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1 General differential geometry
Readers are supposed to be roughly familiar with this material and should look for proofs or
examples elsewhere (see e.g. the Literature at the end). General relativity (GR) requires a certain
way of presenting it, however, including an emphasis on coordinates and indices. This is needed
both for the PDE part of the course as well as for an understanding of the physics literature.

1.1 Manifolds
1. A space always means a topological space. The topology of a space X (i.e. the set of its

open sets) is denoted by O(X), so that U ∈ O(X) means that U ⊆ X and U is open.

2. A (topological) manifold of dimension n is a paracompact Hausdorff space M such that
any x ∈M has a nbhd U ∈ O(M) homeomorphic to some U ∈ O(Rn) (equivalently, any
x ∈M has a nbhd U ′ ∈ O(M) homeomorphic to Rn itself, or to some open ball in Rn).1

3. A chart on M is a pair (U,ϕ) where U ∈O(M) and ϕ : U→Rn is an injective open map.
We write V = ϕ(U). Physicists think of a chart (U,ϕ) as a coordinate system on U , in
that one writes ϕ : U → Rn as (ϕ1, . . . ,ϕn), where ϕ i : U → R in terms of the standard
basis of Rn (i = 1, . . . ,n), and the coordinates (x1, . . . ,xn) of x ∈U of x are xi = ϕ i(x).

4. A Ck-atlas on M (where k∈N∪{∞}) is a collection of charts (Uα ,ϕα), where M =∪αUα

(i.e. the Uα form an open cover of M), and, whenever Uαβ =Uα∩Uβ is not empty, writing
Vαβ = ϕα(Uαβ )⊂ Rn, the map ϕβ ◦ϕ−1

α : Vαβ → Rn is Ck.

5. Two Ck-atlases (Uα ,ϕα) and (U ′
α ′,ϕ

′
α ′) on a topological manifold M are equivalent if

their union is a Ck-atlas, i.e., if all transition functions ϕ ′
β ′ ◦ ϕ−1

α and ϕβ ◦ (ϕ ′α ′)
−1 (if

defined) are Ck (this is indeed an equivalence relation). A Ck-structure on M is an equiv-
alence class of Ck atlases on M. A smooth manifold is a manifold with C∞ structure.

6. Until further notice we henceforth assume that M is a smooth manifold equipped with
some C∞ atlas (Uα ,ϕα). A smooth function f ∈C∞(M) is a map f : M→ R such that
for each α , the map f ◦ϕ−1

α : Vα → R is smooth.

7. Similarly, for two smooth manifolds M,N we say that a map ψ : M→ N is smooth pro-
vided one and hence each of the following equivalent conditions are satisfied:

(a) For each f ∈C∞(N) the pullback ψ∗ f ≡ f ◦ψ is smooth, i.e., in C∞(M);

(b) For any chart (U,ϕ) on M and chart (Ũ , ϕ̃) on N such that U ′ = ψ(U)∩Ũ 6= /0, the
function ϕ̃ ◦ψ ◦ϕ−1 : V ′→ Ṽ is smooth, where V ′ = ϕ(ψ−1(U ′))⊂V .

If N = M, an invertible smooth map ψ : M→M with smooth inverse is called a diffeo-
morphism. Such maps form a group Diff(M) called the diffeomorphism group of M.

In the absence of contrary statements, all maps between smooth things will be smooth.
1It follows that M is locally compact. If M is connected, then in the above definition ‘paracompact’ is

equivalent to ‘second countable’. If M is not connected, then second countability is a stronger assumption,
which is equivalent to M being paracompact with at most countably many connected components. See e.g.
http://math.harvard.edu/∼hirolee/pdfs/2014-fall-230a-lecture-02-addendum.pdf. For our ap-
plication of manifolds to GR the assumption that M be second countable will do.
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1.2 Tangent bundle
1. A derivation of an algebra A (over R) is a linear map δ : A→ A satisfying

δ (ab) = δ (a)b+aδ (b). (1.1)

We write Der(C∞(M)) for the set of all derivations on C∞(M), seen as a (commutative)
algebra with respect to pointwise operations. This is a C∞(M)-module, where the appro-
priate map C∞(M)×Der(C∞(M))→ Der(C∞(M)) is the obvious one, ( f δ )(g) = f δ (g).
In addition, Der(C∞(M)) is a Lie algebra,2 under the bracket

[δ1,δ2] = δ1 ◦δ2−δ2 ◦δ1. (1.2)

2. For M = Rn, it can be shown that each derivation of C∞(Rn) takes the form

δ f (x) =
n

∑
j=1

X j(x)
∂ f (x)
∂x j ≡ δX( f )(x)≡ X f (x)≡ Xx( f ), (1.3)

where X ∈C∞(Rn,Rn) is an (old-fashioned) vector field on Rn. Conversely, (1.3) defines
a derivation δX for each vector field X , and this gives a bijection X ↔ δX between the set
X(Rn) of all vector fields on Rn and the set Der(C∞(Rn)) of all derivations on C∞(Rn).
In fact, this bijection is an isomorphism of C∞(Rn) modules, where X(Rn) carries the
obvious C∞(Rn) action given by ( f X) j(x) = f (x)X j(x). Thus we may, and often will,
identify Der(C∞(Rn)) with X(Rn) by looking at a vector field X as the corresponding
derivation δX . Since a vector field X : Rn→ Rn is given by its components Xk : Rn→ R,
with Xk ∈C∞(Rn), we have X(Rn)∼=⊕nC∞(Rn) as a C∞(Rn) module, and hence also

Der(C∞(Rn))∼= X(Rn)∼=⊕nC∞(Rn) (1.4)

is a free C∞(Rn) module (namely the n-fold direct sum of C∞(Rn) with itself).

3. If we now define the vector fields X(M) as Der(C∞(M)) we are ready, but there is a more
geometric way to define vector fields on manifolds à la C∞(Rn,Rn), namely as sections of
the tangent bundle T M to M. First, a (real, locally trivial) k-dimensional vector bundle
over M is an open surjective map π : E→M, where E is a manifold, such that:

(a) For each x ∈ M, the fiber Ex = π−1(x) is a k-dimensional (real) vector space, i.e.
Ex ∼= Rk (where k is independent of x).

(b) M has an open cover (Ui) with diffeomorphisms Φi : π−1(Ui)→Ui×Rk such that:

i. Each restriction Φi : Ex→{x}×Rk is an isomorphism of vector spaces (x∈Ui);
ii. If Ui j ≡Ui∩U j 6= /0, then Φi j ≡ Φi ◦Φ

−1
j : Ui j×Rk→Ui j×Rk is the identity

on the first coordinate and a vector space isomorphism on the second one.

2A Lie algebra (over R) is a (real) vector space over K equipped with a bilinear map [·, ·] : A×A→ A that
satisfies [a,b] = −[b,a] (and hence [a,a] = 0) as well as [a, [b,c]]+ [c, [a,b]]+ [b, [c,a]] = 0 for all a,b,c ∈ A. In
finite dimension every Lie algebra comes from a Lie group (Lie’s Third Theorem), but even in the case at hand one
may regard Der(C∞(M)) as the Lie algebra of Diff(M), seen as a Lie group in an appropriate (difficult) way.
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A vector bundle map from π1 : E→M to π2 : F → N is a pair (ϕ f : E→ F,ϕb : M→ N)
such that π2 ◦ϕ f = ϕb ◦π1, and each ensuing map ϕ f : Ex→ Fϕb(x) is linear.

The simplest k-dimensional vector bundle over M is E = M×Rk with π given by projec-
tion on the first coordinate (this is called a trivial bundle), but it turns out that there are
many other examples (unless M is simply connected). A section (or cross-section) of E
is a map s : M→ E such that π ◦s = idM (i.e., π(s(x)) = x for each x∈M). Cross-sections
of E = M×Rk are simply given by maps s̃ : M→ Rk, so that s(x) = (x, s̃(x)), whence

Γ(M×Rk)∼=C∞(M,Rk), (1.5)

where Γ(E) is the set of smooth sections of E. Under the action C∞(M)×Γ(E)→ Γ(E)
given by ( f s)(x) = f (x)s(x), Γ(E) is a finitely generated projective module over C∞(M).3

The Serre–Swan Theorem provides an isomorphism between finitely generated projective
modules E over C∞(M) and vector bundles E→M over M, in such a way that E ∼= Γ(E).
A key step in the construction of E =∪x∈MEx (disjoint union) from E is the identification

Ex = E /(C∞(M;x) ·E ) = E /∼x, (1.6)

where C∞(M;x) = { f ∈C∞(M) | f (x) = 0} and C∞(M;x) ·E is the linear span of all f s,
f ∈C∞(M;x), s ∈ E , so that s1 ∼x s2 iff s1− s2 ∈C∞(M;x) ·E . Then Ex is a vector space
under the linear structure inherited from E (e.g. [s1]x + [s2]x = [s1 + s2]x, 0 = [0]x etc.,
where [s]x is the equivalence class of s with respect to ∼x). Subsequently, the smooth
structure of E may be (re)constructed from E by reinterpreting ŝ ∈ E as a map s : M→ E
through s(x) = [s]x ∈ Ex, and requiring ŝ→ s to be an isomorphism E

∼=→ Γ(E).4

4. The tangent bundle π : T M→M is the vector bundle constructed from E = Der(C∞(M))
according to the above procedure.5 In this case, we have a (linear) isomorphism

Der(C∞(M))/∼x∼= Derx(C∞(M)), (1.7)

where the the right-hand side is the (vector) space of point derivations at x, defined as
linear maps δx : C∞(M)→ R that satisfy

δx( f g) = δx( f )g(x)+ f (x)δx(g). (1.8)

Each derivation δ ∈ Der(C∞(M)) defines a point derivation δx ∈ Derx(C∞(M)) by

δx( f ) = δ ( f )(x), (1.9)

and the isomorphism (1.7) is given by [δ ]x 7→ δx. The fibers T Mx ≡ TxM of the bundle

T M = ∪x∈MTxM, (1.10)

which by definition is the tangent bundle, may therefore be written as

TxM = Derx(C∞(M)). (1.11)

3A C∞(M)-module E is called finitely generated projective if there exists a C∞(M)-module F such that E ⊕F
is free, i.e. isomorphic to a direct sum of copies of C∞(M).

4This isomorphism sends C∞(M;x) ·E to Γ(E;x) = {s ∈ Γ(E) | s(x) = 0}, so that Γ(E)/Γ(E;x)∼= Ex.
5Der(C∞(M)) may no longer be free over C∞(M), as in the case M = Rn, but using charts one can show that it

is at least finitely generated projective.
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As can be seen in local charts (where the situation is the same as for M = Rn), the
point derivations at x form an n-dimensional vector space with basis (∂1, . . . ,∂n), where
∂i = ∂/∂xi, seen as an element of TxM, maps f ∈ C∞(M) to ∂i f (x). Thus T M is an
n-dimensional vector bundle over M, whose smooth structure is defined such that each
derivation δ of C∞(M) is given by a cross-section x 7→ δx of T M, where δx ∈ TxM. Thus

Der(C∞(M))∼= Γ(T M)≡ X(M). (1.12)

Consequently, a vector field X on M, written X ∈ X(M), is a map x 7→ Xx (or x 7→ X(x)),
where x ∈ M and Xx ∈ TxM, closely related to (but to be distinguished from) the corre-
sponding derivation δX ∈ Der(C∞(M)); the connections is

Xx( f ) = δX( f )(x). (1.13)

Hence we think of a vector field X ∈ X(M) as the collection of all vectors Xx ∈ TxM,
whereas we think of the corresponding derivation as a single global operation on C∞(M).

5. Point derivations push forward under maps ψ : M→ N: for x ∈M we have linear maps

ψ
′
x : TxM→ Tψ(x)N; (1.14)

(ψ ′xδx)(g) = δx(ψ
∗g) (g ∈C∞(N)). (1.15)

Collecting these maps gives a vector bundle map ψ ′ : T M→ T N (also called ψ∗ or T ψ).

However, derivations (or vector fields) push forward only if ψ : M→ N is a diffeomor-
phism: the map ψ∗ : Der(C∞(M))→ Der(C∞(N)), or ψ∗ : X(M)→ X(N), is given by6

ψ∗(δ ) = (ψ−1)∗ ◦δ ◦ψ
∗. (1.16)

6. One may study tangent vectors Xx ∈ TxM in their own right (i.e., not necessarily as the
values of some vector field X at x). Each tangent vector is (nomen est omen!) tangent to
some curve γ through x, i.e. a map γ : I→M where I ⊂R is some open or closed interval
we often (as in: now) assume to contain 0, such that γ(0) = x. In other words,

Xx( f ) =
d
dt

f (γ(t))|t=0, (1.17)

which symbolically may be written as Xx = γ̇ ≡ dγ/dt, or even as Xx = d/dt, with γ

understood. This description gives a geometric perspective on the push-forward of TxM
just described: if X = dγ/dt is tangent to γ , then ψ ′X = d(ψ ◦ γ)/dt is tangent to ψ(γ).

In a chart ϕ : U → Rn with x ∈U , the components X i
ϕ of Xx are defined by

X i
ϕ = Xϕ

i(x) =
d
dt

ϕ
i(γ(t))|t=0 =

d
dt

γ
i(t)|t=0, (1.18)

where γ i(t) = ϕ i(γ(t)). Strictly speaking, we have ϕ∗Xx = ∑
n
i=1 X i

ϕ∂i ∈ Tϕ(x)Rn; in prac-
tice, this is often written as X = ∑i X i∂i ∈ TxM, leaving the role of the chart ϕ implicit.

6One needs (ψ−1)∗ even if N = M, since δ ◦ψ∗ fails to be a derivation of C∞(M). Please check!
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However, the precise version (1.18) gives the transformation rule for vectors under a
change of charts (i.e. of coordinates): if x ∈Uα ∩Uβ , then (1.17) and (1.18) imply

X i
β
= ∑

j

∂xi
β

∂x j
α

X j
α , (1.19)

where X i
β
≡ X i

ϕβ
etc., and the coordinates xi

β
= ϕ i

β
(x) of x with respect to ϕβ are seen as

functions of the coordinates xi
α = ϕα(x) of x with respect to ϕα , namely by putting

xi
β
(xα) = ϕ

i
β
◦ϕ
−1
α (xα), (1.20)

which is really a restatement of the tautology ϕ i
β
= ϕ i

β
◦ϕ−1

α ◦ϕα (on Uα ∩Uβ ).

In both differential geometry and GR it is important to distinguish (1.19), which is a
change of coordinates formula for a given tangent vector, from a similar formula that
expresses in coordinates the push-forward of a tangent vector under a map ψ : M→M.
Suppose for simplicity that x ∈U and also ψ(x) ∈U . Then, writing X i

ϕ ≡ X i as above, as
well as ψ i = ϕ i ◦ψ ◦ϕ−1 (which near x is a function from V to R), we have

(ψ ′X)i = ∑
j

∂ψ i

∂x j X j. (1.21)

Increasing potential confusion, although (1.19) gives different coordinate descriptions of
the same vector X in T M, it may also be seen as the formula for the push-forward of the
vector ϕ ′αX in TRn under the map ϕβ ◦ϕ−1

α from Vα to Vβ within Rn.

7. Vector fields X (or, equivalently, derivations) may be ‘integrated’, at least locally, in the
following sense. We say that a curve γ : I→M integrates X if Xγ(t) = dγ(t)/dt, or

Xγ(t)( f ) =
d
dt

f (γ(t)), (t ∈ I), (1.22)

for each f defined in a nbhd of γ(I). Describing γ and X by their coordinate functions
γ j : I→ R and X j : V → R relative to some chart ϕ : U →V , eq. (1.22) becomes

dγ j(t)
dt

= X j(γ1(t), . . . ,γn(t)), ( j = 1, . . . ,n). (1.23)

For given X , an integrating curve γ is therefore found by solving a system of n coupled
ODE, subject to some initial condition. The theory of ODE shows that for smooth X (as
we assume), this can always be done locally: for each x0 ∈M there exists an open interval
I ⊂ R (with 0 ∈ I) and a curve γ : I → M on which (1.22) holds with γ(0) = x0. This
solution is unique in the sense that if two curves γ1 : I1→M and γ2 : I2→M both satisfy
(1.22) with γ1(0) = γ2(0) = x0, then γ1 = γ2 on I1∩ I2. Taking unions, it follows that there
exists a maximal interval I on which γ is defined. However, curves that integrate X may
not be defined for all t, i.e., for I = R. This complicates the important concept of a flow
of a vector field X , which is meant to encapsulate all integral curves of X .
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In the simplest case where for any x ∈M there is a curve γ : R→M satisfying (1.22) with
γ(0) = x, we say that X ∈X(M) is complete.7 In that case, the flow of X is a smooth map
ψ : R×M→M, written ψt(x)≡ ψ(t,x), that satisfies

ψ0(x) = x; (1.24)

Xψt(x) f =
d
dt

f (ψt(x)) (1.25)

for all x ∈M, t ∈R, and f ∈C∞(M). Thus the flow ψ of X gives “the” integral curve γ of
X through x0 by γ(t) = ψt(x0). Any complete vector field has a unique flow. Uniqueness
implies both that M is a disjoint union of the integral curves of X (which can never cross
each other because of the uniqueness of the solution), and the composition rule

ψs ◦ψt = ψs+t . (1.26)

From a group-theoretic point of view, a flow is therefore an action of R (as an additive
group) on M that in addition integrates X in the sense of (1.25). In particular, (1.26)
implies ψ−t = ψ

−1
t , so that each ψt : M→M is automatically a diffeomorphism of M.

If X is not complete (a case that will be of great interest to GR!), we first define the domain
DX ⊂ R×M of ψ as the set of all (t,x) ∈ R×M for which there exists an open interval
I ⊂ R containing 0 and t as well as a (necessarily unique) curve γ : I→M that satisfies
(1.22) with initial condition γ(0) = x. Obviously {0}×M ⊂ DX , and (less trivially) it
turns out that DX is open. Then a flow of X is a map ψ : DX →M that satisfies (1.24) for
all x and (1.25) for all (t,x) ∈ DX . Eq. (1.26) then holds whenever defined.

8. As a first application of flows, let us define the Lie derivative LXY of some vector field
Y ∈ X(M) with respect to another vector field X ∈ X(M) by

LXY (x) = lim
t→0

Yψt(x)−ψ ′t (Yx)

t
= lim

t→0

ψ ′−t(Yψt(x))−Yx

t
(1.27)

where ψ is the flow of X . Note that Yψt(x)−Yx would be undefined, since Yψt(x) ∈ Tψt(x)M
whilst Yx ∈ TxM and these are different vector spaces; the push-forward ψ ′t serves to move
Yx to Tψt(x)M. A simple computation (Frankel, §4.1) then yields the well-known result

LXY = [X ,Y ], (1.28)

where the commutator is defined by [X ,Y ] f = X(Y ( f ))−Y (X( f )). Note that neither XY
nor Y X is a vector field, yet [X ,Y ] ∈ X(M) is, as may be checked by seeing vector fields
as derivations; see the comments after (1.1). Thus X(M) is a Lie algebra.

In coordinates, where X = ∑i X i∂i and Y = ∑ j Y j∂ j, we have [X ,Y ] = ∑i[X ,Y ]i∂i, with

[X ,Y ]i = ∑
j
(X j

∂ jY i−Y j
∂ jX i). (1.29)

7A sufficient condition for X to be complete is that it has compact support (so if M is compact, then every
vector field is complete).
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1.3 Cotangent bundle and other tensor bundles
Now that we have the tangent bundle T M, all other vector bundles relevant to GR follow. First,
the cotangent bundle T ∗M is defined as T ∗M = ∪x∈MT ∗x M, where the fibers

T ∗x M = (TxM)∗ ≡ Hom(TxM,R) (1.30)

consist of all linear maps θx : TxM→ R, i.e., are the dual vector spaces to TxM, and the smooth
structure of T ∗M stipulates that elements θ ∈ Γ(T ∗M)≡Ω1(M)≡Ω(M), called covectors (or
1-forms), consist of those maps x 7→ θx for which the function x 7→ θx(Xx) from M to R is
smooth for each X ∈ X(M). Since TxM ∼= Rn we also have T ∗x M ∼= Rn, so that, like T M, also
T ∗M is an n-dimensional vector bundle over M. In a coordinate systems (xi) defined by some
chart ,T ∗x M has basis (dx1, . . . ,dxn) defined by dxi(∂ j) = δ i

j; this is the dual basis to the standard
basis (∂1, . . . ,∂n) of TxM defined earlier. Writing θ = ∑i θidxi, the components θi are given by

θi = θ(∂i). (1.31)

In particular, any f ∈C∞(M) defined a cross-section d f ∈Ω(M) by

d fx = ∑
i

(
∂ f
∂xi

)
(x)dxi, (1.32)

or, free of coordinates, by
d f (X) = X( f ). (1.33)

1. More generally, let (ea) be a basis of TxM, with dual basis (ωa) of T ∗x M (i.e. ωa(eb)= δ a
b ).

Once again, if we expand θ = ∑a θaωa, we have θa = θ(ea). This may be done at a single
point, but bases like (∂1, . . . ,∂n) and (dx1, . . . ,dxn) are defined at each x ∈U on which
the coordinates xi = ϕ i(x) are defined. Similarly, some basis (ea) may be defined at each
x ∈U , where U ∈ O(M) is not even necessarily the domain of a chart. In that case (ea)
is called a (moving) frame or an n-bein. Abstractly, if E →M is a k-dimensional vector
bundle, one may locally find k linearly independent cross-sections (u1, . . . ,uk) of E and
expand any s ∈ Γ(E) by s(x) = ∑ j s j(x)u j(x), where s j ∈C∞(M) and u j ∈ Γ(E).

2. Whereas tangent vectors push forward from M to N under maps ψ : M→ N, covectors
pull back from N to M, like functions: besides the pull-back ψ∗ : C∞(N)→ C∞(M) on
functions, any (smooth) ψ map induces a pullback ψ∗ : Ω(N)→Ω(M) on 1-forms by

(ψ∗θ)x(Xx) = θψ(x)(ψ
′
xXx), (1.34)

where θ ∈Ω(N) and Xx ∈ TxM. For any f ∈C∞(N) with d f ∈Ω(N), this yields

ψ
∗(d f ) = d(ψ∗ f ). (1.35)

However, a decent vector bundle map ψ∗ : T ∗N→ T ∗M is defined only if ψ is a diffeo-
morphism: with θy ∈ TyN, y ∈ N, and x = ψ−1(y) ∈M, ψ∗y (θy) ∈ T ∗x M is defined by

(ψ∗y θy)(Xx) = θy(ψ
′
xXx). (1.36)

If ψ is merely injective, then we still obtain a map ψ∗ : T ∗(ψ(M))→ T ∗M in this way.
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3. Using the canonical isomorphism V ∗∗ ∼= V for any finite-dimensional vector space V ,
given by the map v 7→ v̂ from V to V ∗∗, where v̂(θ) = θ(v), we reinterpret T M as T ∗∗M,
in that we now look at TxM as (T ∗x M)∗. To blur the distinction between V and V ∗∗ one
may write 〈θ ,v〉 for θ(v), and 〈v,θ〉 for v̂(θ), and simply declare that 〈θ ,v〉 = 〈v,θ〉. In
this spirit, for any (k, l) ∈ N×N we define a vector bundle T (k,l)M over M via its fibers

T (k,l)
x M = Hom((TxM)k× (T ∗x M)l,R), (1.37)

i.e. the vector space of k+ l-fold multilinear maps from (TxM)k× (T ∗x M)l to R, with total
space T (k,l)M = ∪x∈MT (k,l)

x M. We then define Γ(T (k,l)M) as the set of cross-sections
x 7→ τx (where τx ∈ T (k,l)

x M) for which the map x 7→ τx(X1(x), . . . ,Xk(x);θ 1(x), . . . ,θ l(x))
from M to R is smooth for each (X1, . . . ,Xk;θ 1, . . . ,θ l) with Xi ∈ X(M) and θ j ∈ Ω(M).
As before, this equips T (k,l)M with a manifold structure (in that we declare Γ(T (k,l)M) to
be the space of smooth cross-sections of T (k,l)M). Equivalently, we may define T (k,l)

x M
as the tensor product of k copies of T ∗x M and l copies of TxM, making T (k,l)M the (vector
bundle) tensor product of k copies of T ∗M and l copies of T M. We then have

T (0,0)M = M×R; (1.38)

T (1,0)M = T ∗M; (1.39)

T (0,1)M = T M. (1.40)

In GR, T (2,0)M (carrying the metric) and T (3,1)M (where curvature lives) will also be
important. Elements of Γ(T (k,l)M) are called tensors (or tensor fields, in which case each
τx is regarded as a tensor). If αi ∈ T ∗x M (i = 1, . . . ,k) and v j ∈ TxM ( j = 1, . . . , l), then

α1⊗·· ·⊗αk⊗ v1⊗·· ·⊗ vl ∈ T (k,l)
x M,

having to be a multilinear map from (TxM)k× (T ∗x M)l to R, is naturally defined by

α1⊗·· ·⊗αk⊗ v1⊗·· ·⊗ vl(X1, . . . ,Xk;θ
1, . . . ,θ l) = α1(X1) · · ·αk(Xk)v1(θ

1) · · ·vl(θ
l).

All this can be rewritten in terms of indices. In terms of the (coordinate) basis (∂1, . . . ,∂n)

of TxM with dual basis (dx1, . . . ,dxn) of T ∗x M, the fiber T (k,l)
x M then has a basis

(dxi1⊗·· ·⊗dxik⊗∂ j1⊗·· ·⊗∂ jl), (1.41)

where all indices run from 1 to n. Thus T (k,l)M is an nk+l-dimensional vector bundle.
Like vectors, tensors at x may be specified by their components with respect to some
basis of TxM and associated dual basis of T ∗x M, In the usual coordinate basis (∂i) we have

τx = τ
j1··· jl

i1···ik (x)dxi1⊗·· ·dxik⊗∂ j1⊗·· ·⊗∂ jl ; (1.42)

τ
j1··· jl

i1···ik (x) = τx(∂i1, . . . ,∂ik ;dx j1, . . . ,dx jl), (1.43)

where we use the Einstein summation convention: repeated indices are summed over.
Thus the right-hand side of (1.42) should really be preceded by ∑

n
i1,...,ik, j1,..., jl=1. Simi-

larly, in an arbitrary basis (ea) of TxM with dual basis (θ a) of T ∗x M one has

τx = τ
b1···bl
a1···ak

(x)θ
a1⊗·· ·θ ak⊗ eb1⊗·· ·⊗ ebl ; (1.44)

τ
b1···bl
a1···ak

(x) = τx(ea1, . . . ,eak ;θ
b1 , . . . ,θ bl). (1.45)
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4. We write X(k,l)(M) for Γ(T (k,l)M), so that X(0,0)(M) = C∞(M), X(0,1)(M) = X(M), and
X(1,0)(M) = Ω(M). A tensor τ ∈X(k,l)(M) of type (k, l) maps k vector fields (X1, . . . ,Xk)
and l covector fields (θ 1, . . . ,θ l) to a smooth function on M by pointwise evaluation, i.e.

τ : X(M)k×Ω(M)l → C∞(M); (1.46)

τ(X1, . . . ,Xk,θ
1, . . . ,θ l) : x 7→ τx(X1(x), . . . .Xk(x);θ

1(x), . . . ,θ l(x)). (1.47)

This map is evidently k+ l- multilinear linear over C∞(M), in that

τ( f1X1, . . . , fkXk,g1θ
1, . . . ,glθ

l) = f1 · · · fk ·g1 · · ·gl · τ(X1, . . . ,Xk;θ
1, . . . ,θ l), (1.48)

for all fi,g j ∈C∞(M); here we use the fact that X(M) and Ω(M) are C∞(M) modules.

Conversely, a map τ : X(M)k×Ω(M)l → C∞(M) satisfying (1.48) is given by a tensor
τ ∈ X(k,l)(M) through (1.47). The proof is easy in local coordinates, where (1.48) yields

τ(X1, . . . ,Xk,θ
1, . . . ,θ l) = τ(X i1

1 ∂i1 , . . . ,X
ik
k ∂ik ;θ

1
j1dx j1 , . . .θ l

jl dx jl)

= X i1
1 · · ·X

ik
k ·θ

1
j1 · · ·θ

l
jl τ(∂i1, . . . ,∂ik ;dx j1, . . .dx jl), (1.49)

so if we define the components τ
j1··· jl

i1···ik (x) of τx by (1.43) and subsequently define τx itself
by (1.42), we have found the desired tensor that reproduces the given map τ via (1.47).8

5. Eqs. (1.42) - (1.43) imply the transformation properties of tensors under changes of coor-
dinates (i.e. charts), which physicists even use to define tensors: in the situation of (1.19),

(τβ )
j1··· jl
i1···ik (xβ ) =

∂x j1
β

∂x j′1
α

· · ·
∂x jl

β

∂x
j′l
α

· ∂xi′1
α

∂xi1
β

· · · ∂x
i′k
α

∂xik
β

· (τα)
j′1··· j′l
i′1···i′k

(xα), (1.50)

where the ‘new’ coordinates (xβ ) = (x1
β
, . . . ,xn

β
) are functions of the ‘old’ coordinates

(xα) = (x1
α , . . . ,x

n
α), cf. (1.20), and hence the matrix (∂xi′1

α/∂xi1
β
) is defined as the inverse

of the matrix (∂xi1
β
/∂xi′1

α), both seen as functions of the (xi
α). Note that the argument xβ

in (1.50) refers to the same point x ∈M as the argument xα (but in different coordinates).

6. Let ψ : M→ N be smooth. Through its coordinate expression, we may then define

ψ
(0,l)
x : T (0,l)

x M→ T (0,l)
ψ(x) N; (1.51)

ψ
(0,l)
x τx = τ

j1··· jl
i1···ik (x)ψ

′
x(∂ j1)⊗·· ·⊗ψ

′
x(∂ jl), (1.52)

which combine into a single (vector bundle) map ψ(0,l) : T (0,l)M→ T (0,l)N. However, as
in the special case ψ(0,1) = ψ ′ (from T M to T N), we are generally unable to define maps
X(0,l)(M)→ X(0,l)(N). Similarly, ψ induces maps ψ(k,0) : X(k,0)(N)→ X(k,0)(M) by the
obvious generalization of (1.34), but in general we cannot define maps T (k,0)N→ T (k,0)M.

8 Similarly for vector bundles E→M: a map τ : Γ(E)→Γ(E) is induced by a cross-section of the vector bundle
End(E) iff it is C∞(M)-linear. Here End(E) = ∪x∈MHom(Ex,Ex), topologized (as usual) by asking precisely those
maps x 7→ Lx, where Lx ∈ Hom(Ex,Ex), to be smooth for which all maps x 7→ Lxs(x) are smooth, s ∈ Γ(E).
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These defects can be overcome if ψ is invertible (with smooth inverse), in which case we
may as well take N = M and assume that ψ : M→M is a diffeomorphism. Then ψ acts
on vectors in T M, whereas ψ−1 acts on covectors (1-forms) in T ∗M. We may then define

ψ
(k,l)
x τx = τ

j1··· jl
i1···ik (x) ·(ψ

−1)∗x(dxi1)⊗·· ·⊗(ψ−1)∗x(dxik)⊗ψ
′
x(∂ j1)⊗·· ·⊗ψ

′
x(∂ jl), (1.53)

as an element of T (k,l)
ψ(x)M; note that (ψ−1)∗x maps T ∗x M to T ∗

ψ(x)M whilst ψ ′x maps TxM to
Tψ(x)M. This gives corresponding formulae for cross-sections. Thus a diffeomorphism

ψ : M → M induces all maps ψ
(k,l)
∗ : T (k,l)M → T (k,l)M as well as (abuse of notation)

ψ
(k,l)
∗ : X(k,l)(M)→ X(k,l)(M), recovering ψ

(0,1)
∗ = ψ ′ = ψ∗. We may also replace ψ in

(1.53) by ψ−1. This gives similar maps we denote by ψ∗(k,l), recovering ψ∗(1,0) = ψ∗.

7. A natural operation on tensors, which is often used in GR, is tensoring: if τ1 ∈X(k1,l1)(M)
and τ2 ∈ X(k2,l2)(M), then τ1⊗ τ2 ∈ X(k1+k2,l1+l2)(M) is defined by concatenation, i.e.

τ1⊗ τ2(X1, . . . ,Xk1,Y1, . . .Yk2;θ
1, . . . ,θ l1 ,ρ1, . . . ,ρ l2) = (1.54)

τ1(X1, . . . ,Xk1 ;θ
1, . . . ,θ l1) · τ2(Y1, . . .Yk2;ρ

1, . . . ,ρ l2). (1.55)

Indeed, X(k,l)(M) itself arose in this way by tensoring copies of X(1,0)(M) and X(0,1)(M).

8. Another important operation for GR is (index) contraction: If k > 0 and l > 0, then a
tensor τ ∈ X(k,l)(M) may be contracted along one fixed upper and one lower index, say
i and j (the result depends on this choice) to a tensor σ ∈ X(k−1,l−1)(M) with two fewer
indices. Let (ea) be a basis of TxM, with dual basis (ωa) of T ∗x M (i.e. ωa(eb) = δ a

b ); in
local coordinates one could take the (∂i) basis, with dual (dxi). Then

σ
b1,...,b̂i,...,bl
a1,...,â j,...,ak

(x) = τ
b1,...,a,...,bl
a1,...,a,...,ak

(x), (1.56)

where, according to our standing Einstein summation convention, a is summed over, and
(as usual) a hat means that the given index is omitted. This is easily seen to be independent
of the basis. In GR (and also in Riemannian geometry), an important application will be
to the Riemann tensor R ∈ X(3,1)(M), which is contracted to the Ricci tensor Rab = Rc

acb.

9. The Lie derivative LX may be extended to a map L
(k,l)

X ≡LX : X(k,l)M→ X(k,l)M by

LX τ = lim
t→0

t−1(ψ∗t (τ)− τ) (τ ∈ X(k,l)M), (1.57)

cf. (1.27). In local coordinates, this gives the following explicit formula:

(LX τ)
j1··· jl
i1···ik = X i

∂iτ
j1··· jl

i1···ik +(∂i1X i)τ
j1··· jl

i···ik + · · ·+(∂inX i)τ
j1··· jl

i1···i

− (∂ jX j1)τ
j··· jl

i1···ik−·· ·− (∂ jX jl)τ
j1··· j

i1···ik , (1.58)

of which (1.29) is clearly a special case. It follows from either (a)–(d) or (1.58) that

[LX ,LY ] = L[X ,Y ]. (1.59)

One may equivalently define the LX as the unique linear maps satisfying the rules:

(a) LX f = X f for functions f ∈C∞(M)≡ X(0,0)M;
(b) LXY = [X ,Y ] for vector fields Y ∈ X(M)≡ X(0,1)M;
(c) LX(θ(Y )) = (LX θ)(Y )+θ(LXY ) for covector fields θ ∈Ω(M)≡ X(1,0)M;
(d) LX(σ ⊗ τ) = (LX σ)⊗ τ +σ ⊗LX τ (Leibniz rule) for all higher-order tensors.
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2 Metric differential geometry
The material in his chapter may no longer be familiar to all readers, and so it will be developed
in some more detail compared to the previous chapter, but since this is not primarily a course in
(semi) Riemannian geometry but a course in GR, proofs and examples will remain terse.

2.1 (Semi) Riemannian metrics
The main tensor in this course will be the metric tensor g ∈ X(2,0)M, for which each bilinear
map gx : TxM×TxM→ R is symmetric (i.e. gx(Xx,Yx) = gx(Yx,Xx)) and nondegenerate (in that
gx(Xx,Yx) = 0 all Yx ∈ TxM iff Xx = 0). It follows from elementary linear algebra that each gx
can be diagonalized, in that TxM has a basis (ea) for which gx(ea,eb) = εaδab, where εa =±1.
Furthermore, the number of positive and negative εa is independent of the basis and is called
the signature of gx. If M is connected, then the signature is independent of x, and even if M is
not, we assume this. Thus the signature is a property of g, usually denoted by

(+ · · ·+−·· ·−) or (−·· ·−+ · · ·+).

1. The metric is called Riemannian if the signature is (+ · · ·+), i.e., if each gx is positive
definite (which, given the assumption of symmetry, implies that it is nondegenerate, so a
Riemannian metric is one for which each gx is symmetric and positive definite).

2. The metric is called semi-Riemannian in all other cases (except (−·· ·−), which by a
trivial change of sign in g may be turned into the Riemannian case).

3. The metric is called Lorentzian if dim(M) = 4 and the signature is (−+++). Hence

gx = η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (2.1)

with respect to a basis (ea) of the above kind, which is duly called orthonormal.

The Lorentzian case is the one of interest to GR, but we will often invoke examples from Rie-
mannian geometry in order to explain some contrast with the Lorentzian case. Later on, the 3+1
split of M will be such that we look for Riemannian submanifolds of M (to be defined later).

