebner and Tolar [1975], 
who suggested that the natural quantum Hamiltonian on 1tx is the middle term in III.(2.192); 
cf. the classical expression 111.(2.135). Moreover, they remarked that one could state the 
theory in terms of the action C* -algebra C*(G, G I H). This approach was further developed 
by Majid [1988, 1990] and Landsman [1990a,b, 1992]. Other aspects of quantization theory 
on homogeneous spaces are discussed in Emch [1982, 1983], Camporesi [1990], Landsman 
and Linden [1991], Marinov [1995], Robson [1994,1996], and Wu [1998]. The last two 
references confirm the picture sketched at the end of the section via geometric quantization. 

Unlike a massive particle, a photon cannot be localized in the configuration space JR.3 
in an E(3)-covariant way. It may, however, be covariantly localized in the generalized 
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sense nonnally applied to phase space localization; see, for example, Ali and Emch [1974], 
Kraus [1977], and Brooke and Schroeck [1996]. In the notation of (2.109) etc., the wave 
function \II of a photon belongs to the subspace of elements \II E 'HI that satisfy the 
transversality condition V . \II(x) = O. The projection p onto this subspace (given by 
p\ll = \II - .6.L: I VV. \II, where.6.L is the Laplacian) commutes with U I (E(3», so that one 
is in the setting of 2.8.2, with G = E(3), H = SO(3), ux = U l , and ir x = ir l as defined 
in (2.117). 

By Proposition 11.1.4.8, this leads to an E(3)-covariant POVM .6. t4 A(.6.) on ]R3 in 
p'Hl. In line with Corollary 11.1.4.9, this POVM is given by A(.6.) = pE(.6.)p, where 
E(.6.) = Xt;. ® ][1 (cf. the main text). The position operators Qk = JIll dA(x)Xk (cf. 
11.(1.34) and the main text) do not commute with each other. The classical counterpart 
of this phenomenon is mentioned after (3.8). Indeed, Duval and Elhadad [1992] show that 
the geometric quantization of the canonical classical position variables precisely yields the 
quantum position operators Qk just defined. 

A different approach to photon localization, based on microlocal analysis, has been 
initiated by Omnes [1997b]. 

IV.2.9 The problem of quantizing constrained systems has been faced since the earliest 
days of quantum mechanics. A good historical overview of the treatment of gauge invariance 
in quantum electrodynamics is given in Weinberg [1995], which with Weinberg [1996] also 
contains an up-to-date treatment of heuristic techniques used by physicists to deal with 
gauge invariance and constraints. 

Books more specifically dealing with constrained quantization include Dirac [1964] 
(which initiated the modern era), Sundenneyer [1982], Govaerts [1991], and Henneaux and 
Teitelboim [1992]. The technique of BRST quantization developed in the last two books 
(as well as in Weinberg [1996]) seems to perfonn well in quantum field theory and string 
theory, especially in their path-integral version. Applied to finite-dimensional systems, the 
operatorial BRST technique faces similar functional-analytic problems as the Dirac method; 
cf. Landsman and Linden [1992] for simple examples. Nonetheless, the BRST method 
remains the most highly developed and widely used method of constrained quantization to 
date. See Duval et a1. [1991] for a "bosonic" refonnulation of BRST. 

There is an extensive literature on the geometric quantization of constrained systems; 
see, for example, Gotay [1986], Ashtekar and Stillennan [1986], Blau [1988], Thynman 
[1990], Woodhouse [1992], and Robson [1994, 1996]. 

A CO-algebraic approach to constrained quantization that is closer in spirit to the Dirac 
method than the technique described in the main text, has been developed by Grundling and 
Hurst [1985, 1987, 1988a,b]. Applications to quantum field theory are given in Grundling 
[1988]; similar techniques are used by Thirring and Narnhofer [1992], and Acerbi et a1. 
[1993a,b]. This approach has the advantage of being able to handle second-class constraints 
(which in our method have to be brought into first class fonn by refonnulating the classical 
situation), but lacks the connection with symplectic reduction and Hilbert C* -modules. 

