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[ realize that the disappearance of a culture does not signify the disappearance
of human value, but simply of certain means of expressing this value, yet the fact
remains that [ have no sympathy for the current of European civilization and do
not understand its goals, if it has any. So I am really writing for friends who are
scattered throughout the corners of the globe.

Our civilization is characterized by the word “progress”. Progress is its form
rather than making progress one of its features. Typically it constructs. It is oc-
cupied with building an ever more complicated structure. And even clarity is only
sought as a means to this end, not as an end in itself. For me on the contrary
clarity, perspicuity are valuable in themselves. I am not interested in constructing
a building, so much as in having a perspicuous view of the foundations of typical
buildings.

Ludwig Wittgenstein



Preface

Subject Matter

The original title of this book was Tractatus Classico-Quantummechanicus, but
it was pointed out to the author that this was rather grandiloquent. In any case,
the book discusses certain topics in the interface between classical and quantum
mechanics. Mathematically, one looks for similarities between Poisson algebras
and symplectic geometry on the classical side, and operator algebras and Hilbert
spaces on the quantum side. Physically, one tries to understand how a given quan-
tum system is related to its alleged classical counterpart (the classical limit), and
vice versa (quantization).

This monograph draws on two traditions: The algebraic formulation of quan-
tum mechanics and quantum field theory, and the geometric theory of classical
mechanics. Since the former includes the geometry of state spaces, and even at
the operator-algebraic level more and more submerges itself into noncommutative
geometry, while the latter is formally part of the theory of Poisson algebras, one
should take the words “algebraic” and “geometric” with a grain of salt!

There are three central themes. The first is the relation between constructions
involving observables on one side, and pure states on the other. Thus the reader will
find a unified treatment of certain aspects of the theory of Poisson algebras, oper-
ator algebras, and their state spaces, which is based on this relationship. Roughly
speaking, observables relate to each other by an algebraic structure, whereas pure
states are tied together by transition probabilities (in both cases topology plays
an additional role). The discussion of quantization shows both sides of the coin.
One side involves a mapping of functions on the classical phase space into some
operator algebra; at the other side one has coherent states, which define a map
from the phase space itself into a projective Hilbert space. The duality between
these sides is neatly exhibited in what is sometimes called Berezin quantization.
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The second theme is the analogy between the C*-algebra of a Lie groupoid
and the Poisson algebra of the corresponding Lie algebroid. For example, the role
played by groups and fiber bundles in classical and quantum mechanics may be
understood on the basis of this analogy.

Thirdly, we describe the parallel between symplectic reduction in classical me-
chanics (with Marsden—Weinstein reduction as an important special case) and
Rieffel induction (a tool for constructing representations of operator algebras) in
quantum mechanics. This provides an interesting example of the mathematical
similarities alluded to above, and in addition leads to a powerful strategy for the
quantization of constrained systems in physics.

Various examples illustrate the abstract theory: The reader will find particles
moving on a curved space in an external gauge field, magnetic monopoles, low-
dimensional gauge theories, topological quantum effects, massless particles, and
f-vacua. On the other hand, the reader will not find path integrals, geometric
quantization, the WKB-approximation, microlocal analysis, quantum chaos, or
quantum groups. The connection between these topics and those treated in this
book largely remains to be understood.

Prerequisites, Level, and Organization of the Book

This book should be accessible to mathematicians with a good undergraduate
education and some prior knowledge of classical and quantum mechanics, and to
theoretical physicists who have not completely abstained from functional analysis.
It is assumed that the reader has at least seen the description of classical mechanics
in terms of symplectic geometry, and knows the standard Hilbert space description
of a quantum-mechanical particle moving in R3.

The reader should be familiar with the basics of the theory of manifolds, Lie
groups, Banach spaces, and Hilbert spaces, say at the level of a first course. The
necessary concepts in operator algebras, Riemannian and symplectic geometry,
and fiber bundles are developed from scratch, but some previous exposure to these
subjects would do no harm.

It is suggested that the reader start by going through the informal Introductory
Overview as a whole. The main text is of a technical nature. The various chapters
are logically related to each other, but can be read almost independently. To study
a given chapter it is usually sufficient to be familiar with the preceding chapters
merely at the level of the Introductory Overview. Some technical details will, of
course, depend on previous material in a deeper way. One should by all means go
through the list of conventions and notation below.

In the interest of clarity and continuity, no credits or references to the literature
are given in the main text. These may be found in the Notes, which in addition
contain comments and elaborations on the main text. If no reference for a particular
result is given, it is either standard or new (we leave this decision to the reader).
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The author would be happy if glaring omissions in the notes or references were
pointed out to him.

In the Index, entries refer only to the location where an entry is defined and/or

occurs for the first time.

Conventions and Notation

Unless explicitly indicated otherwise, or obvious from the context, our conventions
are as follows.

General

The (Roman) chapter number is used only in cross-referencing between dif-
ferent chapters. In such references, numbers in brackets refer to equations and
those without refer to paragraphs (e.g., 1.2.3) or to sections (such as 1.2).

The symbol B means “end of proof”. The symbol L1 stands for “end of
incomplete proof”.

The equation A := B means that A is by definition equal to B.

The abbreviation “iff” means “if and only if”.

An index that occurs twice is summed over, i.e., a;a; := Y ; a;a;.

Projections between spaces are denoted by 7; in case of possible confusion we
write 7z, ¢ for the pertinent projection from E to Q.

e The symbol | means “restricted to”.

The symbol 1x stands for the function on X that is identically one.

e WeputO € R but0 ¢ N.

Functional Analysis

Vector spaces are over C, and functions are C-valued. Vector spaces over R are
denoted by Vg etc.; spaces of real-valued functions are written, for example,
C>®(P, R). The only exception to this rule is formed by Lie algebras g, which
are always real except when the complexification gc is explicitly indicated (this
occurs only in I1I.1.10, II1.1.11, and 1V.3.6).

The space Co(X), where X is a locally compact Hausdorff space, consists of
all continuous functions on X that vanish at infinity; the space of all compactly
supported continuous functions on X is denoted by C.(X), and the bounded
continuous functions form C,(X). These are usually seen as normed spaces
under the sup-norm

I flloo == sup|f(x)l.

xeX
When X has the discrete topology (relative to which all functions are continu-
ous), we often write £(X), £.(X), £2°(X), £o(X) for C(X), C.(X), L*°(X), and
Co(X).
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The topological dual of a topological vector space V is denoted by V*; hence
the double dual is V**. The action of 6 € V* on v € V is denoted by 6(v).
Multilinear forms « are similarly denoted by a(vy, ..., vy).

When confusion might arise otherwise, we write X+Y for X + Y in V; @ V,,
where X € Viand Y € V, (for example, in V @ V the expression X + ¥ would
be ambiguous, denoting either X + Y40, where X+Y e V>~ V@O C V@V,
or X+Y,or04+X +Y).

Hilbert Spaces

Inner products (, ) in a Hilbert space H are linear in the second entry and
antilinear in the first.

If K is a closed subspace of a Hilbert space H, then [K] denotes the orthogonal
projection onto K. If ¥ € H, we write [W] for [CW].

The symbol SH denotes the space of all unit vectors in H. The projective space
of H is called PH; hence PC"Y = CPV-!.

The symbols B(H), Bo(H), B1(H), B2(H) stand for the collections of all
bounded, compact, trace-class, Hilbert~Schmidt operators on H. The unit
operator in B(H) is called I. We write 9y (C) for B(CV).

When A and B are operators on H, the symbol [A, B] stands for the commutator
AB — BA. We also use {A, B}, := i[A, B]/h.

In the context of the previous item, or more generally when A and B are elements
of a Jordan algebra or a C*-algebra, A o B denotes 1(AB + BA). In all other
situations, o has its usual meaning of composition; i.e., when f and g are
suitable functions, one has f o g(x) := f(g(x)).

We say that two Hilbert spaces are naturally isomorphic if they are related by
a unitary isomorphism whose construction is independent of a choice of basis.
The Hilbert space L2(R") is defined with respect to Lebesgue measure.

Our convention for the inner product is the one mainly used in the physics

literature. Its motivation, however, is mathematical. Firstly, each W € H defines a
linear functional on H by ¥(®) := (¥, @), without the need to change the order.
Secondly, the convention is the same as for “inner products™ taking values in a
C*-algebra, which for good reasons are always taken to be linear in the second
entry; see IV.2.

C*-Algebras

The set of self-adjoint elements in a C*-algebra 2 is called 2. Its state space
is S(2A), and its pure state space is P(2).

The unitization of a C*-algebra 2 is called %j.

States on a C*-algebra are denoted by w; pure states are sometimes also called
p, o, or Y. The state space of 2 is called S(2); the pure state space is denoted
by P().
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The Gelfand transform A of A € g is the function on P(2) defined by
A(w) := w(A). When 2 is commutative, this concept is used for general A € 2.

o Representations of a C*-algebra are generically denoted by 7.
e The GNS-representation corresponding to a state w is called m,,, with canonical

cyclic vector €2,,.

e Equivalence of representations means unitary equivalence.
o The representation of a C*-algebra 2 induced (in the sense of Rieffel) by a

representation , of a C*-algebra B on a Hilbert space H, is denoted by
% (), realized on a Hilbert space HX.
Transformation group C*-algebras are called action C*-algebras.

Group Representations and Actions

Group representations on a Hilbert space are tacitly assumed to be continuous
and unitary.

The adjoint action of a Lie group G on its Lie algebra g is denoted by Ad; the
dual coadjoint action on g* is called Co, i.e., Co(x) := Ad*(x~1).

When H C G is a closed subgroup, the representation of G induced (in the
sense of Mackey) from arepresentation U, (H) on a Hilbert space H, is denoted
by U*(G), and is realized on a Hilbert space called H*.

e The unitary dual of a group G is denoted by G.
¢ Equivalence of group representations means unitary equivalence.

Differential Geometry

All manifolds (Lie groups included) are assumed to be real, smooth, connected,
Hausdorff, finite-dimensional, and paracompact.

Ifp : M — N is asmooth map between two manifolds, the pullback is denoted
by ¢*, and the pushforward is ¢, (often called Ty or ¢’ in the literature). In
particular, for g € C*°(N) the function ¢*g in C*°(M) is g o p.

We denote a point on a manifold Q by ¢, with coordinates g’ (in a given
chart; i = 1,...,dim(Q)). The dependence of the coordinates on the chart is
suppressed in the notation. We write 3; for 8/3q’. The point p;dq’ in the fiber
T, Q of the cotangent bundle 7* Q at g then has canonical coordinates (p;, q';
we denote this point by (p, ¢). Similarly, the point v'8; in the fiber T, Q of the
tangent bundle 7 Q at g has coordinates (v', g;), and we sometimes label this
simply as (v, g).

The action of 8 € Tq* Qonv € T, Q is written as 8, (v). Similarly for multilinear
forms, e.g., g, (v, w) stands for a Riemannian inner product of v, w € T, Q.

e The tangent vector (field) to a curve c¢(-) is called ¢(-).
e The symbol A"(Q) stands for the bundle of n-forms over Q. Also, A,(Q)

is the dual vector bundle of A"(Q), i.e., the bundle of totally antisymmetric
contravariant tensors.
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e The space of compactly supported smooth sections of a vector bundle E is
denoted by I'(E).
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Introductory Overview

I. Observables and Pure States

The aim of the first chapter is to give two descriptions of classical and quantum
mechanics, each of which enables one to see in a different way what their common
properties as well as their striking differences are. The first description focuses on
the observables of the theory, whereas the second one is based on the pure states.

Observables

Consider a particle moving in the configuration space Q = R3. Its phase space
is the cotangent bundle T*R3 ~ RS, and the collection of classical observables is
taken as Ql?R = C®(T*R%, R). This is a real vector space under pointwise addition
and scalar multiplication by real numbers.

Ordinary (pointwise) multiplication of f, g € A%, which for the moment we
write as f og, naturally defines a bilinear map on Qlﬂ%. This map is commutative and
associative. In addition, in mechanics a key role is played by the Poisson bracket

()= ot 38
p' 0q;  0q; p

Hence Ql% becomes a real Lie algebra under the Poisson bracket. This bracket is
related to o by the Leibniz rule, which says that g +— {f, g} is a derivation of
oforall f € A2, inthat {f,g o h} = {f, g} o h + g o {f, h}. Hence one coins
the abstract definition of a Poisson bracket on a commutative (but not necessarily
associative) algebra as a Lie bracket satisfying the Leibniz rule with respect to the
product defining the algebra.

In quantum mechanics the above system is described by an infinite-dimensional
space; to avoid complications we shall instead look at an N-level quantum system
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(N < o00). The set of its observables 2 is the real vector space 9y (C)g of
Hermitian complex N x N matrices. A symmetric bilinear product on g is given
by

Ao B:= YAB + BA).

-2

In addition, /g admits a Poisson bracket defined by
{A, B}y = %(AB — BA),

where i € R\{0}; in physics h has a specific numerical value, and is known as
Planck’s constant. A difference with the classical case is that o now fails to be
associative.

The following algebraic structure of the set of observables of classical or quan-
tum mechanics may be extracted from the above considerations. A Jordan-Lie
algebra %A is a real vector space equipped with two bilinear maps, o and {, }
that are commutative and anticommutative, respectively. For each A € g, the
map B + {A, B} is a derivation of the Poisson structure (g, {, }); this makes
(™Ug, {, }) a real Lie algebra. Also, B — {A, B} is a derivation of the Jordan
structure (g, o); this is the Leibniz rule. Finally, the associator identity

(AcB)oC —Ao(BoC)=LR*{{A,C}, B}

holds, for some constant h € R. For i = 0, in which case the commutative product
is associative, one speaks of a Poisson algebra; this associativity is an algebraic
characterization of classical mechanics.

The identity (Ao B)oA? = Ao(BoA?),where A2 := AoA, which makes (Ug, o)
a so-called (real) Jordan algebra, is implied by these axioms. A J B-algebra is
defined as a Jordan algebra for which 2 is a Banach space, and the norm and the
Jordan product o are related by certain axioms. We refer to a Jordan-Lie algebra
A for which (g, o) isa J B-algebraas a J L B-algebra (for Jordan-Lie—Banach).

A C*-algebra is a complex Banach space equipped with an associative
multiplication and an involution *, such that the C*-axioms

IABI < IAIIBIl, IA*All = | A))?

are satisfied. It can be shown that any C*-algebra is isomorphic to a norm-closed
subalgebra of B(H) for some Hilbert space H.

In elementary quantum mechanics one assumes that every (bounded) observable
of a given theory corresponds to a (bounded) self-adjoint operator on a Hilbert space
‘H, and vice versa. This assumption may be dropped, in which case the system is
said to possess superselection rules. The assumption that the observables form
the self-adjoint part Ag := {A € UA| A* = A} of a C*-algebra 2 then naturally
emerges. A crucial point is now that a J L B-algebra is the self-adjoint part of a
C*-algebra.

The state space S(A) of a C*-algebra 2 (with unit I) consists of all linear
functionals @ on 2 that are positive (that is, w(A*A) > O for all A € ) and
normalized (i.e., (I) = 1). Such states w are automatically continuous, so that
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S C A*. The space S(2) is equipped with the w*-topology inherited from 2(*.
If 2 €(0,1)and wy, w; € S(RA), then Awy + (1 — VNw, € SRA). Moreover, S(J)
is a closed subset of the unit ball of 2*. Hence S(2) is a compact convex set.

The state space of 2 = 90,(C) consists of the density matrices on CV. At the
opposite extreme, so to speak, one can show that the state space of A = C(X) for
a compact Hausdorff space X consists of the probability measures on X.

A representation of a C*-algebra 2 is a linear map 7 : A — B(H), for some
Hilbert space H, such that

n(AB) =n(A)n(B), =n(A")==m(A)".
For the J L B-algebra 2Ag this means that 7 : Ar — B(H)R satisfies
n({A, Bh) = {7 (A), n(B)}1; n(Ao B)=m(A)on(B),

here {A, B}; :=i(AB — BA)and Ao B := %(AB + BA), etc.

There is a remarkable correspondence between states and representations of
a C*-algebra. It is given by the GNS-construction. Given a state w on a C*-
algebra 2, this construction produces a representation 7, on some Hilbert space
‘H,, containing a unit vector €2, that is cyclic for 7, (%) (that is, 7, ()2, is dense
in H,,). These objects are related by

(le nw(A)Qm) = CU(A) VA € 2.

Conversely, let a vector 2 € H be cyclic for some representation 7 (). Then
w(A) = (2, T (A)R2) defines a state on 2 whose GNS-representation is equivalent
to .

Pure States

A state is called pure if it cannot be written as a convex combination of other
states. The set of pure states of a C*-algebra 2 is denoted by P(2l); any state w
can be approximated by finite sums ), p; p;, where )", p; = 1 and all p; are pure.
The pure state space of I, (C) and C(X) may be identified with the projective
space PC" and with X, respectively.

It is often convenient to look at A € 2 as a function A on P(); this is accom-
plished by putting A(p) = p(A). The map A — A is the Gelfand transform. The
ensuing realization of 2 as a space of functions on its pure state space is faithful.
In this realization || A|| equals the sup-norm ||A1|oo of A over P().

A representation 7 is called irreducible if the set 7w ()W is dense in H for
every ¥ € H. The special significance of pure states in the context of the GNS-
construction is that the corresponding representations are irreducible.

The pure states of a classical system are the points of its phase space P. A
manifold P whose associated space of smooth functions C*(P, R) is equipped
with a Poisson bracket (satisfying the Leibniz property with respect to pointwise
multiplication) is called a Poisson manifold. Each function 4 € C®(P, R) then
defines a Hamiltonian vector field &, by

Enf =1{h [}
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Hence on P = T*R? we have

g 0 oh 8
"7 Bpiogi  dqidp;

Hamilton’s equations of motion for a curve o (¢) in P are
do(t)
dt

solutions are called Hamiltonian flows or curves.

Poisson manifolds form the main source of Poisson algebras. The example P =
T*R? is special in that at each point o € P the collection of Hamiltonian vector
fields &, spans the tangent space T, P. Poisson manifolds with this nondegenera-
cy property are called symplectic. Traditionally, classical mechanics used to be
described in terms of symplectic manifolds, but many Poisson manifolds that are
not symplectic have turned out to be relevant in physics. A system whose phase
space is not symplectic may be said to possess classical superselection rules.

The most important result in the theory of Poisson manifolds is that any such
manifold admits a (generally singular) foliation by subspaces on which the &, span
the tangent space. These subspaces therefore acquire a symplectic structure, and
are accordingly called the symplectic leaves of P. Such leaves are characterized
by the properties that any two of their points can be connected by a piecewise
smooth Hamiltonian curve in P and that any Hamiltonian flow must stay within a
given leaf.

The simplest nontrivial illustration is provided by P = R, with Poisson bracket
given by {x, y} = z and its cyclic permutations. The symplectic leaves are the
spheres S? of radius r; there is a jump in dimension of the leaves at r = 0,
rendering the foliation a singular one.

We return to quantum mechanics. Let H € 9,(C)g, and define H e C®(CY)
by

=& (o))

H(Y) := (¥, HY).

The Hilbert space H = CV (seen as a real manifold) has a natural nondegenerate
Poisson structure, characterized by

{Aéh:%mEtﬁm.

Since a quantum-mechanical state is normalized to unit length and defined only
up to a phase, the space of pure states is the projective space IPH, rather than H.
Fortunately, the considerations above can be transferred to PH almost without
modification. In particular, H may be seen as a function H onPH, and the above
Poisson structure projects to one on PH. The Hamiltonian flow of H with respect
to that structure is then precisely the projection to PH of the unitary time evolution
on H that solves the Schrodinger equation with Hamiltonian H.

Given a Poisson manifold P, we define a representation of the Poisson algebra
Ql?R = C®(P,R) on a symplectic manifold S (with associated Poisson bracket
{, }s) as a linear map 7 : 91% — C*(S§, R) satisfying three properties, of which
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the two most important are

a({f.gh) ={n(f), n(@)s; n(fog)=nrn(f)on(g).

One recognizes the analogy with the definition of a representation of a JLB-
algebra. A representation = of C*°(P, R) on S is always associated to a smooth
Poisson map J : S — P throughw = J*.

A representation 7 (%) on S is said to be irreducible if at every point o € S
the collection of Hamiltonian vector fields {§x(5)(0), f € QI?R} spans the (real)
tangent space T, S. Interestingly, the notion of irreducibility for representations of
J L B-algebras (and therefore of C*-algebras), looked upon as spaces of functions
on their pure state spaces, can be shown to be identical to the one for Poisson
algebras.

The pure state space P(2) of a C*-algebra 2 is a Poisson manifold in a certain
generalized sense; it is foliated by symplectic leaves of the form PH,,, where each
Hilbert space H,, corresponds to an equivalence class of irreducible representations
of 2. The basic theorem on irreducible representations is the same for Poisson
algebras of the type C*°(P, R), where P is a finite-dimensional manifold (which
we here consider to be the pure state space of C*°(P, R)), and C*-algebras (where
commutative C*-algebras are understood to have the zero Poisson structure), where
S = PH for some Hilbert space H. It is the following: If a symplectic manifold
S carries an irreducible representation 7 of a C*-algebra or a Poisson algebra g,
then S must be isomorphic (as a symplectic manifold) to a symplectic leaf of the
space of pure states of ™Ay, or to a covering space thereof. Up to isomorphism, 7 ( f)
is simply the restriction of f to the leaf in question (composed with the covering
projection if necessary).

Saying that PH equipped with a certain Poisson structure is the pure state
space of quantum mechanics clearly does not fully characterize this theory. For by
comparison with classical mechanics we know that the observables of quantum
mechanics do not comprise all functions in C*°(H, R), but only those of the form
H, where H € 9, (O)r (or B(H)R).

The essential extra ingredient of quantum mechanics is the existence of transition
probabilities between pure states. A transition probability on a set P is a function
p: P xP — [0,1] satisfying p(p,0) = 1 < p = o and p(p,0) =
0 <= p(o, p) = 0. All transition probabilities in physics are symmetric in
that p(p, o) = p(o, p). The transition probabilities of classical mechanics are
trivial: p(p, o) = §,,. In quantum mechanics, on the other hand, where P = IPH,
the function p assumes the form p(g, ¥) = |(®, ¥)|? (where the unit vectors
&, W € 'H project to ¢, ¥ € PH).

From Pure States to Observables

We have seen that classical mechanics is described by Poisson algebras of observ-
ables of the type g = C*°(P, R), where P is a Poisson manifold. The algebra of
observables of a quantum-mechanical system (perhaps possessing superselection
rules) is the self-adjoint part g of a C*-algebra %, realized as a certain collection
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of functions on the pure state space P = P(2). This space is a generalized Poisson
manifold, which, like its classical counterpart P, is foliated by symplectic leaves.
Classical and quantum mechanics share the property of unitarity. This means that
the Hamiltonian flow p — p(¢) generated by a given observable preserves the
transition probabilities, in that p(p(¢), o (t)) = p(p, o) for all ¢ for which the flow
is defined.

A Poisson space with a transition probability is, roughly speaking, at the same
time a symmetric transition probability space P and a Poisson manifold, such that
the Poisson structure is unitary.

The quantum mechanics of an N-level system, whose algebra of observables
is 9, (C)g, has the property that its pure state space P = PC" is irreducible as
a transition probability space. In general, a transition probability space is called
irreducible if it is not the union of two (nonempty) orthogonal subsets. A sector
C of a transition probability space P is a subset of P with the property that
p(p,0) =0forall p € C and all 0 € P\C. Thus a transition probability space
is the disjoint union of its irreducible sectors. In classical mechanics each point of
P is a sector.

The superposition principle of quantum mechanics (which is normally expressed
in terms of vectors in a Hilbert space) can be described in the present language.
For any subset Q of P we define the orthoplement

Q' :={0 € Plp(p,ac)=0Vp € Q}.

The possible superpositions of the pure states p,c are then the elements of
{p, o} If p and o lie in different sectors, then clearly {p, o }*+ = {p, o }.

It turns out that the pure state space of quantum mechanics with (discrete)
superselection rules can be characterized (up to technicalities) by the following
three properties (or axioms):

e QMI: The pure state space P is a Poisson space with a transition probability.

e QM2: For each pair (p, o) of points that lie in the same sector of P, {p, o }*+
is isomorphic to PC? as a transition probability space.

e QM3: The sectors of (P, p) as a transition probability space coincide with the
symplectic leaves of P as a Poisson space.

Here PC? is understood to be equipped with the usual Hilbert space transition
probabilities. The universality of the transition probabilities (and, by implication,
of the Poisson structure) of quantum mechanics is notable, as is the third property
(which is not shared by classical mechanics).

To characterize classical mechanics, one simply postulates

e CMI: The pure state space P is a Poisson space with a transition probability.
e CM2: The transition probabilities are p(p, 0) = 8,4

One can reconstruct the algebra of observables g from its pure state space,
equipped with the structure of a Poisson space with a transition probability. Given
a general transition probability space (P, p), we first define the real vector space
LAr(P) as a certain subspace of the real Banach space £°°(P). For simplicity we
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assume that (P, p) has a finite basis (here a basis B of P is a pairwise orthogonal
subset for which ) pcn PO, o) = 1for all o € P). The space Agr(P) in question
then consists of all finite linear combinations ) ; A; p,,, where A; € R, p; € P,
and p,(0) := p,q. This will be the collection of observables, which are seen to
be essentially linear combinations of the transition probabilities.

Axioms QM1 and QM2 imply the existence of a spectral theorem in Ag(P),
saying that every A € Ag(P) has a spectral resolution A := ) _ jAiPe;s where the
e; are pairwise orthogonal and the eigenvalues A ; are real. The spectral theorem
equips Ar(P) with a squaring map, for given the spectral resolution above one can
define A% by A% =} A% p,,. Subsequently, one defines a map o on Ar(P) by

AoB:=1(A+B?—(A-BY.

Axiom QM2 implies that this map is bilinear, so that o indeed defines a Jordan prod-
uct. This product, combined with the sup-norm, turns 2Ar(P) into a J B-algebra;
the relevant axioms are satisfied as a consequence of the fact that the Jordan product
comes from a spectral resolution. Had the transition probabilities been trivial, this
Jordan product would have been pointwise multiplication, implying associativity.

Given a Poisson structure on P, any function & on P whose restriction to each
symplectic leaf is smooth defines a Hamiltonian flow o +— o (¢) on P. This defines
a one-parameter family of maps «; : Ar(P) — Ar(P), given by o,(f) : 0 >
flo®). 1t is not difficult to show that unitarity (guaranteed by Axiom QMI)
implies that ¢, is a Jordan homomorphism; that is, &, (f 0 g) = o, (f) o o (g). The
derivative of the homomorphism property with respect to ¢ yields the Leibniz rule,
since

df(0(1)
dt
Quite unlike the situation in classical mechanics, in quantum mechanics the
Poisson structure of the pure state space turns out to be determined by the axioms
up to a collection of constants (one for each sector). Suitable rescalings then lead to
asingle constant A. It is remarkable that the curious associator “identity” is satisfied
by the ensuing Poisson bracket. Therefore, at the end of the day (/r(P), o, {, }, II-
[l) becomes a J L B-algebra. This enables one to endow the complexification Ag(P)
with the properties of a C*-algebra, of which 2r(P) is the self-adjoint part. In
analogy with classical mechanics, the algebra of observables Ar(P) is realized
(even as a Banach space) as a subspace of £°(P, R).
In passing from pure states to algebras of observables one has the correspon-
dences listed in Table 1.

{h, f}@@).

II. Quantization and the Classical Limit

The second chapter relates classical and quantum mechanics to each other. Such
a relation is possible on the basis of the structural similarities between the mathe-
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Pure state space Algebra of observables
transition probabilities Jordan product
Poisson structure Poisson bracket
unitarity Leibniz rule

TABLE 1. From pure states to algebras of observables

matical description of these theories laid out in Chapter I, and it can be approached
from the point of view of either observables or pure states.

Foundations

The problem of quantizing a given classical system is as old as quantum mechanics
itself. Initially, the term “quantization” indicated the fact that at a microscopic scale
certain physical quantities assume only discrete values, sometimes called quantum
numbers. This was found to be true particularly for energy levels of bound states,
as well as for, e.g., angular momentum and electrical charge. Such discreteness
is easily understood within the Hilbert space formalism of quantum mechanics,
where self-adjoint operators may or may not have a discrete spectrum, and is no
longer seen as the defining property of a quantum theory.

In the modern literature “quantization” refers to the passage from a classical to a
“corresponding” quantum theory. This notion goes back to the time that the correct
formalism of quantum mechanics was beginning to be discovered, and from that
time to the present day practically all known quantum-mechanical models have
been constructed on the basis of some quantization procedure. Nonetheless, Barry
Simon wrote:

It seems to me that there has been in the literature entirely too much emphasis
on quantization (i.e. general methods of obtaining quantum mechanics from
classical methods) as opposed to the converse problem of the classical limit
of quantum mechanics. This is unfortunate since the latter is an important
question for various areas of modern physics while the former is, in my
opinion, a chimera.

In the present book the conception of quantization used in this quotation, which
indeed applies to geometric quantization and related approaches, is replaced by a
different one: We see quantization as the study of the possible correspondence be-
tween a given classical theory, given as a Poisson algebra or a Poisson manifold and
perhaps a Hamiltonian, and a given quantum theory, mathematically expressed as
a certain algebra of observables or a pure state space, and perhaps a time evolution.
For this purpose it is not at all necessary that the quantum theory be formulated in
terms of classical structures. On the basis of this understanding quantization and
the classical limit are two sides of the same coin.

Early thought on both quantization and the classical limit was guided by Bohr’s
“correspondence principle”, which was a rather vague idea to the effect that quan-
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tum mechanics should converge to classical mechanics for A — 0, and also in
the limit of large quantum numbers. The second aspect, including its relation to
the first, will be studied in Chapter I1I. The use of the limit i — 0 is sometimes
criticized on the argument that # is a constant, but what is meant here is simply that
B should be small compared to other relevant quantities of the same dimension,
this includes the case where units have been chosen in which A is dimensionless
and equal to 1!

In Chapter I classical and quantum mechanics are formulated in such a way
that they look structurally similar for any value of A. On the observable side one
classically has a Poisson algebra (Ql?R, o, {, ], in which o is associative, whereas
quantum-mechanically one has the self-adjoint part @A% o, {, 1), B # 0,0f a
C*-algebra. One now needs a proper way of expressing the idea that QAL ...) s
the quantization of (QIO ,...), and that the latter is the classical limit of the former.
For this to be possible in the first place, the quantum algebra of observables Ql]’;‘{
must be defined for all values h € Iy, where Iy is a certain subset of R that has 0 as
an accumulation point (Io may be discrete, e.g., Io = {1/n, n € N}, or an interval,
such as Iy = (0, 1]; another example would be Iy = R\{0}).

The essence of quantization is now that there should be a family of linear maps
Q¢ Ql% — Qlﬁ, k € Iy; the operator Q(f) is interpreted as the quantum
observable corresponding to the classical observable f. A mathematically precise
version of Bohr’s correspondence principle, at least as far as the algebraic structure
is concerned, is then given by the conditions

}1113}) I Qn(f) on Qr(g) — Qu(f)r=0
and

lim [{Qn(f). Cn(&n — n({f. gDlIn =0,

for all f, g € A3; here a possible h-dependence of the operations in 21} has been
indicated. Together with the continuity of & = [|Qx(f)ll; for all f € A9, these
conditions define what is meant by a strict quantization.

From the perspective of pure states the classical theory is characterized by a
Poisson manifold (P, {, }). Quantization should relate this to a family of Poisson
spaces with a transition probability (P, p, {, }x), i € Iy, satisfying the “QM”
axioms of Chapter L This relation is given by a pure state quantization, which is
a collection of injections g5 : P — Py, (i € Ip) that embed the classical pure state
space into its quantum counterpart. These maps should satisfy certain conditions
motivated by the correspondence principle. One such condition is obviously

;ILTB P(Gn(p), gr(0)) = 8,5,

stating that the quantum-mechanical transition probabilities converge to the classi-
cal ones. It is interesting to relate this condition to the one on the Jordan product of
observables. Assume that P is discrete; then A° = £o(P) is generated by functions
of the type p : p > 8,,. Given a pure state quantization g, we can hope to define
a strict quantization Q2 of 23 by linear extension of QF (pZ) := pg,(s). The spec-
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tral resolution of f € Ql% is f =), f(o)p,so that Qg(f) =, f(O)Pgo)
For small A the right-hand side approximates the spectral representation of QF (f),
since the g(0) become almost orthogonal. Therefore, QB (f)? is approximately
Y, f(0)* Py, which equals QB (f?). Hence QF(f)? — QPF(f?) for b — 0,
which is equivalent to the condition on the Jordan product.

For nondiscrete P the notion of a pure state quantization has been worked out
only when P = S is symplectic and each P}, is irreducible, being equal to PH),
for some Hilbert space ;. In the cases we consider, the sum over points in P is
then replaced by the Liouville measure j, on S, locally given by du(p, q) :=
d" pd"q/(2m)". In addition, a function ¢ : Iy — R\{0} appears. The conditions
on a pure state quantization gy are stated in terms of the Berezin quantization of
f € Ay = Co(S, R). This is an operator QF(f) on Hj, defined (for each ki € Iy)
by its expectation values

W, QR ()W) := C(ﬁ)LdML(O)p(qh(G), ¥) flo),

where Y € PH} is the projection of the unit vector W to PH;. This expression
evidently generalizes Qg (f) in the previous paragraph. The function ¢ is fixed by
imposing the first condition Qg (15) = L. The second requirement on gy, is that in
the limit & — 0 the above expression with ¥ = ¢;(p) converge to f(p) for all
fe Ql?R and all p € S. Finally, each g should pull the canonical symplectic form
on PH}, back to the one on S.

Letus assume that each gn(0) € PH}, is the projection of a unit vector W} € Hj,.
The map W : Hy, — L*(S, c(h)ur) defined by W¥ (o) := (W7, W) is then a
partial isometry. Defining p to be the projection onto the image of W, and U to be
W, seen as a map from H;, to pL2(S, c(k)i L), we obtain

UQE(HU™" = pfp,

where f is seen as a multiplication operator on L2(S, c(h)u. ). In this way, quantum
observables act on a subspace of L?(phase space), rather than on L2(confi guration
space), as is more usual in quantization theory, in an extremely elegant fashion.

Quantization on Flat Space

Our main illustration of strict as well as pure state quantization will come from the
manifold § = T*R", equipped with its canonical Poisson bracket; this makes §
symplectic. This manifold is particularly well structured in being both a cotangent
bundle and a Kihler manifold (the latter comprise a class of complex manifolds of
which more examples will be encountered in the next chapter). It turns out that a
Kaihler manifold often admits a strict Berezin quantization, which is derived from a
pure state quantization as explained above. The observables on cotangent bundles,
on the other hand, are best quantized using a prescription going back to Weyl,
which is not directly related to a pure state quantization. The phase space T*R",
then, may be quantized either way; Berezin quantization enjoys the advantage of
positivity, whereas Weyl quantization has better symmetry properties.
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In both methods the Heisenberg group H, plays a central role; this is the
connected and simply connected Lie group whose Lie algebra h, = R+ is
described by

(P, Q1 =-8/Z; [P,Z)=1Q’,2]=0,
in terms of a suitable basis { P;, @/, Z};, j=1,...n- The Heisenberg group is nilpotent,
and the exponential map Exp : h, — H, is a diffeomorphism. For each & # 0
there exists an irreducible representation U, on H = L*(R"), given by

!
t+§uv—ux)

Us Exp(—uQ +vP +1Z2)W(x) = i My(x — v),

where uQ := u; @', etc. Of special significance are the Weyl operators
Ui(p,q):=U1(p,q,0) = et POR-aP)

where Q) = x' and P§, = —ihd/dx' are the position operator and momentum
operator of elementary quantum mechanics.

Both Berezin quantization QF and Weyl quantization QY are defined for fi €
Io = R\{0}, and map A% = Co(T*R", R) into A = Bo(LXR"))r (the self-
adjoint part of the C*-algebra of compact operators on L%(R")). Both are given by
an expression of the form

AN =" [ duitp.0) 1.0 0. DAV (.0

For Weyl quantization one puts A = 2" P, where P is the (nonpositive) parity
operator P on L?(R"), defined by PW(x) := W(—x). To obtain Berezin quanti-
zation one chooses the positive operator A = [\112], which is the projection onto
the (unit) vector

WO(x) 1= (wh) ™/ ~¥/h

The pure state quantization qf associated with Berezin quantization is given by

Hy, = L2(R") for all & # 0, and g2(p, ) = ¥, where the right-hand side is
given by projecting the unit vector

‘I}}(’zp,q) t= U% (P, ‘I)q’g

to PL2(R"). In terms of z := (g + ip)/+/2, the transition probabilities between
quantized pure states are

P(@F (2, qF (w)) = eI,

which evidently converges to the classical transition probability 8., as B — 0.
The Hilbert space L2(T*R", (1) is naturally isomorphic to L2(C", ug), where
i is a suitable Gaussian measure on C". The projection p in the preceding
section then projects on the subspace of functions on C* that are entire in Z.
Accordingly, Berezin quantization on flat space assumes the pulchritudinous form



12 Introductory Overview

of sandwiching a multiplication operator on L?(C", 1) between two identical
projections, whose image is a space of entire functions.

A comparison between classical dynamics and its quantum counterpart is of
central importance to the theory of quantization and the classical limit. If the
classical Hamiltonian A4 lies in Ql%, this comparison is straightforward. In that
case, the quantum Hamiltonian Hj := Qj(h) lies in A%, and Dirac’s property
implies that for fixed ¢ and for all f € A% one has

lim | Qn(@(f) = &M (@I = 0.

Here aX(f): 0 > f(o(2)), and a/(A) := et Hr/h pg=itHi/h,

It so happens that most Hamiltonians on 7*R” used in physics are unbounded,
so that the above norm-convergence is somewhat unrealistic. A silver lining on this
generic unboundedness, however, is the fact that for Hamiltonians that are at most
quadratic in the canonical variables (p, ¢) the excellent equivariance properties
of Weyl quantization imply that Q) (a?(f)) — o/(Qx(f)) = 0 for any . For QF
instead of QZV this equation holds for Hamiltonians that in addition are O(2n)-
invariant.

Convergence from quantum to classical dynamics for more general unbounded
Hamiltonians may be achieved by looking at the time evolution of particular
pure states. Most literature on this subject is concerned with the time-dependent
WKB method, where one assumes that the initial wave function is of the form
Wr(x) = pp(x) exp(i S(x)/h), where S is real and independent of A, and pj, is a real
formal power series in £ (of which only the zeroth-order term is relevant in the clas-
sical limit). An approximate solution Wy (x, ) to the time-dependent Schrddinger
equation is then constructed in terms of a classical trajectory between x(0) and
x(t) = x, where x(0) is determined by the requirement that the trajectory with
initial data (dS(xo), xo) indeed arrives at x after time ¢. Such initial pure states are
quite peculiar, since in the classical limit they typically converge to mixed states on
2A°: The support of the mixed state on Co(T*R”) in question, which is a probability
measure on T*R”, is the so-called Lagrangian submanifold of 7*R" defined by S
and py (this is the collection of points (¢ S(g), q), where g € supp (pg)). Moreover,
the WKB method works without further ado only if the projected flow defines a
diffeomorphism of the configuration space R” for all ¢’ € [0, t].

We concentrate on a different method, which works well if the initial state
W, converges to a pure state in the classical limit. We will specifically look
at the (coherent) state \I!,SL” 9 defined earlier, whose classical limit is the point
(p, q) € T*R". The method is based on Taylor-expanding the quantum Hamilto-
nian H = H(P}, Q3), which, up to suitable ordering, is obtained by substituting
(Pff , Qg) for (p, q) in the classical Hamiltonian h(p, q) around the classical tra-
jectory (p(t), g(¢)). This method works well for classical Hamiltonians of the

type

(p — eA(g))*

V ’
m + Vig)

h(P,Q) -
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which describe a particle moving in an external potential V and magnetic field
V x A. One can prove that for all f € 23, and Q@ = Q) or Q; = QF, one has

lim (W2, [@u@P() = al(@n(fN] ¥ ?) =0.

Quantization on Riemannian Manifolds

According to the general theory of relativity, gravitational fields are described by
a pseudo-Riemannian metric g on spacetime. To describe the motion of a test
particle in a static external gravitational field we therefore assume that space is
a Riemannian manifold (Q, g); the corresponding phase space is the cotangent
bundle S = T*Q, whose canonical symplectic structure is independent of g. The
metric provides an isomorphism between T* Q and the tangent bundle 7 Q, and
it turns out to be easier to discuss mechanics on T Q. The natural Hamiltonian on
TQis
h(v, q) = igij(g'v’.

The Hamiltonian flow (v(t), ¢ (t)) on T* Q is known as geodesic motion, since g(t)
is a geodesic on Q; the tangent vector to this geodesic is v(¢), which is parallel
transported along the geodesic.

Using the geometric structure, it is possible to generalize the Weyl quantiza-

tion method on the flat space R” to any Riemannian manifold. The key to this
generalization lies in rewriting Weyl’s prescription as

oY (wm = [ ay k¥LrIx o),

with kernel K,tv Lfl(x,y)= h‘"f((x —y)/h, 3(x+)). Here f(v, q) is the partial
Fourier transform of f (p, q) in the fiber direction of T* Q; this is a functionon T Q.
We now recognize 3 (x + y) as the midpoint of the geodesic connecting x and y, and
(x — y) as its tangent vector at this midpoint; the map (x, y) = ((x — y), 1(x+ y))
provides a diffeomorphism between R” x R" and TIR".

When (@, g) is complete (in that the motion generated by 4 is defined for all
times), and in addition has the property that any two points are connected by a
unique geodesic, one has @ >~ R" as a manifold. Moreover, the obvious gener-
alization of the geodesic construction above provides a diffeomorphism between
O x Q and T Q. In general, one has to proceed locally, using the geodesic midpoint
construction to obtain a diffeomorphism between a neighborhood of the diagonal
embedding §(Q) in Q x @ and the zero section Q in 7 Q. On a suitable choice
of functions in 2y = Co(T*Q), this still enables one to generalize the Weyl pre-
scription to obtain a strict quantization map Q}‘?’. For suitable (real) f, the operator
Q¥ (f) is a compact (self-adjoint) operator on L?(Q) (defined with respect to the
canonical Riemannian measure on Q).

The single most important property of Q’vlv is that it is equivariant under isome-
tries. To explain this, we first note that the group Diff(Q) of diffeomorphisms of
Q acts on T*Q by pullback; call this action p°. Accordingly, each ¢ € Diff(Q)
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defines an automorphism 012( f) = f o ¢* of A, Furthermore, there is a natu-
ral representation p” of Diff(Q) on L2(Q), which defines automorphisms ag on
A = Bo(L*(Q)), as explained before in the context of R". If, then, @ is an isometry

of (Q, g), for all suitable f one has
ah (QF () = QY (@S(f)).

It is possible to extend Q)" to certain unbounded classical observables, in par-
ticular to functions that are polynomial in the canonical momenta. The Weyl
quantization of the classical Hamiltonian is

QY (h) = —1R(A — 1R,

containing not only the Laplace-Beltrami operator A, but picking up an additional
term proportional to the Ricci scalar R. If (O, g) is complete and R is bounded, this
quantum Hamiltonian is essentially self-adjoint on the domain C°(Q) C L%(Q).
However, even when these conditions are not met one can prove results on the
convergence of quantum to classical dynamics similar to those in the flat case.

III. Groups, Bundles, and Groupoids

In Chapter III we construct Poisson algebras and C*-algebras from well-known
geometric objects, namely Lie groups and their Lie algebras, and principal fiber
bundles and their associated “infinitesimal” objects. These Poisson and C*-
algebras turn out to be related by a strict quantization. The theory of Lie groupoids
and algebroids then provides a perspective unifying these seemingly diverse classes
of examples, as well as providing new ones.

Lie Groups and Lie Algebras

Let g be a Lie algebra. The (minus) Lie—Poisson structure on the dual g* is given
by the Poisson bracket

{Xa ?}‘— = —[/);v\/y]v

where each X € g defines a linear function X(9) := 6(X) on g*. Physically, the
associated Poisson algebra C*°(g* , R) is the classical algebra of observables of
an immobile particle whose only degrees of freedom are “internal”. For example,
when g = s0(3) it describes a spinning particle, the magnitude of whose spin is
not fixed.

In the spirit of Chapter I one may then look for representations of C*(g* , R)
on a symplectic manifold S. Such a representation corresponds to a Poisson map
J : § — g*. The representation theory of C*°(g*, R) is closely related to the
existence of g-actions on S, i.e., homomorphisms X + &x from g into the space
of vector fields on S. For given such a representation, one finds a g-action by
Ex 1= &;,, with Jxy := J*X. Conversely, a g-action X +> &,.; generated by some
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smooth map J : S — g¢* in this way is called Hamiltonian, and J is known
as a momentum map for the action. It does not follow that the momentum map
of a Hamiltonian g-action is a Poisson map with respect to the Poisson bracket
displayed above: In general, one has

{Ux, Jr}s = —Jxr —T(X, Y),

where [ is constant on S, defining a so-called 2-cocycle on g.

A smooth action of a Lie group G on a manifold S leads to a g-action through
Ex f(o) = df(Exp(tX)o)/dt|t = 0; the G-action is said to be Hamiltonian when
the associated g-action is. When J : § — g* is a Poisson map (i.e., ' = 0), the
G-action and the g-action are called strongly Hamiltonian, and J is said to be
equivariant.

The coadjoint action Co of G on g* is the dual of the adjoint action. The
main theorem on the Lie—Poisson structure is that the symplectic leaves of g*
are precisely the coadjoint orbits. This endows the coadjoint orbits with the Lie
symplectic structure. For example, the coadjoint orbits in 50(3)* are two-spheres;
picking an orbit fixes the magnitude of the classical spin. More generally, a coad-
joint orbit plays the role of a classical charge. When G is abelian, as in the theory
of electromagnetism (where H = U(1)), the charge is just a number. The signifi-
cance of the coadjoint orbits in representation theory is that (up to covering spaces)
every irreducible representation 7y of the Poisson algebra C*°(g* , R) is realized
on such an orbit O.

In quantum mechanics the focus is on G-actions on a projective Hilbert space
PH. These actions should not merely respect the Poisson structure on PH, but
must in addition preserve the quantum-mechanical transition probabilities. Such
G -actions on [PH turn out to be given by linear unitary G-“actions” U on H itself,
which satisfy U(x)U(y) = c(x, y)U(xy). Here ¢ : G x G — U(1) is a so-called
multiplier, which measures to what extent U differs from a true representation of
G. A multiplier on G is the “global” analogue of a 2-cocycle I" on the Lie algebra
g. Indeed, let J be the momentum map of the associated action on IPH; it is given
by

Jx(¥) = iV, dU(X)W¥),
where the unit vector W is a lift of v € PH to H, and

d
dU(X) 1= — U Exp(tX))u=o.

The presence of a multiplier in the G-action on H is then reflected by
{(Jx, Jyln = —Jix.y1 — hI(X, Y).

What is the quantum-mechanical counterpart of the Lie—Poisson algebra
C*(g*, R)? This turns out to be the group C*-algebra C*(G). Here the shift
from the “infinitesimal” object g* to the “global” object G in passing from classi-
cal to quantum mechanics is typical. To define C*(G) (for a group whose left and
right Haar measures dx coincide, for simplicity) one starts from the convolution
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operation on, say, C2°(G), that is,
7x800:= [ dy 7y g0

One adds an involution f*(x) := f(x~!) so as to turn C°(G) into a *-algebra. In
the associativity of convolution and the involutive nature of f > f* this algebra
reflects the corresponding properties (xy)x = x(yz) and (xy)™! = y~!x~! of the
group G itself. One then equips C2°(G) with an appropriate norm, and closes it so
as to obtain the C*-algebra C*(G).

The quantum analogue of the correspondence between g-actions on symplectic
manifolds and representations of C*°(g* , R) is then a basic theorem about C*(G),
stating that there 1s a bijective correspondence between representations U of G
on Hilbert spaces and nondegenerate representations w of C*(G) as a C*-algebra,
given by 7 (f) = [, dx f(x)U(x).

When G is compact there is a neat quantum analogue of the decomposition of
g* as the union of its symplectic leaves (which, as we saw, are just the coadjoint
orbits). From the Peter—Weyl theorem, one has the decomposition

C*(G) =~ P My, (©),

yeG

where G is the space of all (equivalence classes of) irreducible representations of
G, and d,, is the dimension of a given such representation.

The analogy between the Poisson algebra C*°(g* , R) and the C*-algebra C*(G)
is further illustrated by the construction of a strict quantization relating the two.
One here chooses A° = Cy(g*) and A" = C*(G), and, roughly speaking, defines
the quantization map Q, : A4 — AL by

da"e
Exp(X)):= | ——— er*® £().
QUNER(0) = | s el f6)
For compact or nilpotent Lie groups one can show that this indeed defines a strict
quantization. The nature of this prescription may be illustrated by the fact that in
any representation 7 of C*(G) one obtains (transgressing the realm of bounded
operators)

T(Qn(X)) = ihdU (X).

Hence from the Lie—Poisson bracket above and the property [dU(X),dU(Y)]
=dU([X, Y]) one immediately verifies that

’ﬁ [n(gh(i)), n(gh(?»] = n(Qu({X, F}_)).

Rather than C®(g* , R) one may try to quantize the Poisson algebra C*°(0O, R),
where O is a coadjoint orbit in g*. For compact G this is indeed possible, with the
interesting feature that Planck’s constant is “quantized”; this reflects the compact-
ness of the classical phase space . One starts from an irreducible representation
U, (G) on a (finite-dimensional) Hilbert space 7, labeled by a highest weight y,
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with highest weight vector W,,. Let J : PH, — g* (as displayed above) be the
momentum map of the G-action on PH associated to the representation U on H.
One then has to assume that O contains J (i, ). When this is the case, fork € Z
one defines Hy for h = 1/k as H'}‘,‘”/h (i.e., the carrier space of the representation
with highest weight ky), upon which the map g5 : O — PH;, defined by

gr(Co(x)y) := Thy—PH, (Uy /n(X)¥y /1),

is a pure state quantization of O on Iy := 1/N. The associated Berezin quantization
QP then turns out to be strict. It is also G-equivariant: With «2(f) := f o Co(x™1)
for arbitrary x € G and f € C*(0), one has

OV @) = Ury () Q71 (HUky (x)".

Internal Symmetries and External Gauge Fields

The description of purely spatial degrees of freedom of a single particle having
been given in Chapter 11, and the treatment of purely internal variables having just
been sketched, the goal is now to combine these.

The appropriate mathematical tool is the theory of principal fiber bundles.
When Q is a manifold and H a Lie group, a principal H-bundie P is defined by a
free H-action on P and by a projection 7 : P — Q. These must be such that locally
P >~ Q x H, relative to which the H-action becomes the canonical right action
on the second variable, and t is projection onto the first. In particular, P/ H =~ Q.
This setup is the starting point for the classical as well as the quantum theory of a
particle that moves on Q and has internal degrees of freedom related to H.

More generally, a bundle over a manifold Q with typical fiber F is a space B
with a projection 7 : B — @ such that locally B ~ Q x F, and 7 is projection
onto the first variable. Apart from principal bundles, where F is a Lie group, an
important class is formed by vector bundles, where F is a vector space. A section
of Bisamaps : Q — B for which t o5 = id.

A most important concept, used in classical as well as in quantum mechanics, is
that of an associated bundle: Given a smooth H-action L on some manifold M,
the associated bundle M = P x 5y M is (P x M)/ H, where the H-actionon P x M
defining the quotient is givenby & : (x, m) = (xh~ I L, (m)). This is abundle over
Q with typical fiber M. The projection Ty, g is given by m, o([x, m]y) = T(x).

The classical theory is based on the Poisson manifold (T*P)/H. Here the H-
action on T*P is the pullback of the given action on P; the canonical Poisson
bracket on the cotangent bundle T*P quotients to one on (T*P)/H, defining its
Poisson structure. The symplectic leaves of (T*P)/H are of the form J ~'(0)/H,
where J : T*P — §* is the momentum map of the associated h-action on T*P,
and O is a coadjoint orbit in h*. The choice of an orbit O specifies a classical
charge; the orbit contains internal degrees of freedom, which in physics couple to
an external gauge field. There is a correspondence

To(C®H*,R)) «—> 79(C®(T*P)/H,R))
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between the coadjoint orbits O in h*, here in the guise of the irreducible representa-
tions o of C*°(h* , R), and the irreducible representations of the Poisson algebra
C®((T*P)/H, R): For each such orbit one obtains an irreducible representation
79 on the symplectic manifold (T*P)° := J~(0)/H.

A symplectic leaf (T*P)? is locally of the form T*Q x . However, to separate
the spatial and internal degrees of freedom in an intrinsic fashion, one needs to
choose a connection on P. This is a decomposition of each tangent space 7, P
into an (intrinsically defined) vertical subspace (which projects to zero under 1),
and a complement, called the horizontal tangent space at x. Choosing such a
decomposition turns out to be equivalent to the specification of an h-valued 1-
form A on P, with certain properties. The part of A that lives on Q (relative to a
local factorization P >~ Q x H) is the physicist’s gauge field or Yang-Mills field.

Let us introduce the manifold

Pxo T*Q :={(x,0) € Px T*Q| 1p_, g(x) = Tr+ g 0(0)}.

This is a principal H-bundle over T*Q if one defines its projection to be the
one onto the second variable, and its H-action to be essentially the H-action
on P. Choosing a connection then leads to the realization of (7*P)° as a bundle
associated to P+ 7* Q by the coadjoint representation of H on O. In this realization
the Poisson bracket on (7*P)® depends on A.

The basic tool in the construction of (unbounded) physical observables on the
phase space (T*P) is the group Aut(P) of automorphisms of the bundle P; this
group consists of those diffeomorphisms on P that commute with the H -action.
Any diffeomorphism on P pulls back to one of 7*P; a bundle automorphism in
addition maps J ~!'(O) into itself, and quotients to a Poisson map on (7*P)®. The
momentum map for this reduced action p(? of Aut(P) on (T*P)® then gives the
classical observables that are linear in the (conventional) momentum. Functions
of the configuration variable g are more easily obtained, namely from the natural
projection T(r«pyo_, g.

From the perspective of (“classical”) representation theory the symplectic space
(T*P)? therefore plays a double role: It firstly carries the irreducible representation
79 of the Poisson algebra C*®°((T*P)/H, R), and secondly it supports the Poisson
action p§ of the group Aut(P).

To specify a “natural” Hamiltonian 4° on all leaves (T*P)® in one go, one
needs a Riemannian metric gQ on @ and a connection A on P, as above. In the
A-dependent realization of (T*P)® as the associated bundle (P *g T*Q) xy O
one then simply puts

h°(p.q.0) = 1’ (@) pupy-

For simplicity this has been expressed in local coordinates, but #? is an intrinsically
defined function. In the original definition of (7*P)® as a subspace of (T*P)/H
this reads

hQ(p. q.0) = 180" (@)(pu — 6 AL (D) Py — 0;Al(@)).

The associated equations of motion are the so-called Wong equations.
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We now turn to the associated quantum theory. For compact H an appropriate
(complexified) quantum algebra of observables is Bo(L2(P))?, the C*-algebra of
compact operators on L2(P) (defined with respect to some H-invariant measure
equivalent to the Lebesgue measure) that commute with the representation Uy of
H, given by

Ur(h)W(x) = W(xh).

On the basis of the quantization theory on Riemannian manifolds in Chapter II
one shows that Bo(L2(P))” is a strict quantization of Co((T*P)/H). Noticing
that Co((T*P)/H, R) =~ Co(T*P, R)¥, the associated quantization map is simply
given by restriction of the Weyl quantization map Q};V on T*P (where P has been
equipped with an H-invariant Riemannian metric).

From a representation-theoretic viewpoint, the quantum counterpart of (7*P)°
is a Hilbert space HX, constructed as follows. One starts with a representation
U, (H)onaHilbert space M, , and then considers the vector bundle HX := PxyH,
associated to P by the representation U, ; locally HX 2 Q x H,. In contrast with
the classical situation, the relevant object is not this associated bundle itself, but
rather its space of smooth sections I'(HX) (with compact support). This space may
be realized as a space of maps W* : P — H, satisfying the equivariance condition

WX(xh™) = U, (W)WX(x)

for all x € P and h € H. Exploiting the fact that the fiber H, is a Hilbert space,
one can equip I'(H*) with an inner product; its closure is HX.

In analogy to the classical situation, H* plays a double role in representation
theory. Firstly, it carries a representation X of the C*-algebra Bo(L?(P))¥, given
by

X (K)WX(x) = /;du(y)K(x, YWA(Y).

This representation is irreducible iff U, (H) is irreducible, so that we obtain a
correspondence

Uy (H) < mX(Bo(L2(P)7)

analogous to the classical correspondence mp <> 9. Secondly, H* carries the
induced representation U X (Aut(P)), defined by

dv(pg' (x(x)))
dv(z(x))

where v is a measure on Q that is naturally defined by u, and ¢g is the
diffeomorphism of Q associated to ¢ in the obvious way.

The well-known construction of induced representations of a (Lie) group G is
a special case: one takes P = G, defined as a bundle over Q = G/H through
the canonical right action of H C G on G. The left action of G on itself then
realizes G as a subgroup of Aut(G), so that the equation above applies. This is

U (@)W (x) = Wt (e~ (x)),
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called Mackey induction. When v is G-invariant we obtain
UX(y)¥X (x) = WX (y~'x).

We return to the case of a general bundle P. The correspondence between the
classical and the quantum theory is further illustrated by the remarkable equation

ihdUX (&) = nX(QY (Je)).

Here £ is an element of the Lie algebra of Aut(P), that is, an H -invariant vector
field on P, and J is the momentum map for the Aut(P)-action on T*P. Since
the latter commutes with the H-action, its momentum map is H-invariant, so
that each J; lies in C*®(T*P, R)”. Extending the definition of Q,VLV to suitable
unbounded functions, the right-hand side is therefore well-defined. When U, (H)
actually corresponds to a coadjoint orbit O, one may regard nX(Q,’LV(Jg )) as the
quantization of J;O , but in the absence of such a correspondence the right-hand
side still makes sense as the quantum “£-momentum” in the sector x . In particular,
one has

i
5 [ (Q) e, Q) ()] = 7% (Q5 (g, D) -
The quantum Hamiltonian on H* defined by Weyl quantization is
HY = —1R (A% — iRg + LF? - %),

Here Ai‘ is a gauge-covariant Laplacian, and the other terms are geometric objects
acting as multiplication operators, all constructed from g€ and A.

As in Chapter 11, the possible convergence of the classical equations of motion
generated by h‘z to their quantum counterparts generated by H,,f can be analyzed.

One has to find a suitable analogue of the coherent states lIJ;lp ‘D used for this
purpose when only spatial degrees of freedom are present. Our discussion on the
quantization of the Poisson algebra C®(O, R), where O is a coadjoint orbit in
bh*, suggests how to proceed. We assume that O is associated with an irreducible
representation U, (), labeled by a highest weight x, in that O contains J (/).

For “quantized” ki = 1/k, k € N, we then replace W"? by the unit vectors

(pahy ._ (P
‘1’171:] = \Ill’/’kq ® Uiy (h) Wiy

in LZR") @ Hy x» where W, is a normalized highest weight vector in Hy, . The
desired convergence may then be shown for &k — oo. The proof makes essential
use of the G-equivariance of the Berezin quantization of C®°(O, R).

Everything said so far may be explicitly calculated in the simplest nontrivial
example, where the bundle P(Q, H) is SO(3)(52, SO(2)). This bundle supports
a certain canonical connection, which in physics terms describes the field of a
magnetic monopole sitting at the origin. The symplectic leaves in s0(2) = R are
just numbers e, identified with the electric charge of the particle moving on §2.
The symplectic leaves (T*SO(3))¢ are diffeomorphic to T*S?, but one still sees
the effect of a nonzero charge e in all relevant quantities, such as the momentum
map for the reduced SO(3) action on (T*SO(3))°.
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FIGURE 1. Groupoids and algebroids in quantization

The quantum theory is formulated in terms of the line bundles H", n € Z,
defined by the irreducible representations U,{«) = exp(—ina) of SO(2). These
representations are the quantum analogues of the coadjoint orbits e, illustrating
the quantization of electrical charge. It should be mentioned that the Hilbert space
‘H" is insensitive to the topology of the line bundle H"; the relevance of this bundle
in quantum mechanics lies in the fact that the space of sections I'(H*), which does
“see” the topology, provides a domain of essential self-adjointness for the basic
quantum observables.

Lie Groupoids and Lie Algebroids

Our aim is to explain Figure 1. Let us first look at a case where we already know
what all the entries and arrows mean, namely when G = G is a Lie group and
® = gits Lie algebra. In that case, we have seen that we can canonically associate
a Poisson algebra C®°(g* , R) with g and a C*-algebra C*(G) with G, in such a
way that under favorable circumstances (e.g., when G is compact), C*(G) is a
strict quantization of C*(g* ). The central ingredient in the construction of the
quantization map Q;V = Qp, was the usual exponential map Exp” = Exp: g —
G.

The quantization of a system with configuration space Q fits into this diagram
as well. We already know three of the four corners: For & we would like to read the
tangent bundle T Q, with associated Poisson algebra C°(T*Q, R), and we wish
C*(G) to be the algebra of compact operators Bo(L2(Q)). The object G should then
be chosen as Q x @, equipped with structures such that one may firstly construct
T Q as an associated infinitesimal object (in analogy to the construction of a Lie
algebra from a Lie group), and secondly can define the C*-algebra C*(Q x Q)
through the construction of a convolution and an involution on C°(Q x Q).

The appropriate starting point is the concept of a groupoid. This is a gener-
alization of a group, in which multiplication is only partially defined. When it is
defined, it is associative, and each element has an inverse. For example, one may
say that two elements (q1, ¢1) and (g2, g3) of Q x Q can be multiplied iff | = ¢»,
in which case (g1, 91)(q}, g5) := (41, g3). This reflects the way arrows are com-
posed; one therefore interprets a point (¢, g’) € Q x Q as an arrow from g’ to q.
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Thus the inverse is (g, ¢’)~! := (¢’, g). The ensuing object is the pair groupoid
on Q.

Every groupoid G may be thought of as a collection of arrows connecting points
on some space Q, called the base of G. The collection of all elements of the form
vy L, ¥ € G, is naturally isomorphic to the base Q, and this isomorphism leads
to an inclusion ¢ : Q@ < G. Arrows in ((Q) evidently start and end at the same
point. In a pair groupoid one has t(g) = (g, q).

In a group all arrows start and end at the unit e, so that any two elements may be
composed. An intermediate possibility is an action groupeid. Given a group G and
aG-actionon aset Q, we look at G x Q as a collection of arrows between points in
Q, in such a way that (x, g) starts at x "'g and ends at q. Accordingly, the product
(x, 9)(y, q’) is defined when ¢’ = x~!q, in which case (x, ¢)(y, x ') := (xy, q).
The inverse is (x, ¢)~' := (x~!, x"'g). Hence t(q) = (e, q).

When all relevant objects are manifolds and all operations are smooth, one
speaks of a Lie groupoid. Given a Lie groupoid G, one can turn C2(G) into
a convolution *-algebra that reflects the basic properties of the groupoid opera-
tions. For example, for a Lie group this reproduces the *-algebra we have already
encountered. For a pair groupoid one obtains

f*g(ql,qz)=/de(q)f(qx,q)g(q,qz)
and f*(q1, 92) = f(g2, q1). On an action groupoid one has
f*g(x,q)=/Gdyf(xy.q)g(y“,y"x“'q)

and f*(x,q) = f(x~', x~!q).
One sees that in these two cases the involution is defined by
ff=roh;
this is, in fact, always true. One can put a norm on C2°(G), and complete it so
as to obtain a C*-algebra C*(G). For the pair groupoid Q x @ one then finds
C*(Q x Q) = Bo(L*(Q))-

Given a principal H-bundle P over Q, one may form the “quotient” of the pair
groupoid P x P by H, obtaining the gauge groupoid P x j P of the bundle. This
is a groupoid with base Q; an arrow [x, y]y starts at t(y) and ends at 7(x) (where
7 is the bundle projection on P). The C*-algebra C*(P x g P) of this groupoid
turns out to be isomorphic to Bo(L?(Q)) ® C*(H). For compact H this is nothing
but the C*-algebra Bo(L2(P))" we have already encountered, and C*(P x y P)
is in every respect the correct generalization of Bo(L2(P))" to the case where H
is noncompact. In particular, given a representation U, (H) one may construct an
induced representation 7 X of C*(P X y P), which is irreducible iff U, is. This leads
to a bijective correspondence

Uy(H) «— nX(C*(P x g4 P))

between the representations of H and the representations of C*(P x y P).
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The C*-algebra of an action groupoid G x Q is usually written as C*(G, Q),
and is called an action C*-algebra. The C*-algebra C*(G, Q) has the remarkable
property that each of its representations corresponds to a system of imprimitivity
(U, ), where U is a representation of G, and 7 is a representation of Co(Q),
satisfying the covariance condition

U@ (HUx)* = 7 (@)

Herew,(f): q — f (x~'g). This condition is an integrated form of the “canonical”
commutation relation

%[Qh(i), Qu( A = OnEx ).

for f € C®(Q) and X € g. Here Qu(X) := ihdU (X) and Qu(f) := 7 (f); recall
the definition of the linear function X € C®(g*, R) and of the vector field &x on
Q.

Turning to the top right corner in Figure 1, we now describe the “infinitesimal”
object & associated to a Lie groupoid G, generalizing the concept of a Lie algebra.
The Lie algebroid of a Lie groupoid with base Q is a vector bundle over Q,
which apart from the bundle projection 7 : & — @ enjoys another linear map
T, : & — T Q, called the anchor. In addition, there is a Lie bracket [, ] on the
space of sections of &, which is related to the usual commutator on vector fields
on Q through the anchor. These objects are all constructed from G; the bundle &
itself is built from the geometry of the map ¢ : Q < G (it is the normal bundle
of this inclusion), the Lie bracket is derived from the commutator of left-invariant
vector fields on G (much as in the case of a Lie algebra), and the anchor is the
derivative of the map from G to Q that assigns to an arrow its starting point.

For example, the Lie algebroid of the pair groupoid Q x Q is the tangent bundle
T @ with the obvious Lie bracket; the anchor is, of course, the identity map. The
Lie algebroid of the action groupoid G x Q is the action algebroid g x O, regarded
as a trivial bundle over Q. Identifying sections of g x Q with g-valued functions
X(-) on Q, the Lie bracket on constant sections is simply the bracket [, 1; in g.
More generally, one has

[X, Ygxo(q) = [X(g), Y(q)]y +ErX(q) — §xY (9).

The anchor comes out as 7,(X, qg) = —&x(q). Finally, the Lie algebroid of the
gauge groupoid P x g P is (T'P)/H as a vector bundle over @, with commutator
inherited from the usual one on vector fields on P.

This brings us to the downward arrow on the right in Figure 1, namely the
construction of a Poisson algebra from the Lie algebroid &. The Poisson mani-
fold in question is the dual bundle &*, the Poisson bracket on C*°(®*, R) being
determined by the special cases

{f’g}* =0;
{5, f}- = =t 0sf;

{51, 52}- = —[s1, 2le.
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Here f and g are functions on the base Q, and 5 is a linear function on &* defined
by a section s of & in the obvious way.

For & = T Q this is simply the usual Poisson structure on the cotangent bundle
T*Q; we see that this structure ultimately derives from the groupoid operations on
Q@ x Q. The relevant special cases of the bracket on the Poisson algebra C*°(g* x
@, R) determined by the action groupoid G x Q are as follows. Firstly, for functions
f, g depending only on Q one has the obvious { f, g} = 0. Secondly, on constant
sections (identified with linear functions on g*) one has (X, 7). = —[;,\/Y].
Finally, the “mixed” bracket is {X, f}_ = &x f. One sees from these Poisson
brackets that a representation of the Poisson algebra C*°(g* x Q, R) on asymplectic
manifold is essentially a classical system of imprimitivity, being the classical
analogue of the system of imprimitivity determined by a representation of the
corresponding groupoid C*-algebra C*(G, Q).

Now to the top horizontal arrow. It turns out that the exponential map Exp :
g — G on a Lie algebra can be generalized to a map Exp" : & — G from the Lie
algebroid & into a corresponding Lie groupoid G. This generalized exponential
map, however, depends on the choice of a connection (or covariant derivative) on
the vector bundle & over Q. Since for a Lie algebra the base space of this bundle
consists of only one point, there is no need for a connection in this case. In an
action Lie groupoid g x Q one does not need a connection either in order to define
Exp"”. In terms of Exp : ¢ — G the map Exp” : g x @ — G x Q is given by

Exp¥(X, q) = (Exp(X), Exp(} X)q).

On a pair Lie algebroid T Q one does need a connection; this is, of course,
nothing but an affine connection. The latter leads to an exponential map exp in the
sense of affine geometry, in terms of which Exp¥ : TQ — Q@ x Q is

Exp" (X) = (exp,x)(— 1 X), exp,x, (1 X)),

where © := 17, 0. For example, the affine connection may be the Levi-Civita
connection provided by a Riemannian metric on Q.

At last, we are now in a position to define the generalized Weyl quantization
map Q,{V 1 C®(®B*, R) > C*(G)r (restricted to suitable bounded functions); this
is the bottom line of Figure 1. In analogy with the prescription for groups, in a
rough sketch it is given by

are

£6(X)
Qnhy e f(0),

QY (f)Exp” (X)) = f

where the integration is over the fiber of &* above g o(X).

Using the above formulae for Exp", one verifies that this prescription indeed
reduces to the Weyl quantization of C*°(T*Q, R) explained in Chapter II, as well
as to the quantization of C*°(g* , R) discussed above.
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IV. Reduction and Induction

In symplectic geometry one has the concept of symplectic reduction, whose aim is
the construction of new symplectic manifolds from old ones; it may be interpreted
as a tool in the representation theory of Poisson algebras. There exists an analogous
technique in the representation theory of C*-algebras, called induction. The final
chapter develops the analogy between reduction on the classical side and induction
on the quantum side. In physics these techniques play a central role in the classical
and quantum theory of constrained systems.

Reduction

The general concept of symplectic reduction is as follows. Let (S, @) be a symplec-
tic manifold, and let C be a submanifold of S. The restriction w¢ of the symplectic
form w to C is closed, but not necessarily nondegenerate. Suppose wc is degen-
erate. The tangent bundle TC to C then contains a subbundle Ne:=TCNTCH,
where TC consists of all vectors in TC on which wc identically vanishes. Under
favorable circumstances, the collection of all curves in C that are tangent to N¢
defines a foliation ®¢ of C, whose quotient S¢ := C/®c is a manifold.

The essential point is now that the reduced space S is equipped with a sym-
plectic form w®, whose pullback to C under the projection from C to SC is wc.
This is possible because the “directions of degeneracy” N¢ of w¢ have disappeared
in the construction of the reduced space.

In physics the submanifold C C S is defined by constraints on the allowed initial
states of a given dynamical system; Gauss’s law in electrodynamics is a typical
example. Flows along N¢ are often generated by gauge transformations, which
do not modify the physicat state of the system, and correspond to a redundancy in
the description of the system in terms of the degrees of freedom in S. The passage
from S to C then implements the constraints, whereas the subsequent step from
C to S¢ eliminates the gauge redundancy. In any case, one should firmly keep in
mind that symplectic reduction is generically a two-step procedure (except when
wc is nondegenerate, so that C itself is symplectic, and S¢ = C).

Suppose that TC+ is contained in 7C, in which case C is called coisotropic.
The collection of all smooth functions on S that are constant on the leaves of ®¢
is then a Poisson algebra, which in physics is the algebra of weak observables A<
of the system. Each f € A evidently “reduces” to a well-defined function 7 (f)
on the reduced space, and the map 7€ is a representation of ng in C*(S¢, R).

The following specialization of the above reduction scheme plays a central
role in this chapter. Suppose one has a pair of symplectic manifolds (S, ws) and
(S,, w,), a Poisson manifold P, and a pair of Poisson morphisms J : S — P~
and J, : S, = P (here P~ is P with minus its Poisson bracket). One then takes
S = § x §,, equipped with the symplectic form w := ws + w,. We write ®, for
the null foliation ®. The submanifold

C=S%pS,:={0,a)eSxS,J0)=J,(@)
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is then coisotropic, and leads to a reduced space
Sj’ =(S*p S,)/Dp.

Most physically relevant examples of symplectic reduction are a special case of
this construction, which we call special symplectic reduction. From the point of
view of representation theory the main feature of the construction emerges when
one has a second Poisson manifold P,, and a Poisson map J, : S — P;, such that
the pullback J}C*(P,, R) in C*®(S, R) Poisson-commutes with J*C®(P, R).
The map J* : S7 — P, given by

JP(lo, ale,) = J2(0)

is then well-defined, and is a Poisson map. Pulling back, one obtains a represen-
tation (J”)* of the Poisson algebra C*°(P,, R) on S“, which is said to be reduced
by the representation J; of C*°(P, R).

Writing J; for J etc., we denote this situation by

P, s s p

Denote the setof all f € C*(S, R) for which { f, J;g} = O0forallg € C®(P,, R)
by J*C*°(P,, RY. The existence of the manifold S and the maps J;, J, implies that
Py and P, stand in a certain relationship to each other, which is particularly close
if JyC®(Py, R) = JFC®(Py, R) as well as JFC®(P, R)Y = JFC®(P,, R), and
Ji and J, are surjective, with connected and simply connected level sets in S.