The simplest example of a Lorentzian manifold (i.e., a manifold with Lorentzian metric) is
R4 with the standard basis and gx defined by (2.1) for all x. More precisely, we relabel the usual
coordinates of R4 as (x0,x1,x2,x3), so that TxR4 ∼= R4 has the canonical basis (∂0,∂1,∂2,∂3),
with respect to which g00 = g(∂0,∂0) = −1, gii = g(∂i,∂i) = 1 for i = 1,2,3, and gµν = 0
whenever µ 6= ν . Here we have introduced a convention often used in the (physics) literature:
Greek indices µ,ν etc. run from 0 to 3, whereas Latin indices i, j etc. run from 1 to 3. Both
Greek and Latin indices midway in the alphabet refer to the canonical coordinate basis ∂µ =
∂/∂xµ or ∂i = ∂/∂xi, whereas indices a,b etc. typically refer to arbitrary bases (ea). The above
example (R4,η) is called Minkowski space-time, equipped with Minkowski metric η . It is the
basis of Einstein’s special theory of relativity, of which the general theory of relativity is some
kind of a generalization. What kind exactly remains a source of (largely philosophical) debate:
certainly, Einstein did not succeed in making all motion ‘relative’, as he originally intended.
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2.2 Lowering and raising indices
Let (M,g) be a (semi) Riemannian manifold. Since g is nondegenerate, the distinction between
vectors and covectors is blurred, because we now have canonical (‘musical’) isomorphisms

[x :TxM→ T ∗x M, [x(X)≡ X [; X [(Y ) = gx(X ,Y ); (2.2)
]x :T ∗x M→ TxM, ]x(θ)≡ θ]; g(θ],X) = θ(X), (2.3)

which maps are obviously each other’s inverse, and induce mutually inverse maps

[ : X(M)→Ω(M); (2.4)
] : Ω(M)→ X(M) (2.5)

by pointwise application. This leads to the lowering and raising of indices, which is crucial to
almost any computation in GR. At any point x (which we omit) we define (gab) as the inverse
(matrix) to (gab), where gab = g(ea,eb) in some basis ea (so that gabgbc = δ a

c ). Obviously,

X [
a = gabXb; (2.6)

θ
a
] = gab

θb, (2.7)

which notation may then be extended to any tensor, where the ‘sharp’ and ‘flat’ signs are usually
omitted. For example, (2.6) - (2.7) are simply written as Xa = gabXb and θ a = gabθb, and for
say the Riemann tensor R∈X(3,1)(M) (with abuse of notation) we may define R∈X(4,0)(M) by

Rabcd = gaeRe
bcd. (2.8)

The contraction process explained at the end of the previous chapter, which in principle has
nothing to do with the metric, may now elegantly be rewritten in terms of the metric by, e.g.,

Rab = Rc
acb = gcdRdacb, (2.9)

end hence may be repeated even in case where the original version doesn’t apply, as in

R = gabRab. (2.10)

If R ∈ X(3,1)(M) is the Riemann tensor, so that its first contraction R ∈ X(2,0)(M) is the Ricci
tensor, this second contraction yields the Ricci scalar, which again plays a central role in GR.9

Indeed, as we shall see, GR revolves around the Einstein tensor G ∈ X(2,0)(M), defined by

Gab = Rab− 1
2gabR. (2.11)

Abstractly, lowering an index is a map [ :X(k,l)(M)→X(k+1,l−1)(M) (provided l > 0 of course),
whose definition depends on the index. Taking the first (upper) index for simplicity, we have

T [(X1, . . . ,Xk+1;θ
1, . . . ,θ l−1) = T (X2, . . . ,Xk+1;X [

1,θ
1, . . . ,θ l−1). (2.12)

Similarly, raising an index is a map ] : X(k,l)(M)→ X(k−1,l+1)(M) (k > 0 ), which is defined,
for example once again on the first (lower) index, by

T](X1, . . . ,Xk−1;θ
1, . . . ,θ l+1) = T (θ 1

] ,X1, . . . ,Xk−1;θ
2, . . . ,θ l+1). (2.13)

9Readers who don’t like the use of the same symbol for (in this case) four different things may either want
to introduce different notations for each different object (such as ‘Riemann’, ‘Ricci’, and ‘R’), which still doesn’t
solve the notation problem for raising and lowering indices except by reinstalling the ‘sharp’ and ‘flat’ symbols
each time, or use Penrose’s abstract index notation, where for example Ra

bcd does not refer to the components of
R in some basis, as in our notation, but simply indicates that R ∈ X(3,1). Indices defining the components of some
tensor should then be added, which often leads to typographically horrible expressions (see e.g. Malament (2012).
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2.3 Geodesics
Intuitively, geodesics are paths of shortest lengths between two given points. This idea only
makes sense in the Riemannian case (as opposed to the semi-Riemannian case), with which
we therefore start: we will then find a redefinition of a geodesic that does make sense also on
semi-Riemannian manifolds. So, at least initially, let (M,g) be a Riemannian manifold. It will
be convenient to use closed intervals I = [a,b] as the domains of curves γ : I→M.10

1. The length of a curve γ : [a,b]→M is defined as

L(γ) =
∫ b

a
dt
√

gγ(t)(γ̇(t), γ̇(t))≡
∫ b

a
dt ‖γ̇(t)‖, (2.14)

where γ̇(t)∈ Tγ(t)M is the tangent vector to the curve, i.e. γ̇(t) f = d f (γ(t))/dt, cf. (1.17).
So in coordinates one has γ(t) = (γ1(t), . . . ,γn(t)), where γ i : [a,b]→ R, and hence

gγ(t)(γ̇(t), γ̇(t)) = gi j(γ(t))
dγ i(t)

dt
dγ j(t)

dt
≡ gi j(γ(t))γ̇ i(t)γ̇ j(t). (2.15)

The length of γ is independent of its parametrization (i.e. it only depends on the image
γ([a,b]) in M),11 as opposed to its (kinetic) energy, which is defined as

E(γ) =
∫ b

a
dt gγ(t)(γ̇(t), γ̇(t)) =

∫ b

a
dt ‖γ̇(t)‖2. (2.16)

Both functionals extend to piecewise smooth curves, simply by splitting the integrals.

2. If M is connected, any two points can be connected by a smooth curve, and hence we
can define the distance d(x,y) between x,y ∈M as the infimum of L(γ) over all smooth
curves γ : [0,1]→ M with γ(0) = x and γ(1) = y (one may equivalently use piecewise
smooth curves here, which can alway be smoothened near their bends). This is a metric
on M, whose metric topology coincides with the original topology of M.12

3. A geodesic (between two given points) is a curve of extremal length. We will not precisely
explain what this problem in the calculus of variations means, since our goal is merely to
derive the alternative (re)definition below that is valid also for the semi-Riemannian case,
and so we just explain how this extremal problem is solved. In general, a functional

S(γ) =
∫ b

a
dt L (γ(t), γ̇(t)) (2.17)

is minimized or maximized by some curve γ iff the Euler–Lagrange equations hold:

d
dt

∂L

∂ γ̇ i −
∂L

∂γ i = 0. (2.18)

Short of giving an introduction to the calculus of variations,13 here is a heuristic derivation
of (2.18). Let γs(t) a family of curves indexed by s, such that endpoints are fixed, that is,

γs(a) = γ(a); γs(b) = γ(b). (2.19)

10Recall our standing assumption that maps, including curves, are smooth.
11This is an easy calculation, see e.g. Jost, Lemma 1.4.3.
12See e.g. Jost, pp. 14–15.
13We will do so later on, when discussing the derivation of the Einstein equations from the Hilbert action. In

some sense that is easier, since one can work with Banach spaces. Here, the appropriate space of curves in M does
not even have a linear structure and has be treated as an infinite-dimensional manifold modeled on a Banach space.
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Then the extremality condition
dS(γs)

ds
= 0 (2.20)

gives, on repeatedly using the chain rule and a partial integration,

dS(γs)

ds
=
∫ b

a
dt
(

∂L

∂γ i
s

∂γ i
s

∂ s
+

∂L

∂ γ̇ i
s

∂ γ̇ i
s

∂ s

)
=
∫ b

a
dt
(

∂L

∂γ i
s

∂γ i
s

∂ s
+

∂L

∂ γ̇ i
s

∂

∂ t
∂γ i

s
∂ s

)
=
∫ b

a
dt
(

∂L

∂γ i
s
− ∂

∂ t
∂L

∂ γ̇ i
s

)
∂γ i

s
∂ s

+

∣∣∣∣a
b

∂L

∂ γ̇ i
s

dγ i
s

ds
. (2.21)

Then (2.19) gives dγs(a)/ds = dγs(b)/ds = 0, so that, for arbitrary γs and hence ∂γs/∂ s,
eq. (2.20) implies (2.18), in which s is dropped and hence ∂/∂ t becomes d/dt.

For the energy functional (2.16) the Euler–Lagrange equations (2.18) are

γ̈
i(t)+Γ

i
jk(γ(t))γ̇

j(t)γ̇k(t) = 0, (2.22)

or briefly γ̈ i +Γi
jkγ̇ jγ̇k = 0, where γ̈ = d2γ/dt2, and the Christoffel symbols are given by

Γ
i
jk =

1
2gim(gm j,k +gmk, j−g jk,m), (2.23)

where we have introduced another useful notational convention from GR:

τ
j1··· jl

i1···ik, j = ∂ jτ
j1··· jl

i1···ik . (2.24)

Warning: the Christoffel symbols do not form the components of a would-be tensor
“Γ∈X(2,1)(M)”: physicists see this from their incorrect behaviour under coordinate trans-
formations, whereas mathematicians note that Γ fails the ‘tensoriality test’ stated before
(1.49). We will see, however, that the Γ-symbols do combine into the Riemann tensor!

To derive (2.22) for (2.16), i.e., for L (γ(t), γ̇(t)) = gi j(γ(t))γ̇ i(t)γ̇ j(t), one uses

∂L

∂γ i = g jk,iγ̇
j
γ̇

k; (2.25)

d
dt

∂L

∂ γ̇ i = 2
d
dt

gi jγ̇
j = 2(gi j,kγ̇

k
γ̇

j +gi jγ̈
j) = (gi j,k +gik, j)γ̇

k
γ̇

j +2gi jγ̈
j. (2.26)

Whereas solutions of (2.22) extremize the energy for any parametrization), for the length
functional (2.14), the Euler–Lagrange equations only take the form (2.22) iff ‖γ̇(t)‖ is
constant; in paticular, if ‖γ̇(t)‖ = 1 for all t ∈ I we say that γ is parametrized by arc
length.14 We define a geodesic as a curve γ that satisfies (2.22). This in turn implies
that ‖γ̇(t)‖ is constant, as can be shown by simply computing d(‖γ̇(t)‖2)/dt from (2.15).
This time-derivative equals gi j,kγ̇ iγ̇ jγ̇k +2gi jγ̈

iγ̇ j. Eliminating γ̈ i via (2.22) then leads to
complete cancellation to zero (for a neater calculation see footnote 22). The definition of
a geodesic therefore depends on the parametrization of γ: a reparametrized geodesic may
no longer satisfy (2.22), except when the reparametrization is affine, i.e. t ′ = at +b.15

14One has L(γ)2 ≤ 2(b−a)E(γ) for any γ : [a,b]→M, with equality iff ‖γ̇(t)‖ is constant (Jost, Lemma 1.4.2).
15Nonetheless, it is easy to show that some curve γ can be reparametrized so as to become a geodesic iff the

right-hand side of (2.22) equals f · γ̇ i for some f ∈C∞(M); cf. Malament, Prop. 1.7.9.
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We started with the intuitive idea of geodesics as shortest paths between given endpoints.
We now have to add some nuances. First, in M = Rn with flat metric (i.e. gi j = δi j
in the usual coordinates) geodesics are straight lines and indeed always form shortest
paths between two given points.16 But this is exceptional. For example, on the sphere,
geodesics are great circles, and hence one has two geodesics between two generic points:
one of minimal length and one of maximal length. These lengths coincide iff the two
points are polar opposites, in which case one has infinitely many geodesics between them.

Second, in the intuitive idea of geodesics the focus was on the endpoints, whereas in defin-
ing geodesics as solutions to the ODE (2.22), the focus is rather on the initial point γ(0)
and the initial velocity γ̇(0); indeed, the solution to (2.22) is uniquely defined by these
data, expect for the interval I. Like any solution to an ODE, γ has some maximal domain
I ⊆ R on which it is defined, and this domain may not equal R. If all geodesics γ with
given γ(0) and γ̇(0) can be defined on I =R we say that (M,g) is geodesically complete.
The Hopf-Rinow Theorem states that a Riemannian manifold (M,g) is geodesically com-
plete iff it is complete in the metric d derived from g.17 In particular, any compact Rie-
mannian manifold is complete. Trivial examples of incomplete Riemannian manifolds
are provided by open bounded sets Ω ⊂ Rn with flat metric inherited from Rn. Many
Lorentzian manifolds of interest to GR (undoubtedly including our universe) are geodesi-
cally incomplete, the proof of which (by means of the famous singularity theorems of
Hawking and Penrose from the 1960s) forms one of the highlights of GR.

2.4 Linear connections
The definition of a geodesic as a curve γ whose tangent vector γ̇ satisfies (2.22) along the
entire curve (i.e. for each t where γ(t) is defined) was inspired by the Riemannian case, but it
clearly makes sense for semi-Riemannian manifolds, too. We now move on to give a geometric
perspective on the Christoffel symbols Γi

jk and hence on the curious geodesic equation (2.22).

1. A linear connection on M (which is the same thing as a connection on the tangent bundle
T M, see below), or, equivalently, a covariant derivative on X(M), associates to each
vector field X ∈ X(M) a linear map ∇X : X(M)→ X(M), such that:

(a) The map X 7→ ∇X is R-linear as well as C∞(M)-linear, i.e.

∇ f XY = f ∇XY ( f ∈C∞(M)); (2.27)

(b) The map Y 7→ ∇XY is R-linear but not C∞(M)-linear: it satisfies the Leibniz rule

∇X( fY ) = (X f )Y + f ∇XY ( f ∈C∞(M)). (2.28)

This definition also makes sense on any open U ∈O(M), and in fact if x∈U , then ∇XY (x)
only depends on the value of X at x and the restriction of Y to U (this follows from (2.27)
- (2.28) and the definition of a manifold). Hence we may compute covariant derivatives
locally: take a (local) frame (ea) for X(M) (recall that this consists of n maps ea :U→ T M
such that at each x ∈U the vectors ea(x) ∈ TxM form a basis of TxM, a = 1, . . . ,n), with

16According to Newtonian mechanics, in the absence of forces particles move on geodesics (a property that will
reappear through the back door in GR).

17See e.g. Jost, Theorem 1.4.8.
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dual basis (ωa) (i.e. the ωa(x) ∈ T ∗x M satisfy ωa(eb) = δ a
b ). The given connection ∇ is

then completely characterized by its connection coefficients ωc
ab, defined (at each x) by

∇eaeb = ω
c
abec. (2.29)

Indeed, from (1.44) - (1.45) we may write X = Xaea, where Xa = ωa(X) ∈C∞(U), so

∇XY = ∇Xaea(Y
beb) = Xa

∇ea(Y
beb) = Xa(ea(Y b) · eb +Y b

∇eaeb)

= Xa(ea(Y c)+Y b
ω

c
ab)ec. (2.30)

We write ∇XY a for (∇XY )a, so that ∇XY = (∇XY a)ea. We therefore have

∇XY a = XY a +ω
a
bcXbY c, (2.31)

where XY a is the (defining) action of the vector field X on the function Y a ∈C∞(U). In
terms of the canonical coordinate basis (eµ = ∂µ), (ων = dxν), we therefore have

ω
ρ

µν = dxρ(∇µ∂ν); (2.32)

∇XY ρ = X µ(∂µY ρ +ω
ρ

µνY ν); (2.33)

∇µY ρ = ∂µY ρ +ω
ρ

µνY ν , (2.34)

where ∇µ = ∇∂µ
; we could have written Y ρ

,µ for ∂µY ρ , and even the semicolon notation
Y ρ

;µ for ∇µY ρ is en vogue among physicists (we give the general form later on).

2. Linear connections formalize Levi-Civita’s notion of parallel transport.18 It follows from
(2.31) or (2.33) that ∇XY only depends on the values of Y along the flow lines of X , for

∇XY a(x) =
d
dt

Y a(ψt(x))|t=0 +ω
a
bc(x)X

b(x)Y c(x), (2.35)

where ψ is the flow of X . Conversely, given some curve γ : I→M with tangent vectors
γ̇ defined along γ only, the covariant derivative ∇γ̇Y of Y along γ is well defined for any
vector field Y defined near γ(I) or even on γ(I) alone,19 for in (local) coordinates we have

∇γ̇Y ρ

γ(t) = γ̇
µ(t)(∂µY ρ

γ(t)+ω
ρ

µν(γ(t))Y
ν

γ(t))

=
d
dt

Y ρ

γ(t)+ω
ρ

µν(γ(t))
dγ µ(t)

dt
Y ν

γ(t), (2.36)

where γµ : I → R are the coordinates of the curve (in some given chart), as before. We
then say that some vector Y ∈ TxM is parallel-transported along γ (with γ(0) = x) by a
vector field t 7→ Yγ(t) defined along γ (i.e. Yγ(t) ∈ Tγ(t)M) if Yγ(t) satisfies

∇γ̇Y = 0. (2.37)

This generalizes the idea of freely moving vectors in Rn from place to place (which one
does without any thought) to arbitrary (semi) Riemannian manifolds; the price one pays
is that such motions can only be carried out once a linear connection has been defined.
Of course, the flat connection on Rn (with flat metric g = δ ), defined in the standard
coordinates by ω

ρ

µν = 0 and hence ∇µ = ∂µ , reproduces the naive and original case.

18See G. Iurato, On the history of Levi-Civitas parallel transport, arXiv:1608.04986.
19Abstractly, one equips the pullback γ∗T M = {(X , t) ∈ T M× I | π(X) = γ(t)} of π : T M→M with respect to

γ : I→M, seen as a vector bundle over I, with a connection γ∗∇, defined by (γ∗∇)XY = ∇ f ′XY . See Jost, §4.1.
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3. Like the Christoffel symbols, the connection coefficients do not form the components
of a tensor (the relation between the two will shortly be clarified). However, various
tensors may be defined in terms of the connection. For now, we just define the torsion
τ∇ ∈ X(2,1)(M) of a given linear connection ∇ by

τ∇(X ,Y,θ) = θ(∇XY −∇Y X− [X ,Y ]); (2.38)

a simple computation shows that this expression is C∞(M)-linear in each entry, so our
‘tensoriality test’ shows τ is indeed a tensor of the said kind. The commutator vanishes
in the coordinate basis (∂µ), so that

τ
ρ

µν = ω
ρ

µν −ω
ρ

νµ , (2.39)

and hence the connection ∇ is torsion-free iff ω
ρ

µν = ω
ρ

νµ , i.e., iff ∇µ∂ν = ∇ν∂µ .

4. We now define a geodesic with respect to a linear connection ∇ as a curve γ for which

∇γ̇ γ̇ = 0, (2.40)

i.e., the tangent vector γ̇ to γ is parallel transported along γ .20 Using (local) coordinates,
(2.40) may be brought into a form that is strikingly similar to (2.22): since according to
(2.36) with Y  γ̇ the expression γ̇ µ∂µ γ̇ ρ is just d2γ̇ ρ/dt2 ≡ γ̈ ρ , we obtain

γ̈
ρ +ω

ρ

µν γ̇
µ

γ̇
ν = 0. (2.41)

Thus it is obvious that geodesics are insensitive to the torsion (2.39) of the connection.

Eq. (2.41) looks like the geodesic equation (2.22), with the difference that in (2.41) the coeffi-
cients ω

ρ

µν are defined by (2.32) in terms of an arbitrary linear connection ∇, whereas those in
(2.22) are the Christoffel symbols (2.23) defined by the metric. Their relationship is:

Theorem 1 (Levi-Civita) Any (semi) Riemannian manifold (M,g) admits a unique linear con-
nection ∇ (called the Levi-Civita connection) that satisfies:

1. The torsion τ∇ associated to ∇ vanishes;

2. The connection ∇ and the metric g are related by the following property:

X(g(Y,Z)) = g(∇XY,Z)+g(Y,∇X Z) (X ,Y,Z ∈ X(M)). (2.42)

This means that the connection coefficients of ∇ are the Christoffel symbols, i.e.,

ω
ρ

µν = Γ
ρ

µν . (2.43)

Proof: using torsion-freeness in the form ∇XY −∇Y X = [X ,Y ], eq. (2.42) may be rewritten as

g(∇XY,Z) = 1
2(Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y )−g(X , [Y,Z])+g([X ,Y ],Z)+g(Y, [Z,X ])),

(2.44)
which shows both existence and uniqueness of ∇. In a coordinate basis, where once again all
commutators vanish, eq. (2.44) immediately gives (2.43) with (2.23).

20As before, this definition depends on the parametrization of γ , which ambiguity may be resolved similarly.
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2.5 General connections on vector bundles
For a more general understanding of the above constructions, as well as for a clean extension
of linear connections from vector fields to arbitrary tensors (which one often needs in GR), it is
useful to briefly discuss connections on arbitrary vector bundles.

1. A connection on a vector bundle E → M associates to each vector field X ∈ X(M) a
linear map ∇X : Γ(E)→ Γ(E), such that:

(a) The map X 7→ ∇X is R-linear as well as C∞(M)-linear in X , cf. (2.27);

(b) The map s 7→ ∇X s is R-linear but not C∞(M)-linear: it satisfies the Leibniz rule

∇X( f s) = (X f )s+ f ∇X s ( f ∈C∞(M)). (2.45)

A linear connection is just a connection on the tangent bundle; the general story is almost
the same, including the localization of ∇X s(x) to the flow lines of X arbitrarily close to
x, and hence to any U ∈ O(M), x ∈ U . In particular, define a local frame (ua), where
a = 1, . . . ,k = dim(Ex), i.e. the rank of E) by the properties that ua ∈ Γ(U,E) (i.e. the
restriction of Γ(E)≡ Γ(M,E) to some U ∈O(M)) and (ua(x)) forms a basis of Ex for all
x ∈U . This once again yields connection coefficients defined by

∇µub =Cc
µbuc; (2.46)

the difference with the tangent bundle is that the three indices carried by C are no longer
of the same type: b and c label basis vectors in Ex, whereas µ refers to the canonical
coordinate base of TxM (recall that ∇µ = ∇∂µ

). Writing s(x) = sa(x)ua(x), we now have

∇µsa = ∂µsa+Ca
µbsb, (2.47)

cf. (2.34). This is often written as

∇µs = ∂µs+ωµs, (2.48)

in which either s is seen as a vector with components sa relative to the given basis (ua)
and hence ωµ is a matrix with components Ca

µb, or s ∈ Γ(E) and ωµ(x) ∈Hom(Ex,Ex).21

A vector bundle E may be equipped with a metric, i.e. nondegenerate symmetric bilinear
form gx : Ex×Ex → R defined for each x ∈ M, smooth in x in the sense that for any
s, t ∈ Γ(E) the function g(s, t) : M → R defined by x 7→ gx(s(x), t(x)) is smooth. For
example, a (semi) Riemannian metric on M is a metric on E = T M in precisely this
sense. A connection ∇ on E is then called metric if for all s, t ∈ Γ(E) we have

X(g(s, t)) = g(∇X s, t)+g(s,∇X t). (2.49)

For example, the Levi-Civita connection on T M is obviously metric in this sense.

21 Even more abstractly, connections may be regarded as maps ∇ : Γ(E)→ Γ(T ∗M⊗E)≡Ω1(E), i.e. the space
of E-valued 1-forms, that satisfy ∇( f s) = d f ⊗ s+ f ∇s; the connection with the main text is ∇X s = ∇s(X). In that
case we may write ∇ = d +ω , where ω ∈ Ω1(Hom(E,E)), i.e. ω is a 1-form taking values in the vector bundle
Hom(E,E). Even more generally (for those familiar with the de Rham complex Ω•(M) and its relative Ω•(E)), we
may define ∇ : Ωp(E)→ Ωp+1(E), where p = 0, . . . ,k with Ω0(E) ≡ Γ(E), as the unique extension of the above
map ∇ : Ω0(E)→Ω1(E) that satisfies ∇(α⊗ s) = dα⊗ s+(−1)pα ∧∇s, where α ∈Ωp(M) and s ∈ Γ(E).
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2. Furthermore, take E = T ∗M, and define ∇∗ in coordinates through its components by

∇
∗
µθν = ∂µθν −Γ

ρ

µνθρ , (2.50)

where the Γ
ρ

µν are the Christoffel symbols defined by some (semi) Riemannian metric
on M, cf. (2.23). This turns out to be a connection indeed (check the axioms), whose
rationale (notably of the minus sign!) is the Leibniz-type property (or product rule)

X(θ(Y )) = (∇∗X θ)(Y )+θ(∇XY ), (2.51)

which may look even more elegant in the form

∇X〈θ ,Y 〉= 〈∇∗X θ ,Y 〉+ 〈θ ,∇XY 〉, (2.52)

where by fiat we have declared that on functions (such as 〈θ ,Y 〉 ≡ θ(Y )) the covariant
derivative ∇X is simply X , i.e. ∇X f ≡ X f , f ∈ C∞(M). Eq. (2.51) or (2.52) might, of
course, have been used to define ∇∗ : Ω(M)→Ω(M) in the first place, yielding (2.50). In
fact, any linear connection defines a dual connection ∇∗ on T ∗M by (2.51).

3. Combining (2.34) and (2.50), we define a covariant derivative ∇(k,l) : X(k,l)→ X(k,l) by

∇
(k,l)
µ τ

ρ1···ρl
ν1···νk = ∂µτ

ρ1···ρl
ν1···νk +Γ

ρ1
µσ τ

σ ···ρl
ν1···νk + · · ·+Γ

ρl
µσ τ

ρ1···σ
ν1···νk

−Γ
σ
µν1

τ
ρ1···ρl
σ ···νk −·· ·−Γ

σ
µνk

τ
ρ1···ρl
ν1···σ , (2.53)

where the left-hand side, which may also be written τ
ρ1···ρl
ν1···νk;µ , really means (∇(k,l)

µ τ)
ρ1···ρl
ν1···νk .

For those who don’t like such ‘definitions by formula’, we note that ∇(k,l) is the unique
connection on T (k,l)M that, similarly to (2.52), satisfies the Leibniz rule

X(τ(X1, . . . ,Xk,θ
1, . . . ,θ l)) = (∇

(k,l)
X τ)(X1, . . . ,Xk,θ

1, . . . ,θ l)

+ τ(∇X X1, . . . ,Xk,θ
1, . . . ,θ l)+ · · ·

+ τ(X1, . . . ,Xk,θ
1, . . . ,∇∗X θ

l), (2.54)

where the case k = l = 0 is taken to mean ∇
(0,0)
X = X on X(0,0)(M) =C∞(M). Eq. (2.54)

recovers ∇(0,1) = ∇ on X(0,1)(M) = X(M) as well as ∇(1,0) = ∇∗ on X(1,0)(M) = Ω(M).

This construction of ∇(k,l) works for any linear connection ∇, but if the latter is the Levi-
Civita connection, then (2.54) implies that its defining property (2.42) comes down to22

∇
(2,0)g≡ ∇g = 0; (2.55)

also in general, one usually writes ∇ for any ∇(k,l). Physicists write (2.55) as

gµν ;σ = 0. (2.56)

Alternatively, one may recall the description of T (k,l)M as the (vector bundle) tensor prod-
uct of k copies of T ∗M and l copies of T M, and introduce the tensor product connection.

22As an application, let us show once again that d(‖γ̇(t)‖)/dt = 0 for geodesics γ: using (2.54), (2.55), and
(2.40), we obtain d(‖γ̇(t)‖2)/dt = dg(γ̇, γ̇)/dt = γ̇(g(γ̇, γ̇)) = (∇γ̇ g)(γ̇, γ̇)+g(∇γ̇ γ̇, γ̇)+g(γ̇,∇γ̇ γ̇) = 0+0+0 = 0.
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Given two vector bundles E(1)→M and E(2)→M, with connections ∇(1) and ∇(2), there
is a unique connection ∇(1⊗2) on E(1)⊗E(2) that satisfies the product rule23

∇
(1⊗2)(s(1)⊗ s(2)) = ∇

(1)(s(1))⊗ s(2)+ s(1)⊗∇
(2)(s(2)). (2.57)

This may be iterated to the tensor product of finitely many vector bundles, and hence (for
any linear connection ∇) the connection ∇(k,l) defined by (2.53) or (2.54) is just the tensor
product of the individual connections on each copy of T M or T ∗M present in T (k,l)M.

It follows from (2.51) that (for any ∇) the connection ∇(k,l) commutes with contraction.
Contracting the first upper and lower indices and writing σ

ρ2···ρl
ν2···νk = τ

ν1ρ2···ρl
ν1ν2···νk , one has

(∇
(k,l)
ν1 τ)

ν1ρ2···ρl
ν1ν2···νk = (∇

(k,l)
ν1 σ)

ρ2···ρl
ν2···νk , (2.58)

and similarly for any other pair of upper and lower indices. In particular, this makes the
physicists’ notation τ

ν1ρ2···ρl
ν1ν2···νk;µ unambiguous. For example, for the Ricci tensor we have

Rµν ;σ = Rρ

µρν ;σ . (2.59)

If ∇ satisfies (2.55), then ∇(k,l) in addition commutes with contraction in the metric sense
explained before (2.10), so that e.g., using (2.56), for the Ricci scalar we have

R,σ = R;σ = (gµνRµν);σ = gµν

;σ Rµν +gµνRµν ;σ = gµνRµν ;σ . (2.60)

Finally, ∇(k,l) may be used to rewrite the formula (1.58) for the Lie derivative as

LX τ
ρ1···ρl
ν1···νk = ∇X τ

ρ1···ρl
ν1···νk +(∇ν1Xν)τ

ρ1···ρl
ν ···νk + · · ·+(∇νnXν)τ

ρ1···ρl
ν1···ν

− (∇ρXρ1)τ
ρ···ρl
ν1···νk−·· ·− (∇ρXρl)τ

ρ1···ρ
ν1···νk , (2.61)

since all Christoffel symbols cancel out (check!).24 For example, using (2.55) we obtain

LX gµν = (∇µXρ)gρν +(∇νXρ)gµρ = Xν ;µ +Xµ;ν . (2.62)

A vector field X for which LX g= 0, and hence Xν ;µ +Xµ;ν = 0, is called a Killing field.25

Flows of Killing fields are isometries, that is, diffeomorphisms preserving the metric. In
the notation of (1.53), this means that ψ

(2,0)
t g = g, which is usually written as ψ∗t g = g.

Since [LX ,LY ] = L[X ,Y ] Killing fields always form a Lie algebra, whose associated Lie
group (up to global issues) is the subgroup of Diff(M) consisting of isometries.

In Minkowski space-time (R4,η) the Christoffels symbols vanish (at least in the usual
coordinates), so that ∇µ = ∂µ . Hence Killing fields satisfy the equation

Xν ,µ +Xµ,ν = 0. (2.63)

The general solution is a 10-dimensional vector space (within X(R4)) with basis

X µ

(ν)
(x) = δ

µ

ν (ν = 0,1,2,3); (2.64)

X µ

(ρσ)
(x) = xρδ

µ

σ − xσ δ
µ

ρ , (ρ,σ = 0,1,2,3), (2.65)

or X(ν) = ∂ν and X(ρσ) = xρ∂σ − xσ ∂ρ , where xρ = ηρσ xσ . This is the Lie algebra of the
Poincaré-group (which is the subgroup of GL4(R) preserving the Minkowski metric η).

23If we realize V ⊗W as Hom(V ∗×W ∗), i.e. the vector space of bilinear maps from V ∗×W ∗ to R, then, for
v ∈V and w ∈W , the element v⊗w ∈V ⊗W is defined by v⊗w(α,β ) = α(v)β (w), where α ∈V ∗ and β ∈W ∗.

24LX is not a connection (as it fails to be C∞(M)-linear in X), but LX and ∇X both satisfy the Leibniz rule.
25Named after the German mathematician Wilhelm Killing (1847–1923), not the movie about Cambodja.

22



3 Curvature
The notion of curvature was originally introduces by Gauß in the context of lines in R2 and R3

and surfaces in R3. The modern approach via connections is highly abstract (and hence very
powerful), but we shall recover at least some of the original ideas of Gauß c.s. later on.

3.1 Curvature tensor
For any connection ∇ on a vector bundle E→M, the following map, indexed by X ,Y ∈ X(M),

Ω(X ,Y ) : Γ(E)→ Γ(E); (3.1)
Ω(X ,Y ) = [∇X ,∇Y ]−∇[X ,Y ] (3.2)

is easily checked to be C∞(M)-linear in its argument s ∈ Γ(E), so that Ω(X ,Y ) defines a cross-
section of Γ(Hom(E,E)).26 In addition, Ω(X ,Y ) is C∞(M)-linear in X and Y , so that in the
usual basis (∂µ) associated to a chart defining coordinates (xµ) we may write

[∇µ ,∇ν ]s(x) = Ωµν(x)s(x), (3.3)

where Ωµν = Ω(∂µ ,∂ν) is a linear map Ex → Ex. Relative to a local frame (ua) for Γ(E) in
which s(x) = sa(x)ua(x), with sa ∈C∞(U) (see text after (2.45)), we may therefore write

[∇µ ,∇ν ]sa(x) = Ω
a
bµν(x)s

b(x), (3.4)

from which it should be clear that the curvature tensor Ω has four indices: the first two (i.e. a
and b) refer to a basis of Ex, whereas the last two (viz. µ and ν) refer to a basis of TxM.

3.2 Riemann tensor
In the case E = T M we now turn to this distinction is blurred, but even there it is good to keep
it in mind. So we now take the Levi-Civita connection ∇ on T M, and hence have

Ω(X ,Y ) : X(M)→ X(M); (3.5)
Ω(X ,Y )Z = ([∇X ,∇Y ]−∇[X ,Y ])Z, (3.6)

where X ,Y,Z ∈ X(M), and (3.6) is C∞(M)-linear in each of the three separately. Hence

R(θ ,Z,X ,Y ) = θ(Ω(X ,Y )Z) (3.7)

defines a tensor R ∈ X(3,1)(M) called the Riemann tensor.27 Or, if we lower the first index,

R(W,Z,X ,Y ) = g(W,(Ω(X ,Y )Z)). (3.8)

Its components are
Rρ

σ µν = R(ωρ ,∂σ ,∂µ ,∂ν), (3.9)

26See footnote 8. This argument is not necessary for what follows, but it does give additional insight.
27Bernhard Georg Friedrich Riemann (1826–1866) was one of the greatest and most influential mathemati-

cians in recent history. His Habilitationsschrift from 1854 entitled Über die Hypothesen, welche der Geometrie
zu Grunde liegen is a blueprint for modern differential geometry, especially from a metric point of view. You
can find it for example on https://www.maths.tcd.ie/pub/HistMath/People/Riemann/Geom/Geom.pdf.
Riemann also anticipated applications to physics, though not in the specific way Einstein eventually used his work.
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and similarly to (3.4) we equivalently have, for any vector Z = Zρ∂ρ ,

[∇µ ,∇ν ]Zρ = Rρ

σ µνZσ . (3.10)

Either way, using (2.34) one easily obtains the expression

Rρ

σ µν = Γ
ρ

σν ,µ −Γ
ρ

σ µ,ν +Γ
ρ

µτΓ
τ
νσ −Γ

ρ

ντΓ
τ
µσ , (3.11)

where the Christoffel symbols are defined by (2.23), i.e.,

Γ
ρ

µν = 1
2gρσ (gσ µ,ν +gσν ,µ −gµν ,σ ). (3.12)

Regarding R and Γ as matrices and hence omitting their first two indices, (3.11) reads28

Ωµν = ∂µΓν −∂νΓµ +[Γµ ,Γν ]. (3.13)

1. It is a nontrivial exercise to prove the Bianchi identities

Ω(X ,Y )Z +Ω(Y,Z)X +Ω(Z,X)Y = 0; (3.14)
(∇X R)(Y,Z)+(∇Y R)(Z,X)+(∇ZR)(X ,Y ) = 0, (3.15)

which in coordinates read

Rρ

σ µν +Rρ

µνσ +Rρ

νσ µ = 0; (3.16)

Rρ

σ µν ;τ +Rρ

στµ;ν +Rρ

σντ;µ = 0. (3.17)

Defining the Ricci tensor as before by

Rµν = Rσ
µσν , (3.18)

and the Ricci scalar by
R = gµνRµν , (3.19)

and finally the Einstein tensor by

Gµν = Rµν − 1
2gµνR, (3.20)

the second Bianchi identity (3.17) implies what is often called the Bianchi identity of GR:

∇µGµν = 0. (3.21)

Using the metric, once more, we may lower the upper index on R by defining

Rρσ µν = gρτRτ
σ µν , (3.22)

which leads to some more identities satisfied by R:

Rρσνµ =−Rρσ µν ; (3.23)
Rσρµν =−Rρσ µν ; (3.24)
Rµνρσ = Rρσ µν , (3.25)

of which the first is trivial from (3.10) and hence did not require lowering indices, the
second states that each map Ω(X ,Y ) is an isometry of TxM, and the third is conceptually
bizarre, since, as we explained, the first pair of indices plays a completely different role
from the second (and yet one might apparently interchange them).

28Regarding a connection as a map ∇ : Ωp(E)→ Ωp+1(E), as in footnote 21, the corresponding curvature is
simply defined as ∇2 : Ωp(E)→ Ωp+2(E), so that ∇2u = R∧u for some R ∈ Ω2(E). The Bianchi identity (3.15)
below then simply reads ∇R = 0. The simplest way to prove (3.15) is to use geodesic normal coordinates, cf. §3.3.
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2. The symmetries (3.23) - (3.25) enable one to count the number of independent compo-
nents of the Riemann tensor in various dimensions n, namely n2(n2−1)/12. Therefore:

(a) In n = 2 one has just R1212 which (in the Riemannian case) equals

R1212 = det(g) ·K, (3.26)

where K is the scalar (Gaussian) curvature; or, more directly, K = R12
12. A simple

computation using (3.18), (3.19), and (3.23) - (3.25) then shows that

R = 2K. (3.27)

(b) In n= 3 the Riemann tensor has 6 independent components, as does the Ricci tensor,
so these two carry the same geometric information.

(c) In n = 4 (the case of interest to physics) the Riemann tensor has 20 independent
components, whereas the Ricci tensor only has 10 (as does the Einstein tensor). The
geometric information in the Riemann tensor that is not passed in to the Ricci tensor
is contained in the Weyl tensor, which in any dimension n > 2 is defined by

Cρσ µν = Rρσ µν +
2

n−2
(gρ[νRµ]σ +gσ [µRν ]ρ)+

2
(n−1)(n−2)

(R ·gρ[µgν ]σ ),

(3.28)
where [· · · ] denotes antisymmetrization in the enclosed indices, much as (· · ·) de-
notes symmetrization in the enclosed indices. In the case at hand, we therefore have

gρ[νgµ]σ = gρνgµσ −gρµgνσ .

Using this notation, we may write (3.23) - (3.24) as R(ρσ)µν = Rρσ(µν) = 0, and
similarly we give the symmetries Weyl’s tensor inherits from Riemann’s:

C(ρσ)νµ = 0; (3.29)

Cσρ(µν) = 0; (3.30)

Cµνρσ =Cρσ µν , (3.31)

The fact that the Weyl tensor is ‘complementary’ to the Ricci tensor comes from

Cµν ≡Cσ
µσν = 0. (3.32)

The Weyl tensor is also called the conformal tensor, since it has he following prop-
erty (cf. Hawking & Ellis, p. 42): a conformal scaling of the metric g 7→ ĝ = c · g,
where c ∈C∞(M) is strictly positive, does not change Cρ

σ µν (exercise!).

