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Brian Davies (King’s College London) has had a long and distinguished career in the
functional analysis/mathematical physics interface, including the authorship of classics
like Quantum theory of open systems (1976), One-parameter semigroups (1980), Heat
kernels and spectral theory (1989), and Spectral theory and differential operators (1995).
He subsequently shocked at least his mathematical audience (and perhaps even his former
self) by publishing Science in the looking glass: What do scientists really know? (2003), a
critical survey of modern science, which includes an assault on Platonism as a philosophy
of mathematics, and to some extent even on mathematics itself, portrayed as a subject
with shaky foundations and questionable relevance to science. I considered this popular
book a gem on appearance and feared the worst for the mathematical output of its
author, but fortunately an uninterrupted sequence of research papers showed that his
critical attitude towards mathematics has not stopped at least Davies himself in pursuing
the subject. Subsequently, the book under review, which is a continuation of the technical
series of books just listed and does not even mention Science in the looking glass, has
removed all possible doubts about Davies’ commitment to mathematics.

The only nod towards his previous book (which makes a case for constructive math-
ematics in the style of Bishop) is a dry comment in the Preface to the effect that “the
present book has a slight philosophical bias towards explicit bounds and away from
abstract existence theorems” (which in any case is a rather common stance among so-
called ‘hard analysts’), followed by a statement of preference for constructive rather than
general proofs (which, however, is quite unusual for functional analysts). But in fact,
this preference is by no means just “philosophical”, as shown by the example of an “ab-
stract existence theorem” Davies gives a few lines later, namely the nonemptiness of the
spectrum of an operator. This is usually proved by reductio ad absurdum, which in par-
ticular means that the proof gives or suggests no procedure for actually finding explicit
elements of the spectrum. Davies relates this to the phenomenon that the spectrum can
be highly unstable under perturbation, a drawback that is not shared by the so-called
pseudospectrum.

It is no accident that this notion already appears in the Preface, as its incorporation
is one of the distinguishing features of the book. So what is the pseudospectrum of an
operator - or rather, to begin with, what is the spectrum of an operator and which kind
of operators are considered in this book? We know from linear algebra that a linear map
A C" — C" is injective if and only if it is surjective. Consequently, for any z € C, the
map A — z is invertible (i.e., injective and surjective) iff z is not an eigenvalue of a, i.e., if
there exists no f € C" such that Af = zf. Hence the collection of eigenvalues of A may
be characterized as the set of all z € C for which A—z is not invertible. It is the latter set
that defines the spectrum Spec(A) also for bounded linear maps A : B — B, where B is a
Banach space (i.e. a complete normed vector space over C); as has been known since the
beginning of the 20th century, the possible definition of the spectrum as the collection of



eigenvalues of A turns out to be too narrow for infinite-dimensional B, where injectivity
of a linear map is no longer equivalent to surjectivity. Perhaps surprisingly, this concept
of a spectrum turned out to be the key to operator theory, on which “everything else is
based” (p. 14).

One situation has been studied particularly well, from Hilbert to the present day,
namely the case where B is a Hilbert space H and A : H — H is self-adjoint (in that
(Af,q9) = (f, Ag) for all f,g € H, in terms of the inner product (, ) of H). More generally,
the notion of self-adjointness makes sense for unbounded operators A : D(A) — H,
where the domain D(A) of A is a dense linear subspace of H, with essentially the same
spectral theory as in the bounded case. Formalized by von Neumann (who brought
ideas that had emerged from Hilbert and his school at Gottingen to maturity), the
spectral theory of unbounded self-adjoint operators has been developed partly in response
to quantum mechanics, where fundamental observables like position, momentum, and
the Hamiltonian are of this form. More generally, there is a fertile interplay between
boundary value problems for linear partial differential equations and unbounded self-
adjoint operators on Hilbert space - it remains a miracle of the history of science how
much of the theory of the Schrédinger equation of quantum mechanics (first written
down in 1926) was already clear from the context of classical mathematical physics, as
contained in the legendary monograph Methoden der mathematischen Physik by Courant
and Hilbert from 1924. Today, one can find dozens of excellent books (and probably
hundreds of books altogether) on the spectral theory of self-adjoint operators, including
one by Davies himself (1995).