Other mathematically sound attempts to rescue the Dirac method include Ashtekar and 
Tate [1994] ,Ashtekar et a1. [1995], and Klauder [1997]. In Klauder's approach the projec­
tion Pid is replaced by approximate projections in the spirit of the p~ used in the proof of 
Theorem 2.5.4. 

The use of Rieffel induction in constrained quantization started with Landsman [1995a]; 
Definition 2.9.1 appeared in Landsman [1998a]. 

The idea of constructing an inner product by group averaging as in (2.81) (with 'Hx = C) 
goes back at least to Nachtmann [1968]. In the context of constrained quantization see 
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Teitelboim [1982, 1984], Higuchi [1991], Halliwell and Hartle [1991], and Ashtekar et al. 
[1995]. 

IV.2.lOThe analysis of the operator (2.127) is done with Weyl's method; see, for example, 
Thm. X.7 in Reed and Simon [1975]. Our operator is in the limit circle case at 0 and in the 
limit point case at 00. The essential self-adjointness on Vx C;"'(]R2) follows from Thm. 3 in 
Nussbaum [1964], or from a direct argument. Some abstract theory behind this example is 
developed in Wren [1997], who in addition discusses a profound generalization. 

There is a great deal of literature on generalized eigenfunctions of the type fl and 
the corresponding expansions; see Berezanskii [1968] for an old but still adequate, and 
Poerschke et al. [1989] and Poerschke and Stolz [1993] for a more recent treatment. The 
group generated by the Lie algebra defined by (2.137) is the two-dimensional Poincare 
group. 

It is instructive to replace the classical constraint rp = ~ (p? - pi) by rp± = rp± ~ exp( 4q I). 
Interestingly, the Hamiltonian flow of rp_ on T*]R2 is incomplete, so that the constraint fails 
to generate an action of R 

The constraints are quantized on L2(lR2) by Q(rp±) = Q(rp) ± & exp(4q I), where the 
last term is a multiplication operator. The incompleteness of rp_ is reflected in the quantum 
theory, because Q(rp_) is not essentially self-adjoint on C;"'(lR2). What follows applies to 
any self-adjoint extension. 

The most fundamental difference between rp and rp± is that the spectrum of (the closure 
of) Q(rp+) and of Q(rp_) is lR with mUltiplicity one, whereas the spectrum of Q(rp) is lR with 
multiplicity two. Consequently, for fixed k only one of the two generalized eigenfunctions 
of Q(rp±) plays a role in the construction of the induced space (as opposed to the pair fl 
in the main text), which is naturally isomorphic to L2(lR, dk/2rclki). These eigenfunctions 
may be deduced from the elementary theory of Bessel functions, but one needs more specific 
Hilbert space techniques to decide which one occurs in the spectral decomposition of 'H. 
These techniques may be found, for example, in Picard [1989]. 

The details of the quantum treatment of rp and rp± may be found in Landsman [1998a]. 
These constraints are motivated by quantum cosmology and the question what the "wave 
function of the universe" should be; see Landsman [1995c] for this context. See Marolf 
[1997] and references therein for an analogous treatment of the constraints of quantum 
cosmology. 

The above consideration on multiplicity is relevant to the constrained quantization 
proposal of Hiijicek [1994], who suggests that all generalized solutions of the quantum 
constraints should be used in the construction of the physical Hilbert space of pure quantum 
states. 

A different approach to the quantization of singular Marsden-Weinstein quotients is 
presented by Emmrich and Romer [1990], who face the problem of having to decide 
which self-adjoint extension of the reduced Hamiltonian to choose. See Sniatycki and 
Weinstein [1983] for yet another approach (further discussed in Wren [1997]). Meinrenken 
and Sjamaar [1998] look at the problem in the context of geometric quantization. 

Despite the existence of a large number of papers on the quantization of the moduli space 
of flat connections on a compact Riemann surface (cf. the notes to 1.11), the effect of the 
singularities in this space on the quantum theory is not well understood (see Jeffrey and 
Weitsman [1992] for a careful treatment of the singular points in geometric quantization). 