3.3 Curvature and geodesics
We now give an interpretation of curvature through geodesic deviation, which physicists like.
Let U ∈ O(R2) be connected and let γ : U →M be a family of curves: with (s, t) ∈U we write
γs(t)≡ γ(s, t), regarding t as the ‘time’ parameter on each curve γs, and s as a parameter labeling
the curves. Apart from the usual vector field tangent to γs(t) along the t-flow, i.e.,

γ̇s ≡ γ∗(∂/∂ t) =
∂γs

∂ t
, (3.33)
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on γ(U), which gives the tangent vectors to each γs for fixed s as t ‘runs’,29 we now also have a
second vector field tangent to γs(t) along the s-flow, i.e.,

γs
′ ≡ γ∗(∂/∂ s) =

∂γs

∂ s
. (3.34)

Let ∇ be the Levi-Civita connection on T M. For any vector field Z defined on γ(U), abbreviate

∇sZ ≡ ∇γs ′Z; (3.35)
∇tZ ≡ ∇γ̇sZ. (3.36)

Since [∂/∂ s,∂/∂ t] = 0 on U ⊂ R2, on γ(U) we have

[γs
′, γ̇s] = 0. (3.37)

Therefore, because ∇ is torsion-free we have the important identity

∇tγs
′ = ∇sγ̇s. (3.38)

Another application of (3.37), with (3.6), is that for any Z ∈ X(γ(U)) we have

[∇t ,∇s]Z = Ω(γ̇s,γs
′)Z. (3.39)

Now assume that each curve t 7→ γs(t) is a geodesic, so that ∇t γ̇s = 0, and take Z = γ̇s. Using
also (3.38), eq. (3.39) becomes Jacobi’s equation of geodesic deviation

∇
2
t γs
′ = Ω(γ̇s,γs

′)γ̇s; (3.40)

∇
2
t

(
∂γ

ρ
s

∂ s

)
= Rρ

σ µν

∂γ σ
s

∂ t
∂γ

µ
s

∂ t
∂γ ν

s
∂ s

. (3.41)

We now change perspective and start from a single geodesic γ . We then define a Jabobi field
along γ as any vector field J, defined along γ , that satisfies Jacobi’s equation

∇
2
t J = Ω(γ̇,J)γ̇ ; (3.42)

∇
2
t Jρ = Rρ

σ µν

dγ µ

dt
dγ σ

dt
Jν . (3.43)

Clearly, any one-parameter family of geodesics produces a Jacobi field along any fixed one of
them by the above procedure, and conversely:

Proposition 2 . Any solution J of (3.42) or (3.43) along γ enables one to extend γ to a one-
parameter family (γs) for which γ = γ0 and

J =
dγs

ds
(s = 0). (3.44)

This will be proved in the next subsection, since we need the exponential map for the proof.
Since (3.42) or (3.43) is linear in J, we have a vector space Jγ of Jacobi fields along γ : [a,b]→
M. Since any such J solves a second-order ODE, it is determined by J(0) and ∇tJ(0), so that

dim(Jγ) = 2n. (3.45)

If the initial conditions are J(a) = c1γ̇(a) and ∇tJ(a) = c2γ̇(a), then, since the curvature term in
(3.42) drops out (why?), the solution is simply J(t) = (c1+(t−a)c2)γ̇(t). Hence the component
of J along γ̇ is uninteresting and one usually studies Jacobi fields orthogonal to the given γ: a
similar computation shows that if J(0)⊥ γ̇(0) and ∇tJ(0)⊥ γ̇(0), then J(t)⊥ γ̇(t) for all t.

29See (1.14) for the notation γ ′. However, note that in γs
′ the prime denotes the s-derivative.
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3.4 The exponential map
In both cases (i.e. Riemannian or Lorentzian), take x0 ∈ M and define Vx0 ⊆ Tx0M as the set
of vectors X ∈ Tx0M for which the geodesic γX emanating at x with initial velocity X (i.e.,
γX(0) = x and γ̇X(0) = X) is defined at least on the entire interval [0,1]; if (M,g) is complete,
then Vx0 = Tx0M for all x. The exponential map expx0

: Vx0 →M is defined by

expx0
(X) = γX(1). (3.46)

1. Each x ∈M has a normal neighbourhood Ux0 for which there exists a star-shaped open
subset Ux0 ⊂ Vx0 such that expx0

: Ux0 →Ux0 is a diffeomorphism.30 Hence any point

x = expx0
(X) ∈Ux0 (3.47)

is connected to x0 by a geodesic within Ux0 , viz. γX , where X = exp−1
x0
(x). If t 7→ γX(t)

solves (2.22), then so does t 7→ γρX(t/ρ) for any ρ > 0, and since their two initial condi-
tions are the same we have γX(t) = γρX(t/ρ) for ρ > 0. Consequently, we have

γX(t) = expx0
(tX) = γtX(1), (3.48)

This curve γX is the unique geodesic from x0 to x (up to an affine reparametrization) within
Ux0 (that is, there may be other geodesics from x0 to x, but these leave Ux0). To see this
(cf. O’Neill, Prop. 3.31), consider an arbitrary geodesic c : [0,1]→M with c(0) = x and
c(1) = x, and take Y = ċ(0). Uniqueness of geodesics c with given c(0) and ċ(0), yields
c(t) = γY (t). Then c([0,1])⊂Ux0 implies Y ∈Ux0 , and the endpoint matching condition
γY (1) = x = γX(1) then enforces Y = X , which of course implies c = γX .

2. Jacobi fields give the push-forward of the exponential map. For each X ∈ Vx0 we have
(expx0

)′X : TX(Tx0M)→ TxM. Identifying TX(Tx0M) ∼= Tx0M (i.e. Z ∈ Tx0M is identified
with d/dt(X + tZ)|t=0 ∈ TX(Tx0M)), this becomes a linear map (expx0

)′X : Tx0M→ TxM.
Take Z ∈ Tx0M (not necessarily orthogonal to X = γ̇X(0)) and let JZ(t) be the Jacobi field
along γX with boundary conditions J(0) = 0 and ∇tJZ(0) = Z. Then for each t ∈ [0,1]),31

(expx0
)′X(Z) = JZ(1). (3.49)

3. The exponential map leads to the idea of (geodesic) normal coordinates (GNC) relative to
both some x0 ∈M and a choice of an orthonormal basis of Tx0M, defined (at least) on the
chart Ux0: the normal coordinates of x ∈Ux0 are the coordinates of exp−1

x0
(x) ∈ Tx0M with

respect to the given basis of Tx0M. It is a simple exercise to show that in these coordinates

xµ

0 = 0; (3.50)
gµν(0) = δµν (Riemannian case); (3.51)
gµν(0) = ηµν (Lorentzian case); (3.52)

gµν ,ρ = (0) ⇒ Γ
ρ

µν(0) = 0. (3.53)

30A subset V ⊂W of a vector space is star-shaped if v ∈V implies tv ∈V for all t ∈ [0,1], see O’Neill, §3.30.
31The idea of the proof is to construct JZ à la (3.44) from the family γs(t) = expx0

(tX + stZ) of geodesics. Then
γ0 = γX and J = (dγs/ds)|s=0 coincides with the right-hand side of (3.49). Furthermore, J(0) = 0 and ∇tJ(0) = Z.
Hence J = JZ , as explained after (3.44), so that JZ(t) = (expx0

)′tX (tZ). Then take t = 1.
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Furthermore, by (3.48), in GNC geodesics γX emanating from x0 are simply given by

γ
µ

X (t) = X µt, (3.54)

and hence at t = 1 we have γ
µ

X (1) = xµ . Eq. (2.22) then implies that in GNC,

Γ
ρ

µν(x)x
µxν = 0. (3.55)

Since the velocity ‖γ̇X(t)‖=
√

gγ(t)(γ̇(t), γ̇(t)) is constant along γX , in GNC we have

gµν(x)xµxν = gµν(0)xµxν , (3.56)

since the left-hand side equals ‖γ̇X(1)‖2 and the right-hand side is ‖γ̇X(0)‖2.

4. We now prove Proposition 2. Given γ(t) and J(t), let c(s) be the unique geodesic with

c(0) = γ(0); (3.57)
c′(0) = J(0), (3.58)

where s ∈ (−δ ,δ ) for some δ > 0, and c′(s) = ∂c(s)/∂ s as usual. Then define vector
fields V (s) and W (s) along c(s) as the unique solutions of

∇c′V (s) = 0; (3.59)
V (0) = γ̇(0); (3.60)
∇c′W = 0; (3.61)
W (0) = ∇tJ(0). (3.62)

Then the following family does the job:

γs(t) = expc(s)(tV (s)+ stW (s)). (3.63)

• For fixed s, this is γs : t 7→ expxs
(tXs), with xs = c(s) and Xs =V (s)+ sW (s). Now

expxs
(tXs) = γtXs(1) = γXs(t) (3.64)

by (3.48), so γs = γXs , emanating from γs(0) = xs. This is surely a geodesic!

• To prove (3.44), we initially put

J̃(t) =
∂γs(t)

∂ s
(s = 0). (3.65)

Then, using (3.57) - (3.64), we compute

J̃(0) =
∂ expc(s)(0)

∂ s
(s = 0) =

dc(s)
ds

(s = 0) = c′(0) = J(0); (3.66)

∇t J̃(0) = ∇t
∂

∂ s
γs(t)|s=t=0 = ∇s

∂

∂ t
γs(t)|s=t=0

= ∇c′(V (s)+ sW (s))|s=0 =W (0) = ∇tJ(0). (3.67)

Since J and J̃ solve the same Jacobi equation along γ , this implies J̃ = J.
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5. The notable Gauß Lemma sharpens this to

gµν(x)xµ = gµν(0)xµ , (3.68)

or, in coordinate-free form, for arbitrary X ∈ Vx0 and Y ∈ Tx0M),

gx((expx0
)′X(X),(expx0

)′X(Y )) = gx0(X ,Y ). (3.69)

This states that the radial component of any vector along a geodesic preserves its length
under the exponential map; the presence of the curvature in the right-hand side of (3.42)
prevents expx0

from being an isometry (which it is in flat space). To see that (3.69) is
equivalent to (3.68), note that according to (3.54), in GNC we have

((expx0
)′X(X))µ = X µ , (3.70)

so if we write Y ∈ TX(Tx0M) ∼= Tx0M as Y = d(X + sY )|s=0, by definition of the push-
forward (expx0

)′X we obtain (expx0
)′X(Y ) = d(expx0

(X + sY ))|s=0, which in GNC gives

((expx0
)′X(Y ))

µ = Y µ . (3.71)

Hence the left-hand side of (3.69) is gµν(x)X µY ν , and since the right-hand side is obvi-
ously gµν(0)X µY ν , we have proven the said equivalence.

To prove (3.68) and hence (3.69),32 we note that (3.55) with (3.12) implies

(2gµρ,ν −gµν ,ρ)xµxν = 0. (3.72)

Furthermore, taking (3.56) at arbitrary t, we have

gµν(tx)xµxν = gµν(0)xµxν , (3.73)

whence
tgµν ,ρ(tx)xµxν +2gµρ(tx)xµ = 2gµρ(0)xµ , (3.74)

by taking ∂ρ of both sides. Combining (3.72) and (3.74) yields

d
dt
(tgµρ(tx)xµ − tgµρ(0)xµ) = 0. (3.75)

Hence we may evaluate the expression between brackets at t = 1, which gives (3.68).

Combing (3.48), (3.49), and (3.69) then gives, along the geodesic γX (at least for t ∈ [0,1]),

gγX (t)(JX(t),JY (t)) = t2gx0(X ,Y ). (3.76)

For example, on M =Rn with Euclidean metric (i.e. gi j = δi j) one simply has JZ(t) = tZ.
32Eq. (3.69) may also be proved directly from (3.49). See O’Neill, Lemma 5.1 or Jost, Corollary 4.2.2.
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3.5 Riemannian versus Lorentzian geodesics
Though formally defined in the same way, there are huge differences between geodesics in
Riemannian manifolds and those in Lorentzian manifolds. First, a vector X ∈ TxM is called:

• timelike if gx(X ,X)< 0;

• null if gx(X ,X) = 0 and X 6= 0;

• spacelike if gx(X ,X)> 0;

• causal if gx(X ,X)≤ 0 and X 6= 0 (i.e. X is either timelike or null).

Let us denote the set of these vectors at TxM by Ix, Nx, Sx, and Jx, respectively.
Similarly, a curve γ is called timelike (etc.) if all its tangent vectors γ̇ are timelike (etc.).

In physics, timelike curves are potential trajectories of massive particles, whereas massless
particles move on null curves. More generally, physical information is supposed to spread only
along causal curves (this will be one of the theorems of hyperbolic PDE theory).

In the standard basis of R4 with Minkowski metric, a vector like (1,0,0,0) is timelike,
(1,1,0,0) is null, and (0,1,0,0) is spacelike. Thus γ(t) = (t,0,0,0) is a timelike curve, (even a
geodesic), γ(t) = (t, t,0,0) is a null geodesic, etc.

1. We call a Lorentzian manifold (M,g) time orientable if there exists a timelike vector field
T ∈ X(M).33 In Minkowski space-time, just think of Tx = (1,0,0,0) for all x ∈ R4. With

D+
x = {Xx ∈ TxM | gx(Tx,Xx)< 0}, (3.77)

and D−x = −D+
x , we say that a vector Xx is future-directed (fd) if Xx ∈ D+

x , and past-
directed if Xx ∈ D−x . For example, Tx itself is future-directed.34 We denote the set of
future-directed timelike vectors by I +

x = Ix∩D+
x , etc. Thus I +

x is the interior of J +
x

and N +
x = ∂I +

x is the (topological) boundary of I +
x ; obviously, N ±

x =I ±x ∪D±x . The
set Nx = N +

x ∪N −
x is called the light cone at x; it is of supreme interest to GR.

Similar terminology applies to curves, e.g. γ is future-directed iff γ̇(t) ∈D+
γ(t) for all t.

(a) For x,y ∈ M we say that x� y (or: x precedes y) if there exists a future-directed
timelike curve starting at x and ending at y. Maximizing the length of such curves,
one could replace ‘curve’ by ‘geodesic’ in this definition, and either way, one could
equivalently state the definition in terms of piecewise smooth curves or geodesics:
this is because the concatenation of two curves (or geodesic) x→ y and y→ z, which
is merely piecewise smooth, can be “smoothened” so as to become a smooth curve
(or geodesic) x→ z. In particular, the relation� is transitive.35 This defines sets

I+(x) = {y ∈M | x� y}; (3.78)

I−(x) = {y ∈M | y� x}, (3.79)

as well as sets J±(x) defined like I±(x) with the relation� replaced by <, where x < y
iff there exists a future-directed causal curve (or geodesic) starting at x and ending at y.

33We will later introduce the separate and more subtle concept of a time-function.
34Although defined also for spacelike vectors, the concept of future-directed is only used in practice for causal

vectors. Two timelike vectors X and Y both lie in either D+
x or D−x iff gx(X ,Y )< 0. See O’Neill, Lemma 5.29.

35See e.g. R. Penrose, Techniques of Differential Topology in Relativity (SIAM, 1972), Prop. 2.23.
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2. We may define length in the Lorentzian (and generally in the semi-Riemannian) case by

‖X‖=
√
|g(X ,X)|, (3.80)

and although for spacelike vectors X this behaves as expected (triangle equality etc.), for
causal vectors one finds the usual inequalities in the opposite direction, namely

‖X +Y‖ ≥ ‖X‖+ ||Y‖; (3.81)
|g(X ,Y )| ≥ ‖X‖ · ‖Y‖. (3.82)

Nonetheless, one may also define the length of a curve γ : [a,b]→ M almost as in the
Riemannian case, cf. (2.14), namely by the parametrization-independent expression

L(γ) =
∫ b

a
dt ‖γ̇(t)‖. (3.83)

3. One then has the following contrast between the Riemannian and the Lorentzian cases:

(a) Riemannian case (R): any two ‘nearby’ points x,y (in that y ∈Ux) are connected by
a unique curve γ of minimal length (necessarily a geodesic) compared to all other
curves c from x to y within Ux. In this case, (3.83) is of course given by (2.14).

(b) Lorentzian case (L): any two points x and y ∈ Ux with x� y are connected by
a unique timelike fd curve γ of maximal length (which is necessarily a geodesic)
compared to all other fd timelike curves c from x to y within Ux. In that case,

L(γ) =
∫ b

a
dt
√
−gγ(t)(γ̇(t), γ̇(t)). (3.84)

The proof is as follows. Define the (unit) radial vector field R on Ux at z = expx(Z) by

Rz =
(expx)

′
Z(Z)

‖(expx)
′
Z(Z)‖

, (3.85)

so that g(Rz,Rz) = +1 (R) and −1 (L). Taking a curve c as defined above, decompose

ċ =±g(ċ,R)R+N, (3.86)

where g(N,R) = 0, again with the + sign for R and the - sign for L. It follows that

‖ċ‖2 = g(ċ,R)2±g(N,N), (3.87)

with g(N,N)≥ 0 also for L (as the vector R is timelike, and hence N is spacelike). Hence

‖ċ‖ ≥ g(ċ,R) (R); (3.88)
‖ċ‖ ≤ −g(ċ,R) (L), (3.89)

since for L we have g(ċ,R)< 0. We define the radius function r : Ux→ R+ by

r(expx(Z)) = ‖Z‖. (3.90)
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For any curve t 7→ c(t) = expx(C(t)) in Ux (assumed timelike in the L-case) with c(0) = x,

d
dt

r ◦ c(t) =
d
dt
‖C(t)‖= d

dt

√
±gx(C(t),C(t)) =± gx(Ċ(t),C(t))√

±gx(C(t),C(t))

=±
gc(t)((expx)

′
C(t)(Ċ(t)),(expx)

′
C(t)(C(t)))√

±gc(t)((expx)
′
C(t)(C(t)),(expx)

′
C(t)(C(t)))

=±gc(t)(ċ,R), (3.91)

where we used Gauß’s lemma in both the denominator and the numerator. Therefore,

L(c) =
∫ 1

0
dt ‖ċ(t)‖ ≥

∫ 1

0
dt g(ċ(t),R)c(t) =

∣∣∣∣1
0
r ◦ c = r(y) (R);

L(c) =
∫ 1

0
dt ‖ċ(t)‖ ≤ −

∫ 1

0
dt g(ċ(t),R)c(t) =

∣∣∣∣1
0
r ◦ c = r(y) (L).

On the other hand, “the” geodesic within Ux from x to y = expx(Y ) is given by γY , where

L(γY ) =
∫ 1

0
dt ‖γ̇Y (t)‖= ‖γ̇Y (0)‖= ‖Y‖= r(y), (3.92)

since for geodesics γ = γY the velocity ‖γ̇(t)‖ is t-independent. Thus we conclude that:36

L(c)≥ L(γY ) (R); (3.93)
L(c)≤ L(γY ) (L). (3.94)

We finally prove uniqueness of γ , in that we have strict inequalities in (3.93) - (3.94)
except when c is a (necessarily affine) reparametrization of γY . This goes back to (3.87),
which yields equalities in (3.88) - (3.89) iff g(N,N) = 0, which is the case iff (̇c) is
proportional to the radial vector field R. This yields the claim.

4. Similarly but with (even) more effort, one can prove that the causal structure of a Lorentzian
manifold ‘near’ x ∈M is determined by its linearized structure in TxM, in the sense that

I±(x)∩Ux = expx(I
±

x ∩Ux); (3.95)

N±(x)∩Ux = expx(N
±

x ∩Ux); (3.96)

J±(x)∩Ux = expx(J
±

x ∩Ux), (3.97)

where N±(x)= I±(x)∩J±(x). In (other) words, timelike/null/causal curves (or geodesics)
emanating from any point x ∈M are precisely the images of their linearized counterparts
in TxM under the exponential map expx, at least in the neighbourhood Ux ⊂M of x where
this map is a diffeomorphism.

Although this may sound obvious, the proof is quite nontrivial.37 The main point is that
according to Gauß’s Lemma (3.69), the two relevant notions of being timelike (etc.) and
future-directed are preserved by the exponential map.

36In the timelike (L) case one can decrease the length of a timelike geodesic γ by pushing it towards null curves:
If x,y∈M can be connected by a timelike curve, then for any ε > 0 there is a timelike curve c (far from a geodesic!)
with length L(c)< ε (although there is no such curve with length zero). See Malament, Prop. 2.3.2.

37See also Proposition 4.5.1 in Hawking & Ellis, whose (rather vague) proof is based on (our) Lemma 3 below,
which implies that for a timelike geodesic, each level set Sρ must be spacelike. Consequently, for a timelike
geodesic γ the function t 7→ gγ(t)(γ̇(t), γ̇(t)) is monotonically decreasing (since it can never pick up a positive
contribution from a spacelike component), so that if γ starts out as a timelike geodesic (as is determined by its
tangent vector and hence by the state of affairs in TxM), it must always remain timelike. A sharper form with a
complete proof is Proposition 2.1 in Senovilla.
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5. We close this section with a very neat and intuitive application of Gauß’s Lemma. Let
ρ > 0 be such that Bρ = {Y ∈ Tx0M | ‖Y‖ ≤ ρ} lies in Vx0 , and define the level sets

Sρ = {Y ∈ Tx0M | ‖Y‖= ρ}; (3.98)
Sρ = expx0

(Sρ). (3.99)

In the Riemannian case Sρ is connected, whereas in the Lorentzian case it is discon-
nected: in Minkowski space-time it has one sheet at spacelike distance from x0 and two
sheets–one in the fuure and one in the past–at timelike from distance from x0. In what fol-
lows one should avoid null geodesics (since these do not cross Sρ ). First, each straight
curve t 7→ tX in Tx0M crosses Sρ orthogonally: if Z ∈ TtX Sρ , where ρ = t‖X‖, then
Z = dc(λ )/dλ|λ=0 for some curve c(λ ) in Sρ with c(0) = tX , i.e., |g(c(λ ),c(λ ))|= ρ2,
whence dg(c(λ ),c(λ )) = /dλ|λ=0, whence g(X ,Z) = 0 (as in Rn with flat metric).

The point is that (3.48) and (3.69) imply the same for the images under expx0
: for any

W ∈ TwSρ ⊂ TwM with w = γX(t) and hence ρ = t‖X‖, we have gw(W, γ̇X(t)) = 0, hence:

Lemma 3 Each (timelike) geodesic γX from x0 crosses the level set Sρ orthogonally.

3.6 Conjugate points: definition
What happens for ‘far away’ (instead of ‘nearby’) points in regard to the extremizing properties
of geodesics? This question is answered through the notion of conjugate points, which also play
an important role in the singularity theorems of GR. To motivate their definition, we compute the
second variation of the length functional (3.83). Let us do the Riemannian case and insert the
appropriate sign(s) for the Lorentzian case at the end. First, we recompute the first variation,
using the powerful notion of the covariant derivative that was not yet available to us in §2.3.
Note that, in contrast to our discussion of Jacobi fields, here we neither assume that each γs is
a geodsic, nor (for later use in computing the second derivative) that it is parametrized by arc
length (i.e. has constant speed). Using (2.54) and (2.55), (3.35) - (3.36), and (3.38), we obtain

dL(γs)

ds
=
∫ b

a
dt

∂

∂ s

√
gγs(t)(γ̇s(t), γ̇s(t))

=
∫ b

a
dt

gγs(t)(∇sγ̇s(t), γ̇s(t))√
gγs(t)(γ̇s(t), γ̇s(t))

=
∫ b

a
dt

gγs(t)(∇tγs
′(t), γ̇s(t))√

gγs(t)(γ̇s(t), γ̇s(t))
. (3.100)

If we now do put s= 0 (with γ0 = γ) and do assume constant speed, say ‖γ̇(t)‖= v, we continue:∫ b

a
dt

gγ(t)∇tγ
′(t), γ̇(t))√

gγ(t)(γ̇(t), γ̇(t))
=

1
v

∫ b

a
dt [∂t(gγ(t)(γ

′(t), γ̇(t)))−gγ(t)(γ
′(t),∇t γ̇(t))]

=
1
v

(∣∣∣∣a
b
g(γ ′, γ̇)−

∫ b

a
dt gγ(t)(γ

′(t),∇γ̇ γ̇(t))
)
, (3.101)

since ∇t = ∇γ̇ . For fixed-endpoint variations, where γ ′(a) = γ ′(b) = 0, we therefore obtain

L′(γ)≡ dL(γs)

ds
(s = 0) =−1

v

∫ b

a
dt gγ(t)(γ

′(t),∇γ̇ γ̇(t)), (3.102)
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since the boundary term in (3.101) vanishes. Thus we see that the extremality condition L′(γ) =
0 enforces the geodesic equation (2.40), since γ ′ in (3.102) is arbitrary and g is nondegenerate.

We now compute the second derivative of L(γs) from (3.100):38

d2L(γs)

ds2 (s = 0) =
∫ b

a
dt

∂

∂ s

gγs(t)(∇tγs
′(t), γ̇s(t))√

gγs(t)(γ̇s(t), γ̇s(t))

(s = 0)

=
1
v

∫ b

a
dt [gγs(t)(∇s∇tγs

′(t), γ̇s(t))+gγs(t)(∇tγs
′(t),∇sγ̇s(t))](s = 0)

− 1
v3

∫ b

a
dt [gγ(t)(∇tγ

′(t), γ̇(t))]2, (3.103)

where we used (3.38) to obtain the last term. We rewrite the first term using (3.39), which gives

gγs(∇s∇tγs
′, γ̇s)|s=0 = gγ([∇s,∇t ]γ

′, γ̇)+gγ(∇t∇sγ
′, γ̇)

=−gγ(Ω(γ̇,γ ′)γ ′, γ̇)−gγ(∇sγ
′,∇t γ̇)+

d
dt

gγ(∇sγ
′, γ̇). (3.104)

In the last line, the first term equals −Rγ(γ̇,γ
′, γ̇,γ ′), the second term vanishes for geodesics,

and for fixed-endpoint variations the third term as usual vanishes upon integration
∫ b

a dt. Fur-
thermore, we use (3.38), so that gγ(∇tγs

′,∇sγ̇s) = gγ(∇tγs
′,∇tγs

′). Introducing the component

γ
′
⊥ = γ

′− v−2g(γ ′, γ̇)γ̇ (3.105)

of γ ′ that is perpendicular to γ̇ , we have, omitting terms containing ∇t γ̇ ≡ ∇γ̇ γ̇ = 0,

gγ(∇tγ
′,∇tγ

′)− 1
v2 [gγ(∇tγ

′, γ̇)]2 = gγ(∇tγ
′
⊥,∇tγ

′
⊥). (3.106)

Up to a boundary term vanishing upon integration for fixed-endpoint variations, we may replace
the right-hand side by −gγ(γ

′
⊥,∇

2
t γ ′⊥). By the symmetries of the Riemann tensor, we have

−Rγ(γ̇,γ
′, γ̇,γ ′) =−Rγ(γ̇,γ

′
⊥, γ̇,γ

′
⊥) = Rγ(γ

′
⊥, γ̇, γ̇,γ

′
⊥) = g(γ ′⊥,Ω(γ̇,γ ′⊥)γ̇), (3.107)

so that we finally obtain Synge’s formula for the second variational derivative of L(γ):39

L′′(γ)≡ d2L(γs)

ds2 (s = 0) =−1
v

∫ b

a
dt gγ(t)(γ

′
⊥(t),∇2

t γ
′
⊥(t)−Ω(γ̇(t),γ ′⊥(t))γ̇(t)). (3.108)

Note that we did not assume that the curves γs were geodesics, except γ0 ≡ γ . In the Lorentzian
case, for timelike curves, one obtains exactly the same formula without the minus sign, which
goes back to the one in (3.84); we invite the reader to redo the calculation for this case.40

As in calculus, L(γ) is a local minimum iff L′′(γ) > 0, whereas it is a local maximum iff
L′′(γ)< 0. It is clear from (3.108) and (3.42) that the critical case L′′(γ) = 0 appears precisely
when γ ′⊥ is a Jacobi field. This motivates the following definition:

38We elaborate on Joos, Proof of Theorem 4.1.1, p. 169.
39It is quite remarkable that not just in the first variation (3.102), where it is expected, but also in the second

variation (3.108), only the first s-derivative of the family γs appears.
40See also O’Neill, Theorem 10.4.
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Definition 4 A conjugate point along a geodesic γ : [a,b]→M relative to γ(a) is a point γ(c),
c ∈ [a,b] for which there exists a nonzero Jacobi field J along γ([a,c]) that vanishes at a and c.

If J arises from a variation of γ as in (3.44), then the boundary condition J(a) = J(c) = 0 means
that the variation γs fixes the endpoints of γ .41

Theorem 5 1. Riemannian case: A geodesic γ : [a,b]→M locally minimizes the length of
curves from γ(a) to γ(b) iff there is no conjugate point on γ that lies between x and y.

2. Lorentzian case: A timelike geodesic γ : [a,b] → M locally maximizes the length of
curves from γ(a) to γ(b) iff there is no conjugate point on γ that lies between x and y.

The “⇐” part may be proved by remarking that, as we saw in §3.5.3, in the Lorentzian case
timelike geodesics start out maximizing length, so that L′′(γ) < 0. According to (3.108), this
remains the case until a conjugate point is encountered, so if this is never the case, one will have
L′′(γ)< 0 forever (or at least as long as the geodesic is defined). Likewise in the R case.

For the ‘⇒” part, we show that the sign of L′′(γ) may indeed change once a conjugate point
(at which its value is zero) has been crossed; in the L case, L′′(γ) then becomes positive, and
a timelike geodesic can be constructed that is longer than the given one, whereas in the R case
the opposite sign change leads to new and shorter geodesics between the given endpoints).42

Indeed, let c ∈ (a,b), with associated Jacobi field J along γ([a,c]) for which J(a) = 0 and
J(c) = 0. Then ∇tJ(c) 6= 0 (since otherwise J ≡ 0), and by Proposition 2 there exists a one-
parameter family of geodesics (γs) for which J = γ ′|s=0; since only the component of J that is
orthogonal to γ̇ is relevant, we can make J orthogonal to γ̇ altogether, cf. the discussion after
the statement of Proposition 2. Furthermore, we extend J from γ([a,c]) to γ([a,b]) by making
it zero on (c,b]. Now find any vector field K along γ : [a,b]→ M that is also orthogonal to γ̇

and in addition satisfies the boundary conditions

K(a) = K(b) = 0; (3.109)
gγ(a)(∇tJ,K) = 0; (3.110)

gγ(c)(∇tJ,K) =−v. (3.111)

This is possible, since unlike the Jacobi field J, the vector field K is not meant to satisfy any
particular equation. We now take ε > 0 and consider the vector field M = εK + ε−1J. For any
family of curves for which γ ′|s=0 = M, we then compute the second variation (3.108), in which
by construction γ ′⊥ is replaced by M. Since J satisfies the Jacobi equation, the term proportional
to ε−2, which only involves J, vanishes. The term proportional to ε2, which only involves
K, stands, call it Cε2 (where C may have either sign). One of the cross terms proportional to
ε · ε−1 = 1, involving each of J and K linearly, vanishes by the Jacobi equation for J. In the L
case to be specific (where the - sign in (3.108) has to be deleted), the other cross term contributes

L′′(γ) =Cε
2 +

1
v

∫ c

a
dt gγ(t)(J(t),∇

2
t K(t)−Ω(γ̇(t),K(t))γ̇(t)). (3.112)

41The idea should be clear from the two-sphere, where a continuous family of geodesics emanates from (say)
the South Pole, meeting again at the north pole (which, then, is conjugate to the South Pole relative to any of these
geodesics). The converse is not true, however: the existence of a nonzero Jacobi field J along γ([a,c]) that vanishes
at both a and c does not guarantee the existence of even two geodesics from γ(a) to γ(c).

42Our proof is based on the final part of the proof of Hawking & Ellis, Prop. 4.5.8. For alternative proofs see
Jost, Theorem 4.3.1, for R and O’Neill, Proposition 10.10 and Theorem 10.17, or Wald, Theorem 9.5.3, for L.
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Here, using (2.54) and (2.55), we have

gγ(t)(J(t),∇
2
t K(t)) =

d
dt
(gγ(t)(J(t),∇tK(t)))−gγ(t)(∇tJ(t),∇tK(t)), (3.113)

of which the first term vanishes upon integration, as J(a) = J(c) = 0. The second term gives

−gγ(t)(∇tJ(t),∇tK(t)) =− d
dt
(gγ(t)(∇tJ(t),K(t)))+(gγ(t)(∇

2
t J(t),K(t)), (3.114)

whose last term combines with the curvature term in (3.112) to contribute

gγ(t)(K(t),∇2
t J(t)−Ω(γ̇(t),J(t))γ̇(t)),

which vanishes by the Jacobi equation for J (using the symmetries of the Riemann tensor R).
Finally, the first term in (3.114) gives, upon integration, +1, so that overall we obtain L′′(γ) =
Cε2 +1. Whatever the sign of C, for ε small enough we can arrange L′′(γ)> 0, and so, since it
started out negative, the sign of L′′(γ) has changed across a conjugate point, as claimed.43

3.7 Conjugate points: existence
In GR (especially in the context of the singularity theorems) the existence of conjugate points
is proved in a very specific way, which we now explain. The following constructions on a
Lorentzian manifold may be performed in either the timelike or the null case, and since it is
enough to make our point we take the simpler former case. We start from a fd timelike vector
field u ∈ X(U) defined locally on some open U ⊂M, normalized such that, at each x ∈U ,

gx(ux,ux) = uµ(x)uµ(x) =−1. (3.115)

Integrating this vector field, one obtains a congruence of timelike curves in U , i.e. a foliation of
U by timelike curves c; vice versa, such a congruence yields u= ċ as its tangent. Two examples:

1. The field u could be the 4-velocity of some (relativistic) fluid moving in the cosmos.

2. In the 3+1 split of M considered later, we will assume the existence of a time-function
t : M→ R with (nowhere vanishing) timelike gradient vector field ∇t, defined by

∇t= ](dt); (3.116)
(∇t)µ = gµν

∂νt. (3.117)

One then takes u = n to be unit vector field proportional to ∇t, in other words, one defines

n =−L∇t; (3.118)

L = 1/
√
−g(∇t,∇t). (3.119)

43It is by no means excluded that there may be other variations for which L′′(γ) remains negative (for example,
by picking some K for which the sign in (3.111) is positive). All that has been proved is the existence of a family
of variations for which the sign does change, which is enough to prove the theorem. A more precise way to handle
this situation is to introduce the index form for the second variation of L, which, across a conjugate point, loses its
property of being negative definite (L) or positive definite (R). See Jost, O’Neill, etc.
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The function L introduced here is called the lapse.44 It follows that the 3-d hypersurfaces

Σt = {x ∈M | t(x) = t} (3.120)

are orthogonal to ∇t. Conversely, one could start by assuming a foliation M = ∪tΣt of M
by spacelike hypersurfaces Σt , and define u = n as a unit normal vector field to the Σt .

Such a timelike vector field u defines a fair amount of derived tensors, each of some importance:

aµ = uν
∇νuµ (acceleration); (3.121)

hµ

ν = δ
µ

ν +uµuν (spatial projection); (3.122)
kµν = hρ

µhσ
ν ∇ρuσ (- extrinsic curvature); (3.123)

ωµν = k[µν ] (vorticity); (3.124)
σµν = k(µν)− 1

3θhµν (shear); (3.125)
θ = ∇µuµ (expansion) (3.126)

where (as agreed earlier) k(µν) =
1
2(kµν + kνµ) and k[µν ] =

1
2(kµν − kνµ). It follows that

kµν = 1
3θhµν +σµν +ωµν ; (3.127)

∇µuν =−uµaν + kµν . (3.128)

Eq. (3.127) is trivial. The second can be checked by contracting both sides first with uµ , then
with uν , and finally with vectors orthogonal to u. The first contraction merely reproduces the
definition (3.121). For the second we use (3.115), (2.54), and (2.55) to compute

0 = ∂µg(u,u) = (∇µg)(u,u)+g(∇µu,u)+g(u,∇µu) = 0+2g(u,∇µu), (3.129)

whence uν∇µuν = g(u,∇µu) = 0. Hence the second contraction gives 0 = 0+ 0. Finally, the
third contracting reproduces the definition (3.123). What is the meaning of (3.121) - (3.126)?
The interpretation of a = ∇uu should be clear; it vanishes for congruences of geodesics, for
which

kµν = ∇µuν . (3.130)

Furthermore, eq. (3.115) implies
hµ

ν uν = 0, (3.131)

and if g(u,v) = 0, then hµ

ν vν = vµ , so that hx projects onto the orthogonal complement of ux, In
the second example, this is TxΣt , in which case the tensor hµν is a four-dimensional version of
the three-dimensional induced metric in Σt , in that hµν = g(hρ

µ∂ρ ,hσ
ν ∂σ ), as is easily checked.

We return to the extrinsic curvature in Chapter 6; this geometric term only makes sense
in the second example above. The three remaining terms, on the other hand, refer to the first
example of fluids: the vorticity tensor (which vanishes in the second example) describes the
rotation of the fluid, the shear (which is traceless) describes the directed volume-preserving
expansion (or, if negative, the contraction), and θ gives the rate of total volume increase (or, if
negative, the decrease) under the flow. See picture (Malament, p. 174, without permission):

44The existence of a time-function makes M time-orientable, with T = −∇t; in Minkowski space-time, with
t= x0, this would be T = ∂t , whence the minus sign in T . The minus sign in (3.118) then makes n future-directed.
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We now derive the fundamental Raychaudhuri equation for θ . Using (3.10), we compute

uσ
∇σ (∇µuν) = uσ (∇µ∇σ +[∇σ ,∇µ ])uν

= ∇µ(uσ
∇σ uν)− (∇µuσ )∇σ uν +Rνρσ µuσ uρ . (3.132)

For geodesics the first term vanishes. Eqs. (3.126), (3.130), and (3.127) then yield, along u,

∇uθ ≡ θ̇ =− 1
3θ

2−σµνσ
µν +ωµνω

µν −Rµνuµuν . (3.133)

Since σµν is symmetric, we have σµνσ µν = Tr(σ2) ≥ 0, where σ is the matrix with com-
ponents σ

µ

ν = hµρσρν . In the coming proofs of the singularity theorems we will apply this
equation in the context of example 2 above, where ω = 0. Furthermore, natural positive energy
conditions on the matter content of the universe in combination with the Einstein equations give

Rµνuµuν ≥ 0. (3.134)

Therefore, the Raychaudhuri equation (3.133) gives θ̇ + 1
3θ 2 ≤ 0. If we now assume that

θ0 ≡ θ(t0)< 0 (3.135)

at some time t = t0 ∈ [a,b], then θ(t) 6= 0 near t0 and hence d(θ−1)/dt ≥ 1
3 near t0, or

θ
−1(t)≥ θ

−1
0 + 1

3t. (3.136)

This implies that θ−1 reaches the value zero, or θ →−∞, at some ts ∈ (t0, t0+3/|θ0|], provided,
of course, that the geodesic in question can indeed be extended to ts.