In contrast, the book under review is emphatically about the spectral theory of non-
self-adjoint linear operators. What is meant by this is a priori not entirely clear, but
the book pays attention to two different situations:

1. Non-self-adjoint operators on Hilbert space (where a comparison with the self-
adjoint case is possible and often illuminating);

2. Operators on Banach space (where no such comparison can be made, so that the
theory stands on its own).

Let us illustrate the first case with a little example (which is Problem 10.4.5 in the
book). Most readers will know that the formula (7} f)(x) = f(x—t) describes a (strongly
continuous) one-parameter unitary group on the Hilbert space L?(R), in the sense that
the operator T; is defined for each ¢ € R, is unitary, and satisfies T'(s)T'(t) = T'(s + t)
for all s,t € R (as well as lim;_,oT(t)f = f for each f). By Stone’s Theorem, such a
unitary group is characterized by its generator H, which is defined and self-adjoint on
the domain D(H) consisting of all f for which the limit Hf = ilimy; ot *(T(t)f — f)
exists. In the case at hand, this yields H = —id/dz, which is the momentum operator
of quantum mechanics. Now let us slightly change this example, in replacing L?(R) by
L?(R*). In that case, we need to redefine T} by putting (T3 f)(z) = f(x—t) for0 <t <z
and (T;f)(z) = 0 for 0 < x < t. This defines a semigroup (i.e. ¢ € R") rather than a
group, and the 7; are no longer unitary but merely isometric. Formally, the generator is
still —id/dx, but it fails to be self-adjoint (and cannot even be extended to a self-adjoint



operator): instead, it is just symmetric. Such a situation can be completely understood
by comparison with the unitary case: self-adjoint generators produce unitary groups,
but maximal symmetric generators merely give rise to semigroups of isometries.

Certain other problems in the theory of one-parameter (semi)groups of operators with
non-self-adjoint generators relate to the Hilbert space setting, too; for example, one finds
a complete characterization of generators of contractive one-parameter semigroups on
Hilbert space, as well as of one-parameter groups for which ||T;|] < exp(alt|) for some
a > 0 and all ¢ € R. Further examples of case 1. above include Schrédinger operators
with complex potentials, and the semi-classical analysis of pseudodifferential operators
with complex symbols. Such topics receive extensive treatment in the book, and perhaps
the only omission I noticed in this direction would be a discussion of incomplete motion in
quantum mechanics as generated by non-self-adjoint Hamiltonians: note that in classical
mechanics motion is not necessarily defined for all ¢ (think of a particle falling off a table,
or of the five-body problem with planets escaping to infinity in finite time), whereas in
quantum theory self-adjoint Hamiltonians always generate complete motion by Stone’s
Theorem, as already mentioned. This obviously leaves a gap to be bridged, which quite
splendidly would have fitted into Davies’s book; a distinct lack of existing theory makes
its absence understandable, though.

In any case, the thrust of the book lies in case 2. above, the spectral theory of general
(linear) operators on Banach space. To set the stage, in the Preface the author laments
that “Studying non-self-adjoint operators is like being a vet rather than a doctor: one has
to require a much wider range of knowledge, and accept that one cannot expect to have as
high a rate of success when confronted with particular cases.” Nonetheless, two general
techniques appear to be widely applicable and could be said to dominate the book: one-
parameter semigroups and pseudospectra. The former, already mentioned above in the
Hilbert space setting, are an old specialty of the author, but he has much to add to
his previous books on this subject (especially as far as the non-Hilbert-space setting is
concerned). As he sees it, the theory of one-parameter semigroups on Banach spaces
is a triangle, whose vertices are the semigroup ¢ — T} itself, its generator Z = —iH
(as defined above), and the corresponding resolvent operators (z — Z)~! (defined for
z ¢ Spec(Z)). Thus this triangle forms the basis of a fairly complete discussion, which
largely supersedes earlier literature.