If, given P; and P,, one can find S, J;, and J, such that these, and some
additional technical conditions are met, one says that P, and P, are Morita
equivalent. The classical imprimitivity theorem then states that C®(P;, R)
and C*°(P,, R) have equivalent representation theories. Specifically, every repre-
sentation of C®°(P,, R) is reduced from some representation of C®(P;, R), and
vice versa, and this bijection preserves irreducibility.

The idea of the proof of this theorem is as simple as it is elegant, and is most
easily formulated if we use Poisson maps J rather than representations 7 = J*
(one may always pass from one to the other). Given a Poissonmap J, : S, — P,
one constructs the reduced space S by special symplectic reduction. As explained
above, this leads to a Poisson map J,p : §Y — P,. One now turns the diagram

Py gl P, around, obtaining P; g4 P,. Applying special symplectic
reduction once again, this time from J, := J ,p , one obtains areduced space S5 and
a Poisson map J7 : 8§ — P;. Using all the assumptions involved in the Morita
equivalence of P and P,, one then shows that SJ is symplectomorphic to S,, such
that J7 is equivalent to J,. This works in the opposite direction as well.
Specializing special symplectic reduction, we now assume that P = h* (where
h* is the dual of the Lie algebra h of a connected Lie group H),and J : § —
h* is an equivariant momentum map coming from a strongly Hamiltonian H -
action on S. Moreover, we take S, to be a coadjoint orbit O in §* (equipped
with the Lie symplectic structure), so that J, is simply the inclusion map. The
ensuing doubly specialized reduction procedure is called Marsden—Weinstein
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reduction. The reduced space S obtained by special symplectic reduction from
these data is easily seen to be diffeomorphic to J~1(0)/ H, which thereby acquires
a symplectic structure. The symplectic space J~'(0)/H is called a Marsden—
Weinstein quotient.

Since H acts on S by Poisson maps, the Poisson bracket on S descends to
a Poisson bracket on S/H. However, the latter is not symplectic, unless H is
discrete. As a Poisson manifold, S/ H is foliated by its symplectic leaves. It turns
out that these leaves are precisely the Marsden—Weinstein quotients J ~'(O0)/H.
This allows us to see the phase spaces (T*P)® of Chapter III in a new light. In
particular, when P and H are connected and simply connected, the correspondence
o < 79 between the irreducible representations of C®(h* , R) and those of
C®((T*P)/H, R) found in Chapter I1I comes out as a consequence of the classical
imprimitivity theorem.

In a generalization of this construction, which we call Kazhdan-Kostant—
Sternberg reduction, the inclusion of O into h* is replaced by a general Poisson
map J, : S, — b}, where S, is symplectic. We assume that J, is minus the
momentum map of a strongly Hamiltonian H -action on S,. Special symplectic
reduction then leads to to a reduced space (T*P)”.

In the special case that P = G is a Lie group, seen as a principal bundle over
Q = G/H, we thus obtain a reduced space (T*G)” for each strongly Hamiltonian
H-space S,. This reduced space carries a classical system of imprimitivity. Firstly,
the left G-action on T*G (pulled back from the left action on G) reduces to a G-
action on (T*G)”. This yields a Poisson map J(‘I) 1 (T*G)? — g*.Secondly, since
(T*G)” is a bundle over G/H, one has a map J(g) : (T*G)? > G/H; thisis a
Poisson map with respect to the zero Poisson structure on G/H. These combine
to form a representation of the Poisson algebra C*°(g* x G/H, R) of the action
algebroid defined by the canonical G-action on G/H.

Without any connectedness assumptions, the classical transitive imprimitivity
theorem now states that any classical system of imprimitivity for G and G/H,
in other words, any representation of the Poisson algebra C®°(g* x G/H, R), is
equivalent to one of the above form.

So far, we have (tacitly) assumed that S/ H and each J ~1(0)/H are manifolds.
When H is compact this is the case when the H-action on S is free. A fascinating
situation arises when one drops this assumption. Without loss of generality, we
may restrict ourselves to the case O = {0}. It turns out that the reduced space
S9 is the (disjoint) union of certain symplectic manifolds S?K], each of which
corresponds to the conjugacy class [K] of the stabilizer K C H of some point
in S. The reduced space has a Poisson structure, which restricted to each S?K] is
equivalent to the symplectic structure of that subspace. Any Hamiltonian flow in
J~Y(0)/ H necessarily stays inside a given subspace S?K]. In view of the last point,
the decomposition of SY is somewhat reminiscent of the foliation of a Poisson
manifold by its symplectic leaves.
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Induction

Almost every aspect of special symplectic reduction has a counterpart in the context
of Hilbert spaces and C*-algebras, albeit with subtle changes.

In special symplectic reduction one starts from a Poissonmap J : § — P~
Equivalently, one has a representation J* : C*°(P~) — C*(S, R), which may
alternatively be regarded as an antirepresentation of C*°( P, R). The quantum ana-
logue of the (complexified) Poisson algebra C*°(P) is taken to be a C*-algebra
B; the antirepresentation J* should then correspond to a right action 7, (*B) on a
linear space of some sort. These are easy analogies. In the absence of an underlying
space P for ‘B, it is clear that the equivalent classical objects J and J* should be
disentangled in quantum theory.

The quantum counterpart of J in operator theory is a Hilbert C*-module over
the C*-algebra ®B. This consists of a complex linear space £, a linear right action
7, of B on &, and a “B-valued inner product” {, ) : £ x £ — B.

The sesquilinear form (, ) must firstly satisfy (¥, ®)3, = (®, W), generaliz-
ing the behavior of an ordinary C-valued inner product under complex conjugation.
Secondly, the B-valued inner product should intertwine 7, with the canonical right
action of B on itself (given by multiplication on the right); in other words, one
requires that (W, m(B)®P)p = (¥, ®)g B. Furthermore, one imposes positive def-
initeness, in that (W, W)y > 0, with equality iff ¥ = 0. It is finally required that
£ be complete in the norm || W || := [[(¥, ¥)g]|/!/2.

For example, *B is a Hilbert C*-module over itself, with 7.(B)A := AB and
(A, B)p := A*B. Also, a Hilbert space H is a Hilbert C*-module over C in its
inner product.

So far, we have stated the first half of the input for “quantum induction”. In
special symplectic reduction one furthermore has a second Poisson map J, :
S, = P, where S, is a symplectic manifold. In quantum theory S, is replaced
by a Hilbert space H, . There is no quantum counterpart of J,,, but the associated
representation J; : C*°(P,R) — C*(S,, R) corresponds to a representation 7,
of BonH,.

The construction of the classical reduced space S% is replaced by a procedure
called Rieffel induction. Table 2 presents a summary of the analogy between
special symplectic reduction and Rieffel induction, which proceeds as follows. One
first equips £ ® H, with a sesquilinear form (, )§, defined by linear extension of

(W Qv, ®Qw)y =, 1, (¥, P)p)w)y,

where W, ® € £ and v, w € H,. This form is positive semidefinite, because (, ),
and (, )y are. Then form the quotient of £ ® H, by the null space N, of (, )g;
this is evidently a pre-Hilbert space. The induced space

HX = (€ @ Hy JNy)™

is the completion of £ ® H, /Ny in the inner product inherited from (, )§.
For the quantum counterpart of the reduced representation (J#)*(C*°(P;))on S f
in special symplectic reduction, we define the notion of an adjointable operator
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Special symplectic reduction Rieffel induction
Poisson algebra C*(P) C*-algebra B
symplectic manifold S linear space &£
J*: C®(P) = C™(S) m(B)on &
Poissonmap J : S — P~ $B-valued inner product (, )
symplectic manifold S, Hilbert space H,
representation J; : C*(P) > C*(S,) representation 7, : B — B(H,)
Cartesian product § x S, tensor product £ ® H,
constraint manifolds S *p S, EQH,
null foliation &, null space N,
S5 =(S*p S,)/ P, HY = (EQHy /Ny
J*C®(PY C C™(S) C*(€,B)
Poisson algebra C*°(P,) C*-algebra 2
reduced representation (J*)*(C*(P,)) induced representation 7 X ()

TABLE 2. Special symplectic reduction and Rieffel induction

on £. This is an operator A that has an adjoint with respect to the *B-valued inner
product; in other words, one has

(U, AD)p = (A", D)y

for some operator A* on £. The space of all adjointable operators on £ is a C*-
algebra, denoted by C*(£, B). An adjointable operator A has the property that
A ® I, maps the null space N, into itself (here I, is the unit operator on H, ).
Hence A ® I, induces an operator on £ ® H, /N, in a natural way; under suitable
boundedness assumptions the latter operator extends to an operator mX(A) on HX.

To complete the picture, suppose one has a morphism of a C*-algebra 2 into
C*(&, B). Composing with this morphism, one may (with slight abuse of notation)
look at wX as a representation of 2 on the induced space HX. This representation
is said to be induced (in the sense of Rieffel) by the representation 7, (2B) with
respect to the Hilbert C*-module £ over ‘B.

With regard to the analogies listed in Table 2, it is remarkable that the constraint
manifold of classical mechanics has no quantum counterpart. In other words, in
quantum mechanics it is not necessary to impose the constraints (at least in the
case that all constraints are first class in the sense of Dirac, which is the case in
special symplectic reduction). As opposed to classical reduction, which is a two-
step procedure, the construction of the induced space H* in Rieffel induction has
only one step, corresponding to the second step of symplectic reduction.

The physical interpretation of H* is that it is the physical state space of the
system, in which all gauge (and perhaps other unphysical) degrees of freedom
have been removed. (Traditional approaches to constrained quantization instead
try to mimic the first step of symplectic reduction, imposing the constraints on
the Hilbert space of states of the unconstrained system. This has turned out not to
work, except in the very simplest examples.)
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We now explain the quantum analogue of Morita equivalence of Poisson al-
gebras. In preparation, we need a refinement of the C*-algebra C*(£, ‘B), which
is analogous to the restriction of the C*-algebra B (H) of all bounded operators
on a Hilbert space H to the C*-algebra Bo(H) of all compact operators on H.
Namely, we define CJ(&, B) as the C*-subalgebra of C*(£, B) that is generated
by all operators of the type T\E?d,, where ¥, @ € £, and

TooZ = V(D Z)p.

Two C*-algebras 2l and ‘B are now said to be Morita equivalent when there exists
a full Hilbert C*-module £ over B under which 2 ~ C}(&, B). We write A =
& = ‘B. Here a Hilbert C*-module is called full when the collection {{¥, &)y},
where W, ® run over &, is dense in ‘B.

For example, By (H) is Morita equivalent to C, with £ = H.

As in the classical case, Morita equivalence implies that 2 and B have equivalent
representation theories, the bijection preserving irreducibility. More precisely, the
quantum imprimitivity theorem states that every representation of 2 is equiva-
lent to one that is Rieffel-induced from some representation 7, (‘B), and vice versa.
The proof uses exactly the same idea as its classical counterpart. The crucial step

of turning P, & sh P, around to P, & s- 4 P, in the classical proof now
works as follows. The conjugate space £ is equal to £ as areal vector space, but has
the conjugate action of complex scalars. The replacement of S by S~ corresponds
to the replacement of £ by €. Moreover, the expression

(W, P)cye.m = Ty o

in combination with the right action m,(A)¥ := A*W, where A € C}(£, B),
defines £ as a full Hilbert C*-module over C3 (€, B). Similarly, the right action
of B on £ is turned into a left action on £ by acting with the adjoint. Hence
A=E =B turns around to B = £ = 2.

The theorem is then proved by starting with a representation 7, (%8), Rieffel-
inducing with respect to 2 = £ = ‘B to obtain a representation 7 X (2(), using the
latter to construct an induced representation of 9B with respect to B = £ = 2, and
finally showing that this representation of ‘B is equivalent to m,. This procedure
works in both directions.

In view of the Morita equivalence Bo(H) = H = C, an immediate corollary
of the quantum imprimitivity theorem is that the C*-algebra of compact operators
has only one irreducible representation.

There is a quantum analogue of Marsden—Weinstein reduction. Instead of a
strongly Hamiltonian H -action on a symplectic manifold S, we start from a repre-
sentation U (H) on a Hilbert space H, and the role of the Poisson algebra C*°(h* )
is now played by the group C*-algebra B = C*(H). Suppose, for simplicity, that
H is compact. We then take £ = H (actually, £ is a certain completion of H, but
we will not bother with this detail), on which C*(H) acts from the right by

o (f) = / dh f(WUh)™".
H
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The C*(H)-valued inner product on H is defined by letting (W, ®)c+x) be the
function & — (¥, U (h)®P).

We may now proceed with Rieffel induction from some representation 7y of
C*(H); as we have seen in Chapter III, we may equivalently assume that we have
a representation U, of H. The form (, )i on H ® H, reads

(¥, D)) = fH dh (¥, U ® Uy(h)®uen, -

Although for compact H this integral may be explicitly computed, we leave the
expression as it stands, and remark that it is valid for noncompact groups as well.
The only difference with the compact case is that in general £ is a suitably chosen
dense subspace of H (for in the noncompact case the convergence of the H-
integration needs attention).

A most interesting instance of “quantum Marsden—Weinstein reduction” arises
in the context of a principal H-bundle P. We take H = L%(P) (defined with
respect to some H-invariant measure), which carries the unitary representation
U(H) := Ug(H) naturally constructed from the given right action of H on P.
Hence we obtain a right action of C*(H) on L2(P), eventually leading to a Hilbert
C*-module £ over C*(H). The Hilbert space H* constructed by Rieffel induction
from U, (H) is then naturally isomorphic to the space H* defined earlier in the
context of Mackey induction.

We may compute the C*-algebra C}(€, C*(H)). Remarkbly, this turns out to
be the C*-algebra C*(P x g P) of the gauge groupoid of the bundle. It follows
that C*(P x y P) and C*(H) are Morita equivalent. The bijective correspondence
Uy(H) < 7X(C*(P x g P)) found in Chapter I then follows from the quantum
imprimitivity theorem. Let U, be the canonical representation of Aut(P) on L?(P).
For each ¢ € Aut(P) the operator U () commutes with 7x(C*(H)), which implies
that it is adjointable. The Rieffel-induced representative 7 X (U (¢)) coincides with
the induced representative UX (¢) defined in Chapter I11.

Specializing to the case where P = G is a Lie group, and realizing that the
action C*-algebra C*(G, G/H) is isomorphic to the gauge groupoid C*-algebra
C*(G xy G), we conclude that C*(G, G/H) and C*(H) are Morita equivalent.
Applied to this situation, the general quantum imprimitivity theorem then implies
the quantum transitive imprimitivity theorem. To explain what this theorem
means, first observe that H* carries a transitive system of imprimitivity, in which
U(G) = UX(G), and 7(Co(G/ H)) is defined by

ROV () = F(lx]a)P*(x).

The theorem now states that for any system of imprimitivity for G with Q = G/H
there exists a representation U, ( H ) such that the system is equivalent to the one on
HX just defined. This is the exact quantum counterpart of the classical transitive
imprimitivity theorem discussed earlier.
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Applications in Relativistic Quantum Theory

The most interesting applications of Rieffel’s and other induction techniques in
physics appear to be to the mathematically rigorous study of gauge field theories.
We wish to clarify three aspects of such theories.

Firstly, there is a close (but not universal) relationship between gauge invariance
and the masslessness of the field quanta of a quantum gauge theory. A shadow of
this relationship may already be seen in the classical theory of massless relativistic
particles and fields; infinite-dimensional Marsden-Weinstein reduction will be
seen to play a central role.

Secondly, the passage from an unconstrained Yang—Mills theory to its physical
sector involves a tremendous reduction in degrees of freedom; when the underlying
space is a circle this reduction even leads to a finite-dimensional theory. This will
be proved with induction techniques.

Thirdly, it was discovered in the sixties and seventies that the quantization of
certain physical systems, notably gauge theories, may involve parameters (be-
yond F) without a classical analogue. These so-called vacuum angles or #-angles
emerge in a transparent way when one quantizes constrained systems using induced
representations.

We start with a description of the coadjoint orbits of the Poincaré group.
This group is the semidirect product P = L x, M of the Lorentz group
L = SO(3,1) and the additive group M = R* (equipped with the Minkowski
metric diag (1, —1, —1, —1), of which L is the connected isometry group). The
action p of L on M with respect to which the semidirect product is formed is
simply the defining action of SO(3, 1) on R*. A central role in the description of
the coadjoint orbits of such semidirect products is played by the dual action p*(L)
on M* >~ R*.

A nontrivial analysis shows that each coadjoint orbit OF in p* is isomorphic
(as a symplectic manifold) to a Marsden-Weinstein quotient of the type (T*P)?,
which we have encountered before in a different context. Here we have to take
P = L, whereas O is a coadjoint orbit of the stabilizer L ; of some point p in M*
under the action p*(L). Hence the orbits are fibered over T*(L /L 5), with typical
fiber O.

The phase space of a massless relativistic particle with positive energy is ob-
tained by choosing p = (1, 0, 0, —1). Its stabilizer is isomorphic to the Euclidean
group E(2) := SO(2) x, R? in dimension 2. Hence classical massless particles
are further classified by the coadjoint orbits O of E(2). The dual of the Lie algebra
of E(2) is R3, whose coadjoint orbits are either cylinders C, = S! x R (where the
circle S} of radius r > 0 lies in the (x, y)-plane, and R is the z-axis), or points
0,0, h).

Only the latter are believed to be of physical relevance; the parameter 4 is called
the helicity of the particle. For example, a classical photon has helicity 1 or —1,
and a classical graviton has helicity +2. The phase space (9(’; ., of such particles
is diffeomorphic to 7*(L/E(2)), but the Poisson bracket contains an additional
term (beyond the canonical cotangent bundle bracket) proportional to 4.
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There is an almost complete parallel between the coadjoint orbits and the ir-
reducible representations of P. The only difference lies in the fact that the latter
are classified by the irreducible representations of the stabilizers L 3, rather than
by their coadjoint orbits. Relativistic massless quantum particles are therefore
classified by the irreducible representations of £(2). The physically relevant rep-
resentations U% " are again labeled by the helicity #, which in quantum theory
assumes only (half-) integral values. The Hilbert space H%** carrying U%*# is
L*(L/E(2)).

In a remarkable twist of nature and mathematics, the physically relevant irre-
ducible representations of P describe both quantized particles and classical fields.
However, the massless relativistic fields occurring in the Lagrangians and Hamilto-
nians of classical field theory do not transform under U%**_ but under a so-called
covariant representation of P. This is a (generally nonunitary) representation
R* that is (Mackey) induced from a (nonunitary) representation of L. The lack of
unitarity does not matter for classical physics, since the “covariant” action of P
on the space of fields should be seen in a symplectic context; it is, indeed, strongly
Hamiltonian.

Gauge fields A transform under the covariant vector representation RY (P),
defined by

RY(A, v)A () = A* A (A" (g — v)).

In order to reach U% %! as a first step one imposes the infinite number of con-
straints [JA* = 0 on the space SV of all gauge fields, and performs symplectic
reduction. This leads to a symplectic space S%*V, whose configuration space
part consists of all solutions of the above wave equation whose Cauchy data are
square-integrable in a suitable sense.

The second step of the passage from SV to H>+ %!, then, involves the gauge
group G. This is the real Hilbert space of real solutions A of the wave equation
UA = 0 on M whose (weak) derivative A (seen as a four-vector with components
8, A) lies in S®V The connection between gauge invariance and masslessness in
classical free field theories is now as follows. The gauge group acts on S®®Y by

ArAL > Ay 48,0

this action is strongly Hamiltonian, with momentum map J, and the Marsden—
Weinstein quotient J ~1(0)/G is H*+! @ H%*+~1. Moreover, the reduction of the
covariant action RY(P) on SV to S*®V further reduces to an action on J~'(0)/G,
which coincides with the representation U%+-! g U+~1,

We now quantize this reduction procedure with the aid of a generalization of the
quantum Marsden-Weinstein induction technique, which is suitable for dealing
with infinite-dimensional groups. We start as if the gauge group were locally com-
pact, and consider a Hilbert space H carrying a representation U (G). To construct
H we exploit the fact that S, previously looked upon as a symplectic space, may
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be turned into a Hilbert space H" . For H we then take the bosonic Fock space

o0
exp(H") 1= @ ' HY,
1=0
where ®.H" is the symmetrized tensor product of / copies of H". We define a
map /Exp : HY — exp(H") by

Vv EXxp(A) := f: %;
=0 ﬁ

it follows that the inner product of two exponential vectors is

(\/ES(E(A)y \/ETP(B)) — o AByy

Since the exponential vectors are dense in H, the natural representation U(G)
we use is characterized by its matrix elements

(V Exp(A), Up(A)y/ EXP(B)) =By e_%”)””;" AWy —@h Bl

Mimicking the finite-dimensional situation, we would like to integrate the above
function of A over G with respect to a G-invariant “Lebesgue” measure. This is
impossible, but fortunately one may combine the nonexistent Lebesgue measure
on G with the factor exp(— 3|4 |[%{V ). This combination yields a Gaussian measure
1 on a certain completion G, of G. We then put

(VEBA). VERp(B), = 40 [ dpaaet sk,
One may proceed with the construction of the induced space H* as usual, obtaining
the correct quantum field theory of photons. In particular, the gauge group G is
trivially represented in Hld, and Gauss’s law is satisfied.

Following this treatment of the connection between masslessness and gauge
invariance in classical and quantum electromagnetism, we turn to a different class
of models for a discussion of the remaining two points of interest in gauge theories.

Classical Yang-Mills theory on a circle with structure group H is defined by
the configuration space Ag = L?(S', b), with phase space

S=T*Ag >~ A= L*S", he).

Here the inner product in L? is defined with respect to an Ad(H)-invariant
inner product on h. The gauge group G of the model is the Sobolev loop
group H,(S!, H), consisting of those g € C(S', H) whose (weak) derivative
g := g 'dg/da lies in Ag. These definitions guarantee that the action

g: A A% = Ad(g)A +gdg ' = g(A —g)g™"

of G on Ag is smooth. This action lifts to a strongly Hamiltonian action on the phase
space A, given by the same formula (with A replaced by a complex connection
Z).
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The point is now that the Marsden—Weinstein quotient 5% = J~1(0)/G (where
J the momentum map of the above G-action) is symplectomorphic to the finite-
dimensional cotangent bundle T*(H /Ad(H)). The identification of this reduced
space with the physical phase space rests on the fact that J ~1(0) is the subspace
of S on which Gauss’s law holds. The key element of the proof of this symplecto-
morphism is the construction of the Wilson loop W : Ar — H. We first define
W: L%(S!, h) = C([0, 1], H) as the solution of the differential equation

(i + A) Wi(@) =0,
b 1%

with initial condition Wa(0) = e (here Wy := W(A)). With W(A) := Wa(1),
one shows that W(A#) = W(A) for all based gauge transformations g € G, (i.e.,
g(0) = e). Hence W quotients to a map from Ag/G, to H; the peculiar feature
of the model is that this map is a diffeomorphism. Moreover, W complexifies to a
map W from the phase space A to the complexification Hc of H . Since Hc is dif-
feomorphic to T* H, the map W restricts and quotients to a symplectomorphism
between S° and T* H.

The quantization of this reduction procedure follows the lines of our earlier
treatment of photons. The unconstrained phase space S is quantized as the bosonic
Fock space ‘H := exp(A), on which the gauge group is represented by

Ur(g)yEXp(Z) 1= e~ 118IP+ED [Exp(Z8).

Hence the matrix element of Ur(g) between two exponential vectors again contains
a Gaussian factor exp(—1|| £11%), which we wish to combine with the nonexistent
Haar measure on G. This leads to a version of the well-known Wiener measure
1", conditioned to the space of continuous loops on H. We may therefore put

(VErow). VEro(@), i /LH du¥ (g) W ZHGD),

For technical reasons the integral is over LH = C(§ L H) rather than over the
gauge group, which is a sup-dense subspace of LH that happens to have wv-
measure zero.

The induced space H* defined by induction with respect to the above form is
naturally isomorphic to the subspace of L2(H ) that is invariant under the represen-
tation defined by the adjoint action. In fact, replacing L H in the above integral by
the space L H, of based loops, the induced space HY is L2(H) itself. A function
f € C®(H) defines Wy € C®(A) by W;(A) := f(W(A)). The quantization of
the observable Wy on L2(H) then comes out to be the multiplication operator f.
When f is a class function, this operator has a well-defined restriction to H*.

The identification of H¢ with L2(H) makes essential use of the Hall coherent
states \ilfl in L2(H); this is a recently discovered family of coherent states that is
labeled by the points z in Hc. The complexified Wilson loop Wc : A — Hc of
the classical theorg has a quantum counterpart, which (up to normalization) maps

VExp(Z) to @}/72( ).
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We finally turn to vacuum angles. In view of the equalities
70(G) 1= G/G° = mo(LH) = m\(H),

where G0 is the identity component of G, the gauge group is disconnected whenever
the first homotopy group of the structure group H is nontrivial. For example, in the
abelian case H = U(1) one has ¢(G) = m,(U (1)) = Z. This motivates us to make
some general comments on the quantization of Marsden—Weinstein quotients by
a disconnected group G.

The space S° = J~!(0)/G may be constructed in two steps: one firstly forms
J~'(0)/G°, which is a symplectic space. Secondly, one quotients the latter by the
discrete group 7o(G), again obtaining a symplectic space, which is isomorphic to
S°. We isolate the second step. Although on the classical side 7o(G) possesses
only the trivial coadjoint orbit {0}, on the quantum side it will have nontrivial
irreducible representations, which have no classical counterpart. A vacuum angle
is an element of the unitary dual J&E); for Yang—Mills theory on a circle this is
the same as J;(?) For H = U(1) one therefore finds § =7Z= ‘U(1), explaining
the alternative name 6-angles.

Pick a 6 € 7@), with corresponding representation Uy(779(G)). Instead of
forming the physical state space by induction from the trivial representation of
the gauge group, as we have done so far, we have the freedom of inducing from
the representation Up(G), derived from Uy via the canonical projection from G to
G/G°. The quantum observables of the gauge-invariant system, such as the physical
Hamiltonian, then explicitly depend on 6, since these operators are constructed by
an induction procedure that depends on 6. Hence one obtains a different physical
theory for each 6 € JE(E). In other words, the gauge-invariant theory admits
inequivalent quantizations, classified by 6.

The #-dependence may be shown quite explicitly in the U (1) gauge theory on
a circle. As we have seen, the reduced classical theory of this model describes
a particle moving on U(1); the corresponding #-dependent quantum theory turns
out to be a description of the Aharonov—Bohm effect.



CHAPTER |

Observables and Pure States

1 The Structure of Algebras of Observables

1.1 Jordan—Lie Algebras and C*-Algebras

In this section we specify the key algebraic and functional-analytic structures
relevant to classical and quantum mechanics. Our main aim is to look at a C*-
algebra from the point of view of its self-adjoint part. From this perspective the
relationship between the respective algebraic structures of classical and quantum
mechanics is particularly transparent.

Recall that an algebra is a vector space with a (not necessarily commutative or
associative) bilinear and distributive multiplication 0. We write A% := A o A.

Definition 1.1.1. A (real) Jordan algebra is a (real) algebra where

AoB=BoA; (1.1
Ao(BoA?) = (Ao B)o A% (1.2)

The simplest motivation for (1.2) is that it is automatically satisfied when the
Jordan product o comes from an associative product via A c B = 1(AB + BA).
However, not all Jordan algebras arise in this way.

Theories of dynamical significance have a second algebraic operation.

Definition 1.1.2. A Jordan-Lie algebra is a real vector space Ug equipped with
two bilinear maps o and { , } (referred to as the Jordan product and the Poisson
bracket, respectively), such that the following conditions are satisfied. Firstly, one
has

AoB =BoA;
{A, B} = —{B, A} (1.3)
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Jorall A, B € Ug. Secondly, for each A, the map B — {A, B} is a derivation of
(AR, o) as well as of Ar, {, }). This means that the Leibniz rule

{A,BoC}={A,B}oC+ Bo{A,C} (1.9
as well as the Jacobi identity
{A,{B,C}} ={{A, B},C}+{B,{A, C}} (1.5)

must hold for all A, B, C € . Finally, for all A, B, C € g and some h* € R
one requires the associator identity

(AoB)oC —Ao(BoC)=L1h*{{A,C}, B). (1.6)
A Jordan—Lie algebra in which o is associative is called a Poisson algebra.

It follows from these axioms that (2Ig, o) is a real Jordan algebra, whereas
(g, {, }) is a real Lie algebra. In connection with Jordan-Lie algebras, the
terminology (non) associative always refers to the Jordan product.

The following definitions are recorded for later use.

Definition 1.1.3. A Jordan meorphism between Jordan—Lie algebras Ur and
BR is a linear map B : Ar — Br satisfying B(A o B) = B(A) o B(B) for all
A, B € Ug. Similarly, a Poisson morphism between such algebras is a linear map
satisfying B({A, B}) = {B(A), B(B)}). A map between Jordan—Lie algebras that
is simultaneously a Jordan morphism and a Poisson morphism is called simply a
morphism. An invertible (Jordan, Poisson) morphism « : Ar — Ug is called a
(Jordan, Poisson) automorphism, and an invertible (Jordan, Poisson) morphism
o : Ar — BR is a (Jordan, Poisson) isomorphism.

We now equip the algebras introduced above with a norm.

Definition 1.1.4. A J B-algebra is simultaneously a real Jordan algebra and a
Banach space in which for all A, B € Ag one has

Ao Bl < AIIBI; (1.7

IAI* < 1A + B?|. (1.8)

The motivation for the axioms of a J B-algebra will emerge in due course.

Putting A = B in (1.7) and B = 0 in (1.8), one sees that given (1.7), axiom (1.8)

is equivalent to the pair
1A% = 1A% (1.9)
1A% < A% + B?|l. (1.10)

Definition 1.1.5. A JL B-algebra is a J B-algebra r equipped with a Poisson
bracket that makes it a Jordan—Lie algebra for some h? > 0.

A J L B-algebra with & = 0 may alternatively be regarded as a Poisson alge-
bra with zero Poisson structure. A Poisson algebra with nonzero Poisson bracket
cannot, in general, be normed in such a way that the bracket is defined on the
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norm-completion of the algebra. For this reason Poisson algebras are usually not
studied in the setting of Banach spaces.

A J L B-algebra 2 turns out to be the real part of a complex associative algebra
2 of a much-studied type.

An involution on a complex algebra is a real-linear map A > A* such that for
all A, B € A and A € C one has

A™ = A; (1.11)
(AB)* = B*A*; (1.12)
(AA)* = AA*, (1.13)

A *-algebra is a complex associative algebra with an involution.

Definition 1.1.6. A C*-algebra is a complex Banach space U that is at the same
time a *-algebra, such that for all A, B € Y one has

YAB| < \|A]l IBI; 1.19
IA*Al = | Al (1.15)

Combining the two axioms for a C*-algebra leads to ||A}| < ||A*||; replacing A
by A* and using (1.11) yields

A% = Al (1.16)

It can actually be shown that (1.15) implies (1.14), but this highly nontrivial fact
distracts from the guiding idea that a C*-algebra is a specialization of a Banach
algebra. This is a complex Banach space and an associative algebra, in which all
A, B satisfy (1.14). This property guarantees that left and right multiplication are
bounded, hence continuous; in fact, multiplication is a jointly continuous operation.
For example, the space B(B) of all linear maps on a Banach space B is a Banach
algebra under the norm

ANl == sup{llAW| | ¥ € B, |¥| = 1}. (L17)

The C*-axioms are motivated by the following example. Consistent with the
above terminology, a *-algebra of bounded operators on some Hilbert space H
is a collection of bounded operators on H that is closed under addition, scalar
multiplication, operator multiplication, and taking adjoints. Thus the role of the
involution is played by the adjoint. Recall the definition of the norm of a bounded
operator:

|AlI? = sup{(AW¥, AW)| ¥ € H, (¥, ¥) = 1}. (1.18)

Since in a Hilbert space the norm is defined by || W |2 = (¥, ¥), eq. (1.18) is
evidently a special case of (1.17). Hence ||AW|| < ||A| | W], which implies (1.14).
Moreover, we estimate

AW = (AP, AW) = (¥, A*AW) < [|A*A[ [W]?,
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so that ||A||?2 < ||[A*A||, which is < ||A*|| ||A] by (1.14). This leads to (1.16) by
the argument preceding that equation; the ensuing inequality |A*A| < ||A||? then
implies (1.15).

Definition 1.1.7. A morphism between C*-algebras U, B is a linear map ¢ :
A — B such that

p(AB) = p(A)p(B); (1.19)
P(A*) = p(A)* (1.20)

forall A, B € 2. An isomorphism is a bijective morphism. Two C*-algebras are
isomorphic when there exists an isomorphism between them.

It is clear that a C*-algebra morphism between 2 and B restricts to a morphism
(in the sense of 1.1.3) between the associated J L B-algebras 2Ar and By (cf.
1.1.9), and vice versa. Morphisms between C*-algebras have excellent properties;
see 1.3.10. For example, an isomorphism is automatically isometric.

Theorem 1.1.8. A norm-closed *-algebra A in ‘B(H) is a C*-algebra (with oper-
ator multiplication as the product, etc.). Conversely, any C*-algebra is isomorphic
to a norm-closed *-algebra in B(H), for some Hilbert space H.

The computation following (1.18) establishes the first half. The proof of the
converse will be given at the end of 1.5. ]

An element A of a *-algebra 2 for which A* = A is called self-adjoint. The
self-adjoint part g is the collection of all self-adjoint elements in 2, seen as a
real vector space. Since one may write

A=A +iAd" =LA+ A +ig(A - A, (1.21)

every element of ¥ is a linear combination of two self-adjoint elements.

A commutative C*-algebra is a C*-algebra in which the associative multiplica-
tion is commutative. The connection between J B-algebras, Jordan—Lie algebras,
and C*-algebras is as follows.

Theorem 1.1.9. Let 2 be a C*-algebra, and choose h € R\{0}. Equipped with
the norm inherited from 2, and the operations

Ao B:=Y(AB+ BA);
{A, B} = %[A, Bl, (1.22)

the self-adjoint part AUy of U is a J L B-algebra. When % is noncommutative, the
parameter hin (1.6) equals b in (1.22); in particular, one has h* > 0. When 2 is
commutative, AUR is a Poisson algebra with zero Poisson bracket.

Conversely, given a J L B-algebra Ug for which h? > 0, its complexification 2
is a C*-algebra under the operations

AB:= Ao B — Lih{A, B); (1.23)
(A+iB)*:=A—iB:; (1.24)
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1
Al = ||A*Allz. (1.25)

In (1.24) we assume that A, B € g, and concerning (1.25) we remark that
A*A € Yg forany A € .

To prove the first half of the theorem, first note that by (1.16) the involution in 2
is continuous, so that g is a closed subspace of . The axioms for a J L B-algebra
are trivially verified, except (1.10). We defer the proof of this property to the end
of 1.4.

In the opposite direction, it is trivially verified that the product (1.23) is asso-
ciative as a consequence of the properties of a Jordan-Lie algebra. When (1.25)
defines a norm, the property (1.15) holds by construction.

When g is associative, so that 2 is commutative, the norm (1.25) on A simply

becomes ||A +iBj = ||A2+ lelé, where A, B € k. All axioms for a norm are
then easily derived from (1.9) and (1.10).

The proof that (1.25) is a norm also in the noncommutative case, as well as the
proof of (1.14), will be given at the end of 1.4, too. 0

One could replace the minus sign on the right-hand side of (1.23) by a plus sign;
that choice leads to a C*-algebra as well, which is anti-isomorphic to the one based
on the minus sign.

1.2 Spectrum and Commutative C*-Algebras

We are going to examine to what extent the closely related notions of spectrum
and functional calculus of a (bounded) self-adjoint operator A on a Hilbert space
‘H generalize to the context of C*-algebras and J L B-algebras. On the way we
discuss the structure of commutative C*-algebras. In this section we do not use
Theorem 1.1.9, except in the commutative case, for the outstanding part of the
proof of this theorem will depend on some of the results below.

Recall that the spectrum o (A) of A € B(H) is the set of those z € C for which
A — z[ has no (bounded two-sided) inverse; when A is self-adjoint, the spectral
radius r(A) appears in the fundamental equality

Al = r(A) := sup{lz| | z € o (A)}. (1.26)

Since the presence of a unit is crucial in these definitions, we have to go through
the following considerations. A unit I in a J B-algebra 2 is an element such that
Aol = Aforall A € Ug; a J B-algebra with a unit is called unital. When 2 is
a J L B-algebra, its unit becomes a unit of the C*-algebra 2, in that[A = Al = A
for all A € 2. This follows by putting B = C = Lin (1.4), implying {A, I} = O for
all A, and subsequently applying (1.23). In any case, taking the adjoint of I*I = II*
yields I*T = I; hence I* = I. Also, (1.15) then implies ||I|| = 1.

When a C*-algebra or a J L B-algebra has no unit, one may add one.

Proposition 1.2.1. For every C*-algebra without unit there exists a unique unital
C*-algebra %, called the unitization of A, and an isometric (hence injective)
morphism A — Ay, such thar Ay /2A ~ C.
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Let B(2) be the Banach algebra of all bounded linear maps on 2. Whether or
not 2 is unital, the map p : A — B(A), given by

p(A)B = AB, (1.27)

is isometric. To see this, note that || o(A)ll < || Al by (1.14), whereas the opposite
inequality follows from (1.15).

Now let 2 be a nonunital C*-algebra, and form 2l := 2 & C. Extend p to 2
by p(A+z)B := AB + zB, so that p(0+1) = I (the unit in B(2A)). Equipped
with the norm (1.17) and the algebraic structure of 2B(2(), and with the involution
p(A+z)* := p(A*) + ZI, the vector space p(2;) is easily shown to be a unital
C*-algebra. Since p is a vector space isomorphism between 2A; and p(2l;), one
may transfer the C*-algebraic structure on the latter to ;. Restricted to A C %,
one recovers 2 as a C*-algebra. Uniqueness follows from 1.2.4.4 below. 0

Definition 1.2.2. Let 2 be either a unital C*-algebra, or the complexification of
a unital J L B-algebra Ag. The spectrum o(A) of A € 2 is defined as the set of
those z € C for which A — zI has no (two-sided) inverse in .

When U is nonunital, one puts o(A) = o1(A+0), where oy stands for the
spectrum in the unitization of U.

In the nonunital case 0 always lies in 0 (A), as it is obvious from 1.2.1 that A € A
never has an inverse in ;. The theory of Banach algebras shows that o (A) is a
compact subset of C. For later use we note that

0(zA) = zo(A); (1.28)
o(AB)U {0} = 0 (BA) U {0} (1.29)

for all A, B € %U; the first property is obvious, and the second follows, because for
z # 0 the invertibility of A B — z implies the invertibility of BA — z. Namely, one
computes that (BA — z)~! = B(AB —z)"'A — 7'

For any locally compact Hausdorff space X, we regard the space Co(X) of all
continuous functions on X that vanish at infinity as a Banach space in the sup-
norm. A basic fact of topology and analysis is that Cy(X) is complete in this
norm. Convergence in the sup-norm is the same as uniform convergence. What’s
more, it is easily verified that Cp(X) is a commutative C*-algebra under pointwise
addition, multiplication, and complex conjugation (defining the involution). When
X is compact, the function 1y, which is 1 for every x, is the unit I. One checks
that the spectrum of f € C(X) is simply the set of values of f. On Cy(X), with X
noncompact, one has to supplement this set with zero.

Theorem 1.2.3. Let 2 be a commutative C*-algebra. There exists a locally com-
pact Hausdorff space X for which 2 is isomorphic to Co(X). When U is unital, X
is compact, so that U ~ C(X). The space X is unique up to homeomorphism.

Similarly, an associative J L B-algebra Uy is isomorphic to some Cy(X, R),
where X is locally compact; when A has a unit, X is compact.

For simplicity we assume that 2( is unital; if it isn’t, one would start by adjoining
aunit. The proof is based on a technique that applies to general commutative unital
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Banach algebras; we state the main facts without proof. Consider the space A(2)
of all nonzero multiplicative linear functionals @ on 2 (thatis, w : 2 — C satisfies
@w(AB) = w(A)w(B) for all A, B). Each w € A(2) is continuous, and satisfies
lwll = w(@) = 1. Thence itis easily seen that A(?) is a closed subspace of 2A* with
the w*-topology. By the Banach—Alaoglu theorem, A (1) is therefore a compact
Hausdorff space in the relative w*-topology.

The Gelfand transform of A € 2 is the function A on A(2) defined by

A(w) := w(A). (1.30)

Since the relative w* topology on A(RI) coincides with the weakest topology that
makes all functions A continuous, it is clear that the Gelfand transform maps 2
into C(A(R1)). It is immediate that the image of 2 in C(A(2()) separates points. Re-
garding C(A(2l)) as a commutative Banach algebra in the sup-norm, as explained
above, the multiplicativity of each @ € A(2l) implies that the Gelfand transform
is a homomorphism. The spectrum of A € 2 coincides with the set of values of A
on A(2); in other words,

o(A) = o(A) = [A(w)|w € A} (1.31)
This implies that
1Alloo = r(A), (1.32)

where the spectral radius r(A) is defined in (1.26). In any Banach algebra,
commutative or not, one has

r(A)= lim |A"|'". (1.33)

Now assume that 2/ is a commutative C*-algebra; accordingly, regard C(A(2))
as a commutative C*-algebra. We first show that w € A(2) is real on Ag. Pick
A € g, and suppose that w(A) = o + if, where «, B € R. Since w(l) = 1, one
has w(B) = iB, where B := A —«l is self-adjoint. Hence for € R one computes
lw(B + itl)|? = B% + 2tB + t2. On the other hand, using || = 1 and (1.15) we
estimate |w(B + itD)|? < ||B||? + 2. Hence B% + tB8 < ||B||? for all t € R. For
B > 0 this is impossible. For 8 < 0 we repeat the argument with B replaced by
—B. Hence 8 = 0, so that w(A) is real when A = A*. Consequently, by (1.30)
the function A is real-valued. Writing @(A) := A, condition (1.20) follows.

Secondly, for A € g one combines (1.15) with (1.33) to obtain || A}l = r(A),
which with (1.33) implies || Alloo = }|A|. For general A this equality then follows
via (1.15) in both 2 and C(A (1)), and the fact that A*A € Ag. Thus the Gelfand
transform is isometric, and therefore injective. Finally, surjectivity follows from
the Stone—Weierstrass theorem.

The uniqueness of X follows from the fact that when X and Y are compact Haus-
dorff spaces, the commutative Banach algebras C(X) and C(Y) are isomorphic iff
X and Y are homeomorphic; this is equivalent to the statement that A(C(X)) is
homeomorphic to X. The homeomorphism is given by letting x € X correspond
with w, € A(C(X)),defined by w,(f) := f(x). The assumption that X is compact
and Hausdorff, hence normal, is used to prove that the evaluation map x > wy
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is injective, whereas the compactness of X implies that the evaluation map is

surjective.
The case of a commutative JL B-algebra g may be reduced to that of a
commutative C*-algebra by complexification; see Theorem 1.1.9. (]

Theorem 1.2.4. Let 2 be either a unital C*-algebra or the complexification of a
unital J L B-algebra Ug.

1. The spectrum o (A) of A € Ug in W is equal to its spectrum in the C*-algebra
C*(A) generated by A and 1. In particular, 0 (A) is a subset of the real line.

2. The compact Hausdorff space A(C*(A)) of Theorem 1.2.3 is homeomorphic
to 0(A), and the C*-algebra C*(A) of the preceding item is isomorphic to
C(0(A)). Under this isomorphism the function A e C(X) is mapped into
ida(A) e g

3. The continuous functional calculus for self-adjoint operators A on a Hilbert
space applies verbatim to U : In particular, for each A € Ag and f € C(o(A))
there exists an operator f(A) € U that is the obvious expression when f is
polynomial (and in the general case is given by uniformly approximating f
by polynomials on the basis of the Stone-Weierstrass theorem), and has the
properties

a(f(A)) = f(o(A)); (1.34)
£ (A = Nl flloo- (1.35)

4. For A € U the norm is given by (1.26); for general A one has |A|| =
/r(A*A). Hence the norm in a C*-algebra is unique, in that a *-algebra that is
a C*-algebra in some norm admits no other norm in which it is a C*-algebra.

If A = A* then A, :== A — z is normal for any z € C (i.e., A, commutes
with its adjoint Az). Suppose that z ¢ o (A), so that A; is invertible. Consider the
commutative C*-algebra C*(A,, AZ“) generated by A, its inverse, and the unit.
By Theorem 1.2.3 one has C*(A,, A;l) ~ C(X), where X = A(C*(A,, Az‘[)).
Since A, is invertible in C*(A,, A;‘), it must be that /iz(x) #O0forallx € X. It
is then elementary that Az‘l is a uniform limit of polynomials in A, /ig, and 1x.
Transferring this back to C*(A;, A7 1) by the inverse of the Gelfand transform, it
follows that C*(A,, Az_') = C*(A;) = C*(A). Hence when A — z is invertible in
A its inverse lies in C*(A), which implies the first claim in 1.2.4.1.

Consider 1.2.3 and its proof with I = C*(A). We see from (1.31) and the fact
that A is real-valued for A € g that the spectrum of A in C*(A) is real. When
now 2 has the meaning of the present Theorem 1.2.4, the second claim in 1.2.4.1
follows from the first one just proved.

For 1.2.4.2, consider the map A : X — R.Itis clear from (1.31) that the image
of A is o (A). To prove injectivity, assume A(a)l) = A(a)z). Then w((A) = w,(A)
by (1.30), whence w;(A)* = w;y(A)" by multiplicativity of w; € A(C*(A)).
Since the linear span of all polynomials is dense in C*(A), and the w; are con-
tinuous, this yields w; = w;. The map Ais continuous, because AecC X)
by 1.2.3. To prove continuity of the inverse, one checks that for z € o(A) the
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functional /i”l(z) € A(C*(A)) maps A to z (and hence A" to 7", etc.). Fi-
nally, given the homeomorphism A(C*(A)) =~ o(A), the second isomorphism
in C*(A) ~ C(A(C*(A))) =~ C(o(A)) follows from the topological fact that a
compact Hausdorff space X is determined by C(X), and vice versa; cf. the proof
of 1.2.3.

The existence of the continuous functional calculus should now be obvious.
Since f(o(A)) is the set of values of f on o(A), (1.34) follows from (1.31),
with A replaced by f(A). The fact that for C*-algebras the Gelfand transform is
isometric yields (1.35).

The corresponding statements for a J L B-algebra follow by complexification,
using the commutative part of 1.1.9.

The first claim in 1.2.4.4 follows from (1.35) with f = id. The second claim
follows from the first, (1.15), and the property A*A € 2. Hence the norm is
determined by the algebraic structure. |

For later use we record that for A € 2g, Theorem 1.2.4 implies

0(A)=0 & A=0. (1.36)

1.3 Positivity, Order, and Morphisms

Recall that a (bounded) operator A € B(H) on a Hilbert space is called positive
when (W, AV) > 0 for all ¥ e H; this property is equivalent to A* = A and
0(A) € R*. This notion of positivity induces a partial ordering < in B(H), in
which A < B when B — A > 0. Our aim is to generalize these concepts to
C*-algebras and J L B-algebras.

Definition 1.3.1. A partially ordered vector space (g, <) consists of a real
vector space Uy and either one of the following equivalent data:

e A positive cone At in Ag; this is a subset for which (i) A € At andt € RT
impliestA € A*, (ii) A, B € At implies A+ B € A*, and (i) AT N—AT = 0.

o A linear partial ordering, i.e., a partial ordering < in which A < B implies
A+C<B+CforallCeAgrandtA <tB forallt € R*.

The equivalence between these two structures is as follows: Given 2;; one defines
A < Bif B— A € 2, and given < one puts A+ = {A € AR |0 < A)}.

Definition 1.3.2. Ler Ar be a JLB-algebra or the self-adjoint part of a C*-
algebra. An element A € g is called positive when its spectrum is positive; i.e.,
o(A) C RY. Wewrite A > 0or A € AT, where

At := {A € Ar| 0 (A) C R} (1.37)

It is immediate from (1.31) that A € Qg is positive iff its Gelfand transform Ais
pointwise positive in C(o (A)).
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Theorem 1.3.3. The set (1.37) of all positive elements of a C*-algebra A or a
J L B-algebra 4R is a positive cone. This cone may alternatively be expressed as

A = (A% A € AR} (1.38)
= {B*B| B € U}. (1.39)

Property (i) in 1.3.1 follows from (1.28). Since 0(A) € [0, r(A)], we have
lc—t] <cforallt € o(A)and all ¢ > r(A). Hence sup, ¢, 4 Iclo(ay — Al < ¢
by (1.31) and 1.2.4.2, so that ||cl54) — AHOO < c. Gelfand transforming back
to C*(A), this implies ||cI — A|| < ¢ for all ¢ > ||A]l by 1.2.4.3. Inverting this
argument, one sees that if ||cl — A|| < ¢ for some ¢ > |A||, then 6(A) C R*.
Using this with A replaced by A + B and ¢ = ||A|| + || B|| leads to property (ii).
Finally, when A € 2t and A € —2", it must be that o (A) = 0, hence A = 0 by
(1.36). This proves property (iii).

If 0(A) C RT and A = A*, then ~/A € g is defined by the continuous
functional calculus for f = ./~ and satisfies «/Xz = A.Hence A+ C {A%|A €
2Ar}. The opposite inclusion follows from (1.34) and 1.2.4.2. This proves (1.38).

The inclusion AT C {B*B| B € 2} is trivial from (1.38).

Lemma 1.34. Every A € U has a decomposition A = A, — A_, where
Ap, A_ e At and AL A_ = 0. Moreover, |AL| < ||A]|.

Apply the continuous functional calculus with f = idsa) = f4 — f-, where
idy(a)(t) = t, f+(t) = max{t, 0}, and f_(¢t) = max{—¢, 0}. The bound follows
from (1.35) with A replaced by A. ]

Apply this decomposition to A = B*B (noting that A = A*); it follows that
(A_)> = —(BA_)*BA_.Sinceo(A_) C R+ as A_ is positive, we see from (1.34)
with f(z) = 3 that (A_)* > 0. Hence —(BA_)*BA_ > 0.

Lemma 1.3.5. If—C*C € 2" for some C € , then C = 0.

Write C = D + i E, where D, E € g (cf. (1.21)), so that C*C = 2D? +
2E? — CC*. Applying (1.29) with A replaced by C and B by C*, we see that the
assumption o (C*C) C R~ implies 6 (CC*) C R7; since C*C is the sum of three
positive terms, and 2+ is a positive cone, it follows that C*C € 2*. Hence the
starting assumption o (C*C) C R~ implies 0 (C*C) C R*, so that 0 (C*C) = 0.
Hence C*C = 0 by (1.36).

In a C*-algebra this implies C = 0 by (1.15). In a complexified J L B-algebra
we replace C by C* in the above argument, so that CC* = 0 as well as C*C = 0;
hence D% + E? = 0, whence D = E = 0 by (1.8). [ |

The last claim before the lemma therefore implies BA_ = 0. As (A_)’ =
—(BA_Y*BA_ = 0, we see that (A_)* = 0, and finally A_ = 0 by the continuous
functional calculus with f(t) = t'/3. Hence B*B = A, which lies in A. |

When A = A* one checks the validity of
—IAIT< A < |IA|IL (1.40)
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by taking the Gelfand transform of C*(A). The implication
—-B<A<B = |Al =B (1.41)

then follows, because —B < A < B and (1.40) with A replaced by B yield
—|BIT <= A < |IB|L so that 5(A) < [—|BI, | BIl]; hence |A|l < |B] by
(1.26).

An important consequence of (1.39) is the fact that inequalities of the type A} <
A, for Ay, A, € g are stable under conjugation by arbitrary elements B € 2, so
that A| < A, implies B*A 1B < B*A;,B. This is because A; < Aj is the same as
Ay — A[ > 0; by (1.39) there is an A; € 2 such that A, — A = A} A3z. But then
(A3B)*A3B > 0, and this is nothing but B*A; B < B* A, B. For example, replace
A in (1.40) by A*A, and use (1.15) in a C*-algebra, or (1.25) in a complexified
J L B-algebra. This yields A*A < ||A||?I. Applying the above principle to any
A, B € U gives

B*A*AB < |A||*B*B. (1.42)

Definition 1.3.6. A positive map Q : A — ‘B between two C*-algebras is a
linear map with the property that A > 0 in U implies Q(A) > 0 in ‘B.

Proposition 1.3.7. A positive map between C*-algebras is x-preserving and
bounded.

One infers from 1.3.4 that Q(2g) C Bp; the C-linearity of Q then proves the
first claim.

For the second claim, let us first show that boundedness on At implies bound-
edness on 2. Using (1.21) and 1.3.4, we can write A = A/, — A” +iA" —iA”,
where A’_ etc. are positive. Since ||A’]| < ||All and |A"|| < [|A] by (1.21), we
have || B|| < ||All for B = A, A", A" ,or A” by 1.3.4. Hence if | Q(B)|| < c||B|
for all B € A% and some ¢ > 0, then || Q(A)|| < 4c||A]ll.

Now assume that Q is not bounded; by the previous argument it is not bounded
on A", so that for each n € N there is an A, € Qlf such that || Q(A,)|| > n* (here
AT consists of all A € A with |A|| < 1). The series Y oo n~2A, obviously
converges to some A € U, Since Q is positive, we have Q(A) > n72Q(A,) >0
for each n. Hence by (1.41), ||Q(A)|| > n~2||Q(A,)| > n for all n € N, which
is impossible. Thus Q is bounded on At, and therefore on 2 by the previous
paragraph. ]

Since a morphism ¢ : 2 — ‘B satisfies ¢(B*B) = ¢(B)*¢(B), it is clear from
(1.39) that a morphism is a positive map. For later reference we collect this, and
other good properties of morphisms. In preparation, we define a left ideal in a
C*-algebra 2 as a closed linear subspace J € 2 such that A € J implies BA € J
for all B € . Similarly, a right ideal is a closed linear subspace J C A such that
A € Jimplies AB € J for all B € 2. An ideal is both a left and a right ideal.

A proper ideal cannot contain a unit I; in order to prove properties of ideals one
needs a suitable replacement of a unit.
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Definition 1.3.8. An approximate unit in a nonunital C*-algebra 2l consists of
a directed set A (i.e., a set with a partial order < in which for all A\, A, there is
al > A, i =1,2)and a family (I} }ren of elements of U for which I} = I, and
o) C [0, 1] (whence ||I,|| < 1), so that for all A € U one has

lim |LA— A| = lim ||AL — A} = 0. (1.43)
A—>00 A—>00

For example, an approximate unit in Co(R) may be constructed with A = N,
taking I, to be a continuous function that is 1 on [—n, n] and vanishes for |x| >
n + 1. More generally, it can be shown that every nonunital C*-algebra 2 has an
approximate unit; when 2l is separable, A may be chosen countable. The technique
of approximate units allows us to prove the main properties of ideals in C*-algebras.

Theorem 1.3.9. Let J be an ideal in a C*-algebra .

1. IfJ € Jthen J* € J; in other words, every ideal in a C*-algebra is self-adjoint.
2, The quotient A/ is a C*-algebra in the norm ||t (A)| ;= inf ;5 ||A + J|j, the
multiplication t(A)t(B) := t(AB), and the involution t(A)* := T(A*).

Note that the involution in 2 /7 is well-defined because of 1.3.9.1.
Put J* := {A*| A € J}, and note that J N J* is a C*-subalgebra of 2. Hence it
has an approximate unit {I, }. Pick J € J, and use (1.15) and 1.3.8 to estimate

1* = I L < 10*T =TT+ 1 T* =TT D).

Now J*J and JJ* both lie in J N J*, so that both terms on the right-hand side
vanish for A — oo. Hence J* is a norm-limit of elements in J; since J is closed,
it follows that J* € J.

We omit the well-known proof that 2/J is a Banach algebra in the given norm
and multiplication. To prove the C*-property (1.15), we first note that

(Al = lim [|A — AL, (1.44)
A—00

for any A € 2 and approximate unit {I } in J. To prove this, we first add a unit to
2 if necessary. Forany J € Jwehave A — A, = (A+ /)T L)+ JI, — D),
sothat |[A — AL < |JA+ J| [T =] + ||JL, — J]. Since

M-I <1 (1.45)

from 1.3.8 and the proof of 1.3.3, we obtain lim, _, ||A — AL || < ||A 4 J|. For
each € > 0 we can choose J € J such that ||z7(A)|| + € > ||A + J|. Using this
J in the previous inequality, letting € — 0, and noting the obvious ||A — AL || >
[Iz(A)|l, we obtain (1.44).

Successively using (1.44), (1.15) in 2, (1.45), (1.44) once again, and the def-
inition of the C*-operations in 21/J, we obtain ||T(A)||?> < ||z(A)r(A)*|. By the
argument preceding 1.1.7, this implies (1.15). t

Theorem 1.3.10. Let ¢ : U — B be a morphism between C*-algebras.

1. The kernel of ¢ is an ideal in %d. Conversely, every ideal in a C*-algebra is the
kernel of some morphism.
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2. One has ||@|| = 1, and therefore |jp(A)|| < ||A| for all A € L.
3. The map o is isometric when it is injective.

4, The image o() is a C*-subalgebra of *B.

5. The map ¢ is positive.

It is clear that o ((A* A)) C o (A*A), so that the inequality in 1.3.10.2 follows
from 1.2.4.4. It follows that ¢ is continuous, so that ker(p) is closed. It is then
obvious from (1.19) that ker(¢p) is an ideal. On the other hand, a given ideal J is
the kernel of the canonical projection v : A — /3. Now 2/J is a C*-algebra
and ¢ := 7 is a morphism with J = ker(yp).

Assume that there is a B € 2 for which ||@(B)| # || B]l. By (1.15), (1.19), and
(1.20) this implies ||@¢(B*B)|| # || B*B||. Put A := B* B, noting that A* = A. By
(1.26) we must have o(A) # o(p(A)). Since o(¢p(A)) C o(A) in any case, this
implies o (¢(A)) C o(A). By Urysohn’s lemma there is a nonzero f € C(o0(A))
that vanishes on o (¢(A)), so that f(¢(A)) = 0. By the continuous functional
calculus we have ¢(f(A)) = 0, proving 1.3.10.3 by reductio ad absurdum.

Define ¢ : U/ ker(p) —> B by y ot = ¢, with 7 : A — A/ ker(p) the
canonical projection. Then ¢ is an injective morphism, so that it is isometric by
1.3.10.3. Hence ||¢|| = 1, since ||7]| = 1. Since ¥(2U/ ker(¢)) = @(20), it follows
that ¢ has closed range in 8. Since ¢ is a morphism, this implies that () is a
C*-algebra in the norm of B. ]

1.4 States
We now change our perspective, and pass from observables to states.

Definition 1.4.1. A state on a C*-algebra 2 is a linear map w : %4 — C for
which w(A) > 0 forall A € ?21%7 (positivity) and ||w|| = 1 (normalization). The
state space S(U) of U is the set of all states on 2.

For example, on 2 = ‘B(H) every unit vector 2 € H defines a state w by
w(A) = (2,1 (A)Q). (1.46)

This is, indeed, the original notion of a state as used in quantum mechanics.
Combining 1.3.4 with positivity, we see that a state is real-valued on 2g; in
view of (1.21) we then infer that a state is a Hermitian functional on 2, in that

w(A*) = w(A) (1.47)

for all A € 2. In particular, a state is determined by its values on A*. Combining
the positivity of @ with (1.39) one sees that (A, B),, := w(A* B) defines a pre-inner
product on 2. Hence from the Cauchy—Schwarz inequality we obtain the useful
bound

lw(A*B)|? < w(A* A)w(B*B). (1.48)

Proposition 1.4.2. A linear map w : % — C on a unital C*-algebra is positive
iff w is bounded and ||w|| = w(l). Hence a state w on a unital C*-algebra may
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equivalently be characterized as a positive linear functional for which w(I) = 1
or as a bounded linear functional for which ||o|| = o) = 1.

A state @ on a C*-algebra without unit has a unique extension to a state wy on
the unitization 24y, given by

w1(A + Al := w(A) + A. (1.49)

When w is positive and A = A* we have, using (1.40), the bound |w(A)| <
w(D)[|All. For general A the same inequality follows from (1.48) with A = I,
(1.15), and the bound just derived. The upper bound is reached by A = 1.

To prove the converse claim, we first note that the argument after (1.33) may
be copied, showing that w is real on 2Ug. Next, we show that A > 0 implies
w(A) > 0. Choose s > 0 small enough so that ||I — sA|| < 1. For w # 0 one
has [|[I - sA[l > o — sA)}/w(), so that |w() — sw(A)| < w(). This is only
possible when w(A) > 0.

Asto the positivity of wy, we observe that |w(A— AL )| — O for any approximate
unit in 2A. Using (1.48) with B = I, this leads to |o(A)[* < w(A*A). Combining
this inequality with (1.47), the definition (1.49) leads to wy((A + AI)*(A + A)) >
lw(A) + A|> > 0. Hence w is positive by (1.39). [ ]

An important feature of a state space S(2l) is that it is a convex set. (A convex
set C in a vector space V is a subset of V such that the convex sum Av + (1 — Aw
belongs to C whenever v, w € C and A € [0, 1]. Geometrically, this means that
the line segment between any two points in C lies in C. It follows that a finite sum
Y, piv; belongs to C when all p; > 0 and 2., pi = l,and all v; € C.) In the
unital case it is clear that S() is convex, since both positivity and normalization
are clearly preserved under convex sums. In the nonunital case one arrives at this
conclusion most simply via (1.49).

Let S(2A) be the state space of a unital C*-algebra 2. Each element w of S(2)
is continuous, so that S(A) C A*. Since w*-limits obviously preserve positivity
and normalization, we see that S() is closed in * if the latter is equipped with
the w*-topology. Moreover, S(20) is a closed subset of the unit ball of 2*, so that
S(20) is compact in the relative w*-topology by the Banach-Alaoglu theorem. It
follows that the state space of a unital C*-algebra is a compact convex set.

The very simplest example is 2 = C, in which case S(2l) is a point. The next
case is A = C@® C = C?. The dual is C? as well, so that each element of (C?)" is
of the form w(A+u) = c1A; + ¢2A,. Positive elements of C @ C are of the form
A+ with A > 0 and p > 0, so that a positive functional must have ¢; > 0 and
c2 > 0. Since I = 141, normalization yields c¢; + c; = 1. Identifying 0 with the
functional mapping A+u to A, and 1 with the one mapping it to u, we conclude
that S(C @ C) may be identified with the interval [0, 1].

Now consider 2 = 9,(C). We identify 901, (C) with its dual through the pairing
w(A) = TrwA. It follows that S() consists of all positive 2 x 2 matrices p with
Tr p = 1; these are the density matrices of quantum mechanics. To identify S(2)
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with a familiar compact convex set, we parametrize

1 1 1
p=—( T y+’z>, (1.50)
2\ y—iz 1-x

where x, y, z € R. The positivity of this matrix then corresponds to the constraint
x?+ y* + z? < 1. Hence SM,(C)) is the unit ball in R*.
There are lots of states:

Proposition 1.4.3. For every A € 2 and a € o(A) there is a state w, on % for
which w(A) = a. When A = A”* there exists a state w such that |w(A)| = ||A|.

If necessary we add a unit to 2; in the present context this is justified by (1.49).
Define a linear map @, : CA @ CI — C by &,(AA + ul) := Aa + w. Since
a € 0(A),onehas Aa+ p € o (LA + ul); this easily follows from the definition of
a(A). In any Banach algebra one has r(A) < || A||; applying this with A replaced
by AA + ulimplies |@,(AA + ul)] < ||AA + . Since @,(I) = 1, it follows that
lf] = 1. By the Hahn—Banach theorem there exists an extension w, of & to U of
norm 1. Since |lw, || = w,(I) = 1, this extension is a state, which clearly satisfies
wa(A) = @,(A) = a.

Since 0 (A) is closed, there is an a € o (A) for which r(A) = |a|. For this a, and

A = A*, one has |w(A)| = |a| = r(A) = ||A|| by (1.26); cf. 1.2.4.4. |
Corollary 1.4.4. For all A € g one has
Al = sup{la(A)| | w e SED))}. (1.51)

Hence if o(A) = 0 for all states w € S(A), then A = 0.

Our goal is to give a geometric realization of a unital C*-algebra 2 as a certain
function space, somewhat in the spirit of Theorem 1.2.3. A function f on a convex
set K is called affine if it preserves convexity, that is, if

fOwr+ 0 —Mwy) = Af(w)+ (1 = L) f(w) Yo, € K, A € [0,1]. (1.52)

The space A(K, R) of all real-valued affine continuous functions on a compact
convex set K has a positive cone A(K, R)*, consisting of all positive functions
(cf. 1.3.1). Equivalently, A(K, R)* has a linear partial ordering, in which f < g
when f(w) < g(w) for all w € K. Also, A(K, R)" is a Banach space in the
sup-norm in the case that K is Hausdorff.

Theorem 1.4.5. The self-adjoint part Ug of a unital C*-algebra %A is isomorphic
as a partially ordered Banach space to the space A(S(), R) of all real-valued
affine continuous functions on the state space S(U) of A (equipped with the relative
w*-topology).

The isomorphism in question is given by (1.30), now seen as a map from 2 to
the space of functions on the state space S(2). It is immediate that this transform
is injective. It is a well-known fact in functional analysis that a Banach space g
may be identified under (1.30) with the subspace of its double dual %" consisting
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of all w*-continuous linear functionals on 2. Since linear functionals on 2A* are
automatically affine on S(A), and since we know that a state is real-valued on
Ag, the transform (1. 30) maps U into A(S(A), R). Remterpretmg (1.51) as the
equality |A] = ||A||oo, it follows that the map A A is isometric.

Without proof we state that any Hermitian functional ¢ € 2A* on a C*-algebra 2
has a unique decomposition ¢ = fw; — hw,, where w; € S(A) and t; € R*. This
implies that an element f of A(S(), R) has a unique extension to a Hermitian
linear functional f on2*, which is evidently w*-continuous, and is therefore given
by an element A € 2 (cf. the preceding paragraph). The function A in (1.30) is
evidently f, so that the image of 2 under A +> A is all of A(S(), R).

Finally, it is trivial from the pertinent definitions that the transform (1.30)
preserves positivity. O

As promised, we now complete the proof of Theorem 1.1.9. We discuss the
unital case; the nonunital case may be reduced to this, using 1.2.1.

For the first half it remained to be shown that the norm on the self-adjoint part of
a C*-algebra satisfies (1.10). This follows from the order inequality A2 < A%+ B?
(which is derived from (1.38) and the linearity of the partial ordering) and (1.41).

In the second half we need to prove that (1.25) defines a norm on . Firstly, the
property [|A| = 0 = A = 0 follows from Lemma 1.3.5. Secondly, the triangle
inequality follows by successively using (1.25) with A replaced by A 4 B, (1.51),
(1.48), and again (1.25) and (1.51), this time from right to left. Finally, we use
(1.42); taking the norm in g and using (1.25) yields (1.14). ]

Thus from now on a J L B-algebra and the self-adjoint part of a C*-algebra will
be one and the same object.

1.5 Representations and the GNS-Construction

In the theory of C*-algebras, Hilbert spaces are most naturally regarded as modules,
and the material of this section explains how the usual Hilbert space framework
of quantum mechanics emerges from the algebraic setting.

Definition 1.5.1. A representation of a C*-algebra 2l on a Hilbert space H is a
morphism i : A — B(H).

From the Jordan-Lie point of view, this means that w : Ag — B(H)g is a
morphism of Jordan—Lie algebras (cf. 1.1.3); here the Jordan—Lie structure on both
spaces is given by (1.22). In view of 1.3.10.2 a representation 7 is automatically
continuous; hence |7 (A)| < ||A| forall A € 2. When 7 is faithful, this sharpens
to |w(A)|| = ||A|l by 1.3.10.3.

There is a natural equivalence relation in the set of all representations of :
Two representations 7|, 7w, on Hilbert spaces H,, H,, respectively, are called
equivalent if there exists a unitary isomorphism U : H; — H; such that
Um(A)U* = mp(A) forall A € .

The map m(A) = Oforall A € 2 is a representation; more generally, such trivial
7 may occur as a summand. To exclude this possibility, one says that a represen-
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tation is nondegenerate if O is the only vector annihilated by all representatives
of 2.

A representation 7 is called cyclic if its carrier space H contains a cyclic vector
Q for m; this means that the closure of 7 (RA)S2 (which in any case is a closed
subspace of H) coincides with H.

Proposition 1.5.2. Any nondegenerate representation w is a direct sum of cyclic
representations.

The proof uses a lemma that appears in many other proofs as well.

Lemma 1.5.3. Let M be a *-algebra in B(H), ¥ a nonzero vector H, and p
the projection onto the closure of V. Then p € I (that is, [p, A] = O for all
A e M)

If A € M, then ApH C pH by definition of p. Hence ptAp = 0 with
pt =1 — p. When A = A* this yields [A, p] = 0; by (1.21) this is true for all
A eI ]

Apply this lemma with 9T = 7 (21); the assumption of nondegeneracy guarantees
that p is nonzero, and the conclusion implies that A +> pm(A) defines a cyclic
subrepresentation of 2 on p’H. This process may be repeated on p*H,etc. W

If 7 is a nondegenerate representation of a C*-algebra 2 on H, then any unit
vector 2 € H defines a state w € S(), referred to as a vector state relative to 7,
by means of (1.46). Conversely, from any state @ € S(2) on 2 one can construct
a cyclic representation 7, on a Hilbert space H,, with cyclic vector €, in the
following way. We restrict ourselves to the unital case; the general case follows by
adding a unit to 2 and extending w to 2; by (1.49).

Construction 1.5.4.
1. Given w € S(Q), define the sesquilinear form (, ) on 2l by
(A, B)§ := w(A*B). (1.53)

Since w is a state, hence a positive functional, this form is positive semidefinite
(this means that (A, A)g > 0 for all A). Its null space

N, = {A € U] w(A*A) = 0} (1.54)

is a left ideal in 2.
2. The form (, ) projects to an inner product (, ), on the quotient A/N,,. If
Vo : A — A/N,, is the canonical projection, then by definition

(VoA, VoB)y := (A, B)Z. (1.55)

The Hilbert space 'H,, is the closure of 4N, in this inner product.
3. The representation () is firstly defined on A/ N, C H,, by

n.(A)V,B := V,AB; (1.56)

it follows that m,, is continuous. Hence r,(A) may be defined on all of H,, by
continuous extension of (1.56).
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4. The cyclic vector is defined by Q,, = V, 1, so that
(R4, m,(A)Q,) = w(A) VA e (1.57)

We now prove the various claims made here. First note that the null space NV,
of (, )§ can be defined in two equivalent ways, since

Ny:={AeU[(A, A =0)={AcA|(A,BY=0VBec2A. (158

The equivalence follows from (1.48). With the continuity of w, the equality (1.58)
implies that AV, is a left ideal. Hence 7, in (1.56) is well-defined on the dense
subspace A/N,, C H,,, where it clearly satisfies (1.19), withgp — 7,,. Also, (1.20)
may be verified from (1.55) and (1.53).

To prove that 7, is bounded on /A, we compute ||7,,(A)¥| for W = V,B,
where A, B € 2. From (1.55) and (1.53) one has ||7,(A)¥|?> = w(B*A*AB).
By (1.42) and the positivity of @ one has w(B*A*AB) < | A|?>w(B*B). But
w(B*B) = ||W|?, so that ||7,(A)|| < ||All. Hence 7, may be extended to all of
‘H,, where (1.55) and (1.53) hold by continuity.

Proposition 1.5.5. Ifarepresentation w (%) on'H is cyclic, then the GNS-represen-
tation 7,() on 'H,, defined by any vector state Q2 (corresponding to a cyclic unit
vector 2 € H) is equivalent to w ().

The operator U : ‘H,, — H implementing the equivalence is initially defined
on the dense subspace 7,(A)2, by Un,(A)2, = 7 (A)L2; this operator is well-
defined, for 7,,(A)2,, = Oimplies 7 (A)2 = 0 by the GNS-construction. It follows
from (1.57) that U is unitary as a map from H,, to UH,,, but since €2 is cyclic for
7, the image of U is H. Hence U is unitary. One verifies that U intertwines 7,
and 7. |

Corollary 1.5.6. Ifthe Hilbert spaces H, H, of two cyclic representations iy, 7,
each contain a cyclic vector Q| € H, 2, € H, such that

w1(A) := (2, 1 (A)S2) = (S22, M2(A)22) = wr(A)
for all A € 2, then m(Y) and m,(%U) are equivalent.

By 1.5.5 the representation m; is equivalent to the GNS-representation 7, , and
7, is equivalent to m,,. On the other hand, n,, and 7., are induced by the same
state w; = w;, so they must coincide. n

The state w is called faithful when its GNS-representation =, is faithful. This
is guaranteed when AV,, = 0, but note that even in that case H,, does not coincide
with 2, as the topology on 2 in the operator-norm is finer than the topology of the
norm [|A|2 := (A, A)%.

The GNS-construction leads to a simple proof of Theorem 1.1.8, which uses the
following notion.