We now transform this into a conclusion about conjugate points. Intuitively, gravity is at-
tractive and leads to positive curvature as in (3.134), making geodesics converge, as on the
sphere. Mathematically, we return to Jacobi’s equation (3.42) - (3.43). We take some fixed
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geodesic γ : [a,b]→M with γ̇ = u, and consider the three-dimensional vector space of Jacobi
fields along γ with initial conditions

J(a) = 0; (3.137)
J̇(a)⊥ γ̇(a). (3.138)

It is convenient to introduce a three-dimensional frame (e1(t),e2(t),e3(t)) along γ(t) that is
an orthonormal basis of T⊥

γ(t0)
γ̇ and satisfies ∇γ̇ei = 0; this guarantees that the frame remains

orthonormal as well as orthogonal to γ̇ .45 Then

J = Jiei ≡
3

∑
i=1

Jiei, (3.139)

with Ji = g(J,ei). Therefore, since γ̇ = u and ∇ is torsion-free (which gives ∇γ̇J = ∇J γ̇), we
may compute, using ωµν = 0 and hence ki j = k ji (this is not really necessary, but convenient):

J̇i ≡ dJi

dt
= ∇γ̇Ji = ∇γ̇g(J,ei) = g(∇γ̇J,ei) = g(∇J γ̇,ei) = J jg(∇ ju,ei) = ki jJ j. (3.140)

Linearity of Jacobi’s equation–in J(t)) and hence also in the initial data J̇(a), cf. (3.137)–gives

Ji(t) = Ai j(t)J̇ j(t0) (3.141)

for some 3×3 matrix A(t), so we have

J̇i(t) = Ȧi j(t)J̇ j(t0) = ki j(t)J j(t) = ki j(t)A jk(t)J̇k(t0), (3.142)

so that Ȧik = ki jA jk, or k = ȦA−1, and hence, since θ = tr(k) = tr(k), we finally obtain

θ = tr(ȦA−1). (3.143)

Now A itself is finite along γ , and so is Ȧ, so if, in the scenario just considered, θ starts out with
some negative value at t0, it can only blow up at ts if A(ts)−1 does, i.e., if A(ts), which equals
the identity at t = t0, has an eigenvalue zero. But this implies that there exists some initial value
J(t0) for which J(ts) = 0, which by definition means that γ(ts) is a conjugate point with respect
to γ(t0). In summary: if θ(γ(t0)) < 0 somewhere along γ , then γ(ts) is a conjugate point with
respect to γ(t0) iff limt→ts θ(t) =−∞, and hence we have proved an important result:

Proposition 6 Let γ be an element of a congruence of timelike geodesics (or, equivalently, a
timelike vector field u such that ∇uu = 0, with γ̇ = u) with vanishing vorticity (which is the case
iff the congruence is orthogonal to some foliation of M or U ∈ O(M) by spacelike hypersur-
faces). If the positive curvature condition (3.134) holds along the congruence, and if in addition
θ(γ(t0))< 0 somewhere along γ , then γ has a (later) conjugate point relative to γ(t0), provided
that the geodesic in question can indeed be extended from t0 all the way to ts.

45This simple construction works because γ is a geodesic. Along more general curves one needs the so-called
Fermi derivative ∇F

γ̇
ei instead of the covariant derivative ∇γ̇ ei, see Hawking & Ellis, §4.1.
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4 Singularity Theorems
Proposition 6 is a key to the singularity theorems of Hawking and Penrose, which were sug-
gested by the earliest exact solutions to Einstein’s equations.46

ds2 =−dt2 +a(t)2(dχ
2 + f (χ)2(dθ

2 + sin2
θdϕ

2)), (4.1)

where ds2 is just the physicists’ notation for the metric, the space-time is M = (0,∞)×Σ, where
Σ = S3 (the 3-sphere) and f (χ) = sin χ for k = 1 (positive curvature), Σ = R3 and f (χ) = χ

for k = 0 (no curvature), and Σ = H3 (the 3-dimensional hyperboloid) and f (χ) = sinh χ for
k = −1 (negative curvature). Finally, the function a(t) depends on the precise matter content
of the Universe. These are the three versions of the Friedman (–Robertson–Walker) Universe,
and the point of interest here is that although the metric looks reasonably well behaved as t→ 0
(e.g. a(t)∼ t2/3 for a dust-filled spatially flat universe, which is admittedly not smooth at t = 0),
the Ricci scalar (and hence the geometry) blows up. The precise form of R(t) again depends on
the matter, but in the same case one finds R(t) ∼ t−2. Note that the point t = 0 is not included
in the space-time M (where we assumed smoothness of all things!).

Potential or actual singularities are even more glaring in the Schwarzschild solution

ds2 =

(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ
2 + sin2

θdϕ
2), (4.2)

where m > 0 is the mass of some gravitating object and M = R×Σ, where at least initially, in
polar coordinates (r,θ ,ϕ), the spatial part Σ⊂R3 is restricted to r > 2m. Here the value r = 2m
looks threatening, as does r = 0 (although the latter is not in the domain of the solution).

Even Hilbert and Einstein himself were confused about the meaning of these apparent or
real singularities,47 but today it is clear that r = 2m is just a singularity of the coordinate system
in which the Schwarzschild solution is expressed,48 whereas r = 0 would be a real singularity,
where, as in the Friedman solution, the curvature blows up.49 Nonetheless, the precise definition
of a “real” singularity remained unclear until the 1960s. One almost paradoxical feature of
the problem is that singularities exclude smoothness (of any relevant geometric object, like
geodesics or curvature), whereas (M,g) is smooth by definition, so that potential points where
g is zero or some curvature invariant is infinite are excluded from space-time! This marks a
decisive difference with say singularities in the electro-magnetic field (or any other field except
gravity), which are definable on a given space-time background. Furthermore, there may be
singular situations with regular curvature (as in the case of gravitational shock waves).

Whatever the precise definition of a singularity, until the 1960s it was also quite unclear
whether “real” singularities were generic or exceptional (in the sense of only occurring in very
special solutions with a high degree of symmetry, and hence being absent in “realistic” solu-
tions); for example, Einstein maintained the latter. This was all sorted out by Hawking and
Penrose (and a few others) in the period 1965–1970; the subject was essentially closed with the
appearance of the book by Hawking & Ellis in 1973. The upshot is that, roughly speaking, a
space-time is deemed singular iff it contains an incomplete causal geodesic.

46This motivation is merely heuristic and hence we run ahead of our later rigorous discussion of these solutions.
47See J. Earman, Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Space-

times (OUP, 1995).
48This is not to say that nothing interesting happens at r = 2m. Indeed, in this region t becomes spacelike and r

becomes timelike, and the hypersurface r = 2m is an event horizon, a concept to be defined later.
49This time the singularity is detected by the strange scalar Rρσ µν Rρσ µν , which goes like r−6 as r→ 0.
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Definition 7 A (smooth or continuous) curve c : [a,b)→ M (where b ∈ R, b > a) is (future)
extendible if it has a (smooth or continuous) extension c : [a,b]→ M, and is (future) inex-
tendible otherwise.50 Equivalently, defining an endpoint of c : I → M as a point z ∈ M such
that for any nbhd U of z there is t ∈ I such that c(s)∈U for all s≥ t, c is future (in)extendible iff
it has (no) endpoint.51 Past (in)extendibility for curves c : (a,b]→M is defined analogously.
A curve is incomplete if it is inextendible and has finite arc length, and complete otherwise.52

In the Riemannian case, the Hopf-Rinow Theorem (already mentioned just before §2.4) states
that a Riemannian manifold (M,g) is geodesically complete iff it is complete in the metric d
derived from g. In this theorem, using the terminology of the above definition we may obviously
replace geodesic completeness by the condition that every geodesic with finite arc length has
an endpoint (and hence can be extended). Contrapositively, (M,d) is (metrically) incomplete
iff there is at least one geodesic with finite arc length but no endpoint. For example, for M = R
(with flat metric) the geodesic c : [0,1)→M defined by c(t) = t is extendible and has endpoint
z = 1, but the same curve is inextendible in M =R\{1}, where indeed it has no endpoint. Thus
R is (metrically = geodesically) complete, whereas R\{1} is not. Of course, though illustrative,
this is a somewhat trivial case, since we may simply add the point z = 1 to the latter space.

To exclude such trivial cases, we extend the previous definition as follows.

Definition 8 A Lorentzian manifold (M,g) is extendible if there exist a Lorentzian manifold
(M′,g′) and an isometric embedding i : M ↪→ M′ (so that i∗g′ = g), and inextendible if this
is not the case. It is incomplete if it contains an incomplete geodesic, and singular if it is
incomplete and either inextendible, or has no extension in which all its incomplete geodesics
extend to complete ones (i.e. in any extension at least one geodesic remains incomplete).53

‘Timelike geodesic completeness has an immediate physical significance in that
it present the possibility that there could be freely moving observers or particles
whose histories did not exist after (or before) a finite interval of proper time. This
would appear to be an even more objectionable feature than infinite curvature and
so it seems appropriate to regard such a space as singular. (. . . ) We shall therefore
adopt the view that timelike and null geodesic completeness are minmum condi-
tions for space-time to be considered singularity-free. Therefore, if a space-time
is timelike or null geodesically incomplete, we shall say that it has a singularity.’
(Hawking & Ellis, p. 258).

So the example just given of a one-dimensional manifold (with flat metric) with a point removed
is incomplete but non-singular. The FRW universe, on the other hand, is really singular, since it
has past-directed timelike geodesics ending at t = 0 (we cannot prove this rigorously now, but
it turns out that this space-time is inextendible because the curvature blows up as t→ 0).

In line with this quotation (which departs from the more accurate Definition 8), the Hawking–
Penrose singularity theorems and related results “merely” prove the existence of incomplete
(timelike or null) geodesics; inextendibility of space-time has to be established separately.

50A curve c : [a,b]→M is always extendible to c : [a,b+ ε), for some ε > 0
51Ir is easy to show that c has an endpoint iff c(I) lies in a compact subset of M (O’Neill, Lemma 1.56).
52So for b = ∞ a geodesic c : [a,∞)→M is always complete.
53If one replaces “Lorentzian manifold” in these definitions by “space-time”, one assumes that the data satisfy

the Einstein equations. We will return to this matter.
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4.1 Global hyperbolicity and existence of geodesics of maximal length
The singularity theorems à la Hawking and Penrose are proved by the following strategy:

1. Physical arguments (from either the expansion of the universe or the clustering of matter)
justify the curvature condition (3.134) and the condition (3.135) on the expansion θ .

2. These imply the existence of conjugate points on timelike geodesics (cf. Proposition 6).

3. According to Theorem 5, geodesics with conjugate points cannot maximize length.

4. Global assumptions imply that such geodesics do maximize length (cf. Proposition 12).

5. This apparent contradiction is resolved by realizing that the existence of conjugate points
is based on the assumptions that all geodesics in question can be extended at least to the
first conjugate point, so that the real conclusion is geodesic incompleteness of space-time.

In particular, against the expectations of Einstein himself singularities turn out to be generic.
The simplest result in this direction is Hawking’s singularity theorem from his 1966 PhD Thesis.

Clause 4 (to be addressed in the next section) and clause 1 are both based on the physically
reasonable assumption of global hyperbolicty, which will also play a key role in the discussion
of the Cauchy problem for the Einstein equations. For convenience, from now on we say:

Definition 9 A space-time is an oriented and time-oriented connected Lorentzian manifold.

Let (M,g) be a space-time. We return to the relation�, which was defined by x� y if there
exists a future-directed timelike curve (or geodesic) starting at x and ending at y. Further to the
sets I±(x) as defined in (3.78) - (3.79), we more generally define

I+(A) = ∪x∈AI+(x) = {y ∈M | ∃x ∈ A : x� y} (A⊂M); (4.3)

I−(A) = ∪x∈AI−(x) = {y ∈M | ∃x ∈ A : y� x} (A⊂M). (4.4)

Here the first equality signs are definitions, and establishing the second ones are exercises.
Similarly, one defines J±(A), where� is replaced by <, where x < y iff there exists a future-
directed causal curve (or geodesic) starting at x and ending at y. Transitivity of� then gives

I+(I+(A)) = I+(A), (4.5)

and it easy to show that for any A⊂M the sets I±(A) are open (see O’Neill, Lemma 14.3).
In Minkowski space-time, I+(x) is the open set enclosed by the future light-cone emanating

from x, J+(x) is its closure, and J+(x)− I+(x) is its boundary, that is,

I+(x) = {y ∈ R4 | (y0− x0)2−
3

∑
i=1

(yi− xi)2 > 0,y0 > x0}; (4.6)

J+(x) = {y ∈ R4 | (y0− x0)2−
3

∑
i=1

(yi− xi)2 ≥ 0,y0 ≥ x0}; (4.7)

∂ I+(x) = {y ∈ R4 | (y0− x0)2−
3

∑
i=1

(yi− xi)2 = 0,y0 ≥ x0}. (4.8)
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Furthermore, for x� y the so-called double cone or diamond

J(x,y)≡ J+(x)∩ J−(y) (4.9)

is compact in Minkowski space-time.54 However, these properties need not be true in arbitrary
space-times: simply removing a point shows that neither J±(x) nor J(x,y) need to be closed (let
alone compact). Properties that do prevail in general include:55

• If x� y and c : [a,b]→ M is a causal curve from x to y such that c([a,b])∩ I+(x) = /0,
then c is a null curve.

• I+(x) is the interior of J+(x). Equivalently: the boundary ∂ I+(x) is a null surface.56

• J+(x)⊆ I+(x), with equality iff J+(x) is closed.

We saw that the relation� is transitive. Is it also anti-symmetric? By convention, we do not al-
low curves of zero length, that is, one has x� x iff there is a genuine closed timelike curve from
x to x (as in Gödel’s solution to the Einstein equations, or in the Taub–NUT solution).57 Hence
� is an order relation iff (M,g) contains no closed timelike curves, in which case we say that
the space-time satisfies the chronology condition. However, both the singularity theorems and
well-posedness of the Cauchy problem for the Einstein equations require stronger conditions.

Definition 10 A space-time (M,g) is called:

1. causal if it contains no closed causal curves.

2. strongly causal if any nbhd Ux of any x ∈M contains Vx ∈ O(M) such that any timelike
(or, equivalently, causal) curve with endpoints in Vx entirely lies in Vx.58

3. globally hyperbolic if it is (strongly) causal and all sets J(x,y) are compact.59

The idea of strong causality is that there aren’t even any timelike curves that start and end
arbitrarily closely near x, which is something like a chronology condition stabilized against
perturbations. If J(x,y) fails to be compact, there is an incomplete causal curve emanating at x
that disappears into some singularity. This curve lies in the past of y and hence is “visible” from
y (which is deemed undesirable). We will need two implications (which are even equivalent
definitions) of the notion of global hyperbolicity, namely, with details in the next two sections:

• Compactness of the space C(x,y) of continuous fd causal curves from x to y (x� y);

• Existence of a Cauchy surface in M.
54J(x,y) is the smallest subset of M that contains all fd causal curves from x to y (J(x,y) = /0 unless x≤ y).
55See R. Geroch & G. Horowitz, Global structure of spacetimes, General Relatvity: An Einstein Centenary

Survey, eds. S.W. Hawking & W. Israel, pp. 212–293 (CUP, 1979), for the simple proofs. This article is a very
useful introduction to the ideas discussed in this chapter, to which Geroch himself made decisive contributions.

56This means that for any y ∈ ∂ I+(x) there is a null geodesic γ emanating from y that lies in ∂ I+(x).
57Or, for a very simple example: take the Minkowski hypercylinder M = {(x0,~x) ∈R4 | 0≤ x0 ≤ 1}/∼, where

(0,~x)∼ (1,~x), with induced Minkowski metric. Then I+(x) = I−(x) = M for all x ∈M.
58Equivalently, for any compact K ⊂M any causal curve c : (a,b)→ K can be extended to c : [a,b]→ K, where

the case a =−∞ and/or b = ∞ is included by asking that limt→±∞ c(t) ∈ K also. See e.g. Wald, Lemma 8.2.1.
59Here it does not matter if we impose the condition for all x,y ∈ M, all x� y, or all x < y. It can be shown

that if all sets J(x,y) are compact, then causality and strong causality are equivalent, see Minguzzi & Sanchez,
arxiv:gr-qc/0609119 or Bernal & Sanchez, arxiv:gr-qc/0611138.
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4.2 Existence of geodesics of maximal length
We now complete our journey from local to global properties of geodesics by proving the exis-
tence of fd timelike geodesics of maximal length. For x� y, let C(x,y) be the space of contin-
uous fd causal curves c from x to y, up to reparametrization (i.e. one uses the image c([a,b]) in
M rather than the function c : [a,b]→M),60 topologized by letting any open nbhd of c ∈C(x,y)
consist of all fd causal curves γ whose image lies in some open nbhd of c([a,b]) in M.61

Proposition 11 A time-oriented Lorentzian manifold (M,g) is globally hyperbolic iff the space
C(x,y) of continuous fd causal curves from x to y is compact for all x� y.62

This is a pretty difficult result, so we just sketch the outline of the proof.63 If C(x,y) is compact,
then so is J(x,y); this follows from the continuity of the evaluation map

ev : C(x,y)× [0,1]→M; (4.10)
ev(c, t) = c(t). (4.11)

The argument below will show that (M,g) is strongly causal. For the converse implication, we
need to turn M into a metric space inducing the manifold topology, which cannot come from
the Lorentzian metric g, but, in a singularly ugly move, comes from an ancillary Riemannian
metric h, see §2.3.2. The Arzelà–Ascoli Theorem then states that C(x,y) is compact iff:64

1. Each set {c(t) | c ∈C(x,y)} ⊂M, t ∈ (0,1), is bounded (and hence has compact closure);

2. The family C(x,y) is equicontinuous, i.e., for each t ∈ [0,1] and each ε > 0 there is δ > 0
such that if |s− t|< δ , then d(c(s),c(t))< ε for all c ∈C(x,y).

It is easy to show that both conditions are satisfied iff there is some 0 < Kx,y < ∞ such that

Lh(c)< Kx,y for all c ∈C(x,y), (4.12)

where Lh is the length computed from h (and similarly, in the next step dh will be the distance
computed from h). Indeed, if this is the case, then

dh(x,c(t))≤ Lh(c)< Kx,y, (4.13)

which makes the set {c(t) | c ∈ C(x,y)} in clause 1 of the Arzelà–Ascoli Theorem bounded.
Assuming c is parametrized by arc length, we have

Lh(c(s, t)) = Lh(c)|s− t|, (4.14)

and hence
dh(c(s),c(t))≤ Lh(c)|s− t|< Kx,y. (4.15)

This proves equicontinuity. We now finish the proof with a few observations:
60Since the previous definition of fd causality of a smooth (or C1) curve relies on its tangent vectors, one calls a

continuous curve c : [a,b]→M fd causal if for any t ∈ (a,b) with normal nbhd Uc(t) (cf. §3.4), and any t ′ < t ′′ such
that c([t ′, t ′′])⊂Ux one has c(t ′)< c(t ′′), i.e., there exists a smooth fd causal curve from c(t ′) to c(t ′′). This in fact
implies that c is locally Lipschitz and hence C1 almost everywhere (of course with an fd cause tangent vector).

61This is the quotient of the compact-open topology on C([0,1],M) by the equivalence relation given by
reparametrization, restricted to those timelike curves c in C([0,1],M) that satisfy c(0) = x and c(1) = y, see C.J.S
Clarke, The Analysis of Space-Time Singularities (CUP, 1993), §6.2.2.

62This was Leray’s original definition of global hyperbolicity in 1952, cf. Hawking & Ellis, §6.6).
63See Hawking & Ellis, P rop. 6.6.2, or Choquet-Bruhat, Theorem XII.10.2, fo complete proofs.
64Since the parametrization of c ∈C(x,y) does not matter, we put c : [0,1]→M.
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1. Contrapositively, the non-existence of a uniform bound Kx,y for Lh(c) blasts both clauses
1 and 2.

2. Eq. (4.12), in turn, is guaranteed when J(x,y) is compact (in which case it may be covered
with finitely many open sets of the kind Ux) and M is strongly causal (which prevents
causal curves from re-entering Ux arbitrarily often, a possibility that would indefinitely
increase the length of a curves and hence drive Kx,y to infinity).

3. The last comment also proves the necessity of strong causality for compactness of C(x,y).

This completes the sketch of the proof of Proposition 11.
The following result is crucial for the Hawking–Penrose singularity theorems:

Proposition 12 If (M,g) is globally hyperbolic, then any x ∈M and y ∈ I+(x) are connected
by a smooth fd timelike geodesic of maximal length (among all curves from x to y).

The full proof takes pages to develop in detail,65 so we just give an outline.66 Through approx-
imation of continuous curves by smooth ones, the length functional c 7→ L(c) defined by (3.84)
makes sense on C(x,y), and is upper semicontinuous.67 Via compactness of C(x,y), global
hyperbolicity then implies that L assumes its maximum

`(x,y) = sup{L(γ) | γ : [0,1]→M,γ(0) = x,γ(1) = y,γ fd timelike curve}, (4.16)

at some curve γ ∈C(x,y). This a priori merely continuous curve is in fact a (smooth) geodesic.68

Moreover, the maximum geodesic may be found as follows: if (cn) is a sequence of curves in
C(x,y) for which L(cn)→ `(x,y), then cn→ γ .69

65See Penrose, passim, Hawking & Ellis, §6.7, O’Neill, Chapter 14, Senovilla, Ch. 2.
66There is also a second proof, which starts from the pointwise length function ` : M×M→ [0,∞] defined by

(4.16), where we put `(x,y)= 0 except for x� y. If ` is finite, then it is lower semicontinuous. Indeed, by definition
of the supremum, for any ε > 0 there exists some cxy : x→ y for which L(cxy) = `(x,y)− 1

3 ε . Furthermore, by
§3.5.3 we can find a nbhd Uy of (say) y such that for any z ∈ U there exists a curve cyz : y → z with length
L(cyz)<

1
3 ε . Violation of lower semicontinuity of ` at y would mean that L(cxz)< `(x,y)− ε for all z ∈U and all

curves cxz : x→ z, but in fact the concatenation of cxy and cyz, which has length L(cxy)+L(cyz), can be smoothened
so as to have length within 1

3 ε of the latter, which leads to a contradiction. If M is globally hyperbolic, then ` is
also finite and continuous: since J(x,y) is compact, the cover (Vz), where z ∈ J(x,y), has a finite subcover (Vzi).
This makes `(x,y) finite, since each fd timelike curve from x to y can enter each (Vzi) at most once, and its segment
within (Vzi) has finite length. Compactness of J(x,y) also yields upper semicontinuity of `(x,y) (see Hawking
& Ellis, p. 216). For each z ∈ J(x,y), define Wz = (Uz ∩ J(x,y))−, which is a closed and hence compact subset
of J(x,y), and consider the function z 7→ `(x,z)+ `(z,y) on Wz. This function is continuous and hence takes a
maximum at say z1, to which (by §3.5) there is a unique fd timelike geodesic γxz1 from x to z1. Restarting this
construction from z1 and repeating the process extends this geodesic, and a proof by contradiction to compactness
(cf. Hawking & Ellis, p. 216–217) shows that the ensuing geodesic eventually reaches y and maximizes `(x,y).

67That is, for each c ∈C(x,y) and each ε > 0 there is a nbhd Γ of c such that L(γ)≤ L(c)+ ε for all γ ∈ Γ. See
Hawking & Ellis, Lemma 6.7.2 or Wald, Prop. 9.4.1. Increasing the length of a fd timelike curve c can only be
done by adding fd timelike pieces, which can be done only in a limited way in a small nbhd V of c. Decreasing its
length, on the other hand, can be done at will even within V by moving c close to a chain of almost null directions
(see footnote 36). Hence lower semicontinuity (i.e., L(γ)≥ L(c)− ε for all γ ∈ Γ) typically fails.

68For the proof that a continuous timelike curve of maximal length must be a geodesic see O’Neill, Proposition
14.19 (note that Hawking & Ellis, p. 215, only arrive at C1 geodesics, as does Choquet-Bruhat, Theorem XII.9.5).
Roughly, if between any two of its points it would not be a geodesic, then, if necessary chopping the non-geodesic
part up into smaller pieces, we could construct a nearby geodesic whose length would be longer, see §3.5.3.

69This follows from an extension of Weierstrass’s theorem from topology: if K is compact, then an upper semi-
continuous function f : K→R has a maximum (and a lower semicontinuous function g : K→R has a minimum).
In the present context see also O’Neill, Lemma 14.14 and Proposition14.19.
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4.3 Global hyperbolicity and Cauchy surfaces
Both the singularity theorems and the solution of the Cauchy problem for the Einstein equations
rely on the fundamental notion of a Cauchy surface, defined as follows.

Definition 13 A Cauchy surface in a space-time (M,g) s a subset Σ ⊂ M with the property
that each inextendible timelike curve intersects Σ in exactly one point.

There are various easy consequences of this definition, which we will not need and hence will
not prove, but they do clarify the idea and hence we state some of them for completeness.70

Proposition 14 Let (M,g) be a space-time with Cauchy surface Σ⊂M. Then:

1. Any other possible Cauchy surface in M is diffeomorphic to Σ;

2. Σ is a three-dimensional embedded spacelike submanifold of M;71

3. Σ is achronal in the sense that for all x,y ∈ Σ it cannot be that x� y;

4. Every causal curve meets Σ (though not necessarily in one point);

5. Defining the domain of dependence (or Cauchy development) D+(S) of a subset S⊂M
as the set of all points y ∈M for which every past-directed timelike curve (or geodesic)
emanating from y intersects S, and similarly, the domain of influence D−(S) by changing
past-directed to future-directed in the previous definition, one has

D(Σ)≡ D+(Σ)∪D−(Σ) = M, (4.17)

which is necessary and sufficient for a closed achronal set Σ⊂M to be Cauchy surface.

6. Defining the future/past Cauchy horizon H+(S)/H−(S) of any subset S⊂M by

H+(S) = D+(S)− I−(D+(S)); (4.18)

H−(S) = D−(S)− I+(D−(S)), (4.19)

so that e.g. H+(S) consist of all x ∈ D+(S) that precede no point in D+(S),72 we have

H+(Σ) = H−(Σ) = /0, (4.20)

and this condition equally well holds iff a closed achronal set Σ⊂M is a Cauchy surface.
70 See e.g. Hawking & Eliis, Ch. 6, O’Neill, Ch. 14, Wald, Ch. 8, or Minguzzi & Sanchez. The entire theory

was initiated by Geroch and others in the late 1960s in the topological case, and was extended to the smooth case
by Bernal and Sanchez between 2003–2005. For the smooth results see the review Recent progress on the notion
of global hyperbolicity, arXiv:gr-qc/0712.1933, based on the following three papers by Bernal and Sanchez:
On smooth Cauchy hypersurfaces and Geroch’s splitting theorem, arXiv:gr-qc/0306108,
Smoothness of time-functions and the metric splitting of globally hyperbolic spacetimes, arXiv:gr-qc/0401112,
Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions, arXiv:gr-qc/0512095.

71The notion of an embedded submanifold will be given in §6.
72A point lying beyond the future Cauchy horizon of S will be influenced by events outside S, and so H+(S)

measures the failure of S to be a Cauchy surface.
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The idea is that everything happening at y∈D+(S) is determined by the state of affairs at S. For
example, in 2d Minkowski space-time R2, for S = R, the x-axis, D+(S) is the upper half plane
and D−(S) is the lower half-plane, so that S is a Cauchy surface. Removing just (0,0) from
the x-axis removes the interior of the forward light cone emanating from (0,0) from the earlier
D+(S). Taking S1 = {0}× [−1,1], it follows that D+(S) consists of the triangle with vertices
(−1,0), (1,0), and (0,1), the associated Cauchy horizon H+(S) consists of the two upper sides
of this triangle. Removing (0,0) from S removes the double cone with vertices (0,0), (− 1

2 ,
1
2),

(0,1), and ( 1
2 ,

1
2) from D+(S), whereas H+(S) suddenly consists of two zig-zag teeth (draw!).

The following result (often used as the definition of global hyperbolicity!) is very deep:

Theorem 15 A space-time (M,g) is globally hyperbolic iff it has a Cauchy surface Σ.

The proof is based on the construction of a time-function t : M→R, see §3.7.2. If c is any time-
like curve, then g(∇t, ċ) = ċ(t), whose left-hand side is non-zero. Hence t either increases or
decreases along fd timelike curves, and (if necessary changing its sign) we assume t increases.

To construct t, we once again take some auxiliary Riemannian metric h on M, as well as
some at most countable open cover (Vn) with precompact elements (i.e. V−n is compact for each
n), so that M = ∪nVn, with some associated partition of unity (φn) subordinate to the cover.73

We then turn the standard Riemannian measure µh induced by h, defined in coordinates by

dµh(x) =
√

h(x)dx0 · · ·dx3, (4.21)

see also the next section, into a probability measure νh = χµh, where χ : M→R+ is defined by

χ = ∑
n

2−n φn∫
Vn

dµnφn
. (4.22)

The define functions ω± : M→ R+ by ω±(x) = νh(J±(x)), in terms of which

t(x) = ln
(

ω−(x)
ω+(x)

)
. (4.23)

Fairly technical arguments then show that:

1. t is continuous because J± are closed (which follows from global hyperbolicity);

2. t is strictly increasing along fd timelike curves (idem);

3. Each level set
Σt = {x ∈M | t(x) = t} (4.24)

is a Cauchy surface.

Corollary 16 For a globally hyperbolic space-time (M,g) with Cauchy surface Σ we have

M ∼= R×Σ; (4.25)
M = ∪t∈RΣt . (4.26)

More specifically: M is diffeomorphic to R×Σ in such a way that under the pertinent diffeo-
morphism each subset {t}×Σ⊂ R×Σ corresponds to a Cauchy surface Σt ⊂M.

Note that (4.25) is quite intuitive: since each inextendible fd timelike curve hits Σ exactly once,
we may take such a curve c, normalize the time-function t(x) such that Σ = Σ0, and define a
map M→ R×Σ by x 7→ (t,σ), where t = t(x) and σ ∈ Σ is the point where c hits Σ.

Given the definition (4.24) of Σt , eq. (4.26) is almost a triviality.
73This means that ϕn ∈C∞

c (Vn) and ∑n ϕn(x) = 1 for all x ∈M.
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4.4 Hawking’s singularity theorem
In his honor, we now discuss Hawking’s singularity theorem from 1965/66, which regarding
both its assumptions and the design of its proof remains a model for all subsequent results.
Its underlying intuition comes from the FRW cosmologies, and so it describes Big Bang type
singularities (black hole type singularities are covered by Penrose’s singularity theorems, which
unfortunately we cannot discuss at this stage because of their heavy reliance on null geodesics).

Let (M,g) be a globally hyperbolic space-time with Cauchy surface Σ, and recall the situ-
ation described in §3.7. We consider a congruence of timelike geodesics (γ) emanating from
Σ,74 with initial velocities (i.e. tangent vectors) γ̇ = u orthogonal to Σ; this is called the normal
geodesic congruence emanating from Σ. Cosmological applications require these to be past di-
rected (pd), but if our universe is ever going to approach a big crunch,75 the same construction
works for future-directed geodesics.76 Thus we also obtain the quantities defined in (3.121) -
(3.126), especially the latter (i.e. the expansion θ = ∇µuµ = tr(k) of the congruence).

To understand what follows, one more geometric construction is needed, which will be
studied in great detail in our discussion of the Cauchy problem to come, namely the extrinsic
curvature of Σ⊂M. This is a tensor field K ∈ X(2,0)(Σ) initially defined merely on Σ by

K(X ,Y ) =−g(∇X N,Y ), (4.27)

where X ,Y ∈X(Σ) and N is the normal vector field on Σ (whose sign is a matter of convention).
This definition is predicated on the fact that ∇X N is tangent to Σ, which is an easy consequence
of the property g(N,N) =−1. Similarly, it is easy to show that K is symmetric, namely:

k(X ,Y ) =−g(∇X N,Y ) = g(N,∇XY ) = g(N,∇Y X) = k(Y,X). (4.28)

From K, we define the mean (extrinsic) curvature H : Σ→ R of Σ as

H(x) = tr(Kx) =
2

∑
i=1

Kx(ei(x),ei(x)), (4.29)

where (ei(x)) is any orthogonal basis of TxΣ, x ∈ Σ. Since k in (3.123) is spatial (because of the
projections h in its definition), because of the (conventional) minus sign in (4.27), on Σ we have

θ =−H. (4.30)

Let us give some Riemannian examples, which can be found in almost all pertinent textbooks:

• For the sphere of radius a, i.e., S2
a ⊂ R3 (with flat metric), we have H =−2/a.

• For the cylinder of radius a, i.e., C2
a ⊂ R3 (with flat metric), we have H =−1/a.

• For any plane in R3 (with flat metric) we have H = 0.

Here the normal vectors used in the definition (4.27) are outward, and we see from these exam-
ples that negative K, and hence positive θ , gives diverging geodesics normally emanating from
Σ. By the same token, negative θ gives converging normal geodesics; as stated, we assume this
in the past direction. After this preparation we are in a position to state Hawking’s theorem.

74Or some relatively open subset thereof–the congruence may be defined locally, but even so global hyperbol-
icity is needed to prove existence of geodesics with maximum length.

75Current observations show that this will not happen, since at the moment the expansion is even accelerating.
76Regarding (4.26), note that a normal congruence at Σ = Σ0 may no longer be orthogonal to other level sets Σt .
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Theorem 17 Let a space-time (M,g) be globally hyperbolic with Cauchy surface Σ. Assume:

1. The curvature satisfies Rµν γ̇µ γ̇ν ≥ 0 along all timelike geodesics γ;

2. The mean extrinsic curvature of Σ is (uniformly) positive in the past direction.

If H > H0 > 0 in clause 2, then no past directed timelike geodesic emanating from Σ can have
(arc) length greater than 3/K0, and hence (M,g) has incomplete geodesics.

It is sufficient to prove this for timelike geodesic normally emanating from Σ, since other time-
like geodesics are even shorter (exercise). The proof is by contradiction:

1. If there is such a geodesic, say from x ∈ Σ to y� x, then by Proposition 12 (with past
and future exchanged) there is one of maximal length, call it γ (this step uses global
hyperbolicity).

2. By Theorem 5, γ cannot have conjugate points.

3. By Proposition 6, however, γ does have conjugate points (this step uses the assumptions
on the curvature Rµν of (M,g) and on the extrinsic curvature of Σ ⊂M), provided γ can
be extended far enough.

4. Hence the geodesic in question cannot exist, and the conclusion follows.

Note that the time to reach the singularity increases as the mean extrinsic curvature Σ decreases,
in accordance with intuition: less curvature means less focusing.

Stephen Hawking in 1960
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5 The Einstein equations
On Thursday November 25, 1915, Albert Einstein wrote down the immortal equations77

Rµν − 1
2gµνR = 8πTµν , (5.1)

whose left-hand side we have already seen, and whose right-hand side will be explained in §5.2.
The Einstein equations (5.1) are widely considered to be the most beautiful equations in all of
physics (or perhaps even all of science), and they are certainly the most accurately tested ones.
The relate the geometry of space-time, construed as a Lorentzian manifold (M,g), to its matter
content, given by Tµν ; as Misner, Thorne, and Wheeler (1973) put it: “matter tells space how
to curve” (followed by: “and space tells matter how to move,” namely on geodesics).78 In this
sense, (5.1) are 10 coupled second-order partial differential equations for the components gµν of
the metric given Tµν , but in fact there will be additional equations for the matter fields contained
in Tµν , which also depend on the metric, and one should really consider the total system.

5.1 The Hilbert action
As noticed independently by Hilbert and Einstein in 1916, the Einstein equations (5.1) can be
derived from a variational principle. The geometrical quantity to be extremized in order to
obtain the left-hand side is the (Einstein-) Hilbert action for the gravitational field, defined by

SG(g) =
∫

M
d4x
√
−g(x)R(x), (5.2)

where g≡ det(g) is the determinant of the matrix gµν (in any basis), and R is the Ricci scalar

R = gµνRµν , (5.3)

cf. (2.10) and (2.9). More precisely, we assume M is orientable, and (5.2) should either be
written as a sum over various coordinate patches using a partition of unity, or else in a geometric
form (for which we have hardly developed the machinery).79 As in the geodesic case, we now
consider a family of metrics gs, and compute dSG(gs)/ds. This requires some preparation.

77In fact, Einstein used a somewhat different notation; what he literally wrote was Gim = −κ(Tim− 1
2 gimT ).

For the moment we omit the infamous cosmological constant Λ, which Einstein added in 1917 on the left-hand
side through a term Λgµν in order to stabilize the Universe, but after he recognized the expansion of the Universe
he withdrew it and called his introduction “the biggest blunder of his life” (his real blunder, though, was missing
the theoretical derivation of an expanding Universe from (5.1), which was left to Friedman and Lemaı̂tre.). The
cosmological constant made a spectacular come-back at the end of the 20th Century, when it was discovered that
the Universe expands more rapidly than could be explained by (5.1) with known forms of matter. It has become
customary to move the term Λgµν to the right-hand side and regard it as an unknown contribution to Tµν , called
dark energy, which is estimated to comprise as much as 70% of the total energy of the Universe! See R.P. Kirshner,
The Extravagant Universe: Exploding Stars, Dark Energy, and the Accelerating Cosmos (Princeton University
Press, 2002) for the inside story of this discovery and its history.