The principal innovative aspect of the book, however, lies in its coverage of pseu-
dospectra and related notions. According to the online Pseudospectra gateway by Mark
Embree and Nick Trefethen (see http://web.comlab.ox.ac.uk/pseudospectra/), pseu
dospectra have been independently invented at least five times between 1974 and 1990,
motivated by the following observation. The linear equation (A — A\)z = b for x has
a unique solution whenever A ¢ Spec(A), obviously given by x = (4 — \)~'b. Now if
b is perturbed to b’ with ||b — b/|| < e (or, alternatively, if b is only know with finite
precision ¢), then the corresponding solutions satisfy ||z — 2/|| < e||(A — \)7!||. For a
self-adjoint operator A on a Hilbert space (more generally, for a normal operator), the
number [|(A — X)7Y|| that evidently controls the stability of the solution turns out to be
equal to the inverse of the distance between A and Spec(A), so that, roughly speaking,



it is small if A is far from the spectrum and large if A is almost an eigenvalue of A. For
general operators A, however, ||[(A — X\)7!|| can be large even if ) is far from Spec(A4).

This motivates the introduction of the e-pseudospectrum Spec,(A) C C of A, defined
for each e > 0 as Spec_(A) = {z € C | ||(A — 2)7!|| > e~} (in fact, Davies also includes
Spec(A) into this set). The pseudospectrum of A then consists of the parametrized
family {Spec.(A)}e>0. Keeping in mind that for self-adjoint A on Hilbert space one
has A € Spec(A) iff there exists a sequence (f,) with |[f,]| = 1 for all n such that
lim,, ||(A—A) fnll = 0, it is interesting to know that A € Spec,(A) iff there exists a vector
f with || f|| = 1 such that ||(A = \)f]| < e.

Pseudospectra will be new to most functional analysts and mathematical physicists,
and Davies provides extensive coverage with a good mix of theory and examples. The
conclusion is that phenomena that formerly had been regarded as pathological behaviour
of the spectrum of non-self-adjoint operators, such as the existence of approximate eigen-
values far from the spectrum or the instability of the spectrum under small perturbations,
disappear if one replaces the spectrum by the pseudospectrum. In addition, Davies dis-
cusses other generalizations of the spectrum, like the hull and the numerical range of
a bounded operator A on a Banach space B. For a polynomial p, put Hull(p, A) =
{z € C | |p(2)] < [lp(A)|I}, and subsequently Hull,(A) = (Ngeg(p)<n, Hull(p, 4). This
is indeed a generalization of the spectrum, for if B has finite dimension n, one has
Spec(A) = Hull,, (A), whereas in general Spec(A) C Hull,, (A) for all n.

Furthermore, if A acts on a Hilbert space H, one may define its numerical range by
Num(A) = {(Af, ), f € H,||f|| = 1}, as well as its closure Num(A) in H. Once, again,
each polynomial p then leads to a set Num(p, A) = {z € C | p(z) € Num(p(A))}, with as-
sociated sets Numy (4) = (Neg(p)<n Num(p, A). Then Spec(A) € Numy,(A) for all n, and
for self-adjoint A on Hilbert space one has Spec(A) = Numga(A). Amazingly, for general
bounded operators on Hilbert space one has the equality Num,(A) = Hull,(A) for all
n (Burke-Greenbaum), and ("), Hull,(A) (or (,, Num,(A)) turns out to be equal to the
union of Spec(A) and all open subsets of C that are enclosed by Spec(A) (Nevanlinna).

One will look in vain for the notions of pseudospectrum, hull and numerical range in
standard functional analysis texts, so Davies has done us a great service by explaining
them through beautiful theorems and examples. More generally, his book is the first
to offer a comprehensive survey of the spectral theory of non-self-adjoint operators, in-
cluding both “classical” and “cutting edge” results, showing that this theory holds as
much promise as the self-adjoint theory in both foundations and application. The scope
of the book is truly enormous, and is only partly reflected by listing the chapter titles:
Elementary operator theory, Function spaces, Fourier transforms and bases, Interme-
diate operator theory, Operators on Hilbert space, One-parameter semigroups, Special
classes of semigroup (sic), Resolvents and generators, Quantitative bounds on operators,
Quantitative bounds on semigroups, Perturbation theory, Markov chains and graphs,
Positive semigroups, Non-self-adjoint Schrodinger operators.

My only criticisms would be that the organization of the book could have been better
(for example, with a clearer chapterwise separation between Hilbert space and general
Banach space results), and that historical or bibliographical notes are lacking. As the



author states himself, the book is halfway between being a textbook and a monograph,
which makes it difficult to say for whom the book is intended. I'd say that a firm
background in Hilbert space theory and some feeling for basic Banach spaces such as
LP(X) and C(X) is necessary and sufficient to understand and appreciate this beautiful
volume, which has no competitors.
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