Definition 1.5.7. The universal representation 7, ofa C*-algebra®l is the direct
sum of all its GNS-representations 7, v € S(U); hence it is defined on the Hilbert
space H, = ®upesayHo-
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Theorem 1.1.8 then follows by taking H = H,; the desired isomorphism is
7. If m,(A) = O for some A € %, then 7,(A)2, = O for all states w, whence
17.(A)R0|*> = w(A*A) = 0 by the GNS-construction, so that A*A = 0 by
1.4.3, and finally A = 0 by (1.15). Hence =, is faithful, and therefore isometric by
1.3.10.3. |

1.6 Examples of C*-Algebras and State Spaces

In this section we give some elementary examples of C*-algebras.
Example 1.6.1. Commutative C*-algebras

Let X be a discrete space. Take 2A := £¢(X), which is the closure (in the sup-
norm) of £.(X). The space £,(X) is a C*-algebra under pointwise multiplication
and complex conjugation; see 1.2. By elementary Banach space theory, the dual
of A is A* = £'(X) under the pairing p(f) = Trpf := Y vex P(X)f(x). The
positive cone in 2 or A* consists of the positive functions f or p. The state space
S(®) is the set of those positive functions p for which Trp = )" p(x) = 1.

Forexample, foragiven y € X, the function p = §,, defined by 8, (x) := 8x,,isa
state; one clearly has 5,(f) = f(y). Hence by Corollary 1.5.6 the one-dimensional
representation m,, defined on H, = C by m,(f) 1= f(¥), is equivalent to the
GNS-representation 73, (the pertinent cyclic vector in C is simply Q = 1).

A positive normalized function on X defines a faithful state when it is strictly
positive on X. The GNS-representation 77, (£o(X)) of a faithful state p is equivalent
to the representation 7 on H = £2(X) (with counting measure) by multiplication
operators, i.e., T (f)W(x) := f(x)W¥(x). Tosee this, we first write the inner product
in £2(X) as (W, ®) = Tr¥*d = >, W(x)®(x). Then note that since Trp = 1,
one has p'/2 € €%(X). It is clear from the property p(x) > O for all x that p'/2
is a cyclic vector for 7 (£o(X)), with the property (0'/2, w (f)p'/?) = p(f) for all
f € £o(X). The equivalence between 7, and 7 then follows from Corollary 1.5.6.

Adding the fact that the double dual of 2 is £o(X)** = £°°(X), we summarize
the situation by

£:(X) C £1(X) = £o(X)" € £2(X) C £o(X) S £7°(X) = Lo(X)™.  (1.59)

When X is finite all inclusions are replaced by equalities; when X is infinite all
inclusions are strict.

Now take X to be a locally compact Hausdorff space, and put % := Co(X)
with the sup-norm; this is the closure of C.(X). Recall that a Radon measure is
a Borel measure that is inner regular with respect to compact sets. By the Riesz
representation theorem, 2* is the space of all complex Radon measures 1 on X
with finite total mass p(X). With A" consisting of the positive functions in 2, the
dual cone 2** is the subspace of A* of nonnegative finite Radon measures. The
state space SA) = M 1+ (X) then consists of the probability measures on X. The
GNS-representation 7, of a state 4 € S() is realized on H,, = L*(X, u), on
which m,(f) is f as a multiplication operator.
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Example 1.6.2. Noncommutative C*-algebras

When a Hilbert space = CV is finite-dimensional, the “maximally noncom-
mutative” C*-algebra of operators on H is the algebra 9y (C) of N x N matrices.
The appropriate generalization of Dy (C) to the infinite-dimensional case is as
follows. A projection in a *-algebra is an element satisfying pP=p* =p.

Definition 1.6.3. Let H be a Hilbert space. The *-algebra ‘B (M) of finite-rank
operators on H is the (finite) linear span of all finite-dimensional projections on H.
In other words, an operator A € B(H) lies in B ;(H) when AH := {AV| ¥ € H}
is finite-dimensional.

The C*-algebra B,(H) of compact operators on H is the norm-closure of
B ((H) in B(H) (with all C*-algebraic operations borrowed from B(H)).

It is clear that B ;(H) is a *-algebra, since p* = p for any projection p. It is
obvious that B (H) is closed under right multiplication by elements of B(H);
since it is a *-algebra, it is therefore also closed under left multiplication. By
continuity of multiplication in B (H), it follows that Bo(H) is an ideal in B(H). It
is easily verified that the unit operator I lies in Bo(H) iff H is finite-dimensional.

We know from the theory of single operators on a Hilbert space that the image of
the unit ball in ‘H under an element A € Bo(H) is compact (in the strong topology
on H); this explains the name of Bo(H). A self-adjoint operator A € B(H) is
compact iff A = ), a;[¥;] (norm-convergent sum), where each eigenvalue g; has
finite multiplicity, and lim; .,  |a;] = O (where the eigenvalues have been ordered
sothata; < a; wheni > j).In other words, the set of eigenvalues is discrete, and
can have only O as a possible accumulation point.

We now wish to determine the state space of Bo(H). This involves the study of
a number of other subspaces of B(H), whose definition we recall.

Definition 1.6.4. The Hilbert-Schmidt norm ||A||; of A € B(H) is defined by
AN =) lAel* = Tr(1A]%), (1.60)

i
where {e;}; is an arbitrary basis of H; the right-hand side is independent of the
choice of basis. Also, |A| := ~/A*A is defined by the continuous functional cal-
culus. The Hilbert—Schmidt class B,(H) consists of all A € B(H) for which

lAll2 < oo.
The trace norm || A, of A € B(H) is defined by

Al = I1A]Y2115 = Tr Al (1.61)
The trace class B (H) consists of all A € SB(H) for which ||All; < oo.
The noncommutative analogue of (1.59) is as follows.
Theorem 1.6.5. One has the inclusions

B (H) C B1(H) = Bo(H)* € Ba(H) € Bo(H) S B(H) = Bo(H)™,
(1.62)
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where the (isometric) identification of ‘B \(H) with Bo(H)* is made through the
pairing

p(A) =TrpA, (1.63)

and ‘B(H) is (isometrically) identified with B (H)* = Bo(H)** through the
pairing A(p) = TrpA.

The definition of the norms in (1.6.4) easily leads to [[A|] < ||A||; fori =1, 2.
Since Bo(H), B1(H), and B, (H) are the completions of B (H) in the norms || - ||,
Il - 1, and || - ||, respectively, these inequalities imply that B;(H) € Bo(H) for
i = 1, 2. Using the characterization of self-adjoint compact operators mentioned
above, one then infers from 1.6.4 that ||A || < [| A1, so that B (H) € By (H).

The inclusions B, (H) C By(H)* and B(H) C B (H)* both follow from the
(nontrivial) estimate

[TrpAl < Al ol (1.64)

To show that Bo(H)* < *B1(H) one restricts a given element p € Bo(H)* to
B,(H), on which it is continuous. Now, the operator space B,(H) is a Hilbert
space in the inner product (A, B) := Tr A* B, so that by Riesz—Fischer there must
be an operator p € B,(H) such that p(A) = Tr pA for all A € B,(H). One then
shows that |Tr p|p|| < ||p| for any finite-dimensional projection p, which implies
that ||pll; < ||p]l, so that p € B,(H). With the opposite inequality from (1.64),
this proves that 8, (H) = Bo(H)* isometrically.

To establish the inclusion B,(H)* C B(H), pick AeB 1(H)*, and define a
quadratic form Q4 onH by Q4 (¥, D) := A(|<D) (W|). Here the operator |®) (W] is
defined by |®) (W] := (W, Q). This form is easily seen to be bounded by |l/i Il
so that it is implemented by a bounded operator A, in that Q ,(¥, ®) = (¥, AD).
By linear extension to ‘B () and subsequently continuous extension to 9B (H),
this implies that A(p) =TrpA,with||A| < ”A || Since (1.64) implies the opposite
inequality, this proves the last claim. il

Corollary 1.6.6. The state space S(Bo(H)) of the C*-algebra Bo(H) of all
compact operators on some Hilbert space H consists of all density matrices, where
a density matrix is an element p € B(H) that is positive (p > 0) and has unit
trace (Tr p = 1), and the corresponding state is defined in (1.63).

Since p € B(H) is compact, one may diagonalize it by p = )", p;[¥;]. Using
A = [¥;], which is positive, the condition p(A) > 0 yields p; > 0. Conversely,
when all p; > 0, the operator p is positive. The normalization condition f[p|; =
3" p: = 1 completes the characterization of S(Bo(H)). |

Proposition 1.6.7.

1. For eachunitvector ¥ € H the GNS-representation wy, (Bo(H)) corresponding
to the density matrix p = [V] is equivalent 10 the defining representation.

2. The GNS-representation w, corresponding to a faithful state p on Bo(H) is
equivalent to the representation 7t ,(Bo(H)) on the Hilbert space B,(H) of
Hilbert—Schmidt operators given by left multiplication, i.e., 7 ,(A)B := AB.
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The first claim is immediate from the property Tr[W]A = (¥, A¥) and 1.5.5.
For the second, it is obvious from 1.6.4 that for A € B(H) and B € Br(H)
one has |AB|l2 < ||A|l | Bll2, so that the representation 7, is well-defined. When
p € Bi(H) and p > 0, then p'/? € By(H), and it is easily seen that p'/? is
cyclic for 77,(Bo(H)) when p is faithful. Using the fact that for A, B € By(H)
one has Tr AB = Tr BA, we compute (p'/2, 7#,(A)p'/?) = p(A). The equivalence
between 7, and 77, then follows from 1.5.6. n

1.7 Von Neumann Algebras

In this section we state some basic facts about von Neumann algebras (which
will be used only as ancillary tools). The commutant 2t of some collection It
of bounded operators on a Hilbert space is the set of all bounded operators that
commute with all elements of 21; the bicommutant 91" is the commutant of 27,
One verifies that 91" = 9. The main result is the so-called double commutant
theorem, which we will first state in the finite-dimensional case.

Proposition 1.7.1. Let H = C" be a finite-dimensional Hilbert space, and let I
be a *-algebra (and hence a C*-algebra) in B(H) = M, (C) containing 1. Then
m’ = Im.

Choose some ¥ € H, form the linear subspace MW of H, and consider the
projection p = [91W] onto this subspace. By Lemma 1.5.3 one has p € 9V'. Hence
A € M” commutes with p. Since I € M, we therefore have ¥ = [V € MY,
so¥ = p¥,and AV = ApV¥ = pAY¥ € MW. Hence AV = AW for some
Ag € omn.

Choose ¥, ..., ¥, € M, and regard Q := W+ ---+¥, as an element of
H" ;= &"H ~ H ® C" (the direct sum of n copies of H), where W¥; lies in the ith
copy. Identify B(H") with the algebra M, (B(H)) of n x n matrices with entries
in B(H), and embed 9 in M, (B(H)) by A > 8(A) := AI®, where I? is the
unit in 9, (B(H)); this is the diagonal matrix in 901, (B(H)) in which all diagonal
entries are A.

Now use the first part of the proof, with H, 901, A, and ¥ replaced by H",
SOM), A := 8(A), and Q, respectively. Hence given ¥y, ..., ¥, and §(A) € 5(9N)
there exists Ay € §(OMN)” such that 5(A)Q2 = AyQ. For arbitrary B € I, (B(H)),
compute ([B, §(A)1);; = [Bij, A]. Hence §(9) = 9, (IM). It is easy to see that
M, (Y = IM,(IN"), so that §IN)” = §(IM”). Therefore, Ay = 5(A), for some
Ag € M. Hence AW; = AgV, foralli = 1,..., n. Since the ¥; were arbitrary,
this proves that A = Ao € M”. ]

As it stands, Proposition 1.7.1 is not valid when 90, (C) is replaced by ‘B(H),
where dim(H) = o0o. To describe the appropriate refinement, we define two locally
convex topologies on B(H) that are weaker than the norm topology we have been
using so far.

The seminorms py(A) := ||A¥|| define the strong topology on ‘B(H), so that
A; — A strongly when ||(A); — A)¥|| — 0 for all ¥ € H. In the proof of 1.7.2
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we will use the fact that a neighborhood basis of A is given by all sets of the form
{BeBMH)| I(A—-BYW;|| <eforalli =1,...,n}, wheree > 0,n € N, and
Wy, ..., ¥, e H.

The weak topology on B(H) is defined by the seminorms py ¢(A) =
(¥, AD)|, so that A, — A weakly when |(¥, (A, — A)¥)| — Oforall ¥ € H.
The norm topology is stronger than the strong topology, which in turn is stronger
than the weak topology.

Theorem 1.7.2. Let M be a *-algebra in B(H) containing 1. The following are
equivalent:

1. M =M.
2. M is closed in the weak operator topology.
3. M is closed in the strong operator topology.

It is easily verified from the definition of weak convergence that the commutant
N’ of a *-algebra N is always weakly closed. If 9" = M, then M = N’ for
I = I, so that I is weakly closed. Hence 1 => 2. Since the weak topology is
weaker than the strong topology, 2 = 3 is trivial.

To prove 3 = 1, we adapt the proof of 1.7.1 to the infinite-dimensional situation.
Instead of 91W, which may not be closed, we consider its closure MW, so that p =
[OMW]. Hence A € M implies A € IMWY; in other words, for every € > 0 there is
an A, € M such that | (A — AW < €. For H" this means that ||§(A — A)Q? <
€2. The left-hand side of this inequality equals the sum Y, (A — A)W¥;|%, so
that ||(A — AV, || <€ foralli = 1,...,n. It follows that A, — A strongly for
€ — 0. Since all A, € 9 and 9N is strongly closed, this implies that A € M, so
that 9" < 9. Since trivially 9 € 901", this proves 3 = 1. n

This theorem is remarkable, for it relates a topological condition (90 being
closed in certain topologies) to an algebraic one (¥ being its own bicommutant).
A similar but simpler example of such a theorem states that a linear subspace X of
a Hilbert space is closed iff X = K+ (where Kt is the orthogonal complement
of K).

Definition 1.7.3. A *-algebra 9N (containing the unit operator) of bounded oper-
ators on some Hilbert space is called a von Neumann algebra if it satisfies one
(hence all) of the conditions in 1.7 .2.

We know from 1.6.5 that B(H) = B (H)*; the pertinent w*-topology on B(H)
is often called the o -weak topology. This topology is generated by the seminorms
DPo(A) := |Tr pAl, and is clearly stronger than the weak topology (but weaker than
the norm topology). Hence a von Neumann algebra 9 € ‘B(H) is closed in the
(relative) o -weak topology.

Moreover, a von Neumann algebra 91 is closed in the norm topology (defined
by the norm (1.18)) as well, so that it is a C*-algebra. A state on 90T C B(H) of the
form (1.63) for a density matrix p (cf. 1.6.6) is called normal. The linear span of
all normal states in 901* is called the predual 901, of 91. For example, the predual
of B(H) is B (H), and more generally one has I = M} as a Banach space. The
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set NV(9M) := SON) N M, of all normal states on 9N is called the normal state
space of 1.

All von Neumann algebras in this book are of the form 9t = 7 ()", where 7
is a representation of some C*-algebra 2. In particular, one may take 7 = 7,; cf.
1.5.7.

Proposition 1.7.4. The bidual A** of a C*-algebra 2 is isomorphic (as a Banach
space) to w,(A)". Through this isomorphism, A** acquires the structure of a von
Neumann algebra (and therefore of a C*-algebra).

The proof is a highly nontrivial generalization of the proof of 1.6.5. The equality
Bo(H)* = B (H) is now replaced by the fact that A* is the linear span of all func-
tionals of the form A — (¥, 7,(A)®P), where W, ® ¢ H,. This characterization is
then used to show that A* is the predual of 7,(2()”, so that A** = 7,(2A)". O

In the context of Theorem 1.4.5, we note that when K is a Hausdorff compact
convex set, the bidual of A(K, R) (with sup-norm) is the space A,(K, R) of all
bounded real-valued affine functions on K. Hence for a C*-algebra 2 one has
AR ~ m,R)g ~ Ap(SE@), R). The predual of A** is obviously A = A, and
the normal state space is MV (A**) = S(2). More generally, for any von Neumann
algebra 9 one has My >~ A,(N(IN), R) as partially ordered Banach spaces.
This isomorphism maps the o -weak topology on 9 to the topology of pointwise
convergence on A,(N(N), R).

The center of a von Neumann algebra 90T is ININ'; this is the set of all elements
of 9N that commute with every element in the algebra. The following proposition
allows one to regard ()" as a von Neumann subalgebra of 2**.

Propesition 1.7.5. Ifw is a cyclic representation of a C*-algebra 2, there exists
a projection p in the center of n (Y’ such that w ()" is isomorphic (as a von
Neumann algebra) to pr, ().

The idea of the proof is that the morphism 7 o nu‘l from 7,(A) to w(2A) is
o-weakly continuous, so that it can be extended to a morphism from 7, (2)" to
m(21)”. The kernel of this extension is a o -weakly closed ideal in 7,(2A)". It can be
shown that a o-weakly closed ideal in a von Neumann algebra 90 is of the form
g, where q is a projection in the center of 9)t. Applying this to the case at hand
yields 1.7.5, with p =1 — gq. O

2 The Structure of Pure State Spaces

2.1 Pure States and Compact Convex Sets

In this section we look at a subspace of the state space on a C*-algebra, which may

be interpreted as a quantum analogue of the phase space of a classical system.
Let us return to 1.4. One observes that the compact convex sets one naturally

has in mind have a boundary; this particularly applies to the state spaces of the
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C*-algebras C, C @ C, and 9,(C). The intrinsic definition of this boundary is as
follows.

Definition 2.1.1. An extreme point in a convex set K is a member w of K that
can be decomposed as w = Aw| + (1 — Aw,, where A € (0, 1), iff o), = w2 = w.
The collection 8. K of extreme points in K is called the extreme boundary of K.

An extreme point in the state space K = S(A) of a C*-algebra 2 is called a
pure state. A state that is not pure is called mixed. We write P(2), or simply P,
for 3, S(), referred to as the pure state space of 2.

Thus the single state on C is pure, the pure states on C @ C are the points 0 and
1 in [0, 1], and the pure states on 91;(C) are the matrices p in (1.50) for which
x2 4 y? 4+ z2 = 1. These are the projections onto one-dimensional subspaces of
€2, and we see that P(O,(C)) may be identified with the unit sphere in R*. More
generally, one has

Proposition 2.1.2. The pure state space of Bo(H) consists of all one-dimensional
projections, so that any pure state on Bo(H) is a vector state (1.46) in 'H.

This is immediate from 1.6.6, the spectral theorem applied to a density matrix,
and 2.1.1. ]

A useful reformulation of the notion of a pure state is as follows.

Proposition 2.1.3. A state is pure iff 0 < p < w for a positive functional p
implies p = tw for some t € R*.

We assume that 2 is unital; if not, use 1.2.1 and (1.49). For p =0 orp =
the claim is obvious. When w is pure and 0 < p < w, with 0 # p # w, then
0 < p() < 1, since w — p is positive; hence |l — p|l = o@) — p(@) = 1 — p(D).
Hence p(I) would imply w = p, whereas p(I) = 0 implies p = 0, contrary to
assumption. Hence w; := (w — p)/(1 — p(I)) and w, := p/p(l) are states, and
@ = oy + (1 — VD with A = 1 — p(I). Since w is pure, by 2.1.1 we have
p = p(Do.

Conversely, if w is decomposed as in 2.1.1, then 0 < Aw; < o, so that Aw; =
tw by assumption; normalization gives t = A, hence w; = w = w;, and w is
pure. ]

Here is another example of a pure state space.

Proposition 2.1.4. The pure state space of the commutative C*-algebra Co(X)
(equipped with the relative w*-topology) is homeomorphic to X.

The case that X is not compact may be reduced to the compact case by passing
from A = Co(X) to A = C (X) (where X is the one-point compactification of
X); cf. (2.2) below. In view of the proof of Theorem 1.2.3, we then merely need to
prove that any pure state on C(X) is multiplicative, and vice versa; P(C(X)) and
A(C(X)) are both equipped with the relative w*-topology.

Let w, € A(C(X)) (cf. the proof of 1.2.3), and suppose a functional p satisfies
0 < p < w,. Then ker(w,) C ker(p), and ker(w,) is a maximal ideal, so that
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ker(w,) = ker(p). Since two functionals on any vector space are proportional
when they have the same kernel, it follows from 2.1.3 that w, is pure.
Conversely, let w be a pure state, and pick a g € C(X) withQ < g < 1. Define
a functional w, on C(X) by wy(f) := w(fg). Since w(f)—w,(f) = w(f(1—g)),
and0 < 1 — g < 1x, one has 0 < w, < w. Hence w, = tw for some t € R* by
2.1.3. Putting f = 1y yields # = w(g). Since any function is a linear combination
of functions g for which 0 < g < 1y, it follows that @ is multiplicative. [ |

It could be that a given convex set contains no extreme points at all; think of
an open convex cone. When K is compact, this possibility is excluded by a basic
theorem in functional analysis, which we state without proof. The convex hull
co(V) of a subset V of a vector space is defined by

co(Vy:={aw+1-Mw|v,weV,Ael0,1]}. 2.1

Theorem 2.1.5. A compact convex set K embedded in a locally convex vector
space is the closure of the convex hull of its extreme points. In other words, K =
co(3.K).

Although the state space of a C*-algebra 2 without unit (such as By(H) or
Co(X)) is not compact, Theorem 2.1.5 may nonetheless be used. For the pure
state space of A may be described in terms of the pure state space P(Rp) of its
unitization 2y; cf. 1.2.1. Define a functional we, by weo(A + AIl) = A for all A;
this is easily seen to be a pure state on 2j. Taking (1.49) into account, one obtains
a homeomorphism

P = PED\{wwo}- 2.2

The extreme boundary 9, K of a compact convex set is not necessarily closed, so
that the pure state space P(2l) of a unital C*-algebra 2, while always a Hausdorff
space, is not generally compact. Nonetheless, it is interesting to realize Ag as a
subspace of C(/r(P), R), somewhat in the spirit of 1.4.5. To do so, we replace
A(2) in the definition (1.30) of the Gelfand transform by the pure state space of
an arbitrary C*-algebra; cf. 2.1.4.

Definition 2.1.6. Let 2y be the self- adjoint part of a C*-algebra 2. The Gelfand
transform of A € Ug is the function A PEA) — R defined by (1.30). The
subspace {A | A € Ar} of £2°(P (), R) is denoted by Q(m

The extension of the Gelfand transform from 2y to 2 is useful only for com-
mutative C*-algebras; in the noncommutative case the first claim below would not
hold if Ar were replaced by 2.

Theorem 2.1.7. The Gelfand transform is an isomorphism between Uy and ﬁlR C
C(P(A), R), seen as partially ordered Banach spaces (here the order in g is
defined by 1.3.3 and 1.3.1, whereas the order in C(P(2l), R) is defined by the cone
of pointwise positive functions).

The equality UAr = C (P, R) occurs iff AU is commutative and unital, in which
case P() is closed.
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The first claim follows from 1.4.5and 2.1.5: Any A € A(K, R) is determined by
its values on 9, K (for it is affine and continuous). The inclusion 2g € C(P(XA), R)
is immediate from the definition of the relative w*-topology. The claim about the

order is a trivial consequence of the pertinent definition, too. The last claim follows
from 1.2.3 and 2.1.4. ]

An alternative proof may be obtained from the following sharpening of
Proposition 1.4.3.

Proposition 2.1.8. For every A € g and a € o (A) there is a pure state w, on
2 for which w,(A) = a. There exists a pure state w such that |w(A)| = [|All.

We extend the state in the proof of 1.4.3 to C*(A) by muitiplicativity and conti-
nuity, that is, we put @,(A") = a", etc. It follows from 2.1.4 that this extension is
pure. One easily checks that the set of all extensions of &, to 2 (which extensions
we know to be states; see the proof of 1.4.3) is a closed convex subset K, of S(2);
hence it is a compact convex set. By Theorem 2.1.5, K, has at least one extreme
point w,. If w, were not an extreme point in S(21), it would be decomposable as
in 2.1.1. But in that case w; and w; would both coincide on C*(A) with @,, so that
w, cannot be an extreme point of K,. ]

In any case, when 2l is noncommutative one would like to characterize élR in
C(P(A), R). This will be done in Theorem 3.2.1.

2.2 Pure States and Irreducible Representations

In this section we start our analysis of irreducible representations of C*-algebras
and their connection to pure states.

Definition 2.2.1. A representation w of a C*-algebra A on a Hilbert space H is
called irreducible if a closed subspace of H that is stable under (1) is either H
or 0.

This definition should be familiar from the theory of group representations. The
defining representations of 901,(C), *Bo(H), and B(H) are evidently irreducible.

Proposition 2.2.2. Each of the following conditions is equivalent to the
irreducibility of w (2):

1. 7 (Y = CL, or, equivalently, n (A)” = B(H) (Schur’s lemma).
2. Every nonzero vector 2 in 'H is cyclic for w () (i.e., 7 (A)2 is dense in 'H for
all Q #0).

The commutant 7 (A) is a *-algebra in B(H), so when it is nontrivial it must
contain a self-adjoint element A that is not a multiple of L. It follows from Theorem
1.7.2 and the spectral theorem that the projections in the spectral resolution of A lie
inm (A) if A does. Hence when ()’ is nontrivial it contains a nontrivial projection
p. But then pH is stable under (), contradicting irreducibility. Hence 2.2.1 =
22.2.1.



64 I. Observables and Pure States

Conversely, when 7 () = CI and 7 is reducible, one finds a contradiction
because the projection onto the alleged nontrivial stable subspace of H commutes
with 7 ().

When there exists a vector ¥ € H for which 7 ()W is not dense in H, we can
form the projection onto the closure of 77 (A)¥. By Lemma 1.5.3, with 90t = 7 (),
this projection lies in 7 (2)', so that by Schur’s lemma 7 cannot be irreducible.
Hence 2.2.1 = 2.2.2.2. The converse is trivial. ]

The connection between representations and states (see 1.5) can be refined when
a state is pure.

Theorem 2.2.3. The GNS-representation 7,,(A) of a state w € S(A) is irreducible
iff w is pure.

When w is pure yet 7,,(2) reducible, there is a nontrivial projection p € (2
by Schur’s lemma. Let ©,, be the cyclic vector for 7,,. If pQ,, = 0, then A PR, =
PAQ, = Oforall A € 2, so that p = 0, since 7,, is cyclic. Similarly, p~Q, = 0
is impossible. We may then decompose w = Ay + (1 — A)y*, where  and ¥t
are states defined as in (1.46), with W := pQ,/| pQ, [, ¥+ := p1Q, /I p- QW
and A = || p1Q,||%. Hence w cannot be pure, so that m,, is irreducible by reductio
ad absurdum.

In the opposite direction, suppose 7,, is irreducible, yet w decomposable as in
2.1.1. Then Aw; — @ = (1 — A)w,, which is positive; hence Aw;(A*A) < w(A*A)
for all A € 2. By (1.48) this yields |Aw; (A* B))? < w(A*A)w(B*B) for all A, B.
This makes the quadratic form Q on nw(ﬁl)Q by Q(er(A)Qw, 7o(B)2y) :
Aw(A* B) well-defined. Furthermore, Q is bounded with norm 1, so that Q can
be extended to H, by continuity. Since w is a Hermitian functional, one has
Q(Q, ¥) = 0¥, ?). .

Thus there exists a self-adjoint operator Q on H,, such that Q(¥, ®) = (¥, Q®)
for all W, ® € H. In other words, one has (7,(A)Q,, Qm,(B)RQ,) = Aw,(A*B).
Since 7, is a representation, one computes that [Q, ,(C)] = 0 for all C € 2, so
that Q € 7, (). Since 7, is irreducible, one must have Q = I for some ¢ € R.
Hence w is proportional to w, and therefore equal to w by normalization, so that
w is pure. ]

Here are some easy consequences of this result, culminating in 2.2.6.

Proposition 2.24. If (m (), H) is irreducible, then the GNS-representation
(7»(2), Ho) defined by any vector state w (corresponding to a unit vector 2 € 'H)
is equivalent to (w(21), H). In particular, any vector state in an irreducible
representation is pure.

Immediate from 2.2.2.2, 1.5.5, and 2.2.3. |

Corollary 2.2.5. Every irreducible representation of a C*-algebra comes from a
pure state via the GNS-construction.

Combine 2.2.4 and 2.2.3. [ |
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This leads straight to a basic result in the theory of C*-algebras:

Theorem 2.2.6. The C*-algebra Bo(H) of all compact operators on some Hilbert
space possesses only one irreducible representation, up to equivalence, namely the
defining one.

This is immediate from 2.1.2, 2.2.5, and 2.2.4. ||

Two pure states p and o on a C*-algebra 2 are said to be equivalent if the
associated GNS-representations 7, and 7, are equivalent; we write p ~ o. It
is easily verified from the definition of this notion of equivalence that ~ is an
equivalence relation in P(). It follows from 2.2.4 that all vector states in H, are
equivalent to p. Conversely, any state 0 ~ p is given by a vector state in H,,
for if U : H, — M, intertwines 7, and m,, then the vector state defined by
U, € H, coincides with o. Since the intertwiner is unique by Schur’s lemma,
one thus obtains a bijection between the equivalence class [p] of a given pure state
p and the set of vector states in H,.

The topological aspects of this bijection will be clarified in 2.5. For now, we
are led to a manageable refinement of the the universal representation (cf. 1.5.7),
which is still faithful.

Definition 2.2.7. The reduced atomic representation n, ofa C*-algebra is the
direct sum over irreducible representations n,, = @ pepeay 7 (on the Hilbert space
H. = DperpayH,), where one includes one representative of each equivalence
class in P(2).

The specific choice of pure states in each equivalence class affects the reduced
atomic representation only within (unitary) equivalence. Replacing the use of 1.4.3
in the proof of Theorem 1.1.8 by 2.1.8, one infers that m,, is indeed faithful. If p
and o are inequivalent pure states, Schur’s lemma implies that

T = BuerpanB(Ho)- (2.3)

If A is commutative, so that Agr ~ C(P(), R) (see 2.1.7), one easily infers that
() = £°(P()). On the noncommutative side, we infer

Proposition 2.2.8. Every finite-dimensional C*-algebra is a direct sum of matrix
algebras.

Since 2 is finite-dimensional and 2 ~ m,(2), the right-hand side must be finite-
dimensional. Hence by 1.7.1 and (2.3) one has 2 >~ @, erpny B(H,,), where each
‘H,, is finite-dimensional and the sum is finite. |

2.3 Poisson Manifolds

We return to Poisson algebras (cf. 1.1.2). The main source of such algebras is the
following.
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Definition 2.3.1. A Poisson manifold is a manifold P equipped with a bilinear
operation {, } : C®(P,R) x C®(P,R) — C*(P,R) with the property that
(C*®(P,R), 0, {, }), where o is pointwise multiplication, is a Poisson algebra.

By definition, the map g > {f, g} (for fixed f € C*(P, R)) is a derivation on
C*(P, R), and this implies that the Poisson bracket { f, g}(o') depends only on the
differentials df and dg at o € P. Therefore, there exists a smooth antisymmetric
tensor field B € I'(A;(P)) such that

{f. 8} = B(df, dg). 2.4
The Jacobi identity implies that the Poisson tensor B must satisfy
tpdipa =0 Ya € AX(P). (2.5)

(Recall that the insertion ¢ of A € A,(P) into B € A"*™(P) produces an element
taB € A™(P) defined by (14B)C) = B(AAC)forall C € A (P))If P is
finite-dimensional, this can be conveniently stated in terms of local coordinates
{o%): If B®(0) = B,(do® A do?), so that B? = —B?  then

3Bbc aBab 9B
B B B* =0. 2.
do¢ + do¢ + do¢ (26)
Conversely, an element B € I'(A,(P)) satisfying (2.5) (or 2.6)) defines a Poisson
bracket by (2.4).
The Poisson tensor B defines a linear map B* : T*P — TP by
(B*(@))(B) := B(a, B), 2.7

where « and B lie in the same fiber in T*P. If h € C®(P, R), the image B¥(dh)
is usually written as &, and called the Hamiltonian vector field of 4. Hence

&f = B*(dh)f = {h, f}. (2.8)
By virtue of the Jacobi identity, one has
(6r. 801 = &0 (2.9)
and
L¢,B=0 (2.10)

for all f,g € C*°(P,R), where L is the Lie derivative. Hence f + &7 is a
homomorphism from C*®(P, R) into the subspace of I'(T P) (regarded as a Lie
algebra under the commutator) of vector fields preserving the Poisson structure.

Ifc: I — P (where I C R is some interval containing 0) is a curve in P
for which ¢(0) = o, we write o(¢) for c(¢). Given h € C*°(P, R), Hamilton’s
equations of motion for such a curve are

do(t)
o = o). (2.11)
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A curve satisfying this equation for some # is called a Hamiltonian curve. The
corresponding flow, given by

Fi(o)=0(), (2.12)
is called the Hamiltonian flow of 4. A trivial consequence of (2.11) and (2.8) is

Proposition 2.3.2. A function h € C*®(P,R) is constant along the flow
trajectories it generates.

The theory of ordinary differential equations (Picard iterations) guarantees ex-
istence and uniqueness of a local solution for each initial value ¢(0) € P and ¢
in some compact interval around 0. When the motion exists, one has the property
F; 0 F; = F;,.Given h and ¢(0), it may happen that the motion is not defined for
all¢ € R, in which case the vector field &, is called incomplete. If &, has compact
support, it is always complete.

Given h € C*(P,R) with Hamiltonian flow o(¢), one constructs a
one-parameter family of linear maps af’ :C®(P,R) - C*°(P,R) by

& (f)0) = flo ). (2.13)
This family is evidently defined only for those ¢ for which the solution of (2.11) is
defined for any initial value. One infers from (2.8) and (2.11) that the infinitesimal
version of (2.13) is

de?(f) _ 0 o ey,
5 = e Ok (2.14)

here the derivative is understood pointwise. The following result is a local version
of the “infinitesimal” fact (2.10).

Proposition 2.3.3. If a®(f) satisfies (2.14), then a? is a morphism (cf. 1.1.3) of
C®(P, R) for each t for which it is defined.

The Leibniz rule and (2.14) imply d[a,(fg)l/dt = d{a,(f)a(g)l/dt; the
proposition follows by integrating this relation. |

If the motion pertinent to 4 is defined for all # € R, one obtains a one-parameter
group of automorphisms in this way. Equation (2.14) evidently makes sense in any
Poisson algebra.

Definition 2.3.4. An element h of a Poisson algebra is called complete if the
one-parameter family of automorphisms defined by (2.14) is defined for allt € R.

For Poisson algebras of the type C*°(P, R) this amounts to saying that the flow
of &, is complete.

We will frequently need the notion of a Poisson map J : (P;, B!) — (P,, B?);
this is a smooth map such that, in obvious notation,

IS, gl =1{J"f, J*gh (2.15)
for all f, g € C°°(P,, R). Equivalently,
B,(J*a, J*B) = B, B) (2.16)
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forallo € Py and allo, B € Tj,\ P;.

It follows from the Jacobi identity that the flow F, : P — P of each Hamiltonian
vector field & is a Poisson map (for all ¢ for which the flow is defined). Moreover,
a chasing of the definitions shows the validity of

Proposition 2.3.5. For any Poisson map J : P — P, one has
J&pp=E&p0J 2.17)
forall f € C*(P,, R). Moreover, the image of the flow of € j« ; under J is the flow
of&;.
In the present setting, symplectic spaces are regarded as special instances of
Poisson manifolds.

Definition 2.3.6. A Poisson manifold for which the map B® is an isomorphism is
called symplectic. If B, : TP — T*P is the inverse of B, the symplectic form
w € T(AX(P)) is defined by

o(X,Y) = (B;(X))(Y). (2.18)

As a consequence of the Jacobi identity (or (2.5)),  is closed (dw = 0). In
terms of the symplectic form, the Poisson bracket reads

{f, 8} = —w(&s, &), (2.19)
where &7 and &, are defined as in (2.8), that is,
£ = B (df), (2.20)
and this is equivalent to the connection
ig, 0 = df. (2.21)

The following characterization of symplectic manifolds follows directly from
the definition and the local existence of Hamiltonian flows.

Proposition 2.3.7. A Poisson manifold is symplectic iff one of the following
equivalent properties is satisfied:

o The collection of Hamiltonian vector fields {§;, f € C®(P,R)}, or,
equivalently, the image of B*, spans T, P at eacho € P.

e Any two points of P can be connected by a piecewise smooth Hamiltonian
curve.

When P is finite-dimensional, the first condition simply states that at every point
the rank of B* (that is, the dimension of the image of B* at a given point) equals
the dimension of P.

The cotangent bundle 7* Q of any manifold Q is symplectic.

Definition 2.3.8. The canonical symplectic form w on a cotangent bundle T* Q
is given by w = —d®, where © is a one-form on T*Q defined by

Oy (X) 1= 07 (0)(Te(X)), (2.22)
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where T := Tr+g_ 0.
In canonical coordinates (p, g) on T*Q this reads
w =dq' Adp;, (2.23)
and the associated Poisson bracket is given by

of dg  9f ag
{f’g} = T T T .

dp; 9¢°  9q* dp;
A diffeomorphism J : S; — S; between two symplectic manifolds that is a

Poisson map is called a symplectomorphism; S; and S, are symplectomorphic
when such a map exists.

(2.24)

2.4 The Symplectic Decomposition of a Poisson Manifold

In this section we argue that an arbitrary finite-dimensional Poisson manifold is
foliated by symplectic subspaces; this is somewhat analogous to the decomposition
of a finite-dimensional C*-algebra as a direct sum of matrix algebras; cf. 2.2.3. In
preparation, we recall some differential geometry.

Definition 2.4.1. A distribution D on a manifold P is a subset of the tangent
bundle T P such that D, := DN\ T, P is a vector space for each o € P.The rank
of D at o is the dimension of D,.

A distribution is called smooth if for everyo € P and v € D, there is a smooth
vector field &, defined on a neighborhood N of o, such that £(p) € D, for all
p e N,and (o) = v. Such a § is called a local section of D.

A distribution is called involutive if for any pair &\, &; of local sections one has
[&1, &1(p) € D, in their common domain of definition.

A distribution D on P is completely integrable when each point o € P lies in
an immersed submanifold S, € P whose tangent space at o is D,.

(One sometimes speaks of a generalized distribution when the rank of D is not
constant on P; we will, instead, speak of a regular distribution when the rank is
constant.)

Hence a completely integrable distribution defines a foliation of P, whose leaves
are the S, . The leaves of a completely integrable foliation may have varying di-
mension. (Such a foliation is sometimes called singular; again, we will rather use
the adjective regular when the leaf dimension is constant.)

For smooth regular distributions the question of complete integrability is settled
by the well-known Frobenius theorem, which states that D is completely inte-
grable iff it is involutive. In general, one needs a stronger condition (the “singular
Frobenius theorem™) to arrive at completely integrability, which we state without
proof.

Lemma 2.4.2. A smooth distribution D is integrable iff at each o0 € P one can
choose local sections &, ..., Eank(p,) that span D, with the property that for an
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arbitrary local section & of D (defined around o ) one has
£, &1(0 (1) = A (1)&;(0 (1)) (2.25)

for small enough t. Here o +> o (t) is the (local) flow generated by &, and the Aij
are certain functions of t.

We return to Poisson manifolds. In general, the map B* may fail to be surjective.
The image of B* defines a distribution D on T P, which is easily seen to be smooth;
for it is generated by the Hamiltonian vector fields, each of which is a smooth
section of the tangent bundle. The rank of B¥ is not necessarily constant, so that
D may not be regular.

Definition 2.4.3. A symplectic leaf in a Poisson manifold (P, B) is a maximal
set of points that are equivalent under the following equivalence relation: p ~ o
iff p and o can be connected by a piecewise smooth Hamiltonian curve.

The terminology will be justified shortly. This equivalence relation leads to a
decomposition P = U, S,, where each S, is a symplectic leaf.

Lemma 2.4.4. The rank of B® is constant on each symplectic leaf.

This is simply because the flow of each Hamiltonian vector field & is a Poisson
map, and such maps leave B (and therefore B*) invariant, cf. (2.10) and (2.16).
In particular, the pushforward of a Hamiltonian flow F, maps the image of B at
some ¢ into its image at F, (o). [ |

Using 2.4.4, 2.4.2 (with & = &, for suitable f;), and (2.9), one infers that D
is completely integrable, and it will become clear shortly that the leaves of the
foliation defined by D are just the symplectic leaves of S.

In general, a given symplectic leaf S, C P may not be a submanifold of P.
Nonetheless, one may turn S, into a manifold by a standard procedure of (singular)
foliation theory. In the present context, this is accomplished by defining a chart
around a given o € S, in the following way. Let the rank of B® at o be n, and
choose functions fi, ..., f, such that {£f};=) ., spans the image of B" ato.
There is an € > 0 and an e-ball O, C R" around O such that F : O, — P, defined
by

F(t,...,.t)) = Ft} o---oFt:(o),
where F! denotes the flow of £, is a bijection.

Lemma 2.4.5. Applying the above procedure for a sufficient number of points
o € S, leads to an atlas on S, that is well-defined and independent, up to smooth
equivalence, of the choice of the f; at each point. The dimension of Sy with this
manifold structure is the rank of B®.

The pushforward of each F, and therefore of F,f o---o F;', maps the image of
B* at o into its image at F/ (o). |
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Equipped with this manifold structure and topology, each S, is an injectively
immersed submanifold of P; that is, the inclusion ¢y : S, <> P is continuous and
of constant rank, equal to the dimension of S, at each point.

The singular Frobenius theorem 2.4.2 applies; indeed, the leaf of the pertinent
foliation is locally given by F(Oc).

Lemma2.4.6. If f € C®(P, R)vanisheson Sy, then{f,gl(o) =O0forallo € S,
and all g € C®°(P, R). Therefore, one can define a Poisson bracket {, }, on Sy by

(G f G8le =311 8} (2.26)
Each S, is a symplectic manifold, and each inclusion v, is a Poisson map.
If f =0onS,, then {f, g} = —&, f =0, since §; is tangent to S,. |
Thus we arrive at

Theorem 2.4.7. For each finite-dimensional Poisson manifold P there exists a
family {S,} of symplectic manifolds, and injective Poisson immersions i, . Sq >
P, such that P = U,14(Sy) (disjoint union). Each subset 14,(S,) is a symplectic
leaf of P as defined in 2.4.3. The value of the Poisson bracket { f, g} at some o € P
depends only on the restrictions of f and g to the symplectic leaf through o .

In the text preceding the theorem we have made no notational distinction be-
tween S, and ¢, (Sy). Indeed, if each S, is a submanifold, one can simply say that
P = U, S, as manifolds.

2.5 (Projective) Hilbert Spaces as Symplectic Manifolds
In this section we look at the geometric structure of P(Bo(H)).

Definition 2.5.1. The projective space PH of a Hilbert space H is the space of
one-dimensional complex linear subspaces of H. Equivalently, P'H is the quotient
SH/UQ) of the unit sphere

SH:={VeH| (W, V)=1} (2.27)
by the action of U(1) >~ T, given by z : ¥ > zW¥, where |z] = 1.

The identification of vector states in H, one-dimensional projections on H, and
points of PH is immediately clear from this realization. Hence we conclude from
2.1.2 that PH =~ P(Bo(H)) (as collections of linear functionals on By(H) for
the moment), and PH € P(B(H)); when H is infinite-dimensional PH does not
nearly exhaust P(B(H)).

The space PH can be topologized by restricting the usual (norm) Hilbert space
topology on H to SH, and quotienting it to PH =~ SH/U(1). We will denote the
image of ¥ € SH in PH under the canonical projection t : SH — PH by ¥;
conversely, given ¢ € PH, such a W € SH will stand for an arbitrary preimage
of ¥ (and similarly for ¢, P, etc.).
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We now give PH the structure of a real manifold. For ¥ € PH and ¥ € SH,
define a neighborhood NV, := {p € PH | (¥, ®) # 0}; this is indeed an open set
in the quotient topology. Then Ny, is mapped into W1 C H by

[wio

b
Fy(p) = o) ¥ = . D) (2.28)

(which depends only on the lift ®), where [W] is the projection onto W+ ¢ H.
Clearly, ¥ is mapped into the null vector, and the image of this map is open in W,
It is easily checked that this map is a homeomorphism between Ny, and its image.
We now let ¢ (more precisely, W) vary over a basis in H, and for each such ¥ we
construct an (arbitrary) reference isomorphism between W+ and a fixed reference
Hilbert space H’ with two (real) dimensions less than H. This leads to a collection
of charts, making P a Hilbert manifold, modeled on H’ (equipped with the strong
topology). We will refer to the topology on PH considered so far as its manifold
topology.

Propesition 2.5.2. The following topologies on PH coincide:

1. The manifold topology.
2. The w*-topology relative to PH C Bo(H)*.
3. The w*-topology relative to PH C B(H)*.

It is quite trivial to verify that the topology on IPH that is inherited from the
strong topology on H is stronger than the topology in 2.5.2.3, which in turn is
stronger than the one of 2.5.2.2. Using the fact that ‘Bo(H) is generated by the one-
dimensional projections on H, one verifies that the topology in 2.5.2.2 coincides
with the one induced by the weak topology on H. Since the strong and the weak
Hilbert space topologies coincide on SH, the equivalence between 2.5.2.2 and
2.5.2.3 follows.

It follows from (2.28) that for arbitrary ¢ € Ny, one has

p(A)
e([¥D

It is clear from this equation that Fy (¢,) — Fy(¢) strongly implies ¢,(A) —
9(A), so that ¢, — ¢ in the topology of 2.5.2.3. Hence the manifold topology
on IPH is stronger than the topology of 2.5.2.3. Conversely, if ¢,(A) — @(A),
then each term on the right-hand side of (2.29) must converge, so that Fy (¢,) —
Fy(p) weakly and (Fy(@,), AFy(@n)) = (Fy(@n), AFy(p,)). Taking A = T,
these conditions imply Fy (¢,) — Fy(¢) strongly, so that the topology of 2.5.2.3
is stronger than the manifold topology. Hence the topologies in 2.5.2.1 and 2.5.2.3
coincide. |

= (Fy(p), AFy (@) + (¥, AFy () + (Fy(p), AY) + (¥, AY). (2.29)

Corollary 2.5.3. The pure state space of the C*-algebra By(H) (with relative w*-
topology) is homeomorphic to the projective space PH (with manifold topology).

Theorem 2.5.4. The pure state space P(2) of a C*-algebra 2 is a disjoint union
PR = U,PH,, where H,, is isomorphic to the irreducible GNS-representation



2 The Structure of Pure State Spaces 73

space of an arbitrary state in PH,. All states in a given subspace PH,, are equiv-
alent, and any two states lying in different such subspaces are inequivalent. The
inclusion map of any PH,, (equipped with the manifold topology) into P() (with
the w*-topology) is continuous.

The set-theoretic part of this claim follows from the comments after the proof
of 2.2.6. The topological part is a consequence of (1.57) and the equalities of the
topologies in 2.5.2.1 and 2.5.2.3. |

Of course, the disjoint union in 2.5.4 is meant in a set-theoretic rather than a
topological sense (the PH, are not necessarily components of P(1)).

We now embark on a description of PH as a symplectic manifold, starting with
the corresponding analysis of . Regarding H as a real vector space, we identify
the tangent bundle TH with H x H in the usual way: For any ¥ € 'H, an element
® € H defines a tangent vector V(P) € Ty'H by

d
VP f = -d—j;(\ll + t®)—o. (2.30)

If V(®) is tangent to SH, the derivative 7, will project it to an element v(®) of
TPH. This applies to tangent vectors of the form V (iAW), where A* = A in
B(H), and W is arbitrary. We observe that for any ¥ € H the collection of vectors
{iAV | A € B(H)r}, while not being equal to H because of the restriction to
B(H)g, contains WL, It then follows from the above discussion of the manifold
structure of PH that for all ¢ € PH one has

T,PH = {v(iAW) | A € B(H)r}. (2.31)

We now show that H and PH are both examples of (real) symplectic manifolds
(the real structure depends on the choice of a basis). Further to the identification
TH ~ H x H (see (2.30)) we identify T*H with H x H: For ® € H the one-form
O(®) is defined by

(O(®)(V(RQ)) := Re (D, Q). (2.32)

Note that O(®) = dfg, where fo(2) := Re (P, 2).
A Poisson tensor on H may be defined for any k € R\{0} by

B(O(®), O(2)) .= -—%ilm (D, 2). (2.33)
It follows that
1
. _ .
BYO@®)) = —ZhV(uD). (2.34)

Since this map is evidently invertible, one infers

Proposition 2.5.5. The Poisson manifold (H, B) is symplectic. The symplectic
Jorm w is given by

w(V (D), V(RQ)) = 2hIm (P, Q). (2.35)
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Let H be a self-adjoint element of B(H). Define H € C®(H, R) by
H(Y) := (¥, HY). (2.36)

The corresponding Hamiltonian vector field is
i
(W) = —V(EH‘IJ). 237

The (real) linear span of V(W) and all £;;(¥) is TyH. The Poisson bracket of
functions of the type (2.36) is (cf. (1.22))

{A, B} = ’E([A, B]) = (A, B} (2.38)
If U is a unitary operator on H, the pullback U* A equals U~! AU . It then follows
from (2.38) and (2.15) that each such U defines a Poisson map.
The Schrodinger equation “HW (1) = ihd WV (t)/dt” of quantum mechanics is
nothing but (2.11) with (2.37). The solution of this equation is the Hamiltonian
flow generated by H, given by

W(r) = e tH/My, (2.39)

We now pass to PH. Recall the action of U(1) on H (cf. 2.5.1); it is easily
checked that this is a Poisson map for each z € U(1). Consider H* := H\{0};
since each point of H* has the same stabilizer (namely {e}), it follows that H*/ U (1)
is a manifold. Moreover, H*/U(1) is a Poisson manifold: If 7 : H* — H*/U(1)
is the canonical projection, then 7, B(V) = 1,B(zW) for all z and W, so that we
can consistently define a Poisson tensor Bg on H* /U (1) at some point ¢ = (W)
by Br(¥) = 1, B(¥). Equivalently, the Poisson bracket {, } on H*/U (1) is taken
to be

T*{f’ g}R = {T*fv T*g}, (240)

which is well-defined by the same argument. The Jacobi identity and the Leibniz
rule follow from the fact that they are satisfied on P.

Although H*/ U (1) may be infinite-dimensional, the statement of Theorem 2.4.7
actually applies.

Proposition 2.5.6. The symplectic leaves ofthe Poisson manifold H* / U (1) are the
spaces S, = H,/U(1), where H, = (¥ € H| (¥, ¥) = r?}, so that H* /U (1) =
U,~oH,/U(1). The projective space PH may be identified with S,. Hence PH is
symplectic; the symplectic form w is explicitly given by

w0y (Vi AW), v(i BY)) = —ih{A, BIW), 2.41)
and the corresponding Poisson bracket is
(A, B} = ~[4, Bl = (A, B}, 2.42)

cf. (1.22) and (2.38).



2 The Structure of Pure State Spaces 75

See the text below (2.30) for the definition of v. We will show that §; is a
symplectic leaf of H*/U(1); the argument for the other S, is similar. For each
H € B(H)gr we here have introduced the function H on PH by

H@) = He(¥)) := H(Y), (2.43)
where H is given by (2.36), and W is now assumed to be a unit vector. Note that
IH I = 1A lo, (2.44)

where the norm on the left-hand side is the operator norm in *B(H). Indeed, our
notation H is motivated by the fact that (2.43) is a special case of the Gelfand
transform (1.30). It follows directly from the definition of the manifold structure
of PH that H is smooth for each H € B(H)g. Equation (2.37) implies

Ef(r(W)) = ~v (%HW) . (2.45)

The fact that each S, is symplectic now follows from Propositions 2.3.7 and 2.2.2,
and (2.37) or (2.45). The Poisson bracket (2.42) is derived from (2.38); it is, of
course, consistent with (2.19), (2.41), and (2.45).

Finally, the continuity of the inclusion of S; into H*/U(1) is immediate from
Proposition 2.5.2. |

It follows from the comment after (2.37) that the Poisson structure is completely
determined by the special case (2.42).

If H = CV is finite-dimensional, the symplectic form defined by (2.41) is A
times the well-known Fubini-Study form on PCV.,

As on H, each unitary operator U (projected to a map on IPH) is a Poisson map
with respect to (2.42). The Schrodinger equation, projected to PH, is a special case
of (2.11): If, in somewhat sloppy notation, v (¢) is the flow obtained by projecting
Y (1) (cf. (2.39)) from SH to IPH, one has from (2.45)

d
20 < 4w, (2.46)

In particular, the flow is complete for any H. As a matter of notation, we write the
solution as

Y(t) = e ity (2.47)

The right-hand side is by definition the projection of (2.39) to PH.
Eigenvalues and eigenvectors have a neat description in the present language,
too.

Proposition 2.5.7. A vectorV € His an eigenveftor of an operator H € B(H)r
iff ¥ = ©(¥) is a critical point of H (ie., dH(Y) = 0); the corresponding
eigenvalue is H(yr).

This is perhaps obvious from the minimax description of eigenvalues, but here
is a direct proof. The property d H(y) = O is the same as X H(y) = 0 for all
X € TyIPH. By (2.31) and (2.39), this is equivalent to (W, (HA — AH)¥) =0,
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or (AV, HY) = (AY, HWV), for all A € B(H)r. Hence (¥, H®) € R for all
® € Wi, which is possible only if (¥, H ®) vanishes for all ® € W, This implies
that ¥ must be an eigenvector of H. n

From the symplectic point of view, the two steps in the construction of PH
appear in reverse order. Firstly, one pulls the symplectic form w on H back to SH;
here it is degenerate. Secondly, this degeneracy is removed upon quotienting SH
by U(1), arriving at PH once more. See IV.1.5.

2.6 Representations of Poisson Algebras

We look at symplectic manifolds as the classical analogues of modules for Poisson
algebras (cf. the opening remark in 1.5).

Definition 2.6.1. A representation of a Poisson algebra (g, ¢, {, 1) is a linear
map 7w : Ur — C™(S, R), where S is a symplectic manifold, satisfying

n(fog)=mn(fmg)
(), n(@}s =n({f gbh (2.48)

(where {, }s is the Poisson bracket on S), as well as preserving completeness.

The condition (2.48) says simply that w : g — C*(S, R) is a morphism,
assuming that the Jordan product in C*°(S, R) is represented by pointwise multi-
plication (cf. 1.1.3). The completeness requirement means that the flow of &, is
defined for all times if /# is complete in Ag, cf. 2.3.4. It is imposed to eliminate
constructions of the type Ag = C*°(P, R), P’ # P openin P, and  being simply
restriction to P’.

There is a natural notion of equivalence. Namely, two representations 7, :
Ur — C®(S;, R)and m; : Ag — C®(S,, R) are called equivalent if there exists
a symplectomorphism J : S} — S, such that J*m,(f) = 71(f) for all f € Ag.

‘We can analyze the structure of representations of Poisson algebras of a slightly
more general type than C*°(P, R), where P is a Poisson manifold.

Definition 2.6.2. A Poisson space P is a Hausdorff topological space together
with a linear subspace g C C(P, R) and a collection S, of symplectic manifolds
(called the symplectic leaves of P), as well as continuous injections i, : Sy <> P,
such that:

1. P = U,14(Sy) (disjoint union).

2. A separates points.

3. Ar € CP(P,R), where C°(P, R) consists of all f € C(P,R) for which
tr f € C®(S, R) for each .

4. Ug is closed under the Poisson bracket

{f, 8}ta(0)) = {t, f, 138} (0). (2.49)
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If the ambient space P carries additional structure, such as a uniformity or a
smooth structure, one can refine the above definition in the obvious way; such
refinements will play an important role in later sections.

Definition 2.6.3. A uniform Poisson space is a Poisson space P in which the
topology is defined by a uniformity on P and that satisfies Definition 2.6.2 with
C(P, R) replaced by the space C,(P, R) of uniformly continuous functions on P.

Similarly, a smooth Poisson space is a Poisson space for which P is a manifold
and C(P, R)is replaced by C®(P, R). By Theorem 2.4.7, a smooth Poisson space
with Ag = C®(P, R) is nothing but a Poisson manifold. The more general concept
of a Poisson space is useful when the symplectic leaves do not fit together to
form a manifold. This happens in the context of singular symplectic reduction, cf.
1V.1.11. Moreover, we will show in 3.2.2 that the pure state space of a C*-algebra
is a uniform Poisson space. In any case, the object C{°(P, R) defined in 2.6.2.3 is
the function space intrinsically related to a (general, uniform, or smooth) Poisson
space P.

Definition 2.6.2 does not entail that 2k is a Poisson algebra under pointwise
multiplication as the Jordan product, but an interesting result arises when one
makes that assumption. In preparation for this, we remark that the notion of a
Poisson map makes sense in the context of Poisson spaces: It is still defined by
(2.15).

Proposition 2.6.4. Let (P, Ur) be a locally compact Poisson space for which g
is a Poisson algebra under pointwise multiplication. If 7 : Ug — C™(S,R) is
a representation of Ur on a finite-dimensional symplectic manifold S, then there
exists a continuous map J : S — P such thatm = J*.

For simplicity we show this for compact P, and assume that 2 contains the
unit function 1p. The Stone-Weierstrass theorem then implies that 2g is dense in
C(P, R) in the sup-norm. Take a point o € S, and define a linear functional J,
on Ur by Jo( f) = ((f))(o). By the first member of (2.48), this functional is
multiplicative. If it were defined on all of C(P, R), we could immediately conclude
from this that J, is continuous; a positivity argument shows that this follows in
the present case as well. Hence we extend J, to all of C(P, R). It follows that Js
defines a pure state, and pure states on C(P, R) correspond to points of P (see
2.1.4). Hence J,, corresponds to a point J(c') in P, and this defines the desired map
J 1 S — P.The continuity of J follows from a technical argument in the theory
of commutative C*-algebras. The second member of (2.48) obviously implies that
J is a Poisson map. O

Corollary 2.6.5. If A = C>®(P,R) for a Poisson manifold P and w : UAr —
C®(S, R) is a representation, then there exists a smooth Poissonmap J : S — P
such that m = J*.

The smoothness of J follows from the property 7 = J*. ]

There is a natural notion of irreducibility for representations of Poisson algebras.
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Definition 2.6.6. A representation it of a Poisson algebra 2y is called irreducible
if
{éxp(0)| f € Ur} =T,S Yo € S. (2.50)

If S is infinite-dimensional, it is understood that one takes the closure of the
left-hand side in the definition. The finite-dimensional irreducible representations
of a Poisson algebra associated with a locally compact Poisson space (Definition
2.6.2) can be described concretely.

Theorem 2.6.7. Under the assumptions of Proposition 2.6.4, let & be irreducible.
Then S is symplectomorphic to a symplectic leaf S, of P, or to a covering space
thereof.

In fact, it will follow from the proof below that an irreducible representation
space S of a locally compact Poisson space has to be finite-dimensional. The proof
of this theorem is based on 2.6.4; we have 1 = J* for J : § — P. For each
o € S, let Sy() be the symplectic leaf for which t4(,)(Se(r)) contains J (o) (cf.
2.6.2); we will henceforth identify t4(;)(Sy()) and Sy By irreducibility, any
X € T, S can be written as X = &y for some f € 2g. We define a linear map
J* . TGS - TJ(G)SO,(U) by

Jrbn(p(0) 1= &7 (J(0). (2.51)

The notation is consistent: If P is a manifold, J, is indeed the pushforward of J,
cf. (2.17). The fact that J, is well-defined follows from its injectivity, which we
will now demonstrate. If J,&,(s)(0) = 0, then {f, g}(J(0)) = O for all g € Ap,
since J is a Poisson map. But then w3 (&x(s), £x(g)) = O for all g, where 5 is
the symplectic form on S. Since «® is nondegenerate, this implies &xpn = 0,
which proves injectivity. Now, J, is evidently surjective as well, because Sy(,) is
symplectic. Hence J, is an isomorphism.

Combining this result with Propositions 2.3.5 and 2.3.7, we conclude that
J(S) C Su(s), Where S and S,y are locally symplectomorphic (since 7 is a repre-
sentation). The completeness of 7z (see Definition 2.6.1) implies that J (S) = Sy(s)-
For if the inclusion J(S) C S4(,) were proper, we could take a neighborhood N/
of a boundary point of J(S) in Sy(,), and take oy € N N J(S) and 0, € N but
02 ¢ J(S), such that | and o are connected by a Hamiltonian curve tangent to
&r (cf. 2.3.7). We then consider the Hamiltonian curve in § tangent to &,y and
passing through s, where J(s;) = o (s; may not be unique). By 2.3.5 this curve
is mapped onto the Hamiltonian curve connecting o} and o, but this is impossible
because of our assumptions on o,. Hence the curve in S in question must suddenly
stop somewhere, contradicting the completeness of 7.

A similar argument shows that J is a covering projection. For J not to be a
covering projection, there must exist a point 03 € Sy(q), a neighborhood N, of o3,
and a connected component J; ' (N;,) of J~!(N;,) such that J (J; ' (N,,)) € N,
is a proper inclusion. But in that case we could choose points oy € J(J;~ '(WN5)) and
02 € N, butoy ¢ J(J;'(N,,)), which can be connected by a smooth Hamiltonian
curve, tangent to some vector field £,. Let oy = J(s)) for some s, and consider the
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flow of &,y through s in S. Then this flow must either suddenly stop, contradicting
the completeness of 7, or continue outside Ji_l(./\/' +) to a point s, for which J(s3) =
02, contradicting the assumptions on 0,. Hence J must be a covering projection,
and Theorem 2.6.7 is proved. n

We now return to C*-algebras and their pure state spaces. Take a C*-algebra
with pure state space P = P(2) (equipped with the w*-topology), and identify
its self-adjoint part 2z with a subspace of C(P, R) by the Gelfand transform
Ac C(P, R); see (1.30). We will occasionally drop the hat on A.

Proposition 2.6.8. The pure state space P = P() of a C*-algebra AU (where Ur
is identified with a subspace of C(P, R) through the Gelfand transform (1.30)),
equipped with the irreducible representation spaces S, = PH,, and the inclusion
maps i, is a Poisson space.

This is a trivial consequence of 2.5.4; note that the Poisson bracket in the sense
of 2.6.2 coincides with the one (1.22) originally defined on 2g. Recall that the
choice of each H, is arbitrary within unitary equivalence; the Poisson structure
on P(2) is independent of the particular choices made by the comment following
(2.42). The spaces PH,, are now seen to be the symplectic leaves of P. ]

Proposition 2.6.8 recognizes the fact that (the self-adjoint parts of) C*-algebras
fall under the theory of Poisson spaces. This point of view receives further support
from a reconsideration of the notion of a representation 7 of a C*-algebra on a
Hilbert space H (see 1.5.1). As explained in 2.5, we may identify B(H)g with a
subspace of the Poisson algebra C*°(H, R), so that # maps A € g to 77(?) €
C®(PH, R) (cf. (2.43)). It follows from 2.5.6 that 7 : Ar — C>®(H, R), thus
interpreted, is a Poisson morphism.

Proposition 2.6.9. A representation it of a C*-algebra A on a Hilbert space H is
irreducible iff for every v € PH the set {v(in(A)W)| A € AR} of tangent vectors
is dense in T, PH (Poisson irreducibility).

This follows from (2.31) and 2.2.2.2. Note that Ty'H equals {V(A¥)|¥ €
B(H)}, but does not equal {V(A¥)|¥ € B(H)r}; nonetheless, Ty PH is given
by (2.31). This is because the orthogonal complement of {V(AW) | ¥ € B(H)r}
in Ty'H projects to zero in T, PH. u

Combining 2.6.9 and (2.45), we see that the notions of irreducibility of a repre-
sentation of a C*-algebra (Definition 2.2.1) and of a Poisson algebra (Definition
2.6.6) coincide (cf. 2.2.1). Therefore, on the Poisson side there is a close formal
similarity between C*-algebras and Poisson algebras as far as their respective rep-
resentation theories are concerned. Indeed, combining Theorems 2.5.4 and 2.6.7
and Proposition 2.6.8, we obtain (under the above identifications)

Corollary 2.6.10. LetUg be either a Poisson algebra defined by a locally compact
Poisson space P, or the self-adjoint part of a C*-algebra with pure state space
P. Then, up to equivalence, every irreducible representation of Ug is given by the
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restriction of Ug to a symplectic leaf of P (or P, respectively), or by this restriction
preceded by the covering projection on a covering space of such a leaf.

Note that PH has no nontrivial covering spaces. If the Poisson space P is
compact and the Poisson algebra 2k contains the unit function, then 2y is dense
in C(P, R) (cf. the proof of 2.6.4); in that case, P is actually the pure state space
of A as a C*-algebra (cf. 2.1). If P is merely locally compact, the same conclusion
holds if g is contained in Co(P).

The difference between representations of C*-algebras and Poisson algebras
lies on the Jordan side; from the point of view of pure states, the Jordan structure
on g eventually originates from a novel structure on P ().

2.7 Transition Probability Spaces
Here is the structure alluded to at the end of the preceding section.

Definition 2.7.1. A transition probability on a set P is a function

p:PxP—-]0,1] (2.52)
that satisfies
pp,0)=1 = p=o (2.53)
and
p(p,0) =0 &> p(o, p)=0. (2.54)

A set with such a transition probability is called a transition probability space.
The following set of definitions is natural and self-evident.

Definition 2.7.2. A family of subsets of a transition probability space P is called
orthogonal if p(p, o) = 0 whenever p and o do not lie in the same subset. The
space P is called reducible if it is the union of two (nonempty) orthogonal subsets;
if not, it is said to be irreducible. A component C of P is a subset C C P such
that C and P\C are orthogonal. An irreducible component of P is called a sector.

Thus any transition probability space is the disjoint union of its sectors.
Certain subsets of P are of special significance. The orthoplement of Q C P
is defined by

Q- ={oc eP|p(p,0)=0Vp e Q}. (2.55)

It is immediately obvious that if R C S, then S* C R*, and that T C T+,
Putting R = Q and § = Q- shows that 9+ C Q%; putting T = Q' yields
01 c Q1. Hence Q' = Q14+, Accordingly, the orthoclosure of a subset
Q C P is defined as @+, and Q is called orthoclosed if Q = Q1. It follows
that Q* (and therefore Q) is always orthoclosed. Also, one easily sees that any
component C C P is orthoclosed; this applies in particular to P itself, and to any
sector of P.
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Definition 2.7.3. A basis of a transition probability space P is an orthogonal
family B of points of P with the property that

Y p(p.o)=1VoeP (2.56)

peB

(if B is infinite the sum is defined as the least upper bound of all finite partial
sums).

The transition probability space is called symmetric if

P(on):P(U, p) Vp,o e P. (257)

The simplest example of a symmetric transition probability space is obtained by
taking any set P, and putting

p(p,o) = (Spa- (2.58)

Proposition 2.7.4. Ir a symmetric transition probability space all bases have the
same cardinality.

Let B; and B, be two bases. If both are finite, (2.56) shows that the cardinality
card(B,) of B, is given by ZpeBl ZoeBz p(p, o). But then the symmetry of p
implies that this must equal card(B;). The same calculation shows that it is im-
possible that B, is finite and B, infinite (and vice versa). Let both be infinite. For
fixed o € B,, define R(c) = {p € By | p(p, o) > 0}. By (2.56), R(c) can be at
most countable. Hence the set U, < g, R(0') has the same cardinality as B;. On the
other hand, this set is contained in B, so that card(B,) < card(B,). The symmetry
of p leads to the opposite inequality, so that card(B;) = card(B>). ]

Consequently, one can define the dimension of a symmetric transition prob-
ability space as the cardinality of any of its bases. If B is a basis, then B+ =
P.

Clearly, any subset of P is a transition probability space if one simply restricts
p to it. Not every orthoclosed subset is necessarily the orthoclosure of a maximal
orthogonal subset contained in it, however: There exist examples of orthoclosed
subsets that do not have any basis. To exclude pathological cases, we impose the
following

Definition 2.7.5. A transition probability space is well-behaved if:

e Itis symmetric.
e Every orthoclosed subset Q of P has the property that any maximal orthogonal
subset of Q is a basis of Q.

In a well-behaved transition probability space any set of the type Q% is
orthoclosed. Moreover, any orthogonal subset S has the property

s“:[pemzp(p,a):l], (2.59)

oeS

since one can complete S with a basis of S* to form a basis of P.
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For each point p in an arbitrary transition probability space P, the function p o
on P is defined by

Po(0) := p(p,0). (2.60)

Proposition 2.7.6. Let P be a well-behaved transition probability space. For each
orthoclosed subset Q C P the function

dim(Q)
Poi= Y p. (2.61)
i=1
is independent of the choice of basis {e;} of Q. Moreover,
Q={peP|polp) =1} (2.62)

Choose a basis B = {e;} U {u;} of P that contains the given basis of Q; clearly,
uj € Q*+forall j.By (2.56),pg = Y, p, = 1 — >, Pu;»in which the right-hand
side is clearly independent of the choice of basis of Q. We now prove (2.62). If
p € Q, then Zj p(p,u;) = 0, so that pg(p) = 1 by (2.56). If py(p) = 1, then
p(p,uj) =0forall j,sothatp € (Uju;)t = Q1+ = Q. |

2.8 Pure State Spaces as Transition Probability Spaces

This section is devoted to the result that the pure state space of a C*-algebra is a
well-behaved transition probability space. To see this in perspective, we start in
the more general context of compact convex sets; cf. 1.4.5 and preceding text. We
will routinely omit the hat on the Gelfand transform.

Let K be a compact convex set (in a Hausdorff vector space). An extreme
point p € 3.K is called norm-exposed if there exists some A € A,(K, R), with
lAll = 1, such that {w € K | A(w) = 1} = p. Equivalently, A satisfies A(p) = 1
and A(w) < 1 forall w € K\{p}.

Proposition 2.8.1. Let K be a Hausdor[f compact convex set with the property
that every extreme point is norm-exposed. Then the formula

p(p,0):=inf {A(p)| A € Ap(K,R),0 < A < 1k, A(0) =1} (2.63)

defines a transition probability on the extreme boundary 8, K of K . The expression
(2.63) is not changed if the infimum is taken over A(K, R) instead of A,(K , R).

If p = o, then p(p, o) = 1 by definition. The converse follows immediately
from the extra requirement on K. Condition (2.54) is easily verified if one rewrites
(2.63) as

po,p)=1—sup{A(0)| A € Ap(K,R),0 < A < 1g,A(p) =0}. (2.64)

The claim that we may minimize over A in A(K, R) follows from the density of
A(K,R) in A,(K, R) in the topology of pointwise convergence. |

If A is a commutative unital C*-algebra, its self-adjoint part is of the form
Ar = C(P(A), R) by Theorem 2.1.7, where the pure state space is a compact
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Hausdorff space. Since 2%* contains £°(P(2)), one immediately sees that (2.63)
leads to (2.58). If one minimizes (2.63) only over A(K, R) >~ C (P, R), the same
result follows from Urysohn’s lemma; since P(21) is compact and Hausdorff, it is
normal.

Theorem 2.8.2. The pure state space P(2) of a C*-algebraL is a well-behaved
transition probability space under (2.63). The transition probabilities are explicitly
given by p(p, o) = 0if p and o are inequivalent, and

p(p, o) = (R, W) (2.65)

if p and o are equivalent. Here Q2,2 € SH, are (arbitrary) preimages of
p,o € PHy (cf 2.5 and 2.2).

Note that this implies that the transition probabilities are given by (2.58) if A is
commutative.

We may assume that 2g has a unit. If ithasn’t, we use 1.2.1 and (2.2); the special
point w, satisfies p(wso, p) = Oforall p # weo. To see what is happening, we first
prove the theorem for finite-dimensional C*-algebras. By Proposition 2.2.8 these
are direct sums of matrix algebras, i.e., A = @My, (C). We write A = Do A
for A € 2. The pure state space of 2 is P = Uy PCV=, We now take a fixed o if
o € PCY C P, then 6 (A) = 0 (Ay) = (R0, Ay ), where Q, € CV= is defined
as in the statement of the theorem. The projection [£2, ] onto £, may be regarded
as an element of 2 by adding zero operators. Then

[Q:1(0) = (R, ) (2.66)

if p € PCM (i.e., it is equivalent to o), and [2,](p) = 0 otherwise. In particular,
[2,1(0) = 1, and [S2,}(p) < 1if p # o. This shows firstly that every pure state
is norm-exposed, and secondly that p(p, o') vanishes if p and o are inequivalent
(note that 0 < [R,] < [ and ||[Q,]]l = 1, since [Q;] is a projection).

We now assume that p and o are equivalent, and without loss of generality,
put 2A = My (C). We claim that the infimum in (2.63) is reached for A = [,].
For suppose there exists an A € Ax = My(C)r for which 0 < A < [Q,] and
A(o) = (S, AQ,) = 1. Choose a basis {ey, ..., en} in C¥ that projects onto
{0,....en} in PCY. Since 0 < A < [Q,] and [Q,](e;) = Ofori =2,...,it
must be that A(e;) = 0 fori = 2,..., N. Also, clearly, A(e;) = [25](e1) (since
e = o). Then B = [Q2,] — A satisfies B > 0, and B(e;) = (e;, Be;) = 0 for all
i. The latter is impossible for a positive definite matrix. Hence we can compute p
by p(p, o) = [Q2,1(p), which, with (2.66), proves (2.65).

The proof of Theorem 2.8.2 for general C*-algebras follows the same idea; the
direct sum of matrix algebras is now replaced by the reduced atomic representation
7., of 2 (see 2.2.7 and the subsequent theory). The projection [2,] € B(H,) is
regarded as an element of 7,,(2)” by adding zero operators; hence itlies in /AR". As
in the finite-dimensional case, this shows that every pure state is norm-exposed,
while additionally reducing the proof to the situation where p and o are equivalent.

We then observe that A(S(2), R) € m.(RAr)’ € Ap(S(), R) (with equalities
only for finite-dimensional algebras), so that we may take the infimum in (2.63)
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over all A in m,(Ug)”. The remainder of the proof is then the same as in the finite-
dimensional case, since the property of positive definite matrices we used holds
for arbitrary positive definite operators on a Hilbert space.