IV.3.t Forthe Poincare group and its use in physics see Barut and Racka [1977], Varadara­
jan [1985], Woodhouse [1992], or Weinberg [1996]. The coadjoint orbits of the Poincare 
group were first described by Souriau [1969, 1997] and Arens [ 1971 a,b]. Further discussions 



Reduction and induction 479 

of these orbits may be found in Guillemin and Sternberg [1984], Carinena, Gracia-Bondia, 
and Vanlly [1990], Woodhouse [1992], Duval and Elhadad [1992], and Schroeck [1996]. 
The noncommutativity of position coordinates of particles with nonzero spin or helicity is 
discussed by Bacry [1988]. 

IV.3.2 For m > 0, Theorem 3.2.2 is suggested in §I.20 of Guillemin and Sternberg [1984]. 
The general case is taken from Landsman and Wiedemann [1994], where the details of the 
proof may be found. 

IV.3.3 For Proposition 3.3.1, originally due to Wigner [1939], see the first four references 
in the notes to IV.3.1 above. It is usually thought that the irreducible representations of P 
provide an adequate description of elementary particles in asymptotic states (and this was 
Wigner's motivation as well), but this description fails even for electrons (because of the 
photon cloud always surrounding them), and also, for different reasons, for quarks and 
gluons. See Buchholz [1996] for a promising new approach. 

The trick involved in (3.20) is due to Carey et al. [1977, 1978]. Proposition 3.3.3 comes 
from Landsman [l995a]. For covariant representations see the notes to the next section. 

One may wonder whether covariant Berezin quantizations of the coadjoint orbits of the 
Poincare group exist; see the discussion following the proof of Theorem 2.8.2. It unfor­
tunately turns out that for the physical orbits the condition in Corollary 2.8.3 cannot be 
satisfied; see Schroeck [1996] (who reaches this conclusion in a different way), and ref­
erences therein on this issue. For attempts to construct nonetheless a covariant relativistic 
quantum mechanics of single particles, see Ali [1985], Ali et al. [1995], and Schroeck 
[1996]. As explained in Ali [1998], this leads to a hyperplane-dependent notion of local­
ization in phase space. (For the analogous proposal of hyperplane-dependent localization 
in Minkowski space, see Butterfield and Fleming [1998].) At least for the massive orbits, 
covariant Weyl quantization turns out to be possible; see Carinena et al. [1990]. This is 
reminiscent of the nonrelativistic theory, in which Weyl quantization has better covariance 
properties than Berezin quantization, too; cf. Theorems 11.2.4.3 and 11.2.5.1. 

IV.3.4 Covariant representations of P and Proposition 3.4.1 have a long tradition (going 
back to Pauli and Wigner), culminating in the work of Weinberg [1995] (in which references 
to his original work in the early sixties may be found). For a more mathematical treatment 
of wave equations for massive fields see Barut and Ra~ka [1977] and Asorey et al. [1985]. 

The finite-dimensional representations of the Lorentz group are labeled by two positive 
integers jl, jz. The decomposition of Rt,h ,h) under the restriction to SO(3) is given by the 
well-known Clebsch-Gordan series, so that all integral spins between Ijl + jz I and Ijl - jz I 
occur. In the restriction to E(2) the only helicity that occurs as a proper subrepresentation 
is h - h; see Weinberg [1995]. This result misses representations on reduced spaces, and 
therefore fails to explain the connection between masslessness and gauge invariance.1t does 
explain why helicity 0 occurs in the proof of Proposition 3.4.2, since Rv = R(l/2,1/2)' 

The second half of 3.4.2 is taken from Landsman and Wiedemann [1994], as is Theorem 
3.4.4. This paper also treats helicity ±2, relating the masslessness of the graviton to the 
infinitesimal diffeomorphism invariance of linearized gravity. 