78The second part is a consequence of (5.1), but the proof is tricky and we will show this only for a fluid.
79A manifold is called orientable if there is an atlas (within the equivalence class of atlases defining the manifold,

cf. §1.1) for which all transition functions ϕβ ◦ ϕ−1
α have positive Jacobian. An orientation of an orientable

manifold is an atlas satisfying this condition. It can be shown that M is orientable iff it admits a nowhere vanishing
n-form ω ∈ Ωn(M); one then only accepts charts ϕ whose coordinates (x1, . . . ,xn) satisfy ω(∂1, . . . ,∂n) > 0. In
the presence of a metric we then normalize ω such that in all coordinates ω(∂1, . . . ,∂n) =

√
|g|, where again g ≡

det(g), i.e., ωx =
√
|g(x)|dx1∧·· ·∧dxn. This condition is well defined, since ω keeps this form under coordinate

transformations (exercise: one has
√
|g(xβ )| = J−1

αβ

√
|g(xα)|, where Jαβ = det |∂xµ

β
/∂xν

α | is the Jacobian of the

coordinate transformation from xα to xβ ). For any f ∈C∞
c (M) one then has

∫
M f ω =

∫
M dnx

√
|g(x)| f (x). We also

assume sufficient decay of the integrand in (5.2) for the integral to make sense (though not necessarily R∈C∞
c (M)).
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1. In any coordinate system we have (for Lorentzian siganture, as we assume throughout)

∂µ

√
−g =

√
−gΓ

ρ

µρ . (5.4)

Since the first term in (3.12) cancels the last if ν = ρ , we have Γ
ρ

µρ = 1
2gρσ gρσ ,µ . Diago-

nalizing the symmetric invertible matrix (gρσ ), yielding nonzero eigenvalues (λ0, . . . ,λ3)
and realizing that (gρσ ) is its inverse gives

gρσ gρσ ,µ =
∂µλ0

λ0
+ · · ·+

∂µλ3

λ3
. (5.5)

But also

2
∂µ

√
−g

√
−g

= g−1
∂µg =

∂µ(λ0 · · ·λ3)

λ0 · · ·λ3
=

∂µλ0

λ0
+ · · ·+

∂µλ3

λ3
. (5.6)

2. For any vector field X we define its divergence as

∇ ·X = ∇µX µ . (5.7)

Eq. (5.4) then implies √
−g ∇ ·X = ∂µ(

√
−gX µ), (5.8)

and hence, by Stokes’s Theorem ( = Divergence Theorem = Gauß’s Theorem),80∫
M

d4x
√
−g(x) ∇ ·X(x) =

∫
∂M

d3~σ ·X , (5.9)

where ∂M is the boundary of M (if M = /0, then the right-hand side vanishes assuming
sufficient decay of X at infinity), and d3~σ is the (outward) normal volume element of ∂M.

3. Each of the three terms in the integrand
√
−ggµνRµν in (5.2) depends on the metric gµν

and hence has to be varied. The variation of the Ricci tensor seems the most complicated
case, but surprisingly it contributes a divergence term and hence makes no contribution to
the Einstein equations (5.2). This is surprising, because definitions (3.11) and (3.18) give

Rµν = Γ
ρ

µν ,ρ −Γ
ρ

µρ,ν +Γ
ρ

ρσ Γ
σ
νµ −Γ

ρ

νσ Γ
σ
ρµ , (5.10)

whose first two terms contain second-order derivaties of gµν . Their variation would there-
fore in principle be expected to give a fourth-order PDE, but this does not happen.81

80Continuing the previous footnote: eq. (5.8) takes the abstract form LX ω = ω ∇ ·X . Cartan’s formula for the
Lie derivative of exterior forms states that LX = diX + iX d, where X ∈ X(M), i.e., for any p-form α ∈ Ωp(M),
p > 0, we have LX α = d(iX α) + i(dα), where d : Ωp(M)→ Ωp+1(M) is the exterior derivative (defined in
coordinates by (dα)µ1···µp+1 = ∂µ1αµ2···µp+1 ) and iX : Ωp(M)→ Ωp−1(M) is the insertion operation, defined in
coordinates by (iX α)µ2···µp = X µ1αµ1µ2···µp . Since ω ∈ Ωn(M) we must have dω = 0, so that Cartan’s formula
gives LX ω = d(iX ω), and hence, with the first equation in this footnote, ω ∇ ·X = d(iX ω). The abstract version
of Stokes’s Theorem states that

∫
M dα =

∫
∂M α , for any α ∈Ωn(M), so that

∫
M ω ∇ ·X =

∫
∂M iX ω , which is (5.9).

81Lovelock’s Theorem states that in d = 4 the Einstein–Hilbert action (5.2) is the only possible geometric quan-
tity giving rise to second-order PDE in the components of the metric, expect for adding a constant Λ to the Ricci
scalar R, which would lead to a cosmological constant in (5.1). The proof is a rather dull kind of bookkeeping; see
A. Navarro & J. Navarro, Lovelock’s Theorem revisited, https://arxiv.org/pdf/1005.2386.pdf.

Einstein temporarily used unimodular coordinates, in which g ≡ det(g) = −1. In such coordinates he wrote
down the Lagrangian LE = −gµν Γ

ρ

νσ Γσ
ρµ , partly inspired by the Lagrangian for the free electromagnetic field

− 1
4 gµν Fνσ F σ

µ , and partly by the fact that (this times almost trivially) it gives second-order PDE. This corresponds
to the fourth term in (5.10); the third vanishes if g = 1, cf. (5.4), and the first two terms merely bring a divergence.
So Einstein had essentially the right Lagrangian already in 1913, of which

√
−gR is the correct geometric form.

See H.R. Brown, Physical Relativity: Space-time structure from a dynamical perspective (OUP, 2005), §9.2.
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4. Indeed, writing δF(g) = dF(gs)/ds|s=0 and d(gs)µν/ds|s=0 = δgµν , we claim that

gµν
δRµν = ∇ ·X ; (5.11)

X µ = ∇νδgµν −∇
µ

δgν
ν , (5.12)

where indices are always raised and lowered with the metric g = gs=0. However, this
leads to the ambiguous notation δgµν , which could mean either (δg)µν = gµρgνσ δgρσ ,
or δ (gµν) = −gµρgνσ δgρσ , see below. To avoid this we will henceforth write dµν for
δgµν , so that the first equation above becomes dµν = gµρgνσ dρσ , and the second is

δgµν =−gµρgνσ dρσ , (5.13)

which follows from gµνgνρ = δ
µ

ρ , and hence 0 = δ (gµνgνρ) = (δgµν)gνρ +gµνdνρ .

The key step in the proof of (5.11) -(5.12) is the relation

δΓ
ρ

µν = 1
2(∇µdρ

ν +∇νdρ

µ −∇
ρdµν), (5.14)

as can be showed by a lengthy computation, but also by the following instructive trick:

(a) First note that although the coefficients Γ
ρ

µν do not form the components of a ten-
sor, their variation δΓ

ρ

µν does. This is true far more generally: if ∇ and ∇̃ are
connections on a vector bundle E, then (∇X − ∇̃X)s is C∞(M)-linear in s ∈ Γ(E)
(unlike ∇X s and ∇̃X s), since the spoiler (X f )s in the Leibniz rule (2.45) drops
out of the difference. As a case in point, let ∇ be the Levi-Civita connection for
a given metric g and let ∇̃ be the one for some other metric g̃. We then have a
tensor Γ̂ ∈ X(2,1)(M), defined by Γ̂(X ,Y,θ) = θ(∇XY − ∇̃XY ), whose connection
coefficients are Γ

ρ

µν − Γ̃
ρ

µν , cf. (2.32). In particular, we make take g̃ = gs, and
since δΓ

ρ

µν(g) = lims→0(Γ
ρ

µν(gs)− Γ
ρ

µν(g))/s, we may conclude that the coeffi-
cients δΓ

ρ

µν form the components of a tensor δΓ.

(b) Let σ and τ be tensors of the same type, say (1,1) Then σ = τ is true iff for each
x ∈M one has σν

µ (x) = τν
µ (x) in just one specific coordinate system (xµ) defined on

some nbhd U of x, which system may even depend on x. For in that case we have
σx(∂µ ,dxν) = τx(∂µ ,dxν), and so, by C∞(M)-linearity of σ and τ in its arguments,
σ(X ,θ) = τ(X ,θ), where we write X = X µ∂µ and θ = θνdxν as usual, for some
X µ ∈C∞(U) and θν ∈C∞(U). And similarly for tensors of any type (k, l).

(c) It therefore suffices to verify (5.14) in geodesic normal coordinates, where at x = x0
we have ∇ = ∂ , cf. (3.53). In GNC one does not even need (5.13), since δgρσ in
(3.12) multiplies terms that vanish at x0, and hence (5.14) is almost trivial.

Similarly, noting that in GNC the variation δRµν only employs the first two terms in
(5.10), in which δ (Γ

ρ

µν ,ρ) = ∂ρδΓ
ρ

µν (etc.) can be computed from (5.14), one obtains

δRµν = 1
2(∇ρ∇µdρ

ν +∇ρ∇νdρ

µ −∇µ∇νdρ

ρ −∇
ρ

∇ρdµν), (5.15)

where we note that the third term is symmetric in µ and ν because of (3.10) and (3.24).
Contraction with gµν then makes the first two terms identical to each other, and similarly,
the last two, and immediately leads to (5.11) - (5.12).
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5. The computation of δ
√
−g is based on the relation ∂g/∂gµν = gµνg,82 which implies

δ
√
−g =

∂
√
−g

∂gµν

dµν =− 1
2
√
−g

∂g
∂gµν

dµν = 1
2

√
−ggµνdµν . (5.16)

6. Since we already know δgµν from (5.13), we are finally in a position to compute:

S′G(g) =
dSG(gs)

ds
(s = 0) =

∫
M

d4xδ (
√
−ggµνRµν)

=
∫

M
d4x [(δ

√
−g)gµνRµν +

√
−g(δgµν)Rµν +

√
−ggµν

δRµν ]

=
∫

M
d4x
√
−g( 1

2gµνR−Rµν)dµν +
∫

∂M
d3~σ µ(∇νdµν −∇µdν

ν )

=
∫

M
d4x
√
−g(Rµν − 1

2gµνR)δgµν , (5.17)

where we used (5.13) to obtain the last term, and assume hat dµν has compact support: if
∂M = /0 this immediately gives the last line, and if not, dµν should vanish on ∂M.83

If there were no matter in the Universe, requiring S′G(g) = 0 for arbitrary variations dµν

(or, equivalently, δgµν ) therefore already gives us the vacuum Einstein equations

Rµν − 1
2gµνR = 0. (5.18)

7. It was a fact of great importance to Einstein that the gravitational action (5.2) is, as he
called it, generally covariant, i.e., invariant under arbitrary coordinate transformations.
We would now rather say that SG(g) is invariant under (orientation-preserving) diffeo-
morphisms, so if we consider special variations for which gs = ϕ∗s g, where ϕs is a one-
parameter group of diffeomorphisms of M arising as the flow of a vector field X ∈ X(M)
having compact support (in which case it is complete), we have SG(ϕ

∗g) = SG(g),84 and
hence S′G(g) = 0 for any metric g (i.e., whether or not S′G(g) = 0 for arbitrary variations).
On the other hand, as a special case of (1.57), for the above variations gs = ϕ∗s g we have

dgs

ds
(s = 0) = LX g, (5.19)

and for these specific variations we therefore have dµν = ∇µXν +∇νXµ , where we used
(2.62). Using the notation (3.20), as well as the symmetry of Gµν , we therefore have

0 = S′G(g) =−
∫

M
d4x
√
−gGµν(∇µXν +∇νXµ)

= 2
∫

M
d4x
√
−g(∇µGµν)Xν −2

∫
M

d4x
√
−g∇µ(GµνXν). (5.20)

As in (5.17) the last term is a boundary integral, which vanishes if X has compact support.
The first term must vanish for arbitrary X , which recovers the Bianchi identity (3.21).

82This follows from linear algebra: ∂g/∂gµν = mµν , i.e. the minor = cofactor of gµν , and gµν = mνµ/g.
83To be honest, we have not even defined manifolds with boundary . . .
84In the notation of the previous footnotes, we have SG(g) =

∫
M ωgRg, where we have now explicitly indicated

the g-dependence of ω and R. Then ϕ∗ωg = ωϕ∗g and ϕ∗Rg = Rϕ∗g, so that ωϕ∗gRϕ∗g = ϕ∗ωgϕ∗Rg = ϕ∗(ωgRg).
For any top-dimensional form α ∈Ωn(M) (with compact support) one has

∫
M ϕ∗α =

∫
M α , so we may compute

SG(ϕ
∗g) =

∫
M

ωϕ∗gRϕ∗g =
∫

M
ϕ
∗(ωgRg) =

∫
M

ωgRg = SG(g).
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5.2 The energy-momentum tensor
The left-hand side of the Einstein equation (5.1) describes the geometry of space-time. The
right-hand side Tµν (times 8π), called the energy-momentum tensor, describes the matter con-
tent of the universe. The first thing one infers from (5.1) is that T ∈ X(2,0)(M) has to satisfy

Tµν = Tνµ , (5.21)

or T (X ,Y ) = T (Y,X). This makes index raising unambiguous, so that we may freely write T µ

ν

for either gµρTρν or gµρTνρ . As a case in point, the physical interpretation of Tµν is that T µ

ν ċν

is the energy-momentum four-vector of matter, relative to an object (sometimes mistakenly
described as an “observer”, as if there were such things throughout the universe!) moving along
a timelike (or even null) curve c. We will usually work in the setting of §3.7, so that u = ċ is
a timelike unit vector normalized by (3.115), interpreted as the four-velocity of an “observer”
(sic) moving along with whatever matter is described by T . In that case,

E = T (u,u) = Tµνuµuν (5.22)

is the (relative) energy density of the matter. Similarly, one has a (covariant) momentum density

Pµ =−hµ

ν T ν
ρ uρ , (5.23)

cf. (3.122), which is orthogonal to u, i.e., g(P,u) = 0. The fully orthogonal projection of T , viz.

Sµν = hρ

µhσ
ν Tρσ , (5.24)

is the stress tensor (of the given matter): if X and Y are spacelike unit vectors orthogonal to u,
then S(X ,Y ) is the force exerted by the matter in the direction X on the spacelike unit surface
element normal to Y (and vice versa, since S(X ,Y ) = S(Y,X)). This gives the decomposition

Tµν = Sµν +Pµuν +Pνuµ +Euµuν . (5.25)

Since the Einstein equations may be rewritten as

Rµν = 8π(Tµν − 1
2gµνT ), (5.26)

where T = T µ

µ = gµνTµν is the trace of T , it is often useful to know that, as implied by (5.25),

T = S−E, (5.27)

where S = gµνSµν is purely spatial, i.e. S = ∑
3
i=1 S(ei,ei) for some o.n.b. (ei) orthogonal to u.

For example, we may now rewrite the curvature condition (3.134) in Hawking’s Theorem 17 as

E ≥−S. (5.28)

More generally, the strong energy condition (SEC) requires for any timelike vector field ξ that

T (ξ ,ξ ) = Tµνξ
µ

ξ
ν ≥ 1

2gµνξ
µ

ξ
νT = 1

2g(ξ ,ξ )T. (5.29)

Since the trace T may well be negative, this strengthens the weak energy condition (WEC)

T (ξ ,ξ )≥ 0. (5.30)
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For ξ = u, this just means E ≥ 0. To complete this list of energy conditions, we also mention
the (strengthened) dominant energy condition ((S)DEC), which requires (5.30) and T µ

ν ξ ν to
be causal (timelike, provided Tµν 6= 0). We also have the fundamental conservation law

∇µT µ

ν = 0, (5.31)

which follows either from the Bianchi identity (3.21) and Einstein’s equation (5.1), or from an
argument like the one in §5.1.7, provided T µ

ν can be derived from an action principle, see below.

Proposition 18 Suppose a symmetric tensor Tµν satisfies DEC and and (5.31). If S ⊂M is an
achronal set on which Tµν = 0, then Tµν also vanishes on D(S), cf. (4.17).

This is in fact a very hard result (see Hawking & Ellis, §4.3 for an equivalent claim).85 To see
SDEC in action, we mention another difficult result, making an insight of Einstein’s rigorous:86

Proposition 19 Suppose a symmetric tensor Tµν satisfies SDEC and and (5.31). Let c : I→M
be a curve such that Tµν = 0 outside any nbhd of c(I) but Tµν(c(t)) 6= 0 for some t ∈ I. Then c
can be reparametrized (if necessary) so as to become a timelike geodesic, cf. (2.40)

The idea is that Tµν describes a point-like “test-particle”, which moves under the influence of
gravity but does not act as a source. Note that the Einstein equations (5.1) are not even assumed!

A much simpler result can be derived for so-called dust, with energy-momentum tensor

Tµν = ρuµuν , (5.32)

where ρ ∈C∞(M) is the mass density and u is as above, including (3.115). Eq. (5.31) gives

∇µ(ρuµ) ·u+ρ∇uu = 0. (5.33)

Since g(u,∇uu) = 0 because of (5.31), contraction with u yields two independent conditions

∇µ(ρuµ) = 0; (5.34)
∇uu = 0, (5.35)

of which the first is a conservation law and the second is just the geodesic equation for u. Eq.
(5.32) is a special case of the energy-momentum tensor of a perfect fluid, which is given by

Tµν = (ε + p)uµuν + pgµν = εuµuν + phµν , (5.36)

where the energy density ε is related by the pressure density p through some equation of state,
such as p = 0 (dust, as above) or p = 1

3ε (ultrarelativistic fluid). Eq. (5.31) now gives

(ε + p)∇µuµ +u(ε) = 0; (5.37)
(ε + p)∇uuµ +hµν

∂ν p = 0, (5.38)

called the (relativistic) Euler equations. The quantities (5.22) - (5.24) are obviously given by

E = ε; (5.39)
P = 0; (5.40)

Sµν = phµν , (5.41)

so that S = 3p and T = 3p−ε . The energy conditions then come down to (nontrivial exercise!):
85Our formulation of Proposition 18 follows Malament, Prop. 2.5.1.
86See Geroch & Jang, Motion of a body in general relativity, J. Math. Phys. 16, 65–67 (1975).
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• SEC holds iff ε + p≥ 0 and ε +3p≥ 0;

• WEC holds iff ε + p≥ 0 and ε ≥ 0;

• DEC and SDEC coincide in the case of (5.36) and both hold iff ε ≥ |p|.

Except for fluids,87 most energy-momentum tensors of interest to GR are derived from an action
principle, like the Einstein equations in which they appear. The idea is that the “coupling” of
gravity to matter is described by a functional SM(g,ϕ), where ϕ generically stands for all matter
fields, so that, analogously to (5.17), one has

S′M(g,ϕ) =− 1
2

∫
M

d4x
√
−gTµνδgµν , (5.42)

where the prime has the same meaning as in §5.1 (varying the metric), or, as physicists write,88

Tµν =−2
δSM(g,ϕ)

δgµν
. (5.43)

In this notation, the Einstein equation (5.1) then simply states that

δ

δgµν
(SG(g)+16πSM(g,ϕ)) = 0. (5.44)

This equation for the metric gµν is to be supplemented with equations for the field(s), viz.89

δSM(g,ϕ)
δϕ

= 0. (5.45)

The simplest example is a scalar field ϕ ∈C∞(M), whose action functional is

SM(g,ϕ) =− 1
2

∫
M

d4x
√
−g(gµν

∂µϕ∂νϕ +V (ϕ))≡− 1
2

∫
M
(g(∇ϕ,∇ϕ)+V (ϕ)), (5.46)

where V : R→ R is a “potential” (which for a free field equals V (ϕ) = 1
2m2ϕ2). The computa-

tion (5.17), with Rµν replaced by ∂µϕ∂νϕ (so that there isn’t even a boundary term) gives

Tµν = ∂µϕ∂νϕ− 1
2gµν(g(∇ϕ,∇ϕ)+V (ϕ)). (5.47)

Another case of interest is the electromagnetic field A ∈Ω1(M), with F = dA ∈Ω2(M), or

Fµν = ∂µAν −∂νAµ = ∇µAν −∇νAµ , (5.48)

where the last equality follows because ∇ is torsion-free. The (free) action is

SM(g,A) =− 1
4

∫
M

d4x
√
−ggµρgνσ FµνFρσ ≡− 1

4

∫
M

F2, (5.49)

with F2 = FµνFµν , from which a brief computation yields the energy-momentum tensor

Tµν = gρσ FµρFνσ − 1
4gµνF2, (5.50)

where the last term comes from the variation of
√
−g and the first one comes from δ (gµρgνσ ).

87Even for ideal fluids one has a (constrained) action principle due to A.H. Taub, but it is extremely contrived.
88In order to obtain the correct Einstein equations one is, of course, free to vary prefactors and even signs in

(5.43) and (5.44), but our choice matches the convention for Tµν in quantum field theory (with respect to which
one should actually multiply Newton’s constant G with the factor 16π in (5.44) and with 8π in (5.1).

89We might as well write these as δ (SG(g)+SM(g,ϕ))/δϕ = 0, since SG(g) is independent of ϕ .
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5.3 Electromagnetism: gauge invariance and constraints
We elaborate on electromagnetism, since it allows us to make an important conceptual point
with regard to the Einstein equations. First, the equation of motion for Aµ , obtained by varying
Aµ (but not gµν ) in (5.49), or indeed in any action SM(g,A) =

∫
M d4x

√
−gL (A,dA), is

δSM(g,A)
δAµ

=
∂L

∂Aµ

−∇ν

∂L

∂ (∂νAµ)
= 0, (5.51)

where (compared to the usual Euler–Lagrange equation in flat space) the covariant derivative
∇µ appears because of (5.8). For the specific action (5.49) this immediately yields

∇νFνµ = 0, (5.52)

which may, more intrinsically,90 be written in terms of the Hodge dual as d ∗F = 0 (similarly,
the other half of the Maxwell equations is dF = 0, which is automatic given F = dA), or as

�Aµ −∇µ(∇νAν) = 0, (5.53)

where � = gρσ ∇ρ∇σ is the covariant d’Alembertian. To make our point it is enough to work
in Minkowski space-time, in which ∇µ = ∂µ , A0 =−A0, Ai = Ai (i = 1,2,3), and

�=−∂
2
t +∆. (5.54)

In parallel with the discussion in §5.1.7, the action (5.49) is gauge invariant, in that we have
SM(A+dλ ) = SM(A), say for all λ ∈C∞

c (R4). This invariance under δAµ = ∂µλ yields

0 =
∫
R4

d4x∂νFνµ
∂µλ =−

∫
R4

d4xλ∂µ∂νFνµ (5.55)

for all λ ∈C∞
c (R4), which gives the Bianchi identity for electromagnetism, i.e.

∂µ∂νFνµ = 0. (5.56)

This is so obvious (in view of the antisymmetry of F) as to be disappointing, but it must be
stressed that (5.56) is similar to (3.21) in being an identity, which holds irrespective of the
equations of motion. See below for its thrust! Another consequence of gauge invariance is that

the equations of motion (5.53) are simultaneously underdetermined and overdetermined:

• They are underdetermined in that: if A solves (5.53), then so does A+dλ , λ ∈C∞
c (R4);

• They are overdetermined in that the initial values are constrained (i.e. cannot be arbitrary).

The first point is immediate from (5.53). For the second, since (5.53) looks hyperbolic we set
up a Cauchy problem and give initial data Aµ(~x) and Ȧµ(~x) at x0 ≡ t = 0, where~x = (x1,x2,x3).
However, defining the electric field in covariant form by Eµ = Fµνnν , or with respect to the
4-velocity u = (1,0,0,0), by Ei = Fi0 = ∂iA0−∂0Ai (i = 1,2,3), eq. (5.52) for µ = 0 reads

C ≡ ∂
νFν0 = ∂iFi0 = ∇ ·~E =�A0−∂0(∂νAν) = ∆A0−∂0(∇ ·~A) = 0. (5.57)

90In coordinates the Hodge dual of F is ∗Fµν = 1
2 gαρ gβσ ερσ µν Fαβ , where ε is the Levi-Civita tensor.
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This is not an evolution equation but a constraint on the initial data, called the Gauß law. To
address the first problem we pick a gauge condition, which we take to be the Lorentz gauge.

G≡ ∂νAν = 0. (5.58)

Preparing for GR, we introduce the notation Rµ = ∂ νFνµ , so that (5.52) is Rµ = 0, and also

RL
µ ≡ Rµ +∂µG =�Aµ , (5.59)

so that instead of the awkward equations of motion (5.52) or (5.53) we would like to put

RL
µ = 0. (5.60)

In order to solve (5.52) or (5.53) via (5.60), we now proceed as follows:

1. Solve the wave equation (5.60) for each µ = 0,1,2,3 (in fact the case µ = 0 will be trivial,
see below), subject to initial data Aµ(~x) and Ȧµ(~x) at t = 0 that respect both the constraint

C(0,~x) = ∆A0(~x)−∂iȦi(~x) = 0, (5.61)

and the gauge condition

G(0,~x)≡ ∂i Ai(~x)− Ȧ0(~x) = 0. (5.62)

To show that this can indeed be done, first take A0(~x) = Ȧ0(~x) = 0 (which, incidentally,
solves (5.60) by A0(x) = 0), so that (5.61) and (5.62) become ∂iȦi = 0 and ∂iAi = 0,
respectively. For example, take Ȧi(~x) = 0 but Ai(~x) 6= 0 arbitrary, and solve the elliptic
equation ∆λ =−∂i Ai for λ . Replacing Ai by Ai +∂iλ then satisfies (5.62).

2. From the definitions (5.61) and (5.62) of C and G, respectively, we immediately obtain

Ġ =−C+RL
0 . (5.63)

From the Bianchi identity (5.56), i.e. ∂µ∂ν∂ µAν = ∂µ∂ν∂ νAµ (overkill!) we find

�G = ∂
µRL

µ . (5.64)

Eqs. (5.60), (5.61), and (5.63) imply Ġ(t = 0,~x) = 0. Eqs. (5.64) and (5.60) also imply

�G(x) = 0. (5.65)

With the initial conditions G(t = 0,~x) = 0, this implies G(x) = 0 for all x ∈ R4 by the
standard theory of the wave equation. This is called the propagation of the gauge.

3. Similarly for the constraint (5.57). Using the Bianchi identity (5.56), we obtain

Ċ =−∂0∂νFν0 =−∂µ∂νFνµ +∂i∂νFν i = ∂i∂νFν i = ∂iRi = ∂i(RL
i −∂iG). (5.66)

Assuming the initial value (5.61) as well as either the ‘gauged’ equations of motions
(5.60) for µ = i and the gauge condition and (5.62), which implied G = 0, or the dynami-
cal Maxwell equations (5.52) for µ = i, eq. (5.66) implies Ċ(x) = 0 for all x, so that, once
again given (5.61), we obtain C(x) = 0 altogether, i.e. propagation of the constraint.

In conclusion, Maxwell’s equations (5.52) or (5.53) may be solved by solving the ‘gauged’
Maxwell equations (5.60) subject to initial data Aµ(t = 0,~x) and Ȧµ(t = 0,~x) that respect both
the (initial data) constraint (5.61) and the (initial data) gauge condition (5.62). Indeed, as we
have seen, together with (5.60) these two conditions on the initial data guarantee that both the
constraint (5.57) and the gauge condition (5.58) hold everywhere, and the latter implies that
the ‘gauged’ equations (5.60) actually coincide with the original ones, i.e. (5.52) or (5.53).
In particular, since (5.60) is hyperbolic, the usual theory of the wave equation shows that the
solution is unique (given the initial conditions). The case of GR will be quite similar!
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5.4 General relativity: diffeomorphism invariance and constraints
To start, Einstein’s equations (5.1) have two key features analogous to Maxwell’s equations:

• They are underdetermined in that: if a metric g solves (5.1), then so does ψ∗g, for any
diffeomorphism ψ of M (not necessarily an isometry, for which case the claim is trivial!).

• They are overdetermined in that the initial values are constrained (i.e. cannot be arbitrary).

The first point was already made in connection with the action principle, cf. §5.1.7, but of course
it also follows from Einstein equations (5.1) themselves, which free of coordinates read

G(g) = 8πT (g,ϕ), (5.67)

where G is the Einstein tensor (3.20). From (1.53) with ψ  ψ−1, (2.44), (3.6) and (3.8) we
obtain R(ψ∗g) = ψ∗R(g) (where we explicitly denote the dependence of the Riemann tensor R
on the metric g), and similarly for the Ricci tensor, the Ricci scalar, and the Einstein tensor, i.e.

G(ψ∗g) = ψ
∗G(g). (5.68)

Similarly, the energy-momentum tensor T (g,ϕ) should be constructed in such a way that

T (ψ∗g,ψ∗ϕ) = ψ
∗T (g,ϕ), (5.69)

and hence Einstein’s equation for g, i.e., G(g)−8πT (g,ϕ) = 0 implies

G(ψ∗g)−8πT (ψ∗g,ψ∗ϕ) = ψ
∗(G(g)−8πT (g,ϕ)) = ψ

∗0 = 0. (5.70)

In what follows we just discuss the vacuum case (T = 0), since the general case is similar.91

Our discussion takes place in coordinates (which is typical for PDE aspects of the Einstein
equations), but in the next chapter we will also develop a purely geometric view of the situation.

From (3.11), (3.12), and (3.18) we easily obtain, in any coordinate system,

Rµν =− 1
2gρσ gµν ,ρσ − 1

2gρσ (gρσ ,µν −gσν ,µρ −gµρ,σν)+F(g,∂g), (5.71)

where F(g,∂g) contains only first derivatives of the metric.92 For the Einstein tensor this gives

Gµν =− 1
2gρσ (gµν ,ρσ +gρσ ,µν −gσν ,µρ −gµρ,σν −gµνgαβ (gαβ ,ρσ −gσα,ρβ ))+ F̃(g,∂g).

(5.72)

Although this point will be studied in great detail in the next two chapters, we now point out
(though in a somewhat superficial and coordinate-dependent way) that the ten (vacuum) Einstein
equations Gµν = 0 (and more generally the full equations Gµν = 8πTµν ) come in two groups:

• The six dynamical equations Gi j = 0, where i, j = 1,2,3 as usual;

• The four constraints Cµ ≡ Gµ0 = 0, where µ = 0,1,2,3.

91The discussion revolves around second derivatives of gµν in the Einstein equation, which are absent in Tµν .
92We will later see that in the relevant PDE theory only the highest derivatives of the unknown functions count.
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This can be seen from (5.72), using a coordinate system where gµ0 = 0 (so that g00g00 = 1):93

none of the constraints contain second-order derivatives of the components of the metric.
As in (5.53), the first term in (5.71), which is essentially�gµν , is favourable towards a good

PDE theory (as we will see, it makes the spatial components of g satisfy a hyperbolic evolution
equation), but the other three terms, which are the anlogue of the second term in (5.53), ruin this
and hence should be removed by a clever choice of coordinates (which makes them disappear).

The simplest way to do this (introduced by Choquet-Bruhat) is to use the wave gauge94

W µ ≡�gxµ = 0, (5.73)

where the covariant D’Alembertian �g is defined, on any tensor, by

�g = gρσ
∇ρ∇σ . (5.74)

In (5.73) the coordinate functions xµ are scalar functions,95, so that, ∂σ xµ being a 1-form,

W µ =�gxµ = gρσ
∇ρ∂σ xµ = gρσ (∂ρ∂σ −Γ

ν
ρσ ∂ν)xµ = gρσ (∂ρδ

µ

σ −Γ
ν
ρσ δ

µ

ν )

=−gρσ
Γ

µ

ρσ . (5.75)

Using (3.12), this yields a key result, where H(g,∂g) has a similar meaning as F(g,∂g):

gµρ∂νW ρ +gνρ∂µW ρ = gρσ (gρσ ,µν −gσν ,µρ −gµρ,σν)+H(g,∂g). (5.76)

Therefore, analogously to (5.60), the wave-gauged (or reduced) vacuum Einstein equations

RW
µν ≡ Rµν + 1

2(gµρ∂νW ρ +gνρ∂µW ρ) = 0, (5.77)

take the desirable (quasi-linear hyperbolic) form (starting with the D’Alembertian):

RW
µν =− 1

2gρσ gµν ,ρσ + I(g,∂g) = 0. (5.78)

From (5.77) we also define the reduced Einstein tensor

GW
µν = RW

µν − 1
2gµνRW = Gµν + 1

2(gµρ∂νW ρ +gνρ∂µW ρ −gµν∂ρW ρ), (5.79)

so that, provided the metric solves (5.77), the Einstein tensor is related to the wave gauge by

Gµν = 1
2(gµν∂ρW ρ −gµρ∂νW ρ −gνρ∂µW ρ). (5.80)

In particular, the four constraints Cµ are linear combinations of the four time-derivatives
Ẇ µ and of the W µ themselves and their spatial derivatives. Conversely, the Ẇ µ are linear
combinations of the constraints Cµ and the W µ and their spatial derivatives. For example, in
coordinates where (at t = 0) one has g00 =−1 and g0i = 0, these linear relations are simply

C0 = 1
2(Ẇ

0−∂ jW j); (5.81)

Ci = 1
2(∂iW 0−gi jẆ j). (5.82)

93This restriction is only necessary to see that G00 = 0 is a constraint.
94Coordinates satisfying (5.73) are often called harmonic or wave coordinates. See Choquet-Bruhat), §VI.7.
95As opposed to components of a 4-vector. Choquet-Bruhat even writes x(µ) as a warning.

60



So if we impose both the constraints and the gauge conditions at t = 0, i.e.,

Cµ(t = 0,~x) = 0; (5.83)
W µ(t = 0,~x) = 0 (5.84)

and also assume the reduced Einstein equations (5.77), then automatically,

Ẇ µ(t = 0,~x) = 0. (5.85)

Parallel to step 2 for electromagnetism, we apply the Bianchi identities ∇µGµν = 0, i.e.

gµρ(∂ρGµν −Γ
σ
ρµGσν −Γ

σ
ρνGµσ ) = 0, (5.86)

to (5.80). This gives a hyperbolic quasi-linear PDE for W ρ whose principal term is ∂ µ∂µW ρ ,
since to leading order the first two terms on the right-hand side of (5.80) cancel out. Given the
initial conditions (5.84) and (5.85), by quasi-linear hyperbolic PDE theory this implies

W µ(x) = 0 (5.87)

altogether; the underlying assumptions were the reduced Einstein equations (5.77) or (5.79) and
the initial value conditions (5.83) - (5.84).

Step 3 for electromagnetism also applies here: once again, the Bianchi identities, in full:
show that the constraints Cµ satisfy a linear homogeneous first-order symmetric system of

of PDE’s, provided we assume either the reduced Einstein equations GW
i j = 0 and the gauge

condition as above, or, equivalently, the original Einstein equations Gi j = 0 (which would spoil
homogeneity). If we assume Cµ = 0 at t = 0, the unique solution of this system is Cµ(x) = 0
at all x. So just as for the gauge condition, assuming the constraints at t = 0 and the reduced
Einstein equations (of which this time only the spatial and hence dynamical part is needed)
guarantees that the constraints are always satisfied. In sum, if we assume:

1. The constraints Cµ = 0 at t = 0;

2. The wave gauge condition W µ = 0 at t = 0;

3. The (quasi-linear hyperbolic) reduced Einstein equations RW
µν = 0 or GW

µν = 0,

then the full (vacuum) Einstein equations Gµν = 0 or Rµν = 0 hold (at least locally).
We will make this more precise in the final chapter on quasi-linear hyperbolic PDE’s.
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6 Submanifolds
Differential geometry started with the study of two-dimensional submanifolds S of R3 (i.e.
surfaces) by Gauß, and in GR a crucial role will be played by (spacelike) three-dimensional
submanifolds S of a four-dimensional Lorentzian manifold M. This leads to an interplay be-
tween the intrinsic geometric properties of S and the additional (‘extrinsic’) geometry obtained
from its embedding S ↪→ R3 or S ↪→M. This interplay was already analyzed by Gauß himself.

6.1 Basic definitions
One may define a submanifold S of M (where M is any manifold) in two equivalent ways:
either as a subset S ⊂M of M with certain (good) properties, or as a manifold in its own right
(a concept already defined, of course) plus an explicit map F : S→M with certain properties.
The former leads to the latter by considering the inclusion map S ↪→M, whereas the latter leads
to the former by identifying S with its image F(S)⊂M (which may lead to some confusion!).

1. Let S be a manifold. A map F : S→M defines a submanifold F(S)⊂M provided:96

(a) F is a homeomorphism onto its image F(S) (in particular, F is injective);

(b) F ′u : TuS→ TF(u)M is injective for all u ∈ S (equivalently, has rank equal to dim(S)).

2. A subset S ⊂ Rn is a k-dimensional submanifold of Rn iff each u ∈ S has a nbhd U ∈
O(Rn) in Rn such that S∩U is homeomorphic to some W ∈ O(Rk) via ξ : W → Rn (i.e.
S∩U ∼= ξ (W )), for which in addition each map ξ ′y : TyRk→ Tξ (y)Rn is injective (y ∈W ).

Subsequently, we say that S⊂M is a k-dimensional submanifold of a manifold M (where
dim(M) = n) iff for each u ∈ S and each chart (for M) ϕ : U → V ⊂ Rn with x ∈U , the
image ϕ(S∩U) is a k-dimensional submanifold of Rn (in the sense just defined).

3. These definitions are equivalent in the way just mentioned (see e.g. Andrews, Prop. 3.2.1).

The main point is to exclude unwanted things like α ⊂ R2 (intersection) or ∠⊂ R2 (corner).