A basis of P is obtained by using the decomposition P = U, PH,, (see 2.5.4);
one chooses an orthonormal basis (in the usual Hilbert space sense) in each H,,
and projects it to PH,. This yields a basis (in the sense of 2.7.3) of PH, as a
transition probability space. Combining these bases by taking the union over all «
then produces a basis of P. The fact that P is a well-behaved transition probability
space then follows from elementary Hilbert space theory. |

The transition probability between pure states on a C*-algebra 2 may be related
to the norm on 2*, in that

p(p.o)=1-1Llp -0l (2.67)

If p and o are equivalent, so that they are vector states in the same Hilbert space
(cf. the comments following 2.2.6), then (2.67) is equivalent to

lo —oll = 2,1 =[]l (2.68)

either equality follows from a simple calculation with 2 x 2 matrices. If p and o
are inequivalent, one can show that ||p — o || = 2.

3 From Pure States to Observables

3.1 Poisson Spaces with a Transition Probability

We have encountered two kinds of structure on the pure state space P() of a
C*-algebra 2. Firstly, it is a Poisson space (cf. 2.6.2 and 2.6.8), and secondly, as
established in 2.8.2, it is a transition probability space. We will now examine how
these structures are interrelated. Recall (2.60).

Definition 3.1.1. The real normed vector space ﬂ%p(P), regarded as a subspace
of £°(P, R) (with sup-norm), consists of all finite linear combinations of the type
Zi[\'/:l CiPp» Where c; € R and p; € P. The closure of ?2(%9(77) is called 911%(73).

The double dual of Ql%(P) will play a central role in what follows, so that we
use a special symbol:

Ar(P) := AR (P)*. (3.1)

Since ?Zl?R(P) C £4(P, R), one has Ag(P) C £o(P, R)** = £°°(P, R). The space
Ar(P) is the function space intrinsically related to a transition probability space
P. It is a partially ordered Banach space in the obvious way. We will now identify
this space in the case that P is the pure state space of a C*-algebra.

According to 1.7.5 there exists a central projection p in 2** such that 7, ()" ~
pRA* (cf. 2.2.7). Hence 7,(A)” is contained in A** in a natural way. By w*-
continuity, elements of 2g >~ A(S(2), R) are determined by their values on P(2).
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This is, in general, not the case for arbitrary elements of A" ~ A,(S(A), R).
However, A € pRAY* C AY is determined by Ae £2°(P (), R); this follows either
from the explicit expression (2.3) or from a more abstract argument. Therefore, the
Gelfand transform (1.30) maps p2(3*, and hence 7, (2)g, isometrically into some
closed subspace of £°(P (), R).

Proposition 3.1.2. If P is the pure state space of a C*-algebra A, equipped with
the transition probabilities (2.65), then the Gelfand transform (1.30) isomorphi-
cally maps () ~ pAY* (as a partially ordered Banach space) to Ag(P). In
particular, g (P) = £°(P, R) if A is commutative.

As a visual aid in proving this proposition, we define a (locally nontrivial) fiber
bundle B(P), whose base space B is the space of sectors, equipped with the discrete
topology, and whose fiber above a given base point « is B(H, )g; here H,, is such
that the sector « is PH,, . Moreover, by (2.5.4) the pure state space P itself may be
seen as a fiber bundle over the same base space; now, the fiber above « is PH,,. We
will denote the projection of the latter bundle by 7. A cross section s of B(P) then
defines a function § on P by §(p) = [s(T(0))1(0); in this description, we identify
a bounded self-adjoint operator H on H, with the corresponding function H on
PH,, cf. (2.43). By (2.44), this identification is isometric if we define the norm
of a cross section of B(P) by {isll = sup,.p lIs(e)|l (where the right-hand side, of
course, contains the operator norm in ‘B(H,)) and the norm of § as the sup-norm
in £2°(P, R).

It follows directly from its definition that the space QI%O(P) consists of sections
s of B(P) with finite support for which s(«) has finite rank for each «. Its closure
Ql?R(P) contains all sections for which & — {|s(«)|| vanishes at infinity, and s(c) is
a compact operator. It follows from 1.6.5 that the dual Ql]%(’P)* may be realized as
the space of sections for which s(@) is of trace class and @ > [|s(a)][; (cf. (1.61))
is in £'(B, R). The bidual 2Ag(P) then consists of all sections of B(P) for which
a > |s(@)] 1s in £°(B, R). It follows from (2.3) that this is precisely the image
of the Gelfand transform (1.30) of 7, (). [ ]

If P is simultaneously a (general, uniform, or smooth) Poisson space (cf. 2.6.2,
2.6.3) and a transition probability space, two function spaces are intrinsically as-
sociated with it: CJ°(P, R), defined in 2.6.2.3, and AR (P), respectively. The space
naturally tied with both structures in concert is therefore

AL (P, R) :=Ar(P) N CP(P, R). 3.2)

For example, if P is a smooth Poisson space (i.e., a Poisson manifold) equipped
with the transition probabilities (2.58), then Ar(P) = £°(P,R), so that
A, (P,R) = C{,(P, R). The corresponding equation for C*-algebras is (3.6)
below.

In general, since elements of 2, (P, R) are smooth on each symplectic leaf of
P, they generate a well-defined Hamiltonian flow (2.11), which, of course, stays
inside a given leaf.
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Definition 3.1.3. A (general, uniform, or smooth) Poisson space that is simulta-
neously a transition probability space is called unitary if the Hamiltonian flow on
P defined by each element of A1 (P, R) preserves the transition probabilities. That
is, if p(t) and o (t) are Hamiltonian curves (with respect to a given H € A, (P, R))
through p(0) = p and 0(0) = o, respectively, then

p(p@®), o)) = p(p,0) (3.3)
for each t for which both flows are defined.

We infer from (2.46), (2.47), 3.1.2, 2.6.8, and 2.8.2 that the pure state space of
a C*-algebra is unitary. Also, a Poisson manifold with (2.58) is evidently unitary.

Definition 3.1.4. A (general, uniform, or smooth)Poisson space with a transition
probability is a set P that is a well-behaved transition probability space (Defini-
tion 2.7.5) and a unitary (general, uniform, or smooth) Poisson space (Definitions
2.6.2,2.6.3,and 3.1.3), for which %gr = A (P, R) (defined in (3.2)).

This definition imposes two closely related compatibility conditions between the
Poisson structure and the transition probabilities: Firstly, it makes a definite choice
for the space 2g appearing in the definition of a Poisson space, and secondly, it
imposes the unitarity requirement.

We collect the previous findings in

Theorem 3.1.5.

o The pure state space of a C*-algebra equipped with the w*-topology, the tran-
sition probabilities (2.63), and the Poisson structure 2.6.8, is a Poisson space
with a transition probability.

o A Poisson manifold equipped with the transition probabilities (2.58) is a smooth
Poisson space with a transition probability.

3.2 Identification of the Algebra of Observables

This section is devoted to the following result, which shows how a unital C*-
algebra 2A can be recovered from its pure state space. We recall that Ql%(P) was
defined in 3.1.1, and that g (P) C £°°(P, R) (cf. (3.1)). Also, we regard g as a
closed subspace of Cp(P(21), R) C £>°(P(), R) through the Gelfand transform
(1.30).

Theorem 3.2.1. Let P() be the pure state space of a unital C*-algebra 2,
equipped with the transition probabilities (2.63) and the w* -uniformity inherited
Jrom A*. Then

Ag = Ar(PE)) N C,(PE), R), 3.4

where C,(P®1), R) is the space of real-valued uniformly continuous functions on

PE.

Before starting with the proof, we clarify the content of the theorem.
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Firstly, the w*-uniformity on P(2) may be defined by its subbase consisting of
all subsets of P x P of the type {(p,0) € P x P|{p(A) — 0(A)| < €}, where
A € 2Ugr and € > 0. It is noteworthy, however, that the subspace of functions in
£°(P), R) that are uniformly continuous with respect to any uniformity on P(2)
is closed. This generalizes the well-known fact that the subspace of continuous
functions relative to any topology on P is sup-norm closed; the proof of our
observation proceeds by the same & /3 argument.

Secondly, we know from 1.4.5 that %r ~ A(S(R), R) = A*™* N CSE), R).
There may, however, exist spurious elements of 2[%* that happen to be w*-
continuous on P () but not on S(A). Therefore, an arbitrary C*-algebra 2 does not
satisfy Ar = AR N C(P(A), R) (although a large class of such algebras does, see
below). The theorem shows that these spurious elements fail to be uniformly con-
tinuous on P(2), and that uniform continuity on P(2) can be used to characterize
Ag.

We now pass to the proof of Theorem 3.2.1. According to 3.1.2, we may iden-
tify Ag(P) with the image of the Gelfand transform of () (or pAF) in
£X(PE), R); we denote this image by k. Hence we can write the right-hand
side of (3.4) as My N C, (PR, R). Since we identify Ag with its Gelfand trans-
form, and because Ar < 7.(A)g, we can say that Ar < Mg. The inclusion
Qg € C,(P,R) is immediate from the definition of the w*-uniformity, so that
Ar < Mg N C, (P, R).

We note that P(2) = 3, (9M), where N (IM) is the normal state space of the
complexification 9t of Mg, cf. 1.7 (recall that 907 is a von Neumann algebra). For
any von Neumann algebra 91 of the form 9N = B** (where B is a C*-algebra)
one has

o3 N (M) = SO, (3.5)

which sharpens Theorem 2.1.5, since N (91) € S(9M) may be a proper inclusion.
We apply this with Bgr = A5,(P) (cf. the proof of 3.1.2), for which B** indeed
equals our 9. As a corollary of Theorem 2.1.5, note that if L C K is a closed
subset of K for which co(L) = K, then 3,K C L. It then follows from (3.5)
that PN~ € BNON)™ = PR, where the closures are taken in the w*-
topology on 90t*. Therefore, one can approximate any p and o in P(9) in the
w*-topology on 9* by elements of P(2), so that p, — p and og — o for nets
{ps} and {og} in P(A). If we choose these such that p = o on A, then clearly
lim, g(0,(A) — 0g(A)) = Oforall A € Ap.

Now choose B € M N C,(P(A), R). By the definition of the w*-uniformity on
%, the uniform continuity of B implies that lim, g(0,(B) — 0(B)) = 0. Hence
p(B) = o(B).

Without proof, we now invoke a deep corollary of the Stone—Weierstrass theorem
for C*-algebras: If 2 and B are unital C*-algebras with A C B, and B € B is
such that p(B) = o (B) for any pair p, o coinciding on 2, then B € 2.

Returning to the previous paragraph, this corollary implies that B € %dg. [

Combining Theorem 3.1.5 and (3.4) we infer
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Corollary 3.2.2. The pure state space of a C*-algebra equipped with the w*-
uniformity, the transition probabilities (2.63), and the Poisson structure 2.6.8 is a
uniform Poisson space with a transition probability.

We briefly return to (3.2). According to Propositions 3.1.2 and 2.6.8, and the
comment below (2.44), for pure state spaces P = P(2) of C*-algebras one has
Ar(P) N C,(P) C C°(P, R). It then follows from Theorem 3.2.1 that

AL (PED), R) = Ar(PE)) N C,(P@), R). (3.6)
A unital C*-algebra 2 is called perfect if
Ar = Ar(P) N C(P(A), R). 3.7

In that case, C, in (3.6) may be replaced by C.

If P() is closed (hence compact), then A is obviously perfect. Hence com-
mutative C*-algebras are perfect (cf. 2.1.7, which actually implies 3.2.1 in the
commutative case), and so are finite-dimensional C*-algebras. On the basis of
Proposition 2.5.2 one might expect that the unitization B(H); of B(H) cannot
be perfect, but the opposite is true. While 2.5.2 does show that any element of B(H)
is continuous on all points of P(B¢(H)) except weo (cf. (2.2)), only members of
Bo(H); are continuous at w., too. Finally, deeper analysis shows that B(H) is
perfect for any Hilbert space H.

3.3 Spectral Theorem and Jordan Product

Given a C*-algebra 2, one can use Proposition 3.1.2 to endow A (P), and hence
Ar (cf. (3.4)), with the structure of a J L B-algebra; cf. 1.1.9. It is enlightening,
however, to derive this structure from the pure state space P = P(). By Theo-
rem 3.1.5 this is a Poisson space with a transition probability; our first goal is to
reconstruct the Jordan product on A (P) from the transition probabilities.

Definition 3.3.1. Let P be a well-behaved transition probability space (cf. 2.7.5).
A spectral resolution of an element A € £°°(P, R) is an expansion (in the topology
of pointwise convergence)

A=) Aipo, 3.8)
J

where X; € R, and {Q,} is an orthogonal family of orthoclosed subsets of P (cf.
(2.61)) for which 3~ ; po, equals the unit function on P.

Proposition 3.3.2. IfP = U,[PH, with transition probabilities (2.65), then any
A€ 22[%9(?) (cf. 3.1.1) has a unique spectral resolution.

By 2.5.4 and 2.8.2 this applies, in particular, to the pure state space of a C*-
algebra.

Firstly, the case of reducible P may be reduced to the irreducible one by grouping
the p; in A = Z,N= | CiDp into mutually orthogonal groups, with the property
that (Up)*t is irreducible if the union is over all p; in a given group. Thus we
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henceforth assume that P is irreducible, hence of the form P = PH with the
transition probabilities (2.65).

If P is finite-dimensional, the proposition is simply a restatement of the spectral
theorem for Hermitian matrices. In the general case, let A be as above, and Q :=
{p1,.... o1+ 1f o € Q,then A(0) = Y, A pg, (o) for some A; and mutually
orthogonal Q; C Q, since the situation is finite-dimensional. If o € 0%, this
equation trivially holds, as both sides vanish.

Let us assume, therefore, that o lies neither in Q norin Q. Define pg(c) by the
following procedure: Lift o to a unit vector ¥ in H, project I onto the subspace
defined by Q, normalize the resulting vector to unity, and project back to PH. In
the Hilbert space case relevant to us, the transition probabilities satisfy

plo, p) = p(o, pa(a))p(eg(o), p) 39

forp € Qando ¢ Q. We now compute A(o) by using this equation, followed by
the use of the spectral theorem in Q, and subsequently recycie the same equation
in the opposite direction. This calculation establishes the proposition for o ¢
o+ ]
Proposition 3.3.3. If P is the pure state space of a C*-algebra, A =Y, iripo;
is the spectral resolution of A € AY(P), and A is defined by A> = 3~ Mpo,,
then the product o defined by

AoB:=Y(A+ B)?—(A—-B)? (3.10)

3

turns Ql?RO(’P) into a Jordan algebra. Moreover, this Jordan product o can be
extended to Ql?R(’P) (cf. 3.1.1) by (norm-) continuity, which thereby becomes a
J B-algebra. Finally, the bidual Ug(P) (with sup-norm inherited from £°(P, R))
is turned into a J B-algebra by extending o by w*-continuity.

The bilinearity of (3.10) is not obvious, and would not necessarily hold for
arbitrary well-behaved transition probability spaces in which a spectral theorem
(in the sense of 3.3.2) is valid. In the present case, it follows from the explicit form
of the transition probabilities in PH. The quickest way to establish bilinearity, of
course, is to look at a function py (where Q lies in a sector PH of P) as the
Gelfand transform of a projection operator on H (cf. (2.43)).

Given bilinearity and the spectral theorem 3.3.2, the proof of (1.2) reduces to
showing that (p, o p:)o po = p, o (p: o ps) for p, o orthogonal and 7 arbitrary.
Through the (inverse) Gelfand transform this reduces to a calculation with 3 x 3
matrices. The first Jordan algebra axiom is trivially satisfied by (3.10).

We now show that the axioms (1.7), (1.8) hold in Qlfl)f(’P); the norm-closure
91%(73) will then be a J B-algebra. If A is given by (3.8), and A := sup; |2;], then
on the one hand ||A| > A, since each A is a possible value of A (assumed at any
point in Q;). On the other hand, {A(0)| < AZI- Pg,(0) = A by (2.56), so that
Al < A.Hence ||A}| = A. With our definition of A2, this immediately establishes
(1.9) and (1.10) (which are equivalent to (1.8)). Axiom (1.7) follows if we assume
that ||[A]l < 1 and ||B|| < 1, use (3.10), the observation that if f, g € £° are both
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positive then || f — g|| is majorized by max{|| |, llg|l}, and the triangle inequality;
these steps yield [|[A o B|| < 1.

The statement about the bidual is a direct consequence of Lemma 3.3.4
below. |

Without proof we state a generalization of Proposition 1.7.4.

Lemma 3.34. Let (Ur, o) be a J B-algebra. Then the Jordan product on g has
a bilinear extension (called o as well) to AR such that the maps A — A o B and
A — B o A are w*-continuous and ||A o B|| < ||A|| | Bl for all A, B € AY. An
extension with these properties is unique.

Of course, this discussion includes the situation where 2( is commutative. In that
case, the trivial transition probabilities (2.58) and the above construction imply that
the Jordan product on 2g(P) = £°(P, R) is pointwise multiplication, as it should
be.

3.4 Unitarity and Leibniz Rule

The following result shows that the Leibniz rule (1.4) in a J L B-algebra g is
a consequence of the unitarity condition relating the Poisson structure and the
transition probabilities on P(21).

Proposition 3.4.1. Let P be a Poisson space with a transition probability (see
3.1.4) in which every A € anof(’P) has a unique spectral resolution (in the sense
of 3.3.1). Assume that for each h € A, (P,R) (cf. (3.2)) the map A > {h, A}
is bounded on A (P, R) (with sup-norm). If a Jordan product o is defined on
2, (P, R) through the transition probabilities, in the manner of Proposition 3.3.3,
then o and the Poisson bracket satisfy the Leibniz rule.

The boundedness assumption holds when P is the pure state space of a C*-
algebra; it is made mainly to simplify the proof. The proposition evidently holds
when 2, (P, R) is a Poisson algebra, for which the assumption is violated.

Writing 8, (A) for {h, A}, the boundedness of §, implies that the series «,(A) =
Y o2 1"87(A)/n! converges uniformly and defines a uniformly continuous one-
parameter group of mapson 2, (P, R). On the other hand, if o (¢) is the Hamiltonian
flow of h on P (cf. 2.3), then a; as defined by (2.13) must coincide with the
definition above, for they each satisfy the differential equation (2.14) with the same
initial condition. In particular, the flow in question must be complete. Moreover,
it follows that the Leibniz rule (yet to be established) is equivalent to the property
that a; is a Jordan morphism for each ¢; this, in turn, can be rephrased by saying
that ot;(A%) = o, (A)? for all A € A, (P, R).

Let A € AQ(P) N AL (P, R). By (3.8) and (2.61), A = Y, A pe,, where all ¢;
are orthogonal. Unitarity implies firstly that o;(A) = Y, Ax Pe,(—1), and secondly
that the e,(—t) are orthogonal. Hence «,(A) is given in its spectral resolution, so
that (& (A))*> = Y, A2 pe(—n)- Repeating the first use of unitarity, we find that
this equals a,(A?). Hence the property holds on Ql?kp(’P). Now Qlﬂo{p(P) is dense
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in Ar(P) in the topology of pointwise convergence in £°(P,R). But A, — A
pointwise clearly implies «;(A;) — o, (A) pointwise. This, plus the w*-continuity
of the Jordan product (cf. 3.3.4), proves the desired result. a

We return to the pure state space P of a unital C*-algebra. Through the results
3.3.3 and 3.4.1, the fact that JUg(P) C A, (P, R), and the observation that the
associator identity (1.6) is a consequence of the special form of the transition
probabilities, we have reconstructed 2Ar(P) as a J L B-algebra. The final ingredient
on P that allows one to reconstruct the C*-algebra 2l whose pure state space it is, is
its uniform structure (namely, the w*-uniformity defined by 2g). The J L B-algebra
A is given by (3.4), and the C*-algebra 2 is then constructed as in 1.1.9.

Corollary 3.4.2. Let 2 be a unital C*-algebra with pure state space P(2), the
latter seen as a uniform Poisson space with a transition probability. Then « :
Ar — Ug is an automorphism (cf. 1.1.3) iff the map o* : P — P, defined by
a*p(A) := p(a(A)),

1. is a bijection of P;

2. is uniformly continuous, along with its inverse;
3. is a Poisson map;

4. leaves the transition probabilities invariant.

This is now obvious, as we have seen that the data preserved by « determine
P(), whereas the data preserved by o* determine 2Ap. |

Corollary 3.4.3. A bijection of PH that preserves transition probabilities is
induced by a unitary or an antiunitary operator on 'H.

We start with 20 = By(H), for which Ar(P) = B(H)g (cf. 1.6.5 and 3.1.2).
By Proposition 3.3.3, the Jordan structure on B(H)g is therefore determined by
the transition probabilities on P(2) = PH. Hence the given bijection of P must
correspond to a Jordan automorphism of ‘B(H)g. The corollary then follows from
the following lemma. O

Lemma 3.4.4. Any Jordan automorphism « of B(H)r is (anti) unitarily imple-
mented. That is, a(A) = UAU* for some unitary or antiunitary operator U on

H.

To start, extend a to B(H) by (complex) linearity. The definition of a Jordan
morphism then implies, after some manipulations, that

(2(AB) — a(A)a(B))(@(AB) — a(B)a(A)) =0

for all A, B € B(H)g. Since B(H) acts irreducibly on H, it follows that o must
either be a morphism (i.e., @(AB) = a(A)x(B)) or an antimorphism (¢(AB) =
a(B)a(A)). If « is a morphism, one defines the unitary operator U as follows. Take
an arbitrary unit vector Q € H; since 2 is cyclic for B(7), one may start defining U/
on vectors of the type A2, where A € *B(H). Let the range of the projection a([€2])
be CQ,, where 2, is a unit vector. Then define U A2 := «(A)$2,. The property
lle(B)|| = [|B| for all B € *B(H) (with B = A[R2]) shows that |U AQ2|| = {|AL2]|,
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so that U is well-defined and unitary. The property a(A) = U AU* easily follows
from the fact that « is a morphism.

The case where « is an antimorphism can be reduced to the previous paragraph.
Define & by &(A) = a(A*); this is an antilinear morphism of B(H). The operator
U is then constructed as in the previous paragraph, and evidently turns out to be
antilinear. ]

3.5 Orthomodular Lattices

In this section we collect some material from the theory of lattices that will be
used in what follows.

Definition 3.5.1. A lattice L is a partially ordered set (poset) in which any two
elements x, y have a supremum (or least upper bound) x vV y (thatis,x <xV'y
andy <xVy,andifx < zandy < z for some z, then x V' y < z)and an infimum
(or greatest lower bound) x Ay (i.e,x > x Ayandy > x Ay,andifx > z and
y > z for some z, then x Ay > z).

An equivalent definition of a lattice is that it is a set £ equipped with two
idempotent, commutative, and associative operations V, A : L x £ — L that
satisfy x V (y A x) = x and x A (¥ V x) = x. The partial ordering is then defined
by x < y if x Ay = x. The largest element in the lattice, if it exists, is denoted by
1, and the smallest one (if it exists) by 0. Hence 0 < x </ forallx € L.

A lattice L is called complete when every subset of £ has a supremum as well
as an infimum. An atom of a lattice £ with o is an element a for whicho < x < a
implies x = o or x = a. A lattice with o is called atomic if for every x # o in L
there is an atom a # o such that a < x. All lattices occurring in this section are
complete and atomic.

The “classical” example of a lattice is obtained by taking a set S and defining £
as the power set 25 of S (i.e., the set of all subsets of S). The lattice structure of £
consists of V := U and A := N. It follows that ! = S, whereas 0 = @ is the empty
set. Such a lattice is distributive, in that

IVOAD=EVYAKEVI; 3.11)

this is equivalent to the same property with v and A swapped.
One can weaken the distributivity property by requiring only (3.11) if x < z;
thus a lattice is said to be modular if

X<z = xVQOAD=EVYIAZ Yy (3.12)

The canonical example of a nondistributive modular lattice is the collection L(V)
of all linear subspaces of a (left) vector space V (over an arbitrary division ring D;
the reader may keep D = R or C in mind). The lattice operationsare x Ay := x Ny,
while x v y := x + y is the linear span of x and y. Equivalently, the partial order
is given by inclusion. Evidently, / = V and 0 = 0.

Definition 3.5.2. An orthocomplementation on a lattice £ with o and | is a map
x > xt, satisfying (forall x, y € L)
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e X = X.
e x<y &> y'<xt
e x AxLt =o.
e xvxt=1
It follows that I+ = o and o+ =/, and that
vt =xtayh At =xtvyt (3.13)

(de Morgan’s laws). A lattice with an orthocomplementation is called an
orthocomplemented lattice. For example, in the lattice £ = 2° an orthocom-
plementation is given by the set-theoretic complement.

A lattice homomorphism between two orthocomplemented lattices is a map
preserving < and L (and hence v and A). A lattice isomorphism is a bijection that
with its inverse is ahomomorphism; we write £; ~ (5 if £ and £, are isomorphic.
Similarly, a lattice automorphism is an isomorphism between a lattice and itself.

The following weakening of the modular law (3.12) will soon turn out to be of
prime relevance.

Definition 3.5.3. An orthocomplemented lattice L is called orthomodular if
(3.12) holds for y = x=, that is,

x<z = xV@EtA)=z (3.14)
The following reformulation of orthomodularity will be used later on.

Lemma 3.5.4. An orthocomplemented lattice L is orthomodular iff x < z and
xtAz=o0implyx =z.

If (3.14) holds and x+ A z = 0, then 7 = x V 0 = x. Conversely, if x < z, then
2V (xt Az) =z, s0that x V (x* A z) < z. Assuming that x* A z = 0, one infers
(x vV (x1 A 2))* A z = 0. Now apply the condition stated in the lemma with x
replaced by x v (x* A z). [ |

Let (, ) : V x V be a Hermitian form (that is, a nondegenerate sesquilinear
form) on V, defined relative to an involution A — A of D (think of complex
conjugation for D = C, and of the identity map on R). The orthoplement x* of
x € L(V)is defined in the obvious way by x1 := {W¥ € V | (¥, ®) = 0V € x};
this is an element of L(V) as well. One easily verifies that x*++ = x* (cf. (2.55)
and subsequent text), but in general x < x1, rather than the equality required in
Definition 3.5.2.

Therefore, one considers the lattice £(V') of orthoclosed subspaces of V, that
is, x € L(V) lies in £(V) iff x1+ = x. The lattice operation A is the same as
in L(V), but v in £(V) is defined by x V y = (x + y)** (this is the smallest
orthoclosed subspace containing x and y). This lattice is evidently complete. One
can show that £(V) is modular iff V is finite-dimensional. In fact, in general,
any finite-dimensional linear subspace of V is orthoclosed, so that L(V) = L(V)
if V is finite-dimensional. Even in the finite-dimensional case, 1 need not be an
orthocomplementation on £(V). Itis almost trivial, however, to check the following
necessary and sufficient extra condition.
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Proposition 3.5.5. The map x > x* is an orthocomplementation on L(V) iff
(x + xt)t = 0 for all x € L(V), which is equivalent to the property (¥, ¥) =
0 < W = 0 (that is, (, ) is anisotropic). If, in addition, x + x* is orthoclosed
(implying x + x+ = V) for all x € L(V), then L(V) is orthomodular.

To show that the additional assumption implies orthomodularity, note that on
this assumption, for any x onehas z = z AV = z A (x + D). If x < z, this
equals x + z A x* by the modular law (3.12) in L(V) (with y = x*; recall + is
v in L(V)). Taking the double orthoplement of the equation 7 = x + z A x* thus
found yields z'*+ = z for the left-hand side (since z € £(V) by assumption) and
(x +z A xH)H = x v (z A x1) by the definition of Vv in £(V). This proves the
orthomodular law (3.14). |

Corollary 3.5.6. The lattice L(H) of all closed subspaces of a Hilbert space is
complete, atomic, and orthomodular.

This follows from Proposition 3.5.5, since a linear subspace of a Hilbert space
is closed iff it is orthoclosed. |

The lattices £(V) (and in particular L(H)) enjoy the property of irreducibility.
Here a lattice is said to be reducible if it is (isomorphic to) a nontrivial Cartesian
product £ = L, x £, (with lattice operations defined componentwise). If not, it is
called irreducible. The key tool in analyzing reducibility of orthocomplemented
lattices is the center C(L) of L. This consists of the elements ¢ € £ for which
x=&Ac)V(xAct)forall x € L. Clearly, o, € C(L).

Proposition 3.5.7. An orthocomplemented lattice L is irreducible iff the cen-
ter is trivial, in that C(L) = {o,1}. In general, any ¢ € C(L) corresponds
to a factorization L ~ [o,c] x [o, ct], where the isomorphism is given by
x © (x Ac,x A ct). The orthocomplementation in [o, ¢] x [o, c*] is defined
by (x, y) = (xt Ac, yt Ach).

Here [0, ¢] = {x € L]0 < x < c}, etc. Note that | < (c, c*). The proof of this
proposition is a straightforward definition-chasing. O

3.6 Lattices Associated with States and Observables

The connection between states and observables is further elucidated by consider-
ing various lattices naturally defined in terms of these. Also, one such lattice in
particular will play a central role in the axiomatization of pure state spaces.

Proposition 3.6.1. The collection of projections in a von Neumann algebra I
forms a complete orthomodular lattice L(ON), in which the partial ordering is
given by the usual order structure inherited from M (seen as a partially ordered
space, cf. 1.3), and the orthocomplementation is x* = | — x, where | = 1.

The lattice L(B(H)) is isomorphic to L(H).

We first demonstrate the last claim. The isomorphism is obtained by identifying
a projection [K] € L(B(H)) with the closed subspace K € L(H) onto which it
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projects (given a projection p, the subspace K C H consists of those ¥ € ‘H for
which pW¥ = W; the fact that K is closed follows from elementary estimates). The
definition of the order < and the orthocomplementation L in the two lattices then
rapidly leads to the conclusion that this identification leads to a lattice isomorphism;
note that for projections, x < y iff x = xy. One then applies Proposition 3.5.5.
The proposition itself then follows from Definition 1.7.3 and Theorem 1.7.2, which
allow us to regard L(90) as a sublattice of £L(H) for some Hilbert space H. The
completeness of L(IN) is equivalent to the property that 9 is strongly closed. Note
that 901 is determined by L(90) in the sense that 9t = L(IM)". ]

There are two von Neumann algebras naturally associated with a C*-algebra 2L.

Firstly, one can take the bidual 9 = A** = 7, (A)" (cf. 1.7.4); through Propo-
sition 3.6.1 this defines the complete orthomodular lattice L(A**). The atoms of
L(2**) are the minimal projections; this lattice is atomic only for a limited class
of C*-algebras. Atomicity holds, for example, if 2 = Bo(H), in which case
24+ = B(H), so that LA**) ~ L(H) by 3.6.1.

Secondly, one may choose M = 7,(A)". In view of the isomorphism 7, (A)g, =~
A% (P) (cf. (3.1) and 3.1.2), we write

LEARP)) := L(T(A)"). (3.15)

This is a complete atomic orthomodular lattice.
The lattice £(2**) turns out to be isomorphic to a certain lattice defined in terms
of the state space S(2). This requires the following concept.

Definition 3.6.2. A face F of a convex set K is a convex subspace that is closed
under “purification”. That is, F is a face of K iff given a decomposition w =
Aw; + (1 — Aw, for some ) € [0, 1], the condition v, w; € F impliesw € F,
and conversely, w € F implies w|,w, € F.

Clearly, a face consisting of a single point is an extreme point of K. The set K
is a face, and we regard the empty set @ as a face, too. For example, the faces of
an equilateral triangle (interior plus boundary) in R? are the empty set, the three
corners, the three (closed) sides of the triangle, and the triangle itself.

The set F(K) of all faces of K is partially ordered by inclusion, and has a
minimal element 0 = @ and a maximal element / = K. The intersection of an
arbitrary family of faces is a face as well. Hence F(K) is a complete lattice with o
and [, for which x Ay = x Ny, and x Vv y is the intersection of all faces containing
x U y. The atoms of F(K) are the extreme points.

Even if K = S(X), the lattice F(K) is not particularly well behaved. As the
following result shows, it turns out to be preferable to look at a smaller set of faces.

Proposition 3.6.3. The collection F(S(RN)) of all norm-closed faces in the state
space of aunital C*-algebrais a complete orthomodular lattice under the following
operations: < is C, and F* is the supremum of the set of all norm-closed faces
that are orthogonal to F (here we say that F, is orthogonal to Fy, or F, 1 Fy, if
there is an element A € [0, I] C AR ~ A,(S), R) such that A(w) = 1 for all
w € F| and A(w) = 0 for all v € F;). Finally, F(S()) is isomorphic to L(A™*).
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Given a projection p € Uy, the set F, := {w € SA) |w(p) = 1} is easily
shown to be a norm-closed face in S(). Equally easily, given a norm-closed
face F, the set Ir := {A € AR |w(A*A) = OVw € F} is seen to be the self-
adjoint part of a o-weakly closed left ideal in A**. A technical argument in the
theory of von Neumann algebras shows that any such ideal must be of the form
Ip = A p* for some projection p=. Itis then easily checked that F, = F,and that
the correspondence p <> F), thus established yields an isomorphism of L(2**)
and F(S(20) as lattices. Note that under this isomorphism minimal projections
correspond to pure states.

We now turn to the orthocomplementation. If A = O on F,, and A € [0, I], then
VA € I,. Hence /A = Bp* for some B, so that A = Ap'. Since A* = A,
this implies A = p1A, so that A = ptAp’. Now, ptApt < plIpt = pt,
since A < I, so that A < p'. A similar argument shows that A = 1 on Fp and
A € [0, I]imply p < A.Therefore,if A =0o0n F,,,A =1onF,,and A € [0,1],
then p; < A < pi, from which p, < pi; we say that p; L p,. The converse is
obvious, so that we have shown that F,, L F), is equivalent to p; L p,. We now
notice that p1 equals the supremum of all ¢ for which p L g, and conclude that
the bijection p <> F, preserves orthocomplementation. O

We are going to show that the lattice L(2g(P)) is isomorphic to a certain lattice
defined by the transition probabilities on P(2). For the moment, however, we
return to the general setting of transition probability spaces (cf. 2.7).

Proposition 3.6.4. The collection of orthoclosed subsets of a well-behaved tran-
sition probability space P forms a complete atomic orthomodular lattice L(P)
under the operations x ANy = x Ny, x Vy = (x U y) (equivalently, < is C),
and 1 is given by (2.55).

The orthomodularity follows from Lemma 3.5.4: Assume x < z, and choose a
basis B(z) of z containing a basis B(x) of x. It follows from (2.56) and the definition
A = Nthat B(z)\ B(x) is a basis of x A z. If this equals o, then B(z) = B(x), and
hence z = x.

Equations (2.59) and (2.53) imply that p** = p for all p € P; hence each point
of P lies in L(P), and the definition of < implies that these points are precisely the
atoms of L(P). The completeness of L(P) is obvious, since arbitrary intersections
of orthoclosed subsets are orthoclosed, and the lattice is orthocomplemented. W

Proposition 3.6.5. Let P = U, P, be the decomposition of a well-behaved
transition probability space into its sectors (cf. 2.7.2). Then

LP) = [ [ £Pu). (3.16)

Here each factor L(Py) is irreducible; in particular, P is irreducible iff L(P) is
irreducible.

If C is a component of P (so that P = C U C1), and Q, R € L(P) satisfy
QS Cand R € P\C =C*,then QU R = Q V R; this follows from repeated
application of (3.13), and from Q'+ = Q (etc.). Since sectors are components,
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this shows that ¢ := P, (regarded as an element of £(P)) is in the center C(L(P)).
Equation (3.16) then follows from Proposition 3.5.7.

Now suppose that P is irreducible, yet C(C(P)) nontrivial. This means that
there exists an orthoclosed subset ¢ C P (where ¢ # @ and ¢ # P) such that
Q0 =(Q Ac)V(Q Ach) for all orthoclosed Q C P. Since P is irreducible, one
cannot have P = cUc, so that there is an atom p lying in neither ¢ nor c*. Taking
0 = pwethusfind Q Ac = Q Act = o (recall that A = N in £(P)). This shows
that such ¢ cannot exist, and therefore L(P) must be irreducible. [ |

Theorem 3.6.6. If U is a C*-algebra with pure state space P(), one has the
lattice isomorphism (cf. (3.15) and 3.6.4)

LER(P)) = LPEL)). 3.17

By Theorems 2.5.4, 2.8.2, and 3.6.5, one has L(P()) ~ [] » LPH,). On the
other hand, L(Ag(P)) (which by definition is L(7r,(A)g), cf. Proposition 3.1.2)
equals L(®,B(H,)) by (2.3). The center of this lattice is generated by the minimal
central projections [H,], and by 3.5.7 and 3.6.1. One therefore obtains L(Ur (P)) =~
[1, £(H,). Finally, if K is a closed subspace of some Hilbert space H, and K, :=
K NSH, then K « 7(K,) (where 7 : SH — IPH is the canonical projection, cf.
2.5) establishes an isomorphism between the lattices L(H) and L(PH). ]

The lattice L(P(2)) occurs in an interesting reformulation of the spectral the-
orem. In preparation, recall from basic measure theory that the o-algebra B(R)
of Borel subsets of R is an orthocomplemented lattice in which < is C (hence
B, vB, =B UB,;, BA B, = BiN By, 0 = B, and [ = R). This lattice is
not complete, but merely o -complete (i.e., vV and A exist for arbitrary countable
families).

Theorem 3.6.7. For each self-adjoint element A of a C*-algebra 2 there exists
a lattice homomorphism ¢4 : B(R) — L(P()) with the property that

Pa(ViZ Bi) = V2, pa(Bi) (3.18)

if the B; are mutually disjoint. For each p € P(2l) the Gelfand transform A then
has the spectral resolution

A(p) = fm hdp), (), (3.19)
where the Borel measure p{) on R is defined by ( cf. (2.61))

Po,(B) = Py (P). (3.20)

This follows from the usual spectral theorem for self-adjoint operators on a
Hilbert space, applied to m.(A) (cf. 2.2.7). It is easily checked that the precise
choice of &, (which, we recall, depends on choosing a pure state in each sector
of P(2A)) does not affect any of the statements in the theorem, as different choices
lead to equivalent realizations. |
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3.7 The Two-Sphere Property in a Pure State Space

The lattice L(P(2A)) plays a central role in the proof of the following char-
acterization of the pure state space of a C*-algebra as a transition probability
space.

Definition 3.7.1. A well-behaved transition probability space P (with associated
lattice L(P)) is said to have the two-sphere property if for any two points p, o
(with p # o) lying in the same sector of P, the space p Vv o is isomorphic as
a transition probability space to the two-sphere S*, with transition probabilities
given by p(z, w) = 3(1 + cos8(z, w)), where 6(z, w) is the angular distance
between 7 and w, measured along a great circle.

To understand the nature of this property, recall that a two-sphere S with radius
1 may be regarded as the extreme boundary of the unit ball B3 C R3. The latter
is affinely isomorphic to the state space S(M1,(C)) of the C*-algebra of 2 x 2
matrices, so that S? is the pure state space of this algebra. Concretely, we identify
a state on M, (C) with a density matrix p on C?, which may be parametrized as in
(1.50). Restricted to the extreme boundary, this parametrization leads to a bijection
between PC? and S2. Under this bijection the transition probabilities (2.65) on PC?
are mapped into the ones stated in 3.7.1. In other words, the two-sphere property
states that there exists a fixed two-sphere S2, ~ PC2, equipped with the standard
Hilbert space transition probabilities p = p¢: given by (2.65), and a collection
of bijections Ty, : p V o — S2, defined for each orthoclosed subspace of the
type p V o (where p and o # p lie in the same sector of P), such that for all
p,o'epvao,

pcx(Tove (0, Tpvo (") = p(p', o). (3.21)

Theorem 3.7.2. Let a well-behaved transition probability space P (with associ-
ated lattice L(P)) have the two-sphere property. If P has no sector of dimension 3,
then'P >~ U,IPH,, as a transition probability space (for some family {H,} of Hilbert
spaces), where each sector PH,, is equipped with the transition probabilities (2.65 ).

This statement is not necessarily false when P does have sectors of dimension
3 (in fact, we believe it to be true in that case as well); unfortunately, the proof
below does not work in that special dimension.

If p and o lie in different sectors of P, then p vV o = {p, o }; this follows from
repeated application of (3.13) and p*+ = p (etc.). In any case, it is sufficient
to prove the theorem for each sector separately, so we may assume that P is
irreducible. The first step in the proof is then to construct the lattice £(P) (cf.
3.6.4). The strategy of the proof is to characterize L(P), and then use the so-called
coordinatization theorem in lattice theory to show that L(P) = L(H) for some
Hilbert space H.

We already know that £L(P) is orthomodular, atomic, and complete (as estab-
lished in Proposition 3.6.4); by 3.6.5 it is irreducible (in the sense of 3.5.7) as well.
A lattice L is called atomistic if every element is the supremum of the collection
of its atoms. If £ is orthomodular, atomic, and complete, then it is atomistic. For let
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x be the supremum of the atoms in some z € L, and assume x < z. By (3.14) one
then has x* A z # o, so that x1 Az must contain an atom, which is a contradiction.

To apply the coordinatization theorem, we need to establish a further property
of £(P). An atomistic lattice £ with o is said to have the covering property if
for an atom a € £ and an arbitrary element x € £ with a A x = o, the inclusions
x <y<xvaforsomey € £ imply y =x or y = x V a. For example, the
lattices £(V) in 3.5 have the covering property.

Lemma 3.7.3. L(P) has the covering property.

Consistent with previous notation, we denote atoms of £(P) (hence points of
P) by p, o, and arbitrary elements by O, O;, R, S.

Let n = dim(Q) (cf. 2.7); for the moment we assume n < co. We will first use
induction to prove that if p ¢ O, then the element (p vV @) A Q-+ is an atom.

To start, note that if Q; < @, for orthoclosed Q1, Q> sets of the same finite
dimension, then Q; = Q,. For an orthoclosed set in P is determined by a basis of it
(cf. (2.62)), which in turn determines its dimension. This implies that dim(o Vv Q) >
dim(Q) if p ¢ Q (take @; = Q and O, = p vV Q). Accordingly, it must be that
(p Vv Q) A Q+ > o, for equality would imply that dim(p v Q) = dim(Q).

For n = 1, Q is an atom. By assumption, p Vv Q is $2: hence (p v Q) A QF
is the antipodal point to Q in p Vv Q, which is an atom, as desired. Now assume
n > 1. Choose a basis {€;}i=1,.. dim(g) Of Q; then Q = Vi_ ;. Put R = v;’;lle;;
then R < Q, whence @+ < RL,sothat (o v Q) A O+ < (o v Q) A Rt The
assumption (o V Q) A @+ = (p vV Q) A R* is equivalent, onuse of Q = RV e,,
(3.13), and the associativity of A, to (0 V @) A RN A el = (p vV Q) A RY, which
implies that (o V Q) A R+ < el. This is not possible, since the left-hand side
contains e,. Hence

o0<(oVOAQ-<(pV O)AR:. (3.22)
It follows from the orthomodularity of L(P) thatif R < S and R < Q, then
(SVO)AR =(SARYHV(QARY). (3.23)

Since R < Qand R<pV R,onehas pv Q@ =(pV R)V Q.Now use (3.23) to
find

(PVOOAR =(oVRIVQOAR =((pV R AR V(QARY).

The right-hand side equals o V e,, where o := (p V R) A R* is an atom by the
induction hypothesis. The equality o = e, wouldimply that p € Q,hence o # e,.
But then (3.22) and the two-sphere property imply O < dim((p V Q) A obH <2,
so that (o V Q) A Q* must indeed be an atom.

It follows that dim(p v Q) = dim(Q)+ 1. Hence any S C P satisfying @ < § <
o VvV Q must have dim(S) equal to dim(Q) or to dim(Q) + 1. In the former case, it
must be that § = Q by the dimension argument earlier. Similarly, in the latter case
the only possibility is § = p Vv Q. All in all, we have proved the covering property
for finite-dimensional sublattices. A complicated technical argument involving the
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dimension theory of lattices then shows that the covering property holds for all
x € L(P). d

Atomistic lattices with the covering property are known as AC-lattices. At this
stage we can sum up by saying that £(P) is a complete irreducible orthomodular
AC-lattice. This allows us to use the following classical coordinatization theorem;
cf. 3.5 for the definition of £(V). This involves the notion of a chain, which is
a totally ordered subset of the lattice £. The length (also called rank, height,
or dimension) of an AC-lattice £ is the cardinality of a maximal chain (which
contains o and /) minus 1, which is well-defined because of the covering property.
This number coincides with the minimal number of atoms p; for which [ = v p;;
for £ = L(P) it is equal to the dimension of P (as defined in 2.7).

The coordinatization theorem for AC-lattices is the following.

Theorem 3.7.4. Let L be a complete irreducible orthomodular AC-lattice of
length > 4. There exists a vector space V over a division ring D (both unique
up to isomorphism), equipped with an anisotropic Hermitian form (defined rel-
ative to an involution of D, and unique up to scaling), such that L ~ L(V) as
orthocomplemented lattices.

We omit the lengthy and complicated proof of this theorem. In the context of
our lattice L(P), the essential point is that the division ring I is constructed by
choosing two atoms o and o # p, whereupon D >~ (p Vv o)\o. The vector space
V is constructed in terms of a basis {e;}, which corresponds to a basis {e;} of P
(or, more generally, of the set of atoms in £); hence the length of L is equal to
the dimension of V. We will need neither the explicit form of the addition and
multiplication in D, nor the scalar multiplication in V (which are given in terms
of a certain geometric procedure). To proceed, the following information suffices.

Lemma 3.7.5. Let V be 3-dimensional, and let L(V) carry a topology for which
the lattice operations vV and A are jointly continuous. Then I (regarded as a
subset of the collection of atoms in L(V)), equipped with the topology inherited
from L(V), is a topological division ring (i.e., addition and multiplication are
Jjointly continuous).

This is clear from the explicit construction of addition and multiplication in
D. |

Let F € L(P) be finite-dimensional. We can define a topology on [o, F] (i.e.,
the set of all @ € L(P) for which Q < F) through a specification of convergence.
Givenanet{Q,} in F, we say that 0; — Q wheneventually dim(Q,) = dim(Q),
and if there exists a family of bases {e}'} for {Q,}, and a basis {¢;} of Q, such that
Zi, i p(e}, e;) — dim(Q). This notion is actually independent of the choice of all
bases involved, since Y j p(p, e;) is independent of the choice of the basis in Q

for any p € P, and similarly for the bases of Q, (to see this, extend {e; }dim(Q) to

j=1
a basis {e g }‘]Tl( P), and use (2.56)). An equivalent definition of this convergence is

that Q5 — Qif p(px,0) — Oforallo € F A QF and all {p,} such that p; € Q;.
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Lemma 3.7.6. The above construction defines a topology on F, which is
Hausdorff.

The first claim is easily verified. For the second, let O, — Q and Q;, —
R. Then p(py,0) — Oforallo € QY v RY = (Q A R)%, and all {p;} for
which p, € Q,. Choose a basis {e;} of Q that extends a basis of Q A R. Then

Z‘;E(QAR) p(ps, ej) = 1, but also Z‘;i;nl(g) p(ps, e;) = 1, since Q, — Q. Hence
p(pi,0) — Oforallo € Q A(Q A R)'. This leads to a contradiction unless

Q=R. ]

Lemma 3.7.7. The restriction of this topology to any two-sphere p vV o ~ S? in
F induces the usual topology on S?. Moreover, v and A are jointly continuous on
any [o, F1, where F is a 3-dimensional subspace of L(P).

If we restrict the topology to the atoms in F, then p;, — p if p(pr, p) = 1.
On F = p Vo ~ §?, one can easily show from the explicit form of the transition
probabilities p that the convergence p(¥,, ¥) — 1 is equivalent to p(¥,, ¢) —
p(¥, ) foralig € pvo.Namely, if p(¢,, ¥) — 1inPH (for any Hilbert space
H; the case of relevance is H = C?), then |(¥;, ¥)| — 1 for arbitrary lifts ¥, , ¥
in SH. Choose an orthonormal basis {e; } in { containing ¥; the equation (W, ) =
>-,(W, e;)(e;, ®) then rapidly leads to the conclusion |(W), ®)| — [(¥, ®)| for all
@ € SH. The corresponding topology is the projection of the usual topology on
C2? to $? ~ PC?, which demonstrates the first claim.

We turn to the proof of joint continuity of v and A. Assume that F € L(P) is 3-
dimensional. We firstly show that p, — p and 0, — ¢, where p and o are atoms,
implies py Vo, — pVo.Lett, = (0, Vo))" AF,and T = (p Vo)t AF; these are
atoms. Let p] be the antipodal point to p; in py V 03 (i.e., p; = pi- A (or V 62)),
and let o} be antipodal to o, in p V 05. Then {ps, p;, T2} is a basis of F, and
so is {04, 0y, Ta}. The definition of a basis and of p, — p, ox — o implies that
p(p, t,) — 0and p(o, 7,) — 0.Hence p(z, 7,) — 1. Now take an arbitrary atom
ay € tf A F, and complete to a basis {o,, o}, 7.}, where o € p, Vv 0,. Again,
the definition of a basis implies that p(«,, ) — 0. By our second definition of
convergence, one therefore has p, Vo, — p Vo.

Secondly, we show that @, — Q and R, — R, where Q and R are two-
dimensional subspaces of F, implies Oy A R, — @ A R (we assume Q # R,
so eventually Q; # R). Leta = QY AF,B =R AF,y = QAR,and
¥» = Qi A Ry; as a simple dimension count shows, these are all atoms. By
assumption, p(y,, ) — 0 and p(ys, B) — 0. Since (@ U 8)* = (a Vv B)* by
definition of v, and (« Vv B) is two-dimensional, y is the only point in F that is
orthogonal to o and 8. Hence p(y,,y) — 1; if not, the assumption would be
contradicted. But this is precisely the definition of O3 A Ry, — Q A R, and the
proof is finished. n

Corollary 3.7.8. The division ring D equals C, and the involution relative to
which the Hermitian form of Theorem 3.7 4 is defined is complex conjugation.
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It follows from the previous lemma that I is locally compact and connected.
According to the classification of locally compact division rings, there exist only
three connected ones: D = R, C, and H (the quaternions). Of these, only C is
homeomorphic to (p Vv o)\o > R?. Note that the algebraic structure is therefore
entirely determined by the topology.

Moreover, Lemma 3.7.7 implies that the orthocomplementation | is continu-
ous on 3-dimensional subspaces. If one inspects the way the involution A — A of
D is constructed in the proof of Theorem 3.7.4, one immediately infers that this
involution (of C in our case) must be continuous as well. It can be shown that C
possesses only two continuous involutions: complex conjugation and the identity
map. The latter cannot define a nondegenerate sesquilinear form (so that in par-
ticular, the lattice £(V') cannot be orthomodular). Hence one is left with complex
conjugation. ]

Note that we have used the two-sphere property twice, for different purposes:
firstly for deriving the covering property of L(P), and secondly for identifying
D=C.

With this corollary in hand, the definition of a Hermitian form implies that
(W, W) must be real for all ¥ € V, and the anisotropy means that (¥, ¥) must be
nonzero and have the same sign for all W. If necessary, one may change the sign
of the form so as to make it positive definite. Accordingly, V is equipped with an
inner product in the usual sense, that is, it is a pre-Hilbert space. The fact that V
is actually a Hilbert space follows from the orthomodularity of £L(P) =~ L(V) by
a rather technical result, whose proof we omit.

Proposition 3.7.9. A pre-Hilbert space V over C is complete iff the associated
orthocomplemented lattice L(V) is orthomodular.

We conclude that £(P) is isomorphic to the projection lattice L(H) of some
complex Hilbert space H. Therefore, their respective collections of atoms P and
PH must be isomorphic. Accordingly, we may identify P and PH as sets. Denote
the standard transition probabilities (2.65) on PH by p,,. With p the transition
probabilities in P, we will show that p = p,,.

Refer to the text following 3.7.1. We may embed S2, isometrically in PH; one
then simply has p = p,, on Sif. Equation (3.21) then reads

PrdTpvo(P"), Tpva (")) = p(p’, 0'); (3.24)

in particular, p,(Tpvo(p"), Tovs (07)) = 0iff p(p’, 0’) = 0. On the other hand, we
know that p and p,, generate isomorphic lattices, which implies that p, (o', 0') = 0
iff p(p’, ') = 0. Putting this together, we see that

pH(Tpva(p/)y Tpva (0/)) =0

iff p,(p’, 0') = 0. A fairly deep generalization of Corollary 3.4.3 states that a
bijection T : PH; — PH, (where the H; are separable) that merely preserves
orthogonality (i.e., p,(T(p’), T(¢")) = 0 iff p,, (p’,0') = 0) is induced by a
unitary or an antiunitary operator U : H; — H,. We use this with H; = p vV o,
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Hy = Sif, and T = T,y,. Since T,y is induced by a unitary or an antiunitary
map, which preserves p,, we conclude from (3.24) that p,(p’, 0') = p(p’, 0’).
Since p and o (and p’, 0’ € p V o) were arbitrary, the proof of Theorem 3.7.2 is

finished. u

3.8 The Poisson Structure on the Pure State Space

We now further investigate how the transition probabilities and the Poisson
structure on the pure state of a C*-algebra are related.

Theorem 3.8.1. If P is the pure state space of a C*-algebra, then the symplectic
leaves of P as a Poisson space coincide with the sectors of P as a transition
probability space.

This is immediate by combining 2.5.4 and 2.8.2 with 2.6.8. ]

If the C*-algebra in question is commutative (so that its transition probabilities
are (2.58)), it is understood to be equipped with the zero Poisson structure, cf.
the comment following 1.1.5. If, however, g is a Poisson algebra associated to a
Poisson space P, then the natural transition probabilities on P are given by (2.58),
and the above result fails: The sectors of P are its points, whereas its symplectic
leaves are nontrivial if the Poisson bracket does not identically vanish.

We now show that the symplectic structure on PH is determined by the transition
probabilities (2.65) and unitarity; recall Definition 3.1.3.

Theorem 3.8.2. Let PH, equipped with the transition probabilities (2.65) and its
usual manifold structure, be a unitary Poisson space for which the Poisson structure
is symplectic. Then the Poisson structure is determined up to a multiplicative
constant, and is given by (2.42) for some h £ 0.

It foliows from (3.2) and Proposition 3.1.2 that 2, (P, R) equals the Gelfand
transform of 2B (H)r. According to the definition of unitarity, the Hamiltonian flow
generated by any function A on PH (where A is a bounded self-adjoint operator
on H, cf. (2.43)) must preserve the transition probabilities (2.65). Corollarx 343
and Stone’s theorem imply that such a flow must be of the form y(t) = e ~//¢(y;
cf. (2.47), where C(A) is some self-adjoint operator depending on A in an as yet
unknown way. Antiunitary flows are excluded, for they cannot satisfy ¥ (0) = 0.

We now compute the Poisson bracket of the functions A and B (see 2.43).
Using (2.8), (2.11), and the preceding paragraph, we obtain {A, l§}(\ﬁ) =
%IA? (exp(i té(A))tp) |t = 0. The right-hand side equals i [C(L\TB](V/). The anti-
symmetry of the left-hand side implies that C(A) = A~! A for some h~! € R. The
value ! = 0 is excluded unless H is one-dimensional, for otherwise the Poisson
structure would be degenerate. In other words, the Poisson bracket is given by
(2.42). Since the collection of all differentials d A spans the cotangent bundle at
each point ¥ of PH, the Poisson structure is completely determined. ]
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Theorems 3.8.1 and 3.8.2 show that the Poisson structure on the pure state
space P(R) = U,IPH,, of a C*-algebra (cf. 2.5.4) is to a large extent determined
by unitarity. The only freedom resides in a possible sector-dependence of h; here
h~! # 0 except in one-dimensional sectors (in which the value of % is irrelevant, as
the Poisson bracket identically vanishes at such points). The choice (1.22) for the
Poisson bracket on 2y corresponds to taking 7 to be a sector-independent constant.
We may regard A as a function on P(2), which is constant on each sector. If A
denotes an element of A, the restriction of A to a sector PH,, corresponds to an
operator A, (cf. (2.43)). The sector in which p € P() lies is called a(p). With
this notation, the Poisson bracket is then given by

(A, BY(p) = h—('amammm (3.25)

The following result shows that under a natural topological requirement the sector-
dependence of A cannot be arbitrary.

Lemma 3.8.3. Equip P(U) = U, PH, with the Poisson structure (3.25). Assume
that P() is equipped with a uniformity for which A (as defined in (3.4)) is closed
under Poisson brackets. Then the function h is uniformly continuous on P(2).

This applies in particular to the w*-uniformity on P(2). Suppose h is not
uniformly continuous. We then take A, B € g in such a way that A, and
B, are independent of « in a neighborhood of a point ¢ of discontinuity of
h, with [Ay), Be)] # 0. Then the real-valued function on P() defined by
o = h(p){A, I§}(p) is certainly uniformly continuous near o, since its value at
p is equal to i [Aam(p)](p). But, by assumption, {AA, B } is uniformly contin-
uous as well. Because of the factor A, the product h{fi, B } cannot be uniformly
continuous. This leads to a contradiction. |

We can always rescale the Poisson bracket by multiplying it with A(-); the
resulting Poisson structure is then the same in all sectors. In view of Lemma 3.8.3,
in the given situation A will be closed under the rescaled Poisson bracket as well.

3.9 Axioms for the Pure State Space of a C*-Algebra
We can sum up part of the preceding discussion as follows.

Theorem 3.9.1. The pure state space P of a unital C*-algebra *d, equipped with
the w*-uniformity, the transition probabilities (2.65), and the Poisson structure
(1.22), has the following properties.

C*1: P is a uniform Poisson space with a transition probability (Definition 3.1.4).

C*2: P has the two-sphere property (Definition 3.7).

C*3: The sectors of P as a transition probability space coincide with the symplectic
leaves of P as a Poisson space.

C*4: The space Ug (defined through C*1 by (3.2)) is closed under the Jordan
product constructed from the transition probabilities in 3.3.



3 From Pure States to Observables 105

C*5: The pure state space P() of 2 (as defined in 2.1.1) coincides with P.

Recall that g is the self-adjoint part of 2, and that the norm on g is equal
to the sup-norm that g inherits from its inclusion in £*°(P, R). Property C*1
was established in Corollary 3.2.2; C*2 is immediate from (2.65); C*3 holds by
Theorem 3.8.1; C*4 follows from (3.6) and Theorem 3.2.1; and C*5 holds because
the uniformity on P(2() used to establish 3.2.1 is precisely the w*-uniformity. W

We now turn things around, and claim that the properties C*1-C*5 actually
characterize pure state spaces of unital C*-algebras. Property C*5 is then regarded
as an axiom restricting the possible uniformities on P. As an axiom, the precise
meaning of C*5 is as follows. From Axioms C*1, C*2, and C*4 the space g
emerges as a J B-algebra, which is contained in C(P, R) as a partially ordered
Banach space. Hence each element of P defines a pure state on 2 by evaluation;
Axiom C*5 requires that all pure states of g be of this form (note that by C*1,
the function space 2Ar =~ QAlR already separates points).

Theorem 3.9.2. Ifa set P satisfies C*1-C*5 (with P as a transition probability
space containing no sector of dimension 3 ), then there exists a unital C*-algebra
A, whose self-adjoint part is g (defined through C*1). This 2 is unique up to
isomorphism, and can be explicitly reconstructed from P, such that

1. P =P (i.e., P is the pure state space of U).

2. The transition probabilities (2.63) coincide with those initially given on P.

3. The Poisson structure on each symplectic leaf of P is proportional to the Poisson
structure imposed on the given leaf by (1.22).

4. The w*-uniformity on P(2) defined by U is contained in the initial uniformity
onP.

5. The C*-norm on g C W is equal to the sup-norm inherited from the inclusion
Ar C 2P, R).

As stated after Theorem 3.7.2 (which is an important step in the proof of 3.9.2),
we believe that the restriction to dimension # 3 can be dropped.

The proof of this theorem essentially consists in the description of the construc-
tion of A; practically all the work has already been done. Axioms C*1 and C*2
entirely determine P as a transition probability space by Theorem 3.7.2. Hence
Ar(P) is determined by Proposition 3.1.2. We now use Axiom C*3, which implies
that each symplectic leaf of P is a projective Hilbert space PH,,. For the moment
let us assume that each leaf PH,, has a manifold structure (e.g., the usual one)
relative to which all functions H (cf. (2.43)), where H € B(H,)r, are smooth.
Then Ar(P) N C,(P, R) C C°(P, R) by the explicit description of Ar(P) in
3.1.2. It then follows from Axiom C*1, in particular from (3.2), that

Ar = Ar(P)N C,(P, R). (3.26)

This space is norm-closed by one of the remarks foliowing 3.2.1. The condition
in Proposition 3.3.2 holds, so that we can construct a Jordan product in 2lg by the
procedure in 3.3. By Proposition 3.3.3 and Axiom C*4, this turns 2 into a J B-
algebra. At this stage we can already construct the pure state space P() through
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2.1.1 and 1.4.1; the property 3.9.2.1 then holds by Axiom C*5, whereas 3.9.2.2
follows from Theorem 2.8.2.

We may regard the restriction of g to a given sector PH, as the Gelfand
transform of a Jordan subalgebra of B(H,)r. This subalgebra must be weakly
dense in B(H,)r, for otherwise Axiom C*5 cannot hold.

By Axiom C*3 and a straightforward modification of Theorem 3.8.2 (taking into
account that the restriction of 2(; (P, R) to PH,, is weakly dense in B(H)g, rather
than coinciding with it), the Poisson structure in each sector of P is determined up to
aconstant, whichimplies 3.9.2.3. By Lemma 3.8.3 and Axiom C* 1 (which, through
the definition of a uniform Poisson space, requires that 2 be closed under Poisson
brackets) we can rescale the Poisson bracket so as to make Planck’s “constant”
a constant on P. By Proposition 3.4.1 the Leibniz rule (1.4) is then satisfied as
a consequence of the unitarity imposed by Axiom C*1. By the remark after the
proof of 3.4.1, the associator identity (1.6) holds for the rescaled Poisson bracket.
Hence 2l becomes a J L B-algebra by Definition 1.1.5, and the complexification
A is a C*-algebra by Proposition 1.1.9.

From 3.9.2.1 and 3.9.2.2 we infer that A (P) = Ar(P(A)). The w*-uniformity
appearing in (3.4) is the weakest uniformity relative to which all elements of g
are uniformly continuous. Property 3.9.2.4 then follows from Theorem 3.2.1 and
(3.26). Property 3.9.2.5 is evident from Proposition 3.3.3.

Finally, let us assume that some PH,, have an exotic manifold structure such that
~Ar(P)NC,(P, R)is not contained in C{°(P, R), so that Ax C Ar(P)NC,(P, R)
is a proper inclusion (rather than the equality (3.26)). It follows from Axiom C*5
that the weak density mentioned two paragraphs ago must still hold. This weak
density suffices for the subsequent arguments to be valid, and we can construct
a C*-algebra 2 with pure state space P. The proper inclusion above would then
contradict (3.4). Hence such exotic manifold structures are excluded by the axioms
(if they exist at all). n

Certain simplifications of this characterization suggest themselves. Forexample,
if one amends C* 1-C*5 in Theorem 3.9.1 by deleting the word “uniform” from C*1
and replacing (3.4) in C*3 by (3.7), then Theorem 3.9.2 is correct if one replaces
“(w*-) uniformity” by “(w*-) topology” and “C*-algebra” by “perfect C*-algebra”
(cf. 3.2). Greater simplification is achieved by imposing finite-dimensionality on
P (as a transition probability space, cf. 2.7):

Corollary 3.9.3. The pure state space P of a finite-dimensional C*-algebra is
characterized by the following properties:

OM1: P is a finite-dimensional Poisson space with a transition probabiliry.

OM?2: P has the two-sphere property (Definition 3.7).

OM3: the sectors of P as a transition probability space coincide with the symplectic
leaves of P as a Poisson space.

Compare this with the characterization of classical mechanics:
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Corollary 3.9.4. The pure state space P of a classical mechanical system is
characterized by the following properties:

CM1: P is a smooth Poisson space with a transition probability.
CM?2: The transition probabilities are p(p,0) = 8,5.



CHAPTER I

Quantization and
the Classical Limit

1 Foundations

1.1 Strict Quantization of Observables

The aim of quantization theory as presented in this book is to relate Poisson algebras
or Poisson manifolds to C*-algebras or their pure state spaces. A slightly awkward
feature of the first relationship is that usually Poisson algebras are not Banach
spaces; a nonzero Poisson bracket on some Poisson subalgebra ﬁl]% of C;°(P, R)
cannot be extended to the closure 23, of 2 in the sup-norm.

Apart from this complication, the following definition is largely motivated by
Theorem 1.1.1.9; in particular, recall 1.(1.22).

Definition 1.1.1. A strict quantization of a Poisson algebra ﬁl?R (which is densely
contained in the self-adjoint part EZI?R of a commutative C*-algebra A°) consists of
a collection of points Iy € R that has 0 ¢ Iy as an accumulation point (we write
1 := Ip U {0}), a collection of C*-algebras (M) 4es, and a collection of linear
maps {Qp : Ql?R — Ql{ﬁ}ne 1 (where Qg is the identity map), such that the following
conditions hold:

1. Rieffel’s condition: For all f € A0 the Sfunction k| Qn(f) is continuous
on I. In particular, one has

lim QA1 = 111 (LD

2. von Neumann’s condition: For all f, g € 91% one has

lim | On(f) o Qnlg) — Ln(f&)l = 0. (1.2)
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3. Dirac’s condition: Forall f, g € fil& one has

lim [[{Qn(f), Gn(&)}n — n({f. ghll = 0. (1.3)

4. Completeness: The collection {Qi(f) | f € ?fl%} isdensein Qlf{ foreachh e I.

A strict quantization of a Poisson manifold P is a strict quantization of some
Poisson subalgebra Ql% of Ci°(P, R), equipped with the sup-norm || 1| = || fllco.
whose closure contains Co(P, R).

For a given classical observable f € 2°, one construes the operator Q;(f) as
the quantum observable (at the given value of k) whose physical interpretation
corresponds to that of its classical counterpart f.

We have suppressed the possible fi-dependence of the C*-algebraic operations
in A" in our notation. The completeness condition is not crucial: If it fails to
be satisfied for a given A", one may simply replace 2" in the definition by the
C*-algebra generated by all Qx(f). _

We may extend O, to a map (denoted by the same symbol) from 2A° to 2" by
complex linearity. Conditions 1.1.1.2 and 1.1.1.3 then imply that

lim [ Q4()Qn(&) — Qu(f&)l = 0. (1.4)

Definition 1.1.2. A strict quantization A", {Qp) is called a strict deforma-
tion quantization when Q(A°) is closed under multiplication (in A") and Q}, is
nondegenerate for each hin that Qy(f) =0iff f = 0.

Note that Rieffel’s condition implies that a strict quantization is always non-
degenerate for small enough £, so the last requirement is a modest one. The
terminology is justified by the fact that a strict deformation quantization of ﬁl&
allows one to define an associative “deformed” product -5 in 2A° with the property
Or(IBh(g) = Qn(f -1 g) (and, of course, f - g := fg). The conditions on
a strict quantization may then be rephrased in terms of this product in the obvi-
ous way. There are many examples of strict quantization that are not deformation
quantizations, in particular those related to pure states (see 1.3).

The maps Qp are highly nonunique, depending on what physicists call
an operator-ordering prescription. Hence two strict quantizations (2?, {Qih,
@, | %z})’ where Ql);‘ = ng for all A, are called equivalent if for each f € ﬁl?R the
function

k> QL) — QXN

is continuous on /. It follows that limy_,o |Q}(f) — Q4(f)Il = 0. In the next
section we will construct an object from a given strict deformation quantization
that is invariant under changes to equivalent quantizations.

A strict (deformation) quantization is called positive if each Qj is positive
(that is, f > O in AY implies Qx(f) > O in AX). In many physically relevant
applications, including the premier example of Weyl quantization, the quantization
fails to be positive. However, a nonpositive quantization is sometimes equivalent
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to a positive one (cf. 2.6.3). If a positive quantization can be extended from il]% to
A% (where the property (1.3) is evidently lost) such that it remains positive, the
maps Qj : A° — A" are automatically continuous; see 1.1.3.7.

1.2 Continuous Fields of C*-Algebras

The notion of strict quantization is closely related to an object intrinsic to the
theory of C*-algebras.

Definition 1.2.1. A continuous field of C*-algebras (€, {U*, ¢, },cx) over a
locally compact Hausdorff space X consists of a C*-algebra €, a collection of
C*-algebras {A*}xex, and a set {@x : € — U }rex of surjective morphisms, such
that:

1. The function x — ||, (A)| is in Co(X) for all A € €.

2, The norm ofany A € Cis |A|| = sup,cx o (A)Il.

3. Forany f € Co(X)and A € Cthereisanelement f A € € for which o, (fA) =
fx)p:(A) forallx € X.

A section of the field is an element {A}cex of [,cx A for which there is an
A € Csuchthat A, = ¢, (A) forall x € X.

It is clear that € may be identified with the space of sections of the field, seen
as a C*-algebra under pointwise scalar multiplication, addition, adjointing, and
operator multiplication, by means of {¢,(A)}xex < A. In particular, A = B iff
@ (A) = ¢, (B) for all x.

The simplest example is obtained by taking A* = %A for all x, and letting
¢ = Co(X, ) with ¢, (A) := A,. Such a field is called trivial.

Lemma 1.2.2. The C*-algebra € of (sections of) a continuous field is locally
uniformly closed. That is, if A € [], U* is such that for every y € X and every
€ > 0 there exists a B* € € and a neighborhood N of y in which |A, — By || < €
forallx € N7, and also lim,_, , [|A,|| = 0, then A € C.

Alternatively, if the function x +> ||A, — Cy|| lies in Co(X) for each C € C,
then A € €.

In the situation of the first part, there is a compact set K € X for which ||A, || <€
outside K, as well as a finite cover {N*, ..., A"} of K. Taking a partition of
unity {#;} on K subordinate to this cover, the operator B := ), u; B lies in €
because of 1.2.1.3, and satisfies sup, .y |[Ax — B;|| < ¢. Hence A € € by 1.2.1.2
and the completeness of €.

Givenany A € [, %* and y € X, because ¢y is surjective there isa B> € €such
that A, = Bj. The assumption in the second part then implies that the conditions
in the first part are satisfied, such that A € €. [ ]

Proposition 1.2.3. Suppose one has a family {2 };cx of C*-algebras indexed by
a locally compact Hausdorff space X, as well as a subset € C [, A~ that satisfies
the following conditions:
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1. Theset {A;|A € €} is dense in U Joreachx € X.
2. The function x > ||Ax|| is in Co(X) for each A € €.
3. The set € is a *-algebra (under pointwise operations).

There exists a unique continuous field of C*-algebras (€, {A*, ¢, }rex) whose
collection of sections contains ¢. Namely, € consists of all A € [], " for which
the function x — |[Ax — C,|| lies in Co(X) for each C € e, regarded as a C*-
algebra under pointwise operations, and the norm of 1.2.1.2. Finally, ¢ (A) := A,
is the evaluation map.

We first show that € as defined above is locally uniformly closed. With the
objects A, y, €, BY, and N as specified in Lemma 1.2.2, take C € € arbitrary, and
define the functions fac : x — ||Ax — Cx|l and fpc : x > ||Bf — C,||. Using the
general Banach space inequality

X =YDl < IIX - Y1, (1.5)

one obtains | fac(x) — fac(x)| < € for all x € N. By assumption, fzc is con-
tinuous, so that | fac(x) — fac(y)| < € for all x in some neighborhood N of y.
Combining the two inequalities yields | fac(x)— fac(y)| < 3eforallx € N NN,
Hence f4¢ is continuous at y, which was arbitrary, so that A € € by definition of
c.

Using this property, it is easily shown that € is a C*-algebra, and that condition 3
in Definition 1.2.1 is satisfied. It is clear from 1.2.1.1 and the definition of € in
1.2.3 that € is maximal. On the other hand, according to the second part of Lemma
1.2.2, € is minimal, so that it is unique. [ |

We are now in a position to connect Definitions 1.1.1 and 1.2.1.

Theorem 1.2.4. Suppose one has a strict quantization of a Poisson algebra ﬁl?R,
except perhaps for (1.3). When I is not compact, the function h v> ||Qr( )| is
assumed to be in Co(I) for all f € A0, Furthermore, assume that either I is
discrete, or that all A" are identical for h # 0 and the function h > Qp(f) is
continuous for all f € A0,

There exists a unique continuous field of C*-algebras (€, {A", pp}nes) whose
collection of sections {pp(A)}rer, A € €, contains all {Qn(f)ner, f € A°.
Moreover, any strict quantization equivalent to the given one leads to the same
continuous field.

One defines ¢ C I A" as the complex linear span of all expressions of the
form A = Qun(f1)- - Qu(fy), where f; € 20, We first show that each function
of the type i > {|Qn(f1)- - Qr(fu)ll is continuous, It follows from (1.4) that
limy 0 |Qa(f1)Qr(f2 - - fu) — @n(fi - -+ fu)ll = 0, so that by induction one has

,lli_f:(l) NQr(f1) -+ Qr(fu) — Qu(f1--- fll = 0. (1.6)

Equation (1.5) then yields limy_,o | @n(f1) - - Qr(fidll — N Qu(f1--- f)ll = O,
so that, finally, lims—o | Qa(f1) - - - Qr(f)Il = Il f1--- fall by (1.1). This proves
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continuity at A = 0. Using (1.6) and the continuity of each function i > Qy(f),
the same result follows for polynomials in the Q( f;).