The idea of gauge invariance lies at the basis of modem high-energy physics. The con­
nection between masslessness and gauge invariance holds for most, but not all, interacting 
theories. The most famous exception is massless quantum electrodynamics in d = 2, as 
recognized by Schwinger [1962]; see Lowenstein and Swieca [1971] for the definitive 
treatment of the Schwinger model. 

1V.3.5 A standard reference for the CCR-algebra is Bratteli and Robinson [1981], which, 
however, does not give Definition 3.5.1. The equivalence between our definition (which 
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we learned from H. Grundling) and the standard one may be proved using a uniqueness 
theorem due to Slawny [1972]. As is clear from the fact that to define the CCR-algebra one 
quite unnaturally has to equip lC with the discrete topology, it is an object best avoided. 

Our definition of the Fock representation is also different from, but equivalent to, that 
in Bratteli and Robinson [1981]. In physics this representation is known as the second 
quantization of lC; the representation Ui defined in Proposition 3.S.2 is usually called 
r(Ux)' See, for example, Reed and Simon [197S]. 

Proposition 3.S.3 is due to Grundling and Hurst [1987]; the present proof, due to H. 
Grundling, fills a gap in the proof in that reference. Araki [1963], Thm. I(S), gave an 
arduous proof of the corresponding von Neumann algebra result Jr(2U(V»" = Jr(2U(VJ. »' 
for any regular representation Jr. This result follows immediately from 3.S.3, so that the 
regularity assumption may evidently be dropped. 

The Fock representation of 2U(So.lR. v), with the conventions (3.20), was introduced by 
Carey et al. [1977, 1978], who regard it as a rigorous version of the Fermi representation 
of quantum electromagnetism. 

The treatment of Radon measures based on his own theory of Hilbert subspaces (cf. the 
notes to 1I.1.S) may be found in Schwartz [1973]. Related approaches to measure theory on 
infinite-dimensional topological vector spaces are presented in Kuo [197S] and Guichardet 
[1972]. Malliavin [1997] is entirely concerned with Gaussian measures. Physicists will 
enjoy the discussion in DeWitt-Morette et al. [1979] and Choquet-Bruhat et al. [1982]. 

The Gaussian measure /-ty on V defined by (3.S3) is the image of a so-called cylinder 
measure /-t~ on ft, but this way of looking at things is complicated by the fact that in infinite 
dimension /-ty(ft) = 0, although /-t~(ft) = I. 

Theorem 3.S.S, generalizing the original result of Cameron and Martin [1944] for ft = 
L2([0, I], ]Rn) and V = C([O, 1], ]Rn)o, is due to Thomas [1983]. Related results are in Kuo 
[I97S] and Malliavin [1997]. A locally convex space is called quasi-complete when all 
closed and bounded sets are complete. 

Theorem 3.S.7 is due to Landsman and Wiedemann [1994] (also see Wiedemann [1994]), 
who used cylinder measures on 9. The conventional treatment of the quantized free 
electromagnetic field may be found in Weinberg [199S]. 

There actually exists a construction of a group algebra for certain infinite-dimensional 
groups; see Grundling [1997]. It would be interesting to try to formulate Theorem 3.5.7 
using Rieffel induction on this group algebra. 

IV.3.6 The literature on two-dimensional Yang-Mills theories is formidable; much of 
it was triggered by the work of Rajeev [1988] and Witten [1991, 1992]. A review of the 
Euclidean theory is given by Sengupta [1997]. 

Definition 3.6.1 is due to Rajeev and Rossi [199S]. For Sobolev loop groups see Frenkel 
[1984] and Freed [1988]. (A basic reference on smooth loop groups is Pressley and Se­
gal [1986].) Sobolev spaces of paths on Riemannian manifolds are studied in Klingenberg 
[1982]. In general dimensions, Sobolev gauge groups and spaces of connections are con­
sidered, e.g., in Mitter and Viallet [1981], Freed and Uhlenbeck [1984], and Kondracki and 
Sadowski [1986]. 