6.2 Classical theory of surfaces
The classical theory of surfaces Σ⊂R3 was largely based on local constructions. Let U ⊂R2 be
open and let F : U → R3 satisfy the two conditions above, with image Σ = F(U). The standard
coordinates u = (u1,u2) on U induce the same coordinates on Σ (i.e. the point F(u1,u2) ∈ Σ⊂
R3 is said to have coordinates (u2,u2), too) and come with three vector fields on Σ, defined by

~x1 = F ′(∂/∂u1); (6.1)

~x2 = F ′(∂/∂u2); (6.2)

~N =
~x1×~x2

‖~x1×~x2‖
, (6.3)

where injectivity of F ′ implies that the denominator in (6.3) is nonzero. For the same reason,
the triple (~x1,~x2,~N) forms a basis of TuR3 ∼= R3, whilst (~x1,~x2) is a basis of TF(u)Σ, u ∈U .

96Recall that F is smooth. Technically, we define an embedded submanifold. A weaker notion, called an
immersed submanifold, in which the first condition is dropped, makes sense but wil not be used in these notes.
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We let early Greek alphabet indices α,β etc. run through 1, 2, and also i = 1,2,3, so that
F i : U → R are the coordinates of F , regarded as functions of (u1,u2). Then (6.1) - (6.2) is just

xi
α = ∂F i/∂uα ≡ ∂αF i (α = 1,2; i = 1, . . . ,3), (6.4)

In the 19th century two tensors on Σ were identified (to be used in a very similar way in GR):

1. The first fundamental form g̃ is the metric induced by the Euclidean metric δ on R3, i.e.

g̃ = F∗δ , (6.5)

where F∗ ≡ F(2,0) : X(2,0)(R3)→ X(2,0)(Σ) is the pullback of F : U → R3 defined after
(1.52). This simply means that g̃ is the restriction of δ to Σ⊂ R3, that is,

g̃(X ,Y ) = δ (X ,Y ) = 〈X ,Y 〉, (6.6)

where 〈, ·, ·,〉 is the standard inner product in R3, and X ,Y ∈X(Σ). In the (u1,u2) coordi-
nates on Σ, the components of g̃ are given by

g̃αβ = g̃(∂α ,∂β ) = 〈~xα ,~xβ 〉, (6.7)

where we collectively write α and β for u and v. By construction,

g̃αβ =
3

∑
i=1

∂F i

∂uα
· ∂F i

∂uβ
, (6.8)

from which we see that although the (∂1,∂2) basis is orthonormal in U ⊂ R2, its push-
forward to Σ may no longer be orthonormal in R3 (this depends on F).

2. To define the second fundamental form k̃, we first observe that for vector field X ∈X(Σ)
is also a vector field on R3 (restricted to Σ), so that along Σ we may define the 3-vectors

∇X~N = Xα ∂~N
∂uα

, (6.9)

where X =Xα~xα ; if Xu≡XF(u) is tangent to a curve F(γ1(t),γ2(t)), then Xα = dγα/dt|t=0;
we may then also write ∇X~N(u,v) = d~N(γ1(t),γ2(t))/dt|t=0 (the notation ∇X is used be-
cause from a higher perspective one uses covariant differentiation with respect to the
Levi-Civita connection defined by the flat metric δ on R3). One could also simply say

∇X Ni = XNi = Xα
∂αNi (i = 1,2,3), (6.10)

which is (2.31) with vanishing Christoffel symbols (in R3). Since 〈~N,~N〉= 1, we have

0 = X(1Σ) = X(〈~N,~N〉) = 〈∇X~N,~N〉+ 〈~N,∇X~N〉= 2〈∇X~N,~N〉, (6.11)

so that ∇X~N is orthogonal to ~N (in R3), and hence it must be tangent to Σ. In other words,
we have the Weingarten map (with a minus sign for historical reasons)

W : T Σ→ T Σ; (6.12)

X 7→ −∇X~N. (6.13)
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Strictly speaking we should write W(u,v) : T(u,v)Σ→ T(u,v)Σ, etc. Finally, we define k̃ by

k̃(X ,Y ) = g̃(W (X),Y ) =−g̃(∇X~N,Y ) =−〈∇X~N,Y 〉. (6.14)

It is easy to show that the second fundamental form thus defined is symmetric, i.e.,

k̃(X ,Y ) = k̃(Y,X), (6.15)

or 〈∇Y~N,X〉 = 〈∇X~N〉. To see this, note that 〈~N,X〉 = 0 (since X and Y are tangent to Σ

and hence orthogonal to ~N), hence 0 = Y (〈~N,X〉) = 〈∇Y~N,X〉+ 〈~N,∇Y X〉. Since ∇ (as
the flat Levi-Civita connection on R3) is torsion-free, we have ∇Y X = ∇XY − [X ,Y ], so

〈∇Y~N,X〉=−〈~N,∇Y X〉=−〈~N,∇XY 〉+ 〈~N, [X ,Y ]〉=−〈~N,∇XY 〉= 〈∇X~N,Y 〉, (6.16)

because 〈~N, [X ,Y ]〉 = 0 (because [X ,Y ] is tangent to Σ whenever X and Y are). This
computation also yields an alterative expression for k̃, which is manifestly symmetric:

k̃αβ = 〈~xαβ ,~N〉; (6.17)

~xαβ ≡ ∂β~xα ; (6.18)

in terms of F : U → R3, the components of the vector~xαβ are xi
αβ

= ∂ 2F i/∂uα∂uβ .

3. Many computations in the theory of surfaces use the Gauß–Weingarten equations

~xαβ = Γ̃
γ

αβ
~xγ + k̃αβ

~N; (6.19)

∂α
~N =−k̃β

α~xβ , (6.20)

where the Γ̃
γ

αβ
are the Christoffel symbols (as originally introduced!) associated to the

metric g̃ on Σ, and k̃β

α = g̃βγ k̃αγ , where (g̃βγ) is the inverse matrix to (g̃βγ), as usual.
Weingarten’s eq. (6.20) is just a restatement of (6.14). Gauß’s eq. (6.19) is simply the
expansion of the 3-vectors ~xαβ in terms of the basis (~xu,~xv,~N). The specific form k̃αβ

of the coefficient of ~N follows from (6.17). To derive the coefficient of~xγ , let us assume
(6.19) for initially unknown coefficients Γ̃

γ

αβ
. We then obtain

〈~xγ ,~xαβ 〉= Γ̃
δ

αβ
〈~xγ ,~xδ 〉= g̃γδ Γ̃

δ

αβ
, (6.21)

so that Γ̃
γ

αβ
= gγδ 〈~xδ ,~xαβ 〉. The relation (2.23) then follows from (6.18), which yields

2〈~xδ ,~xαβ 〉= ∂β 〈~xδ ,~xα〉+∂α〈~xδ ,~xβ 〉−∂δ 〈~xα ,~xβ 〉. (6.22)

4. The classical theory also heavily relies on the Gauß–Codazzi equations

R̃δ

αγβ
= k̃δ

γ k̃αβ − k̃δ

β
k̃αγ ; (6.23)

k̃αβ ,γ + Γ̃
δ

αβ
k̃γδ = k̃αγ,β + Γ̃

δ
αγ k̃βδ , (6.24)

where R̃δ

αγβ
is the Riemann tensor as defined (in terms of the metric g̃ on Σ) in (3.11),

indices are raised with the aid of g̃ as usual (e.g. k̃δ
γ = g̃δβ k̃βγ ), and k̃αγ,β = ∂β k̃αγ .
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The Gauß–Codazzi equations (for g̃ and k̃) follow from the identity

∂γ∂β~xα = ∂β ∂γ~xα , (6.25)

i.e., ∂γ~xαβ = ∂β~xαγ . Indeed, from the Gauß–Weingarten equations one easily finds

~xαβγ −~xαγβ = (R̃δ

αγβ
− k̃δ

γ k̃αβ + k̃δ

β
k̃αγ)~xδ

+(k̃αβ ,γ + Γ̃
δ

αβ
k̃γδ − k̃αγ,β + Γ̃

δ
αγ k̃βδ )~N, (6.26)

so that Gauß’s equation (6.23) is the tangential (to Σ) component of (6.25), whilst Co-
dazzi’s equation (6.24) is its normal component. Eq. (6.23) is especially interesting, since
it relates the intrinsic geometry of Σ (represented by its Riemann curvature tensor) to its
extrinsic geometry (represented by the second fundamental form). In fact, Gauß’s famous
Theorema Egregium easily follows from (6.23). Following Gauß, we define

K = det(W ) = det(k̃)/det(g̃) (Gaußcurvature); (6.27)

H = tr(W ) = tr(g̃−1k̃) = (mean curvature), (6.28)

where W is the Weingarten map (6.12) - (6.13), and k̃ and g̃ are the matrices defined by
(6.7) and (6.17). In terms of the eigenvalues κ1 and κ2 of W we therefore have

K = κ1κ2; (6.29)
H = κ1 +κ2. (6.30)

Then the Theorema Egregium is nothing but the relation (3.27) we already saw.

6.3 Hypersurfaces in arbitrary (semi) Riemannian manifolds
For applications to GR we need a similar theory, in which Σ⊂M is a submanifold of codimen-
sion one of a Lorentzian manifold M, i.e. dim(Σ)=m and dim(M)=m+1≡ n (where m= 3 for
GR); such a submanifold is often called a hypersurface. Without much extra effort, we will de-
velop the theory in both the Riemannian and the Lorentzian case (the general semi-Riemannian
case requires too many adaptations). Thus we assume that M carries either a Riemannian or a
Lorentzian metric g, with associated Levi-Civita connection ∇ on T M, and that Σ carries the
induced metric g̃ ∈ X(2,0)(M̃) defined by the inclusion ι : Σ ↪→M, i.e.

g̃ = ι
∗g, (6.31)

which simply means that g̃x(Xx,Yx) = gx(Xx,Yx) for any Xx,Yx ∈ TxΣ⊂ TxM, with x ∈ Σ. In both
cases, we assume (Σ, g̃) to be a Riemannian manifold in its own right (which in the Lorentzian
case is not automatic and forces Σ to be spacelike). The induced metric g̃ induces an associated
Levi-Civita connection ∇̃ on T Σ, whose relationship with ∇ we will now unearth. The ensuing
Gauß–Weingarten equations require a choice of normal unit vectors Nx ∈ TxM to TxM̃ (i.e.
gx(Nx,Xx) = 0 for all Xx ∈ TxM̃, where x ∈ M̃), generalizing (6.3). In general, there is no
canonical choice of Nx, but any two choices differ by a sign and we assume that we can make a
smooth choice x 7→ Nx throughout M̃.97 The normalization of Nx carries a “timelike” subtlety:

gx(Nx,Nx) = 1 (Riemannian case); (6.32)
gx(Nx,Nx) =−1,(Lorentzian case). (6.33)

97A sufficient condition is that M̃ be connected and simply connected (cf. Kobayashi & Nomizu, Vol. 2, p. 5).
In GR the presence of a time orientation will fix N, which we may require to be future directed.
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Then the orthogonal projection (which is independent of the choice of Nx) onto TxM̃ is

πx : TxM→ TxM̃ ⊂ TxM (6.34)
πx(Xx) = Xx−gx(Xx,Nx)Nx; (Riemannian case); (6.35)
πx(Xx) = Xx +gx(Xx,Nx)Nx; (Lorentzian case), (6.36)

since one requires πx(Nx) = 0 (and πx(Xx) = Xx if Xx ∈ TxM̃).

1. The key to the entire (metric) theory of hyersurfaces is the result

π(∇XY ) = ∇̃XY (X ,Y ∈ X(M̃)), (6.37)

where the covariant derivative ∇̃XY on the right-hand side is clearly defined (as an element
of X(M̃)), but also the covariant derivative ∇XY in M on the left-hand side is well defined,
even though Y is merely a vector field on M̃ rather than on all of M: as in the comment
preceding (2.35), if X ∈X(M̃) and Y ∈X(M), then the value of ∇XY only depends on the
restriction of Y to M̃ (indeed, it only depends on the values of Y along the flow lines on X ,
which lie in M̃), and so ∇XY is defined (as a vector field on M̃) even when Y ∈ X(M̃).98

To prove (6.37), we write ∇′XY for π(∇XY ), so that (in the Lorentzian case for simplicity)

∇
′
XY = ∇XY +g(∇XY,N)N. (6.38)

We first check that ∇′ is a covariant derivative on X(M̃). Linearity in Y is obvious (since
both g and ∇X are linear), as is rule (2.27). Rule (2.28) follows from the corresponding
rule for ∇ and the property g((X f )Y,N) = (X f )g(Y,N) = 0 (since Y ∈ X(M̃)). To make
the identification ∇′ = ∇̃ we next need to check that ∇′ is torsion-free, which is the case:

∇
′
XY −∇

′
Y X = ∇XY −∇Y X +g(∇XY −∇Y X ,N)N

= [X ,Y ]+g([X ,Y ],N)N
= [X ,Y ], (6.39)

since ∇ (being the Levi-Civita connection on T M) is torsion-free, and [X ,Y ] ∈ X(M̃),
assuming X ,Y ∈ X(M̃), so that g([X ,Y ],N) = 0. Finally, ∇′ should satisfy (2.42), i.e.

X(g̃(Y,Z)) = g̃(∇′XY,Z)+ g̃(Y,∇′X Z) (X ,Y,Z ∈ X(M̃)). (6.40)

This is quite obvious, since for X ,Y,Z ∈ X(M̃) we have

g̃(∇′XY,Z) = g(∇′XY,Z) = g(∇XY +g(∇XY,N)N,Z) = g(∇XY,Z), (6.41)

since g(N,Z) = 0, and so the right-hand side of (6.40) equals g(∇XY,Z)+g(Y,∇X Z). By
(2.42) for ∇ and g, this in turn equals X(g(Y,Z)) = X(g̃(Y,Z)), and we are done.

2. Eq. (6.37) implies the general Gauß–Weingarten equations, where still X ,Y ∈ X(M̃):

∇XY = ∇̃XY + k̃(X ,Y )N (Riemann); (6.42)

∇XY = ∇̃XY − k̃(X ,Y )N (Lorentz); (6.43)
∇X N =−W (X). (6.44)

98In other words, if one insists that ∇X : X(M)→ X(M), one may extend Y ∈ X(M) to any vector field on M
and if X ∈ X(M̃), then ∇XY is independent of the extension.
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Here (6.44) is the definition of the (generalized) Weingarten map Wx : TxM̃→ TxM̃ (as be-
fore, since g(N,N) =±1, we have g(∇X N,N) = 0 and hence ∇X N ∈ T M). Furthermore,
taking the (metric) inner product of (6.42) - (6.43) with N, and using (6.32) - (6.33) as
well as the relation

g(∇XY,N) =−g(Y,∇X N), (6.45)

which is proved in the same way as in the text between (6.15) and (6.16), we obtain

k̃(X ,Y ) = g(W (X),Y ), (6.46)

This once again defines the (generalized) second fundamental form k̃ ∈ X(2,0)(M̃). The
same calculation (6.16) as before shows that k̃ is symmetric, as in (6.15), viz.

k̃(X ,Y ) =−g(∇X N,Y ) = g(N,∇XY ) = g(N,∇Y X) = k̃(Y,X). (6.47)

3. We now derive the general Gauß–Codazzi equations, which, for W,X ,Y,Z ∈ X(M̃), are:

R(W,Z,X ,Y ) = R̃(W,Z,X ,Y )+ k̃(W,Y )k̃(X ,Z)− k̃(W,X)k̃(Y,Z) (Riemann); (6.48)

R(W,Z,X ,Y ) = R̃(W,Z,X ,Y )+ k̃(W,X)k̃(Y,Z)− k̃(W,Y )k̃(X ,Z) (Lorentz); (6.49)

R(N,Z,X ,Y ) = (∇̃X k̃)(Y,Z)− (∇̃Y k̃)(X ,Z), (6.50)

where R ∈ X(3,1)(M) and R̃ ∈ X(3,1)(M̃) are the Riemann curvature tensor for the Levi-
Civita connection ∇ on T M and ∇̃ on T M̃, respectively. The Codazzi relation (6.50) is
the same for the Riemannian and the Lorentzian cases. These equations follow from two
computations, which we perform for the Lorentzian case,99 i.e. using (6.43). The first is:

∇X ∇Y Z = ∇X(∇̃Y Z− k̃(Y,Z)N)

= ∇̃X ∇̃Y Z− k̃(X , ∇̃Y Z)N−X(k̃(Y,Z)) ·N− k̃(Y,Z)∇X N

= ∇̃X ∇̃Y Z +W (X)k̃(Y,Z)− (k̃(X , ∇̃Y Z)+X(k̃(Y,Z)))N. (6.51)

The second computation, which uses torsion-freeness of ∇̃, i.e.

∇̃XY − ∇̃Y X = [X ,Y ], (6.52)

is

∇[X ,Y ]Z = ∇̃[X ,Y ]Z− k̃([X ,Y ],Z)N

= ∇̃[X ,Y ]Z− (k̃(∇̃XY,Z)− k̃(∇̃Y X ,Z))N. (6.53)

The definition (3.6) of curvature, combined with the ‘covariant Leibniz rule’

X(k̃(Y,Z)) = (∇̃X k̃)(Y,Z)+ k̃(∇̃XY,Z)+ k̃(Y, ∇̃XY ), (6.54)

which is a special case of (2.54),100 then yields, after some neat cancellations,

Ω(X ,Y )Z = (∇X ∇Y −∇Y ∇X −∇[X ,Y ])Z

= Ω̃(X ,Y )Z +W (X)k̃(Y,Z)−W (Y )k̃(X ,Z)

+((∇̃Y k̃)(X ,Z)− (∇̃X k̃)(Y,Z))N. (6.55)

Taking the (metric) inner product with W and using (6.46) yields Gauß’s equation (6.49),
whereas the inner product with N and using (6.33) yields Codazzi’s equation (6.50).

99The reader is invited to prove the Riemannian case (6.48) with (6.50) him/herself.
100Recall that unlike k̃, the metric is covariantly constant, i.e. ∇̃X g̃ = 0 for all X ∈ X(M̃), cf. (2.56).
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6.4 Fundamental theorem for hypersurfaces
The preceding material comes to a head in the fundamental theorem for hypersurfaces, which
was proved (by different means) in the 19th century. We discuss the proof in some detail, since
it will turn out to be a good preparation for the 3+1 split of the Einstein equations later on.101

Theorem 20 Let (M̃, g̃) be a connected and simply connected m-dimensional Riemann mani-
fold equipped with a second tensor k̃ ∈ X(2,0)(M̃) satisfying the Gauß–Codazzi equations

R̃(W,Z,X ,Y )+ k̃(W,Y )k̃(X ,Z)− k̃(W,X)k̃(Y,Z) = 0; (6.56)

(∇̃X k̃)(Y,Z)− (∇̃Y k̃)(X ,Z) = 0. (6.57)

Then there exists an isometric embedding F : M̃ → Rm+1 for which the second fundamental
form is the given tensor k̃, and such an embedding is unique up to Euclidean motions (i.e. up to
isometries, which are combinations of translations and rotations).

For general M̃ the above theorem holds at least locally, in that any u0 ∈ M̃ has a connected
and simply connected neighbourhood U ∈ O(M̃) for which the above claims hold.

Note that (6.56) - (6.57) arise from (6.48) - (6.50) by putting R = 0 (because Rm+1 is
equipped with the flat Euclidean metric), and have (6.23) - (6.24) as their coordinate version.
The latter were admittedly written down and derived for m = 2, but simply letting the indices
α,β etc. run from 1 to m rather than from 1 tot 2 immediately generalizes our treatment of the
classical theory of surfaces to any dimension (alas with some loss to visualisability).

We just prove the local version of Theorem 20 by PDE methods, which is enough to make
our point, namely showing the role of the Gauß–Codazzi equations as integrability conditions.

Let us initially assume we found an F : U →Rm+1 satisfying the conditions in the theorem.
Its uniqueness may be reformulated as the conjunction of the following local conditions:

1. For arbitrary x0 ∈ Rm+1, the map F satisfies F(u0) = x0;

2. For some fixed orthonormal basis (e1, . . . ,em) of Tu0M̃ and an arbitrary orthonormal basis
( f1, . . . , fm+1) of Tx0Rm+1 ∼= Rm+1, its derivative satisfies F ′u0

(eα) = fα (α = 1, . . . ,m).

Without loss of generality we may choose geodesic normal coordinates on U relative to u0, cf.
(3.52) - (3.53), so that eα = ∂α ≡ ∂/∂uα is indeed orthonormal at least at u0. Furthermore, we
may pick coordinates (xi) on Rm+1 (i = 1, . . . ,m+1) such that fi = ∂/∂xi for i = 1, . . . ,m. The
components F i(uα) of F : U → Rm+1 then satisfy the (initial) condition

∂F i

∂uα
(u0) = δ

i
α (α = 1, . . . ,m, i = 1, . . . ,m); (6.58)

∂Fm+1

∂uα
(u0) = 0 (α = 1, . . . ,m). (6.59)

In addition to F , we have to define a normal field ~N on U , whose components Ni satsify

Ni(u0) = 0 (i = 1, . . . ,m); (6.60)

Nm+1(u0) = 1. (6.61)

101Our proof is based on Kobayashi & Nomizu, Vol. 2, §VII.7.
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If we recall (6.4) as well as (2.50), whose asterisk we omit, for each i = 1, . . . ,m+1 we have

(∇̃∂/∂uα dF i)β = xi
αβ
− Γ̃

γ

αβ
xi

γ , (6.62)

so that, introducing 1-forms θ i ∈Ω(U) for each i = 1, . . . ,m+1 via

θ
i = dF i, (6.63)

Using the notation ∇̃α = ∇̃∂/∂uα , Gauß’s equation (6.19) for (~xα) is then equivalent to

(∇̃αθ
i)β = k̃αβ Ni (α,β = 1, . . . ,m). (6.64)

Conversely, if θ i ∈ Ω(U) satisfies (6.64), then there exists F i ∈C∞(U) such that (6.63) holds.
We start with a computation which is valid for any θ i ∈ Ω(U) and uses the Leibniz rule
(2.54):102

dθ
i(X ,Y ) = X(θ i(Y ))−Y (θ i(X))−θ

i([X ,Y ])

= (∇̃X θ
i)(Y )+θ

i(∇̃XY )− (∇̃Y θ
i)(X)−θ

i(∇̃Y X)−θ
i([X ,Y ])

= (∇̃X θ
i)(Y )− (∇̃Y θ

i)(X)+θ
i(τ(X ,Y ))

= (∇̃X θ
i)(Y )− (∇̃Y θ

i)(X), (6.65)

since the Levi-Civita connection ∇̃ is torsion-free, cf. (2.38). Eq. (6.64), then gives

dθ
i(∂α ,∂β ) = (∇̃αθ

i)(∂β )− (∇̃β θ
i)(∂α) = Ni(k̃αβ − k̃βα) = 0 (6.66)

by symmetry of the second fundamental form k̃. The Poincaré Lemma then gives (6.63).
It is convenient to replace the 1-forms θ i by the corresponding vector fields Zi = ](θ i) on U

(i = 1, . . . ,m+1), in terms of which (6.64) becomes (writing Zβ

i for (Zi)β )

∂Zβ

i
∂uα

+ Γ̃
β

αγZγ

i = Nik̃β

α , (6.67)

Similarly, in terms of Zi Weingarten’s equation (6.20) becomes

∂Ni

∂uα
=−k̃αβ Zβ

i , (6.68)

We may rewrite the coupled PDE’s (6.67) and (6.68) on U , i = 1, . . . ,m+1, more elegantly as

∇̃X Zi = NiW (X); (6.69)

XNi =−k̃(X ,Zi), (6.70)

for X ∈X(U) and Ni ∈C∞(U), subject to the initial conditions (6.60) - (6.61) for Ni, as well as

Zα
i (u0) = δ

α
i (α = 1, . . . ,m, i = 1, . . . ,m); (6.71)

Zα
m+1(u0) = 0 (α = 1, . . . ,m). (6.72)

102In the first line we use the identity dω(X ,Y ) = X(ω(Y ))−Y (ω(X))−ω([X ,Y ]), valid for any ω ∈Ω(U).
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We derived (6.69) - (6.70) with (6.71) - (6.72) from the existence of F : U → Rm+1 with the
desired properties (as stated in the theorem). Conversely, if we can solve these equations for Zi

(and Ni), we may construct F via θ i = [(Zi) and (6.63), having the right properties.
We now show that this can be done. To begin with, we show that the integrability conditions

for (6.69) - (6.70) are the Gauß–Codazzi equations (which should come as no surprise, since
(6.69) - (6.70) are a version of the Gauß–Weingarten equations). From (6.70) we derive both

[X ,Y ]Ni =−Xk̃(Y,Zi)+Y k̃(X ,Zi); (6.73)

[X ,Y ]Ni =−k̃([X ,Y ],Zi). (6.74)

so that Xk̃(Y,Zi)−Y k̃(X ,Zi) = k̃([X ,Y ],Zi); a computation very similar to (6.65) then rewrites
this as Codazzi’s eq. (6.57). Similarly, practically the same computation as (6.51) - (6.55),
using (6.57), shows that (6.69) implies Gauß’s eq. (6.56). Thus the Gauß–Codazzi equations
are necessary for the solvability of (6.69) - (6.70), which explains their role in Theorem 20.

To show that they are also sufficient, we have to make our hands dirty (as usual in PDE
theory). We take geodesic normal coordinates (uα) relative to u0 ∈U (it may be necessary to
shrink U in order to make it a normal nbhd) and some fixed orthonormal basis (e1, . . . ,em) of
Tu0M̃, so that the coordinates (u1, . . . ,um) specify the point u = γ~u(1), where γ~u is the (unique)
geodesic having γ~u(0) = u0 and γ̇~u(0) = uαeα (summation convention!), as usual.

For fixed u ∈U , define a vector field Zi and a function Ni along this geodesic γ~u by solving

∇̃γ̇~u Zi = NiW (γ̇~u); (6.75)

γ̇~uNi =−k̃(γ̇~u,Z
i), (6.76)

at least for t ∈ [0,1], or, in coordinates, where Zi = (Z1
i , . . . ,Z

m
i ) as above, and tu = γ~u(t),

dZβ

i (t)
dt

+uγ
Γ̃

β

γα(tu)Z
α
i (t) = Ni(t)k̃β

α(tu)u
α ; (6.77)

dNi(t)
dt

=−k̃αβ (tu)u
αZβ

i , (6.78)

with initial conditions Zα
i (0) = δ α

i (i≤m), Zα
m+1(0) = 0, Ni(0) = 0 for i≤m, and Nm+1(0) = 1,

cf. (6.71) - (6.72) and (6.60) - (6.61). Here we identified Zi(t) with Zi(tu), etc. These solutions
exist and are unique by standard ODE theory. Finally, define Zi ∈ X(U) and Ni ∈C∞(U) by

Zi(u) = Zi(1); (6.79)

Ni(u) = Ni(1), (6.80)

where of course the Zi and Ni on the right-hand side depend on u by construction. We claim
that this pair (Zi,Ni) solves (6.69) - (6.70) with the right initial conditions (6.71) - (6.72) and
(6.60) - (6.61). To prove this, it is convenient to introduce two constant vector fields on U by

X = ∂α (α = 1, . . . ,m); (6.81)
Y = aα

∂α , (6.82)

where (a1, . . . ,an) are the normal coordinates of some fixed a ∈U . The equations

∇̃Y Zi = NiW (Y ); (6.83)

Y Ni =−k̃(Y,Zi) (6.84)
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then hold along the geodesic γ~a(t) for t ∈ [0,1], since there they coincide with (6.75) - (6.76).
We claim that along γ~a(t) the functions (Zi,Ni) defined by (6.79) - (6.80) also satisfy

∇̃Y (∇̃X Zi−NiW (X)) = (XNi + k̃(X ,Zi))W (Y ); (6.85)

Y (XNi + k̃(X ,Zi)) =−k̃(Y, ∇̃X Zi−NiW (X)), (6.86)

which equations are none other than (6.83) - (6.84) with the substitutions

Zi ∇̃X Zi−NiW (X); (6.87)

Ni XNi + k̃(X ,Zi). (6.88)

Now note that the initial conditions to (6.85) - (6.86) follow from those to (6.83) - (6.84), viz.

∇̃X Zi(u0)−N(u0)
iWu0(X) = 0; (6.89)

XNi(u0)+ k̃u0(X ,Zi) = 0. (6.90)

Indeed, by the construction of geodesic normal coordinates, at the point u0, the pair (Zi,Ni)
satisfies (6.83) - (6.84) for any Y , and so in particular it does so for X . The point now is that,
(6.85) - (6.86) being a first-order system, its unique solution with initial conditions zero is zero,
which by (6.87) - (6.88) shows that (Zi,Ni) solves (6.69) - (6.70), with given initial conditions.

It remains to derive (6.85) - (6.86) from (6.83) - (6.84) and the Gauß-Codazzi equations.
The argument should be familiar by now, but here we go! To derive (6.85), we compute

∇̃Y (∇̃X Zi−NiW (X)) = ∇̃Y ∇̃X Zi− (Y Ni)W (X)−Ni
∇̃Y (W (X))

= ∇̃X ∇̃Y Zi−Ω(X ,Y )Zi− (Y Ni)W (X)−Ni((∇̃YW )(X)+W (∇̃Y X))

= ∇̃X(NiW (Y ))+ k̃(X ,Zi)W (Y )− k̃(Y,Zi)W (X)

− (Y Ni)W (X)−Ni((∇̃YW )(X)+W (∇̃Y X))

= (XNi + k̃(X ,Zi))W (Y )+Ni(∇̃X(W (Y ))− (∇̃YW )(X)−W (∇̃Y X))

= (XNi + k̃(X ,Zi))W (Y ), (6.91)

where we use Gauß in the form (6.55) to pass to the second line, we use (6.84) to cancel the
term k̃(Y,Zi)W (X) on the previous line, and finally the coefficient of Ni in the penultimate line
is zero by Codazzi’s equation (6.57), which emerges after using (2.54) to write ∇̃X(W (Y ) =
(∇̃XW )(Y )+W (∇̃XY ), and noting that W (∇̃XY )−W (∇̃Y X) = W (∇̃XY − ∇̃Y X) = 0 because
∇̃XY = ∇̃Y X , since ∇̃ is torsion-free and [X ,Y ] = 0 for the constant vector fields (6.81) - (6.82).

Similarly, to derive (6.86), using (6.84), (2.54), Codazzi’s (6.57), and (6.83), we compute

Y (XNi + k̃(X ,Zi)) = XY Ni +Y k̃(X ,Zi) =−Xk̃(Y,Zi)+Y k̃(X ,Zi)

= (∇̃Y k̃)(X ,Zi)− (∇̃X k̃)(Y,Zi)+ k̃(∇̃Y X ,Zi)− k̃(∇̃XY,Zi)

− k̃(Y, ∇̃X Zi)+ k̃(X , ∇̃Y Zi)

=−k̃(Y, ∇̃X Zi)+ k̃(X ,NiW (Y ))

=−k̃(Y, ∇̃X Zi−NiW (X)), (6.92)

since k̃(X ,W (Y )) = k̃(Y,W (X)); in coordinates this is the identity k̃αγgγδ k̃δβ = k̃βγgγδ k̃δα .
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7 The Einstein equations as PDE’s
In this chapter we transform the Einstein equations (5.1) into a system of six hyperbolic evo-
lution equations en four elliptic constraint equations. Some first steps in this direction have
already been taken in §5.4, especially the introduction of a suitable gauge condition, but to re-
ally get the analysis going we need a so-called 3 +1 split of space-time. This split is far from
unique and understanding this non-uniqueness is an essential part of the analysis.103

We initially assume we already have a space-time (M,g), where g solves the Einstein equa-
tions (for some energy-momentum tensor). We then choose a spacelike Cauchy (hyper)surface
Σ ⊂ M, and apply the theory of the previous chapter, obtaining initial data (g̃, k̃) on Σ, con-
strained by the Gauß-Codazzi equations. In this chapter we investigate the implications of the
assumption that g solves the Einstein equations; this amounts to rewriting these abstract gener-
ally covariant equations in d = 4 in terms of concrete non-covariant 3+1-dimensional data.

7.1 Lapse and shift
‘First we must step back and note that the problem of picking an appropriate coor-
dinate system typically is split into two parts: choosing a time slicing (i.e., a time
coordinate), and picking a spatial gauge (i.e., spatial coordinates). The time slicing
determines what shape the spatial slices Σt take in the enveloping spacetime. The
lapse L determines how the shape of the slices Σt changes in time, since it relates the
advance of proper time to coordinate time along the normal vector Nµ connecting
one spatial slice to the next. Picking a time slicing or a time coordinate therefore
amounts to making a choice for the lapse function. Letting the lapse vary with po-
sition across the spatial slice takes advantage of the freedom that proper time can
advance at different rates at different points on a given slice. The shift Si, on the
other hand, determines how spatial points at rest with respect to a normal observer
Nµ are relabeled on neighboring slices. The spatial gauge or spatial coordinates is
therefore imposed by a choice for the shift vector.’
(Baumgarte & Shapiro, Numerical Relativity, p. 88).

We assume (M,g) is globally hyperbolic and hence has a Cauchy surface (see Definition 13)
as well as a time function t : M → R for which g(∇t,∇t) < 0; see §3.7.2 and the proof of
Theorem 15. We already introduced the lapse function L = 1/

√
−g(∇t,∇t) and the associated

normalized timelike vector field N =−L∇t, cf. (3.118) - (3.119), so that g(N,N) =−1, and N
is normal to any (necessarily spacelike) hypersurface Σt , see (4.24): indeed, of X ∈ TxΣt , then

g(X ,∇t) = (dt)(X) = Xt= 0, (7.1)

since t is constant along Σt . In what follows, we take Σ = Σ0 (or any other fixed value of t).
We now choose coordinates (x0,x1,x2,x3) adapted to the foliation M = ∪tΣt , in that x0 = t

(more precisely, x0(x) = t provided x ∈ Σt), and the xi are (typically local) coordinates initially
on Σ (i= 1,2,3), but subsequently on any slice Σt , since if y∈ Σt , the flow line of the vector field
∇t (or N) hits Σ in exactly one point x0 ∈ Σ; if the latter has coordinates x0 = (0,x1,x2,x3), the
former is assigned coordinates y = (t,x1,x2,x3). This construction also gives a diffeomorphism
M ∼= R×Σ, which maps y ∈ Σt to (t,~x), where (0,~x) ∈ Σ is related to y as just explained.

103A good reference for this chapter is Gourgoulhon (whose ~m is our e0), though we rewrote all his calculations.
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Given (local) spatial coordinates (x1,x2,x3) on Σ any x ∈ Σ one then has natural (local)
tangent vectors ei = ∂i to Σ, as well as a natural one-form θ 0 = dt. The completion of (ei) to
a basis by adding (∂0) is somewhat defective, in that the latter may not be orthogonal to Σ. To
correct for this one introduces a shift vector S = Si∂i (sums over i, j are of course from 1 to 3),
where the Si are called the shift functions, such that e0 = ∂0− S is orthogonal to Σ. We then
have a frame (ea) with dual coframe (θ b), that is, θ a(eb) = δ a

b for a,b = 0,1,2,3, defined by

e0 = ∂t−Si
∂i; ei = ∂i; (7.2)

θ
0 = dt; θ

i = dxi +Sidt. (7.3)

. By definition of the lapse and the shift, we then have the useful relations

g =−L2(θ 0)2 + g̃i jθ
i
θ

j; (7.4)

e0 = LN =−L2
∇t; (7.5)

dt= dt; (7.6)

∇t= gµ0
∂µ ; (7.7)

L = 1/
√
−g00; (7.8)

Si =−gi0/g00; (7.9)
Nµ = (−L,0,0,0); (7.10)
Nµ = (1/L,−S/L). (7.11)

Consequently, the metric and its inverse take the form

gµν =


−L2 +S jS j S1 S2 S3

S1 g̃11 g̃12 g̃13
S2 g̃21 g̃22 g̃23
S3 g̃31 g̃32 g̃33

≡ ( −L2 +S jS j Si
Si g̃i j

)
; (7.12)

gµν =

(
−1/L2 Si/L2

Si/L2 g̃i j−SiS j/L2

)
, (7.13)

where g̃i j is the matrix inverse to g̃i j and spatial indices are raised and lowered with these spatial
metric (so that e.g. S jS j = g̃i jSiS j). Thus L and Si may also simply be seen as parametrizations of
the non-spatial components of the metric. In particular, Si = 0, which is possible even globally,
as shown only relatively recently,104 corresponds to gi0 = g0i = 0, so that the metric g assumes a
block diagonal form. If, in addition, L = 1, then g00 = g00 =−1 but this choice is generally not
globally possible; we will see shortly that the flow lines of the vector field would be geodesics in
that case, whose focusing and hence crossing (in the presence of positive curvature) obviously
invalidates the underlying coordinate system. See also the end of this section.

In switching between four-dimensional and 3+1-dimensional arguments and computations,
it turns out to be convenient to have a 4d-version of the 3d-objects g̃ and k̃ defined on Σ (and
indeed on each hypersurface Σt). These are given in any coordinates by, cf. (3.122) - (3.122),105

g̃µν = gµν +NµNν ; (7.14)

k̃µν =−g̃ρ

µ g̃σ
ν ∇ρNσ . (7.15)

104See the second paper by Bernal and Sanchez cited in footnote 70.
105Note the minus sign in (7.15) compared to (3.123), which is a consequence of different conventions in fluid

mechanics and differential geometry.
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Note that indices are raised and lowered with g, so that g̃ν
µ = δ ν

µ +NµNν (also called hν
µ ), taken

at x ∈ M, is the matrix of the orthogonal projection operator πx : TxM → TxΣ defined by g,
cf. (6.36). Unlike the original g̃ ∈ X(2,0)(Σ), the new g̃ ∈ X(2,0)(M) is defined on any pair of
vectors X ,Y ∈ TxM (x ∈ Σ), though the extension is somewhat trivial in that g̃(X ,N) = 0 for any
X ,Y ∈ TxM, whilst g̃(X ,Y ) defined from (7.14) equals the original g̃(X ,Y ) defined from (6.31).
Hence the ambiguous notation is admissible and it is always clear which g̃ is meant. Likewise
for k̃ in (7.15). In terms of the projection πx, for all x ∈ Σ and X ,Y ∈ X(M) we have (check!)

g̃x(X ,Y ) = g(πx(X),πx(Y )); (7.16)

k̃x(X ,Y ) = k(πx(X),πx(Y )), (7.17)

where k ∈ X(2,0)(M) is defined by k(X ,Y ) =−g(∇X N,Y ), or kµν =−∇µNν . This also yields

∇µNν =−k̃µν −NµAν , (7.18)

where the ‘acceleration’ A of the vector field N is defined by A = ∇NN, so that the flow of N is
geodesic iff A = 0. To prove (7.18), one may separately check the N−N, the N−Σ, the Σ−N,
and the Σ−Σ contractions. For example, NµNν∇µNν = NµAµ , which equals the right-hand
side −NµNν(−k̃µν +NµAν), since k̃µνNµNν = 0 by (7.17) and NµNµ = g(N,N) =−1. Etc.