When [ is discrete, continuity away from 0 is trivial. In the alternative case, for
monomials this follows from an inductive argument based on the inequalities

I NQa(f1) - @l = 1Qr (f1) - Qv (fll |

S NCr(f1) - - Qulfa) — Qu(f1) -+ - Quw ()l

< 1Ca(f1) = Lr (DN 1Qa(f2) - - Qr(fll

+ HGr (N 1Qr(f2) - -+ Qu(fa) — Quw(f2) - Qw (f)ll. )]

The extension of this argument to polynomials is a trivial application of the
triangle inequality. Since condition 1.2.3.2 is evidently satisfied, one is therefore
in the situation of Proposition 1.2.3, and the first claim follows. The second is clear
from the proof of 1.2.3 and the definition of equivalent quantizations. |

If one wishes to take Definition 1.2.1 as a canonical starting point of the theory
of quantization, one might contemplate the following definition of quantization
(specialized to the case of Poisson manifolds, for simplicity).

Definition 1.2.5. Let I C R contain 0 as an accumulation point. A continuous
quantization of a Poisson manifold P consists of:

1. A continuous field of C*-algebras (Q, (A", on}e 1).
2. A Poisson subalgebra A° of C3°(P) whose closure %° contains Co(P).
3. A linear map Q : A° — € that with Qu(f) := @p(Q(f)) for all f € A° and

h € I satisfies Qo(f) = f and Qu(f*) = Qu(f)*, and for all f,g € A°
satisfies Dirac’s condition (1.3).

Provided that 1.1.1.4 is satisfied, a continuous quantization is strict. Conversely,
Proposition 1.2.4 gives conditions, which will be satisfied in all examples in this
book, under which a strict quantization is continuous.

1.3 Coherent States and Berezin Quantization

Having introduced quantization theory from the point of view of observables, we
now look at quantization from the dual perspective of pure states. Recall 1.2.1.

Definition 1.3.1. Relative to a continuous field of C*-algebras (€, {A*, ¢y }xex),
a continuous field of (pure) states is a family {w*}*4, where each o is a (pure)

state on A*, and A is an index set, such that

1. For each » € A and A € € the function x — w;‘(Ax) lies in Co(X).

2. For each x € X the collection {0 }*<? is faithful, in that NMyep ker(m,y) = 0,
where 1, (%) is the GNS-representation defined by w? (in other words, the
representation @y e 7o (A¥) is faithful).

In the context of quantization theory, the following result allows one to construct
continuous fields of pure states by checking a simple condition.
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Lemma 1.3.2. Under the assumptions of Theorem 1.2.4, suppose for each h € 1
one has a state @, on AR such that the function b > wi(Qx(f)) is continuous on
I for each f € A°. Then h > wr(Ap) is continuous on I for all A € €.

We first assume that A = Qp(fy)--- @x(f,) (the extension to polynomials is
trivial). Continuity at i = 0 is an immediate consequence of (1.6) and the as-
sumption in 1.3.2. Away from 0, one uses the completeness assumption 1.1.1.4 to
approximate Qx(f1) - - - Qu(f,) by Gx(f), and notes that the proof of 1.2.4 estab-
lishes the continuity of b > Qpr(f1) - - - Qr(fx); simply omit the first inequality in
(1.7). Combined with the continuity of & > w,(Qx(f)), this does the job.

Finally, if A is as specified in the last paragraph of 1.2.3, one uses the last
sentence in the proof of 1.2.2, from which the result trivially follows. ]

Given a continuous quantization of a Poisson manifold P (cf. 1.2.5), with ° =
Co(P), itisnatural totake A = P and 0§ (f) = f(o)forallo € P.Writing gx(0)
for w], one may then look at g as a map that “quantizes” classical pure states.
Such maps may be studied in their own right, even in the absence of a continuous
quantization of P. We will do so in the special case that P = S is a symplectic
manifold of dimension 2n < co. One may then anticipate that AL = Bo(Hp).

In what follows, the transition probability p is the standard one defined on a
projective Hilbert space, given by 1.(2.65). The canonical symplectic form on PH
is denoted by wy; (cf. 1.2.5). A measure on a manifold is said to be locally Lebesgue
if it is equivalent to Lebesgue measure in each local chart.

Definition 1.3.3. Let Iy € R be as in 1.1.1. In a pure state quantization of a
symplectic manifold (S, ws) one specifies, for each h € Iy, a separable Hilbert
space Hy, a smooth injection qy, : S — PH}, (¢f. 1.2.5.1), and a Radon measure
[y, on S that is locally Lebesgue, such that

1. forall h € Iy and all ¢ € PH}, one has

fs diun(@) plgn(@) ¥) = L: (1.8)

2. for all fixed f € C.(S)and p € S, the function

Fis fs dpn(©) p@r(p), gr@) F (@)

is continuous on Iy and satisfies

lim fs dun(@) plan(p), qn(o )N f (o) = f(p); (1.9)
3. the map qy, is an approximate symplectomorphism, in that (pointwise)
PO
’lili[(l)qha)')-( = wg. (1.10)

Since f € C.(S), the requirement 1.3.3.2 is equivalent to the continuity of the
function k — p(gr(p), qn(0)) for fixed p and o. Moreover, we will shortly see
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that (1.9) and (1.8) imply the conceptually pleasing result
lim p(qn(p), gn(0)) = 80 (1.11)

The (over) completeness condition (1.8) should be compared with 1.(2.56), but
note that elements of a basis of a transition probability space are by definition
orthogonal, whereas the family {g;(0) | o € S} becomes approximately orthogonal
only in the limit limj_, ¢, as guaranteed by (1.11).

Combining 1.(2.56), applied to the transition probability space PH;, with (1.8),
the volume voly, (S) of S with respect to 5, is found to be

voly, (S) = dim (Hy). (1.12)

In all examples in this book, (1.10) holds without the limit for all & € I;. In
addition, the measure u; will always be of the form

tn = (M, (1.13)

where ¢ : Iy —> R\{0} is some positive continuous function, and the Liouville
measure j; on S is defined by

1
W)= G /s fof. (1.14)

The Liouville measure stands out by its invariance under any Hamiltonian flow, as
Proposition 1.2.3.3 implies that ;. (f) = wr (oz,o( ) for all ¢; cf. 1.(2.13).

It is clear from (1.13) and (1.12) that Hj; is finite-dimensional iff S is compact,
and that only certain discrete values of i are allowed in thatcase. AsO < p(-,-) < 1,
eq. (1.8) then implies limy_, ¢ c(h) = o0, so that limy_,¢ dim (H}) = oo.

A pure state quantization naturally leads to the quantization of observables.

Definition 1.3.4. Let {H}, g1, (i} rei, be a pure state quantization of a symplectic
manifold S. The Berezin quantization of a function f € L*(S) is the family of
operators {QF ()}ner,, where QF (f) € B(Hy) is defined by polarizing

Y(QR()) = fsdurz(o)lﬂ(qh(a), v)f (o). (1.15)

Here € PH},; the integral converges because of (1.8).

Here L°°(S) is defined with respect to any locally Lebesgue measure, such as
ur. If Q,’.f takes values in Bo(H}), the left-hand side coincides with the Gelfand

transform of QP (f) evaluated at ¢, namely QB (f)(¥).If f € L'(S, up)NLX(S),
the operator Qg (f) may be written as a Bochner integral

HOE /Sduh(a)f(a)[qh(a)l, (1.16)

where [g(0)] is the projection onto the one-dimensional subspace in H; whose
image in PHj, is gp(0). A number of properties of Q,‘? are immediately evident.
Most trivially, (1.9) may be rewritten as

lim an(eXQR(f) = f(p). (1.17)
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This leads to (1.11), as follows. According to Urysohn’s lemma, there is a function
f € Co(S,R) such that || fllo.o = 1, and f(p) = — f(0) = 1. From L.(2.67) and
(1.19) below we infer

|ga(oX QR () — an@NQR (N | < 2V/1 — plgn(p), qu(e)) < 2.
Letting A — 0, eq. (1.11) then follows from (1.17) and 1.(2.53).

Theorem 1.3.5. Assume that f € L*°(S, R). Then:

e Q,’l’ is positive (that is, f > 0 almost everywhere on S implies Q,l,f (f)=0in
B(Hn)).

QB (f) is self-adjoint.

If f € LS, un), then QE(f) € Bi(Hp) (i.e., QF(f) is of trace-class), with

T QB(f) = un(f) = fs dun(@) f ). (118)

The operator QF(f) is bounded by

1B < I fllco- (1.19)

If f € Co(S), then Q,lf(f) € Bo(Hp) (ie., Qg(f) is compact), and Q,’f :
Co(S) — *Bo(Hy) is continuous.

Positivity and self-adjointness are obvious from (1.15). To show that Qg( i)
is trace-class for f € L'(S, up) N L®(S), we first assume f > 0. Then
QP (f) = 0, so that the trace norm is ||QF (f) = Tr Q2(f). Choose a basis
{ex} in Hy. Then 370 (en, [gn(o)les) = YN | p(gn(0), es) < 1 for N < oo.
Since f € L'(S, un), the monotone convergence theorem says that Tr Q,‘f (frex-
ists and equals [ dup(o) f(0). Thus | QF(f)Ili = pn(f) for f > 0. For arbitrary
f wewrite f = f; — fo, with f|, f» > 0 a.e. Hence I|Q€(f)||1 < o0; linearity
of the trace then yields (1.18).

The conclusion from (1.15) that for f € L°°(S) the operator Qg (f) is bounded,
with bound (1.19), uses the following (slightly more general) argument. Let A
be a symmetric operator such that [(V, AV)| < c||W]|? for some ¢ > 0 and for
all ¥ in its domain. One then replaces ¥ by W + AW/c, and subtracts the two
inequalities thus obtained. This implies the inequality | AW] < c||W¥]|, showing
that A is bounded with norm < c¢. This argument with (1.8) implies (1.19).

Finally, the last claim follows from the second and the third: Start with f €
C.(S), and use (1.19). |

There is a clear intuitive connection between the respective conditions 1.1.1.1,
1.1.1.3 on the observable side, and 1.3.3.2, 1.3.3.3 on the pure state side. More-
over, 1.1.1.2 is closely related to (1.11). For the latter equation implies that the
projections [ga(0)] in (1.16) become approximately orthogonal as A — 0, so that
the integral should approximate the spectral resolution of QF (). This implies that
Q2 (f)* should approach QE(f?) for small h (cf. 1.3.3), which is the essence of
von Neumann’s condition.
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On the other hand, the completeness conditions 1.1.1.4 and 1.3.3.1 are not
related. Even if a Berezin quantization satisfies 1.1.1.1-4, it may not define a strict
deformation quantization. On the positive side, we have

Proposition 1.3.6. Ler f € Cy(S), and assume that Hy, is independent of h
whenever hvaries through a connected subset of Iy. Then Rieffel’s condition holds;
in particular,

lim | QPO = 11 f lloo- (1.20)

We initially assume that f € C.(S), and at the end extend the result to f €
Co(S, R) using the continuity of Qg. The function ki Qg (f) from any given
connected subset of Iy to B(H}) is continuous with respect to the trace norm,
hence certainly relative to the operator norm on B(H}). Therefore, i — || Q,{f HOHIN
is continuous on I by (1.5).

To prove (1.1), note that (1.19) implies

lim sup 1RO < 11 £ lloo- (1.21)

On the other hand, for f € Cy(S) we can find p € S for which || fllec = | f(0)I.
By (1.9) and the obvious inequality [|QF ()|l > |gn(p)(QZ(f))|, we have

lim inf | Q7 (O = I flloo- (122)

Hence (1.20) follows. |

In the examples in this book, the Berezin quantizations constructed from certain
pure state quantizations do satisfy all of 1.1.1.1-4. Unfortunately, the proofs of
1.1.1.2-4 seem to involve special features of these examples.

Corollary 1.3.7. In the situation of Definitions 1.3.3 and 1.3.4, suppose that H},
is independent of h whenever h varies through a connected subset of 1y, and that
the Berezin quantization map Q,f , defined on A° = Cy(S), satisfies 1.1.1.2.

The collection (w357, where ®f := qn(0), is a continuous field of pure states
(cf. 1.3.1) relative to the continuous field of C*-algebras of Theorem 1.2.4.

It is clear from Proposition 1.3.6 and its proof that the assumptions of Theorem
1.2.4 hold. Condition 1.3.3.2 implies that the assumption in 1.3.2 is met. Finally,
(1.8) implies that the faithfulness assumption in 1.3.1, where 2* = A" = Bo(Hp),
is satisfied for k 7# 0. Hence the claim follows from Lemma 1.3.2. |

This corollary applies to all pure state and Berezin quantizations considered in
this book.

1.4 Complete Positivity

Theorem 1.3.5 shows that Qf is a positive linear map from Cy(S) into Bo(Hp).
It has, in fact, a stronger positivity property. The study of this property is further
motivated by the idea that a positive map Q (cf. Definition 1.3.6) generalizes the
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notion of a state, in that the C in w : 2 — C is replaced by a general C*-algebra
B in Q : A — B. One would like to see whether one can generalize the GNS-
construction, and it turns out that for this purpose one needs to impose the stronger
positivity property in question.

For a given C*-algebra 2, and n € N, we first introduce the C*-algebra 901, ().
The elements of I, (A) are n x n matrices M with entries in 2; multiplication
is done in the usual way, i.e, (MN);; := M;Ny;, with the difference that one
now multiplies elements of 2 rather than complex numbers. In particular, the
order has to be taken into account. The involution in 991, (%) is, of course, given by
(M*);j = M}, in which the involution in 2 replaces the usual complex conjugation
in C. One may identify 971, () with A ® 901, (C) in the obvious way.

When 7 is a faithful representation of 2 (which exists by Theorem 1.1.1.8), one
obtains a faithful realization ,, of M, (A) on HRC", defined by linear extension of
7, (M)v; := m(M;)v;; wehere look at elements of HQC” as n-tuples (vy, ..., v,),
where each v; € H. The norm ||M]|| of M € 901, (%) is then simply defined to be
the norm of m, (M). Since 7, (901, (A)) is a closed *-algebra in B(H & C") (because
n < 00), it is obvious that 901, (A) is a C*-algebra in this norm. The norm is unique
by 1.1.2.4.4, so that its definition does not depend on the choice of =.

Definition 1.4.1. Given a linear map Q : % — B between C*-algebras 2\ and
B, and n € N, define the map Q, : M, (A) — M, (B) by (Qu(M));; := QM;).
In other words, seen as a map from A @ 9N, (C) to B @ M, (C), one defines Q,
by linear extension of Q ® id on elementary tensors.

A linear map Q : U — B between C*-algebras is called completely positive
if Qy is positive for alln € N,

The point is now that completely positive maps that in addition are normalized
(like a state) have a generic structure, which is of central importance for quantiza-
tion theory. Recall that a partial isometry is a linear map W : ‘H; — H, between
two Hilbert spaces, with the property that 7, contains a closed subspace K| such
that (W, W), = (W, D), forall ¥, ® € Ky, and W = O on ICIL. Hence W is
unitary from Ky to WK,. It follows that W*W = [K;] and WW?* = [K,], where
K, is the image of W, are projections.

Theorem 1.4.2. Let Q : A — B be a completely positive map between C*-
algebras with unit, such that Q(I) = L. By Theorem 1.1.1.8, we may assume that
B is faithfully represented as a subalgebra 7, (*B) C B(H,), for some Hilbert
space H,y.
There exists a Hilbert space H*, a representation a* of U on HX, and a partial
isometry W : H, — HX (with W*W = 1) such that
T (QA)) = W*TX(A)W (1.23)

forall A € . With p .= WW* (the target projection of W on H* ), 7:()( = pHX =
WHy C HX,and U : Hy — H, defined as W, seen as a unitary map from H,
to Hy, one has the equivalent relation

Q(A) := Unm(QANU ! = prX(A)p. (1.24)
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The proof consists in a modification of the GNS-construction (cf. 1.1.5). We
denote elements of H, by v, w, with inner product (v, w),.

Construction 1.4.3.

1. Define the sesquilinear form (, )§ on A ® M, (algebraic tensor product) by
(sesqui-)linear extension of

(A®v, B W) = (v, 1, (QA*B))w),. (1.25)

Since Q is completely positive, this form is positive semidefinite,; denote its null
space by N.

2. The form (, )} projects to an inner product (, )* on A @ Hy /Ny. If Vy :
AR Hy » A H, /Ny is the canonical projection, then by definition

(V,(A® V), V(B @ w))* :=(A® v, BRw). (1.26)

The Hilbert space HX is the closure of A @ H, /N in this inner product.
3. The representation X () is initially defined on U@ H, /N, by linear extension

of

TX(AWV, (B ® w) := V,(AB ® w); (1.27)
this is well-defined, because A @ I, Ny C N,. One has the bound
X (Al < 1A, (1.28)

so that tX(A) may be defined on all of HX by continuous extension of (1.27).
This extension is a representation of U on HX.
4. The map W : Hy — HX, defined by

Wo:=V,I®u, (1.29)

is a partial isometry. Its adjoint W* : HX — H, is given by (continuous
extension of)

W*V,A®@ v =m,(Q(A)v, (1.30)
from which the properties W*W = [ and (1.23) follow.

We now prove the various claims made in this construction. Firstly, to show that
the form defined by (1.25) is positive, we write

D (A ®@ui, A; ® V) =D (i, T (QATA IV, )y (1.31)
ij ij
Now consider the element A of 91, () with matrix elements A;; = A} A ;. Taking

a faithful representation (), from which one constructs 7, (90, (1)) as explained
above 1.4.1, one sees that

@ Ta(A)2) = Y (21, W(ATA))z) = Y (7w (ADz, #(Aj)z;) = llAz]* =0,
0Jj ij
where Az := ), m(A;)z;. Hence A > 0. Since Q is completely positive, it must
be that B, defined by its matrix elements B;; := Q(A}A}), is positive in 90, (°B).
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Repeating the above argument with A and 7 replaced by B and ,, respectively,
one concludes that the right-hand side of (1.31) is positive.

It follows from (1.25) that (C®v, ABQw)} = (A*C®v, BOw)},sothat AQI,
leaves N, stable; compare the corresponding argument for the GNS-construction
based on I.(1.58).

To prove (1.28) one uses 1.(1.42) in 21, (A). Namely, for an arbitrary collection
A, By, ..., B, € Aweconjugate 0 < A*Al, < Il A [|12L, with the matrix B, whose
first row is (By, ..., B,), and which has zeros everywhere else; the adjoint B* is
then the matrix whose first column is (B}, ..., B,*,‘)T, and all other entries zero.
This leads to 0 < B*A*AB < ||A||?B*B. Since Q is completely positive, one
has Q,(B*A*AB) < ||A||*Q,(B*B). Hence in any representation 7, (‘B) and any
vector (vy, ... v,) € H, @ C" one has

Y (i, m(QUBFA*AB )y < IAIR Y (0r QBT BV ). (132)
ij ij

With W = )", V, B; ® v;, from (1.25), (1.27), and (1.32) one then has

I X (AN < AP i, 7 (QUBT B, = AN W]
hJ

To show that W is a partial isometry one merely uses (1.29), (1.25), and Q(I) = L
Equation (1.30) is then trivially verified from the defining property (w, W*V¥), =
(Ww, W)X forall w € M, and ¥ € HX.

To verify (1.23), one uses (1.29) and (1.30). Since W is a partial isometry, one
has p = W W* for the projection p onto the image of W, and in this case, W*W = I
for the projection onto the subspace of H, on which W is isometric; this subspace
is H, itself. Hence (1.24) follows from (1.23), since

UﬂX(Q(A))U_‘ = Wn (QANW* = WW*nX(A)WW* = pr*(A)p. R

When @ fails to preserve the unit, the above construction still applies, but W is
no longer a partial isometry; one rather has [|W |2 = || Q()||. Thus it is no longer
possible to regard H, as a subspace of HX.

If A and perhaps B are nonunital, the theorem holds if Q can be extended (as a
positive map) to the unitization of 2 (cf. 1.1.2.1), such that the extension preserves
the unit I (perhaps relative to the unitization of *B). When the extension exists but
does not preserve the unit, one is in the situation of the previous paragraph.

The relevance of all this to Berezin quantization is as follows.

Proposition 1.4.4. A positive map between a commutative unital C*-algebra and
a C*-algebra is completely positive.

We write Q : A — B for the map in question. By Theorem 1.1.2.3 one has
A = C(X) for some compact Hausdorff space X. We may then identify 9, (C(X))
with C(X, M, (C)). Take G € C(X, P, (C)) and pick € > 0. Since X is compact,
there is a finite collection of points x, ..., x, and a finite cover {O;.’ 05
with the property that |[G(x;) — G(x)|| < € for all x € Of . Using a partition
of unity {u;} subordinate to this cover, one constructs F; € C(X,M,(C)) by
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Fi(x) := Zﬁ:l u;(x)G(x;). One then has ||F; — G| < €. Hence elements of the
form F, where F(x) = Y, fi(x)M; for f; € C(X)and M; € M, (C), and the sum
is finite, are dense in C(X, 9, (C)).

Itis easily seen that such F is positive iff all f; and M; are positive, so that positive
elements G of C(X, 9, (C)) can be approximated by positive F’s. On such F, one
has Q,(F) = Y_; Q(f;) ® M;. Now, each operator B; ® M is positive in I, (B)
when B; and M are positive (as can be checked in a faithful representation). Since Q
is positive, it follows that Q,, maps each positive elementof the form F = ), fiM;
into a positive member of 971, (B).

We know from I.1.3.7 that Q is continuous; the continuity of Q, follows because
n < 0o0. A norm-limit A = lim,, A, of positive elements in a C*-algebra is positive,
because by 1.(1.39) we have A, = B;B,, and lim B, = B exists because of
1.(1.15). Finally, A = B*B by continuity of multiplication, i.e., by I.(1.14). Hence
if F, > G > 0in C(X, 9,(C)), then Q,(G) = limy Q, (F;) is a norm-limit of
positive elements, which is positive. |

The application to Berezin quantization is obvious from 1.1.3.5 and 1.4.4: We
take A = Co(S), B = Bo(Hp), Hy = Hp, and Q = QF. Theorem 1.4.2 then
applies, for we can extend Qg to the unitization Cy(S); of Co(S) (which consists
of all functions of the form f + Als, f € Co(S) and A € C) by linear extension of
(1.15). Since Cy(S) + Clg C L=(S), this extension is still positive by Theorem
1.3.5, and satisfies QF (15) = I because of (1.8).

Corollary 1.4.5. The image Qg (Co(S)) is closed in Bo(Hp). In particular, if
QB(C(8)) is dense in Bo(Hy), then QF (Co(S)) = Bo(Hn).

Taking X as in the proof of 1.4.2, the image 7w X(Cy(S)) is closed by Theorem
1.1.3.10.4, so that prX(Co(S))p = Qg(Co(S)) is closed as well. ]

In the opposite direction, one may ask whether a given positive map Q can be
written in a form similar to (1.16).

Proposition 1.4.6. Ler Q : Cyo(S) — B(H) be positive (where S is a locally
compact Hausdorff space), and such that Q(f) € B (H) for all f € C.(S). Then
there exists a regular Borel measure 1 on S and a (weakly) measurable family
o +— p(o) of density matrices, such that (weakly)

AN = fsdu(d)f(a)p(a)- (1.33)

Given the assumptions, the map f +— Tr Q(f) defines a positive linear func-
tional, which by the Riesz representation theorem corresponds to a positive regular
Borel measure i on S. Also, for each unit vector ¥ € H we obtain a posi-
tive linear functional f — (¥, Q(f)W¥), hence a positive regular Borel measure
iy on S. Since (W, Q(f)¥) < TrQ(f), we see that py is absolutely con-
tinuous with respect to . Hence we obtain the Radon-Nikodym derivatives
ow(o) = duy/du(o), and subsequently the operators p(o) by polarization.
Equation (1.33) follows by construction; the claimed properties of the p(o) are
then obvious. |
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Obviously, the given condition is always met if H is finite-dimensional. It
remains to be investigated whether each p(¢) is a one-dimensional projection,
and if so, whether the ensuing map S — PH is smooth. There is, however,
a generalization of (1.33) that applies to any positive map on a commutative
C*-algebra.

Definition 1.4.7. Let X be a set with a o -algebra X. of subsets of X. A positive-
operator-valued measure, or POVM, on X in a Hilbert space H is a map A —
A(A) from T to B(H) (the set of positive operators on 'H), satisfying A(@) = 0,
A(X) = I, and A(U;A;) = Y, A(A)) for any countable collection of disjoint
A; € ¥ (where the infinite sum is taken in the weak operator topology).

A projection-valued measure, or PVM, is a POVM that in addition satisfies
A(AI N AR) = A(ADA(A) forall Ay, Ay € X

Note that the above conditions force 0 < A(A) < I. A PVM is usually written
as A — E(A); it follows that each E(A) is a projection (take A| = A; in the
definition). This notion is familiar from the spectral theorem.

Proposition 1.4.8. Let X be a locally compact Hausdorff space, with Borel struc-
ture X. There is a bijective correspondence between positive maps Q : Co(X) —
B(H) that can be extended to Co(X)1 by a unit-preserving positive map and POVMs
A A(A)on X inH, given by

Qf) = fdi(X)f(X)- (1.34)

The map Q is a representation of Co(X) iff A — A(A) is a PVM.

The precise meaning of (1.34) will emerge shortly. Given the assumptions, in
view of 1.1.2.3 we may as well assume that X is compact.

Given Q, for arbitrary ¥ € H one constructs a functional jiy ¢ on C(X) by
fw,w(f) = (P, Q(HW). Since Q is linear and positive, this functional has the
same properties. Hence the Riesz representation theorem yields a probability mea-
sure fty,w on X. For A € T one then puts (W, A(A)V) := py w(A), defining an
operator A(A) by polarization. The ensuing map A +— A(A) is easily checked to
have the properties required of a POVM.

Conversely, for each pair W, & € H aPOVM A — A(A) in ‘H defines a signed
measure (y o on X by means of uy o(A) := (¥, A(A)P). This yields a positive
map Q : C(X) — B(H) by (¥, Q(f)P) := fx dpy o (x) f(x); the meaning of
(1.34) is expressed by this equation.

Approximating f, g € C(X) by step functions, one verifies that the property
E(A)? = E(A) is equivalent to Q(fg) = Q(f)Q(g); then use 1.1.3.7. |

Corollary 1.4.9. Let A — A(A) be a POVM on a locally compact Hausdorff
space X in a Hilbert space H, . There exist a Hilbert space HX, a projection p on
HX, a unitary map U : H, — pHX, and a PYM A + E(A) on HX such that
UAAYU~' = pE(A)p forall A € <.

Combine Theorem 1.4.2 with Proposition 1.4.8. ]
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Suppose X is the phase space S of a physical system, and one is in the situation
discussed prior to 1.4.5. One then obtains a POVM A > A(A)on § in H}; asso-
ciated to the Berezin quantization map Q = Q,’.f : Co(S) = Bo(Hp). According
to 1.1.6.6, one may identify a state on By(Hj) with a density matrix p on Hy. The
physical interpretation of the map A — A(A) is then contained in the statement
that the number

Po(A) :=TrpA(A) (1.35)

is the probability that in a state p the system in question is localized in A C §
(localization in phase space). Transferring the situation to Hjy by means of the
unitary U in 1.4.2, and writing  := UpU ™", one simply has p,(A) = Tr 5E(A),
where A — E(A) is the PVM on HX given by 1.4.9.

When X is a configuration space Q, on the other hand, the Poisson bracket
between any two functions on X normally vanishes, so that the conditions (1.2)
and (1.3) can be satisfied by taking Q to be a representation m of Co(Q) on H.
By Proposition 1.4.8, the situation is therefore described by a PVM A > E(A)
on Q in H; the probability that in a state p the system is localized in A C Q
(localization in configuration space) is

Pp(Bd) :=TrpE(A). (1.36)

1.5 Coherent States and Reproducing Kernels

One can find an explicit realization of " := H* and of the projection p in 1.4.2
if a further assumption is made, which is satisfied in many cases of interest.

Definition 1.5.1. A pure state quantization {Hy, gk, trlner, of S is said to be
coherent if each qn(0) € PH}, can be lifted to a unit vector V7 € Hy, and the
ensuing map o > Wy from S to Hy, is continuous. The unit vectors Wy coming
from a coherent pure state quantization are called coherent states.

In terms of coherent states, the polarized form of (1.8) is
/ dup(o) (Wi, Vi) (Y, W2) = (¥, ¥2) (1.37)
s

for all ¥, ¥, € Hp. We write
Kn(p,0) := (¥g, ¥p); (1.38)

as a consequence of the continuity assumption above, K is jointly continuous.
Also, one notices that

Ko, p) = Kp(p, 0). (1.39)

Proposition 1.5.2. Let {Hp, V], ir)oes, hel, be a coherent pure state quantiza-
tion, with associated Berezin quantization Qg . One may put

HX =H" = LXS, dun); (1.40)
aX(f)®(o) = f(o)P(o) (1.41)
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in 1.4.2. Furthermore:
e For each b € Iy, the map W : Hy, — H" defined by
WP (o) := (¥}, ¥) (1.42)

is a partial isometry (with WW* = p a projection, and W*W = 1). We denote
its image WHy, in " by Hp.
The projection p : H* — H}, is given by

p®(p) = /s (@) Knp, 0)0(@). (1.43)

The elements of Hy c H may be chosen to be continuous functions.

For each p € S, the function o v Ky(o, p) lies in H;,. ;

The evaluation map ® +— (o) is continuous for all ® € Hy and allo € S.
For each f € L*®(S), the operator QF(f) := WQE(f)W* on Hy, which
provides an equivalent realization of the Berezin quantization of S, is given by

02 (f)®(0) = pf(c)P(0). (1.44)

The first two claims follow from (1.37). The Cauchy—Schwarz inequality applied
to (1.42), and the continuity of gj prove the third claim. The next claim is immediate
from (1.42), since Kp(-, p) = WW} . To show the continuity of the evaluation map,
we write

Q(p) = fduh(O)Kh(p, 0)®(0), (1.45)
S

which, as a consequence of (1.43), holds for all ® € H), and all p € S. The right-
hand side is (XCx(-, p), @) (inner product in H"), which, combined with the previous
item, proves the claim. Finally, (1.44) is immediate from the definitions. ]

Comparing, e.g., (1.44) with (1.24), we see how the above construction provides
an explicit realization of the objects defined in 1.4.2. As a case in point, we may
rewrite (1.35) in an appealing way. Note that because of (1.41), the PVM A —»
E(A)in1.4.9is givenby E(A) = xa (the characteristic function of A). Assuming
that p is a pure state p = [W], where ¥ € SH;, the discussion after (1.35) and
(1.42) then implies that the probability that the system is localized in A is

pui(A) = fA dun(o) 1Py, W)|2. (1.46)

An interesting feature to be abstracted from 1.5.2 is the following.

Definition 1.5.3. Let S be some set, and let H be a Hilbert space of functions (of
some class) on S. A reproducing kernel of H is a function K : S x § — C such
that:

e For each p € S, the function o — K(o, p) lies in H.
e The reproducing property

W(p) = (K(, p), ¥) (1.47)
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holds for all ¥ € H, p € S.
Taking ¥ = K(-, p), we obtain

ICC, oIl = VK(p, p); (1.48)

in particular, K(p, p) > 0 for all p. Putting ¥ = X(-, o), one observes that
K, p) = K(p,0).

Proposition 1.5.4. A Hilbert space of functions on S has a (necessarily unique)
reproducing kernel iff each evaluation map E, : WV +— W(0') is continuous.

The uniqueness of K follows by assuming that two reproducing kernels Ky, X,
exist, and showing that ||KC;(-, p) — Ka(-, p)|| has to vanish because of the
reproducing property. The rest is obvious. |

Lemma 1.5.5. If H has a reproducing kernel K, then strong convergence V,, —
W in H implies uniform convergence as functions on all subsets of S where o —
K(o, o) is bounded.

One has
[W(o) —W(o)| = [(K(-, 0), ¥y — W)| < [|[Ws — P, o).
Then use (1.48). |

This situation becomes particularly interesting when S is a topological space
and X is jointly continuous. In that case, (1.47) and (1.48) imply that H consists
of continuous functions. Moreover, if we equip C(S) with the topology of uni-
form convergence on compact sets, then Lemma 1.5.5 implies that the canonical
injection H — C(S) is continuous. This motivates the following abstract con-
siderations, which provide an interesting perspective on the reproducing kernel of

H.

Definition 1.5.6. A Hilbert subspace of a topological vector space V is a
Hilbert space H with continuous linear injection H < V. In other words, H
is a continuously embedded subspace of V.

The Riesz—Fischer theorem then leads to an antilinear map 6 +— 6 from V* to
H (and hence to V), defined by the property 6(w) = (6, w) for all w € H. When
V* separates points in V, the range V* of this map is dense in . To guarantee
this, we assume that V is locally convex and Hausdorff. In any case, one obtains a
positive sesquilinear form Q on V* by

Q®,n) = (@, 0). (1.49)

In the situation of the paragraph preceding 1.5.6, the dual of V = C(S) is the
space of complex Radon measures u on S with compact support. Hence

w(p) = /Sdm/C(p, o) (1.50)
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from (1.47), so that the quadratic form Q is given by

o(u,v) = fs sdv(p)dﬁ@‘)fap,a). (1.51)

In particular, the reproducing kernel itself is recovered by K(p, ) = Q8. é,),
where §,, is the Dirac measure at o (i.e.,d, (f) := f(0)),etc. Hence K is completely
determined by the embedding H < C(S). If, in addition, we suppose that H C
L%(S, du) (defined with respect to some Radon measure ), the projection p :
L*(S,du) — H is given by generalizing (1.43) to

p¥(p) = fsdu(o)/C(p. o)W (o). (1.52)

We know that (o, o) > 0 for all o € S; let us further assume that K(o,0) > 0
for all o (equivalently, there are no points in S at which all elements of H vanish).
Then one obtains a family of unit vectors ¥¢ in H, defined by

Kp, o)
W (p) 1= (1.53)
VKo, 0)
These satisfy the overcompleteness property
fdM(U)K(U, o)Wy, W)W, W) = (W, W) (1.54)
s

forall |, W, € H;cf. (1.37), and notice that the inner product (, ) isthe one in H,
inherited from L2(S, dy). Hence these unit vectors satisfy the key property (1.8)
of coherent states; via the reproducing kernel they are eventually defined through
the evaluation map.

The Hilbert space H,, is defined as the image of H under the unitary transforma-
tion U : L*(S,du) — L*(S, du,) (where diw,(0) := du(o)K (o, o)) defined by
UW(o) = W(0)/+/K(o, o). This space H, has a reproducing kernel K, namely

K(p,
Ko, o) := (WP, W) = 0.0 (1.55)
VK(p, p)K(o,0)
This kernel is normalized, in that /C,,(0, o) = 1 for all o; equivalently, one has
ICnl-, Pl = 1 in H,. Its reproducing nature in H, may be derived from the

corresponding property of K in H.

A Berezin operator Q2(f), depending on f € L(S), may then be defined on
H (or H,) as in (1.44), with p given by (1.52) (with K replaced by K,,). On H this
operator then assumes the form (cf. (1.16))

0%(f) = fs du(0) Ko, o) f (@)¥°], (1.56)

whereas on H,, one has the same equation with W° replaced by U¥°® = IC,(-, o).
It remains to be seen, of course, whether one can introduce A in a suitable way, so
as to arrive at a pure state quantization or a strict quantization.
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2 Quantization on Flat Space

2.1 The Heisenberg Group and its Representations

The manifold P = T*R” is equipped with its canonical cotangent bundle Pois-
son bracket 1.(2.24). Regarding v f := (3f/dp, 3f/3q) as a vector in R*", and
introducing the 2n x 2n matrix

I 2.1
\-T o)’ @D

{f.egy=Wf,Jve (2.2)

in terms of the natural inner product in R?". This Poisson bracket is symplectic;
as in [.(2.23), the symplectic form is

w=dq' Adp;. (2.3)

we can write

A central role in the study of T*R" is played by the so-called Heisenberg
group H,. A concrete form of its Lie algebra b, = R?"*! is obtained by taking
the coordinate functions p;, g’/ as well as the unit function on T*R” as basis
elements, and equating the Lie bracket with minus the Poisson bracket. This basis
is traditionally denoted by {P;, Q/, Z}; j—1...... The Lie brackets are

[P, Pi1=1Q", Q/1=0;
[P, Q'] =-58/Z;
[P, Z]=[Q/,Z]1=0. (2.4)

Definition 2.1.1. The Heisenberg group H, is the unique connected and simply
connected Lie group with Lie algebra by,,.

Clearly, H, = R?"t! is nilpotent, and the exponential map Exp : §, - H,
is a diffeomorphism. Following the physics literature, we parametrize H, by
coordinates u, v € R" and s € R so that

(u,v,s) :=Exp(—uQ +vP +s52), 2.5)

where uQ := u; @', etc. The composition rule in ﬁ,, then follows from (2.4) and
the CBH-formula Exp(A)Exp(B) = Exp(A + B + %[A, BY); the higher-order
commutators vanish in this case. This yields

u,v,8)- @, V,s)=@+u, v+, s+ — v —vu)), 2.6)

where vu’ = v'u}, etc. Regarding w := (u, v) as a vector in the linear symplectic
space R?", equipped with the (symplectic) form w = dv' Adu; (cf. (2.3)), we may
write (2.6) as

w,s) - w,s)=w+w,s+s5 + jow,w)). Q.7
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One often works with a version of the Heisenberg group in which the s-
coordinate is compactified; the group H, is the quotient of H, by the discrete
normal subgroup (0, 0, 271 Z). Hence the projection 7 : H, — H, is given by
t(u, v, s) = (u, v, exp(—is)). The composition law in H, then follows from (2.6)
as

Lo
w,v,2)- W,v,7):= (u +u' v+, 77 e2 W )) . 2.8)

A Lie algebra anti-isomorphism P<! < §, between the Poisson algebra P<! of
polynomials on T*R” of degree < 1 and the Heisenberg Lie algebra is given by

Puvs(p, @) =vp—uq+s <> vP—uQ+sZ. 2.9

One may regard X € b, as a function X on the dual h* by putting X@®) =
0(X) for 6 € b, this yields an inclusion f), C C*(h;). We use coordinates
(p, g, c)on b = R>*! (where p, g € R" and ¢ € R), which represent the point
pI3 + qQ +c¢Z. Here {ﬁ,-, Qj, 2};,1-:1,,“,,, is the basis of b dual to the given one
in h,. The functions P, Qj then coincide with the coordinate functions p;, g/.

The differentials of all functions X span the cotangent bundle T*h}, so that a
possible Poisson structure on b is determined by the Poisson brackets of the X.
Thus one may put

(X, 7} = —[X, 7. (2.10)
The reason for the minus sign will become clear in II1.1.1. This leads to the Poisson
bracket (we omit the argument (p, g, ¢))

{f,g}-:c(aa—fa—g.—a—f.ig—), 2.11)
pi dq'  9q' 3p;
cf. 1.(2.24). The symplectic leaves of §j; come in two types. Firstly, one has the
manifolds 7*R” := R?" x {c} for ¢ # 0, with symplectic form w, = cdq’ A dp;.
The “usual” T*R" with Poisson bracket 1.(2.24) is the leaf corresponding to¢ = 1.
Secondly, each point (p, g) in T*R”* x {0} is a leaf.

There is a different way of looking at these leaves. The so-called coadjoint
action Co of H, on b is defined by

(Co(u, v, $)0)Y) := 8(Ad((u, v, s)~1)Y), (2.12)
where Ad is the adjoint action of H, on b,. The CBH-formula yields
Proposition 2,1.2. The coadjoint action of the Heisenberg group is given by

Co(u, v, s)(p,q,c) =(p+cu,q + cv, ). (2.13)

Accordingly, the orbits in Yy under the coadjoint action coincide with the symplectic
leaves of the Poisson structure (2.10).

The result may be recast in the language of Chapter L.

Proposition 2.1.3. Unless it is defined on a zero-dimensional space, any ir-
reducible representation m° of the Poisson algebra C*(};) associated to the
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Heisenberg group is equivalent to ', for some real c # 0, defined on the symplectic
manifold (T*R", cdq' A dp;) by

7w (f) = fics
f[c(p’Q) = f(p’ qvc) (2'14)
If ¢ is zero-dimensional, there is a point (p, q) € T*R" such that
78 o) = f(p.q,0). (2.15)
This is immediate from Theorem 1.2.6.7. ]

The corresponding representation of h, C C*°(h;;) on T*R is simply
Pi = pi;
Q' - ¢,
Z — clppe. (2.16)
In particular, C*°(T*R") with the canonical Poisson structure 1.(2.24) may be seen
as the representative 7{'(C*(h})).
Proposition 2.1.3 has an exact parallel in quantum mechanics. Consider the

following family of representations of H,. For each real A # 0, construct the
operator U (u, v, t) on the Hilbert space L2(R") by

. 1 .
US(u, v, s)W(x) := e M7l ux g (x — A). .17

It is easily checked that the U are unitary, and indeed furnish a representation
of H,, called the Schrodinger representation. The irreducibility of Uf will be
proved in 2.5.5. We see that Uf(O, 0,s) = exp(—iAs)I; hence for A € Z the
representation U} is defined on H, as well, satisfying

Us©,0,z2) = z"L (2.18)

A useful equivalent version of U} is given by

. 1
U (u, v, $)W(x) 1= e MF00=u0y (¢ — ), (2.19)

one has VUfV* = U, for the unitary V : L2(R") — L2(R") defined by V¥ (x) =
A"2W(Ax). The corresponding representations of the Lie algebra b, are given by
(cf. TIL(1.69))

dU(Q) = —ix';

9
dUS(Pj) = —A~—;

A( j) xi
dU(Z) = —iAl (2.20)

and
dUL(QY) = —irx’;
9
dU,(Pj) = Tt
dU,(Z) = —iAl, (2.21)
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respectively; here x’ is meant as a multiplication operator, i.e., (x' W)(x) = x' ¥ (x).
These operators are defined and essentially self-adjoint on S(R") ¢ L%(R"), on
which [dUP(X), dUP (V)] = aUP(IX, Y]) for all X, Y € b,

The representation U, is of particular use for A = 1/h. For later convenience,
we introduce the Weyl operator

U(p.q) = Us(p,q,0) = ef (#2-a%), (2.22)
where
Q' = ihdUy(Q") = idU3(Q") = x' (2.23)
and
Py, = kU (P) = idU}(P) = ~ih— (2.24)

are the physicists’ position operator and momentum operator, respectively; cf.
(2.20) and (2.37). These operators are both defined and essentially self-adjoint on
S(R™), on which domain one has the canonical commutation relations

[PS,, 0}/1 = —iks!L; (2.25)
cf. (2.4). One might add here that
ihdUlh (Z2)=1 (2.26)

Theorem 2.1.4. Unless it is one-dimensional, any irreducible representation U
of H, is equivalent to U} for some ) # 0. When U is one-dimensional, there is a
point (p, q) € T*R" such that U equals

Uiy, v, 5) = ' ®47vP), 227
.9

When U(0, 0, s) = [ forall s € R, the representation must be one-dimensional,
so that (2.27) is a restatement of the representation theory of the abelian group R?".
A proof of the remainder of this celebrated theorem will be given at the end of
II1.3.7. Another appropriate proof is obtained by combining either Corollary 2.6.7
or Proposition II1.1.8.4 with Corollary 1.2.2.6; the statement in 2.1.4 concerning
A # 0 is equivalent to the uniqueness of the irreducible representation of the
C*-algebra of compact operators. 0

2.2 The Metaplectic Representation

As we have seen in the previous section, the Heisenberg group is closely re-
lated to the Poisson algebra P<! of polynomials on T*R" of degree < 1. At
the next level, the Poisson algebra P? of quadratic polynomials on 7*R" turns
out to be anti-isomorphic to the Lie algebra of the symplectic group Sp(n, R).
This group consists of the linear Poisson isomorphisms of T*R* ~ R?*; a ma-
trix M € GL(2n,R) lies in Sp(a, R) iff MTJM = J (cf. (2.1)). For the Lie
algebra this means that a 2n x 2n matrix X lies in sp(n, R)iff J X + X7/ =0
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(equivalently, XJ is symmetric). The maximal compact subgroup of Sp(n, R) is
Sp(n, R) N O(2n); if R?" is identified with C" through

2= (¢’ +ip))
V2

(where p/ := pj), then Sp(n, R) N O(2n) = U(n). It follows from the theory of
noncompact semisimple Lie groups that the homotopic properties of Sp(n, R) are
determined by its maximal compact subgroup; hence Sp(n, R) is connected, but
not simply connected, since 7 (Sp(n, R)) = 7(U(n)) = Z. Note that in terms of
complex coordinates the symplectic form (2.3) reads

(2.28)

w=idZ NdZ. (2.29)

Hence in terms of the usual inner product on C" one has
w(z,7) =2Im(z, 7). (2.30)
This expression renders it self-evident that U(n) C Sp(n, R). With 3 := 9/dz and

d := 3/9z, the Poisson bracket 1.(2.24) now reads
(f.8) = i(3f3g — 3 fg). (231)

Further to the notation w = (u, v), we put 0 := (p, q); also recall (2.1). For
X € sp(n, R) we define the quadratic polynomial

Px(o) = i(J X0, 0), (2.32)

where the inner product is the usual one in R?*. Using (2.2), for X, X’ € sp(n, R)
one easily verifies that

{Px,Px}=—Pix.x1, (2.33)

which proves that (2.32), which is clearly bijective, defines a Lie algebra anti-
isomorphism between P? and sp(n, R).

The group Sp(n, R) acts on H,: the matrix M € Sp(n, R) maps (w, s) € H, to
(Mw, s). Writing h for (w, s), we say simply that M maps 4 into Mh. We may
therefore build the semidirect product Sp(n, R) x H,, whose elements are pairs
(M, h), with M € Sp(n,R) and h € H,. The group multiplication is given by
(M, h)-(M', b’y := (MM’, h - MR"), where the product - in H, is given by (2.6).
Note, in particular, that

(M,0)-(e,h)- (M™',0) = (e, Mh), (2.34)

where e and O are the identity elements in Sp(n, R) and H,, respectively. The
“mixed” Lie bracket in the Lie algebra sp(n, R) x b, is

M, (w,s)] =(Mw,s). (2.35)

Let Py, P, be polynomials of degree < 2 in (p;, g7). The space P=? of such
polynomials is easily seen to be closed under the Poisson bracket 1.(2.24).
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Proposition 2.2.1.

e Under the correspondence (2.9) the Poisson algebra P<' of polynomials of
degree < 1 is anti-isomorphic to the Lie algebra Yy, of the Heisenberg group
H,.

e The Poisson algebra P? of quadratic polynomials is anti-isomorphic to the Lie
algebra sp(n, R) of Sp(n, R) under the correspondence Py(c) <> M.

e By linear extension of the preceding two items, the Poisson algebra P=? of
polynomials of degree < 2 is anti-isomorphic to the Lie algebra sp(n, R) x b,
of the semidirect product Sp(n, R) x ﬁ,,.

The first item was shown in the previous section. The second is proved by (2.33).
The third claim follows from (2.35). |

One can easily solve the equations of motion for Hamiltonians in P<2. The
Hamiltonian flow generated by Py, s (cf. (2.9)) is o(¢) = o + tw (cf. (2.13)
with ¢ = 1), and the flow generated by Py is o(¢t) = Exp(t X)o. These flows are
compatible with the natural action p° of Sp(n, R) x H, on T*R", under which
(M, (w, s)) maps o to p(OM'(w’S))(a) = Mo +w.If Px <> X under the isomorphism
of 2.2.1 (X € sp(n, R) x §,), one verifies that Exp(t X) maps o to Exp(tX)o =
o (t), where o +— o (¢) is the Hamiltonian flow generated by Px on 7*R". Hence

Exp(X)o = o(l). (2.36)

We will now construct an important integrable Hilbert space representation of
sp(n, R). Let P(pi, g/, 1) be a polynomial on T*R". We define

QY (P(pi, ¢/, 1)) 1= AIP(PR;, 03, T, (2.37)

cf. (2.24) and (2.23). This expression means that one substitutes P>, Qi, for p, q
in P, and symmetrizes; thus A[. . .] denotes complete symmetrization. For example,
AMA LA = Znes,, Az -+ Azm/nt, where the sum is over all n! elements
7 of the permutation group S,.

Given its construction from U ,f (Exp(u Q — v P)), it follows from standard repre-
sentation theory that O (P) is well-defined as an unbounded operator on L*(R")
with domain S(R"). If P is real, then Q;LV(’P) is symmetric on this domain.

Proposition 2.2.2.

o Restricted to at most quadratic polynomials, Q,!V is a Lie algebra homomor-
phism, in that for all P, P, € P=<? one has

= [QV P QY Po] = QY (P1. Pa). (2.38)
e Hence dp", defined by
dp(X) = —= O (Px) (2.39)

(where X € sp(n, R) x b, corresponds to Px under the anti-isomorphism
between sp(n, R) x b, and P=2, cf. 2.2.1), furnishes a representation of the Lie
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algebra sp(n, R) x b, as unbounded operators on the common invariant dense
domain S(R") C L*(R").

e Foreach X € sp(n, R) x b, the operator idp"(X) is essentially self-adjoint on
this domain.

o There exists a double covering Mp(n, R) of Sp(n, R) (known as the meta-
plectic group) and a representation p" of Mp(n, R) x H, (where the action
of Mp(n,R) on I-I,, factors through Sp(n, R) in the obvious way) on L*(R"),
whose derived representation of sp(n, R) x b, is dp".

e Restricted to Hy,, the representation p" coincides with U, /h(I:I,,).

The restriction of p" to Sp(n, R) is called the metaplectic representation.

A simple calculation shows that the commutation relations (2.38) are satisfied on
S(R™); hence the first claim follows from 2.2.1. The equation dp"(X) = dUyp(X)
for X € b, is immediate from (2.23), (2.24), and (2.26).

A technical result in functional analysis, involving the existence of a dense set
of analytic vectors (here given by the linear span of the Hermite polynomials),
shows that dp"(sp(n, R)) exponentiates to a representation ph(S~p(n, R)), where
Sp(n, R) is the unique connected and simply connected covering group of Sp(n, R)
(one has Sp(n, R)/Sp(n, R) =~ Z). This argument also leads to the essential self-
adjointness property mentioned. It can be shown that the metaplectic representation
p" is double-valued on Sp(n, R) (that is, p(M)p"(M') = £p"(M M), where the
sign depends on M and M'), so that there is a double covering group Mp(n, R) of
Sp(n, R) on which p" is single-valued (i.e., is a representation). O

From 2.2.2, (2.22), and (2.34) we have the equivariance property
P (MU (0)p" (M) = Uy (M), (2.40)

where M € Sp(n, R). We may reformulate this result in terms of dynamics. We
regard a real polynomial # on T*R" as a classical Hamiltonian, denoting its flow
by ¢ + o(t). Its quantization, the quantum Hamiltonian Hjp, is taken to be the
unbounded operator

Hy = QF (h(P, 03)), (2.41)

cf. (2.37), (2.24), and (2.23). Let h = Px € P2. From (2.39) we see that Hj, =
i hdph(X), so according to (2.36) we can rewrite (2.40) as

eitHh/hU%(a)e~itHh/h - U% (o (=1)). (2.42)

We turn to the reducibility of p”(Sp(n, R)). The following result will be of
central importance in the construction of the Weyl quantization map in 2.5.
Lemma 2.2.3. The parity operator P on L*(R"), defined by

PW(x) := W (—x), (2.43)

commutes with all p"(M), M € Sp(n, R). The eigenspaces L*(R"). C L*(R"),
characterized by the property PL*(R")x = IL?>(R")., are irreducible under
p"(Sp(n, R)). Hence the commutant of p"(Sp(n, R)) is spanned by P and 1.



2 Quantization on Flat Space 133

Simple computations show that [P,dp™X)] = O for all X € sp(2, R).
Since Sp(n, R) is connected and the exponential map is onto, it follows that
[P, p"(M)] = O for all M € Sp(n,R). Hence p"(Sp(n,R)) is reducible,
and @.L2(R").. obviously decomposes L2(R"). The fact that the L2(R").. are
irreducible follows from an uninteresting technical argument. O

This lemma implies that for all M € Sp(n, R) one has
oM MYPP (MY = P. (2.44)

2.3 Berezin Quantization on Flat Space

After this preparatory material we turn to the quantization of T*R". A suit-
able choice of the Poisson algebra we wish to quantize tums out to be ﬁl?R =
CX(T*R”, R); this is a dense subspace of QI?R = Co(T*R", R) under the sup-norm.
We write 0 = (p, q); the Poisson bracket is given by 1.(2.24).

We now construct a Berezin quantization of Ql% from a pure state quantization,
as outlined in 1.3. The strategy is generic.

Proposition 2.3.1. Put I = R and H; := L*R") for all h # 0. For each
(P, q) € T*R", define a unit vector ¥\"'" € Hy, by

WP = U(p, W; (245)
WO(x) 1= (wh) /4 /OM, (2.46)

¢f (2.22). Explicitly, one has
WP (x) = () 4e11Palhgipx/hg—e—aP O, (2.47)

Denote the projection of \Il,(i” 9 & SH), to PH;, by Vfé” "D Then the choices

aF(p. )= yP?, (2.48)
d"pd"q
d ,q) = .
ur(p, q) anhy (2.49)

yield a coherent pure state quantization of T*R".

This is established by simple computations. In fact, (1.10), without the limit,
and (1.8) are valid for any unit vector \ll,?; the explicit choice (2.46) is used only
to prove (1.9). Here the decisive intermediate result may be expressed in terms of
complex variables (see (2.28)) as

R ——
W, WD) = Kz, w) = ol TFT TN, (2.50)
cf. (1.38). Hence (1.11) is immediate from the corollary
p(afw), ¢f (@) = e~e~wI"/h, =
The Berezin quantization Qﬁ defined by (2.48) (cf. 1.3.4) is given by

B _ d"pd"q (2.q)
Q8(f) = fT o G ), @.51)
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where f € L*(T*R"). For f € Co(T*R", R) the Gelfand transform (1.15) is

5 _ d"pd"q
P(W) = /T ey

In terms of the complex variables (2.28), the measure (2.49) reads
d"zd"z

Qrhiy

Proposition 2.3.2. [In the context of Proposition 1.5.2 (in which, using complex
coordinates, H" = L2(C", uy)), the Hilbert space Hy, consists of all functions of

the type W(z,7) = exp(—zZ/(2R))¥ (Z), where WV is an entire function for which
Jon d"2d"Zexp(—22)|I W R)|* < 0.

v ) f(p, ). (2.52)

dup(z,7) =

(2.53)

We call the space of functions of the stated type HX(C™); elementary analysis
shows that it has KCj, (cf. (2.50)) as a reproducing kernel. By the argument given in
the proof of 1.5.2, norm-convergence in H?(C") implies uniform convergence. This
shows that H 2(C") is complete. Moreover, the fact that entire functions are given
by Taylor series (uniformly convergent on compact sets) shows that the functions
{&)a}mzo’ where @ := (a4, ..., ®,) is a multi-index, with |¢| := ¢ + - - + «,,
and

" —1/2
D7) = (]’[ h% !) 7, (2.54)
i=1

where 7% = Z‘f‘ ---Zy", form an orthonormal basis in ﬂh. The orthonormality
follows from an elementary computation in polar coordinates.
Using (2.47) and (2.28), we write (1.42) as

WW(z,7) = (Th) "/ 4e @)/ f d”x\Il(x)e( 3x Bz ) (2.55)

The integral converges uniformly in z on compact sets, so WW is exp(—zz/(2h))
times an entire function in Z. The square-integrability of W\ follows from
the fact that W is a partial isometry. Hence H, < HXC"). For example,
Ku(-, w) € Hy, for each w € C", as it should be. One computes (Pq, Kr(-, w)) =
27"/2 exp(— L ww)w?. It follows that (P, Ky(-, w)) = 0 for all w implies ¢ = 0,
so that the span of the collection of functions Kp(-, w) € Hy, w € C*, is dense in
’f{h. Since these are the images of the coherent states in Hj; under W, the proof is

complete. u

With hindsight, we can now formulate a unitarily equivalent formulation of
. o . . —2
Berezin quantization on T*R": We start with the Hilbert space H(C") of
conjugate-entire functions on C", whose inner product with respect to the Gaussian
measure on C" is finite, namely

d"zd" .
(W, ®):= h" f 202 iy (D) < oo. (2.56)
c @miy
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The functions ®, occurring in the proof of 2.3.2 form an orthonormal basis of
ﬁ;(C”). The latter plays the role of H in Definition 1.5.3. The Berezin quantization

in this realization, which we denote by Qﬁ to avoid confusion with the equivalent
version (2.51), is then given by

OF(f) = pfp. (2.57)

Here f is regarded as a multiplication operator on HE = L*C", h" /,LG) {where
ul is the Gaussian measure occurring in (2.56)), and p is the projection onto the

subspace H h(C") of entire functions of 7 in H". Compare with (1.44).

The Hilbert space —ﬁ;(C") has an (unnormalized) reproducing kernel, the so-
called Bergman kernel, given by

K4z, w) = e¥¥/h, (2.58)

Hence by Proposition 1.5.4 each evaluation map E, : ¥ — W(Z) is continuous.
The coherent states W}” are defined as in (1.53). As in the passage from (1.44) to
(1.56), we may then rewrite (2.57) as

0P ()@ = h" f LIV wmpn G, wyfw, BY@). (259
Cn (271'1)"

Asexplained in 1.3, this can be transferred to the Hilbert space H,,, which possesses
the normalized reproducing kernel (1.55). In the present setting, H,, coincides with
Hy, (cf. 2.3.2), since the rescaled measure Wy is just the Liouville measure times
h™". Hence we indeed have

0k(f) = fc dun(w, T f (w, D). (2.60)

There is yet another, closely related, way of looking at Berezin quantization, or
rather the coherent states behind it. For any Hilbert space K, with inner product
(, )x»we introduce the exponential Hilbert space, or bosonic Fock space, exp(K)
as follows. Let the Hilbert space ®.X be the symmetrized tensor product of /
copies of K; this is the invariant subspace of ®' X under the natural action of the
permutation group S;. The closure of the direct sum of all ® K is

exp(K) :== P &iK. (2.61)
=0

This space is separable iff X is. The element 1 € C = ®°K is denoted by £;
elements of X are called w or z. We define a map /Exp : K — exp(K) by

VExp (w)_Z————Q+ + ﬁz_'er---; (2.62)

this is called an exponential vector. This map is clearly injective, since the compo-
nent of ./Exp(w) in K C exp(K) is w itself. The inner product of two exponential

vectors is
(,/Exp(w), ,/Exp(z)) = Wk, (2.63)
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For one thing, this equation easily entails that ./Exp is continuous. It is not difficult
to show that the collection of exponential vectors is linearly independent and total;
i.e., the linear span € of all ./Exp(w), w € K, is dense in exp(K).

For K = C" it is clear from the fact that (2.54) provides an orthonormal basis

that the map V}, : exp(C") — ﬁi(C"), defined by extension of
1
Vaw ®; -+ Qs wi)(2) = W(Z, wi)en - -+ (2, wen (2.64)

is unitary. Hence the subspace ®.C" of exp(C") corresponds to the subspace of
Ith order monomials in ?I—i((C"). Note that

(Vin/Exp(w/VR) @) = /", (2.65)

cf. (2.58). Hence, with the convention (2.28), the coherent states (2.45) in L*(R")
correspond to the vectors /Exp (w / «/ﬁ), up to normalization. Using (2.63), we
may therefore rephrase Proposition 2.3.1 as

Corollary 2.3.3. For finite-dimensional K the unit vectors (cf. 1.5.1)
1 -
WY = o 3w/ fEp (w /«/ﬁ) (2.66)

define a coherent pure state quantization of K into Hy, := exp(K) for all h # 0.

Conceptually, one should stress that X, although a Hilbert space, is to be seen
as a classical phase space. In particular, g(w) depends on the phase of w, so
that g5, does not quotient to a function on the projective space IPX. In the infinite-
dimensional case the conditions (1.8) and (1.9) are not defined in the absence of
a Liouville measure on K, but (2.66) makes sense, and comes from a map g, that
satisfies the crucial condition (1.11).

Corollary 2.3.3 and (2.45) suggest that one look for a realization of the repre-
sentation U (H ) on exp(K’); what follows holds whatever the dimension of X.
For each z € K the annihilation operator a(z) is an unbounded operator on the
dense domain & C exp(K) satisfying

a(z)vExp(w) = (z, w)cv/Exp(w). (2.67)

The map z > a(z) is evidently antilinear. It can be shown that a(z) is closable;
the domain of its adjoint a(z)* contains €. The map z — a(z)* is linear; a(z)* is
called a creation operator. The domain € is evidently invariant under a(z); it can
be shown that a(w)* € is contained in the domain of the closure of each a(z). The
commutator [a, a*] is therefore well-defined on &; it is given by

[a(z), a(w)*] = (z, w)k. (2.68)

The unbounded operators exp(a(z)) and exp(a(z)*) are defined on € as well, where
their action is given by a strongly convergent power series expansion. From (2.67)

one obtains
"D [Exp(w) = @ /Exp(w); (2.69)
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D" JExp(w) = VExp(z + w). (2.70)
In terms of these, the analogue on exp(X) of the Weyl operator (2.22) is

U% (Z) = eﬁ[a(z)*—a(z)]; (2-71)

the unitarity of U is obvious from this expression, and z > U 1 (2) (with (2.28))
yields a representation of the Heisenberg group that is equivalent to the one defined
in 2.1 under the same name. We then see from the CBH-formula and (2.68) that
we may rewrite (2.66) as

WY = U ()R 2.72)

The position and momentum operators (2.23), (2.24) may then be expressed in
terms of the a and a* as Q)" = \/Th(a; +a}) and P}, = \/Th(a; —a¥)/i, where
a(z) = a;7, etc.

2.4 Properties of Berezin Quantization on Flat Space
Berezin quantization on flat space has the following pleasant property.

Theorem 2.4.1. Puiting A° = CX(T*R") and A" = Bo(LX(RM)) for h # 0,
the Berezin quantization map QF : A% — UL defined by (2.51) is a nondegener-

ate strict quantization of the Poisson manifold T*R" (with its canonical Poisson
bracket 1.(2.24)) on I = R. Moreover,

QP (Co(T*R™)) = Bo(LAR™)). (2.73)

Hence Qf is a strict deformation quantization, except for (1.3), of A° =
Co(T*R").

Before starting with the proof, we note that QF determines a continuous field
of C*-algebras by Proposition 1.2.4; this will be further developed in 2.6.

The nondegeneracy of QF is an easy corollary of 2.3.2. For ¥, ¥, € H; and
W defined by (1.42) we have (¥, Qg(f)\llz) = (WW,, f WW,), where the inner
productisin H" = L?(S, d ). Since one can construct a basis of the latter Hilbert
space consisting of functions of the type W\W; WW,, the property Q,f (fH=20
implies f = 0 almost everywhere, which means that f = 0 for f € C(T*R").
The converse is trivial.

The fact that QF maps C2°(T*R", R) into Bo(L?(R")) follows from 1.3.5. To
show that QF(C°(T*R")) is dense in Bo(L*(R")), one observes that QF (f) is
Hilbert-Schmidt for f € C°(T*R"). If one assumes that f(p, q) = fi(p) f2(q),
the kernel K (x, y) of Q,f( f) factorizes as a function of the variables x 4 y. Each
factor is then easily seen to be dense in L*(R") as f; runs through C 2°(R™). Equation
(2.73) then follows from 1.4.5.

Rieffel’s condition and (1.1) hold by Proposition 1.3.6.

We now turn to the proof of (1.2), using (2.28). For m € N we will use

lglmoo =" D 11002 fllco, (2.74)

48] <m




138 II. Quantization and the Classical Limit

where o and 8 are multi-indices, and 8% := 87’ - - - 857, etc. For W € L*(R") we
write (W?, W) = exp(—zZ/(QR)¥(2); cf. 2.3. 2 From (2.51) and (2.50) we obtain,
after a shift of one of the integration variables,

¥, QX (AR (W) = f dpn(z, DdunE, ) e~ @ HEEHDIR
X WV +E) @ Dglz+Ez2+E). (275)

One now expands g(z+&, z + £) in a Taylor series around (z, 7). The zeroth-order
term leads to (¥, Qg(fg)\ll). The remainder is < C||gll1.00l€], for a constant C
of order 1 (further contributions to this constant will be absorbed without change
of notation). We take || f ||« out of the integral, and of the factor exp(—£E /h) we
put exp(—££ /(2h)) into the measure. We then apply Cauchy—Schwarz to the &-
integral, factorizing the &-dependent integrand into |£| times the rest. The first of
the ensuing two £-integrals is a Gaussian integral of |&|?, which is proportional to
F (which appears under a square root, so it will lead to a factor h!/?). There remains
an integral over z and §. Here we apply Cauchy—Schwarz to the z-integration. The
resulting triple integral factorizes after a shift in one of the variables, and can be
performed; two of the factors are equal to |{W||. Hence

(W, [QF(f)QF (8) — QF(f9)IW)| < Cliflloo liglooll IR (2.76)

By 1.2.1.8, 1.2.5.3, and 1.(1.57), for each A € ‘B(H)g there is a unit vector
¥ ¢ ‘H such that

Al = [(W, AW)]. .77
Hence (1.2) follows from (2.76), which implies
lim | Q7 (f) 0 QR (&) — Q' (fo)ll =0. @78)

The proof of (1.3) is similar. We consider (2.75) with (¥, QF (f)QF (g)W¥) re-
placed by (W, [g&), Q,’l’ (g)1¥). On the right-hand side one then has the terms
[z 28+E& z2+&)— f(z+&, 2+ 8)g(z, 2), instead of f(z,2)g(z + &,z +§).
One now expands g(z + &,z + &) as well as f(z + &,z + &) in a Taylor series
around (z, 7). The zeroth-order term obviously vanishes. The linear term can
be evaluated by also expanding exp(—zg/h)\ll(m) in powers of £. The &-
integration can then be performed: The only nonzero contribution comes from
factors ££. A partial integration in z then shows that the linear term equals
Y, QB(—i{f g} + gddf — f8dg)W¥), where the Poisson bracket is given by
(2.31).

The quadratic term contains EE(f00g — gddf). In the &-integral only the
zeroth-order term in & from exp(— —zE/ h)ql(m) contributes, and the result may
be expressed as h(W¥, Qh ((f8dg — g8 f)W¥). This cancels the additional term
from the linear contribution. Hence the linear term and the expression with ££ in
the quadratic term together produce A(W¥, Qh( i{f, g))¥). The remainder of the
quadratic term has a part proportional to £E, which vanishes upon integration, and
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a part proportional to £&. After £-integration, and partial integration in z, the latter
part is easily seen to be bounded by #2{| £ |l4,00 |8 ll4.00 | ¥||%.

The contribution of the higher-order terms is estimated as follows. Taylor’s
formula with remainder of third order yields an object bounded by 2| fll3.00
llgll3.00l€13. We now proceed as in the proof of (1.2): Practically the only dif-
ference is that the Gaussian integral of |2 in that proof is now replaced by one of
|& |6, which leads to an overall factor of order 2. All this leads to the estimate

W, %[Qﬁ(f), Q@] — QS gDl <
(C1f 3,00 18 113,00B"72 + Call Fll4.00 1811 4.00R) 1P 112 (2.79)
Equation (1.3) now follows in the same fashion as (1.2) above. |
We turn to the equivariance properties of QF . In preparation:

Definition 2.4.2. Arn automorphic action « of a group G on a C*-algebra U is
a homomorphism x +— «,, such that each a, is an automorphism of *l. In other
words, apart from the linearity and bijectivity of each a, : %l — U one has the
properties oy 0 0ty = Oy, Ax(AB) = o (A)ax(B), and o, (A*) = ax(A)*.

Consider the natural action p° of Sp(n, R) x R?" on T*R" ~ R?", according to
which (M, w) maps o0 € T*R” to p(OM,w)(a) = Mo + w (cf. 2.2). This leads to
an automorphic action a® of Sp(n, R) x R?” on A® = Co(T*R"), given by

A, (F) = f 0 Py - (2.80)

Also, one has an automorphic action a” of G on A" = Bo(L>(R")), given by the
representation constructed in 2.2.2. That is,

g wy(A) 1= p"(M, w)Ap"(M, w)*. 2.81)

Theorem 2.4.3. For each (M, w) € U(n)x R*, where U(n) = Sp(n, R)YNO(2n)
(cf. the text surrounding (2.28)), and all f € Co(T*R"), one has

QR @,y () = Ay, ) (R (F)). (2.82)

To prove this, we rewrite (2.51) as a weak integral

Bygy d"pd'q 0 *
QR (f) = ‘/T‘Rn Gl F. U (p, PIVLIUL(p, q)". (2.83)

The equivariance under R?" is obvious from this formula, the last claim in 2.2.2,
(2.22), (2.6), and (2.19).

Lemma 2.4.4. IfU € U(n) and p" is the metaplectic representation of Sp(n, R)
on My, = L*(R"), then

PRI WU = (W1 (2.84)

This is most easily proved in the realization on 7, described in 2.3.2. From
(2.55) and (2.50) we have W\Il,?(z, 7) = exp(—zz/(2h)). If U € Sp(n, R)YN0O2n),
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then Wpo™(U)W* can be shown to be given by

Wo(U)W*¥(z,7) = V(U™ 'z, U ), (2.85)

1
J/det(0)

from which (2.84) is immediate. O

The equivariance under U (r) follows from this lemma and (2.40). Since each
element of a semidirect product factorizes, Theorem 2.4.3 follows. |

This theorem can be reformulated in terms of dynamics on T*R”.

Corollary 2.4.5. Define a class of classical Hamiltonians on T*R" by

h(p,q) = 3(p, Ap) + 1(q, Aq) + (p, Bq) + (¢, p) + (d, q), (2.86)

where A and B are real n x n matrices such that AT = A and BT = —B, the
inner products are in R", and ¢, d € R". Denote the time evolution generated by h
on the classical observables by (x? (cf. 1.(2.13)). Define the quantum Hamiltonian
Hj by

Hy = QF(n), (2.87)

which is an unbounded operator with domain S(R"). Then Hy, is essentially self-
adjoint on S(R"). The one-parameter automorphism group a,h on Bo(L2R™M)) is
defined by

al(A) := el ik pe =N, (2.88)
Then one has
QE@2(f)) = aMQF (). (2.89)

A matrix X € 9,(C) lies in U(n) when it satisfies JX + X TJ = 0 and
XT 4+ X = 0. The polynomial (2.32) is then precisely of the form of the quadratic
term in (2.86). For A of the form (2.86), one computes

QB (h) = L(PS, APS)+ H(Q3, AQY) + (P§, BOY) + (¢, P{)+(d, Q) (2.90)

in terms of (2.24) and (2.23). This follows by calculating the matrix elements
between coherent states (which indeed lie in the domain of H}). The expression
(2.90) coincides with (2.41), and therefore the essential self-adjointness of Hp, is
a consequence of Proposition 2.2.2. Corollary 2.4.5 now follows from Theorem
2.4.3, exactly as in the derivation of (2.42). |

2.5 Weyl Quantization on Flat Space

Theorem 2.4.3 suggests that one look for a quantization that is equivariant under
the full affine symplectic group Sp(n, R) x R?". It is obvious from Lemma 2.4.4,
in particular from (2.84) and (2.44), how this may be accomplished: One simply
replaces the projection [\Ilg] in (2.83) by (a constant times) the parity operator P.
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This leads to the definition of the Weyl quantization of a suitable function f on
T*R” as the operator on L2(R") given by

W d"pd'q N
Qr ()= fp. U (p,9)PU.L(p, q)". (2.91)
R (TH)" h n

The normalization has been chosen so that Q,‘i"(lpw) = I. Note that at least
in a heuristic sense, Q,VLV(S) = (mh)™" P (where § is the Dirac delta function on
T*R" ~ R?"), which places the parity operator in a remarkable light.

Since the Fourier transform will play an important role in what follows, we
choose the Schwartz space

A% = S(T*R", R) (2.92)

as the Poisson algebra to be quantized. Clearly, the closure of 240 in the sup-norm
is A = Co(T*R*). We define (2.91) for f € S(T*R"); it is immediate that Q,’.lv
maps S(T*R”, R) into B(L2(R"))g.

We will shortly see that Q,‘;’( f) € By(L*(R")). Given our motivation for
constructing Q" the following comes as no surprise.

Theorem 2.5.1. Let a® and a” be as in (2.80) and (2.81), respectively. For each
(M, w) € Sp(n, R) x R and all f € S(T*R"), one has

QY (@) () = iy 1y (QF () (2.93)

The proof is similar to that of 2.4.3, with (2.44) replacing (2.84). O
Corollary 2.5.2. Let the classical Hamiltonian h be an arbitrary real polynomial
on T*R" of degree < 2 in (p, q). The quantum Hamiltonian Hy ;= Q,viv(h) (see
(2.41)) is well-defined as an unbounded operator on the domain S(R"), on which

it is essentially self-adjoint. With the one-parameter automorphisms of and a,h
defined as in 1.(2.13) and (2.88), respectively, one has

A @) = QY () (2.94)

Equation (2.90) is valid (and proved by the same method) also if Q,f is replaced
by Q,‘,lv, which settles the domain and self-adjointness issues. The corollary then
follows from Proposition 2.2.1. ]

The notation Q,YLV used here and in (2.41) will be justified shortly.
Weyl quantization may be rewritten in various ways. Firstly, one has

Woen d"pdq W
o= [ ot v 2.99)

where Q¥ (p, g) € B(LA(R")) is defined by
QY (p, )W (x) := 2"HPe— DMy (2q — x). (2.96)
The function f may be recovered from Q} (f) by the formula

fp.9)=Te Q¥ (HY (. q). (2.97)
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This equation may be proved by noting that Q) (f) is trace-class for f € S(T*R")
(see below), so that Q) ()R (p, q) is trace-class as well, because 2} (p, q) is
bounded. If K (-, -) is the kernel of QY (f)QY (p, q), its trace is [ d"x K(x, x),
which easily leads to (2.97).