A proof of the smoothness claimed in Lemma 3.6.2 may be found in Freed and Uhlenbeck 
[1984], App. A, or in Rajeev and Rossi [I99S]. The latter also contains the description of 
9 as a semidirect product, as well as Lemma 3.6.4 (whose heuristic version first appeared 
in Rajeev [1988]). 
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Wilson loops come from physics, where one writes (3.73) as 

W(A) = P Exp ( - [ da A(a») . 

Here P stands for path-ordering; see Dollard and Friedman [1979] for a rigorous discussion 
of such "path-ordered" or "product" integrals. Wilson loops are used in Yang-Mills theory 
as well as in gravity. An interesting monograph on this topic is Gambini and Pullin [19%], 
where further references may be found. 

Proposition 3.6.3 and Theorem 3.6.5 are taken from Landsman and Wren [1997]. Gross 
[1993], Thm. 2.5, proves the statement preceding Theorem 3.6.5 for almost every A with 
respect to the measure tL~' defined in 3.7. 

For Definition 3.6.6 see Brocker and tom Dieck [1985]; Proposition 3.6.7 is due to Hall 
[1997b]. 

Langmann and Semenoff [1993] relate the appearance of the Weyl group W in the Stieffel 
chamber T / W to the so-called Gribov problem, which occurs when one tries to fix the gauge 
in this model. The geometry of Stieffel chambers is discussed in Brocker and tom Dieck 
[1985]. The effect of the singularities in these chambers on constrained quantization is 
analyzed in Wren [1997, 1998b]. 

IV.3.7 Proposition 3.7.1 is due to Dimock [1996]. The representation (3.85) has been 
considered, in various realizations, by many authors, such as Albeverio and Hoegh-Krohn 
[1978], Frenkel [1984], and Ismagilov [1996]. It is a special case of a general class of 
"energy" representations of gauge groups in various dimensions introduced by Gelfand 
et al. [1977]. Further to these authors, Albeverio et al. [1981] and Wallach [1987] show 
that such representations are irreducible when the dimension of space is 2: 3, and provide 
criteria for irreducibility in dimension 2. In our case of dimension I, the representation U y 

is evidently reducible, but Driver and Hall [1998] prove that as in higher dimensions, it has 
no trivial subrepresentation. 

A complete proof of Lemma 3.7.3 may be found in Guichardet [1972], Thm. 7.1. Equation 
(3.89) in Definition 3.7.4 is motivated by a construction of Dimock [1996], who uses 
stochastic calculus. The approach through (3.90) is due to Wren [1998a,b]. 

For Ito's map and all Wiener measures in this section see Frenkel [1984] and Malliavin and 
Malliavin [1990]. The Cameron-Martin formula (3.1 (0) appears as Prop. (5.2.7) in Frenkel 
[1984], Thm. 1.3 in Malliavin and Malliavin [1990], and Thm. XI. 1.4.3 in Malliavin [1997]. 
A further generalization to paths on Riemannian manifolds is given by Hsu [1995]; also cf. 
Malliavin [1997]. 

Different approaches to the quantization of Yang-Mills theory on a cylinder are presented 
by Hetrick [1994], Dimock [1996], and Hall and Driver [1998]. For the Euclidean theory 
see Witten [1991, 1992]. 

IV.3.8 For H = U(1), Theorem 3.8.1 and its proof are due to Landsman and Wren 
[1997]; the general case was proved by Wren [1998a,b]. The connection between the Wiener 
measure and the heat kernel on ]Rn is classical; for loop groups see Frenkel [1984] and 
Malliavin and Malliavin [1990]. For smoothness and other properties of general heat kernels 
cf. Davies [1989]. The analyticity arguments used in the proof of 3.8.1.5 are developed in 
Hall [1994] (who establishes the unique analytic continuation of the heat kernel on H) and 
Wren [1998b]. 

Definition 3.8.3 is due to Hall [1994], who actually defined two inequivalent families 
of coherent states for compact Lie groups (a third family was added in Hall [1998]). The 
associated Segal-Bargmann transform is studied in Hall [1994, 1997a]. For a review cf. 
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Hall [1997c]. Hall's coherent states appear, in a different way, also in the quantization of 
Yang-Mills theory on a circle by Hall and Driver [1998]. 