We now shed completely new light on the extrinsic curvature k̃ of Σ⊂M by showing that

k̃ =− 1
2LN g̃ (7.19)

=− 1
2L−1Le0 g̃, (7.20)

seen equalities between symmetric tensors in either X(2,0)(Σ) or X(2,0)(M); in the former case
the proof of (7.19) in fact implies that LN g̃ ∈ X(2,0)(Σ). In arbitrary coordinates, we have

k̃µν =− 1
2LN g̃µν , (7.21)

=− 1
2L−1Le0 g̃µν . (7.22)

In Σ-adapted coordinates we may restrict to spatial indices: used (7.2) and (1.58), eq. (7.22) is

(∂t−LS)g̃i j =−2Lk̃i j, (7.23)

which is an important step towards the 3+1 decomposition of the Einstein equations.
To derive (7.19) we first use the (1,0) case of (2.61) with X = N to compute

LNNµ = Nν
∇νNµ +(∇µNν)Nν = Nν

∇νNµ ≡ ∇NNµ , (7.24)

since the in second term, (∇µNν)Nν vanishes because g(N,N) = NνNν =−1, for

Nν
∇µNν = g(N,∇µN) = 1

2∂µg(N,N) = 1
2∂µ(−1) = 0. (7.25)

Using this as well as (7.18), the (2,0) case of (2.61) with X = N then gives

LN(NµNν) = Nµ∇NNν +Nν∇NNµ = NµAν +NνAµ . (7.26)

From (7.14), (2.62), (7.18), and (7.26) we then obtain, at last,

LN g̃µν = LN(gµν +NµNν) =−2k̃µν −NµAν −NνAµ +NµAν +NνAµ =−2k̃µν . (7.27)
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We derive (7.20) from (7.19) using a general fact, namely, writing Aµ = Nν∇νNµ as before,

Aµ = ∂̃µ(lnL) = L−1g̃ν
µ∂νL, (7.28)

where we use the notation ∂̃µ = g̃ν
µ∂ν for the derivative along Σ.106 Note that the projection

g̃ν
µ reconfirms that A is tangent to Σ (i.e., orthogonal to N), which we already knew because of

g(N,∇NN) = 0. Using (7.18) and (7.14), eq. (7.28) is equivalent with

∇NNν ≡ Nµ
∇µNν = L−1(NµNν∂µ +∂ν)L, (7.29)

which we will now prove, using torsion-freeness of ∇, which implies ∇µ∂ν f = ∇ν∂µ f for any
f ∈C∞(M). We write (7.10) as Nµ =−L∂µt and compute

Nµ
∇µNν =−Nµ

∇µ(L∂νt) =−Nµ(∂µL∂νt +L∇ν∂µt) = L−1NµNν∂µL−LNµ
∇ν(L−1Nµ)

= L−1NµNν∂µL−NµNµ∂νL−1−LNµ
∇νNµ = L−1(NµNν∂µ +∂ν)L, (7.30)

where we used (7.25). Using (7.5), (1.58), and (7.19), we then compute

Le0 g̃µν = LLN g̃µν = LLN g̃µν +Nµ∂νL+Nν∂µL+(∂µL)NρNρNν +(∂νL)NρNρNµ

= LLN g̃µν +Nµ∂νL+Nν∂µL−Nν∂µL−Nµ∂νL

=−2Lk̃µν . (7.31)

This exemplifies a general phenomenon concerning Le0: if any tensor τ ∈ X(k,0)(M) satisfies

τ(X1, . . . ,Xk) = τ(π(X1), . . . ,π(Xk)), (7.32)

i.e., τ is purely spatial, or, equivalently τ(X1, . . . ,Xk) = 0 if Xi = N for at least one i, then also

Le0τ(X1, . . . ,Xk) = Le0τ(π(X1), . . . ,π(Xk)), (7.33)

that is, also Le0τ is purely spatial. This most easily follows from the Leibniz rule for L
and hence the case k = 1. Since e0 = LN we may as well derived (Le0τ)(e0) = 0 from the
assumption τe0(e0) = 0: using (1.58) and Le0e0 = [e0,e0] = 0, we obtain

(Le0τ)(e0) = e0(τ(e0))+ τ(Le0e0) = 0+0 = 0.

7.2 Beyond Gauß-Codazzi
Further steps towards the 3 + 1 decomposition of the Einstein equations involve the Gauß-
Codazzi identities (6.49) - (6.50), we which for future use we write in general coordinates as

g̃µ

α g̃ν

β
g̃ρ

γ g̃σ

δ
Rρσ µν = R̃γδαβ + k̃γα k̃δβ − k̃γβ k̃αδ ; (7.34)

g̃µ

α g̃ν

β
g̃ρ

γ Nσ Rρσ µν = ∇̃β k̃αγ − ∇̃α k̃βγ , (7.35)

where we recall that (g̃µ

ν ) is the matrix of the orthogonal projection of TxM onto TxΣ, so that in
Σ-adapted coordinates we may rewrite these expressions as

Ri jkl = R̃i jkl + k̃ikk̃ jl− k̃il k̃ jk; (7.36)

Ri0kl = ∇̃l k̃ik− ∇̃kk̃il, (7.37)

106This is consistent with notation ∇̃ for the covariant derivative within Σ defined with respect to g̃ because of
(6.37), which in coordinates reads g̃ν

µ ∇νY ρ = ∇̃µY ρ .
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where the left-hand side of (7.37) is only valid for zero shift; more generally, it would be
Nσ Riσkl . The other cases follow from the symmetries (3.23) - (3.25) of R. Thus the Gauß rela-
tion describes the value of the Riemann tensor at four orthogonal vectors, whereas the Codazzi
relation gives its value at three spatial and one orthogonal direction. In GR these will lead to a
geometric formulation of the constraints inherent in the Einstein equations. For the dynamical
(evolution) equations we will need the case of two spatial and two orthogonal vectors; unlike
the previous two cases, which just rely on the embedding Σ ⊂ M, this new case will contain
expressions like Le0 k̃, which unlike the above ∇̃l k̃ik involves derivatives in the orthogonal di-
rection. Thus the case of two orthogonal vectors relies on the time function, or, equivalently, on
the foliation M = ∪tΣt (at least near Σ≡ Σ0). The ensuing Ricci identity we need reads107

R(W,N,X ,N) = L−1(Le0 k̃(X ,W )+ ∇̃W ∇̃X L)+ k̃2(X ,W ), (7.38)

where X ,W ∈ T xΣ. In general coordinates this expression reads

g̃ρ

α g̃µ

β
Nσ NνRρσ µν = L−1(Le0 k̃αβ + ∇̃α∇̃β L)+ k̃2

αβ
, (7.39)

where k̃2
αβ
≡ k̃αρ k̃ρ

β
, in which the indices on k̃ are raised and lowered with either g̃ or g (this

does not matter because any action of the terms NµNν in (7.14) contracts to zero on k̃), and
∇̃β L = ∂̃β L. In adapted coordinates (with in addition a zero shift vector, as before), this is

Ri0 j0 = L−1(Le0 k̃i j + ∇̃i∇̃ jL)+ k̃il k̃l
j. (7.40)

To derive (7.39), we first note that (7.18) and (7.28) give

∇µNν =−k̃µν −Nµ ∂̃µ(lnL). (7.41)

As in the derivation of the Gauß–Codazzi equations, we start from (3.10), this time with Z = N:

Rρ

σ µνNσ = (∇µ∇ν −∇ν∇µ)Nσ =−∇µ(k̃
ρ

ν +Nν ∂̃
ρL)+∇ν(k̃

ρ

µ +Nµ ∂̃
ρL)

= ∇ν k̃ρ

µ −∇µ k̃ρ

ν +(∇νNµ −∇µNν)∂̃
ρL+(Nµ∇ν −Nν∇µ)∂̃

ρL. (7.42)

This gives

Nσ NνRρσ µν = ∇N k̃ρµ −Nν
∇µ k̃ρν + ∂̃µ(lnL)∂̃ρ(lnL)+∇µ ∂̃ρL+Nµ∇N ∂̃ρL, (7.43)

whose last term will vanish upon contraction with g̃µ

β
in (7.39). We rewrite the second term

Nν∇µ k̃ρν using the fact that Nν k̃ρν = 0 and hence also ∇µ(Nν k̃ρν) = 0. This gives

−Nν
∇µ k̃ρ

ν = k̃ρ

ν ∇µNν =−k̃ρ

ν k̃ν
µ − k̃ρ

ν Nµ ∂̃
ν(lnL), (7.44)

whose last term will disappear upon contraction with g̃µ

β
in (7.39). We now replace the covariant

derivative in the first term ∇N k̃ρµ by a Lie derivative. Our favorite rule (2.61) gives

Le0 k̃ρµ = ∇e0 k̃ρµ +(∇µeν
0 )k̃ρν +(∇ρeν

0 )k̃µν , (7.45)

in which on the right-hand side we substitute e0 = LN and hence ∇e0 = L∇N (recall that unlike
the Lie derivative LX , the covariant derivative ∇X is C∞(M)-linear in X). In the remaining

107This relation is better named after Darmois (1927) and ADM (i.e. Arnowitt, Deser, and Misner, 1962).
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terms we use (7.41). Many of the ensuing terms drop out after contraction with g̃ρ

α g̃µ

β
, and after

a lengthy but straightforward computation we obtain

g̃ρ

α g̃µ

β
∇N k̃ρµ = L−1

∇e0 k̃αβ +2k̃2
αβ

. (7.46)

Using (7.45) and (7.46) in (7.43) finally gives (7.38), as follows:

g̃µ

α g̃ν

β
Nσ NνRρσ µν = L−1Le0 k̃αβ +2k̃2

αβ
− k̃2

αβ
+ ∂̃α(lnL)∂̃β (lnL)+ ∇̃α ∂̃β L

= L−1(Le0 k̃αβ + ∇̃α∇̃β L)+ k̃2
αβ

. (7.47)

Subsequently, for the Einstein equations we do not need the full Riemann tensor Rρσ µν but
its contractions Rµν = Rρ

µρν = gρσ Rρµσν (the Ricci tensor) and R = gµνRµν (the Ricci scalar).
The corresponding contracted Gauß relations easily follow from (7.34), and are given by

g̃µ

α g̃ν

β
Rµν + g̃σ

α g̃ν

β
NµNρRρσ µν = R̃αβ +Tr(k̃)k̃αβ − k̃2

αβ
; (7.48)

R+2NµNνRµν = R̃+Tr(k̃)2−Tr(k̃2), (7.49)

where we used the identity g̃αγ g̃µ

α g̃ρ

γ = g̃ρµ = gρµ +NρNµ , and wrote

Tr(k̃) = k̃µ

µ = gµν k̃µν = g̃µν k̃µν ; (7.50)

Tr(k̃2) = g̃µν k̃2
µν = g̃µν k̃µρ k̃ρ

ν = g̃µν g̃ρσ k̃µρ k̃νσ . (7.51)

In adapted coordinates with vanishing shift, where Tr(k̃) = g̃i jk̃i j etc., these relations would be

Ri j +R0i0 j = R̃i j +Tr(k̃)k̃i j− k̃2
i j; (7.52)

R+2R00 = R̃+Tr(k̃)2−Tr(k̃2). (7.53)

Similarly, the contracted Codazzi relations (which stop at one stage) follow from (7.35) as

Nµ g̃ν
αRµν = ∂̃αTr(k̃)− ∇̃µ k̃µ

α , (7.54)

which in the same notation as (7.52) comes down to

Roi = ∂iTr(k̃)− ∇̃ jk̃
j
i . (7.55)

The contractions of (7.39) are slightly more involved. First, (7.48) and (7.39) give

R̃αβ +Tr(k̃)k̃αβ − k̃2
αβ
− g̃µ

α g̃ν

β
Rµν = L−1(Le0 k̃αβ + ∇̃α∇̃β L)+ k̃2

αβ
, (7.56)

from which we obtain

g̃µ

α g̃ν

β
Rµν =−L−1(Le0 k̃αβ + ∇̃α∇̃β L)+ R̃αβ +Tr(k̃)k̃αβ −2k̃2

αβ
. (7.57)

Contracting both sides with g̃αβ , and defining ∆̃ = g̃αβ ∇̃α∇̃β , gives

R+NµNνRµν =−L−1(g̃αβ Le0 k̃αβ + ∆̃L)+ R̃+Tr(k̃)2−2Tr(k̃2), (7.58)

Since Le0 g̃αβ =−2Lk̃αβ by (7.22), we have Le0 g̃αβ = 2Lk̃αβ , cf. (5.13), and hence

g̃αβ Le0 k̃αβ = Le0Tr(k̃)− k̃αβ Le0 g̃αβ = Le0Tr(k̃)−2LTr(k̃2), (7.59)

where of course Le0Tr(k̃) = e0(Tr(k̃)). Hence (7.58) may be rewritten as

R+NµNνRµν =−L−1(Le0Tr(k̃)+ ∆̃L)+ R̃+Tr(k̃)2. (7.60)

Using (7.49), we finally obtain the twice contracted version of (7.39), namely

R = R̃−2L−1(Le0Tr(k̃)+ ∆̃L)+Tr(k̃)2 +Tr(k̃2). (7.61)
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7.3 The 3+1 decomposition of the Einstein equations
We now have all information for projecting the Einstein equations (5.1), with Tµν decomposed
according to (5.25), in three different directions, namely, contracting with:108

• The spatial part g̃µ

α g̃ν

β
, which gives the dynamical equations

Le0 k̃µν =−∇̃µ∇̃νL+L(R̃µν +Tr(k̃)k̃µν −2k̃2
µν +4π((S−E)g̃µν −2Sµν)); (7.62)

Le0 g̃µν =−2Lk̃µν . (7.63)

These follow from (5.26), (7.57), (5.27), and (7.22). As already noted, in Σ-adapted
coordinates eq. (7.63) becomes (7.23), and with (7.62), one may write the system as

(∂t−LS)k̃i j =−∇̃i∇̃ jL+L(R̃i j +Tr(k̃)k̃i j−2k̃2
i j +4π((S−E)g̃i j−2Si j)); (7.64)

(∂t−LS)g̃i j =−2Lk̃i j, (7.65)

where, using (1.58) and (2.62), respectively, the two Lie derivatives may be written as

LSk̃i j = Sl
∂l k̃i j + k̃ jl∂iSl + k̃il∂ jSl; (7.66)

LSg̃i j = ∇̃iS j + ∇̃ jSi. (7.67)

• The timelike part NµNµ , which gives the so-called Hamiltonian constraint

R̃+Tr(k̃)2−Tr(k̃2) = 16πE, (7.68)

which follows from (5.1) and (7.49); it plays a key role in (canonical) quantum gravity.

• The mixed part g̃µ

αNν or g̃ν

β
Nµ , producing the momentum constraint

∇̃µ k̃µ

ν − ∇̃νTr(k̃) = 8πPν , (7.69)

which follows from (5.1), whose gµνR term contracts to zero, and (7.54). Equivalently,

g̃ jl
∇̃l k̃i j− ∇̃iTr(k̃) = 8πPi. (7.70)

Altogether, in adapted coordinates, eqs. (7.64), (7.64), (7.68), and (7.70) form a coupled system
of 16 PDE’s for 16 unknown functions (g̃i j, k̃i j,L,Si) defined on the Cauchy hypersurface Σ,
where the k̃i j may be exchanged for the time-derivaties ∂t g̃i j through (7.65), leaving 10 coupled
PDE’s for 10 unknowns (g̃i j,L,Si), similar to the original covariant Einstein equations (which
are 10 coupled PDE’s for the 10 components gµν of the four-dimensional metric). In the latter
case, the spatial part consists of six evolution equations, whereas the other two parts contain
only first time derivatives of the spatial metric and no time derivates of the lapse and shift
functions at all; hence these act as four constraints on the initial data (g̃i j,∂t g̃i j), or, in general,
on (g̃i j, k̃i j). Also cf. §5.4. The lapse and shift functions are not determined by the equations at
all and hence can be (more or less) freely chosen; doing so amounts to fixing a (local) gauge,

108The letters S and Sµν on the right-hand sides below refer to the energy-momentum tensor, whereas the S in
LS on the left and the Si on the right refer to the shift vector, sorry!
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which preferably makes the evolution equations hyperbolic, and in addition is favorable for
existence and uniqueness results and/or numerical computations.

The most primitive way of doing this is to try Si = 1 L = 1, or, equivalently, g0i = g0i = 0
and g00 = g00 = −1, which is possible at least locally. This implies that the flow lines to the
normal vector field N are geodesics, which, recalling that A = ∇NN, follows from (7.28). In
such coordinates the evolution equations (7.64) - (7.65), in vacuum for simplicity, become

∂
2
t g̃i j = g̃kl(g̃i j,kl + g̃kl,i j− g̃l j,ik− g̃il, jk)+ · · · , (7.71)

where the dots stand for terms with first or no derivatives. Though hyperbolic, this is a poor
system because of geodesic focusing, which may lead to coordinate singularities at times where
regular solutions might exist (the advantage though is that time equals proper time along N).

A more sophisticated gauge, in the spirit of the analysis in §5.4, is the (covariant) wave
gauge �gxµ = 0, which in the (noncovariant) 3 +1 split yields the lapse and shift functions as

(∂t−S j
∂ j)L =−Tr(k̃)L2; (7.72)

(∂t−S j
∂ j)Si =−(g̃i j

∂ j lnL+ g̃ jk
Γ̃

i
jk)L

2. (7.73)

Both analytic and numerical goals (notably stability) are even better served with a combination
of the µ = 0 component of this gauge, i.e. �gx0 = 0, and zero shift Si = 0 (called the harmonic
gauge). Since (7.73) is empty in that case, we are just left with

∂tL =−Tr(k̃)L2. (7.74)

Another popular choice (especially for stability results) is maximal slicing, defined by

Tr(k̃) = 0, (7.75)

i.e. each Σt has mean zero curvature, which implies that, when Σt is compact, it has maximal
volume (compared with other slicings). Since Tr(k̃) is just (minus) the expansion θ in the
Raychaudhuri equation (3.133) and the singularity theorems, putting it equal to zero clearly
prevents at least the focusing mechanism studied in that context and hence avoids coordinate
singularities arising through focusing. Eq. (7.72) fixes L through

∆̃L =−Tr(k̃2)L. (7.76)

See the book by Baumgarte & Shapiro cited at the beginning of this chapter for more informa-
tion on optimal slicings, and Choquet-Bruhat & Ruggeri, Hyperbolicity of the 3 + 1 system of
Einstein equations, Communications in Mathematical Physics 89, 269–275 (1983) for a proof
of hyperbolicity of the Einstein equations in the harmonic gauge.
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7.4 Existence and maximality of solutions
In this section we restrict ourselves to the vacuum case Tµν = 0; most conclusions survive in
the presence of matter, though often at the cost of additional assumptions and complications.

The analysis in §5.4 shows that the Einstein equations Gµν = 0 or Rµν = 0, seen as PDE’s
for the components gµν of the metric, are both overdetermined because of the presence of
constraints on the initial data, and underdetermined because of diffeomorphism invariance. The
first point was clarified in §7.3 and means that the initial data (Σ, g̃i j, k̃i j), where (Σ, g̃i j) is some
3d Riemannian manifold and k̃i j is an additional symmetric tensor on Σ of type (2,0), satisfy
the Hamiltonian constraint (7.68), with E = 0 in the vacuum case, as well as the momentum
constraint (7.70), with Pi = 0 in vacuo. These constraints will be studied in more detail in §7.5

The traditional strategy to address these problems, due to Choquet-Bruhat, was explained
in §5.4: one solves the reduced Einstein equations (5.77), which are quasi-linear second-order
hyperbolic PDE’s, and imposes both the wave gauge condition (5.73) and the (ungauged) con-
straints at t = 0, cf. (5.83) - (5.84). This guarantees that the wave gauge (5.73) as well as the
constraints hold at all times–at least for which solutions to (5.77) exist–and hence, by (5.77),
also the original Einstein equations (5.1) are solved. This procedure by no means restores
uniqueness: any diffeomorphism ψ of M that is the identity before and at Σ⊂M but is nontriv-
ial at later times does not change the initial conditions yet ψ∗g solves the Einstein equations,
and generally ψ∗g 6= g at later times (of course, ψ∗g will not satisfy the wave gauge).

In any case, this procedure leads to solutions that are local in space and local in time:

• Locality in space follows from the use of specific coordinates (i.e. those satisfying (5.73).

• Locality in time is all the existence theorems for quasi-linear second-order hyperbolic
PDE’s provide (we discuss the function spaces for solutions in the next chapter).

In what follows, we improve this situation twofold in a way specific to the Einstein equations.
Local existence in space turns into global existence in space by globalizing the gauge. This

is done as follows. First, a well-known concept in Riemannian geometry is that of a harmonic
map h : M→ M̂ between Riemannian manifolds (M,g) and (M̂, ĝ), where h is assumed smooth
or at least C2. These maps can be described abstractly, but is is easier (and sufficient for our
purposes) to use local coordinates (xµ) on M and likewise (x̂i) on M̂. Any map h : M→ M̂ has
an associated energy functional, defined by

E(h) =
∫

M
d3x
√

g(x)ex(h); (7.77)

ex(h) = 1
2gµν(x)ĝi j(h(x))

∂hi(x)
∂xµ

∂h j(x)
∂xν

, (7.78)

where hi are the components of h relative to the (x̂i). This expression turns out to be independent
of the coordinates.109 For example, if M = [a,b] with flat metric, then E( f ) is the energy (2.16)
of a curve in N. Another example is N =R with flat metric, in which case E(h) =

∫
M ∇h ·∇h is

the Dirichlet integral of h (which plays a fundamental role in the theory of the Laplace equation
∆h = 0 on M). It can be shown that h extremizes E(h) iff it solves

gµν

(
∂ 2hi(x)
∂xµ∂xν

−Γ
ρ

µν(x)
∂hi(x)

∂xρ
+ Γ̂

i
jk(h(x))

∂h j(x)
∂xµ

∂hk(x)
∂xν

)
= 0, (7.79)

109See e.g. Jost, §8.1.
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where and Γ
ρ

µν and Γ̂i
jk are the Christoffel symbols for g and ĝ, respectively. Thus h is called

harmonic if it solves (7.79). Exactly the same constructions work in Lorentizian geometry, in
which case a solution of (7.79) is called a wave map. In that case, standard hyperbolic PDE
theory yields existence and uniqueness of solutions h|Σ and ḣ|Σ subject to initial conditions on a
Cauchy surface in M (where ḣ = ∂th as defined earlier for gµν ).

In order to provide the right version of the wave gauge enabling global solutions in space, we
pick some fiducial metric γ on Σ and put the metric ĝ =−dt2 + γ on M̂ = R×Σ. Anticipating
that (M,g) will be globally hyperbolic, we write M = R×Σ, and declare that g satisfies the
ĝ-wave gauge iff the identity map id : M → M̂ is a wave map (i.e. with respect to g and ĝ).
It follows from the coordinate-independent nature of (7.79) that this condition is coordinate-
independent also; one can also see this explicitly by noting that g satisfies the ĝ-wave gauge iff
Ŵ µ = 0 for each µ = 0,1,2,3, where, cf. (5.73) and (5.75),

Ŵ µ = gρν(Γ̂
µ

ρν −Γ
µ

ρν). (7.80)

Since the difference between two connections (metric or otherwise) is a tensor, this confirms the
purely geometric and hence global nature of the ĝ-wave gauge. In particular, unlike the case of
the original wave gauge, the index µ is now a true vector index in that Ŵ µ are the components
of a vector. Thus the coordinate-dependence of the original wave gauge has been traded for
ĝ-dependence.110 We now follow the same steps as for the wave gauge, replacing W by Ŵ
from (5.76) till the end of §5.4, with the same concusions: the reduced Einstein equations are
quasi-linear and hyperbolic, the gauge and the constraints propagate, etc., with the difference
that none of the arguments now depend on the choice of local coordinates on Σ and hence any
solution is globally defined (in space). Existence of g (local in time, so on I × Σ for some
open interval I ⊂ R) solving the Einstein equations once again follows from PDE theory (see
Theorem 30 in the next chapter), and the appropriate statement of uniqueness is as follows.

To be precise, we write a space-time solving Einstein’s equations for given initial data
(Σ, g̃, k̃) as (M,g, ι), where ι : Σ ↪→M injects the given manifold Σ into M; in particular, g̃ = ι∗g
and k̃ are the first and second fundamental forms of the embedding, respectively.111 If (M,g) is
globally hyperbolic with Cauchy surface ι(Σ), then the triple (M,g, ι) is called a Cauchy devel-
opment (or globally hyperbolic development = GHD) of the initial data (Σ, g̃, k̃), which will be
fixed throughout the following discussion (and are always assumed to satisfy the constraints).
Note that, as stated at the end of Theorem 30, the ‘global in space, local in time’ space-times
arising from the solution of the Einstein equations in a ĝ-wave gauge are in fact globally hy-
perbolic and hence provide Cauchy developments or GHD of the initial data. These solutions
arose from a very special procedure, but the general situation is as follows. 112

Proposition 21 (Geometric uniqueness of solutions of Einstein’s equations) Any two Cauchy
developments (M1,g1, ι1) and (M2,g2, ι2) of the same (smooth) initial data are locally isomet-
ric, in that ι1(Σ) and ι2(Σ) have open neighbourhoods U1 and U2 in M1 and M2, respectively,
such that (U1,g1) and (U2,g2) are isometric through a diffeomorphism ψ : U1→U2 satisfying

ψ
∗g2 = g1; (7.81)

ψ ◦ ι1 = ι2. (7.82)
110If Σ = R3 and γ = δ , one recovers the original wave gauge, but only in Euclidean coordinates!
111Recall that a space-time is an oriented and time-oriented connected Lorentzian manifold, cf. Definition 9.
112Corollary 16 states: (M,g) globally hyperbolic⇒ M ∼= R×Σ, but the converse is true as well.
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The proof is rather technical (cf. Choquet-Bruhat, Theorem 8.4, p. 168), but the idea is to
construct wave maps hi : M̂→Mi (i = 1,2), suitably shrunk to as to become diffeomorphisms,
and define g′i = h∗i gi on M̂; this step brings both g1 and g2 into the ĝ wave gauge. These
new metrics then solve the same equations (namely the reduced Einstein equations and the ĝ
wave gauge condition) with the same initial conditions, and hence they must coincide by local
uniqueness result from hyperbolic PDE’s. From g′1 = g′2 we obtain g2 = (h−1

1 ◦h2)
∗g1 = ψ∗g1.

We now come to the (formal) culmination of the ‘local in time’ approach to the Einstein
equations. A maximal Cauchy development (Mmax,gmax, ιmax) of given (smooth) initial data
(Σ, g̃, k̃) is a Cauchy development with the property that for any other Cauchy development
(M,g, ι) of these data there exists an embedding ψ : M→Mmax that preserves time orientation,
metric, and Cauchy surface, i.e., one has ψ∗gmax = g and ψ ◦ ι = ιmax, cf. (7.81) - (7.82).

Theorem 22 (Choquet-Bruhat and Geroch) Each smooth initial data (Σ, g̃, k̃) set satisfying
the constraints has a maximal Cauchy development (Mmax,gmax, ιmax), which is unique up to
time-orientation-preserving isometries fixing the Cauchy surface ι(Σ)⊂Mmax, as in (7.82).

Both for understanding the claim and outlining its proof it is useful to rephrase Theorem 22
in terms of partially ordered sets (posets). As mentioned above, Cauchy developments even of
fixed initial data are far from unique due to diffeomorphism invariance of the Einstein equa-
tions, but we consider two solutions equivalent if they can be transformed onto each other by a
diffeomorphism respecting ι as well as time orientation: thus we say that

(M1,g1, ι1)∼= (M2,g2, ι2) (7.83)

iff there is a time-orientation preserving diffeomorphism ψ : M1→M2 satisfying (7.81) - (7.82).
This is an equivalence relation on the set GHD(Σ, g̃, k̃) of all globally hyperbolic (i.e. Cauchy)
developments of the data (Σ, g̃, k̃), and we denote the (quotient) set of its equivalence classes by
[GHD](Σ, g̃, k̃). As usual, we write [M,g, ι ] for the equivalence class of (M,g, ι). Initially, put

(M1,g1, ι1)≤ (M2,g2, ι2) (7.84)

iff there is a embedding ψ : M1→M2 such that (7.81) - (7.82) hold (and, being an embedding,
ψ must satisfy conditions 1 and 2 in §6.6.1). This fails to be a partial ordering on GHD(Σ, g̃, k̃)
(it fails the antisymmetry axiom), but it does descend to a partial ordering on [GHD](Σ, g̃, k̃),
i.e., by abuse of notation we have [M1,g1, ι1] ≤ [M2,g2, ι2] provided (7.84) holds. This makes
([GHD](Σ, g̃, k̃)≤) a poset. Recall that a top element > ∈ P of a poset (P,≤) is an element for
which x≤> for all x ∈ P; a top is unique if it exists.113 Theorem 22 then comes down to:

Theorem 23 The poset ([GHD](Σ, g̃, k̃)≤) has a top element (which is necessarily unique).

In their article in 1969, Choquet-Bruhat and Geroch, sketched a proof based on Zorn’s lemma,
which they even had to use twice. Since Zorn’s Lemma has no place in mathematical physics,
we now outline a recent constructive proof due to Sbierski.114 Note, in particular, that Theorem
23 implies that the maximal Cauchy development (Mmax,gmax, ιmax) is unique up to isometry.

To get a glimpse of the proof, we first rephrase Proposition 31 in terms of the above poset:
113This is not to be confused with a maximal element m∈ P, where for all x∈ P one has m≤ x iff x =m. Maximal

elements are typically non-unique if they exist, and even if they are unique they may not be top elements.
114See J. Sbierski, On the existence of a Maximal Cauchy Development for the Einstein Equations - a dezorni-

fication, https://arxiv.org/pdf/1309.7591.pdf, or Ann. Henri Poincaré 17, 3-1–329 (2016). It must be
admitted that the set-theoretic complications in this proof, which our outline omits, including weak versions of the
Axiom of Choice, make this proof hardly more attractive than the original one by Choquet-Bruhat and Geroch.
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Any two Cauchy developments (M1,g1, ι1) and (M2,g2, ι2) of given initial data have a common
Cauchy development (M,g, ι), in that (M,g, ι)≤ (M1,g1, ι1) as well as (M,g, ι)≤ (M2,g2, ι2).

Indeed, take M =U1, with ψ1 : M→M1 given by the embedding i : U1 ⊂M1, and ψ2 : M→M2
defined by ψ2 = ψ ◦ i, where ψ is the map from Proposition 31. More strongly, we even have:

Lemma 24 Any two Cauchy developments (M1,g1, ι1) and (M2,g2, ι2) have a maximal com-
mon Cauchy development (M′,g′, ι ′), in that any other common Cauchy development satisfies

(M,g, ι)≤ (M′,g′, ι ′). (7.85)

Indeed, if {Uα} is the set of all U1’s appearing in Proposition 31, i.e. Uα ⊂ M1 and given
maps ψα : Uα →M2, etc., then one may simply take the union M′ = ∪αUα , with the obvious
embedding M′ ⊂M1, and map ψ : M′→M2 given by ψ(x) = ψα(x) if x ∈Uα . Conversely:

Lemma 25 Any two Cauchy developments (M1,g1, ι1) and (M2,g2, ι2) have a common exten-
sion (M12,g12, ι12), in that (M1,g1, ι1)≤ (M12,g12, ι12) as well as (M2,g2, ι2)≤ (M12,g12, ι12).

From this step onwards, the constructions become a bit ugly. Define

M12 = (M1
⊔

M2)/∼, (7.86)

where M1
⊔

M2 is the disjoint union of M1 and M2, and we say that x ∼ y if either x = y or x ∈
M′ ⊂M1 and y = ψ(x), where ψ : M′→M2 has just been defined. This space naturally inherits
a metric g12 from (M1,g1) and (M2,g2), since for x ∈M1\M′ we may put g12([x]) = g1(x), for
y ∈M2\ψ(M′) we have g12([y]) = g2(y), noting that [x] = x and [y] = y in those cases, whereas
for x ∈ M1 and y = ψ(x), so that [x] = [y], we put g12([x]) = g1(x) or g2(y); these coincide
since ψ is an isometry. The obvious maps M1 ↪→M12 and M2 ↪→M12 are isometries for g12 by
constructions. Similarly, we obtain embeddings Σ ↪→ M12 and Σ ↪→ M12 from the given ones
Σ ↪→M1 and Σ ↪→M2 (the main difficulty in the proof is to show that M12 is a Hausdorff space).

The construction of the maximal space-time Mmax is an extension of (7.86): one defines

Mmax =
(⊔

λ Mλ

)
/∼, (7.87)

where {Mλ} is the set of all Cauchy developments (of the given initial data), and we identify
x ∈ M1 and y ∈ M2 (where 1 and 2 are generic values of λ ) iff x ∼ y as defined after (7.86).
Also, the constructions of the metric gmax, the embedding ιmax, and the (isometric) embeddings
ψλ : Mλ →Mmax are entirely similar to the case (7.86) just explained; maximality is obvious.

However, it by no means follows that (Mmax,gmax, ιmax) is maximal as a solution to the
vacuum Einstein equations with given initial data, for this is a weaker notion than a Cauchy
development of these data: the difference lies in Σ being a Cauchy surface for (M,g) in the
latter case, but not in the former. All that follows is that for any such space-time (M′,g′) in
which (Mmax,gmax, ιmax) can be (properly) isometrically embedded, the ensuing copy of Σ in
M′ (arising from Σ ↪→ M ↪→ M′) cannot be a Cauchy surface. In particular, Σ ⊂ M′ has a
nonempty Cauchy horizon, which indicates an end to predictability (at least from the point of
view of Σ). The strong cosmic censorship hypothesis (or conjecture) excludes this possibility, at
least for ‘generic’ initial data (it cannot always be true). This is a very active area of research.115

115See Ringström’s book for an introduction and Mihalis Dafermos, The cosmic censorship conjectures in classi-
cal general relativity, https://www.youtube.com/watch?v=ZBYAbejIvB4, for a more recent overview (2017).
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7.5 Conformal analysis of the constraints: Lichnerowicz equation
The initial value constraints (7.68) - (7.70) may also be analyzed from a PDE point of view. In
the simplest case the metric is static, which means that (M,g) has a timelike Killing vector field
uµ and has a foliation M = ∪tΣt whose leaves Σt are orthogonal to uµ (equivalently, ωµν = 0,
see (3.124)). In that case, in the right (i.e. adapted) coordinates the gµν are time-independent,
as for the Minkowski metric or the Schwarzschild solution.116. Hence k̃ = 0, and if we also
assume vacuum for simplicity, then the only constraint on the ensuing initial data (Σ, g̃i j) is

R̃ = 0. (7.88)

This is a vastly underdetermined system, since the 6 independent components of the metric
g̃i j are subject to just one equation, but this doesn’t mean that the solution is trivial. This is a
problem in pure Riemannian geometry, which was first addressed by Yamabe in 1960. Yamabe
argued–a complete proof was only given in 1984 by Schoen–that any Riemannian metric γ on
a compact manifold Σ (without boundary) admits a conformal rescaling

g̃ = Ω
4
γ, (7.89)

where the conformal factor Ω ∈C∞(Σ) is strictly positive (so that g̃ is a Riemannian metric on
Σ), such that the Ricci scalar R̃ = R̃g̃ of g̃ is constant.117 Straightforward computations give

R̃ =−8Ω
−5LγΩ, (7.90)

where the linear differential operator Lγ is given by

Lγ = ∆γ − 1
8Rγ , (7.91)

in which ∆γ = γ i j∇i∇ j is the Laplacian on Σ defined by γ , and Rγ is the Ricci scalar defined by
γ (though three-dimensional, we omit tildes on geometric quantities defined by γ; those with a
tilde are defined by g̃). Given γ , eq. (7.88) then becomes an equation for the scalar Ω, namely

LγΩ = 0. (7.92)

This is a linear elliptic PDE, which can indeed be solved if Σ is compact. In GR, this argument
applies more generally (e.g. assuming Ω→ 0 at infinity in the non-compact case).

Ellipticity is here to stay, but linearity is typical of the assumption k̃ = 0, and will be replaced
by gruesome nonlinearities in general. Indeed, already the next case, where k̃i j 6= 0 but Tr(k̃) =
0, is highly nonlinear.118 The constraints (7.68) - (7.70), again in the vacuum case, simplify to

R̃−Tr(k̃2) = 0; (7.93)

g̃ jl
∇̃l k̃i j = 0. (7.94)

116Birkhoff’s Theorem implies that rotational symmetry implies that the metric is static, see e.g. Hawking & Ellis.
117In the context of GR, adding a cosmological constant Λ modifies (7.88) to R̃ = 2Λ.The possible signs of R̃, i.e.

R̃ = 0,±1 up to rescaling, are restricted by the topology of Σ and define the so-called Yamabe class of Σ.
118Foliations with Tr(k̃) = 0 are called maximal slicings. This is related to the Plateau Problem: if Σ ⊂M has

Tr(k̃) = 0, and S ⊂ Σ is a two-dimensional surface, then the volume of any three-dimensional S⊂ Σ with ∂S =S
is maximal compared to the volume of competing S⊂M subject to ∂S =S ⊂ Σ. In the purely Riemannian Plateau
Problem the volume (or, as in the original problem in one dimension lower, the surface area of the enclosed region)
would be minimal, but in the Lorentzian case it is rather maximal, for similar reasons why the length of timelike
geodesics is maximal rather than minimal: excursions of S outside Σ are in the timelike direction and the signature
of the Lorentzian metric then reduces the volume (rather than increasing it as in the Plateau Problem).
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We now also choose some symmetric tensor ki j on Σ, such that

γ
jl

∇lki j = 0, (7.95)

but freely otherwise. It is easy to show that if we relate k̃ to k via

k̃i j = Ω
−2ki j, (7.96)

then (7.95) implies (7.94) and hence only (7.93) remains, which turns out to be equivalent to

LγΩ+ 1
8Tr(k2)Ω−7 = 0. (7.97)

This equation can be analyzed by traditional methods from nonlinear elliptic PDE’s (notably by
constructing both sub- and super-solutions, i.e. replacing “= 0” by “≤ 0” and “≥ 0”).