More generally, the Weyl symbol a,:v LA) of an operator A € B(L?(R"))is a
distribution in §’(T*R") defined by

o LAN(S) == Qrh)"Tr AQY (£). (2.98)
If a,}v LA] is a locally integrable function, we see from (2.95) that one may write
oy LAl(p, q) = Tr AQY (p, 9). (299

Comparing this with (2.97), for f € S(T*R") one infers that
QY (o LAD = A. (2.100)

(Using distribution theory it is possible to make sense of this equation even when
f € 8(T*R").) Hence o, is the inverse of Q).
Analogously to (2.52), we can write the Gelfand transform of QY (f) as

e — dn d’l
AV (HW) = f 2L i O f (@) (101)
rere (27)
where the (real-valued) Wigner function is given by
Wil¥](p, @) = F"(, QY (p, 9)¥). (2.102)

Since Q,‘.l"(p, q) is 2" times a unitary operator, the Cauchy-Schwarz inequality
implies that ||Wy|¥]llec < (2/R)" (if W had not been normalized, the bound
would contain an additional factor ||W||2). It is then easy to show that Wy | €
L3(T*R") N Co(T*R™). The expression (2.102) is often written as

Wilv 1(p. q) =f d"ve'P’W(q + L)W (g — 1hv). (2.103)
mn

It may be inferred from (2.102) that Q,?lv is not positive, since there exist vectors
W for which Wy|v] is not positive definite. For such W, the Wigner function
may not even be in L'(7T*R"). Here Berezin quantization is much better behaved.
Comparing (2.101) with (2.52), one sees that the Wigner function Wy || in Weyl
quantization replaces the positive definite expression (p, q) — K™"p(¥f9, ¥)
(whose L'-norm is 1 by (1.8)) in Berezin quantization.

It follows from (2.98) and (2.102) that for a unit vector ¥ € LZ(R") one has

oy LIW1] = W' Wily ], (2.104)
or, by (2.100),
(W] = B QY (Waly ). (2.105)

Consequently, the transition probabilities 1.(2.65) in P(Bo(L>*(R"))) may be
expressed in terms of the overlap of the pertinent Wigner functions as
n

d"pd"q
, o =h"/
p(p, o) o Q)

n

Wilpl(p, @)Wrlo l(p, q); (2.106)
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note that the integral on the right-hand side is well-defined, since we have just seen
that Wy, € LZ(T*R").
The image of Q}f in B(L2(R")) is best studied by rewriting (2.91) as
W d"pd"y ipe-yyh 1
o pvm = 2. F(p i +)¥e). (2107
rore 2 h)

In other words, QY (f) is an integral operator

QY (FH¥(x) = /R &y K LF1Ge, )0 Oy); (2.108)
K LFIGr, y) = B F (5 — y)/By A(x + ). (2.109)
Here the partial (fiberwise) Fourier transform f € S(TR") of f € S(T*R™) is
R d"t R
F.q) = f 2P v s(p, ). 2.110)
rep 7Y

Proposition 2.5.3. The map Q) is an isomorphism between S(T*R") and the
space B, (L*(R™)) of Hilbert—Schmidt operators on L*(R") with kernel in S(R?).

This is immediate from the above expressions. n
Corollary 2.5.4.

o The image Q) (A°) is a norm-dense subalgebra of % = Bo(LAR")), and
therefore acts irreducibly on L*(R").
o The quantization Q;LV is nondegenerate (cf. 1.1.2).

Finally, we rewrite (2.91) as
QY (f) = f d"ud"v f(u, v)U$ Exp(—uQ + vP)). (2.111)
R

For f € S(T*R") we have defined the symplectic Fourier transform f € S(R?")
by inverting

fp,q) = f d"ud™v f(u, v)e'“a—P, (2.112)
RZn

Hence we see (with Weyl) that Q)Y corresponds to a particular operator ordering,
in which the function (p, g) > exp(iug — ivp) on T*R” (smeared with a test
function) is quantized by the operator U ,f (Exp(—uQ + vP)) on L2(R"). Ignoring
the test functions, one may repeatedly differentiate with respect to u and v; the
linearity of Q¥ then indicates that polynomials P on T*R" are Weyl-quantized
by (2.37). An interesting corollary to (2.111) is

Proposition 2.5.5. The Schrédinger representation (2.17) is irreducible.

If U were reducible, by Schur’s lemma there would exist E € B(L2(R")) such
that[E, U,f(u, v, z)] = Oforall (u, v, z) € H,.Equation (2.111) and the definition
of a weak integral then imply that [E, Q;V(f)] = 0O for all f € S(T*R"). But we
saw in 2.5.4 that Q,Y(S(T*R")) acts irreducibly on L2(R™); cf. 1.2.2.2. [ |



144 II. Quantization and the Classical Limit

2.6 Strict Quantization and Continuous Fields on Flat Space

In this section we show that Weyl quantization is strict, and even continuous, like
its Berezin counterpart. The continuous field of C*-algebras generated by Q) or

QF will be described in terms of the Heisenberg group H,.

Theorem 2.6.1. The Weyl maps Q,‘,LV define a strict deformation quantization of
il% = S(T*R", R) (with Poisson bracket 1.(2.24)) over I = R, with A" = A :=
Bo(L2R™)) for h # 0.

Given that it is strict, the fact that QKV is a deformation quantization follows
from 2.5.4. A key ingredient of the proof of strictness is an estimate we borrow
from the theory of pseudo-differential operators.

Lemma 2.6.2. There exists a constant C > 0 such that for all f € S(T*R")

1Y (A < Cll Flzns 1,000 (2.113)
where, for m € N (cf. (2.74)),
Iflmoo = D 18292 fllco- (2.114)
le|+IBl <m

Here ag = 8;; e Bg:; similarly for 85 .

This lemma is useful also for A # 1, because QY (f) = O (fn), with
fu(p,q) == f(hp, q). Indeed, it now rapidly follows that A +> Q,‘.Lv(f) is con-
tinuous as a function from R\{0} to Bo(L*(R")); this implies the continuity
of h ||Q,’1V( Dl for b # 0. Also, (1.2) and (1.3) follow straightforwardly
from (2.113) by computing f -5 g. As in 1.1, this is defined by the property
QY (£)QF (g) = QY (f 1 &), and can be computed from (2.109).

To prove continuity at A = 0, we use the following facts. Firstly, a simple
computation shows that the Wigner function (2.102) of the coherent state (2.46)
is a Gaussian:

Wiyl l(p, q) = (%) e~ @ +PIIM, (2.115)

Secondly, the connection between Weyl quantization and Berezin quantization is
given by

QR(f) = QN (WalyRl = 1), (2.116)
where * is convolution in 7*R” ~ R?", This may alternatively be written as
1,
QR(f) = QY (3" 1), @2.117)

where Ay, is the Laplacian on T*R” ~ R?",
Proposition 2.6.3. For each f € S(T*R") the function
R 1QR() — QY (NI

is continuous on R. That is, the Weyl and Berezin quantizations of S(T*R") are
equivalent.
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This follows from (2.116) and an application of Lemma 2.6.2. Note that
continuity at & = 0 simply follows from

lim | QY (f) — QF(HI =0 (2.118)

(from the same lemma), since QY (f) = Q8(f) = f. m

The continuity of A > || Q,YLV ()l ath = 0(and, indeed, at any A) is now obvious
from 2.6.3 and 2.4.1 (or 1.3.6), finishing the proof of 2.6.1. [

A different and much more general proof of Rieffel’s condition for Weyl quan-
tization will be given in Theorem II1.3.11.4. For now, we return to the Heisenberg
group. One may extend (the inverse of) (2.112) to obtain an isomorphism be-
tween S(H,) and S(h}). Thus the (symplectic) Fourier transform f € S(H,) of
f € S(b}) is defined by

v d"pd"qdc ,, _ )
flu,v,5) :=/ —Zz—ft)—z’(']:’—'—l—el(uq Pv=es) £(p, q, c). (2.119)
by

What follows is a special case of a general construction explained in IIL.1.7. One
can define an associative product - on S(H,) by convolution, i.e.,

f-8,v,s) = -/: d"u'd"v'ds’ f((u,v,s)- ', v, sy Hgw' v, s"), (2.120)

n

as well as an involution * by

[, v,8) = f(u,v,s)"L. (2.121)

A representation U of H, onaHilbert space H defines alinearmap r : S(H,) —
B(H) by

n(f):= f d"ud"vdt f(u,v, s)U(u, v, s). (2.122)
H,

Using (2.120), one easily checks that any representation U (ﬂn) thus defines a
representation 7 of S(H,) as a *-algebra.

We firstly use this construction with H = H = L2(l~1,,, d"ud"vds), and U(I?,,)
defined by

U, v, )@, v, s") = V@, v,s)" - @, v, s)). (2.123)

It is clear that the ensuing representation 7 (S (H,)) defined by (2.122) is faithful.
One now puts a norm on S(H,) by

AN == 7 (OIl; (2.124)

this is evidently a C*-norm. The completion of S(H,) in this norm is denoted by
C*(H,). All representations of the convolution algebra S(H,) extend to C*(H,)
by continuity. Now recall Definition 1.2.1 and (2.14).

Proposition 2.6.4. Define i : C*(H,) — Co(T*R") by n§(f) 1= fio, extended
from S(H,) to C*(H,) by continuity; this yields a representation of C*(H,) on
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L%(T*R") by multiplication operators. For h # 0, define a representation 7t} of
C*(H,) on L*(R") by putting U = U} in (2.122); see (2.17).
The triples (C*(Hy), (4", 7 bnew) and (C*(Hy), (4", 7w hheoun z). where

A0 .= Co(T*R") and A" := Bo(L*(R")) for h # 0, are continuous fields of
C*-algebras.

Analogous to (2.111), one derives the remarkable relation
QY (fiw) = my (). (2.125)

One may then imitate the method of proof of Rieffel’s condition in Theorem 2.6.1,
concluding that the function & > Ilnh ( f )|l lies in C(R) for f € S(H,). Moreover,
one infers from Lemma 2.6.2 and the fact that f, decreases rapidly in A that this
function even lies in Co(R). Since Jt;f is continuous, this property holds for any
f € C*(H,). Hence condition 1.2.1.1 is satisfied.

Consider the Hilbert space H := L2(R;(27) " >'dh|h") ® B(L*R")); el-
ements of H are functions on R taking values in Bo(L2(R")), with inner
product

dh n *
W, @) = / Gy [ Tr ¥ () (). (2.126)

For ¥ € S(H,) C H and A # 0 one then defines the operator W\I!(h) on L2(R")
by WU (h) = Jr,f (\Il) We know from Proposition 2.5.3 that W\Il(h) is a Hilbert—
Schmidt operator. An explicit calculation, using (2.109), shows that W : S (H ) —
‘H is unitary, so that W can be extended to a unitary isomorphism from H to H.
Writing 7w := WaW*of C *(H,), the point is now that

(HWR) = 73 (HHw(h) 2.127)

for all f € C*(H ). Using (2.122), (2.123), and (2.17), this is initially proved
for f € S(H,), and extended to C *(H ) by continuity. The product of 7y, S( f ) €
SB(LAR™)) and W(k) € B(LE2(R™")) lies in B,(L2(R™)), because By(H) is a
(two-sided, nonclosed) ideal in B(H).

Condition 1.2.1.2 now follows, since from (2.127), (2.124), the unitarity of W,
and 1.2.1.1 just proved, one has

£l = SUP Iz (I (2.128)
It follows from 2.5.4 and (2.125) that 7 (S(H,)) is dense in Bo(L*(R™)). For

k # 0 one therefore has
TR (C*(Hy)) = Bo(L*R™), (2.129)

since the left-hand side is norm-closed by 1.1.3.10.4. This is consistent with (and
could alternatively have been derived from)2.1.4,111.1.7.5,and 1.2.2.2.1. Similarly,
since ng(S(H,,)) is dense in Co(T*R"), by 1.1.3.10.4 one has

73 (C*(Hy)) = Co(T*R). (2.130)
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The results just proved imply that S(H,), regarded as a subspace of [Ther 2%,
satisfies the three conditions in Proposition 1.2.3, Moreover, it is obvious from
property 1.2.1, the definition of the norm in C *(H,,) and the continuity of each
representatlon nh that the function i — ||n,f(f) — n,f(g)ll lies in Co(R) for each
f € C*(H Jand g € S(H ). In view of the uniqueness part in the statement of
Proposition 1.2.3, the continuous field determined by S (FI,,) C [Ther Yh through

1.2.3 therefore coincides with the field (C *(Ho), (AP, 7} }he]R)'
The statement about C*( H,,) is obvious from the comment preceding (2.18). M

Theorem 2.6.5. The quantization maps Q) of Weyl and QF of Berezin both
satisfy the assumptions of Theorem 1.2 4, and therefore lead to a continuous quan-
tizationof T*R" (cf. 1.2.5). The continuous field of C*-algebras determined by Weyl
quantization according to Theorem 1.2.4 coincides with the one determined by

Berezin quantization, and is equal to the continuous field (C *(H,), (A", ﬂ;f } heR)
of the C*-algebra of the Heisenberg group.

First observe that limp_, +o0 || Q,‘;’(f)” = 0 for all f € S(T*R"). This is most
casily proved by (2.108), (2.109), and the inequality || A|| < || All,; see the comment
after 1.1.6.5. Combining this with Theorem 2.6.1 implies that the first claim in 2.6.5
holds.

Similarly, it follows from (2.51) that ||Qh HI < ™" f f, so that for f €
C(T*R") one has limp, 00 ||Qh (O = 0. With Theorem 2.4.1, this leads to
the second claim in 2.6.5. The continuous fields determined by Weyl and Berezin
quantization then coincide by Propositions 2.6.3 and 1.2.3 (used in the context of
the proof of 1.2.4).

Lemma 2.6.6. The continuous field determined by S(H,) through Proposi-
tion 1.2.3 coincides with the continuous field determined by Weyl quantization
according to Theorem 1.2 4.

It is clear from Proposition 2.6.4 that S(H,) satisfies the three conditions in
1.2.3. Similarly, we know from the part of the proof of 2.6.5 that has already been
given that the assumptions in 1.2.4 are met. Now note that for any compact set
K C R one may choose f € S(H,) such that JSin does not depend on A forki € K.
This shows that the second field defined in 2.6.6 is contained in the first.

Conversely, let A € [],.x A" lie in the first field. It then satisfies the first
(“if”) condition in Lemma 1.2.2, where each B" is of the form k > ns GD] Fy
for some f% € S(H,). Hence for each &' € K there exists a function fh
S(H,) and a neighborhood A" such that ||A), — S (f) < eforall b e Nﬁ/
Employing the partition of unity in the proof of 1.2.2, define C € [Thex A" by

Cp = Z ~(h)Q,le (fhj) Since fh’ lies in S(T*R"), the section C lies in the
second field because of 1.2.1.3. As f% ¢ S(h7), one can choose the neighborhoods

N™ small enough so that || f% (-, B) — fh(., h; l2ns1,00 < €/C forall h e N
cf. (2.113). Using (2.125) and (2.113), one finds that || A5 — Cy|| < 2¢ uniformly



148 II. Quantization and the Classical Limit

on K. Since both fields vanish at infinity, this shows that A lies in the second field
in 2.6.6. The claim follows. u

Theorem 2.6.5 follows from this lemma, since by the proof of Proposition 2.6.4
the first field in 2.6.6 is (C*(Hy), (4", 7 }hew )- -

Corollary 2.6.7. The restriction of the continuous field of 2.6.5 to R\{0} is trivial:
if A : R\{0} = Bo(L*(R™)is in Co(R\{0}, Bo(L2(R™))), then A is the restriction
of some element of C *(H ) (seen as an element of [ | g A") to R\{0}.

As in the paragraph following 2.6.2, for A # 0 the map h — QW (fin) is
continuous as a function from R\ {0} to Bo(L2(R")). The claim then follows from
2.6.5 and the proof of 1.2.3. |

A fascinating perspective on Theorem 2.6.5 will be given in I11.3.12.

2.7 The Classical Limit of the Dynamics

We turn our attention to the connection between classical and quantum dynamics
on flat space. Equation (2.94) does nothold if 4 ¢ P=2; for general Hamiltonians A
one merely has asymptotic results. For the moment we proceed in a more general
context, and consider a general strict quantization Qp, defined with respect to some
29 C Co(T*R*) and A € B(L*(R")). The sharpest convergence occurs when
h itself lies in AC; then Hy, = Qp(h) is in AR We use the notation of (2.88) and
preceding text.

Proposition 2.7.1. The flow of h € S, is complete. For f € Y, assume that
a2(f) € A% for all t. For any strict quantization Qy, (such as Qp = QY or
Q) = QF), for all fixed t one then has

lim | Q@) — & (Qu(NIl = 0. (2.131)

For @ = QF and Oy, = Q) we had A% = CX(T*R") and A = S(T*R"),
respectively; since the Hamiltonian flow is smooth the assumption that e, (f) € Qlo
is therefore satisfied in those cases.

The completeness of the flow of A follows, by a standard argument, from the
fact that its Hamiltonian vector field &, is bounded on 7*R" (the components of
&, in canonical coordinates are themselves in A0 r)- To prove (2.131) we write

! d
On@®(f)) — M) = f ds T-al (@XM

t
:f dsal, (Qh({h,a?(f)})—%[Qh(h), Qh(af(f))])- (2.132)
0

Using the fact that automorphisms are norm-preserving, we therefore see that the
norm || Q@ (f)) — aM(Qr(f))| is bounded by

t
/ds
0

Qn({h, X)) — }L[Qh(h), On(@2(fN “ :
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By (1.3), the integrand vanishes as i — 0. n

Since most realistic Hamiltonians in physics are not bounded, this instructive re-
sultis of limited practical use. Many physically relevant one-particle Hamiltonians
are of the form

(P — eA@@))
2m
where m > 0, e € R, the function A : R" — R" is the magnetic field potential,
and V : R" — R is a scalar potential. It is not necessary to assume that V and
A lie in C*°(R"); for the existence of local solutions (p(t), g(2)) to the classical
equations of motion with initial value (p(0), ¢(0)) it suffices that VV and VA
be Lipschitz around g(0). A formal application of the Weyl prescription (2.37)

indicates that & is quantized by the Schrédinger operator (cf. (2.24), (2.23))

(Py — eA(Q}))
2m
Theorem 2.7.2. Given (p, q) € T*R", assume that

h(p,q) = + V(g), (2.133)

Hy=h(P;, Q}) = + V(0D). (2.134)

e the classical motion (p(t), q(t)) with initial conditions (p(0), q(0)) = (p, q)
exists for t; <t < ty;

e Vand A are C3(R") in a neighborhood of each point (p(t), q(1));

o V and A? are O(exp(x?/2)) for x — <.

If h < 1, the expression Hy, in (2.133) is symmetric on the domain Dy consisting
of the span of all coherent states (2.47). If A = O, the operator Hy, has at least
one self-adjoint extension, for arbitrary A, assume this to be the case. By abuse of
notation, let the symbol Hj, stand for an arbitrary self-adjoint extension of (2.133),
generating the unitary one-parameter group exp(it Hy/R) on L*(R"). Then, with
the notation (2.88), 1.(2.13), and (2.47), for all t € (4;, ty), for Qp = Q,‘;V (and
f € S(T*R™) or Qp, = QF (and f € CX(T*R")), one has

lim (WP, [Qn@l(£) - af(Qh(f)>1w§"'q)) =0. (2.135)

Since Dy is contained in S(R"), and the growth conditions postulated on V and
A imply that the multiplication operators V(Q3), A;(Q3), and A(Q3)* map D,
into itself, it easily follows that Hj, is indeed symmetric on Dy. If A = 0, then Hj,
commutes with the conjugation W > W on L2(R"); hence it has equal deficiency
indices.

We now write 0 = (p, ¢) and R} = (P}, Q7). Given a particular &, we expand
H}, around the solution o (¢) of the classical equations of motion do /dt = {h, o},
with initial value o (0) = 0. That is,

Hy = Hp)(t) + Hi(1), (2.136)

with
Hpy(t) := Ho + H((t) + Hy(2), (2.137)
Ho := h(o (D), (2.138)
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dh s i
Hi(t) := o= (0 O)R}, — o (1)), (2.139)
3%k . .
Hy(t) 1= § o (@@O)RE — o @) (R} — ()Y, (2.140)

while Hj(t) is defined as the remainder.

The operator Hz)(¢) has a semiclassical interpretation. Firstly, (o (¢)) in (2.138)
is just the classical Hamiltonian evaluated at the classical path. This is independent
of ¢. Secondly, writing S := T*R", consider the function A1) on TS defined by

ah .
VW, 0) := dh,(v) = —'. (2.141)
do!

One sees that H{(¢) is obtained from A" by a “partial” quantization along the
trajectory o (t):

Hi(t) = hORS — o(1), 0 (1)) (2.142)
Secondly, for each fixed t and o define a function /@ (t) on TS by
P, t) 1= L")/, (2.143)
where
2
B () = ——— : 2.144
h")ij(® aa,a(ﬂ(o(t)) ( )
Clearly,
Hy(t) = hP(RS — o (1), 1). (2.145)

Both A and 4® generate linearized equations of motion, but they do so in a
different sense. The Hamitonian flow o +> o(¢) on S generated by h pushes
forward to a flow (v, o) — (v(t), o(¢)) on the tangent bundle 7' S. By definition
of the pushforward, one may think of the latter as follows: if o (¢, ) is a one-
parameter family of solutions of the equations of motion on S (where @ € (—¢, €)
for some € > 0) neighboring a given trajectory o(¢) = o(¢,0), and (v,0) € T, S
equals 30 (0, a)/da|a = 0, then (v(t), o (t)) = do (¢, «)/daja = O.

Now, T'S is a symplectic manifold in a natural way: The map By : TS —
T*S (cf. 1.2.3.6) defines a symplectic form * := —Bjw on T'S (where w is the
canonical symplectic form on 7*S, cf. Definition 1.2.3.8). If (p;, ¢°) are canonical
coordinates on S, we denote the coordinates induced on TS by (p;, ¢*, pi. q');
these stand for the point p;8/3p; + G°'8/3q' € T35 TS In terms of these, the
form w* is given by

o* =d§' Adp; +dq' Adp;. (2.146)

The associated Poisson bracket is

of dg  9df dg
g ==t = - . 2.147
{f. 8} op; 95 + 35, 3 fog (2.147)
Accordingly, the pushforward flow (v, o) — (v(t),o(t)) on TS is Hamiltonian
with respect to the Poisson bracket (2.147) and the Hamiltonian (2.141).
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Alternatively, if the trajectory o (¢ ) is already known, one can describe the tangent
part of the flow (v, &) > (v(2), o(¢)) as a Hamiltonian system in the v-variable.
This is done as follows. Since in the present case the tangent bundle T'S is globally
trivial, there is a natural identification of all fibers of 7'S; in particular, 7, is iden-
tified with 7, S for all ¢. The vector space 7, S is a linear symplectic space, whose
symplectic form w, is simply the canonical symplectic form w on S, evaluated at
T, S; writing v = (p, §), one has w, = dg*' A d p;. The time evolution v — v(t)
(where v € T, S) then coincides with the Hamiltonian flow on 7, S generated by
the time-dependent Hamiltonian A‘?(¢) (regarded as a function on T, § through
the above identification). The corresponding Hamiltonian equations of motion are
given by

Z_'t’ = (K2(s), v). (2.148)

Since this system is linear in v, it is solved by

v(t) = M(t)v, (2.149)
where the 2n x 2r matrix M(¢) is the solution of
aM(:
—2% — T OM() (2.150)

with initial condition M(0) = I,;; here J is given by (2.1).
We return to the quantum theory. To understand the nature of H,(t) we define

\IJ}(‘LJzz,q)(t)cl — eis(t)/h\pép(t).q(t))’ (2.151)
with the classical action
S = fo ds [3p6NE - PO —hp©. go)]. @15
We can evidently write this as
\yép,q)(t)CX - Ul(”’q)(t)\ll,(»lp’q), (2.153)
where
Uf”"”(t) - eiS(t)/hU% (p(1), g(tHU 1 (p, ¢)* (2.154)

is the classical propagator. The point is now that the classical equations of motion
and the relation

Ui@)Ry'U(0) = Ry — o'l (2.155)
imply that U”"?(¢) is the solution of
d
ihzuf""”(t) = (Ho + Hie)HU (1) (2.156)

with initial condition U*?(0) = L.
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We now incorporate H,(f). In terms of the metaplectic representation oh
constructed in 2.2.2, we define

U0 := U2 0OU L (p, o™ M @)U (P, 9)*. (2.157)

It follows from 2.2.2 and (2.148)—(2. 150) that p"(M(z)) is the propagator for
the Hamiltonian HP(¢) := 1(h"); J(ORY Rh’ Indeed, a short calculation, using
dp(M())/dt = dp™(M ()M (t)~))p"(M(2)), and subsequently (2.150), (2.39), and
(2.32), shows that

. d
ih—p"(M(®)) = HO®)p" (M) (2.158)
Consequently, from (2.156), (2.158), and (2.155) one derives
d
ih(—j—;Uz(”'q)(t) = Hoy (U P(0). (2.159)
Hence the object
YO, = UL PP (2.160)

satisfies the semiclassical Schrédinger equation
d
ihaw;j"‘”(z)x = Hoy(O)W P9 (0),. (2.161)

We refer to US”?(t) as the semiclassical propagator. This terminology is
motivated by the following result.

Proposition 2.7.3. With Hy, W\"?, and WP (1), given by (2.134), (2.45), and
(2.160), respectively, one has

;ll_r)l’(l) "e—itHf./hql;vaq) _ ‘I’,S,p'q)(f)sc ” =0. (2.162)

To prove this, we follow the strategy of the proof of Proposition 2.7.1, and write
(with U (t) := exp(—it Hy/h))

(U(t) - Ué”"”(t)) WP = _y(r) f ds —U(s) UPP(s)w?

. !
= LU0 fo ds U(s)(Hy — HoysHUL WP, (2.163)

where (2.159) has been used. The existence of the strong derivative d/ds follows
from the growth conditions imposed on V and A. We now insert the expansion
(2.136), and use the explicit form (2.157) to obtain the estimate

t
|wo - v 2w 7| < % / ds | A" M| @164
0
Here Hi(s) = Uyn(p(s), 4(s))* H3(s)U1;n(p(s), q(s)); this is just Hz(s) with

RS — o (t) replaced by Rj. Using (2.39), one finds p"(M (s))\llgo'o)(x) to be pro-
portional to A~"/4 exp(—(Nx, x)/(2h)), where N is a nonsingular complex matrix
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(composed from the entries of M) whose real part is positive definite. We then use
the explicit action (2.24), (2.23) of the operators in H3(s), upon which Taylor’s
formula with remainder and the growth conditions on V and A lead to the conclu-
sion that the integrand in (2.164) is O(h*/2). Hence the left-hand side is O(h!/?),
and (2.162) is proved. n

Using (2.157), as well as (2.93) (with (2.80) and (2.81)), we obtain

(Uépvq)(t)q_,}(f.q), Q;V(f)uz(p‘q)(t)w}(}p.q)) —

(\yg‘”’), QY (@) oy f))w;°’°)) . (2.165)
A short calculation shows that
(WP, QY (WD) = e/ 1 (p, g (2.166)
cf. (2.117). This equation, or a combination of (1.17) and (2.117), implies
lim (W72, Q¥ (W) = f(p, ). (2.167)
By (2.162) and (2.167) we then obtain
lim (W2, & QY (W) = @iy 09 (DO (2.168)

By (2.80), the right-hand side equals f(o(¢)) = f(p(t), g(2)), as (M(¢), o (1))
acting on 0 yields just o (¢). Theorem 2.7.2 then follows for Q; = Q,V_LV, since by
(2.167) one has

lim (WP, @%@ (M) = F(p(0), 4(1). (2.169)

For Q;, = QF we can use 2.4.3 to write
Ui(p, 4)*Q§(f)U% (p.q)= Qg(tX?_,,,_q)(f)). (2.170)

where we have identified (—p, —q) with (Io,,, (p, g))~!. We apply this with (p, )
replaced by (p(t), g(z)). An explicit computation establishes that

lim (o' (MW, QNP MOWP?) = 70,0 (217D
cf. (1.17). The desired result then follows as for Q;V. |

In fact, the above proof for Q,f works for Q,%V as well; in either case the essential
ingredients of the proof are the equivariance of QF and Q}" under translations in
T*R" and the fact that the quadratic term M (¢) does not contribute to the limit in
(2.135).

It is remarkable that while the classical motion generated by 4 may be in-
complete, the quantum evolution generated by Hj, is defined for all times. Hence
classical incompleteness is generically traded for quantum-mechanical nonunique-
ness, for the self-adjoint extension Hj; may not be uniquely determined by the
formal expression (2.133).
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3 Quantization on Riemannian Manifolds

3.1 Some Affine Geometry

'We now replace the configuration space R” by a general n-dimensional connected
manifold Q. In general, whenever it is convenient to employ (local) coordinates
q' on Q, we will use them; recall that d; := 9/3q’.

We start with a geometric structure on the tangent bundle.

Definition 3.1.1. An affine connection on the tangent bundle T Q is a collection
of linear maps Vi : I'(T Q) — I'(T Q), defined for each vector field § € T'(T Q),
such that Ve = fVe and Ve fn = §(f)n + fVen for all f € C®(Q) and all
§.nel(TQ).

It follows from this definition that in local coordinates the covariant derivative

can be expressed by

Ven =£'Vin = E @i’ + Thn")9;, 3.1
where £ = £'8; and n = n'9; are vector fields, and the connection coefficients
I/, are certain functions on Q.

A curve (v(t), q(¢)) in T Q (covering, as the notation indicates, a curve g(¢) in Q)
is called horizontal if V) v(t) = 0; although the covariant derivative is defined
as acting on vector fields, this condition makes sense because V;(, involves only
the behavior of the section it acts on along the curve ().

In that case one says that v(t) € T,,Q is the parallel transport of v(0) €
Ty Q, and that (v(t), q(t)) is a horizontal lift of g(¢). Each curve ¢(r) has a
unique lift £, y(¢(¢)) through a given point (v, ¢) € T Q. The collection of all
vectors in T(, ., T Q that are tangent to some horizontal curve through (v, ¢) forms
the horizontal subspace 7;" \ T Q of T(»,4)T Q. One may equally well speak of the
horizontal lift £, ,,(X) of a vector X € T, Q; this is the unique vector in T}*ijq)(T (0)]
that projects to X under tr(7g)-70-

If (v, ¢') are canonical coordinates on T Q (standing for the point v d; € 7, Q),
we denote the coordinates induced on T(T Q) by (¥, §°, v, ¢°); these stand for
the point 9°9/3v' + §'9/3q" € Ty 4T Q. In terms of these, it follows from (3.1)
that horizontal vectors in T, 4) are of the generic form

LW, @) = (—Ti@w/v*, w', ', ¢, (32)
One has a natural isomorphism 73"\ T Q =~ T, @, under which X € 7"(';°jq)T o
corresponds to 7, X € T, Q; in coordinates, (——Fj-k(q)wf vh, wh o, gf) ~ (W', ¢9).

In contrast, the vertical subspace T}Vqu)TQ C T, hT Q consists of all tangent

vectors to vertical curves (v(¢), ¢), which lie in T; Q. In other words, 77" I Q=

ker 7, N Ty hT Q, Where T := 179, 0, hence v, = Tr(rg)»79. Such vertical
vectors are of the form (w', 0, v', ¢*). Also here one has a natural isomorphism

Ty T =T,0, because TopTQ=TT,0)~T,Q.In coordinates one has

(w',0,v, ¢') > (w', ¢'). Hence the decomposition

TwapTQ=T5pTQ® Ty, TQ=T,00T,0. (3.3)



3 Quantization on Riemannian Manifolds 155

An affine connection on T @ defines a vector field £° on T Q by &5 := £x(X).
The integral curves of £¢ are the geodesic flow on T Q. However, the name
(“affinely parametrized”) geodesic is reserved for a curve in Q that is the pro-
jection of such a flow in T Q under t7¢_, ¢. It is customary to denote geodesics

by ¥ ().
Proposition 3.1.2. With y := dy/dt, a geodesic satisfies the equation
Vyy =0. 3.9
This is obvious from the definition of a horizontal lift and of &€, ]

Putting w = v in (3.2), we see that the coordinate form of the geodesic equation
(B is

diy O + Ty O/ @)p*) = (3.5)
We write y(q, v;-) for the parametrized geodesic starting at y (g, v; 0) = g with
tangent vector y{(g, v;0) = v. Existence and uniqueness of such a geodesic for
small enough ¢ routinely follow from the theory of ordinary differential equations.
However, there is no guarantee that a geodesic exists for all z.

An important role in affine geometry is played by the exponential mapping
exp, which is defined through geodesics. It maps a certain set O C T Q into Q,
and is defined by

exp(X) := y(t790(X), X; 1). (3.6)

The set O is simply the set of those X for which the geodesic in question is defined
att = 1; this is an open subset of T Q, evidently containing the zero section Q.
The restriction of exp to Oq =T,0N O is denoted by exp,. For good global
properties of geodesics a special assumption has to be made.

Definition 3.1.3. A manifold with affine connection is called geodesically
complete when all geodesics exist for arbitrary values of the parameter t.

Clearly, Q is geodesically complete iff @ = T Q; in other words, for all qgeQ
the map exp, is defined on all of T, Q. A weaker notion would be completeness at
a point g, meaning that exp, is defined on T, Q. The issue of completeness will be
taken up further in the next section, where a special form of the affine connection
leads to interesting results in this context.

From the tangent bundle we pass to the cotangent bundle. The cotangent bundle
S = T*Q is equipped with the canonical symplectic form 1.(2.23) and the associ-
ated Poisson bracket 1.(2.24). Recall the notation (p;, g/) := p;dq’ for canonical
coordinates on 7* Q. The following functions on 7* Q will be of basic importance
in what follows. Firstly, a function g € C*°(Q, R) induces the smooth function

Jp i =1"g 3.7



156 1. Quantization and the Classical Limit

on T*Q (with T := T7+g_, g). Secondly, a smooth vector field § on Q has a symbol
Je € C°(T*Q), defined by

Jg(0) 1= 07(0)(6)s (3.8)

in coordinates, if £(q) = £/(q)d;, this reads J¢ (p, ) = pi&'(¢). The basic Poisson
brackets between these functions, which comprise the essence of the canonical
Poisson structure on T*Q, are

{J5, J;} =0 (3.9
{Je, g} = Jezs (3.10)
{‘,El’ sz} = 1[51.52]' (311)

These functions and Poisson brackets have a group-theoretical interpretation.
Firstly, regard C2°(Q, R) as an abelian group (under addition). The Lie algebra
of this group is the same space, equipped with the trivial Lie bracket. Then (3.9)
shows that the map g +> J; is a Lie algebra antihomomorphism of C°(Q, R) into
C(T*Q, R).

Secondly, consider the group Diff(Q) of (smooth) diffeomorphisms of Q with
compact support (that is, a diffeomorphism ¢ € Diff(Q) is the identity map outside
some compact set). It is possible to equip Diff (Q) with the structure of an infinite-
dimensional Lie group (though not one modeled on a Banach manifold). Since
one-parameter subgroups of Diff (Q) by definition generate flows on 0, one infers
that, at least formally, the Lie algebra 2iff(Q) of Diff(Q) is the set I'.(T Q) of
(smooth) vector fields £ on Q with compact support. In the opposite direction, the
exponential map on ?iff(Q) is given by (exp£)(g) = ¢1(q), where ¢ is the flow
defined by the vector field £. Unfortunately, with this identification the Lie bracket
in this Lie algebra equals minus the commutator of vector fields; in what follows
the notation [£/, &;] stands for the latter (as usual). Evidently, (3.11) shows that the
map & —> J; is a Lie algebra antihomomorphism of 2iff(Q) into C=°(T*Q, R).

Finally, we can define the semidirect product

G = Diff(Q) x C(Q, R) (3.12)

through the natural action of Diff(Q) on C°(Q, R): ¢ € Diff(Q) maps g €
Cx(Q)to (¢~ 1)*g. The Lie algebra of Gy is denoted by gg. The corresponding
“mixed” Lie bracket is [£, §] = —& g; the minus sign reflects the one in ¢~ above.
Hence (3.10) shows

Proposition 3.1.4. The map J : & + § +— J; + J; is a Lie algebra
antihomomorphism of gg into C*(T*Q, R).

We describe the Hamiltonian flow on T* Q generated by J; and J;.
Proposition 3.1.5. Define an action po of Gg on T*Q by

po(@) : 0 > 0 —dg(x(0));
po(@) o > (97", (3.13)
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and po(p, 8) = po(g)o po(p). If X € gg, theno > Exp(t X)o is the Hamiltonian
Sflow on T*Q generated by Jx.

This is shown by a straightforward computation in coordinates. O

This and similar results will be placed in their proper context in I11.2.4.

3.2 Some Riemannian Geometry

We now assume that Q is equipped with a Riemannian structure, i.e., with a
metric. The following remarks are mainly intended to establish some notation and
conventions. The metric g provides each tangent space T, Q with an inner product
g, that is, a bilinear symmetric positive definite map g, : 7,0 ® 7,0 —> Q.The
positive-definiteness means that g,(X, X) > Oforall X € T, Q, with g, (X, X) =
0 & X = 0. This, of course, implies that g, is nondegenerate. Throughout this
chapter g is assumed to be smooth (C*°).
The length of a parametrized C' curve {c(?) |t € [#;, trl}is

1
£(c) = f dt /B (c(), ¢(1)); (3.14)

this is evidently independent of the parametrization. The length of a piecewise C'
curve is the sum of the lengths of its C! pieces. The distance d between two points
in Q is the infimum over the lengths of all piecewise C! curves connecting the
points. (If Q were not connected, this definition would apply if the points lie in
the same component; if they don't, the distance is cc.) It is easily shown that this
distance defines a metric on Q in the sense of point-set topology, making (Q, d) a
metric space in that sense.

Let us use the metric to define a bundle homomorphism g* : T7*Q — T Q. This
maps T Q into 7, Q, and is defined by the property

g,(8'(0), X) = o(X) (3.15)

(where 0 € T)Q and X € T, Q). The nondegeneracy of g implies firstly that gt
is well-defined by (3.15), and secondly that it is a bijection; its inverse is denoted
by gy : TQ —> T*Q. The smoothness of g then leads to the conclusion that g*
and g; are diffeomorphisms. One application is the definition of the gradient of a
function:

v f = g'df). (3.16)

One writes g;;(q) := 84(3;, 3;); the inverse of the matrix {g;;(g)} is denoted

by { U(q)} so that g,k(q)g"’(q) =8/.Ifo = oidq’ € T,Q, then g'(0) = o';,
w1th o' = gli(g)o;; j; hence 0; = gij (q)orf A similar notation is used for general
tensors.

All concepts of the preceding sections apply; recall Definition 3.1.1.
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Definition 3.2.1. The Levi-Civita connection, or covariant derivative, is the
unique affine connection V on T Q that is torsion-free in that

Ven — ik = 1§, 11, 3.7
and metric in that
£g(n1, m2) = &(Veni, m2) + (i, Venz) (3.18)
for all vector fields &, ny, n,.
For the Levi-Civita connection the object I" appearing in (3.1) takes the form
F;k = 18" (380 + g — Agji)- (3.19)
In this context I" is known as the Christoffel symbol.
The Riemann curvature tensor R is defined by
R(E, n) = [Vg, Vil = Vg s (3:20)

where R, (6, 1) : T, R — T, Q. Rema;kablyz this is a local expression that indeed
defines a tensor. If we write R(X, Y)Z' = R’ Z7 X*Y!, then from (3.20) and (3.1)
one has

Rl = &I — 9T, + T, If = Thy T (3.21)
Lowering the first index, one has the symmetries
Riji = =Rjiw = —Rijue = Ruij. (3.22)
The Ricci scalar is defined by
R :=g'R},. (3.23)

The Levi-Civita connection leads to geodesics satisfying (3.5) with (3.19). A
set U C Q is called geodesically convex if any two points in U can be joined by
a unique geodesic of minimum length, that lies in U. A neighborhood U, of g is
called normal if exp, is a diffeomorphism between some neighborhood of 0 in
T, Q and U,. Clearly, a geodesically convex neighborhood is normal.

In local Riemannian geometry one can prove the following

Proposition 3.2.2. Consider the ball B; = {X € T,Q |g,(X, X) < €?}. For

each q there existsan€ > Qsuchthat B, C @q, andU; := exp, By is geodesically
convex.

We will usually drop the € on U;. On a normal neighborhood U, of g one
can often use normal coordinates g, to simplify computations. These depend
on the choice of a fixed orthonormal basis {e;} of T, Q. By deﬁnitior}, the normal
coordinates of a point y(q, v'e;; 1) (assumed to liein U, ) are qén) = v*. Obviously,
the normal coordinates of g itself are g.,, = 0, and geodesics simply have the form
qén)(t) = tv'. One can show that in these coordinates,

8 am) = 8ij — Rujalyaly + 0(a,)- (329
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Hence g;;(q) = 8" and d,g;;(g) = 0, so that the Christoffel symbols l"j.k vanish
at g. Furthermore,

3 9,8i(q) = —1Rigji(g) + Rije(q)). (3.25)

A fundamental theorem of global Riemannian geometry gives equivalent forms
of completeness. Recall our standing assumption that Q is connected.

Theorem 3.2.3. The following conditions are equivalent:

e (Q, g) is geodesically complete at one point.
e (Q,g) is geodesically complete.
e (Q,d) is complete (as a metric space).

If any (hence all) of these conditions is satisfied, then any two points may be
Jjoined by a minimal geodesic; this is a geodesic whose length equals the distance
between the points.

In view of this theorem, we simply call (Q, g) complete iff it is geodesically
(hence metrically) complete.
The geodesic of the last claim in this theorem is not necessarily unique.

Definition 3.2.4. The cutlocus C(q) of a given point q in a complete Riemannian
manifold Q is the collection of points ¢’ in Q for which there exists more than one
minimal geodesic between q and q'.

Global Riemannian geometry yields the following decomposition of Q.

Theorem 3.2.5. [In a complete Riemannian manifold Q, let O;‘a" consist of all
X € T, Q for which y(q, X;t) is minimal for all t € [0, 1]. The cut locus is

C(g) = exp,AO™), (3.26)

where 30> is the boundary of (’);“”‘ in T, Q. The set U™ := equ((’);"‘") isa
normal neighborhood of q, which coincides with the set of points in Q that can be
connected to q by a unique minimal geodesic. Hence for each q, Q is the disjoint
union

Q = exp, (OM)U C(q). (3.27)

Heuristically, Ug™ is the largest neighborhood on which normal coordinates can
be defined.

Corollary 3.2.6. Let (Q, g) be complete. For each given q € Q, the set of all
points ¢ € Q for which there is a unique minimal geodesic between q and q’ is
open and dense in Q.

3.3 Hamiltonian Riemannian Geometry

We move on to perturbations of geodesics. Some of this material is interesting in
its own right; other parts will be used in the study of Weyl quantization.
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Definition 3.3.1. A Jacobi field 7 along a geodesic y is a vector field satisfying
the equation of geodesic deviation (or Jacobi equation)

(Vi) T +R(T, y)y =0. (3.28)

This is a second-order differential equation, whose solution 7 (¢) is determined
by the initial data 7(0) and V7 (0).

To derive and interpret (3.28), one looks at a family {y (, o)}eefo,¢) Of geodesics,
smoothly depending on a parameter «, such that y (¢, 0) = y(¢). The value of J
at y(¢) is defined by J(y(¢)) := dy(t, a)/daja = 0. The geodesic equation (3.4)
satisfied by y (-, @) for each « leads to V;V,y = 0. Since [9;, dy] = 0, one
has [y, J] = 0, which, in view of the fact that the Levi-Civita connection V is
torsion-free, implies Vyy = V;, 7. Combined with (3.20) this results in (3.28).

A Jacobi field along y(q, v; -) is generically denoted by J (g, v; -). In normal
coordinates based at g the equation of geodesic deviation (3.28) at g reads

d i iyl k
27 @ + 3R} (9)7'(9)7 ()T (q) = 0. (3.29)

Our aim is to show that the evolution equations (3.4) and (3.28) may be brought

into Hamiltonian form. Consider the classical Hamiltonian 4, on T*Q, defined by

he(o) = %g‘l(o, o). (3.30)
In coordinates this reads

h(p,q) = 187 (@)pip;. (3.31)

For simplicity we have put a possible mass parameter m equal to 1; cf. (2.133).
Also, we have omitted a possible potential energy from (3.31); the metric tensor
already represents a (static) gravitational field in which the particle moves. The
Hamiltonian flow o +— o () on T*Q generated by 4, is known as cogeodesic
flow. This terminology is explained by the following

Proposition 3.3.2. Suppose that o (t) satisfies the Hamiltonian equation of motion
do(t)/dt = &, (0 (). Then y,(t) := tr-g-0(0(t)) is a geodesic on Q with
tangent vector field y,(t) = g*(o(t)). Accordingly, o (t) is equal to the parallel
transport of o along v, .

This is most easily proved by a coordinate calculation; in a local chart, one
needs to establish that the motion (p(z), g(t)) is such that g(¢) is a geodesic with
q(t) = g*(p(¢)). This follows from 1.(2.24), (3.5), and (3.19). |

Proposition 3.3.2 suggests that it is more natural to transfer the situation from
T*Q to TQ by the isomorphism g°. Thus the Hamiltonian on 7 Q, which we
denote by 4, has the two equivalent expressions

h(X) = 38:x)(X, X); (3.32)
h(v, q) = 1gv'v/. (3.33)
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Proposition 3.3.3. The Hamiltonian flow (v, g¢) — (v(t), q(t)) on T Q generated
by h coincides with the geodesic flow, and is given by parallel transporting the
tangent vector v = v(0) along the geodesic q(t) = y(q, v; t) on Q (withq = ¢(0)).

In the coordinates (v, g'), the Poisson bracket on T'Q reads

.. Of 0g af og | af og
=gV | ——= - —=—=+4+g"v(0,8u — Ongi)——]. (334
{f.gl=¢g (31!’ g 3q’ v/ + g™ v( i 8mi mgﬂ)avn 30 ( )
The claim is then easily derived from (3.5). |

Alternatively, one may regard (p;, g°) as canonical coordinates on T Q, which
are related to the noncanonical ones (v, ¢°) by

(Pi, ") = @@, ") (3.35)

In either case, the Hamiltonian equations of motion derived from the canonical
Poisson bracket 1.(2.24) come out as

q=uv;
V,v = 0. (3.36)

One sees that Q is complete iff the Hamiltonian 4 is complete in the sense of
Definition 3.1.3.

To find the Hamiltonian form of (3.28) we recall the discussion surrounding
(2.147), which equally well applies to the present case S = T Q. Hence T(T Q) is
a symplectic manifold, and the pushforward of the geodesic flow on T Q to T(T Q)
is generated by 21", which is constructed from 4 in (3.33) by (2.141).

Theorem 3.3.4. The Hamiltonian equations of motion on T(T Q) generated by
KV take the form (3.36), supplemented by

vahor — Xver;
Vo X" + R(X™, v)v = 0, 3.37)
where we have decomposed X € T, 4) as X = X™ + X, and have identified X**
and X" with elements of T, Q in accordance with (3.3) and preceding text. Hence
the Jacobi equation (3.28) along a given geodesic q(-) is Hamiltonian on T(T Q),

if we use (3.3) in the opposite direction to identify J(t) and V,J (t) in Ty, Q with
a horizontal and a vertical vector in Ty qa)), respectively.

We give a computational proof. The coordinates (¥, §*, v, ¢°) on T(T Q) (cf.
the paragraph after (3.1)) are not canonical with respect to the symplectic structure
on T(T Q); they are related to canonical coordinates (p;, §°, pi, g*) by

(Pi»q', Pi, q') = (& (@)V + agijv'd, ¢, (g0, ¢'); (3.38)

cf. (3.35). The Hamiltonian (2.141) on T'S derived from (3.33), expressed in
canonical coordinates, then reads

KB, G, P a') =g (pip; — g 8;gppi i (3.39)
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From (2.147), (3.39), and (3.38) one finds that d§’/dt = ‘. Using the coordi-
nate expressions for horizontal and vertical vectors, and making the identification
with vectors in 7, Q mentioned in the theorem, the time-derivative d /d¢ may be
converted into a directional derivative along the curve q(f). Using ¢(t) = v(z),
this leads to the first member of (3.37). Note here that the coordinate expression
of X + V,X, where X € T,Q and V,X € T, Q are embedded in T, ,,T Q as
horizontal and vertical vectors, respectively, is simply (' = v(X’), §' = X?).
The proof of the second member of (3.37) is a straightforward but lengthy
computation, which may be simplified by working in normal coordinates on Q
based at g. Using the same simplification, the Hamiltonian equation of motion for
U’ at q is calculated to be d¥' /dr + 3R, ,v/v'g*. Converting the time-derivative
into a directional derivative as in the previous paragraph and comparing with (3.29)
then leads to the second member of (3.37). O

3.4 Weyl Quantization on Riemannian Manifolds

Our goal is the quantization of a suitable subspace of A° := Co(T* Q). The most
natural way of doing this is based on a Riemannian generalization of the kernel
(2.109) characterizing Weyl quantization. Hence we start by generalizing the par-
tial Fourier transform (2.110) to the Riemannian setting. The invariant measure on
Q is called p, the one on the fiber T, @ is {44, and the measure on 7,7 Q is denoted
by py. In coordinates one has

du(q) = d"q+/detg(q);
dug(v) = d"v/detg(q);
duyp = TP
HalP) = Gy Jdetelq)

Here det g(g) denotes the determinant of the matrix g;;(g) in given coordinates.
The natural measure on T* Q constructed from (3.40) coincides with the Liouville
measure 41, since the factors \/det g(q) cancel. That is, for f € L!(T*Q) one has

(3.40)

| ameorea=[ awa [ agoreo. G
"0 0 Tr0

_ The fiberwise Fourier transform of a suitable function f on 7”@ is the function
f on T Q defined by

fOO= [ du©)e"®f @), (342)
;0

where X € T, X. In coordinates, this simply amounts to (cf. (2.110))

fw,q) = f dul(p) e f(p. q). (3.43)
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The fiberwise convolution f * 3 is the Fourier transform of the pointwise product
fg, which gives

f*ew,q) = fduq(v’) Flv—v, @zGv+ v, q). (3.44)

Similarly, the Fourier transform of the Poisson bracket 1.(2.24) is

2w ) =i f du, ) F v =/, @)

7,0
x [Biqi(ng’)' +ho vy ]g( vH1.g).  (3.45)

Definition 3.4.1. Let M, and M, be manifolds, and 1 - M, <> M, an embedding
(i.e., an injective immersion). The pullback *T M, is the manifold

UTMy = {(X,m) € TMy x My | trag,— m,(X) = 1(M})}, (3.46)

containing M as a distinguished submanifold (the so-called zero section) through
the identification (0, m) = m; compare I1I1.(2.2).
The normal bundle of the embedding ¢ is the manifold

N'M| = 0TMy/1, TM,, (3.47)
containing M, as the zero section by the identification inherited from (* T M.

These definitions may be rephrased as follows. Firstly, the pullback *(T M,) is
just the restriction T M, | «(M, ) of T M; tou(M1) C My; this is the union Uy, e pr, Vi
of the vector spaces V,, := 17, M2—> m,(t(m)), with topology inherited from T M,.
Secondly, the pushforward .(TM) C TM; is a subspace of *(T M,); it is the
union Upep, V;,, where the vector space V), C V,, consists of all vectors that are
tangent to L(M 1) Finally, the quotient L*TMQ [T My is Upep, Vi / V,,,, equipped
with the quotient topology.

The normal bundle is isomorphic to a subbundle of T M, | M, but not naturally
so. The following is a fundamental theorem of differential geometry.

Theorem 3.4.2, Let (M) be a closed submanifold of a manifold M,.

o There exist a tubular neighborhood N*(M}) of M, C N'M, (where M, is
identified with the zero section), a neighborhood N,(M1) C M, of (M), and
a diffeomorphism ¢ : N'(M,) — N,(M,) satisfying p(m) = «(m) for all
me M,.

Let, in addition M, have a Riemannian metric, and define (T M, | M)+ as the
unionUyepm, V,, L where V,, is the orthogonal complement Tt(m)L(Ml) of Tyomyt (M)
in TymyM, ( w:th topology inherited from T M,).

o There is a diffeomorphism n, : N'‘M, — (T M, | M) such that y, is linear
on each vector space Vy |V}, and 1,(V,y / V%) = V.- for all m.
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o The tubular neighborhood N'(M\) may be chosen in such a way that the dif-
feomorphism ¢ of the first part of this theorem is given by the restriction of
expon, : N\M; — N to N'(M,).

A special case is that of M| C M, a submanifold of M,, and ¢ the inclusion
map. We further specialize to the case M} = Q, M, = Q@ x Q, and ¢ = §, the
diagonal embedding defined by 8(q) := (q, g).

Lemma 3.4.3.

e The normal bundle N° Q of the diagonal embedding is isomorphic to T Q.
o Equip Q x Q with the Riemannian metric g ® g, then v; = expons; : TQ —
O x Qisgivenon X, € T,Q by

v5(Xg) = expons(X,) = (exp, (1 Xp), exp,(—1X,).  (3.48)

One identifies Ty 4(Q x Q) with T, Q ®T, Q. The fiber of §*T'(Q x Q) ata point
4,q)is T,Q & T, Q. The fiber of the pushforward bundle 8.7 Q at (g, g), on the
other hand consists of all vectors of the type X+X, X € T,Q.Hence N°Q >~ TQ
by the definition (3.47). With the metric g @ g, the orthogonal decomposition of
X} has the component (X +Y)+3(X+7Y)in8, T Q@ and (X —¥)+3;(Y — X)in
(T(Q x Q) | §(Q))*. Hence ns maps X, eT,Qt0 %Xq-i— — %Xq € TgpQx 0,
and (3.48) follows. [ ]

To appreciate the following quantization prescription it is helpful to understand
the geometric meaning of the diffeomorphism (3.48): Namely, vy Yq,4)inTQ
is the tangent vector to the geodesic from ¢’ to ¢ at its midpoint.

We are now in a position to define the (generalized) Weyl quantization map Q,YLV.
We take the dense subalgebra of Co(T* Q) of quantizable functions to be

=CoAT*Q). (3.49

These are by definition the functions f on T*Q whose Fourier transform fis
in C(T Q); the motivation for this choice will become clear shortly. The space
C2(T*Q, R) is a Poisson subalgebra of C*°(T*Q, R); this follows from an in-
spection of (3.45), using the fact that C° is closed under convolution and pointwise

multiplication.
The map Q)Y takes values in 2" := B,(L%(Q)), where the Hilbert space L*(Q)
is defined with respect to the Riemannian measure y on Q; cf. (3.40).

Definition 3.4.4. The Weyl quantization of f € CS(T™* Q) is given, for h # 0,
by the integral operator
QY (HV(x) := deu(Y) Ky Lf1x, )P (). (3.50)
For (x, y) ¢ N3(Q) we define K,:V Lf1(x, y) := 0O, whereas for (x, y) € N;s(Q) we
put
KYLfIGe, y) = B vy (6, yDF o5 (&, /R, 3.51)
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with vy given by (3.48). Here k is a smooth function on T Q with the following
properties:

e k = 1 in a neighborhood N 3(Q) C N*(Q) of Q (regarded as the zero section
inTQ).

o « has support in N*(Q).

o k(—v,q) =«(v,q).

For later convenience, we shall in fact assume that for each g the support of
k(-, q) is contained in a geodesically convex (hence normal) neighborhood of
0 € T;Q. As in 2.5, we write the argument of W as x rather than g to avoid
confusion with the argument (p, g) of f.

Proposition 3.4.5. For f € CZ(T*Q, R) one has Q¥ (f) € Bo(LHQ))r-

By definition of C(T*Q), the kernel of Q,?'(f) is in CX(Q x Q), so that
Q,YLV( f) is a Hilbert-Schmidt operator, hence compact. Also, (3.42), (3.48), and
the symmetry of « in v guarantee that K gv is Hermitian, so that for real f the
operator Q)Y (f) is self-adjoint. [ |

The presence of the cutoff function x implies that the kernel X ,fv is smooth;
unfortunately, Q,‘lv( f) seems to depend on the choice of this function (as well as
of A'¥(Q)). However, since f has compact support by our choice of A°, there is
a value Ay > O (that depends on f) such that Q,%V( f) does not depend on these
choices for A € (0, hp). Namely, A is the smallest value of A for which Agsupp ( f )
lies in A’3(Q). If the tubular neighborhoods may be chosen as AN*(Q) = T Q and
Ns(Q) = @ x Q, then one may obviously put ¥ = 1. This is possible for @ = R”
(with flat metric), in which case (3.50) and (3.51) reduce to (2.108), and (2.109),
respectively.

The same conclusion of x -independence formally holds true if f is adistribution
with compact support; if f is polynomial in the momenta p’, the support of f is
localized at the zero section of T Q, and Q,‘.lv( f), now defined as an unbounded
operator on the domain C°(Q), is independent of « for any A. This will be further
explored in 3.6.

As in the flat case (cf. (2.101)) there is a Wigner function.

Proposition 3.4.6. The Gelfand transform of Q,YLV (f) is given by

*

%)(W) = fT QduL(p,q)WhWJ(P,Q)f(P.fI), (3.52)

with Wigner function (cf. (2.103))

Wil l(p,q) = f dpug)k(hiv, 9)J (q, v; 1h)

q

x ePW(y(q, v; )Y (r(q, v; —1h)), (3.53)
where J is a Jacobian defined in (3.55) below.



166 II. Quantization and the Classical Limit

To prove this, we initially assume that 7r.g_, g(supp (f)) is contained in a
suitably small geodesically convex set U C P, on which we use coordinates ¢'.
The linearity of Q)Y , the fact that 77+ g, g (supp (f)) is compact, and the existence

of (smooth) partitions of unity on Q then imply the result for general f € Qf?R. We
change integration variables in

Q)/%VF)(W)=/ du(gdm(q) Ky Lf 1(g1, 4% (@) ¥(q2) : (3.59

gxQ

If an arbitrary function F € C(Q x Q) has support inside U x U, we put

/ du(g)d @) F(qu, a2) =
UxU

/TU du(q)du, () J(q, v; )F(y(q, v; 3), v(q, v; —3)), (3.55)

which, with the property J(q,tv;3) = J(g,v;3t), defines J in (3.53). The
proposition then follows from (3.54), (3.55), (3.50), (3.51), and (3.43). |

The Jacobian J will be studied in detail in the next section; we will find that
J(g,v, 1h) = 1 + O(K?). Also, J will be seen to have the symmetry property
J(—v, q;t) = J(v, q; ), which, with (3.53), confirms that W},| | is real for real-
valued f. Given that Q}lv( f) is bounded for f € ‘iluoz, this property is equivalent to
the self-adjointness of QY (f).

3.5 Proof of Strictness

. Recalling Definitions 1.1.1 and 1.2.5, the aim of this section is to prove

Theorem 3.5.1. The map Q,V,V defined in 3.4.4 is a nondegenerate strict and
continuous quantization of Ay = C(T*Q,R), so that A° = Co(T*Q), and
A = Bo(LA(Q)) for h # O (with the possible exception of the completeness
condition 1.1.1.4).

It is clear that 1.1.1.4 is not satisfied if the cutoff function « in (3.51) is not
equal to unity. If Q@ x Q is diffeomorphic to T Q by the map v; (cf. (3.48)), the
quantization Q)" does satisfy 1.1.1.4, since the collection {Q} (f)} is dense in the
set of Hilbert—Schmidt operators on L2(Q).

The nondegeneracy is obvious: Qf‘:’( f) = 0 implies f = 0 by (3.51), which
implies f = 0. Continuity follows from strictness by Theorem 1.2.4.

In the following discussion we will assume that & > 0; the arguments for & < 0
are a trivial modification. The necessary computations are greatly simplified by
the possibility of localization.

Lemma3.5.2. Let f,g € ﬁl?n. If the projection tr+g_, o(supp (f)) of the support
of f is disjoint from that of g, then there is ks, > O such that Q,VLV(f)Q,VLV(g) =0
for ke (0, hy).
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It follows from (3.51) and the fact that f has compact support (particularly
in the fiber direction) that K ,‘:V Lf1(x, z) is nonzero only if the (Riemannian) dis-
tance from both x and z to 77 g, g (supp (f)) is O(h); similarly for K ,!V Lgl(z, ¥).
Hence for fixed x, y the kernel { du(z) K | f1(x, 2)K}) |g])(z, y) of the product
QY (£)QV (g) vanishes for sufficiently small i < h(x, y), foracertain Ai(x, y) > 0.
Since f and § have compact support also on in the base direction, this vanishing
can be achieved uniformly in (x, y). |

For the reasons stated in the proof of 3.4.6, Lemma 3.5.2 allows us to assume
that T+ g o(supp (f)) and 77 g, o (supp (g)) are contained in an arbitrarily small
openset U C @.For U we choose a geodesically convex set U, (cf. the paragraph
following 3.4.6).

Since (3.28) is a second-order differential equation, for given X, Y € T, Q
there exists a unique Jacobi field 7 for which J(0) = X and V;, 7(0) = Y. If we
write J = [J'9; in given coordinates, one may equally well pose the initial condi-
tions 7(0) = X*, J'(0) = Y, with unique solution J* (). We write J(q, v; -)
for the Jacobi field with initial conditions

Tig, v;0) = 8
J(gq, v;0) =0, (3.56)
and j( (g, v; -) for the Jacobi field with initial conditions
Jip@>v:0) =0
d -~. .
(EJ""’) (q,v;0) =&, 3.57)
The n x n matrices M(q, v;t) and M(q, v;t) are then defined by their matrix

elements M(q, v, t) = ‘7(1)(‘1 v;t) andM(q, v; t) = ‘7(])(q v; 1), respectively.
These are combmed in the 2n x 2n matrix

M : M(q, v;

M2::( @0 M@ v ) (3:58)
M(q,v;—t) M(q,v;—t)

Lemma 3.5.3.

e The Jacobian in (3.55) is given (for arbitrary t, as long as the geodesics in
question exist) by

J(g,vit) = |t7"|[detg(¥(q, v; 1)) detg(y (g, v; —t))]"/
x det g(g)~!| det Ma(q, v;1)|. (3.59)

o If G € C(Q) has supportin U, and q € U is such that U is contained in the
image of the exponential map on T, Q, then

fu du(g)G(q) = f du,(v) J(q, v; DG(¥(g, v; 1)), (3.60)

q
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with Jacobian
J(q, v;t) = |t 7™"|[detg(y (g, v; 1))/ detg(@)]/*| det M(q, v;1)l.  (3.61)

To derive (3.55), one passes from the coordinates (g1, g5) tog’, v’ via the expres-
sion q; = y(q,v;t), g2 = y(q, v;—t) (where t = % in the special case above).
The definition of a Jacobi field implies that

3qi(q, vi1)/3q’ = Ty(@. vit)y  Bqi(g, v;1)/dv! = Ti(q, vi1);

3gi(q, vit)/dq = Ti(q, vi—1); dgi(g, vit)/av) = Jl(q, vi —1),
(3.62)
which leads to (3.55). The derivation of (3.60) is analogous. |

We assume the support conditions on f and g stated after 3.5.2, and take
an arbitrary ¥ € L?(Q). From (3.50), (3.51), Lemma 3.5.3, and the property
y(q, v, ht) = y(q, hv, t), we obtain

(W, 1Q¥ ()Y (5) — Q¥ (f)W) = f du(@) f ity (V) f Aty (V)
U TqQ TqQ

Y(y(q, v; B/2)W(y(q, v; —h/2)I(K, q, v, ), (3.63)
with
1h q,v,v) = J(g, v; h/2) [ T (g, /s By
x KY Lf1(r(q, v R/2), v(@, v'; DK 18] (v (g, Vs B), ¥(q, v; —h/2))
@ v =3 o+ ). (3.64)

For a fixed value (g, v, v'), we now make a Taylor expansion of /(k, g, v, V')
in h. Here [ is a function on TU ® TU, so we may proceed in any coordinate
system.

By evaluating (3.28) in normal coordinates at t = 0 (cf. (3.29)) it follows
immediately that j}(q, v, h) = hﬁ;(l + O(h?)) and jj(q, v, h) = 85.(1 + O(F%)).
Combined with the explicit form (3.24) of the metric in normal coordinates, we
thus infer from (3.59) and (3.61) that (in any coordinates)

J(q, v;B/2) = 1 + O(R?);
J(g,v'; ) =1+ O(R?). (3.65)
To deal with the terms involving K ,!V in (3.64) we use (3.25) and perform a Taylor
expansionof K} | | around the point (¥ (g, 3v — v'; /2), ¥ (g, 3v — v'; —h/2)),
and of Q) (g) around (y(q, jv + v'; A/2), ¥(q, 3v + v'; —h/2)). Using (3.51),

the result is then rewritten in terms of the f and g. The O(1) term vanishes. In
computing the O (k) term, one encounters expressions of the type

) 3
(——,- + —,) KYLf = v(q, 3v — Vs B/2),q2 = v(q, $v — v, —h/2)),
9q 99,
(3.66)
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to be expressed in normal coordinates as indicated above. This is done by in-
verting (3.62) and expanding in powers of A. The result is that A" times (3.66)
equals (af/aqi)(q, %v — v') + O(h). Using (3.45), one then finds that the in-
tegrand of the analogue of (3.63), with QY (£)Q) (g) — QF (fg) replaced by
i[QY (), QY @/h— QY (£, g}, is O(R).

In either case one is left with an expression of the type (3.63), with [ replaced
by a remainder 7" of O(h). One then replaces the integration variables (g, v, V')
in (3.63) by (¢’, v, V'), with ¢’ = y(q, v; ii/2); this introduces a Jacobian, which
is 1 + O(h?), as in the argument leading to (3.65). This Jacobian may be absorbed
into IV, which then remains O (k). Then apply the Cauchy—Schwarz inequality to
the ¢’-integration, splitting the integrand into ¥/(g’) and the rest. This takes out a
term ([, du(g’) |¥(g")|»)'/* < ||¥|. The second factor produced by the Cauchy—
Schwarz inequality is majorized by taking out another factor || W], and bounding
the rest of the g’-integrand by taking its supremum over ¢’. This leads to

1(®, 1QF (HOY (&) — QF (F)IW) | < CRIYIPIF1l10oll2 1,00
X sup [1q (supp (H) N T,U)pq(supp(R) N T, U], (3.67)
g€

and a similar inequality for |(W, G[Q) (f), QY (&)1/h— Q¥ ({ f, gh¥)l, in which
the norms | - ||1,00 in (3.67) are replaced by || - ||2.00- Hence (1.2) and (1.3) follow
as in the proof of 2.4.1.

Itremains to prove Rieffel’s condition. Since a very general proof of this property
will be given in Theorem II1.3.11.4, we will merely sketch how the proof in flat
space may be generalized.

Firstly, continuity at & # O can be proved in several ways, e.g., by proving
continuity with respect to the Hilbert—Schmidt norm of Q,‘?’ (f). To prove continuity
for h — 0, we shall construct a positive map Q}", which is equivalent to Q¥ in
the sense that the function & > | QF (f) — Q4 ()l is continuous on R\ {0} and
limp,o |QF (f) — QF*(F)Il = 0. This map may be shown to satisfy (1.1), which
then implies the same for Q). In the proof of 2.6.1 we had Q%" = QF; in the
present case the construction of Q}" is motivated by QF on flat space, but unlike
QY it holds no intrinsic significance on curved spaces.

We define QF°(f) (where f € ?il?R) through its Gelfand transform QT?G ),
defined as a function on PL?(Q), by

*

o Hw) = /T QduL(P, Wy ¥ J(p, ) f (P, 9). (3.68)

where

Wlvl(p,q) :=h"

f d g (v)
1,0 (W4

2
k(v, @)y (g, v De PRI (y (g, v; 1)) (3.69)
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where v? := g,(v,v),and Jis given by (3.61). It is easy to see that (3.69) defines
a bounded operator Q%"(f) on L?(Q) (see 3.5.4 below). In flat space one has
= Qg; in general, (3.69) depends on the cutoff function «, cf. (3.53).

Lemma 3.54. The map Q% : 4S — B(L*(Q)) is positive and takes values in
Bo(LAH(Q))r. It satisfies, for all f € A%,

lim |Q5°(f) = Q¥ () =0 (3.70)
and

lim QP (HI = If e 371

The positivity of Q}” is obvious from (3.69). Since f and « are compactly
supported in ¢ and v, respectively, Q}"(f) is an integral operator with smooth
compactly supported kernel; hence it is Hilbert-Schmidt and therefore compact.
Self-adjointness is immediate from the reality of W;”.

The proof of (3.70) and (3.71) is very tedious, and will be omitted.

Given this lemma, the corresponding argument in the proof of 2.6.1 leads to

lim QY (Il = 11/l (3.72)
and the proof of Theorem 3.5.1 is finished. O

The continuous field of C*-algebras defined by Q,‘,lV through Theorems 3.5.1
and 1.2.4 will be identified in IT1.3.12.

3.6 Commutation Relations on Riemannian Manifolds

We would like to quantize certain unbounded smooth functions f on the phase
space T* Q. This can be done by the prescription (3.50), (3.51) if f is polynomial
in p. The domain on which the ensuing unbounded operator Q) (f) is defined is
initially taken to be C2°(Q), since on this domain the formal manipulations used in
computing Q) (f) are well-defined. In this section we examine certain intrinsically
defined functions on T*Q of order zero and one in the canonical momenta (the
Hamiltonian, which is of order two, will be dealt with in the next section).

Proposition 3.6.1. The Weyl quantizations (in the sense of 3.4.4) of f = J; (cf.
(3.7)) and of f = J¢ (cf. (3.8)), defined on C°(Q) C L*(Q), are given by

oY (Jp) = & (3.73)
QY (Jg) = —if(E + 4V - §). (374
Here g and 1V - & (:= 1V;£') are multiplication operators. _
The computation of Q;LV(- --)W(x) is best done in normal coordinates g, based

at x (cf. 3.2). In these coordinates the point g and the vector X, € T, Q for which
(exp, (3 X,), exp,(—3 X)) = (0, v) (see (3.48)) are given simply by ¢, = jv' and
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X 51 = —v’. Hence from (3.50), (3.51), and (3.43) one obtains

W _ . d"p o Lya—ipy det g(v) ' )
Q) (HV(x) = de vfn Y k(—v, zv)e —-——detg(%v)f(hp, 7V (v);
(3.75)

for the functions f under study this expression will turn out to be independent of
the cutoff function . For f polynomial in p one has the (oscillatory) integral

dnp —ipv i [P B a . a (n)

any e tPptt.. ph = 15-1}71 . zm §"(v), (3.76)
where §® is the n-dimensional Dirac delta distribution. This leads to (3.73) and
3.74). |

Straightforward computation leads to the following “canonical” commutation
relations (valid on the domain C2°(Q)):

’ﬁ [QF (), Q¥ Up)] = 0; (3.77)
lﬁ [QF (Je), QF (Jp)] = QF (Jez); (3.78)
=[O ), QU] = O e (379)

These reflect the classical Poisson brackets (3.9)-(3.11), in that Dirac’s relation
i[QF (), Q¥ (@] /h = QY ({f. g)) is satisfied for the functions in question.
The “canonical” commutation relations may be interpreted in terms of a certain
representation py, of the group G (see (3.12)) on L%*(Q0).

Proposition 3.6.2. The linear action of G on L*(Q) defined by

PrE)W(g) 1= e B DMy (g), (3.80)

di(o-!
oryuiq) = [ LD g o), (3.81)
du(q)

and pr(p, 8) := pr(8) o pr(@), is unitary, hence a representation. The derived
representation of the Lie algebra Qg is given in terms of the map J (cf. 3.1.4) by

ihdpn(X) = QY (Jx)- (3.82)

The Radon—Nikodym derivative under the square root exists because ¢! is

a diffeomorphism, under which the locally Lebesgue measure class is invariant.
Given the square root, unitarity is immediate from the definitions. For the remaining
calculation one combines the identity

9; log {/detg = F,’] (3.83)
with (3.40) and (3.1). 0
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The representation p; induces a *-automorphic action al of Gp on Ar =
Bo(L*(Q)) by

af, 5(A) = pi(p, §)Apn(p, &)". (3.84)

Writing o := ol , and o := &', ., the kemel of A = QY (f) (cf. (3.51))
[ (9,0 g (id,8) h
transforms as

du(p~'(x)) du(e~(y))
du(x) du(y)

@M Ky LI, y) = \/

x Ky LF1@™ @), 07 ) (3.85)
(kI LID) (6 3 = BOFIIKY | i y). (386)

The classical analogue of this automorphism is evidently given by
al, ()= £ o polle. 7). (3.87)

where pg is defined in (3.13).

An isometry of (Q, g) is a diffeomorphism ¢ for which ¢*g = g; an infinites-
imal isometry is a vector field & on Q for which L;g = 0 (where L is the Lie
derivative).