We have not addressed the rather difficult issue of the Hamiltonian of the theory; see 
Dimock [1996] and Wren [1998a,b]. 

1V.3.9 The role of ]1') (Q) and the associated "B-angles" in the quantization of a particle 
on a multiply connected configuration space was independently discovered by Schulman 
[1968, 1981] and Souriau [1969, 1997]. Another important early paper is Laidlaw and 
DeWitt [1970]. More recent treatments, all different from ours, are Sniatycki [1980], Isham 
[1983], Horvathy et al. [1989], Balachandran et al. [1991], and Giulini [1995]. 

In the works of all these authors the fundamental group ]I')(Q) plays a central role. 
To relate this to discrete reduction, we generalize the discussion of multiply connected 
Lie groups in the main text. Recall that a multiply connected space Q may be written as 
Q = Q/]I')(Q), where Q is the universal covering space of Q. As for Q = G, we have 
T' Q ::::: (T' Q)/]I') (Q). Hence the inequivalent quantizations of T' Q are labeled by the 
unitary dual of ]I')(Q). 

The emergence of B-angles in quantum field theory was discovered by Lowenstein and 
Swieca [ 1971]. It later turned out that such angles are relevant to quantum chromodynamics; 
the physics literature is reviewed by Jackiw [1985] and Weinberg [1996]. For U(l) gauge 
theory on the circle also see Manton [1985]. There is a fundamental difference between 
8-angles in quantum field theories on a compact space, which are of a purely topological 
nature, as discussed in the main text, and also in Asorey [1981] and Jackiw [1985], and 
B-angles in theories on a noncompact space. The latter are of a dynamical origin, and 
are closely related to the infrared behavior of the theory. See Acerbi et al. [1993b], and 
Loffelholz et al. [1996] for a rigorous discussion. 

The treatment of quantum mechanics on the circle is taken from Landsman [1990b]; 
an alternative mathematical discussion may be found in Isham [1983] and in Asorey et al. 
[1983]. The Aharonov-Bohm effect was discovered by Aharonov and Bohm [1959]; for a 
rigorous discussion see Asorey [1982] and Ruijsenaars [1983]. The easiest way to prove 
(3.120) is to use the theorem of Dixmier and Malliavin [1978] quoted in the notes to III. 1.5. 
This yields the boundary condition on IJI; the precise domain then follows from Example 1 
in Section X.I of Reed and Simon [1975]. 

Our approach to 8-angles in constrained quantization, taken from Landsman and Wren 
[1997], is intended to explain the origin of B -angles in quantum Marsden-Weinstein reduc­
tion by a disconnected gauge group. (The theory and applications of discrete reduction in 
classical mechanics may be found in Marsden [1992].) We hereby complement treatments 
based on Dirac's quantization method (such as the one of Jackiw [1985]). 
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regular representation, 206 
trivialization, 192 

root, 217 
R*-algebra, 434 

Scalar potential, 149 
SchrOdinger 

equation, 74 
operator, 149 
representation, 128 

Schur's lemma, 63 
second 

class constraint, 314 
cohomology group of g, 182 
quantization, 480 

section, 17 
of a bundle, 224 
of a continuous field of C' -algebras, 

110 
of a field of Hilbert spaces, 284 
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sector, 6, 80 
self-adjoint 

element of a • -algebra, 40 
part of a C· -algebra, 2, 40 

self-dual Hilbert C' -module, 357 
semiclassical propagator, 152 
semiclassical Schrooinger equation, 152 
semidirect product, 298 
semimodularity,441 
shifting trick, 326 
a-weak topology, 59 
singular 

coad joint orbit, 216 
foliation, 69 
Marsden-Weinstein reduction 

classical, 349 
quantum, 390 

weight, 217 
small gauge transformations, 416 
smooth 

C' -dynamical system, 279 
distribution, 69 
groupoid action, 300 
Poisson space, 77 
system of imprimitivity, 280 
vector, 198 