Theorem 3.6.3. If ¢ is an isometry of (Q, 8), then
al(QN (1)) = Q¥ @)(f) (3.88)

forall f € C(T*Q) (cf (3.49)), and h small enough so that Q,‘;V( f) is indepen-
dent of the cutoff « (cf. the comments following 3.4.4). If k is invariant under the
(pushforward) action of ¢ to T Q, eq. (3.88) holds for all h # O.

If € is an infinitesimal isometry whose flow is complete, then, under the same
conditions on f, on the domain C°(Q) one has

lﬁ [QF (o), QF ()] = QF (e, £D. (3.89)

If ¢ is an isometry, the Radon-Nikodym derivatives in (3.85) equal unity.
Equation (3.88) then follows from (3.85), (3.51), (3.42), (3.48), and the property

X,y (T 30:(Xy)) = p(exp,(£3 X)), (3.90)

which, because ¢ is an isometry, holds by the definition of the exponential map.
Equation (3.89) follows from (3.88), (3.82), Proposition 3.1.5, and the following
interesting result. |

Proposition 3.6.4. Ifavector field & on Q is complete, then Q,%V(JE) is essentially
self-adjoint on the domain C°(Q).

By (3.82) we might as well consider dp(§). Let ¢ be the flow generated
by &; since & is complete, the flow exists for all z. Then (3.81) defines a one-
parameter unitary group ¢ — pp(@;) on L*(Q). A routine calculation shows that
dpn(e)¥/dt|t = 0 exists for all ¥ € C°(Q), and equals £¥. Hence C°(Q) is
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contained in the domain of the generator of the unitary group, and this generator
equals —i& on C2°(Q). Furthermore, by (3.81), pr(¢;) leaves the dense domain
C2°(Q) invariant for all ¢, since ¢, is a diffeomorphism. A lemma in functional
analysis states that if ¢ > exp(it H) is a unitary group in a Hilbert space that leaves
a dense linear subspace Dy C D(H) invariant, then H is essentially self-adjoint
on Dy. This implies the proposition. |

3.7 The Quantum Hamiltonian and its Classical Limit

We extend Proposition 3.6.1 to the most important function on T*Q that is
quadratic in the momenta.

Definition 3.7.1. Given a Riemannian metric g on Q, the Laplace-Beltrami
operator A is an elliptic second-order differential operator on Q, defined by

(¥, A®) = —/Qdu(q)gq(V‘I’(CI), ve(g)), (3.91)

where W, ® € C°(Q); the gradient v/ is defined in (3.16).

In coordinates, one has
L. 1 .
A =g'V,d; = ———0;(y/detgg” 3,); 3.92
g’/ Vi, e i(v/detgg” ;) (3.92)

here 9; acts on everything to its right, including the (omitted) W. In flat space A
clearly reduces to the Laplacian.

Proposition 3.7.2. The Weyl quantization of the Hamiltonian h, (cf. (3.31)) is
given (on the domain C*(Q) C L*(Q)) by

Hy = QY (h) = —1h*(A — IR). (3.93)
Here the Ricci scalar R (cf. (3.23)) is seen as a multiplication operator.

The proof of (3.93) follows the same steps as in 3.6.1; here one additionally
uses (3.25). O

The functional analysis of the first term of (3.93) is given by a result of the same
type as 3.6.4, but somewhat deeper.

Theorem 3.7.3. When (Q, g) is complete (cf. 3.1.3), the Laplace-Beltrami
operator is essentially self-adjoint on C2°(Q).

The symbol A stands for the differential operator (3.92) defined on the domain
C(Q); its closure is denoted by A. We can look at (3.91) as the definition of A
as a quadratic form with initial domain C°(Q).

It is easily verified that A is symmetric. It is evident from the definition (3.91)
that A, and therefore A, is negative. It follows that A has equal deficiency indices,
so that self-adjoint extensions exist. (This conclusion also follows from the fact
that A commutes with the conjugation ¥ — W on L?(Q).) The domain D(A) of
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A is the set of vectors W € L%(Q) for which there exists a sequence ¥; € C2°(Q)
such that ¥; — W, and AW; converges to an element in L?(Q); the latter is then
by definition AW. The domain D(A*) of the adjoint is the collection of vectors
in L2(Q) C D(QY (the distributional dual of C°(Q) = D(Q) with the Schwartz
topology) for which A*W lies in L2(Q); here A* is given by the expression (3.92),
understood in the sense of weak (distributional) derivatives. The theorem states
that D(A) = D(A*) if Q is complete.

The following fact will be used: If A is a positive closed operator, then the
dimension of ker (A — A) is constant for A € C\[0, co). Suppose A is not self-
adjoint. Then the deficiency indices are nonzero (and equal), so that the equation
A*W = [ has a nonzero solution in D(A*). By the above fact, there is a nonzero
solution W = W, of A*W = W, The theory of elliptic PDE’s shows that ¥, €
C>®(Q) (“elliptic regularity™), so that the weak derivatives in A* are actually strong
ones. Abbreviating the right-hand side of (3.91) as (v, v ®), the idea of the proof
1s to write

(WY, v = —(A",, ¥)) = —(¥,, ¥) <0,

forcing vW¥, = 0 (in L2(Q)) and therefore A*W; = W, = 0. However, the partial
integration leading to the firstequality is not a priori justified unless ¥, has compact
support (hence if Q were compact the proof would be finished here). Hence one
uses the following device. Pick a fixed go € Q, and define a family of functions
Ji © Q@ — [0,1]1 by ji(g) = j(d(g,q0)/k) (k € N), where d is the distance
function on Q x Q (see 3.2), and j : [0, oc) — [0, 1] is a smooth cutoff function
thatis 1 in [0, 1] and O on [2, 00). At this point the completeness of (Q, g) is used:
It follows from Theorem 3.2.3, guaranteeing metric completeness, that each ji has
compact support (since a closed and bounded set in a finite-dimensional complete
metric space is compact). One clearly has jx — 1 pointwise.

The distance d(q, qo) is a differentiable function of g except at go and at the
cut locus C(qo) (cf. 3.2.4). By Corollary 3.2.6 the set C(qq) is of 1-measure zero,
so that each component of 7d (-, go) is well-defined as an element of L2 (Q). The
triangle inequality leads to |d(q1, g0) — d(q2, 90)] =< d(qi, q2)- This Lipschitz
condition implies that in normal coordinates centered at go the metric is absolutely
continuous with respect to each variable, with |8;d(q, go)] < 1. Hence, by the
chain rule, |3; ji(@)] < [ljlloo/ k, sO that

lim [19; jkllo = 0. (3.94)
k—00
Trivially, (jeWi, jxW1) > 0. Moving the second j to the left, replacing the

second ¥, by A*W,, and performing a partial integration (now allowed, since
Jj#¥, has compact support), one rewrites this inequality as

e 7 Wil3 < 21(¥1 © Ji, Ji 7 W1,

where || - ||2 is the norm derived from (, ). The Cauchy—Schwarz inequality then
yields || jx vV Wi |I% < 21¥; v Jjill2 Iljx v W1ll2, which in turn leads to the bound
Iljk v Will2 < 2%, ¥ jkll2. Accordingly, by (3.94) one has limg [l ji v Will2 = 0.
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Fatou’s lemma and lim, j, = 1 (pointwise) then imply that || v W[z = 0; as we
have seen before, this implies ¥, = 0. a

Self-adjointness of Q,‘;V(h) in (3.93) then follows from a mild assumption.

Proposition 3.7.4. Let (Q, g) be complete with Ricci scalar R bounded. Then
Q;V(h) is essentially self-adjoint on C2°(Q) and self-adjoint on D(A).

This is immediate from the Kato-Rellich theorem on perturbations of self-
adjoint operators. ]

In order to generalize the proof of Theorem 2.7.2 to Riemannian spaces (Q, g),
we have to make a simplifying assumption, namely that Q ~ R" as a manifold.
If (Q, g) is complete, by Theorem 3.2.5 this would follow from the assumption
that the cut locus C(go) is empty for some point go € Q. The globally defined
coordinates x’ on R” may then taken to be normal coordinates based at qo. However,
given the assumption that Q =~ R", we need not assume that the cut loci defined by
the metric are empty, and neither is it necessary that the classical motion defined
by # be complete. (The case that (@ ~ R", g) is complete and R is bounded is, of
course, covered; cf. 3.7.4.)

In the present case the notation L2(Q) stands for L2(R", d"x./detg(x)). We
can define normalized coherent states in L2(Q) by

WD (x) = () (det g(x))/4eiPE— 1o~ G-aR /M), (3.95)

this slightly generalizes (2.47).

We shall merely assume that g is a metric on Q = R" for which g” and its
derivatives are O(exp(x2/2)) forx — 00.Ifk < 1, the operator Hy, in (3.93) is then
symmetric on the domain Dy consisting of the span of all coherent states (3.95),
and has one or more self-adjoint extensions (since it commutes with complex
conjugation). As in 2,7.2, with slight abuse of notation the unitary one-parameter
group exp(it Hy/h) on L%(Q) is understood to be generated by an arbitrary self-
adjoint extension of (3.93). We use the notation (2.88) and 1.(2.13).

Theorem 3.7.5. Let(Q, g) beas detailed in the preceding paragraph. Fix (p, q) €
T*Q, assuming that the cogeodesic motion (p(t), q(t)) with initial conditions
(p(0), q(0)) = (p, q) exists for t; < t < ty. Then with Q)¥ defined by 3.4.4 and
\P,(,lp’q) given by (3.95), for all t € (t;, t) one has

lim (WP, [QF @P(f) - af @Y (] WIP) =0, (3.96)

The coordinates (p;, ¢) are globally defined on 7*Q, and from (3.74), (3.1),
and (3.83) we obtain

Q= QN (@) =x";
Ph; = QF(p)) = —ikidet g(x)—‘/“;— detg(x)!/*, (3.97)

xi
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defined as operators on Dy or on C(Q) (cf. the comment after (3.92)). We may
then write

Hy = A [QF @), QF (p)Q) (p)] = 187(Qn) o (PniPrj) (3.98)

(rather than the complete symmetrization 1A [Q}(g”), QY (i), QF (p))]. as
might have been expected on the basis of the flat-space case (2.37)). The trans-
formation V : L2(Q) — L2(R") defined by VW(x) = det g(x)/*W(x) is clearly
unitary, and satisfies

AN
VP V=P, (3.99)

cf. (2.23), (2.24). In particular, one infers that Q‘}l and Py ; are essentially self-
adjoint on Dy or on C2°(Q). Moreover, the canonical commutation relations are
the same as in the flat-space case; see (2.25). From (3.98) and (3.99) we obtain

VHWV* = L [g/(QD PSPy, — ihd;g (Q) PS, — 1R*8,3;87 (QR)] . (3.100)

The final virtue of V is that up to a phase, it maps the coherent states (3.95) into
their flat-space analogues (2.47). Hence one can transfer the entire situation to
LA(R™).

Lemma3.7.6. With \Ilﬁlp D the coherent state (3.95), one has forall (p, q) € T*Q,
all(p,8) € Gg,and all f € C3(T*Q)

lim (w,ﬁ""“, [, 5 (QY (F) — QF (a?q,,g,(f>>1\vg”"’>) =0. (3.101)
Denote the Fourier transform (cf. (3.42)) of a?(p' g)( f)by a&, é)( f ). From (3.87),
for X € T, Q we obtain the expression

N du(p™! .
ap(F)X) = —“‘%@(T(mf(w;‘X); (3.102)

a(F)(X) = e XD £(x). (3.103)

As in the proof of Theorem 3.5.1, Lemma 3.5.2 allows the assumption that
the set 77+, g(supp (f)) is contained in an arbitrarily small open set U C Q,
which we choose to be some geodesically convex set U. It is clear from (3.85),
(3.102), and (3.95) that both terms in (3.101) vanish in the limit & — 0 if p(q) ¢
Tr» 9 o (supp (f)); hence we assume the converse.

We treat ¢ = (¢, 0) and g = (id, g) separately; the result for the two combined
follows in an obvious way. We start with «,. We write both terms in (3.101) in
the form (3.54), change variables firstly by g; > ¢(g;), and secondly by (3.55),
with subsequent rescaling v > hv. We now write ¢’ for the object g in (3.55) to
avoid confusion with the label g on \p,(,l” ‘9 In the first term we then use (3.85) and
(3.51). In the second term we have the expression

' KY 1) (e(r (@', v; 1h), (¥ (q', v; =1 F))).
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By definition, ¢(q") = ¢(y(q’,v;0)) and ¢, (v) = idy(q’,v; 1R)/dhlh =
Hence

e(r(q', v;£3h) = y(9(@"), p(v); £1h) + O(BY),

where the order symbol is meant in the sense of smooth functions evaluated on
both sides. From (3. 51) and (3.102) we then see that the expression above equals
[du(q’ )/du(go(q’))]f(v q") + O(h). In the first term in (3.101) we expand the
terms involving /"~ (see (3.85)) and f around & = 0. To O(1) the first and the
second term are then seen to cancel out. The remainder of O(R) is easily shown to
vanish for i — 0, since f has compact support.

The argument for ; is analogous. This time the cancellation of the O(1) term
is effected by (3.86), (3.103), and the fact that

(8@’ v; —30) — §(r(q', v; —3AN]/h = —v3(g") + O(h),
which follows because by definition v = y(q, v; 0). ]

One then proceeds in precisely the same fashion as in the proof of 2.7.2, and
obtains (2.162). The final stage is analogous to the procedure to prove 2.7.2 for
Qr = QF , except that the use of 2.4.3 is replaced by Lemma 3.7.6. This is possible
because (up to a phase) the operators U L (p(), q(t)) used in that step are of the
form Vg (g, £)V*; cf. 3.6.2. |



CHAPTER 1lI

Groups, Bundles,
and Groupoids

1 Lie Groups and Lie Algebras

1.1 Lie Algebra Actions and the Momentum Map

This section describes the main class of examples of Poisson manifolds that are
not symplectic. Here G is a Lie group, g its Lie algebra, and g* is the dual of g.

Definition 1.1.1. The (&) Lie-Poisson structure on g* is given by the Poisson
bracket

{f, 8}+(6) := £6([dfy, dgo]); (LD

here the differential dfy of f € C*(g*,R) at 6 € g*, which is a linear map from
Tog* ~ g* to R, is identified with an element of g > g**, so that the right-hand side
of (1.1)is the Lie bracket in g. The space g* equipped with the Poisson bracket (1.1)
is denoted by g, ; hence C*°(g., R) stands for the associated Poisson algebra.

_For X € glet X be the linear function on g* defined by X(6) := 6(X); clearly
X € C*®(g*, R). From (1.1) one then obtains

(X, P)s = +[X, Y); (1.2)

cf. I1.(2.10) and surrounding text. In fact, the Poisson structure is determined by
the special case (1.2). For let {T,} be a basis of g, with [T, Tp] = Cc:,T., and
dual basis {w?} of g*, defined by »?(Tp) = 85 . We then have global coordinates 6,

on g* (so that 6 = 6,0"), and T is simply the coordinate function §,. We know
that {f, g} depends linearly on df and dg; cf. 1.(2.4). Since df = (3f/006, ydT,,
the claim follows. Evidently, {Ta, Tple = :i:Cach, or {0, Op}+ = £C;,0.. Thus,
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omitting the argument 8, (1.1) may be written as

of _a_g_ (1.3)
a6, a6,

We now look at the representation theory of C*°(g* , R) (in the sense of 1.2.6.1).
By Corollary 1.2.6.5 a representation of C*°(g* , R) corresponds to a symplectic
manifold S and a smooth map J : § — g*, such that {J*f, J*g}s = J*{f, g}_
forall f, g € C™(g*, R). Thatis, J : § — g¢* is a Poisson map. Let

{f, g}x = £C0¢

Jx = J*X, (1.4)
which is in C*(S, R); in other words, Jx (o) := (J (o)} X).

Proposition 1.1.2. A smoothmap J : S — g* is Poissoniff {Jx, Jy}s = —Jix.r]
forall X, Y € g.

If BS is the Poisson tensor on S, then {J* f, J*g}s = BS(J*df, J*dg). As in
the previous paragraph, this implies that

) a ~ -
(¥ f, J*gls(o) = 3§(1(“>)Ti(1<0)){1*Ta’ J*Tp)(0). (1.5)

By assumption {J*T,, J*Ty}s(0) = —CE, T.(J(0)), so that the right-hand side of
(1.5 is {f, g}-(J (o). n

Define £x := &,,, which is the Hamiltonian vector field of Jx. Assuming that
J is indeed a Poisson morphism, the Jacobi identity on the Poisson bracket of S
(or (1.2.9)) implies that

6x, &yl = —&x.vps (1.6)

here the left-hand side contains the commutator of vector fields, whereas on the
right-hand side [, ] stands for the Lie bracket in g.

Let us refer to a linear map X +— &y of g into the space of vector fields I'(T' S)
on S satisfying (1.6) as a g-action on S. Here I'(T'S) may be regarded as the
Lie algebra of the diffeomorphism group of S, whose Lie bracket is minus the
commutator (cf. 1.3.3), so (1.6) corresponds to a Lie algebra homomorphism as
appropriate. When various g-actions play a role we sometimes write §§ for &x. If
{T,} is a basis of g, we abbreviate &, := &7,. One speaks of a Poisson g-action
when § is a Poisson manifold and L¢, B = 0 for all X € g, where B is the Poisson
tensor. When (S, w) is symplectic, which is the only case we shall consider in the
context of g-actions, this condition is equivalent to L¢, w = O for all X.

We infer from I.(2.10) that a representation of C®(g* , R) on S leads to a Poisson
g-action on S. Conversely, one may ask whether a given g-action on a symplectic
manifold S is related to a representation of C*(g* , R) on S.

Definition 1.1.3. A momentum map for a g-action X + &x on S is a map
J S — g* for which

Eiy = éx %))
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for all X € g, here Jx is defined by (1.4).

This definition applies to general Poisson manifolds, but we will use it only
when S is symplectic. We will occasionally write J, for J7,. A Hamiltonian g-
action on a symplectic manifold is a g-action given by a momentum map as in
(1.7). 1t is clear from (1.7) and 1.(2.10) that a Hamiltonian g-action is Poisson.
When a momentum map J exists, (1.7) is equivalent to

igxa)ZdJX (1.8)

for all X € g; to prove this, contract both sides with &5 (which is the most general
type of local vector field, since S is symplectic) and use 1.(2.19).

Conversely, when a g-action is Poisson, the properties dw = 0 and Lg, 0 = 0
and the identity Ls = i¢d + di¢ imply dig, 0 = 0, so that by Poincaré’s lemma a
function Jy satisfying (1.8) must exist at least locally.

Proposition 1.1.4. Sufficient conditions for the existence of a momentum map for
a Poisson g-action on a symplectic manifold (S, w) are H, dL(S ,R)=00rg = I[g, gl
(equivalently, H'(g, R) = 0).

Here H.(S,R) := Z} (S, R)/BL(S, R) is the first de Rham cohomology group
of §; recall that Z'.(S, R) and B (S, R) are the spaces of all closed and all exact 1-
forms on S, respectively. The sufficiency of the condition H, 1(S, R) = Oisevident
from the paragraph preceding this proposition.

The vector space H'(g, R) is the first cohomology group of g; since Bl(g,R)
is identically zero, H'(g, R) is defined as the subspace Z'(g, R) C g* of all 6 for
which 6([X, Y]) = O for all X,Y € g. The equivalence between the conditions
g = [g, g] and H'(g, R) = 0 is obvious.

If g = [g,g), then an arbitrary X € g can be written as X = ) X;
with X; = [Y;, Z;] for appropriate Y;, Z; € g. If X = [Y, Z], we choose
Jx = w(&y, £z), which, by an elementary calculation, using (1.6) and dw = 0,
satisfies (1.8) and hence (1.7). For arbitrary X we define Jx by linear extension of
this expression. n

The existence of a momentum map J in itself does not imply that J preserves
the Poisson bracket. To detect the extent to which it does we define a function I
ongxgxSby

{Jx, Jy}s = —Jixr1 — (X, ). (1.9)

It is clear that I' is bilinear and antisymmetric in X, Y. Taking the Poisson bracket
of both sides of (1.9) with an arbitrary f € C*(S), and using (1.7), (1.6), and the
Jacobi identity, we infer that {T'(X, Y), f} = Oforall X, Y. Since S is symplectic,
this shows that I" does not depend on its argument in S. A bilinear function I" :
g ® g — R satisfying

NX,Y)=-TI(, X), (1.10)
X, zZ0+rEZ, X, YD+ T, [Z,X)=0 (1.11)



1 Lie Groups and Lie Algebras 181

is called a 2-cocycle on g (with values in R). The space of all 2-cocycles on g is
denoted by Z%(g, R). It follows from the Jacobi identity on both {, }s and [, ] that
I as defined in (1.9) is indeed an element of Z2(g, R).

We are now motivated to define a modified Lie—Poisson bracket on g* by

(f. 8)% == {f &)+ £ T'@f, dg); (1.12)

this is indeed a Poisson bracket on account of (1.11). Generalizing (1.3), in
coordinates one has

of dg
(£, &) = % (C\6: + Tp) %3—% (L13)
a

Lap := (T4, Tp). (1.14)

As for I' = 0, one shows that this modified Poisson bracket is determined by the
special case

(&ML =% (X V1+TX, ). (1.15)

Definition 1.1.5. The space g* equipped with the Poisson bracket (1.13) is denoted
by g{ry+; we sometimes write C2°(g2) for the associated Poisson algebra.

Generalizing Proposition 1.1.2, one easily proves
Proposition 1.1.6. A smoothmap J : S — g{p,_ is Poisson iff (1.9) holds.
The essence of the preceding discussion may now be summarized as follows.

Theorem 1.1.7. There is a bijective correspondence between representations w
of C°(g* ) (in the sense of1.2.6.1) and Hamiltonian g-actions with given complete
momentum map and associated 2-cocycle T'. Given w : CR°(g*) — C*(S) one
constructs a Poissonmap J : S — g{, by 1.2.6.5, and subsequently defines the
g-action X > &x by (1.7). Conversely, given a g-action with associated complete
momentum map J (yielding a 2-cocycle "), one puts 7 = J*.

The fact that X +— &x is indeed a g-action follows from the argument leading
to (1.6); even when I' # 0 the additional term in (1.12) is a constant function, so
that the Jacobi identity on the Poisson bracket still implies (1.6). It is Poisson by
1.(2.10), and Hamiltonian with 2-cocycle I" by construction. In the converse the
fact that J* is a representation is immediate from 1.1.6. ]

A strongly Hamiltonian g-action is a Hamiltonian g-action possessing a mo-
mentum map J : S — g* that is Poisson; in other words, there exists a J for
which I' = 0 in (1.9). A Hamiltonian g-action with 2-cocycle I' may alternatively
be described as a strongly Hamiltonian action of a certain I'-dependent Lie algebra
containing g.

Definition 1.1.8. The central extension gr of a Lie algebra g by R relative to
someT" € Z%(g, R)is gr := g@®R as avector space, equipped with the Lie bracket

[X,Y]r =[X, Y]+ T(X, V)T, (1.16)
(X, Tolr =0 (1.17)
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for X, Y € g, and Ty a basis vector of the extension R.

The Jacobi identity for [, ]r is a consequence of (1.11). We have an embedding
t:g <> gr by (X) = X+40 (which is not a Lie algebra homomorphism unless
I’ = 0), as well as a quotient g ~ gr /R as Lie algebras.

Proposition 1.1.9. There is a bijective correspondence between Poisson maps
J © S — gr_ (or, equivalently, Hamiltonian g-actions with 2-cocycle ') and
Poisson maps Jr : S — gr_ (or strongly Hamiltonian gr-actions) in which
(Jr(@)XTo) = 1 for all o € S (equivalently, 7r(7~"0) = 1g, so that &, = 0). This
correspondence preserves irreducibility.

Let «° be the basis element in gr dual to Ty. Then J; : 8- > Or— given by
J1() := 6+ is a Poisson map (where g* is embedded in g} as the annihilator
of the extension R); this follows from (1.15), (1.16), (1.2), and J} To = 1g-.

Given J : § — gfr)_, one constructs Jr : S — gr. by Jr := J, o J.
Conversely, when a given Jr is as stated, the equality .Ili‘(f‘o) = 15 and Proposition
1.1.6 imply that Jx (o) := (Jr)yx)(o) with (1.4) is a Poissonmap J : § — gzr)_.
Finally, Definition 1.2.6.6 and the fact that &7, = 0 lead to the last part of the
proposition. n

As a by-product of the proof we have

Proposition 1.1.10. The canonical identification of C™(g{._)/ ker(J{") with
CP°(g* ) is a Poisson isomorphism.

This is immediate from the definitions and (1.13). mn

The theory so far has been concerned with a Hamiltonian g-action with given
momentum map J. However, when some J exists, then any map J' = J + 6,
where 8y € g*, is obviously a momentum map for the given g-action as well.
Having found a particular J for which I' # 0, when can we redefine J + J' so
as to make J' a Poisson morphism?

A 2-cocycle T' € Z2(g, R) is said to be trivial when

N(X, Y) = 6o([X, Y]) (1.18)

for some 6, € g*. The subspace of trivial 2-cocycles is called B%(g, R). The
quotient H(g, R) := Z?(g, R)/ B*(g, R) is the second cohomology group of g.

Proposition 1.1.11. If a momentum map of a Hamiltonian g-action defines a 2-
cocycle satisfying (1.18), then the g-action is strongly Hamiltonian. In particular,
when H?(g, R) = 0 any Hamiltonian g-action is strongly Hamiltonian.

Given (1.18), the redefined momentum map J' = J 46 : S — g* is a Poisson
map by (1.9). The condition H?(g, R) = 0 implies that any 2-cocycle T is given
by (1.18). |

Combining 1.1.11 and 1.1.4 we obtain
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Corollary 1.1.12. Let H'(g,R) = H*(g,R) = 0. Any Poisson g-action is
strongly Hamiltonian, and is associated with a unique Poisson momentum map
J:S—g*.

If one has a Poisson momentum map J, one may still shift J — J + 6o,
preserving the Poisson property, iff 6y annihilates [g, g]; when g = [g, g] this
forces 63 = 0. [ |

The conditions Hi(g, R) = 0, i = 1, 2, are satisfied, for example, when G is
semisimple. The consistency between 1.1.9 and 1.1.11 is guaranteed by

Proposition 1.1.13. IfT'(X,Y) = 6y([X, Y]) for some 8y € g*, then gr is iso-
morphic to the trivial extension go = g @ R as a direct sum of Lie algebras. In
particular, when H?(g, R) = 0, any central extension of g by R is trivial.

(X, Y) =6,(X, Y]), then X > X + 6o(X)Tp for X € gand Ty > Tp is
the desired isomorphism between gr and go. ]

1.2 Hamiltonian Group Actions

We will now relate g-actions to G-actions, where G is aLie group with Lie algebra
g. Recalli that a (left) action L of a group G on amanifold SisamapL : GxS — §,
satisfying L(e, o) = o and L(x, L(y,0)) = L(xy,o)forallc € Sandx,y € G.
If G is a Lie group, we assume that L is smooth, unless the contrary is explicitly
stated. We write L, (0) = xo := L(x, o).

Given a Lie group action, one defines a linear map X — &x by

d
bxflo) = — FEXp(X)0)ji=o, (1.19)

where Exp : ¢ — G is the usual exponential map. One sees that (1.6) holds, so
that X > &y is a Lie algebra homomorphism from g into the Lie algebra I'(T' S) of
Diff(S). We say that the §x generate the G-action, and call £x a generator defined
by X.

Conversely, one may ask whether a representation of C*®°(g*,R) on S is de-
rived from a G-action, in which case the representation is called integrable. This
question is partly answered by the following statement.

Theorem 1.2.1. Let X +— &x be a homomorphism as above, and suppose the
Sflow of each &x, X € g, is complete (this is the case iff there is a basis {T,} of g
such that the flow of each &, is complete). Then the Ex generate an action of the
simply connected Lie group G whose Lie algebra is g.

The construction of the G-action is, of course, done with the flow of the genera-
tors; that is, if o > o (¢) is the flow generated by £x, one puts Exp(t X) : 0 > o (2).
Such one-parameter groups generate G (which is connected), but it remains to
check that one indeed obtains a smooth group action. O

Note that the statement about the basis is nontrivial, since in principle the sum of
two complete vector fields may be incomplete. Clearly, the hypothesis is automat-
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ically satisfied when S is compact, or more generally when all §x have compact
support. In any case, if the theorem leads to a G-action and if no &y is identically
zero, there is a discrete normal subgroup Ds C G such that Ds is the maximal
subgroup of G that acts trivially on S. If G = G /D for some discrete central
subgroup D C G (recall that any Lie group with Lie algebra g is of this form),
then the £x generate a G-action if D € Dy.

When the g-action associated to a G-action on a symplectic manifold S is
Hamiltonian, one speaks of a Hamiltonian group action. Similarly, a strongly
Hamiltonian group action is an action for which a momentum map J : § — g*
exists that is a Poisson map; cf. (1.19) and 1.1.3. It is immediate from the comment
preceding 1.2.3.5 that a Hamiltonian G-action automatically consists of Poisson
maps. Further to this, the conditions for a G-action on a symplectic manifold to be
(strongly) Hamiltonian are entirely determined by the properties of the associated
g-action, and are therefore given by Propositions 1.1.4 and 1.1.11 and Corollary
1.1.12.

The Hamiltonian version of Noether’s theorem is as follows.

Proposition 1.2.2. Given a Hamiltonian G-action on a symplectic manifold S,
when h € C®(S, R) is G-invariant (i.e., h(xc) = h(o) for all x € G), each Jy is
constant along the Hamiltonian flow lines of h.

Putting x = Exp(tX) in A(xo) = h(o), evaluating d/dt att = 0, and using
(1.7) leads to {Jx, A} = 0, which by 1.(2.8) and 1.(2.11) implies the claim. n

In view of this, in physics the components Jy of the momentum map usually
play the role of conserved charges.

A Hamiltonian G-action enjoys a certain equivariance property. Recall the ad-
joint action Ad of G on g, defined by Ad(x)Y := xYx~! (more precisely, if
Y = dy(t)/dt|t = 0, then Ad(x)Y = dxy(t)x~'|t = 0). The derived rep-
resentation of g is then given by ad(X)Y = [X, ¥] (where we simply write
ad for the awkward dAd). The coadjoint action Co of G on g* is defined by
(Co(x)8)(Y) := 6(Ad(x 1Y), with derived action of g on g* written as co := dCo.
One has ad(T,)T, = C;, T, whence

co(Ty)0p = —Cjp0c. (1.20)
As a first application of these definitions we note:

Proposition 1.2.3. The Lie-Poisson structure is invariant under the coadjoint
action (in other words, the map Co(x) is a Poisson map for each x € G).

By the comment following (1.2) it suffices to show that {X o Co(x), i’ o
Co(x)}x = {X,Y}+ o Co(x) for all X,Y € g and x € G. Since X o

——

Co(x) = Ad(x~1)X etc., this is evident from the fact that the adjoint action is
an automorphism of the Lie algebra. |
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Given a choice J of a momentum map associated to a Hamiltonian G-action on
S via the derived g-action, we define y : G x § — g* by

y(x,0) = J(xa) — Co(x)J (o). (1.21)
Lemma 1.2.4. The function y is independent of o, and satisfies
y(xy) = y(x) + Colx)y (y). (1.22)

A smoothmap y : G — g* with property (1.22) is called a 1-cocycle on G with
values in g*; the space of such 1-cocycles is denoted by Z (G, Co, g"). The proof
that (1.21) is independent of ¢ is similar to the argument after (1.9). For arbitrary
f € C®(S)ywe compute {JyoL,, f}sforfixedx € GandY € g,anduse (1.7) and
the invariance of the Poisson bracket under L,. This shows that {Jy o L,, f}s =
{Jadx-1yy, fls.Since § is symplectic, yy (in obvious notation) is therefore constant
in o for all Y. The property (1.22) is then immediate from the definition and the
o -independence of ¥ and the equality Co(xy) = Co(x )Co(y). |

Corollary 1.2.5. A momentum map J for a Hamiltonian G-action is equivariant
with respect to the modified coadjoint G-action on g* defined by

Co¥(x)8 := Co(x)8 + v (x), (1.23)

where y is given by (1.21). That is, J o L, = Co¥(x)o J for all x € G (recall that
y(x,0) = y(x)).

In particular, for a strongly Hamiltonian G-action the momentum map J is Co-
equivariant, or simply equivariant, in that J o L, = Co(x)o J for all x. Moreover,
infinitesimal Co-equivariance (in the sense that J : S — g* is a Poisson map) is
equivalent to global Co-equivariance.

Note that (1.22) guarantees that Co” is an (affine) action.

Only the final claim is not immediately obvious. It is clear from (1.9) and (1.21)
that the 2-cocycle I" defined by the momentum map of the g-action corresponding
to the group action is given in terms of y by

d
FX,r)= —Z)’(EXP(fX))(Y)u:o- (1.24)

If we put y = Exp(¢Y) in (1.22) and differentiate with respect to ¢, the right-hand
side vanishes when the g-action is strongly Hamiltonian (as I' = 0 in that case).
Hence the vanishing of the left-hand side says that y(x) is constant in x; since
y(e) = 0, y identically vanishes. The equivariance is then stated by (1.21). W

It should be remarked here that the antisymmetry of I" as defined by (1.24) is
not automatic; it is guaranteed, however, when y is of the form (1.21).

Theorem 1.2.6. Assume that G is simply connected, and letT" € Z*(g, R)andy €
ZY(G, Co, g*) be related by (1.24). There is a bijective correspondence between
representations of CX°(g*) and Hamiltonian G-actions with I1-cocycle y whose
momentum map J is complete:
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o Given a representation w = J* : CF(g*) — C™(S), define the vector fields
Ex =&, (with(1.4))on S, then the corresponding G-action exists and satisfies
(1.21).

e Given a Hamiltonian G-action on S with momentum map J and 1-cocycle y
(defined by (1.21)), the corresponding representation r is given by x = J*.

This follows from Theorems 1.1.7 and 1.2.1, and the fact that y is uniquely
determined by I' and (1.24). To see this, define r: g — g* by (TXONY) =
I'(Y, X). This leads to an affine map co” : g* — g*, givenby co (X)8 = co(X)0+
['(X). It follows from (1.11) that co” (X) is a Lie algebra homomorphism; note
that the Lie bracket of two affine maps A; = L; + v;, where L is linear, is defined
by [Ay, A2]0 := (A1A2— A2A)0 + A v, — Ayv;. Asin the linear case, when G is
simply connected there is a unique affine action Co” (G) on g* whose derivative is
co' (g); it is given by (1.23), where y satisfies (1.22), which is equivalent to (1.11).
This y then has to coincide with the same symbol defined by (1.21), stripped of
its vacuous o -dependence. ]

When G = G/D (in the notation used after 1.2.1) is not simply connected, one
has to assume integrability of the G-action. In turn, this guarantees integrability of
I" to y; given its existence, y is uniquely determined by the property y = yots_, .

Recall the definition of the space of 1-cocycles Z!(G, Co, g*) below (1.22);
define B'(G, Co, g*) C Z'(G, Co, g*) as the subspace of maps of the form

y(x) = Co(x)Bo — o (1.25)

for some 6y € g*. The 2-cocycle I' derived from y € B!'(G, Co, g*) by (1.24)
lies in B%(g, R); it is remarkable that such a I'" is automatically antisymmetric.
In general, elements of Z%(g, R) derived from y € Z!(G, Co, g*) by (1.24) may
fail to be antisymmetric. Elements of Z!(G, Co, g*) that do give rise to an an-
tisymmetric I" are called symplectic cocycles, forming the space Z!(G, Co, g*).
The first cohomology group of G relative to the coadjoint representation is
H)(G, Co, g*) := ZX(G, Co, g*)/B'(G, Co, g*).

Proposition 1.2.7. When G is simply connected, H*(g, R) and H!(G, Co, g*)
are isomorphic.

The proof of Theorem 1.2.6 shows that any I' € Z2(g, R) corresponds to a
unique y € Z!(G, Co, g*). The claim then easily follows from the paragraph
preceding the proposition. ]

More generally, further to 1.1.11 we have

Proposition 1.2.8. When a Hamiltonian G -action with momentum map J satisfies
(1.21) with (1.25), the action is strongly Hamiltonian. When H})(G, Co, g*) = 0,
any Hamiltonian action of G is strongly Hamiltonian.

When y is of the form (1.25), the redefined momentum map J' = J + 6y is
equivariant, as is clear from (1.21). If HSI(G, Co, g*) = 0, then any y is of this
form. |
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Note that the affine map A : 6 > 0 + 6, satisfies ACo” (x)A~! = Co(x) for all
x,as well as {A* f, A*g) = A*{f, g)+.

Corollary 1.2.9. A Hamiltonian action of a compact Lie group is always strongly
Hamiltonian.

The cohomology group H'(G, Co, g*) := Z\(G, Co, g*)/B'(G, Co, g*) is zero
when G is compact. Hence H/(G, Co, g*) ¢ H'(G, Co, g*) must be trivial as
well. O

The group analogue of 1.1.12 is

Corollary 1.2.10. Let H'(g, R) = H%(g, R) = 0, and let G act on a symplectic
manifold by Poisson maps. There exists a unique equivariant momentum map J
associated with this action.

Example 1.2.11. Let S = T*R”" with its canonical symplectic structure.

1. The action of G = R" (whose Lie algebra g = R" has a basis {T;};—, . _,)on S,
givenbya : (p,q) v (p, q + a), is Hamiltonian, with equivariant momentum
map Ji(p, q) = pi.

2. The action of G = SO(n) (whose Lie algebra g = A*(R") has a natural basis
{Tijli<j=1,..n) on S, given by R : (p,q) v (Rp, Rq), is Hamiltonian, with
equivariant momentum map J;;(p, q) = piq; — P;jqi, q; ‘= q".

3. Let the abelian Lie algebra g = R* have a basis {P;, Q’}i j-1....n. The corre-
sponding Lie group G = R*" is parametrized by (u, v) := Exp(—uQ + vP);
cf 11.(2.5). It acts on S by

w,v): (p,g) > (ptu,q+v),

see 11.(2.13), in which we have put ¢ = 1. This action is Hamiltonian, with
momentum map Jp,(p,q) = p; and Jpi(p, q) = g'. The 2-cocycle T is

T(P, P)=T(Q', Q) =0;
TP, Q%)= -5 (1.26)
The central extension gr is the Heisenberg Lie algebra ),; see 11.(2.4).

4. Finally, the map J of Proposition 11.3.1.4 is an equivariant momentum map for
the group action 11.(3.13).

The first two examples are a special case of Lemma 2.3.1 below. As to the third,
it should be remarked that since G is abelian, it must be that BZ(R?*, R) = 0; cf.
(1.18). Also, (1.11) is identically satisfied, so that a 2-cocycle on R?" is simply an
antisymmetric bilinear map on R?". The dimension of the space of antisymmetric
m x m matrices is 1m(m — 1); hence H*(R**, R) = R*@—D,

1.3 Multipliers and Central Extensions

Definition 1.1.8 and the ensuing discussion have an analogue at the group level.
The best way to approach this matter is via the following concept.
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Definition 1.3.1. A central extension of a Lie group G by U(1) is a short exact
sequence

e>Ul)-SH5G-5G—>e, (1.27)

in which G is a Lie group, ¢ and t are smooth homomorphisms, and ¢(U(1)) is
contained in the center of G (by definition of an exact sequence, the image of each
map is the kernel of the next).

It is most natural to analyze this structure in terms of principal fiber bundles;
the reader unfamiliar with this notion may either skip the following geometric
discussion and resume at Theorem 1.3.3, or jump ahead and read 2.1 before
proceeding.

It is quite easy to see that the group G in (1.27) is a principal U(1)-bundle
G(G, U(1), 1) over the base G; in particular, the action of U(1) on G is given by
R,(x) := x¢(z). (Identifying U (1) with T, we write its elements as z.) We now
choose a section s : G — G of this bundle (that is, 7(s(x)) = x for all x € G).
Since 7 is a homomorphism, it must be that 7(s(x)s(y)) = t(s(xy)). Hence there
exists a function ¢ : G x G — U(1) such that

s(x)s(y) = c(x, y)s(xy) (1.28)

for all x, y € G. Since s((xy)z) = s(x(yx)) by associativity of the multiplication
in G, one must have the identity

c(x, y)e(xy, 2) = c(x, y2)e(y, 2) (1.29)

for all x, y,z € G. We may restrict ourselves to sections satisfying s(e) = e
(where on the left-hand side e € G and on the right-hand side e € G). Then

cle,x)=c(x,e) =1 (1.30)

for all x. Moreover, while s may not be globally smooth, it may always be chosen
so as to be (Borel) measurable, and smooth in a neighborhood of ¢ € G. In that
case ¢ is smooth near (e, ¢). This motivates the following

Definition 1.3.2. A multiplier on a Lie group G is a measurable function c :
G x G — U(1) that is smooth near (e, €) and satisfies (1.29) and (1.30).

The set of all multipliers on G is called Z*(G, U(1)); this is a vector space when
the group operation in the abelian group U (1) is written additively.

As explained in 2.1, a section s leads to a trivialization ¥; : G — G x U(1) of
G, which is generally discontinuous with respect to the product manifold structure.
According to (2.3) one has ¥, ! (x, z) = s(x)z. Transferring the group operations
from G to G x U(1), using (1.28) one obtains

x,2)- (y, w) = (xy, zwe(x, ¥));
(x, 27 = (7 ze(x, x7Y)). (1.31)

The c-extension G, of G is G x U(1) with the above group operations, and with
the manifold structure inherited from G via ¥;. Thus G, which is a Lie group, is
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simply a trivialized version of G, depending on ¢ via the choice of the section s.
Conversely, one may start from a multiplier.

Theorem 1.3.3. Let ¢ be a multiplier on G. Equip the set G, := G x U(1) with
the group law (1.31). There exists a manifold structure on G that turns it into a
Lie group with the given multiplication. If ¢ is smooth on G x G, the manifold
structure is that of the direct product.

Associativity of the group multiplication in G, is a consequence of (1.29). The
remainder of the proof is a technical exercise in the definition of a Lie group;
the idea is that the product manifold structure may be used in a neighborhood of
(e, 1); the group operations are then smooth because ¢ is smooth near (e, ¢). This
local manifold structure is subsequently transferred to all of G, using the group
law. a

The embedding ¢ : G <> G, by i(x) = (x, 1) is not a homomorphism unless
¢ = 1. When necessary for unambiguity we will denote the subgroup U(1) C G,
defining the central extension by U.(1).

If one starts from the diagram (1.27) and then passes to G, via a section s,
one may examine the effect of a change in s on ¢ and hence on G.. Given some
measurable function b : G — U(1) that is smooth near e, one may pass from s to
s, defined by s'(x) := s(x)Rpy = s(x)@(b(x)). This leads to the replacement of
c by

, _ b(x)b(y)
D= T

Two muitipliers ¢, ¢’ related by (1.32) for some b are called equivalent. Thus an
appropriate cohomology theory is defined through the subspace BX(G, U(1)) of
Z*(G, U(1)), consisting of multipliers of the form
_ _bkxy)

b(x)b(y)
for some measurable function b : G — U(1) that is smooth near e. Hence one
forms the cohomology group H2(G, U(1)) := ZX(G, U(1))/ B¥(G, U(1)). Equiv-
alent multipliers then define the same element of H%(G, U(1)). In particular, the
multiplier ¢ in (1.33) is equivalent to 1.

The connection between equivalent multipliers and isomorphic group extensions
is now as follows.

c(x, y). (1.32)

c(x, y)

(1.33)

Proposition 1.3.4.

1. Two multipliers c and ¢’ are related by (1.32) iff the extensions G, and G are
isomorphic as Lie groups.

2. In particular, when c is of the form (1.33), the corresponding c-extension is
isomorphic to the direct product of G and U(1).

3. Thus when H*(G, U(1)) = 0, any c-extension of G is trivial.

4. When G is simply connected, every multiplier is equivalent to one that is smooth
on G x G, so that as a manifold G is a trivial U(1)-bundle over G (cf. 2.1).
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The map (x,z) + (x,zb(x)~!) provides the desired isomorphism from G,
to G, . Conversely, when G, and G are isomorphic to G, they must be related
by an isomorphism ¢ : G, — G, of the form ¢(x,z) = (x, qS(x)z), where
@ : G — U(1). Since ¢ is in particular a group homomorphism, the choice
b(x) := @(x)~! satisfies (1.32). The second point follows from the first by choosing
=1

When H?(G, U(1)) = 0, any c is given by (1.33), which implies 1.3.4.3.

The last statement is a consequence of Theorem 1.3.3 and the fact that a
U(1) bundle over a contractible space is necessarily (isomorphic to) a trivial
bundle. |

Under certain conditions there is a correspondence between extensions of Lie
algebras and of Lie groups. We identify R in 1.1.8 with the Lie algebra u.(1) of
U.(1), and write Exp : u(l) — U(1) for the exponential map, conventionally
realized as Exp(X) = exp(—iX). In a neighborhood N, x N, of (e, ) we can
write ¢ = Exp(x), where x : N, x N, — u.(1) (for simply connected G this can
be done on all of G x G). ThendefineI" : g® g — R by

N'(X,Y):= ‘—j; % [x (Bxp(r X), Exp(sY)) — x (Exp(s¥), Exp(t X))}, _, _q -
(1.34)
For example, in the setting of Example 1.2.11.3 the multiplier ¢ : R?" x R?" —
U(1) is given by

c((u, v), (W', V) = @2, (1.35)

Through (1.34) (with ¢ = exp(—ix)) and I1.(2.5) this indeed reproduces the 2-
cocycle I in (1.26). The Heisenberg group H, is nothing but the central extension
Rf” defined by I'; cf. I1.(2.8) and 1.3.6 below. The multiplier ¢'((, v), (', V")) :=
exp(iuv’) leads to the same TI'; it is related to ¢ by (1.32), with b(u,v) =
exp(—3iuv).

Lemma 1.3.5. The map T defined by (1.34) is an element of Z*(g,R). If ¢ €
B3(G,U(1)), then T € B%(g, R).

We write I'(X, Y) = x.(X, Y)— x« (¥, X)for x, : gxg — R.With this notation,
(1.29) combined with its cyclic permutations in x, y, z implies x.(X, [Y, Z]) +
cycl. = x.([Y, Z1, X)+cycl., which leads to (1.11). The second claim is immediate
from (1.33) and (1.18). |

We now discuss the inverse process of passing from I” to c.
Proposition 1.3.6.

1. When G is simply connected there exists a multiplier ¢ € Z%(G, U(1)) that is
related to a given 2-cocycle T' € Z%(g, R) by (1.34).

2. When G = G/D (where G is simply connected and D = m, (G) is a central
subgroup of G), such a ¢ € ZXG,UQ1)) exists iff D € Z(G.)/U(1) (here
G, is the central extension given by the previous item and 1.3.3, and we have
identified G with G./U(1)).
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3. When c exists, its equivalence class in H%(G, U(1)) or H*(G, U(1)) is uniquely
determined by I,

By Lie’s third theorem there is a simply connected Lie group G with Lie
algebra gr (unique up to isomorphism); as a manifold Gr = G x R. Define
¢:GxG—>R by (x,0) - (¥, 0) = (xy, €(x, y)), where - is the multiplication in
Gr that comes with its construction. The associativity of - implies that ¢ satisfies
(1.29) (if the group law in R is written multiplicatively). If 7 : R — U(1) is the
covering projection, we put ¢ := 1 ¢ ¢ and verify that ¢ satisfies (1.29), since 7 is
a homomorphism. This is the desired multiplier ¢, and GC, defined as in 1.3.3, is
a quotient of G by the central subgroup Z C R. In particular, the Lie algebra of
G, is gr. This proves the first claim.

As to the not simply connected case, the necessity of the stated condition is
obvious, for D must lie in the center Z(G) of G. To prove sufficiency, consider
Dr C Gr:asaset Dr := D x R, which is a subgroup of Gr. The assumption
implies that Dr is abelian, so that there must be an isomorphism¢ : Dr - D xR,
where this time the symbol x stands for the direct product of groups. Hence
f)r := ¢~ !(D x Z) is a discrete central subgroup of Gr. Then one easily infers
that the Lie group G, := G/ Dr is a central extension of G. Its multiplier c is
defined by the property (x, 0) - (v, 0) = (xy, c(x, ¥)), proving its existence.

Finally, uniqueness in cohomology follows from Lie’s third theorem in
combination with 1.3.4.1. ]

Given G and T', this proposition gives conditions for the existence of a central
extension G, with Lie algebra g.

Corollary 1.3.7. When G is simply connected one has
HXG,U(1)) ~ H*(g,R) ~ H!(G, Co, g*). (1.36)

The first isomorphism is clear from 1.3.5 and 1.3.6; the second one follows from
Proposition 1.2.7. ]

We return to symplectic geometry. The group analogue of 1.1.9 is

Corollary 1.3.8. Leta Hamiltonian G -action on a connected symplectic manifold
with Co” -equivariant momentum map be given, with " defined by (1.24). Assume
that G and T are such that a central extension G (defined through 1.3.6 and 1.3.3)
with Lie algebra gr exists. Then the G .-action obtained from the G -action through
projection on G = G,/ U.(1) is strongly Hamiltonian.

This is immediate from (1.12), 1.1.8, and 1.1.6. |

According to Proposition 1.2.8, the special case y € B'(G, Co, g*) implies that
the G-action has an equivariant momentum map; in other words, it is strongly
Hamiltonian. This is consistent with 1.3.8, for y € BY(G, Co, g*) implies T €
B?(g, R) by the proof of 1.2.7; this, in turn, leads to ¢ € B%(G, U(1)) by 1.3.6.3,
which means that G, ~ G x U(1) as a Lie group by 1.3.4.
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1.4 The (Twisted) Lie—Poisson Structure

We now turn to an analysis of the Poisson algebra C°(g}), starting with an in-
teresting realization of it. This involves the geometry of 7*G, which we briefly
review first. We denote the right- and left-invariant vector fields on G by &£ and
gL, respectively; i.e.,

d
EEf() = — FOEXp(X))=o. (1.37)

d
Exf(y):= — FEXpEX)y)yi=o. (1.38)
For the commutator one has
Ex " er R = 2E5 5, (1.39)

here and in what follows the upper sign enters for “L”, and the lower one for “R”.
We write £5-% := &%, One sees that

L) = ER ). (1.40)

The left or right Maurer—Cartan form 6§ is an element of A'(G) ® g (i.e.,
a g-valued 1-form on G), defined by

oM (£ ™) = X. (1.41)
The connection between the two follows from (1.40) as
Ad(xX)8M€ (x) = O (x). (1.42)

In terms of a basis {7} of g we expand 6% (x) = 6 ¢(x)T,, defining a collection
of left- or right-invariant 1-forms 67 g (x). Define the G-actions L and R on G by

Lx(y) :=xy; (1.43)

R.(y):=yx .. (1.44)
One may then equivalently define 67 (x) := L}_ @ and 03 (x) := R}_ 0", where
the w® form a basis of g* = T,*G dual to the basis {T;}. The Maurer—~Cartan
equations

dOf p(x) = FLCLOL g (X) A 6] p(x) (1.45)

are an immediate consequence of (1.39).
One defines two (globally valid) trivializations

TG ~gxG; (1.46)

in the left trivialization one maps Y € T,G to (L,-1),Y € g x G, whereas in the
right trivialization one maps the same Y to (Ry).Y. Conversely, (Y, x), stands
for (L;)«Y € TxG, and (Y, x)g corresponds to (R,-1),Y € TyG. For example,
the left trivialization of &} (x) is (Y, x)r, and the left trivialization of £f(x) is
(Ad(x~ 1YY, x).; cf. (1.40).
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Similar to (1.46), one has
TG ~ g* x G; (1.47)
in the left trivialization o € T} G is mapped to (L}o, x) in g* X G, and in the right

trivialization o is mapped to (R;_, 0, x). We write (6, x),, for L}_6 € TG, and
(8, x)g for R0 € TG. The connection between these trivializations is
0, x)L = (Co(x)8, x)r. (1.48)
GivenacocycleI" € Z2(g, R) (regarded as an element of A?(G)), one can define
a2-form [, on G by f‘L(x) = L7_,T'; similarly, fR(x) := R;T". In other words,
FrrEy " &%) =T(X, Y). Hence [' g(x) = Tapff o(x) A 62 p(x); cf. (1.14),
Thus we obtain a 2-form Fz =T I"L g on T*G, where T := Tr+g_ (this
notation will be used throughout this section).

We define G-actions A, := L}_, and p, := R}_, on T*G; in the trivializations
defined above their expressions are

(0, y)L 1= (Co” (x)8, yx ") ; (1.49)
(0, y)r = (0, xy)L; (1.50)
P8, Y)r = (0, yx g; (1.51)
Ax (8, Y)r := (CO" (x)8, xy)g; (1.52)

here we assume that T" is related to y by (1.24). To derive these expressions, one
uses relations of the type (cf. (1.42))

RIOMC = Ad(x)oMC. (1.53)
Recall the coordinates 6, on g* introduced after (1.2).

Proposition 1.4.1. Let w be the canonical symplectic form on T*G (cf. 1.2.3.8),
and equip T*G with the 2-form w#‘R =w+T7] p

o The form wi® is symplectic.

o In the above trivializations the corresponding Poisson bracket on T*G is given
by

. af ag af Bg
T*G L,R L.R c
L8 = =& f— 2 (C, 0.+ T 1.54
{f g}r 39aEa g—&; f39a (Cop0c + ab)a@ 39b ( )
o The actions p and A commute and are Hamiltonian, with CoY -equivariant

momentum mappings J® and J*, respectively, given by

JR®,x), = -6; (1.55)
JEO, %), = Co” (x)6; (1.56)
JR@©, x)p = —Co¥ (x " Hp; (1.57)
JE@, x)r = 6. (1.58)

The 2-form [ 1. is closed as a consequence of (1.11). For an arbitrary manifold
Q, it is easily verified that the form w + t*« on T*Q is symplectic for any closed
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2-form « on Q. To derive (1.54), one first observes that ® in 1.(2.22) is given by
©(0, x) = 6, AT*0] p(x), and then uses the Maurer—Cartan equation to show that

w=—df, A T*0f g £ 1CL0.T*0F g A T*OL p. (1.59)

Equation (1.54) then follows from I.(2.19). Given this Poisson bracket, one verifies
that the momentum maps (1.58) generate the actions (1.52); this, in turn, guarantees
that the group actions in question are Hamiltonian. The equivariance of J® and
J* is trivially verified. |

Let C$°(T*G)R stand for the set of p-invariant functions in C®(T*G), with
Poisson bracket (1.54). This is a Poisson subalgebra, since each p, is a Poisson
map.

Corollary 1.4.2. The map (JL)* : C2(g* ) — C(T*G)R is an isomorphism of
Poisson algebras.

We see from (1.52) that in the right trivialization, CZ° (T*G)R consists of those
f(p, x)g thatare independent of x. One then immediately infers from (1.54), where
the lower sign applies, that such functions satisfy the Poisson bracket (1.12); cf.
(1.3). Then use (1.58). |

The obvious generalization of Proposition 1.2.3 is

Propeosition 1.4.3. The Poisson structure (1.12) is invariant under the G-action
(1.23), in other words, the map CoY (x) is a Poisson map for each x € G.

Proceeding as in the proof of 1.2.3, the claim follows if
yOX, YD) = M(Adx )X, Adx™HY) — I'(X, Y). (1.60)

To prove this, we write the left-hand side as d[y (x)(Ad(Exp(t X))Y)]/dt att = 0.
The expression in square brackets equals [Co(Exp(—t X))y (x)I(Y). Using (1.22),
this equals [y (Exp(—t X)x) — y ((Exp(—tX))I(Y). Writing xx ~'Exp(—¢X)x for
Exp(—t X)x and using (1.22) once again, as well as (1.24), we eventually obtain
(1.60). |

A coadjoint orbit O in g* is an orbit under the coadjoint action. Similarly, a
Co? -orbit in g* is defined with respect to the action (1.23). The Co” -orbit O}
through 6 € g* is of the form O} = G/G},, where G}, is the stability group of 6
under the Co” -action; we see from (1.23) and (1.24) that its Lie algebra is

gy ={Xeg|o(X,Y)-T(X,Y)=0VY €g}. (1.61)

Theorem 1.4.4. Let y be a symplectic cocycle, and define I" by (1.24). The sym-
plectic leaves of g* with respect to the Poisson structure (1.12) are the CoY -orbits
of G. In particular, the symplectic leaves of the Lie—Poisson structure coincide
with the coadjoint orbits.

We know from 1.2.4.7 and 1.2.3.7 that the tangent space at some point 8 of a
given leaf Ly is spanned by the Hamiltonian vector fields £;(6). These depend

linearly on df = (3f/36,)d6, = (3f/96,)d T,. We now use an ancillary result.
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Lemma 1.4.5. The Hamiltonian flow on g%, (computed with respect to the Poisson
structure (1.12)) generated by X is () = Co’ (Exp(x:X))8. In other words

5 = F&x, where £y is defined by (1.19) and the CoY -action (1.23 ) on g*, and S
is the Hamiltonian vector field defined by the Poisson structure (1.12).

For clarity we start with the proof for y = I' = 0, choosing the minus sign for
concreteness. Since the linear functions separate points in g*, it suffices to compute

d - - -
E;Y(CO(EXP(tX))G’) = —6(Ad(Exp(— X)X, Y]) = {X, Y}_(6()),
from which the claim follows. For general y one in addition uses the identity
d
ZV(EXP(tX))(Y) = —I'(X,Y) — y(Exp(t X)X[X, Y], (1.62)

which follows by putting x = Exp(z X) and y = Exp(s X) in (1.22), dividing by s
and letting s — 0, and subsequently applying (1.60).
The calculation for the plus sign is analogous. ]

By this lemma, the Hamiltonian vector fields £; span the tangent space at ¢
to the Co-orbit through 8; this implies the claim locally. Globally, since G is
connected, it is generated by the image of Exp(g) in G. This ends the proof of
Theorem 1.4.4. ]

It follows that any Co” -orbit (and in particular any coadjoint orbit) O is an
even-dimensional symplectic manifold; for y = 0 the immersion of O := Q% in
g% defines the (&) Lie symplectic form »{ on O. Equipped with this form, we
denote O by O... (As in the general case of symplectic leaves, O is not necessarily
a submanifold of g*; cf. the text following 1.2.4.4.) For general y we see from
L.(2.19) and (1.2) that 0" is given by

(@ e Ex, EF) = FOUX, YD+ T(X, V) (1.63)

since this action is trivially transitive, (1.63) suffices to define wgy. It is clear from
(1.63) or 1.2.3 that »{" is invariant under the Co" -action.
Lemma 1.4.5 has the following

Corollary 1.4.6. The momentum map for the coadjoint action of G on a coadjoint
orbit O is given by J.(6) = F6.

Recall Definition 1.1.5. Theorem 1.4.4 leads to

Corollary 1.4.7. Letm : CF(gr) — C°(S) be an irreducible representation
(in the sense of 1.2.6.6). Then S must be (symplectomorphic to) a Co” -orbit in g*
(equipped with the symplectic structure (1.63)), or a covering space thereof.

This is immediate from Theorems 1.2.6.7 and 1.4.4. The symplectomorphism
in question is given by the momentum map. ]

Note that Proposition [1.2.1.2 is a special case of 1.4.7.
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Corollary 1.4.8. Let S be a connected symplectic space with a transitive Hamil-
tonian action of a Lie group G. There is a y € Z'(G, Co, g*) such that S is
(symplectomorphic to) a Co” -orbit in g* (equipped with the symplectic structure
(1.63)), or a covering space thereof.

If, in addition, H'(g, R) = H?*(g,R) = 0, then S is (symplectomorphic to) a
coadjoint orbit in g*, or a covering space thereof.

If the G-action is Hamiltonian, there is a momentum map J. The transitivity of
the G-action on § implies that J* is irreducible in the sense of Definition 1.2.6.6.
Then apply 1.4.7. The second claim is then immediate from Corollary 1.2.10. R

Finally, the central extension G, introduced in 1.3.3 may be used to shed light
on the Poisson structure (1.54) on T*G, which in this context we write as (T*G)..

Proposition 1.4.9. Let U (1) act on T*G, (equipped with the canonical cotan-
gent bundle Poisson structure) by lifting the action h : x — xh~' on G.. An
equivariant momentum map J. : T*G, — u.(1) = R for this action is given in
the right trivialization by J.(0y, 6, . .., 6,) = —6o. Then (T*G), = JC“'(I)/ U.(1)
as Poisson manifolds.

Realizing that the additional structure constants of G, (compared with G) are
given by C% = T'y, and Céj =O0foralli,j=0,...,n, this follows from (1.54),
first applied to G, and then to G. |

This statement will be properly understood in the setting of 2.3 and IV.1.5.

1.5 Projective Representations

We specialize the discussion to the setting relevant to quantum mechanics: The
symplectic manifold S is a projective Hilbert space PH (see 1.2.5), and the G-
action L, : ¥ — xy on [PH should preserve the transition probabilities 1.(2.65)
for all x € G. Inall cases of interest it turns out that requiring smoothness of a Lie
group action on PH would force H to be finite-dimensional, so we here assume
the action to be merely continuous.

This continuity may be restated as follows. We equip the group U(H) of all
unitary operators on H with the strong operator topology (or the weak one, which
coincides with the strong topology on the unitaries). Denote the central subgroup
of all multiples of I by TI, and form the quotient U{(H)/TI, endowed with the
quotient topology. Continuity of the G-action is then equivalent to continuity of
L, seen as a homomorphism from G into U(H)/TI.

By 1.3.4.3, for each x € G there exists a unitary or an antiunitary operator U (x)
on ‘H such that T o U(x) = L, o T (where 7 := Ty py)- For G connected, all
U (x) must be unitary, since in a connected Lie group each x is a square, and a
square of either a unitary or an antiunitary operator is unitary. Two different U’s
projecting to the same map on PH must differ by a phase. Now consider

G:={x,U)e GxUMN)| Ly =)}, (1.64)
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where 7(U) is the map of PH defined by U through the canonical projection of SH
to IPH. Inheriting the group operations and topology from G x U(H), one verifies
that G is a Lie group, which by the previous paragraph is a central extension of G
by U(1); cf. (1.27). Following the discussion after Definition 1.3.2, we choose a
measurable section s : G — G, smooth near e, associated with a multiplier ¢ on
G. The trivialization G ~ G x U(1) (as a set) defined by s leads to the choice of
a representative U (x) for each map L,. This choice obviously satisfies

U@ (y) = c(x, y)U(xy). (1.65)

Hence U is a projective representation of G on H with multiplier c; we sometimes
say that U is a c-representation.

For example, the abelian group R?" has a projective representation on L>(R")
given by

US(u, )W(x) = €407 (x — v); (1.66)

cf. I1.(2.17). The multiplier is given by (1.35), which should not be surprising in
view of the definition of the Heisenberg groups H, and H, = R2",

A redefinition U’(x) = b(x)U(x), where b : G — U(1), leads to the modifi-
cation (1.32); we say that U and U’ are equivalent. Clearly, U is equivalent to a
representation iff ¢ is of the form (1.33).

Propeosition 1.5.1. There is a bijective correspondence between c-representations
U of G and representations U, of G in which U.(1) is represented by the defin-
ing representation (times the identity operator). This correspondence preserves
irreducibility.

Given a c-representation U(G), define U.(G.) by U.(x,z) := zU(x). Con-
versely, if a representation U (G ) satisfies U,(e, z) = z[, then U(x) := U.(x, 1)
satisfies (1.65). The last claim is obvious from Schur’s lemma and the fact that
U.(1) is a central subgroup of G,. |

Indeed, the projective representation U ls (R?") defined in (1.66) is the restriction
of U (H,) (see 11.(2.17)) to R?", identified with (R?", 1) C H,.
The classical analogue of 1.5.1 is Proposition 1.1.9,

Proposition 1.5.2. If H2(G, U(1)) = 0, then any projective representation of G
is equivalent to a representation.

As already pointed out, we see from (1.32) that U is equivalent to arepresentation
iff ¢ is of the form (1.33). ]

We now look at the corresponding concepts for Lic algebras. A projective
representation of a Lie algebra g on a complex vector space V is a linear map
R : g — L(V) (the space of linear maps on V) such that

[R(X), RY)]=R(IX, YD —il(X, V) (1.67)

for some 2-cocycle I' € Z?(g, R); the Jacobi identity on the commutator on the
left-hand side enforces (1.11). One may speak of a I'-representation of g. If R
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is modified to R'(X) := R(X) + i6p(X)I for some (fixed) 6y € g, then (1.67) is
satisfied for R’, with

(X, Y) =T(X,Y) +6([X, Y1); (1.68)
cf. (1.18). Such representations R and R’ are called equivalent.

Proposition 1.5.3. There is a bijective correspondence between I'-represen-
tations of g (on complex vector spaces) and representations of gr in which the
generator Ty is represented by —ill; cf. Definition 1.1.8.

A T'-representation R(g) defines a representation Rr(gr) by Rr(X) := R(X)
and Rr(Tp) := —il, and vice versa. |

Proposition 1.54. If T'(X,Y) = 6y([X,Y]) for some 6y € g* then a I'"-
representation is equivalent to a representation. Hence when H?(g, R) = 0 any
T -representation is equivalent to a representation.

Compare with 1.1.13. This is obvious from (1.68): A projective representation
whose I is of the above form is equivalent to a representation by the shift R'(X) :=
R(X) — i6p(X)L. |

In relating (projective) representations of a Lie group G to (projective) represen-
tations of its Lie algebra g, we need to discuss a technical point. This discussion is
necessary, because when H is infinite-dimensional, the G-action on IPH provided
by a representation is not necessarily smooth or even C'. In other words, for a given
¥ € H the map from G to H defined by x — U(x)¥ may not be differentiable,
so that the curve U (Exp(t X))V is not necessarily C'; this would make it difficult
to define the generating vector field £x at W.

To simplify the discussion somewhat we assume that U, when it is projective,
defines a multiplier ¢ that is smooth on G x G (the case where ¢ = 1 is therefore
included). As we have seen in 1.3.4, when G is simply connected this can always
be achieved.

Definition 1.5.5. A smooth vector for a (projective) representation U is an
element V € H for which the map x +— U (x)WV is smooth.

It can be shown that the set H{® of smooth vectors for U is a dense linear
subspace of H.

Proposition 1.5.6. Under the above conditions on U and 'H, the subspace H}
is stable under U(G). For each X € g the operator dU(X), defined by

dU(X)¥ = ‘%U(Exp(tX))\lq,:o (1.69)

is essentially self-adjoint on HZ. Finally, H(Y is stable under dU (g).
U U

The stability of Hg® follows from (1.65) and the smoothness of ¢ and of group
multiplication. The second claim is then shown as in the proof of 11.3.6.4. The last
point is evident. |
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It follows from (1.65) and (1.34) that on K7} one has
[dU(X),dUX)] =dU(X, Y]) —il'(X, V)], (1.70)

where I' is defined by (1.34) with ¢ = exp(—i x); cf. (1.67).

Conversely, given a (projective) representation R of g by symmetric operators
on some common domain D, one may ask whether there is a (projective) repre-
sentation U(G) such that R = dU. As in the classical case, such a representation
of g is then called integrable.

When H is finite-dimensional and G is simply connected, every representation of
g by skew-Hermitian matrices is integrable; this is already a difference with the case
of group actions on general finite-dimensional manifolds, caused by the fact that
the flow of a skew-Hermitian matrix is always complete. In the infinite-dimensional
case further conditions are required.

1.6 The Twisted Enveloping Algebra

Recall the definition 1.(2.43) of the function A € C®(IPH), where A € B(H)g.
Since dU(X) tends to be unbounded, the functions i d/U(\X ) are defined only on

s cf. the preceding section. One can topologize H{; so that PH? is a Fréchet
submanifold of PH, and the G-action restricted to PH} is smooth, with smooth
momentum mapping. Since this is technically involved, we will merely state a key
result.

Theorem 1.6.1. Let H and U be as stated above 1.5.5. Then
Jx = iFdU (X), (1.71)

defined on PH}, is a momentum map for the G-action on PH derived from the
representation U on H. It satisfies

{Jx, Jv}n = —Jix,y; — RI(X, Y)lpy, (1.72)
where T is defined by (1.34) or (1.70).

With ¥ = tg3,p(W) one obtains £x(¥) = v(XW) (where v is defined after
1.(2.30)), so that (1.71) follows from 1.(2.45). Equation (1.72) is then derived from
(1.69),1.(2.42), and (1.70). |

Hamiltonian G-actions on PH will, in general, fail to preserve the transition
probabilities 1.(2.65), and will therefore not be given by a (projective) represen-
tation U(G) on K. For this reason the Poisson algebra C2°(g* ) is not useful in
quantum mechanics.

There are three algebras that do play a role in quantum mechanics analogous to
the job performed by C2°(g* ) in classical mechanics. One will be constructed in
this section, the other two in the next.

Definition 1.6.2. The enveloping algebra U(gc) of g is the quotient of the
complexified tensor algebra T (gc) = Do, ®"gc (where ®gc = C) by the
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two-sided ideal T generated by all elements of the form XY —YQ® X —[X, Y],
where X, Y € gc.

In other words, T (g¢) is the complex vector space consisting of linear combina-
tions of complex elements of the form X, ®- - -® X, X; € gc, with algebra product
given by concatenation. The product in U(gc) is the one inherited from 7 (g¢). The
quotienting procedure imposes the relation X @ ¥ — Y ® X — [X, Y] = O for all
X,Y € gc in U(gc). We denote the image of X; ® --- ® X € 7(gc) in U(ge)
simply by X --- X, sothat XY — YX = [X, Y] inU(gc).

Definition 1.6.3. The twisted enveloping algebra Ur(gc) of g relative to T €
Z%(g, R) is the quotient of T (gc) by the two-sided ideal I generated by all
elements of the form X ®Y —Y @ X — [X, Y]+ il(X,Y).

Here I'(X, Y) is seen as an element of ®°gc. This time one has the relation
XY -YQ®X—[X,Y]+iI'(X,Y) =0inUr(gc).

Proposition 1.6.4. The twisted enveloping algebra Ur(gc) is isomorphic to the
quotient of U(gr) by the two-sided ideal generated by Ty +i.

This is obvious. ]

The algebra U (gc) (and hence its special case U(gc)) has a natural involution
(cf. I.1.1), given by linear extension of (X - - - Xz)* = (—1)*Xy - - - X; (as well as
A* = A for A € C); this is well-defined, and descends from a similarly defined
evolution on 7 (gc) because the relation mentioned in 1.6.3 is stable under it.

Definition 1.6.5. As a real vector space, the Jordan—Lie algebra Qlfﬁ (9), defined
for each h # 0, is the subspace of elements of Ur1(gc) that are invariant under
the involution. Its Jordan product and Poisson bracket are given by the projection
of the operations Ao B := }(A® B+ B® A)and (A, B}, = i(AQ B—BQ®A)/h,
defined on T (gc), to Urn(gc), respectively.

Note that the projection of these operations to A(g) is well-defined, since
AoZrjs CIrjpand {B,Ir}, C Iryp forall A, B € T(gc). One verifies 1.(1.6).
The analogue of Proposition 1.4.3 is

Proposition 1.6.6. One obtains an automorphic group action BY'* of G on
Ur/n(gc) and thence on Ql?;(g) by defining

B (X) := Ad(x)X — iy(x~)(X) (1.73)

on g C T(gc), extending this action to T (gc) by (1) = 1 and BY (X1 ® -+ ®
Xi) = B X1®- - -®BY Xy, projecting the action toUr ;1(gc), and finally restricting
it to AR (g).

The fact that one indeed has a group action follows from (1.22). On 7 (g¢) the
action is automorphic by construction. The fact that it quotients well to Ur(gc)
follows from the property

B X®Y -Y®X—I[X,Y]+il'(X,Y)) = Adx)X @ Ad(x)Y —



1 Lie Groups and Lie Algebras 201

Ad(x)Y @ Ad(x)X — [Ad(x)X, Adx)Y]+ T(Ad(x)X, Adx)Y), (1.74)

which is a consequence of (1.60) and the fact that Ad(x) is an automorphism of
g. Finally, the restriction to 2A%(g) is well-defined because Bf (X*) = (Bf (X))*
etc. [ |

The Jordan—Lie algebra Ql?(g) is a quantum analogue of the Poisson algebra
Pr(g*) of (real) polynomials on g*, equipped with the Poisson bracket (1.12)
inherited from C2(g* ). A quantization map is constructed as follows.

Theorem 1.6.7. The map Q} : Pr(g*) — AL(g) defined by Qy(1,) := 1 and
linear extension of

AXy - Xp) = GRYALX G, . X (1.75)
satisfies
{Q}(A), 4B} = Q4({A, B)D) + Ok, (1.76)
Qk(A) o Q4(B) = Q}(AB) + O(h); (177
M(Pr(gh)) = Al(g). (1.78)

Here the symmetrization operation A is defined after I11.(2.37). The first two
equations are a matter of checking the definitions. The third one follows from the
fact that symmetrization establishes a vector space isomorphism between Ur(gc)
and the symmetric tensor algebra S(g); this follows from the Poincaré-Birkhoff-
Witt theorem, which is well known for ¢ (gc), hence valid for /(grc), and holds
for Ur(gc) in view of Proposition 1.6.4. |

Proposition 1.6.8. With B¥ and Co” given by (1.73) and (1.23), respectively, for
all x € G and A € P(g*) one has the equivariance property

BI/MQ}(A)) = Q(Co” (x71)*A). (1.79)
The proof is a simple calculation. a

Due to the integrability problem, not all representations of Ql{l(g) are related
to unitary G-actions. In addition, Ql’ll(g) has the drawback of not being a J L B-
algebra, so that much of the functional-analytic apparatus developed in Chapter 1
is not available.

1.7  Group C*-Algebras

We will now construct an object free from these drawbacks. To simplify the nota-
tion, we assume that the multiplier ¢ is globally smooth; when it isn’t, one should
replace C2°(G) in the discussion below by the space BX°(G) of bounded mea-
surable functions with compact support that are smooth near e. We also assume
that G is unimodular; that is, each left Haar measure is also right-invariant. This
assumption is not necessary, but simplifies most of the formulae. We denote Haar
measure by dx; it is unique up to normalization. When G is compact we choose
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the normalization so that [ dx = 1. The Banach space L'(G) and the Hilbert
space L%(G) are defined with respect to Haar measure.
Given a multiplier ¢, we define the (twisted) convolution

f*g(x) :=/Gdyc(xy“.y)f(xy")g(y)- (1.80)

This certainly makes sense for f, g € C°(G). The associativity of * is a conse-
quence of the associativity of group multiplication and the invariance properties
of the Haar measure (and, when ¢ # 1, of (1.29)). Moreover, we can define an
involution on CX(G) by

Frx)i=clx, xHfx-D. (1.81)

The property (f * g)* = g* x f* reflects the law (xy)~' = y~'x~! in a group

(for ¢ # 1 one in addition needs (1.29)). Hence C2°(G) has been turned into a
*-algebra.

A representation 7 of C2°(G) on a Hilbert space H is defined as a morphism 7 :
CZ(G) — B(H). An example of a representation is 7z, : C2°(G) — B(LUG)),
defined by

(V¥ := f =W, (1.82)

In Lemma 1.7.2 we will see that this operator is bounded. Moreover, one easily
verifies that 7, (f * g) = w(f)mr(g) and 7, (f*) = 7w.(f)*. Introducing the
left-regular representation U; of G on L%(G) by

Ur()¥(x) := c(y, y ' )Wy~ 'x), (1.83)
it follows that

NL(f)=/de FOUL(x). (1.84)

Definition 1.7.1. The (twisted) reduced group C*-algebra C; (G, c) is the small-
est C*-algebra in B(L?*(G)) containing 7 (C(G)). In other words, C}(G, c)
is the closure of the latter in the norm | f ||, := |lw.(f)Il. We write C}(G) for
CHG, 1).

Perhaps the simplest example of a reduced group algebra is obtained by taking
G = R”. Since the Fourier transform f +— f turns convolution into pointwise
multiplication, the algebra C(R") is commutative. Indeed, the left-regular rep-
resentation 77, on L2(R") is Fourier-transformed into the action on L%(R") by
multiplication operators. Hence

1LF1 = 1 lloo, (1.85)
so that by the Riemann—Lebesgue lemma and the Stone—Weierstrass theorem,
CHR"™) =~ Co(R"). (1.86)

This generalizes to arbitrary abelian Lie groups G (and, more generally, to locally
compact abelian groups). Let G° be the set of all irreducible c-representations of
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G, fO{ ¢ = 1 this is the set of characters, and we write G := G!. It is well known
that G is itself a locally compact abelian group, in terms of which the Fourier
transform f (which is a function on G) of f € L'(G) may be defined as

fy):= fG dx f(x)U, (x). (1.87)

By the same arguments as for R”, one obtains
C*(G) ~ Co(G). (1.88)
We return to the general, possibly twisted case.

Lemma 1.7.2. Let U be an arbitrary continuous c-representation of G on a
Hilbert space H. Then n( f), defined by

w(f)i= [ dx fOUG) (1.89)
G
is bounded, with
lm(ON < 1. (1.90)
Since U is unitary, we have |[(W, n(f)¥)| < (F, F)pxcy forall ¥ e H,
where F(x) = |[|¥]|[/[f)]. The Cauchy-Schwarz inequality then leads to

(¥, 7 (FH¥) < [ FIl11¥] The argument in the proof of II.1.3.5 then leads to
(1.90). (A more sophisticated proof uses properties of Bochner integrals to argue

that |7 ()l < fg dx LFGL NV = £ u

The following result generalizes the correspondence between U, in (1.83) and
7, in (1.84) to arbitrary representations.

Theorem 1.7.3. There is a bijective correspondence between nondegenerate
representations 7 of the *-algebra C°(G) that satisfy (1.90) and continuous c-
representations U of G. This correspondence is given in one direction by (1.89),
and in the other by

UGn(f)S2 := n(fHR, (191)

where f*(y) := c(x,x~'y)f(x~'y). This bijection preserves direct sums, and
therefore irreducibility.

It is technically convenient to extend the *-algebra C°(G) to a Banach algebra
LY(G, c); this is L'(G) as a Banach space. The operations (1.80) and (1.81) are
easily seen to be continuous on the L'-norm, so that they may be extended from
CX(G) to L'(G). Recall from I.1.5.2 that any nondegenerate representation of a
C*-algebra is a direct sum of cyclic representations; the same can be shown to be
true of L'(G, ¢). Thus  in (1.91) stands for a cyclic vector of a certain cyclic
summand of H, and (1.89) defines U on a dense subspace of this summand; it will
be shown that U is unitary, so that it can be extended to all of H by continuity.

Given U, it follows from easy calculations, using (1.65), that 7 (f) in (1.89)
indeed defines a representation. It is bounded by Lemma 1.7.2. The proof of non-
degeneracy makes use of the existence of an approximate unit in L!(G, c), which
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heuristically converges to the Dirac delta function §,. This is constructed as fol-
lows. Consider a basis of neighborhoods N, of e, partially ordered by inclusion.
Choose I, = N, x;,, which is the characteristic function of N, times a normal-
ization factor ensuring that ||I, |; = 1. One can then show that lim; I, * f = f (in
Il-ll1) forall £ € LY(G, c) (and similarly for f %I, ); for ¢ # 1 itis at this point that
the continuity of ¢ near e is used. Since 7 is continuous, one has lim, 7(I,) = I
strongly, proving that 7 must be nondegenerate.

To go in the opposite direction we use the approximate unit once more; it follows
from (1.91) (from which the continuity of U is obvious) that U(x)m (f)Q =
lim; 7 (I;)7 (f)S2. Hence U(x) = lim, () strongly on a dense domain. The
property (1.65) then follows from (1.91) and (1.80). Since || (E)|| < |IIf||; = 1,
we infer that |U(x)|| < 1 for all x. Hence also ||U(x~!)|| < 1. From (1.65) we
derive

Ux) ' =cx,x HU@E™h, (1.92)

so that |U(x)"!|| < 1. We see that U(x) and U (x)~! are both contractions; this is
possible only when U(x) is unitary.

Finally, if U is reducible, there is a projection E such that [E, U (x)] = O for all
x € G (see 1.2.2.2). It follows from (1.89) that [ (f), E] = O for all f; hence =
is reducible. Conversely, if 7 is reducible, then [E, 7(If)] = O for all x € G; by
the previous paragraph this implies [E, U(x)] = O for all x. g

This theorem suggests looking at a slightly different object from C}(G, ¢).
Inspired by 1.1.5.7 one makes the following

Definition 1.7.4. The (twisted) group C*-algebra C*(G, c) is the closure of the
convolution algebra C2°(G) in the norm

A1 == Nl (O = sup Iz (HHI, (1.93)

where 7, is the direct sum of all nondegenerate representations n of C(G) that
are bounded as in (1.90). We write C*(G) for C*(G, 1).

By Theorem 1.7.3 the representations 7 occurring in the sum are those associated
with representations U (G) via (1.89).

Corollary 1.7.5. There is a bijective correspondence between nondegenerate
representations m of the C*-algebra C*(G, ¢) and continuous c-representations
U of G, given by (continuous extension of) (1.89) and (1.91). This correspondence
preserves irreducibility.

Hence one may alternatively define C*(G, c) as the closure of CX°(G) in the
norm (1.93), where now the sum is over all representations 7w of C°(G) that
correspond to an irreducible representation U (G) via (1.89).

The second part follows from the last statement of the first part and the faithful-
ness of the reduced atomic representation; cf. .2.2.7 etc. Hence one obtains the
same norm in (1.93) by restricting the 7’s to be irreducible. n
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Since a Lie group is separable as a topological space (separability being part of
the definition of a manifold used in this book), the algebras C2°(G) (inheriting the
norm of L(G)) and hence C*(G) are (norm) separable. Therefore, all irreducible
representations are on separable Hilbert spaces, and one would obtain the same
C*-algebra by restricting the 7’s in Definition 1.7.4 to be on separable Hilbert
spaces.

In conjunction with (1.85), the second definition of C*(G) stated in 1.7.5 implies
that for abelian groups, C*(G) always coincides with C;(G). The reason is that for
y € G one has m,(f) = f(y) € C, so that the norms (1.93) and (1.85) coincide.
For future reference we single out (cf. (1.86))

C*(R™) =~ Co(R"). (1.94)
In any case, looking at 1.7.1, we see that
CHG, o) =n(C*(G, ) = C*(G, c)/ ker(rp). (1.95)

A Lie group is said to be amenable when the equality C;(G) = C*(G) holds;
in other words, 7 (C*(G)) is faithful iff G is amenable. This turns out to imply
that also C*(G, ¢) = C*(G, c) for arbitrary multipliers c; we shall not prove this
remarkable result. We have just seen that all locally compact abelian groups are
amenable, so that the previous comment implies that the Heisenberg group H,
is amenable. Hence the object C*(H,) constructed in I1.2.6 is indeed the group
C*-algebra of H,. It follows from the Peter-Weyl theorems in the next section
that all compact groups are amenable. It may be shown that also all solvable Lie
groups are amenable, as are direct products of the amenable groups mentioned.

To provide an alternative characterization of amenability we first describe the
connection between the representation theories of C*(G, ¢) and of C}(G, c).

Definition 1.7.6. The c-unitary dual (e of a group G is the collection of
equivalence classes of irreducible c-representations of G . In other words (cf. Corol-
lary 1.7.5), G¢ is the set of equivalence classes of irreducible representations of
C*(G, o).

The reduced unitary dual G” is the set of equtvalence classes of irreducible
representations of C}(G, c). For ¢ = 1 we write G(,) = G(,), and speak of the
(reduced) unitary dual.

The earlier definition of the unitary dual of an abelian group is evidently a
special case of 1.7.6. The following notion provides the key to describing G” We
say that a representation U,(G) is weakly contained in a representation Uz(G)
when ker m2(C*(G, ¢)) € ker 11(C*(G, ¢)); here U, is related to m; by (1.89).

For example, every subrepresentation properly contained in a representation is
weakly contained in it. However, the notion of weak containment is more general
than proper containment. Consider the regular representation Uy, of R" on L 2(R™);
since the associated representation 7 (C*(R)) is faithful (see (1.94) and the pre-
ceding discussion), its kernel is {0}. Hence every irreducible representation of R"
is weakly contained in Uy, although none is properly contained in it.
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Proposition 1.7.7. The reduced c-unitary dual éf consists of those irreducible
representations that are weakly contained in the left-regular representation Uy (G).
Consequently, G is amenable iff all its irreducible representations are weakly
contained in Uy .

This directly follows from the above definitions. n

Remarkably, one may show that the above condition for amenability is equivalent
to the weak containment of merely the trivial representation in U, Either way,
when G is a noncompact semisimple Lie group it can be shown that the trivial
representation is neither properly nor weakly contained in the (left- or right-)
regular representation. Hence such groups are not amenable.

A comparison between Theorem 1.2.6 and Corollary 1.7.5 indicates that C*(G)
is a quantum analogue of C*°(g* ). More generally, Corollaries 1.4.7 and 1.7.5
suggest that C*(G, c) is a quantum analogue of C2°(g* ), and that Co” -orbits are a
classical version of projective irreducible representations. In particular, coadjoint
orbits are analogous to irreducible representations.

In addition, we can formulate an “integrated” version of Proposition 1.6.6 (and
thereby a quantum version of 1.4.3):

Proposition 1.7.8. One obtains an automorphic group action o© of G on
C*(G, ¢) by putting

dO(f) 1y > clx, Ad(x)y)e(y, x) f(Ad(x y) (1.96)
for f € CX(G), and extending to C*(G, c) by continuity.

In the universal representation one has

1) = Uom(HU) (1.97)
which firstly shows that & is an automorphism, secondly that it can be extended
to C*(G, c), and thirdly that (1.96) defines a group action. |

1.8 A Generalized Peter—-Weyl Theorem

Further to the left-regular representation U (G) in (1.83), which is a c-
representation, consider the right-regular representation Ug(G) on the Hilbert
space L%(G), defined by

Ur(n¥(x) = c(x, y)¥(xy); (1.98)
this is a c-representation. Note that

TR ()Y := / dx f)UrX)™'W = ¥ x f, (1.99)
G

where convolution (1.80) is defined with respect to c. It immediately follows from
(1.99) and (1.82) that U and U commute; this may also be verified directly, using
(1.29).
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Recall Definition 1.7.6. Each y € G has a conjugate ¥ € G%a representative
Uy of the class ¥ is obtained by defining a representative U, of y on the conjugate
Hilbert space H, rather than on H,, (hence Hy = H,).

After these definitions we recall (a version of) the Peter—~Weyl theorem. This
theorem states that for a compact Lie group G one has

L*G)~ P H, @ Hyp (1.100)
ye6
under which decomposition
UL(G) ® Ur(G) = P Uy (G) ® Up(G). (1.101)
ye6

The direct sum is, of course, meant in the Hilbert space sense. This is usually
stated and proved for ¢ = 1, but is, in fact, valid for any multiplier; see below.
One may identify H, ® Hy with M, (C) (where d, is the dimension of the
representations in the class y) as Hilbert spaces by letting v ® w € 'H, @ Hy
correspond to the operator mapping u € ‘H,, to (w, #)v, and extending by linearity.
The inner product on M, (C) is then given by (M, N) = Tr M*N. We accordingly
rewrite (1.100) as

LX(G) ~ LXG) := EP My, (©). (1.102)

yeG

Writing U, _g(x) for the operator on £2(G) that is equivalent to U, _g(x) on L2(G)
under the isomorphism (1.102), we may rephrase (1.101) as

UL (y) = U, (x)¥(p); (1.103)
Ur(x)¥(y) = W)U, (x)*. (1.104)

The essential step in the proof of the Peter~Weyl theorem consists in showing
that the Plancherel transform V : L%2(G) — L%(G), defined by

U(y) = V¥(y) = ,/d,,f dx ¥V (x)U, (x), (1.105)
G
is unitary. The inverse transform can then be computed from unitarity as
Vi) =Y /d, TG )U, (7] (1.106)
yeG

The Peter—Weyl theorem (with multiplier) has an interesting reformulation, also
valid for ¢ # 1, which in a certain sense is a quantization of Theorem 1.4.4.

Theorem 1.8.1. For a compact Lie group G one has
C}G, )~ C*(G,c)~ @D My, (C). (1.107)
yeé‘
Here the direct sum of matrix algebras includes those sums ®, M, of matrices for
which the function y — M, || is in £o(G°).
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Note that the definition of the direct sum is different from the one in (1.102).
The proof below uses some elementary aspects of the theory of induced group
representations. This subject will be studied in great generality in 2.9; for the mo-
ment we need just a very special and simple case. Let H be a compact subgroup
of a unimodular locally compact group G, and let U, be a 1-dimensional repre-
sentation of H. (In the application below, G, will indeed be a central extension,
but for the moment it is arbitrary as stated above. We will, accordingly, denote its
elements simply by x.) The Hilbert space H* C L?(G.,) is defined as the set of
functions ¥ € L%(G,) that satisfy the equivariance condition

W(xh) = Uy(h~ )W (x) (1.108)

for (almost) all x € G, h € H; the inner product on HX is the one inherited from
L*(G,). In other words, H* is the subspace of L2(G,) that transforms trivially
under Ug ® Uy, (H), where Ug(h)¥(x) := W(xh). The left-regular representation
(1.83) (with ¢ = 1) restricts to a representation UX(G,) on HX, which is said to
be induced by U, . In other words, for ¥ € H* one has

U)W (x) := W(y 'x). (1.109)
The projection VX : L%(G.) — HX defined by

ViW(x) :=/ dhW(xh)U, (h) (1.110)
H

obviously intertwines Uy and UX, ie., V, o U, = UX o V, . Moreover, when H is
abelian, Fourier analysis on H shows that @ . Vy = L, so that for such H

LXG) ~ @, s HY;

UL(Go) ~ @, ;U (G.). (L111)

An equivalent realization of UX may be defined on L%(G./H) (defined with
respect to a suitably normalized G-invariant measure, which exists because G,
and H are unimodular), as follows. Choose a cross section s : G./H — G, (i.e.,
Tos =id, with 7 := 75,6, /n), and define VX : LXG,) — L*(G./H) by

ViW(q) := W(s(g)), (1.112)
with adjoint
(VX ®(x) = Uy (x " s(t(x))D(z(x)). (1.113)
It follows that VX is a partial isometry, which is unitary on the image of (VX)*,
which is HX. Putting U := VXUX(VX)*, one obtains
UX)®(q) = Uy (s@ ' xs(x ') @(x ' g). (1.114)

We will apply this to the case where G, is as defined in 1.3.3 and H = U.(1),
so that G./H = G. In the following result G is not necessarily compact.

Lemma 1.8.2. The representation U(G,.) associated (by 1.5.1) with the c-
representation Uy (G) on H = L?*(G) defined by (1.83) is equivalent to the
representation U'(G.) induced by the defining representation U, of U.(1).
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This is verified using the cross section s : G — G, given by s(x) = (x, 1). The
property

Ule,z) =zl (1.115)

follows from (1.108), (1.109), and the fact that U.(1) is central. [ ]

Let us now assume that G (and hence G ) is compact. The well-known Frobe-
nius reciprocity theorem states that the number of times a given irreducible
representation U (G ) occurs in H* is equal to the number of times U, (H) occurs
in U(G, [ H) (i.e., the restriction of U to H).

Hence a given irreducible representation U, (G ) occurs in the decomposition of
U.(G.) with multiplicity equal to the number of times the defining representation
of U.(1) occurs in U,. By 1.5.1 this multiplicity must equal d,,, since Uc(1) is
always in the defining representation times the unit matrix. Hence by 1.5.1 all
c-irreducible representations y of G occur in L2(G) with multiplicity d, , as in the
case ¢ = 1.

Clearly, the Hilbert space 9014, (C) carries a c-representation UP(G) given by
UP(x)M := U,(x)M, which is the irreducible c-representation U, (G) with mul-
tiplicity d, . Here U,, is some representative of y; everything that follows depends
on the choice of this representative, but other choices lead to equivalent statements.

We recall the orthogonality relations for a compact group K: Given an
irreducible representation U, (K) of dimension d,, one has

d fK dx (W, U)W XU (X)W3, Wa) = (W1, Wa)(¥3, W) (1.116)

It follows from these relations for G, that P, : L*G) > My, (C), defined

by P,W := W(y) (see (1.105)), is a partial isometry (note that L2 € L! on
compact spaces, so that P, is well-defined). Trivially, P, U, = UP P, . From the

preceding two paragraphs we conclude that the map V : L%(G) — L2(G) given
by V = ®yeény is unitary, and satisfies VU, = ULV. Of course, V is the
Plancherel transform (1.105).

This shows that, as in the case ¢ = 1, the left-regular representation U/; on
L?(G) contains all irreducible c-representations. It then follows from 1.7.1 and the
comment after 1.2.2.7 that C}(G, ¢) = C*(G, ¢).

For f € C(G) we have from (1.84) and (1.105) that

() = VAV =@, eem, (HO Ly (1.117)

cf. (1.89). The map f +— Va, (f)V~! is a *-isomorphism from CX(G) into
@yeéc M, (C), seen as direct sum of matrix algebras, since n; is a faithful
representation and V is unitary. It can therefore be extended by continuity. The
irreducibility statement in 1.7.5 implies that 7, (C}(G, ¢)) = M, L (O).

Finally, to prove that the direct sum in (1.107) should be defined as stated, first
note that w.(f) € B1(L*G)) for f € C2(G). Hence 7. (f) € Bo(L1(G)) by
L.(1.62), so that w1 (C*(G)) C Bo(L?*(G)) by the continuity of 7;. Since V is
unitary, it follows that Vr (C*(G)V ! € %0(£2(G)). It is then easy to adapt
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the standard proof that the eigenvalues of a compact self-adjoint operator (ordered
from large to small) go to zero to conclude that lim,,_, « |77, (f)I| = 0.
Theorem 1.8.1 follows. n

We write ¥ for the representation of C*(G ) corresponding to the representation
U*(G.) induced by U(U.(1)) (see (1.89)), where k € Z and Ui(z) := z* for
z € T = U(1). For G possibly noncompact, the first stage of the above proof leads
to

Corollary 1.8.3. For each k € Z there are isomorphisms
CHG, &) =~ n*(C*(G,)) =~ C*(G.)/ ker("). (1.118)

Explicitly, under the first isomorphism the function w*(f) € CH G, c*) (where
f€CX(G,) C C*Gy))is

7(f) x> /dzzkf(x,z). (1.119)
T

Here dz is the normalized Haar measure on T. This corollary is proved by a
straightforward generalization of Lemma 1.8.2: Given a c*-representation U of G,
one defines an associated representation Uyx of G, by U (x, z) := z*U(x), and
verifies that U ~ U*, [ |

For k = 1 one should compare 1.8.3 with 1.1.10. As we have seen in 1.3, the
multiplier ¢ is a derived object, the intrinsic object being the central extension
(1.27). Hence C}(G, ¢) is not quite intrinsic either, but Corollary 1.8.3 shows
how to define the intrinsic analogue of C;(G, ¢): It is C*(G)/ ker(s'). This C*-
algebra is, of course, isomorphic to C*(G, c), and also to any C(G, ¢’), where ¢’
is equivalent to c. The case of general & will be used in the next section.

Corollary 1.8.3 is closely related to the decomposition

CHG,) = Brez TH(C*(G,)), (1.120)

which follows from C}(G.) = 7 (C*(G.)) and (1.111). Equation (1.118) shows
that C¥(G, c) is isomorphic to a (closed 2-sided) ideal in C}(G.), namely the one
that is isomorphic to 7 !(C*(G,)) by (1.120).

As an application of (1.118) we prove

Proposition 1.8.4. Let c be the multiplier on R?" given in (1.35). Then for all
k € Z\{0} there are isomorphisms

C*(R™, ¢*) ~ C*(R™, c*) ~ Bo(L*R")). (1.121)

We will not prove the first isomorphism here; the proof is identical to that
of Theorem 3.7.1 below. As to the second, we saw (after (1.35)) that RE" =
H,. We use the notation of Lemma 1.8.2. Using (1.115), I1.(2.18), and Theorem
11.2.1.4, or direct calculation, one shows that U*( H, ) is a multiple of the irreducible
Schrédinger representation U ,f (H,) defined in I1.(2.17). The second isomorphism

in (1.121) then follows from 1.8.3 and I1.(2.129) (with H, replaced by H,).
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Here is a direct proof as well. Define a map K* : S(R*") — S(R*") by

1.
Kjry)i= [ dmoer e -y, ), (1.122)
an
with inverse
n A T 1 1
fw,v)y==%k / -én—)ne CKig+ su.q— u). (1.123)
Rﬂ

The well-known properties of the Fourier transform show that K is an isomor-
phism (of vector spaces to begin with). We identify the image S(R**) of K* with
S(R" x R"), regarded as a space of kernels on R", and as such as a subspace of
Bo(L2(R™)); cf. 11.2.5.3. One calculates from (1.80) and (1.81) with (1.35) that
K* is a *-isomorphism between dense subspaces of C*(R?*, c) and Bo(L2(R")).
Then extend K* by continuity. [ ]

Note that the multiplier has a crucial effect: Without it, one has the isomorphism
C¢,(R*™) =~ Co(R*) by Fourier transformation; cf. (1.86).

In the light of Example 1.2.11.3, the classical analogue of Proposition 1.8.4 (for
k = 1, say) states that the Poisson algebra C{Z"(Rz”, R) (where R?”" is seen as the
dual Lie algebra g* for G = R?") is C*°(T*R”", R) equipped with the canonical
Poisson bracket 1.(2.24); cf. 1.9.6.

To close this section, we “quantize” the realization of CR°(g* ) stated in 1.4.2.
Denote the operators in a C*-algebra 2 C B(L*(G)) that commute with Ug(G)
(cf. (1.98)) by AR. The following result is nontrivial even for ¢ = 1.

Propesition 1.8.5. When G is compact, n; (C*(G, c)) = Bo(L2(G))R.

_ The Plancherel transform (1.105) maps Ug into Ug := VURV™!, given by
Up(x)¥(y) = \P(y)U,,(x)‘l. The result then follows from (1.117). [

1.9 The Group C*-Algebra as a Strict Quantization

When G is compact the C*-algebra C*(G) turns out to be related to the
(complexified) Poisson algebra C*°(g* ) by a strict quantization.

Analogously to I1.(3.49), we define C29(g*) as the class of functions on g*
whose Fourier transform f is in C2°(g). Here the Fourier transform of f € L!(g*)
is defined by (cf. 11.(3.42))

F(X) = / ﬁe"“"’ £, (1.124)
g 2y

where d"6 is Lebesgue measure on g* >~ R", whose normalization is fixed by that
of the Haar measure dx on G, as follows. When f has support near e, we can write

f dx f(x) = fd"X J(X) f(Exp(X)), (1.125)
G

8

where d" X is aLebesgue measure on g, and J is some Jacobian. The normalization
is now fixed by the condition J(0) = 1. In turn, the normalization of the Lebesgue
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measure d"6 on g* is fixed by requiring the inversion formula
£ = f d"X e f(X). (1.126)

Asin the argument after I1.(3.49), one infers that C20 (g%, R) is a Poisson subalgebra
of C*(g}, R).

We choose a smooth cutoff function « on g that equals 1 in a neighborhood N
of 0, is invariant under inversion X +— — X, and has support in the neighborhood
N of 0 on which Exp is a diffeomorphism; cf. I1.3.4.4. When G is compact one
may assume that « is Ad-invariant; i.e., satisfies k (Ad(y)X) = k(X) forall y € G.
This may always be achieved by averaging.

Definition 1.9.1. For an n-dimensional Lie group G, the Rieffel quantiza-
tion Q,’f 1 C2(g*) — C*(G) is defined as follows: For x ¢ Exp(\) we put
Q,{f(f)(x) = 0, whereas for x € Exp(N) we put

QR (F)x) := K"k (Exp~' (x)) f (Exp~ ' (x)/h). (1.127)

Analogously to Q;;V in I1.3.4, the restriction f € C3(g*) implies that for small
enough  the operator QF(f) is independent of «. When G is exponential (in that
Exp : g — G is a diffeomorphism) the cutoff « can be omitted altogether. For
general f € C°(g*) the object Qf (f) is a distribution on G. In particular, when
f is a polynomial, one obtains a distribution with support at e. One may identify
the set of such distributions with the enveloping algebra I/(gc), but even on this
space QF does not coincide with Q%l in (1.78) unless the Jacobian J appearing in
(1.125) equals unity. However, for unimodular groups, and therefore in particular
for compact groups, one has J(X) = 1 + O(X?), and this property suffices to
guarantee that, at least formally, Qn X) = Q'\(X ) for all X € g. Since Qh (X)is
not defined as an element of C*(G), one may pass to a representation 7 (C*(G)),
related to U(G) by (1.89). Formally, one then has

m(QR(X)) = iRdU (X). (1.128)

Theorem 1.9.2. Let A° = Co(g*) and A" = C*(G) for h ¢ 0. When G is
compact the map QR in 1.9.1 yields a strict and continuous quantization onlO =
C(g*,R)on I =R, up to condition 11.1.1.1 4.

Strictness, which implies continuity (cf. I1.1.2.5) by Theorem I1.1.2.4, will fol-
low from the fact that QF is a special case of the generalized Weyl quantization
prescription on Riemannian manifolds (cf. 11.3.4).

Lemma 1.9.3. A compact Lie group G admits a right-invariant Riemannian
metric g such that the exponential map exp, obtained from g coincides with the
map Exp defined by the Lie group structure.

Choose an inner product (, ) on T,G = g that is invariant under the adjoint
action of G, and define g by the property gx(sx, s ) := (X, Y); cf. (1.38). this is
evidently right-invariant, but due to the Ad-invariance of (, ) it is left-invariant as
well. Such metrics are called bi-invariant.
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For any right-invariant metric g and any point of G one has the identity

g (Visth €8) = L (o (6%, 681 65) — m (&8, €51, £5) + 2 ([£5. £51. £9)).

(1.129)
obtained from I1.(3.17) and I1.(3.18) with various permutations of the entries, using
the x-independence of g,(§F, £F). When g is Ad-invariant, the last two terms
cancel, upon which the nondegeneracy of g implies that Vs = § [££, £F] due
to the nondegeneracy of g. In particular, V; x £§ = 0,s0 that by IL.(3.4) we infer that
the curves x(¢) = Exp(tY)x are geodesic for all Y € g. The claim follows. |

We identify C*(G) with 7, (C*(G)) (see (1.95) and 1.8.1)), which in tumn is
expressed as in 1.8.5. Also, we identify C(g*) C C™(g*) with C(T*G)® ¢
C®(T*G)R, as in 1.4.2 (with I = 0). Choosing a metric on G as in the lemma, it
follows from 11.(3.51), 11.(3.48), (1.82), (1.80) (with ¢ = 1), and (1.127) that under
the above identifications one has Qf = Q) on C(T*G)F (confirming I1.3.6.3).
The theorem then follows from Theorem 11.3.5.1. |

Proposition 1.9.4. Suppose that G admits a metric g as specified in Lemma 1.9.3,
and that the cutoff k is Ad-invariant (these assumptions are satisfied when G is
compact). With « := o'V given by (1.96), for all x € G and f € A° one has

@ (QF () = QR(Cox™")* ). (1.130)

The metric g of Lemma 1.9.3 is bi-invariant, and g, is invariant under the adjoint
representation Ad(G). Identifying g ~ R” this implies that Ad(G) € SO(n); in
particular, Ad(G) and Co(G) leave the Lebesgue measures invariant on g and g*,
respectively. The claim then follows from (1.127), (1.124), and the Ad-invariance

of the cutoff «.

Alternatively, the claim follows from Proposition 1.2.3, equation (1.52), and
Theorem 11.3.6.3. |

This proposition is a “bounded” version of 1.6.8.

Theorem 1.9.2 can be generalized to the twisted case, at the cost of A being

defined only at a discrete set. Let I' € Z%(g, R) be related to ¢ € Z%(G, U(1)) by
(1.34). This leads to a Poisson algebra C(g* , R) (see 1.1.5), a central extension
G, with Lie algebra gr (see 1.3.3 and 1.3.6), a group C*-algebra C*(G,), and a
twisted group C*-algebra C*(G, ¢) (cf. 1.7).
Theorem 1.9.5. Let A° := Co(g*) and A" := C*(G, c'/*) for h = 1/k, where
k € Z, and let Ql% = Cl‘,’v‘v’(g{r)_, R) be equipped with the Poisson bracket (1.12),
(1.13), taking the minus sign. When G is compact, the map Qﬁ , defined in 1.9.1
with C*(G) replaced by C*(G, c'/"), is a strict quantization ofﬁl?R only=1/Z
{except possibly for the completeness condition I1.1.1.1.4).

The signs may be checked from (1.128), (1.67), and (1.15). The proof is based
on the analogy between 1.1.10 and 1.8.3. Extend f € C3(g*, R) to a function
f € CZ(gt, R), such that £(9) = £(1,0) and

f6o#1,6) < fBo=1,0)= f(6); (1.131)
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in particular, one has

I fllso = Il fllco- (1.132)
In view of (1.13) this automatically means that
(£, 8)-(1,0)={f, g}"(6), (1.133)

since the left-hand side does not involve derivatives with respect to 6.

We denote the map of Definition 1.9.1 as defined on C35(g*, R), taking values
in C*(G, c'/M), by QR, whereas the map defined in the same way, but now on
C2(gr, R), taking values in C*(G.), is written as Qﬁ . A short computation using
(1.119) and an elementary oscillatory integral shows that

7RO’ (f) = Qf(f) (1.134)

for B € 1/Z small enough so that the right-hand side is independent of «. In
particular, the left-hand side depends only on the value of f at 6y = 1; this is
a special case of the fact that, for i small enough, nk(Qh (f)) depends only on
f (6o = kh). This follows by a calculation similar to the one 1ead1ng to (1.134).

Theorem 1.9.2 applied to G, implies that lims_,¢ || Q;f(f)” = ||f||<,o On the
other hand, according to (1.120) one has ||A|| = sup,z I (A)| for all A €
C*(G,). Combining the two of these equations with the last remark of the preceding
paragraph and the property (1.131), we conclude that

lim |QR (AN = lim Il "(QE DI = 1 flloo- (1.135)

Together with (1.132) and (1.134) this proves IL.(1.1) for Q,‘f.

Conditions II.(1.2) and I1.(1.3) in Theorem 1.9.5 now follow from (1.134),
Corollary 1.8.3, (1.133), Theorem 1.9.2 (once again applied to G.), and the
inequality ||*(A)|| < ||A]l in C*(G,); cf. L.1.5. n

The obvious generalization of 1.9.4 (in which Co is replaced by Co”, where y
and I' are related by (1.24)) is not valid except in special cases (see below).
While proved for compact G, Theorem 1.9.5 may hold in other situations.

Proposition 1.9.6. Let G ~ g* = R, with T given by (1.26) and c defined in
(1.35). Then the statement of Theorem 1.9.5 holds (without the final qualification).

Using Proposition 1.8.4 one obtains that Qf = Q,Yl" (cf. 11.2.5), so the
proposition follows from Theorem 11.2.6.1. |

In this case one does have the “twisted equivariance property”
ax(QR () = QF (Cor (x™1)* f) (1.136)

for all x € R* and f € C(T*R") (or S(T*R")), where y is related to I' by
(1.24). This follows by dlrect computation; in (1.23) only the term y(x) con-
tributes, yielding Co” (4, v) : (p, q) > (p + u, g + v). Alternatively, one uses the
corresponding property I1.(2.93) of Q).



1 Lie Groups and Lie Algebras 215

1.10 Representation Theory of Compact Lie Groups

Following the discussion of the Weyl quantization of g*, we turn our attention to
the possible quantization of coadjoint orbits O in g*. In view of later applications
to gauge theories we restrict ourselves to the case that G is compact. We start with
a brief review of the relevant representation theory, assuming familiarity with the
standard Cartan-Weyl approach. Throughout this section G is acompact connected
Lie group unless stated otherwise, and all representations are finite-dimensional.

Firstly, let G be abelian; it then has to be atorus G = T = T" = U(1)". Each
irreducible representation of T is one-dimensional, and is a character U, : TV —
C (a character of an arbitrary group is a one-dimensional representation). The label
A of the character is an element of t* ~ R” (the dual of the Lie algebra t ~ R" of
T), related to U, by

dU(X) = —iA(X). (1.137)

It follows that A € A := Z" C t*. Conversely, each A € A defines an irre-
ducible representation of 7' by exponentiation, so that we have found a bijective
correspondence between the unitary dual T and the lattice A C t*.

For a general Lie group, we note that (1.61) (with I' = 0) implies that 6 € g*
satisfies 9([X, Y]) = O for all X,Y € go (where gy is the Lie algebra of the
stabilizer G of 8 under the coadjoint action). In other words, 6 : gy — R s aLie
algebra homomorphism.

Definition 1.10.1. A coadjoins orbit O € g* is called integral if for some (hence
all) 0 € O the functional 6 | gy exponentiates to a character of Gg.

In other words, 8 is integral iff there is a character Uy of G4 such that® = id Uy on
ge- If thisholds forone @ € O, itholds for all, since one has Ucoxg = UgoAd(x ™).

Obviously, if G is a torus T, its coadjoint action is trivial, so that its coadjoint
orbits are the points of t*; the integral orbits are precisely the elements of the
lattice A. Consequently, one has a bijective correspondence between 7 and the set
of integral coadjoint orbits of T. The following theorem generalizes this idea.

Theorem 1.10.2. There exists a bijective correspondence between the unitary
dual G and the set of integral coadjoint orbits in g*.

We will merely sketch the proof in explaining how this parametrization of G is
related to the Cartan—Weyl theory. This theory starts by choosing a maximal torus
T (i.e., a maximal connected abelian subgroup) of G, with associated Weyl group
W := N(T)/T (where N(T) is the normalizer of T). The integer r := dim(7")
is called the rank of G; it does not depend on the choice of T, since all maximal
tori are conjugate. The Weyl group acts on T by conjugation, and hence it acts
on t and t*. The latter action is the projection of the coadjoint action of N(T).
It maps A C t* (called the weight lattice in the present context; elements of A
are traditionally called weights) into itself; the W- action on A coincides with the
natural W-action on 7" under the identification of 7 with A explained above. The
Cartan—Weyl theory states
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Theorem 1.10.3. Let T be some maximal torus in G. There exists a bijective
correspondence between the unitary dual G and the set of W-orbits in T ; that is,
G~T/W=A/W.

The relationship between this parametrization of G and the one in 1.10.2 follows
from an important lemma in the structure theory of compact Lie groups, which we
state without proof.

Lemma 1.10.4. In the notation of 1.10.3 there is a bijection
G/AAG)~T/W. (1.138)
Denoting the set of coadjoint orbits in g* by g*/ G, one therefore has
g*/G >t/ W. (1.139)

The concrete association of a coadjoint orbit in g* with a W-orbit in t* is as
follows. Restrict the adjoint representation of G (extended to the complexification
gc) to T, and decompose gc under Ad(T) as gc = tc @ t¢, where t{ is the
sum of all eigenspaces with nonzero eigenvalues; this leads to a decomposition
g = t@t*, where t* := t{ Ng. This coincides with the orthogonal decomposition
of g under an arbitrary Ad(G)-invariant inner product (, ). One may, for example,
take a faithful representation U of G, and define the invariant inner product by

X, Y):=-TrdU(X)dU(Y). (1.140)

An arbitrary compact Lie group is of the form G = S x T*, where S is semisimple
(i.e., a product of simple factors with finite discrete center) and T* is a torus. If G
is semisimple, the adjoint representation is faithful, and may be used in (1.140),
this defines the Killing form on g. More generally, all invariant metrics have
the property that the direct summands in g are mutually orthogonal, and that the
metric restricted to a given simple summand is proportional to the Killing form. For
concreteness’ sake, in what follows we assume that (, ) restricted to the semisimple
part of g coincides with the Killing form.

The extension 6(A) € g* of A € t* obtained by putting 6(A) = 0 on t* and
8(L) = A on t is therefore independent of the choice of the metric on g. Thus the
coadjoint orbit Oy, := Oy, associated to A is the coadjoint orbit through 6(1); it
is obvious from the definition of the W-action on t* that all points of the W-orbit
of A are mapped into O,.

To go in the opposite direction one needs (1.138) to show that the stabilizer
of any point in O is connected, and that it contains a maximal torus. As any two
maximal tori are conjugate to each other, and Gcoxyy = xGpx !, there accordingly
exists a® € @ for which T € Gg4. Hence we can define A(8) = 6 | t. Note that
(1.61) and T € Gy imply that6 | t+ = 0.

If Gy = T the coadjoint orbit Oy through 8 is said to be regular; it is of maximal
dimension among all coadjoint orbits. Otherwise, it is called singular. For regular
orbits one immediately sees that Geopryy = T implies that x € N(T), so that
different choices of 6 for which Gy = T map into the same W-orbit of A(6). It
follows from (1.138) that the same is true for the singular orbits.
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Theorem 1.10.2 now follows from Theorem 1.10.3 and Lemma 1.10.4 by
restricting the isomorphism to weights and integral orbits. n

A functional A € t* is called regular when wi = X for w € W implies
w = e (and singular otherwise); this defines the sets t* and A, := t* N A of
regular elements and regular weights in t*, respectively. In the context of 1.10.2,
elements of t* evidently correspond to regular coadjoint orbits, and similarly for
the singular case.

Each connected component C of t* is called a Weyl chamber; this is an open
convex cone in t*. Singular weights clearly lie on the boundary of some Weyl
chamber. One singles out an arbitrary Weyl chamber C,, and declares a weight
dominant if it lies in the closure C,. The point is now that each W-orbit intersects
a given closed Weyl chamber C in exactly one point. Hence Theorem 1.10.3 may
now be restated:

Corollary 1.10.5. In the notation of 1.10.3 there is a bijection between G and
the set A, := A N C, of dominant weights.

Any Hilbert space H carrying a representation U (G) decomposes under U (T)
as H =~ ®reaq,wyHa, where each H, carries the representation U, (T) (perhaps
with multiplicity). The set Ag(U) C A contains the weights of U. This applies, in
particular, to the adjoint representation Ad. The nonzero weights of Ad are called
roots; one writes A for Ao(Ad)\{0}, with elements generically denoted by «.

The decomposition of g¢ under Ad takes the form gc = @geafe @ tc, where
each g, is one-dimensional. Writing g, = CE, for some nonzero vector E,, we
have

[X, Eq] = —ia(X)Ey (1.141)

for X € t. It follows that if @ € A, then —a € A, since g, = g_, (where the
complex conjugation is the usual one on gc = g ® ig).

Given a choice of C,, a root is called positive if (&, A) > 0 forall A € C, (here
the inner product on g has been transferred to g* in the usual way). The collection of
positive roots is called A™. A root lies either in A* or in —A™. Singular dominant
weights A have the property that (o, 1) = O for some o € At; a weight is regular
iff (@, A) # O for all roots .

It is not difficult to show from (1.141) and the Jacobi identity that g¢ has a basis
{Hj, Ey, E_g}j=1,.. raea+, normalized such that (E,, E_,) = 1, satisfying

[Hj, H] =0;

[Hj, Exo] = Fia;Esgy;

[Eq, E_o) = —iajHj;

(Ear Egl = NupEarp (B # —a), (1.142)
wherea € AT, 8 € A, «; .= a(Hj), and the N, g are constants that vanish iff

a + B is not a root (in which case E,, g is, of course, not defined).
The bijection in 1.10.5 is now implemented by the following fact:
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Corollary 1.10.6. In the notation of 1.10.3, a Hilbert space R}’ carrying an
irreducible representation U, corresponding to a dominant weight y has a unit
vector V,,, unique up to a phase, on which

du,(X)¥, = —iy(X)¥, (1.143)
for all X € t, whereas for all @ € A™ one has
dU,(E)¥, = 0. (1.144)

The unit vector W, is called a highest weight vector; it is unique up to a phase.
It is easily inferred that

(\pyv de(Eﬁ:a)‘yy) =0 (1145)

for alla € A, since the Lie brackets (1.142) imply that dU (E_, )W, must either
be zero or a vector with weight y —a # y.

One may now see the correspondence in 1.10.2 in a clearer light. Let J : PH, —
g* be the momentum map for the G-action on P+, defined by U,,, given by (1.71);
this may be rewritten as

Ix(Y) = iV, dU, (X)¥), (1.146)
where the unit vector W is a lift of ¥ € PH, to SH}".

Proposition 1.10.7. The coadjoint orbit O, corresponding to an irreducible
representation U,, with highest weight vector W, contains Jyr, .

In fact, J : PU,(G)Y, — O, is a symplectomorphism when PU,(G)¥,
inherits the usual symplectic structure of PH}" (with k= 1), and O, is endowed
with the (minus) Lie symplectic form (1.63).

Equations (1.146), (1.143), (1.144), and (1.145) imply that (J (¥, ))(X) equals
y(X) for X € t and equals O for X € t-. Hence J () is precisely the element
6(y) € g* discussed after the proof of 1.10.4, proving the first claim.

By (1.146), the stability group G y,) of J(¥,) consists of those x € G for
which (U, (x)¥,, dU, (Y)U, (x)¥,) = (¥,,dU,(Y)¥,) forall Y € g. Since U,
is irreducible, this implies that W,, and U, (x)W, define the same element of PH,,
proving that G ¢y, € Gy, - The opposite inclusion is trivial from the equivariance
of J, which can either be checked directly from (1.146), or may more abstractly
be inferred from 1.2.5, it having been realized from (1.72) (withI" = 0) and 1.1.2
that J is a Poisson map on PH,,. |

For general h one would have a factor /i on the right-hand side of (1.146).

It is actually quite easy to give an explicit description of the Lie algebra g,
of G, := Gg). From (1.61) (or the above proof), (1.142), and the previously
discussed fact that y (E,) = 0 for all @ € A we infer that

8y = tD Bueariv.w=ode, (1.147)
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where ng = g N(gy D g—g). It follows that the dimension dim(QO,) of the orbit
through a dominant weight y is given by

dim(0,) = dim(g) — dim(t) — 2 Card {& € A*|(y, @) = 0). (1.148)

It follows from Proposition 1.10.7 that PU, (G)W, is a symplectic submanifold
of PH}; this is not necessarily true if CW, is replaced by an arbitrary one-
dimensional subspace of ’H‘;,W. However, the same statement as in 1.10.7 evidently
applies to any vector of the type U, (0)¥,, where wisaliftofw € W = N(T)/T
to N(T) C G. For J maps all vectors of this type into the same coadjoint orbit.
In fact, U, (#0)¥, has weight wy, showing that all weights wy, w € W, occur in
Hy.

1.11 Berezin Quantization of Coadjoint Orbits

Coadjoint orbits of compact Lie groups are interesting partly because they lead to
coherent pure state quantizations indexed by a discrete set / > A; cf. [1.1.5.1 and
I1.1.3.3. We will use the label y to denote a dominant weight in A, C t*, as well
as the corresponding element 6(y) of the coadjoint orbit O, C g*.

Theorem 1.11.1. Let G be a compact connected Lie group, and O, an inte-
gral coadjoint orbit (cf. 1.10.1), corresponding to a highest weight y € A,. For
h=1/k, k € N, define H;, := H;‘,“’/h, i.e., the carrier space of the irreducible rep-
resentation U, ;5(G) with highest weight y [k = ky. The map q; : O, — PH;,
given by

gr(Co(x)y) 1= Tr,—pH, (Uy n(X)Wy s5), (1.149)
is well-defined and injective. Together with
“h=dypitL, (1.150)

where d, = dim(H}"), this provides a pure state quantization of O, (equipped
with minus the Lie symplectic structure) on Iy := 1/N.

One should note here that ky € C, when y € C,, since Weyl chambers are
convex cones. In what follows, O, stands for (O, )_; see the notation introduced
before (1.63).

The map gy, is well-defined and injective by the equation G, = G, plus the
argument on stability groups used in the proof of 1.10.7. In fact, if we define
Ji : PHy — g* by (1.71), with B = 1/k (equivalently, by (1.146) with the right-
hand side divided by k), it follows from 1.10.7 that J;, takes values in O, and is a
left inverse of gj.

We start from the fact that the Haar measure on G (with total mass 1) pushes
forward to the Liouville measure derived from the Lie symplectic structure under
the canonical projection G — O, =~ G /G, . Using the invariance of the Haar
measure and the unitarity of Uy, , we then have

f dﬂL(U)P(thah)f(U):-/(;dx Wy, Uy ()W) £, (%) (1.151)

4
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forall f € C(O)), where f, = 15_,5,6,f € C(G) is aright-G,, -invariant func-
tion, and y is such that 76,6/, (y) = p € O,.Choosing f = 1, the orthogonality
relations (1.116) for compact groups and (1.150) then imply I1.(1.8).

Equation I1.(1.10), even without the limit, follows from 1.10.7. To prove I1.(1.9)
we need a lemma.

Lemma 1.11.2. Let y; be dominant weights with highest weight representations
and vectors U, and WV, , respectively (i = 1, 2). Then for each x € G one has

Wy, Uy, (0¥, - (Y, Uy, (V) = (Yy 49,0 Uy gy, 0OV 40,). (10152)
This is immediate from 1.10.6 and the connectedness of G. |
This lemma implies that

Wiy s Upy ()W) = (W, U, ()W, ). (1.153)
Using (1.151), we can write the left-hand side of I1.(1.9) as

’llimf dpr(o) p(pn, on) f(0) = lim fdﬂk(x)fr(yx)’
—0 o, k—>oo J5

where i is a probability measure on G defined by
du(x) := dy, dx|(¥,, U, (x)¥,)*. (1.154)

It is obvious that each p; is right-G , -invariant. It follows from (1.144), (1.145),
and the fact that the exponential map is surjective for compact Lie groups, that
|(W,, Uy, (x)¥, )|, which is evidently < 1, equals 1 iff x € G,,. Hence for large &
the support of w is increasingly concentrated on G, . This suggests that

kl_i)rgouk(f)=/c dh f(h) (1.155)

for all f € C(G), where dh is the normalized Haar measure on G, . This is
confirmed by more detailed analysis (cf. the proof of 1.11.4 below). For the right-
G, -invariant function f, € C(G)Sr one therefore obtains

lim 1 (f,) = fy(e).
This proves I1.(1.9), which finishes the proof of 1.11.1. O

The Berezin quantization QF associated with the pure state quantization in
1.11.1 (cf. I1.1.3.4) is defined on 2A° := C*(0,). By 11.(1.16), one has

QB.(f) = diy fG dx () Uky )Wy (1.156)

this is an element of A/ = 901, (C). The most important property of Qp is its
G-equivariance. For x € G we write

alT¥(A) = Uy, (x) AUy, (%)%, (1.157)
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where A € A%, and for f € A° we put

a2(f) := Co(x~1y* . (1.158)
Proposition 1.11.3. Forallk e N, x € G, and f € L>(O, ) one has
QY @) = M QT (). (1.159)

This is immediate from (1.156), (1.158), the fact that (Co(y)* ), = L;f,,, the
right-invariance of the Haar measure, and (1.157). [ |

Theorem 1.11.4. The Berezin quantization (1.156), defined on the space
C®(0,, R), is strict.

Recall that O, := (O, )_. Rieffel’s condition II.1.1.1.1 follows from Theorem
1.11.1 and Proposition 1I.1.3.6. The completeness condition II.1.1.1.4 is an easy
consequence of Schur’s lemma and the irreducibility of Uy,,.

We will now prove von Neumann’s condition 11.1.1.1.2 and Dirac’s condition
IL.1.1.1.3. We pick a unit vector @ in each H}, and use the invariance of the Haar
measure and (1.116) to write (using the notatlon of the proof of 1.11.1)

(Pr, (QF (Vi (8) — Q1 (f2))Ps)

= diy dex Sy G @i, Uky (0)Why ) i (), (1.160)

where
Li(x) := dyy fG dy (Wiy, Uy (1)W1 )F, (7)), (1.161)
Fj(y) := (Uiy (xy) Wiy, i)y (xy) — gy (1)1 (1.162)

In the notation used after (1.151), the function F)f on G corresponds to a function
F*onQ,.

Using (1.153), we can write (W, Ugy (y)W,) = exp(—nS,(y)), where
S,(y) == —log(¥,, U, (y)¥,) (in view of the exponentiation, the choice of the
branch cut of the logarithm is irrelevant). The function S, is right-G, -invariant;
we denote the corresponding function on G/G, by §. We identify G/G, with
0, , so that the coset [G, ] € G/G,, is identified with y € O,.

Putting S;,'“(y) = —log (¥, U, (y)¥, )|, the absolute value of exp(—nS) is
exp(—nST). As in the argument preceding (1.155), we see that ST takes values
in [0, oo] and assumes its unique absolute minimum O at y. Since FJ in (1.161)
is bounded, a standard argument implies that to O(exp(—n)) we may replace the
integration over G/ G, by one over any neighborhood of y.

We identify 7, O, with g/g,, , and use complex coordinates {zy, Za Jae A where
A} consists of those positive roots for which (y, @) # 0. By the definition of
a highest weight, this implies that (y, ) > 0 for all @ € A;“. The coordinates
(24 Zo) correspond to the point in O, given by

Co | Exp iZ(zaEa—'z'aE—a) v

T
ozeAy
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A simple computation, using (1.142) and 1.10.6, leads to
SGarZa) = Y (¥, )2aZa + O(2]). (1.163)

T
aeAd

Hence to O(exp(—k)) we may approximate I;(x) by

diy f I Daalla ) (g, zage ™ ot P B by, ),
/8y \acA? 2

where J is a Jacobian, and F) has been extended to g/g, by, say, the exponential
map. If we omit the factor [...] in (1.162), the integral (1.161) can be evaluated,
using the orthogonality relations (1.116). On the other hand, we can compute the
above integral to lowest order in the steepest descent approximation; this avoids
the need to compute J(0). Comparing the results computes the prefactor in the
steepest descent approximation as unity. As a by-product we obtain the asymptotic
expression for k — oo

naeA;r(y’ a)k% dim(@,)
J(©0) ’
where dim(O, ) is given by (1.148). (Comparison with the Weyl dimension formula
then yields J(0) = [],ca+ (@, 8), where § := 13", .\ @)
Thus the steepest descent approximation to the above integral, and therefore to
(1.161), reads

dy ~ (1.164)

=z
N,’._‘

D’(JFJ‘ 0+ Ok, (1.165)

Ik(x Z

1=0
where, abbreviating 8, := 8/8z, and 8, := 9/dz,, we have put
1 —

D:= 82 0a- (1.166)
a§¢ (v, )

Substituting this expansion in (1.160) we see that
(e, (QF () 0 QP (8) — QF () Pi) = O(1/k). (1.167)

To analyze the remainder of O(1/k) we note that the /th term in the expansion
leads to an x-integrand in (1.160) of the form

_ ~]
(Uky (x "N ®pk, Wiy Y Usy (x 1D, W) £377 " g, (x),

where /; < I and the ¥ are given by the action of products of dUy, (E4) and
dUp, (E_y) on Wy, . The important point is now that the orthogonality relations
(1.116) (applied to the x-integration) then imply that the O (k=" ~!) term is bounded
by C||®x |12/ kN +! for some constant C. Hence I1.(1.2) follows by I1.(2.77).

To prove 11.(1.3) we need the / = 1 term in (1.165). We substitute (1.166), and
perform some partial integrations in the remaining x -integral (using the invariance
of the Haar measure). We abbreviate A := (P, Uy, (x)Wy, ); then (1.144) implies
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that 3, A and 3, A vanish at z, = Z, = 0. Terms of the form 3,9, A (or A) drop out
in the commutator, as do contributions from J (whose first derivatives at 0 already
vanish identically). What remains is

(®r, ik[Q7)4 (), QP (@] — (S, 81 )®e) = O(1/k), (1.168)

where, in the realization of f, g as G, -invariant functions f,, g, on G,

1
fyogyle=si ) ——

aEgp, (y’ a)

eLf, £ g, . (1.169)

Here the left-invariant vector fields EiLa on G are defined as in (1.37), the element
E4, of gc having been expressed in terms of elements of g. Also, A, is A;f UAZ,
i.e., the set of all roots « for which (y, ) # 0.

To finish the proof, we remark that (1.169) is precisely the Lie-Poisson bracket
on O, ; this may be verified at the point y € O, (or e € G) by direct computation
from (1.3), from which the general statement follows by the G-invariance of the
Poisson structure.

It is manifest that the right-hand side of (1.169) is left-G-invariant if f, and
8y are; its right-G, -invariance is not so obvious. The latter may be verified at the
infinitesimal level from (1.147), (1.142), and the fact that for 8 # o one has

N app=—Nop. (1.170)

This follows from the Ad(g)-invariance of the inner product on g¢, combined with
the normalization of the E,. Invariance of (1.169) under g, implies invariance
under G, which is connected.

The higher-order terms in (1.168) are dealt with as in the above proof of I11.(1.2).
This proves I1.(1.3), finishing the proof of Theorem 1.11.4. ]

It is possible to regard o, := gx(0), defined in (1.149) for h = 1/k, as a state
oy, on the group algebra C*(G) by

S1(A) 1= on(y n(A)). (1.171)
The following result is analogous to 11.(2.167).

Proposition 1.11.5. With QF defined in 1.9.1, for allo € O, and f € C2(g*)
one has

lim 1(QR (/) = £(0) (1.172)
along the sequence h = 1/k, k € N.

This follows from a straightforward calculation. One starts by using (1.124),
(1.125), and rescaling X — X/k. The k-dependence is firstly in J(X/ k(X /k),
which goes to 1 for & — oo. Secondly, one uses (1.153) and subsequently

lim (¥, U, Exp(X/ k)W, )* = eWrdUr0O¥),
k—o00

This can be computed by (1.143) and (1.144). The result then follows from the
well-known representation of the delta function as an oscillatory integral. n
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Finally, we remark that the results in this section have an obvious yet somewhat
cumbersome generalization: If the orbit O, is not integral, but such that O, is
integral for some ¢ € R\{0}, we can construct a strict quantization for the values
h=c/k,keN.

2 Internal Symmetries and External Gauge Fields

2.1 Bundles

Many constructions where some form of symmetry plays a role, and in partic-
ular the mathematical description of gauge field theories, involve the notion of
a (smooth locally trivial fiber) bundle. We have already encountered the tangent
bundle and the cotangent bundle of a manifold; here is a general definition.

Definition 2.1.1. A bundle B(Q, F, 1) consists of manifolds B (the total space),
Q (the base), F (the typical fiber), and a smooth surjection v : P — Q with
the following property: Each q € Q has a neighborhood N, such that there is
a diffeomorphism ¥y : TV (Ny) = Ny x F C Q X F for whicht = tg 0 ¥
(where Tg : Q x F — Q is the projection onto the first factor).

The maps ¥, are called local trivializations. To avoid cumbersome expressions
we shall often say “B ~ Q x F (locally)”, omitting reference to AV. Similarly, we
then loosely write “y : B —> Q x F (locally)”. We factorize ¢, = (7, !/1‘5 ) so
that ¢ F restricted to 7' (¢) provides a diffeomorphism between the latter and the
typical fiber F. Each subset 77!(g) is called a fiber of B. One may think of B as
Q with a copy of F attached at each point.

Throughout this chapter Q will be physically interpreted as the space on which
a particle moves, or perhaps as some more general configuration space.

Two bundles B;(Q;, F;, t;) (i = 1,2) are said to be isomorphic if there is a
diffeomorphism ¥ : B; — B, that preserves fibers. Such a bundle isomorphism
defines a diffeomorphism of the base spaces and typical fibers in question. The
bundle is said to be trivial if there is a bundle isomorphism ¢ : P - Q x F. Any
bundle over a contractible base is trivial.

By definition, a section of B is a map s : Q — B satisfying 7 os = id. It can
be shown that (Borel) measurable sections always exist, whereas the existence of
smooth sections is not guaranteed (they certainly exist if B is trivial). However,
one can always choose smooth local sections s, : N, — B. In the spirit of the
paragraph before the last, we may say “s : Q — B (locally)” when s is actually
defined on some N C Q.

Definition 2.1.2. Given two bundles B, and B, over the same base Q, with
projections Ty, T, and typical fibers Fy and F;, respectively, the fiber product of
Bl and Bz is

B) *g By := {(x, y) € B x B2 | 11(x) = 2(y)}, 2.1)
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withmanifold structyre inherited from the Cartesian product. This may be regarded
as a bundle over Q with projection t(x,y) = 11(x) = 12(y) and typical fiber
Fi x F,.

Let B(Q, F, t) be a bundle over Q andlet f : M — Q be a smooth map from
some manifold M to Q. Then the pullback bundle

fTB:=Bxg M ={(x,y) €eBx M|t(x) = f()} 22

is a bundle over M under projection 1(3) onto the second variable and typical fiber
F.

Hence B *¢g B, can be equipped with a bundle structure in three different ways:
It is a bundle over Q as explained above, it is a bundle 7B, over B; with typical
fiber F, under the projection 7y onto the first variable, and finally it is a bundle
7, B, over B, with typical fiber F; under the projection 7z, onto the second variable.

One can specialize the bundle structure. For example, in a vector bundle each
fiber is a (topological) vector space (where the linear operations are smooth with
respect to the ambient manifold structure), and the local trivializations respect the
linear structure in the obvious sense. Clearly, 7*Q and T Q are vector bundles.
Even when it is nontrivial, a vector bundle always admits a smooth global section,
namely the zero section so(q) := 0. We will generically denote vector bundles by
the letter V, unless the typical fiber is a Hilbert space, in which case we write H,
and speak of a Hilbert bundle.

When the B; in 2.1.2 are both vector bundles V; (with finite-dimensional or
Hilbert fibers), one may form two different vector bundles over Q from V; ¢ V,
by declaring the typical fiber to be either the tensor product V| ® V; or the direct
sum V| @ V,. One accordingly writes V| ® V; or V| @ V;. One can also form the
dual bundle V* of a vector bundle V, whose typical fiber is the dual V* of V, and
whose local trivializations are dual to those of V.

Here is the “mother” of all bundles in which group actions play a role.

Definition 2.1.3. A principal bundle P(Q, H, 7) is a bundle for which the typical
fiber is a Lie group H (the structure group) with smooth (left) action R on P such
that Q = P/H, and ¥y o Ry = RE o g, where theaction RZ : Q x H - Q x H
on the right-hand side stands for RhQ (g.k) = (g, kh™").

To stress the role of H and , one may speak of a principal H -bundle over Q
for clarity. It follows that the H-action R, must be free, and that 7 (R, (x)) = 7(x).
In agreement with the above, we will write R, as x +— xh™' forx € P. In
contrast with a vector bundle, it can be shown that a principal bundle admits
smooth global sections iff it is trivial. In a trivial bundle P == Q x H one obviously
has Ry (q, k) = (g, kh™").

In a principal bundle a given local trivialization v, is equivalent to a smooth
local section s: Given s one can put ¥;(s(q)) = (g, €) and subsequently extend v,
by H -equivariance; that is,

¥s(s(@)h) = (g, h). (2.3)
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Conversely, given { = ¥, one defines s(q) := ¥ ~!(qg, ). If various local sections
sq are involved, we will write ¥, for ;.
If Q is covered by open sets of the type NV, and g € N, N Np, it must be that

58(q) = sa(q)8as(q) 2.9

(no sum over o), where the smooth maps g, : N, NN, s — H are called transition
functions. More generally, two different systems of local trivializations are related
in this way.

In an interesting special case one takes P to be the universal covering space 0 of
0, sothat H = m;(Q) is the first homotopy group of Q (regarding discrete groups
as zero-dimensional Lie groups). For another example the reader could now skip
ahead to 2.7.

Definition 2.1.4. Given a principal H-bundle P over Q and a smooth H -action
L on some manifold M, the associated bundle M = P xy M is (P x M)/H,
where the H-action on P x M is given by h : (x, m) v (xh™", Ly(m)). This is a
bundle over Q with typical fiber M and projection ty— u([x, mlu) = t(x), which
is well-defined in being independent of the representative (x,m) € P x M in the
equivalence class [x, mly € (P x M)/H.

The following result will be used on many occasions.

Proposition 2.1.5. A section ¥V : Q9 — M of a bundle M associated to a
principal bundle P(Q, H, t) may alternatively be represented:

e Asamap W* : P — M that is H-equivariant in that
Wi(xh™) = L()WE(x). (2.5)

This is related to W by WD (1(x)) = [x, WE(x)]y, which is independent of
the choice of x € t! o 1(x) because of (2.5).
e Given a sections : Q — P,asamap VL : Q — M, in terms of which

(@) = [s(9), ¥E(@us
Wl(g) = wh(s(q));
Whx) = L)W (z(x)), (2.6)

where hg(x) is determined by xhs(x) = s(t(x)).

This follows directly from the definitions involved. Note that A (xk) =
k~'h(x), ensuring the consistency of the relation between W/ and W*-. [ ]

The space of smooth compactly supported sections of a vector bundle V (where
compact support is defined with reference to the zero vector in each fiber) is denoted
by I'(V); when M is a vector space V, the symbol I'(P x5 V) will specifically
refer to the first realization discussed above. The second realization will be called
[s(P xu V).

We will see that interesting classical phase spaces arise by taking M to be a
coadjoint orbit of G in this construction. Alternatively, in classical as well as
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quantum mechanics one encounters the case where M is a linear space V, carrying
a linear H-action L; in that case one speaks of an associated vector bundle. The
case relevant to quantum mechanics is that in which V is a Hilbert space H,
carrying a representation U, (H); cf. 2.9.

A (local) trivialization Y, = (7, ¥H) of P leads to a (local) trivialization ¥ :
M — Q x M of an associated bundle M by putting

Y ([x, mly) == (v(x), L (x)m). (2.7)

This is well-defined, since ¥ (xh) = ¥ (x)h. Conversely, (¥ M) (g, m) =
[s4(q), m]y, in terms of the (local) section associated with y,; cf. 2.3.

If two vector bundles V;, V; are both associated to a principal H-bundle P over
Q by H-actions L;, then V; @ V; and V| @ V; are associated to P by the actions
L, ® L, and L & L,, respectively. The dual bundle V* of an associated vector
bundle V defined by an H -action L* is defined by the dual H-action L} := (Lz-1)*
on V*,

2.2 Connections

In preparation for the definition of a connection on a principal bundle, note that
the tangent bundle TP of a principal bundle TP has a natural subbundie

VP:={veTP|t.v =0} (2.8)

Elements of VP are called vertical vectors, and the linear space V,P := T, PN VP
is called the vertical tangent space at x. It is easily seen that VP is stable under
the lifted H-action R,. Indeed, VP is spanned by vector fields of the type £x given
by the H-action on P; cf. (1.19). It is customary to define

£f = —&5, 2.9)

referred to as a fundamental vector field. The vector E,’; (x) is evidently tangent
to the curve x(t) = xExp(z X). One easily shows that

(Rh)*g){ = S;{d(h)X‘ (2.10)

Aliftof X € T;(yQtox € Pisanelement/,(X) € T, X forwhich 7,/,(X) = X;
alift is evidently unique up to the addition of vertical vectors. Each lift H, of T, Q
to x € P satisfies H,P & V,P = T,P, but there is no canonical choice of such a
complement to V,.P.

Definition 2.2.1. A connection on a principal H-bundle is a smooth assignment
x +— H.,P C T,P suchthat H.P ® V,P = T,P and

Hpg,x)P = (Rp)« H,P. .11

Elements of H, are called horizontal vectors, and each H, is called the hor-
izontal subspace of T, P. The collection of all H, is the horizontal subbundle
HP of TP. The horizontal lift £,(X) of X € Ty Q to TP is the unique vector



228 III. Groups, Bundles, and Groupoids

in H,P satisfying 7,(€,(X)) = X. From (2.11) we infer
LR, (X) = (Rp)ulx (X). (2.12)

Similarly, a horizontal lift £(q(-)) of a curve ¢(-) in Q is a curve x(-) in P for which
T(x(t)) = q(t) and x(t) € Hy()P for all ¢. Such a lift is unique if one specifies
x = x(0) (at which 7(x) = ¢(0)). The parallel transport of x € P to 77'(q(t))
along a C! curve ¢(-) in Q (with 7(x) = ¢(0)) is by definition x(¢), where x(-) is
the horizontal lift of g(-) through x.

These notions may be transferred to any bundle M associated to P. The horizontal
lift of a C! curve q(-) in Q through [x, m]y € M (with 7(x) = ¢(0)) is the curve
[x(-), m]u, where x(-) is the horizontal lift of g (-) through x. Similarly, the parallel
transport of [x, m]y to Ty _',Q(q(t)) is the point

Pg—qnlx, mly := [x(t), mly, (2.13)
where x(¢) is as defined above.
Proposition 2.2.2. There is a bijective correspondence between connections on P
and smooth sections A of A'(P) ® b (i.e., fields of h-valued 1-forms on P), called
connection 1-forms, satisfying
AGDH =X, (2.14)
R;A = Ad(W)A (2.15)

forallX e handh € H.

Given the H,, one defines A by (2.14) and A, (X) = Ofor all X € H,P; equation
(2.15) follows from (2.14), (2.10), and (2.11). Given A, one defines H,P as the
subspace of T, P annihilated by A,; (2.11) follows from (2.15). n

In a local trivialization ¥ : P — Q x H (locally) associated to a section
s : Q — P (locally; cf. (2.3)) we can write

W) A@, b) = Ad(h™)s*Alg) + 61" (h), (2.16)

where s*A € A'(Q)®h and 6}€ is defined in (1.41). This expression is enforced
by 2.1.3,(2.14), (2.15), and (1.53). Connections on a trivial principal bundle Q x H
are, then, necessarily of the above form.

A connection 1-form A determines a projection 7, : TP — VP (mapping T,P
onto V,P) by

7,(X) = E,{(x)- 2.17)
The complementary projection 7, : TP — HP is given by
(X)) = X — £{ 4, (2.18)

The curvature of A is an f)-valued 2-form F on P, defined by

F(X,Y) = dA(m(X), n.(Y)). 2.19)
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Some rearrangements lead to the expression
F =dA +[A, Al (2.20)

Writing s*A = T; Al dg* and s*F = T; F},,dq"dq" (in terms of coordinates g* on
Q and a basis {7;} of h, omitting explicit reference to the section s) one therefore
has the physicists’ formula

Fy, = 3,4, — 8,A, + Cj AL AS. @21)

A most important aspect of a connection on P is that it defines a certain first-order
differential operator on all vector bundles associated to P. We write V := P xy V
(defined relative to some H -action L on V). Recall that the space of all compactly
supported smooth sections of V is denoted by I'(V).

As in I1.3.1.1, a covariant derivative on a vector bundle V(Q, V, 1) is a linear
association § — Vg, where & € I'(T Q) and V; : I'(V) — T'(V) satisfies Vs, =
fVeand Ve (fW) = E(/)Y + fV: ¥ forall f € C*°(Q) and ¥ € T'(V). One
may look at a covariant derivative as amap V : I'(V) — C(AYQ) ® V), so that
VoW = VW(E).

We can (locally) choose a moving frame, that is, a collection of sections s; :
Q — V, such that {5;(g)}i=1,... dim(v) is a basis of 17 Y(g) for all ¢ (in some open
subset of Q). A functiony : Q — RY™Y) then defines asection W : g > ¥'s;(q)
of V. With obvious abuse of notation we may then write

vyl =dy' + Ajy/, (2.22)

where A is a matrix-valued 1-form on Q, defined by the property Vs; = A{ i
it evidently depends on the moving frame. This dependence is controlled by the
transformation property

A=MAM™' + MdM™}, (2.23)

where A is the 1-form determined by a moving frame §;(g) := s;(g)M ‘l(q){ ,
where M : Q — GLRI™™) (locally). This property, which is immediate from
the definition of A, guarantees that V§ = MV, where Jf = M defines the
same section W as ¥ does, but in terms of the frame 5.

By slight abuse of terminology (cf. the case of a principal bundle) one often refers
to A as a connection, and instead of saying that there is a covariant derivative on
V one says that V has a connection.

Proposition 2.2.3. A connection (with associated 1-form A) on P(Q, H, ) de-
fines a covariant derivative VA on any vector bundle V(Q, H, T) associated to P
by

VAWD(g) = lim [pg-g0 ¥ g ) - WP @) /1 (224)
when the limit exists; here q(-) is a curve through q with tangent vector &,, and

the limit is independent of the specific choice of the curve.
In terms of the realization W' (cf. 2.1.5) one then has (with abuse of notation)

VAW (x) i= L)W (2). (2.25)
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In terms of the realization WL the covariant derivative is
Viw! = [ + dLAENIVE, (2.26)
where A := s*A.

Here dL(X) = dL(Exp(tX))/dtlt = O for X € b; hence dL(s*A) ¢
AY(Q) ® dL(h) (locally). Note that the right-hand side of (2.24) is well-defined
as the difference between two elements of a vector space, in that both terms in the
numerator lie in the same fiber 7, 0(q) because of the parallel transport operation
(2.13) involved. The properties of a covariant derivative then easily follow from
the ordinary Leibniz rule.

We take the horizontal lift x(-) of ¢(-) in V through x, and note that (2.13) implies
that

Pay>q [X(@), WEx@)],, =[x, Wi @], . .27

from which the equivalence of (2.24) and (2.25) is immediate. Note that (2.25) is
well-defined in that VAW (ph~') = L(h)VAW"(p) because of (2.12).

To derive (2.26), which is obviously a special case of (2.22), we notice that
VE"\IIXL(q) = Ly (X)WL (s(q)), use (2.18) to write Lip(X) = 5.(X) — 51{(&(}0)’
and then use the definition of £/ and the equivariance of Wt |

It follows most easily from (2.26) and a well-known identity for the exterior
derivative d that in a given trivialization the curvature s*F of A is related to the
covariant derivative by (cf. I1.(3.20))

dL(s*F)E, n) = [VE, V] = Vi (2.28)

In complete analogy to the special case of an affine connection (see I1.3.1),
given a covariant derivative V on some vector bundle V(Q, V, 7) one may define
the horizontal lift £ of a vector or of a curve. In terms of the matrix-valued 1-
form A appearing in (2.22) and the identification 77!(g) ~ R¥™") given by a
moving frame (that is, the components v’ are defined by v =: v's;(¢)), one has
£,(X) = (—va;(X), X).

The following construction will not be used until 3.10, but logically fits in at this
point. We follow the notation of Definition 2.1.2, except that the general bundle B
is now a vector bundle V.

Proposition 2.2.4. Let f*V be the vector bundle defined by (2.2). Then a covariant
derivative on V pulls back to a covariant derivative on f*V.

Sections of f*V have the form W(x) = (W¥,(x), x), where ¥(x) € T (f(x)).
Choose a (local) moving frame {s;} on V, with associated connection A, and define
Y1 : M — RI™W) (locally) by W(x) = ¥i(x)s;(f(x)). The desired covariant
derivative is then given by VW (x) = (VW¥,(x), x), where

VW) = [dgi ) + AL )| i F). (2:29)
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This is well-defined (cf. (2.22) and subsequent text): A change of moving frame
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