source projection, 269 
special symplectic reduction, 26, 316 
spectral 

radius, 41 
resolution, 88 
theorem, 88 

spectrum, 42 
spin, 395 
s-system, 276 
stable isomorphism, 475 
state, 49 
state space, 2, 49 
Stieffel chamber, 419 
strict deformation quantization, 109 
strict quantization 

of a Poisson algebra, 9, 108 
of a Poisson manifold, 109 

strong 
Morita equivalence, 475 
symplectic form, 435 
operator topology, 58 

strongly Hamiltonian 
g-action, 15,181 

group action, 184 
structure group, 225 
subgroupoid, 271 
sup-norm, ix 
superselection rules, 2 
symbol, 156, 297 
symmetric transition probability space, 

5,81 
symplectic 

affinoid space, 471 
cocycles, 186 
decomposition of a Poisson manifold, 

69 
form, 68 
Fourier transform, 143 
group, 129 
groupoid, 470 
induction, 472 
leaf, 70 
leaves, 4 
Lie groupoid action, 470 
orthogonal complement, 313 
piece, 352 
Poisson manifold, 4, 68 
reduction, 25, 313 
reduction in stages, 336 
submanifold, 315 

symplectically complete foliation, 319 
symplectomorphic, 69 
symplectomorphism, 69 
system of imprimitivity 

classical, 24, 299 
quantum, 23, 291 

Szego projection, 448 

Tangent groupoid, 309 
target projection, 269 
f)-angle, 32, 36, 432 
time-dependent WKB method, 12, 453 
time-independent WKB method, 454 
Toeplitz operators, 448 
torsion-free connection, 158 
torus, 215 
total space 

of a bundle, 224 
of a groupoid, 269 

transformation group C' -algebras, 467 
transition 

functions, 226 



probability, 5,80 
probability space, 80 

transitive 
genemlized system of imprimitivity, 

383 
groupoid, 271 
imprimitivity theorem 

classical, 27, 332 
quantum, 31, 291 

system of imprimitivity, 332 
trivial 

bundle, 224 
cocycle, 182 
continuous field of C' -algebras, 110 

(-system, 276 
tubular neighborhood, 163 
tubular neighborhood theorem, 455 
twisted 

convolution, 202 
covariance algebra, 460 
enveloping algebra, 200 
group C' -algebm, 204 
Lie-Poisson structure, 192 
reduced group C' -algebm, 202 

two-sphere property, 98 
typical fiber, 224 

Uniform 
Poisson space, 77 

unimodular, 201 
unit, 41, 270 
unit space, 270 
unital J B-algebra, 41 
unitarity, 6 
unitary,86 
unitary dual, 205 
unitization, 41 
universal representation, 54 
upper symbol, 447 

Vacuum angle, 32, 36, 432 
vector 

bundle, 17,225 
representation, 33, 401 
state, 53 

vertical 

curve, 154 
subspace, 154 
tangent space, 227 
vectors, 227 
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von Neumann algebm, 59 
von Neumann's condition, 108 

Weak 
classical observable, 25, 315 
opemtor topology, 59 
quantum observable, 387 
symplectic form, 435 

weakly contained, 205 
weight, 215 
weight lattice, 215 
weights of a representation. 217 
Weinstein dual pair, 471 
well-behaved, 81 
Weyl 

chamber, 217 
exponential map, 304 
group, 215 
operator, 129 
opemtors, 11 
quantization 

on a Riemannian manifold, 164 
on flat space, 11, 141 
on the dual of a Lie algebra, 212 
on the dual of a Lie algebroid, 306 

symbol,142 
Wiener measure, 35 

on loops in H, 423 
on paths in ~, 423 
on paths in H, 423 

Wigner function, 142 
Wilson loop, 35,417 
Wong equations 

classical, 18, 242 
quantum, 257 

Yang-Mills Hamiltonian, 258 
Yang-Mills theory on a circle 

classical, 34, 414 
quantum, 420 

Zero section, 163,225 
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