We move to the general case. Here is it customary and physically relevant to move to a
transverse traceless version of k and k̃, where the traceless part is easy to define, namely

σ̃i j = k̃i j− 1
3Tr(k̃)g̃i j; (7.98)

σi j = ki j− 1
3Tr(k)γi j. (7.99)

Adding energy-momentum and using the scaling (7.96), this reformulates the constraints as

LγΩ+ 1
8Tr(σ2)Ω−7− 1

12Tr(k)2
Ω

5 =−2πEΩ
5; (7.100)

∇ jσi j− 2
3(∇iTr(k))Ω6 = 8πPiΩ

10, (7.101)

the first of which (i.e. the Hamiltonian constraint) is called the Lichnerowicz equation. Defining
the transverse part of σ and σ̃ is less straightforward: there exists a decomposition

σi j = σ
TT
i j +(K̂γX)i j, (7.102)

where σTT
i j in traceless and transverse in the sense that

Tr(σ)≡ γ
i j

σi j = 0; (7.103)

∇
i
σ

TT
i j = 0, (7.104)

and X is some vector field, on which the conformal Killing operator K̂γ acts by

(K̂γX)i j = ∇iX j +∇ jXi− 2
3γi j∇kXk. (7.105)

This generalizes the usual Killing operator KγX = ∇iX j +∇ jXi, whose solutions KγX = 0 are
vector fields whose flow ϕt consists of isometries, i.e., ϕ∗t γ = γ; vector fields solving K̂γX = 0
are vector fields whose flow ϕt consists of conformal isometries, in that ϕ∗t γ = Ωγ for some
Ω > 0, as above. The difficult part is the reconstruction of σi j from its transverse traceless part
σTT

i j and X , which may be done by solving a conformal version of the Laplace equation, viz.

∆̂γX i = ∇ j(K̂γX)i j = ∆X i + 1
3∇

i
∇ jX j +Ri

jX
j. (7.106)

Note that the kernel of ∆̂γ consists of conformal Killing vectors. Likewise for g̃ and σ̃i j. In terms
of the free data γi j, σTT

i j , and τ ≡ Tr(k), the determined data Ω and X are found by solving the
final (conformal) version of the constraints, namely

LγΩ+ 1
8Tr(σ2

TT)Ω
−7− 1

12τ
2
Ω

5 =−2πEΩ
5; (7.107)

∆̂γX i− 2
3(∇iτ)Ω

6 = 8πPiΩ
10. (7.108)

Once this has been done, g̃i j and k̃i j can be (re)constructed via (7.89) and

k̃i j = (K̂γXi j +σ
TT
i j )Ω−10 + 1

3τΩ
−4

γi j, (7.109)

and these solve the original constraints (7.68) - (7.70) in terms of the above free data.
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8 Quasi-linear hyperbolic PDE’s

8.1 Background
1. Multi-indices. Let n > 0 and x ∈ Rn. It will convenient to write x = (x1, . . . ,xn) rather

than our usual (x1, . . . ,xn). Let α = (α1, . . .αn), with αi ∈ N (where 0 ∈ N), and put

|α|=
n

∑
i=1

αi; (8.1)

Dα =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

≡ ∂
α1
1 · · ·∂

αn
n ≡

∂ |α|

∂xα1
1 · · ·∂xαn

n
; (8.2)

xα = xα1

1 · · ·xαn

n . (8.3)

2. Distributions. For each measurable (usually open) subset Ω ⊆ Rn, let D(Ω) be C∞
c (Ω)

as a set, equipped with the topology in which ϕλ → ϕ iff there is a compact K ⊂Ω such
that supp(ϕλ )⊆ K for all λ , and for all multi-indices α one has (implying supp(ϕ)⊆ K):

‖Dα(ϕλ −ϕ)‖∞→ 0. (8.4)

Elements of D(Ω) are called test functions. A linear map u : D(Ω)→ C is continuous
iff for each compact K ⊂Ω there is m ∈ N and C > 0 such that for all α with |α| ≤ m,

|〈u,ϕ〉| ≡ |u(ϕ)| ≤C‖Dα
ϕ‖∞. (8.5)

Distributions are elements of the space D ′(Ω) of all continuous maps u : D(Ω)→ C.119

This space carries the weak topology, in which uλ → u iff 〈uλ ,ϕ〉 → 〈u,ϕ〉 for each
ϕ ∈D(Ω). In this topology, D(Ω) is dense in D ′(Ω), where u∈D(Ω) defines u∈D ′(Ω)
through the L2 inner product, i.e., 〈u,ϕ〉= 〈u,ϕ〉L2(Ω). Adding a middle man gives

D(Ω)⊂ L2(Ω)⊂D ′(Ω), (8.6)

in which each embedding is continuous and dense. This is an example of a Gelfand triple.

Let Ω be open in Rn. For each α , the weak derivative Dαu of u ∈D ′(Ω) is defined by

〈Dαu,ϕ〉= (−1)|α|〈u,Dα
ϕ〉. (8.7)

This definition may be motivated by faking the formula 〈u,ϕ〉 =
∫

Ω
u(x)ϕ(x), which on

repeated partial integration gives (8.7). Any linear partial differential operator may there-
fore be regarded as a map L : D ′(Ω)→D ′(Ω), with adjoint L∗ : D(Ω)→D(Ω), i.e.,

〈Lu,ϕ〉= 〈u,L∗ϕ〉. (8.8)

For example, if L = Dα , then L∗ = (−1)|α|Dα . The derivatives in Lu are called weak,
those in L∗ϕ being classical. Similarly, a solution u ∈ D ′(Ω) of a linear PDE Lu = F
(with initial conditions), i.e. 〈Lu,ϕ〉= 〈u,L∗ϕ〉 for all ϕ ∈D(Ω), is called weak.

119Here and in what follows, if Ω = ∪iKi for compact i, “for each compact K” may be replaced by “for each Ki.”
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One has to be careful with (8.8) if Ω is not open. For example, if Ω = [0,∞)×Rn and
L =−�= ∂ 2

t −∆, then (due to boundary terms in partial integration) the inhomogeneous
wave equation Lu = F with initial conditions u(0,x) = f and u̇(0,x) = g(x) becomes

−
∫

∞

0
dt
∫
Rn

dnxu�ϕ =
∫

∞

0
dt
∫
Rn

dnxFϕ +
∫
Rn

dnxg(x)ϕ(0,x)− f (x)ϕ̇(0,x). (8.9)

For Ω = Rn, another widely used space of distributions is based on the space of rapidly
decreasing (test) functions S (Rn), which consists of those f ∈ C∞(Rn) for which the
function x 7→ xαDβ f is bounded for all multi-indices α and β . One often writes

〈x〉= (1+‖x‖2)1/2, (8.10)

and uses x 7→ 〈x〉αDβ f , which of course gives the same space. The topology on S (Rn) is
such that ϕλ → ϕ iff for all l,m ∈N and multi-indices α and β with |α| ≤ l and |β | ≤m,

‖xαDβ (ϕλ −ϕ)‖∞→ 0. (8.11)

The (weak) topology on the space S ′(Rn) of tempered distributions has uλ → u iff there
are l,m ∈ N and C > 0 such that for all α with |α| ≤ l and β with |β | ≤ m one has

|〈u,ϕ〉| ≤C‖xαDβ
ϕ‖∞. (8.12)

Similarly to (8.6), one has a Gelfand triple (i.e. the embeddings are continuous and dense)

S (Rn)⊂ L2(Rn)⊂S ′(Rn), (8.13)

and since D(Rn)⊂S (Rn) continuously, and hence S ′(Rn)⊂D ′(Rn), this extends to

D(Rn)⊂S (Rn)⊂ L2(Rn)⊂S ′(Rn)⊂D ′(Rn). (8.14)

3. Sobolev spaces. For any s ∈ N, based on (8.6), define the Sobolev space

Hs(Ω) = {u ∈ L2(Ω) | Dαu ∈ L2(Ω)∀α : |α| ≤ s}, (8.15)

where accordingly the derivatives inherent in Dα are weak. Clearly, H0(Ω) = L2(Ω), but
it can be shown that all Hs(Ω) are Hilbert spaces with respect to the inner product

〈u,v〉s = ∑
|α|≤s
〈Dαu,Dαv〉, (8.16)

where ∑|α|≤s means ∑α:|α|≤s, and 〈·, ·〉 is the inner product in L2(Ω) (note the danger
of ambiguous notation here: 〈·, ·〉p often denotes the inner product in Lp, but here 〈·, ·〉s
stands for the inner product in Hs; in our notation the inner product in L2 would be 〈·, ·〉0).

For Ω =Rn a different perspective on Sobolev spaces comes from the Fourier transform

f̂ (ξ ) = (2π)−n/2
∫
Rn

dnx f (x)e−iξ x; (8.17)

f̌ (x) = (2π)−n/2
∫
Rn

dn
ξ f (ξ )eiξ x, (8.18)
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which make sense as Lebesgue integrals for f ∈ L1(Rn). If one also has f̂ ∈ L1(Rn), then

ˇ̂f = f . (8.19)

The scope of these formulae may be extended in at least three different ways:120

(a) Eq. (8.17) yields a unitary isomorphism L2(Rn)
∼=→ L2(Rn) of Hilbert spaces.

(b) The Fourier transform also defines a linear homeomorphism S (Rn)
∼=→S (Rn).

(c) Defining f̂ for f ∈ S ′(Rn) by 〈 f̂ ,ϕ〉 = 〈 f , ϕ̌〉, the Fourier transform (8.17) even
defines a linear homeomorphism S ′(Rn)

∼=→S ′(Rn) of tempered distributions.

Returning to Sobolev spaces, for Ω = Rn may now (re)define, for any s ∈ R,

Hs(Rn) = {u ∈S ′(Rn) | ξ 7→ 〈ξ 〉sû(ξ ) ∈ L2(Rn)}, (8.20)

with inner product

〈u,v〉s =
∫
Rn

dn
ξ 〈ξ 〉2s û(ξ )v̂(ξ ) =

∫
Rn

dn
ξ (1+‖ξ‖2)s û(ξ )v̂(ξ ) (8.21)

For s∈N this reproduces (8.15) as a vector space (a fact that is not obvious), but of course
the inner products (8.16) and (8.21) are different (yet they induce equivalent norms), and
so for s ∈N one has to specify which one is used. This makes a difference neither for the
Sobolev embedding theorem, which states that for m≥ 0 and s > m+ 1

2n, one has

Hs(Rn)⊂Cm
b (R

n), (8.22)

where the embedding is continuous with respect to the norm ‖u‖m,∞ = ∑|α|≤m ‖Dαu‖∞,
nor for the fundamental Sobolev duality theorem, which states that for any s ∈R one has

Hs(Rn)∗ ∼= H−s(Rn), (8.23)

i.e. Λ ∈ Hs(Rn)∗ linearly, bijectively, and isometrically corresponds to f ∈ H−s(Rn) via

Λ(u) =
∫
Rn

dnx f (x)u(x)≡ 〈 f ,u〉. (8.24)

Finally, for s > 0 we have our third Gelfand triple

Hs(Rn)⊂ L2(Rn)⊂ H−s(Rn), (8.25)

which analogously to (8.14) may be extended to a ‘Gelfand quintuple’

S (Rn)⊂ Hs(Rn)⊂ L2(Rn)⊂ H−s(Rn)⊂S ′(Rn). (8.26)

120Less well known, if one equips C∞
c (Rn) with the unusual norm ‖ f‖0 = max{‖ f‖∞,‖ f̂‖∞}, with associated

completion denoted by C∗0(Rn), then (8.17) yields an isometric isomorphism C∗0(Rn)
∼=→C∗0(Rn) as Banach spaces.

For C*-algebra experts we note that the Fourier transform also yields an isomorphism C∗(Rn)
∼=→ C0(Rn) of

commutative C*-algebras (here C∗(Rn) is the completion of C∞
c (Rn) in the operator norm obtained by letting

f ∈ C∞
c (Rn) act on L2(Rn) by convolution, whereas C0(Rn) carries the supremum-norm). In this case (which

follows from the Riemann–Lebesgue lemma) the Fourier transform is a special case of the Gelfand transform.
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For our kind of PDE’s, Rn will be space, and time needs to be treated separately. Typi-
cally, for fixed T > 0 one considers Banach spaces like C([0,T ],Hs(Rn)), with norm

‖u‖∞ = sup
t∈[0,T ]

‖u(t)‖s, (8.27)

or C1([0,T ],Hs(Rn)) with analogous norm, or Lp([0,T ],Hs(Rn)), 1≤ p < ∞, normed by

‖u‖p =

(∫ T

0
dt (‖u(t)‖s)

p
)1/p

, (8.28)

or L∞([0,T ],Hs(Rn)), with norm

‖u‖∞ = esssupt∈[0,T ]‖u(t)‖s. (8.29)

Here we define Lp([0,T ],Hs(Rn)), 1≤ p < ∞, as the completion of C([0,T ],Hs(Rn)) in
the norm (8.28), and also (avoiding Banach space-valued measurable functions), define
L∞([0,T ],Hs(Rn)) as the (Banach) dual of L1([0,T ],H−s(Rn)), in that we identify f ∈
L∞([0,T ],Hs(Rn)) with the functional Λ f ∈ (L1([0,T ],H−s(Rn)))∗ given by, cf. (8.24),

Λ f (g) =
∫ T

0
dt 〈 f (t),g(t)〉. (8.30)

8.2 Linear wave equations
To see such spaces in action, as before we consider the free wave equation on Rn+1, i.e.

(−∂
2
t +∆)u = F ; (8.31)

u(0,x) = f ; u̇(0,x) = g(x), (8.32)

For F = 0 and n = 1,3, the (unique) solution (known since the 18th century) is

u(t,x) = 1
2

(
f (x+ t)− f (x− t)+

∫ x+t

x−t
dyg(y)

)
; (n = 1); (8.33)

u(t,x) =
1

4πt2

∫
|y−x|=t

dσ
2(y)

(
tg(y)+ f (y)−

3

∑
i=1

∂i f (y)(xi− yi)

)
; (n = 3). (8.34)

From this, we see that in n = 1 the solution at (t,x) only depends on initial data within its causal
past J−(x, t), intersected with the Cauchy surface Σ = {(x0 = 0,x),x ∈ Rn}. Indeed, recall the
causal past J−(t,x),emanating from (t,x), and its boundary L−(t,x), i.e. the past light cone,

J−(t,x) = {(y0,y) ∈ Rn+1, |y0− x0| ≥ |y− x|, y0 ≤ x0}; (8.35)

L−(t,x) = {(y0,y) ∈ Rn+1, |y0− x0|= |y− x|, y0 ≤ x0}, (8.36)

cf. (4.7) - (4.8) with y0 ≥ x0 replaced by y0 ≤ x0 (as well as x by (t,x), etc.). In n = 1, we have

Σ∩ J−(x, t) = {(y0 = 0,y),y ∈ [x− t,x+ t]}, (8.37)

whereas in n = 3 the solution u(t,x) even depends on the initial data at Σ∩L−(x, t) only, since

Σ∩L−(t,x) = {(y0 = 0,y), |y− x|= t}. (8.38)
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An analogous phenomenon holds in the inhomogeneous case F 6= 0, in which case the solution

u(t,x) =
1

4π

∫
L−(t,x)

dσ
3(s,y)

F(s,y)
|(s− t,y− x)|

, (8.39)

for zero initial data for simplicity, clearly depends on the values of F at the past light cone
L−(t,x); in other words, F(s,y) only influences u along the forward light cone emanating from
(s,y). The situation in n = 3 (and also in all higher odd spatial dimensions), in which both
initial data f ,g and the inhomogeneous term F affect the solution only along future light rays
is called the strong Huygens principle. The (ordinary) Huygens principle, then, formalizes the
situation in n = 1,2, and all higher even dimensions, in which the entire causal future of (s,y)
affects the solution, or, equivalently, u(t,x) only depends on data within its causal past.

An explicit solution for any F , f , and g may be written down using the Fourier transform:

û(t,ξ ) = cos(t|ξ |) f̂ (ξ )+
sin(t|ξ |)
|ξ |

ĝ(ξ )+
∫ t

0
ds

sin((t− s)|ξ |)
|ξ |

F̂(s,ξ ); (8.40)

as the notation indicates, the formula (8.17) is only applied to the x-variable, and, within the
function classes to be discussed, the actual solution u(t,x) may be (re)constructed from (8.18).
Although the space-time and causal structure of the solution is not at all obvious from this
formula, the advantage is that (8.40) easily implies an energy inequality: for any s ∈ Z,

‖u(t, ·)‖s+1 +‖u̇(t, ·)‖s ≤Cs,T

(
(‖ f‖s+1 +‖g‖s)+

∫ T

0
dτ ‖F(τ, ·)‖s

)
, (8.41)

where 0 < T < ∞, provided that F ∈ L1([0,T ],Hs(Rn)), f ∈Hs+1(Rn), and g ∈Hs(Rn), so that
the right-hand side makes sense. The proof is an exercise, using the fact that (8.21) implies

‖u(t)‖2
s =

∫
Rn

dn
ξ (1+‖ξ‖2)s |û(t,ξ )|2. (8.42)

Corollary 26 For any T > 0 and s ∈ Z, the free wave equation (8.31) - (8.32) with initial
conditions f ∈ Hs+1(Rn) and g ∈ Hs(Rn), and F ∈ L1([0,T ],Hs(Rn)), has a unique solution

u(t,x) ∈C([0,T ],Hs+1(Rn))∩C1([0,T ],Hs(Rn)), (8.43)

Uniqueness follows either from the derivation of the explicit solution (8.40) from the initial
data, or from (8.41): if u1 and u2 both solve (8.31) - (8.32), then u = u1− u2 solves (8.31) for
F = f = g = 0, so that the right-hand side and hence the left-hand side of (8.41) vanishes, etc.

We now turn to linear wave equations of the form Lu = F with initial data (8.32), and

L = gρσ (t,x)∂ρ∂σ +bρ(t,x)pρ +a(t,x). (8.44)

Since we don’t have an explicit solution, the derivation of a suitable energy inequality (to be
used as a lemma for proving existence, uniqueness, and analytic properties of solutions) will
have to be a priori.121 A particularly useful energy inequality for the operator (8.44) is

∑
|α|≤1

‖Dαu(t, ·)‖s ≤C′s,T

(
∑
|α|≤1

‖Dαu(0, ·)‖s +
∫ t

0
dτ ‖Lu(τ, ·)‖s

)
, (8.45)

121These a priori derivations are straightforward but very lengthy, and therefore we simply state the results
without derivation; for (8.45) see Sogge, §I.3 and Luk, §4. See also Ringström for similar estimates.
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valid for any 0< t < T <∞, s∈Z, and u such that (8.43) holds, as well as Lu∈ L1([0,T ],Hs).122

This inequality immediately gives uniqueness by the same argument as for the free wave equa-
tion, but existence and regularity require a more advanced, functional-analytic argument. In
order to explain the reasoning, let us first take a simpler situation.123 For Ω⊆ Rn, let

L : D ′(Ω)→D ′(Ω) (8.46)

be a linear operator, e.g. as in (8.44), with adjoint L∗ : D(Ω)→ D(Ω) defined by (8.8). As
already mentioned, the PDE Lu = F (with zero initial conditions for simplicity) then means

〈u,L∗ϕ〉= 〈F,ϕ〉 (8.47)

for all ϕ ∈D(Ω). Throughout the argument, we must assume that, for any net (ϕλ ) in D(Ω),

L∗ϕλ → L∗ϕ ⇒ ϕλ → ϕ. (8.48)

If L∗ is a bijection, and F ∈ D ′(Ω), which is the very least regularity to impose, then we are
done at the coarsest level of proving existence and uniqueness of a solution u ∈D ′(Ω), since its
value at ψ ∈D ′(Ω) is given by finding the unique ϕ ∈D(Ω) for which ψ = L∗ϕ and putting

〈u,ψ〉= 〈F,ϕ〉 (ψ = L∗ϕ). (8.49)

The assumption (8.48) then implies that if ψλ → ψ , i.e., L∗ϕλ → L∗ϕ , then ϕλ → ϕ , and
hence 〈F,ϕλ 〉 → F,ϕ〉 since F ∈ D ′(Ω) by assumption, and hence 〈u,ψλ 〉 → 〈u,ψ〉, since
〈u,ψλ 〉= 〈F,ϕλ 〉. Thus u is a continuous linear functional on D(Ω) and hence u ∈D ′(Ω).

If L∗, still assumed to be injective, merely has dense range ran(L∗) ⊂ D(Ω), then one still
has existence and uniqueness of u, since for ψ ∈ ran(L∗) eq. (8.49) still works, whereas for ψ

outside the range of L∗ we may write ψ = limλ L∗ϕλ and then 〈u,ψ〉= limλ 〈F,ϕλ 〉.
Finally, if L∗, still injective, does not have dense range, the Hahn–Banach Theorem (for

locally convex vector spaces) yields existence of u by extending the solution u : ran(L∗)→
C constructed above to a continuous linear map u : D ′(Ω)→ C, but one loses uniqueness.
Fortunately, in many applications to PDE’s uniqueness still follows from energy inequalities.

Such inequalities also play a central role in refining the above argument. Suppose one has
two Gelfand(ish) triples D(Ω) ⊂W ⊂ D ′(Ω) and D(Ω) ⊂ Z ⊂ D ′(Ω), where W and Z are
Banach spaces and all inclusion maps are continuous with dense image, and suppose that

‖ϕ‖Z ≤C‖L∗ϕ‖W (∀ϕ ∈D(Ω)). (8.50)

This ‘energy condition’ supersedes the continuity assumption (8.48) within D(Ω), and is also
more powerful in that it clearly implies that L is injective, which is an essential condition for
the whole analysis to apply in the first place. Furthermore, the inequality (8.50) implies:

Provided L∗ is injective, for any F ∈ Z∗ there is a solution u ∈W ∗ to Lu = F .

Noting that D(Ω) ⊂ Z implies Z∗ ⊂ D ′(Ω), and similarly D(Ω) ⊂W implies W ∗ ⊂ D ′(Ω),
compared with the earlier argument where the assumption F ∈ D ′(Ω) gave a solution u ∈

122Moreover, the derivation requires that gµν(t,x), bµ(t,x), and a(t,x) be C∞ with uniform bounds on all deriva-
tives, where (t,x) ∈ [0,T ]×Rn, as well as ∑µ,nu |gµν(t,x)−ηµν | ≤ 1

2 , where η is the Minkowski metric.
123See e.g. A. Vasy, Partial Differential Equations (AMS, 2015), Chapter 17.
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D ′(Ω), we have now strengthened the assumption to F ∈ Z∗ ⊂ D ′(Ω), and, given (8.50), ac-
cordingly strengthened the conclusion u ∈D ′(Ω) to u ∈W ∗ ⊂D ′(Ω). Indeed, noting that

ran(L∗)⊂D(Ω)⊂W, (8.51)

let ψ ∈ ran(L∗), so ψ = Lϕ , and define a linear map u : W → C initially on ran(L∗)⊂W by

〈u,L∗ϕ〉W ∗−W = 〈F,ϕ〉Z∗−Z. (8.52)

Because of (8.50), if L∗ϕλ → L∗ϕ in W , then ϕλ →ϕ in Z, and hence on the assumption F ∈ Z∗,
the functional u defined by (8.52) is continuous on ran(L∗) in the (norm) topology of W . Once
again, the Hahn–Banach Extension Theorem (but this time simply for Banach spaces) gives a
continuous extension u : W → C, i.e. u ∈W ∗, as claimed.

We now show how the energy estimate (8.45) implies an estimate à la (8.50). For any T > 0,
we replace u in (8.45) by ϕ ∈C∞

c ((0,T )×Rn), which certainly satisfies the assumptions vali-
dating (8.45), and replace L by L∗. Then Dαu(0, ·) is replaced by Dαϕ(0, ·) = 0. Furthermore,
for any multi-index α , s ∈ R, k ∈ N, and ϕ ∈ Hs, by definition of the Sobolev spaces we have

‖ϕ‖−s ≤C′ ∑
|α|≤k
‖Dα

ϕ‖−s−k. (8.53)

With k = 1, also using the trivial
∫ t

0 dτ g(τ)≤
∫ T

0 dτ g(τ) whenever 0 < t < T and g(τ)≥ 0, in
this case with g(τ) = ‖L∗ϕ(τ, ·)‖−s−1, we find, for any s ∈ Z and ϕ ∈C∞

c ((0,∞)×Rn),

‖ϕ(t, ·)‖−s ≤C
∫ T

0
dτ ‖L∗ϕ(τ, ·)‖−s−1. (8.54)

This is a special case of (8.50), with

W = L1([0,T ],H−s−1(Rn)); (8.55)

Z =C([0,T ],H−s(Rn)); (8.56)

W ∗ = L∞([0,T ],Hs+1(Rn)); (8.57)

Z∗ ⊃ L1([0,T ],Hs(Rn)); (8.58)

the precise form of Z∗ (which is the space of bounded measures on [0,T ] taking values in Hs is
not needed here). Assuming zero initial conditions for the moment, the abstract argument above
therefore gives a solution u ∈ L∞([0,T ],Hs+1(Rn)) for F ∈ L1([0,T ],Hs(Rn)), which, by the
original energy inequality (8.45) is also unique. More advanced arguments involving elliptic
regularity further push to solution into (8.43).124 Finally, the case of nonzero initial data f ,g
can be reduced to the case f = g = 0 by a standard trick: for given F , let v solve Lv = F for zero
initial data, define w(t,x) = f (x)+ tg(x), and u = v+w solves Lu = F for given f ,g. Thus:

Theorem 27 For any T > 0, let L be defined by (8.44), including all assumption stated after-
wards. For any s ∈ Z, the linear wave equation Lu = F, with F ∈ L1([0,T ],Hs(Rn)) and initial
conditions f ∈ Hs+1(Rn) and g ∈ Hs(Rn), see (8.32), has a unique solution

u(t,x) ∈C([0,T ],Hs+1(Rn))∩C1([0,T ],Hs(Rn)). (8.59)

Corollary 28 In the setting of the previous theorem, if F, f , and g are smooth, then so is u.

This follows from the Sobolev embedding theorem (8.22). With further effort, one can also
show that the causal properties of the solution relative to F and the initial data f ,g are the same
as for the free wave equation, except that the strong Huygens principle need not apply (but the
‘oridinary’ one, implying causal propagation of inital data and F , always does).

124See Sogge, p. 20.
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8.3 Quasi-linear wave equations
In either the (naive) wave gauge or its refinement the ĝ-wave gauge, the Einstein equations
(5.79) - (5.80) take the abstract form form Lu = F , where u = gµν and L is like (8.44), with the
difference that in L = gρσ (u)∂ρ∂σ the coefficient of the highest- (i.e. second) order derivative
now depends on u, and furthermore F = F(u,∂u) depends on u and ∂u. Such equations (in the
more general case that g and F may depend on u, ∂u, and even (t,x)) are called quasi-linear,125

and if the signature of g is Lorentzian, as we of course assume, the PDE is hyperbolic.
We assume for the moment that u takes values in R; the generalization to u = (gµν) tak-

ing values in R10, is straightforward and will be outlined later. It is also sufficient for later
applications to GR to assume that gρσ : R→R is smooth, as is F : R×Rn+1→R. So we study

gρσ (u)∂ρ∂σ u = F(u,∂u). (8.60)

As opposed to truly nonlinear hyperbolic PDE’s, the quasi-linear case is relatively easy because
it can be solved by reduction to the linear case, and one can only feel fortunate that the Ein-
stein equations (at least in a suitable gauge) fall into this category. The solution method is a
generalization of the Picard iteration procedure from ODE’s:126 start from the initial data

u0(x) = f (x) = u(0,x), (8.61)

and iteratively define uk+1 as the solution to the inhomogeneous linear PDE

gρσ (uk)∂ρ∂σ uk+1 = F(uk,∂uk), (8.62)

subject to the initial conditions uk+1(0,x) = f (x) and u̇k+1(0,x) = g(x), as for u itself.127 For
some given function uk(t,x), eq. (8.62) is the type of PDE studied in the previous section. Hence
Theorem 27 guarantees a solution for any T > 0, but convergence of the iteration and uniformity
of the energy inequality (8.41) in k gives a weaker conclusion compared to the linear case:128

Theorem 29 For smooth F(u,∂u) and smooth gρσ (u) sufficiently close to the Minkowski met-
ric,129 eq. (8.60), with initial conditions f ∈ Hs+1(Rn) and g ∈ Hs(Rn), has a unique solution

u ∈ L∞([0,T ],Hs+1(Rn)); (8.63)
u̇ ∈ L∞([0,T ],Hs(Rn)), (8.64)

provided s > 1
2n (i.e. s > 3/2 for n = 3). Here T is either arbitrary (as in the linear case), or

there exists T∗ = T∗(‖ f‖s+1,‖g‖s) such that ‖Dαu‖∞ = ∞ on [0,T∗]×Rn, for some |α| ≤ 2.
This solution depends continuously on the initial data (so that the Cauchy problem for (8.60)

is well posed in the sense of Hadamard) in the obvious way, i.e., if fk → f in Hs+1(Rn) and
gk→ g in Hs(Rn), then uk→ u in L∞([0,T ],Hs+1(Rn)) with u̇k→ u̇ in L∞([0,T ],Hs(Rn)).

Finally, if f ∈C∞
c (Rn) and g ∈C∞

c (Rn), then u ∈C∞([0,T ]×Rn), cf. Corollary 28.

Of course, T < min{T∗}. For a trivial example with T∗ < ∞, take (∂ 2
t −∆)u = u3 with u(0,x) =

u̇(0,x) = 1 (times a cutoff function), so that u(t,x) = 1/(1− t) (for small x), and hence T ∗ = 1.
125In fluid mechanics all these dependencies occur, see e.g. Taylor, Chapter 16, but the abstract theory is similar.
126Recall that an ODE u′(t) = f (t,u(t)) with initial condition u(0) = u0, which is equivalent to the integral

equation u(t)= u0+
∫ t

0 ds f (s,u(s)), may be solved by iteration from u0(t)= u0 and uk+1(t)= u0+
∫ t

0 ds f (s,uk(s)).
For suitably regular f , this sequence (uk) uniformly converges to a solution u on some interval [0,T ].

127This works if f ,g ∈ C∞
c (Rn). For initial data f ∈ Hs(Rn) and g ∈ Hs+1(Rn) one needs to approximate f

and g within the spaces mentioned by sequences ( fk) and (gk) in fC∞
c (Rn), respectively, upon which the initial

conditions for (8.62) change into uk+1(0,x) = fk+1(x) and u̇k+1(0,x) = gk+1(x).
128See Sogge, §I.4, Luk, §6, Choquet-Bruhat, Appendix III, or Ringström, Chapter 9.
129Think of ∑ρ,σ ‖gρσ −ηρσ‖∞ ≤ 1

2 , as in Sogge. Even for initial data f ∈ Hs+1(Rn) and g ∈ Hs(Rn), one can
make further (rather contrived) regularity assumptions on gρσ and F that push u into (8.59). See Ringström, Ch. 9.
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8.4 Application to GR

Theorem 29 applies to the Einstein equations in the (ĝ-) wave gauge, with the following changes:

• Instead of a single unknown u we now have 10 unknowns gµν , with one equation for each
(but the ensuing system is coupled, since gρσ is a function of all gµν and so is F(g,∂g)).

• The Cauchy surface {t = 0} ⊂ Rn+1 is replaced by a 3d (Riemannian) manifold Σ.

• The initial data u(0, ·) = f and u̇(0, ·) = g are replaced by the Cauchy data (g̃i j, k̃i j) on Σ.

• Using either local coordinate patches and a partition of unity, or a background metric ê
on Σ making the construction coordinate-independent (like the ĝ-wave gauge), one can
define Sobolev spaces Hs(Σ) for any s ∈R (in view of s < 1

2n+1 in Theorem 29, s ∈N is
enough).130 This construction may be extended from functions on Σ to arbitrary tensors
τ ∈ X(k,l)(Σ), yielding Sobolev spaces Hs

(k,l)(Σ). Thus one may say, e.g., k̃ ∈ Hs
(2,0)(Σ).

• The PDE (8.62) is replaced by the reduced (vacuum) Einstein equations (5.79) or (5.80).

Theorem 30 Let s > 3/2.131 For initial data (Σ, g̃i j, k̃i j) where g̃ is sufficiently close to ê and

g̃ ∈ Hs+1
(2,0)(Σ); (8.65)

k̃ ∈ Hs
(2,0)(Σ), (8.66)

there is T > 0 such that the reduced vacuum Einstein equations (5.79) - (5.80) or their counter-
parts in a ĝ-wave gauge, have a unique solution g on M = [0,T ]×Σ, where

gµν ∈C([0,T ],Hs+1(Σ))∩C1([0,T ],Hs(Σ)); (8.67)
∂ρgµν ∈C([0,T ],Hs(Σ)). (8.68)

Note that (8.22) and (8.65) - (8.66) imply that for s > 3/2 one has g̃ ∈ C1(Σ) and k̃ ∈ C(Σ),
whilst (8.67) - (8.68) then imply g ∈C1(M) and hence ∂g ∈C(M). This solution continuously
depends on the initial data on the initial data in that g̃l→ g̃ in Hs+1

(2,0)(Σ) and k̃l→ k̃ in Hs
(2,0)(Σ)

imply gl → g in L∞([0,T ],Hs+1(Σ)) as well as ∂ρgl → g in L∞([0,T ],Hs(Σ)). Finally, if the
initial data (g̃, k̃) on Σ are smooth, then so is g, in which case (M,g) is globally hyperbolic.132

This theorem concerns the Einstein equations in specific gauges in which they are hyperbolic.
We have already seen that the Einstein equations as such ar not hyperbolic at all and fail to
have unique solutions. The general situations was already described in Proposition 31, which
as stated was valid for smooth initial data, and as such has now been justified by Theorem 30.
It may now be sharpened, since it also holds for ‘rough’ initial data of the kind described in the
above theorem; the proof (by reduction to the wave gauge) goes through virtually unchanged.

Proposition 31 may also be localized, in which case it is best seen as a causality result:

130See Taylor, Partial Differential Equations, Vol. I, Ch. 4, Ringström, Ch. 15, or Choquet-Bruhat, Appendix I.
131Choquet-Bruhat’s original existence proof had s > 3/2 but (geometric) uniqueness required s > 5/2, see

Choquet-Bruhat, Theorem 8.4, p. 168 (note that her s is our s = 1 so that our s > 1
2 n is her s > 1

2 n+1, etc.). For
the sharper s > 3/2 for existence and uniqueness, also in Proposition 31 and Theorem 22, see P.T. Chruściel, On
maximally globally hyperbolic vacuum space-times, J. Fixed Point Theory Appl. 14, 325–353 (2014), Thm. 1.1.

132See Theorem 11.10 in Chapter XII of Choquet-Bruhat, but the claim is natural given M = [0,T ]×Σ.
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Proposition 31 Let (g̃i j, k̃i j) and (g̃′i j, k̃
′
i j) be (smooth) initial data on Σ that coincide on some

submanifold Σ0 ⊂ Σ. Then any two Cauchy developments ([0,T ]×Σ,g) and ([0,T ′]×Σ,g′) of
these data are isometric when restricted to D+(Σ0)⊂ [0,T ′′]×Σ0, where T ′′ = min{T,T ′}.
This does not follow from (the proof of) Proposition 31 alone (i.e. by reduction to a wave
gauge); in addition, one needs a uniqueness (or causality) result for nonlinear wave equations.
For (8.60) and analogous equations, this states that if Σ0 ⊂ Σ is a submanifold, then u = u′ and
u̇ = u̇′ on Σ0 implies u = u′ on D+(Σ0). Equivalently, if the initial data f and g vanish on Σ0,
then the solution u vanishes on D+(Σ). This is a localized uniqueness result (for Σ0 = Σ it is
simply the uniqueness claim for solutions of (8.60)), but it is at the same a causality result,
stating that information (i.e. initial data) propagates causally, i.e. within the forward light-cone.

Much as uniqueness is proved from an energy inequality, the localized uniqueness of the
above kind is proved from a localized energy inequality. We merely explain this for the free
wave equation �u = 0 in Rn+1, but the principle is the same also in Lorentzian geometry.133

For any 0≤ t ≤ R, (t,x) ∈ Rn+1, and (reasonable) function u(t,x), define

E(t,x,R) = 1
2

∫
|y−x|≤R−t

dny [u̇(t,y)2 +∇u(t,y) ·∇u(t,y)]. (8.69)

This is just the energy of u, restricted to the ball B(x;R− t)⊂ Rn. If �u = 0, then,

0≤ s≤ t ⇒ 0≤ E(t,x,R)≤ E(s,x,R). (8.70)

That is, t 7→ E(t,x,R) is monotonically non-increasing. Fix R > 0, and note that

E(0,x,R) = 1
2

∫
B(x,R)

dny(g(y)2 +∇ f (y) ·∇ f (y)). (8.71)

Eq. (8.71) implies that if f (y) = g(y) = 0 for all y such that |y−x| ≤ R, then E(0,x,R) = 0, and
hence E(t,x,R) = 0 for all 0 ≤ t ≤ R by (8.70), and hence u(t,x) = 0 by (8.71). Taking R = t
shows that if f (y) = g(y) = 0 for all y such that |y− x| ≤ t, then u(t,x) = 0. In other words,
if f = g = 0 within Σ0 ⊂ Σ (defined as the t = 0 hyperplane Rn

0 in Rn+1), then u = 0 within
D+(Σ). Equivalently, if u1 = u2 and u̇1 = u̇2 at Σ0, then u1 = u2 in D+(Σ0). In case of the
Einstein equations, u1 = u2 becomes g1 ∼= g2 (isometrically), as we have seen, but otherwise the
reasoning is the same, ultimately based on the property g1 = g2 if both metrics are brought into
the same gauge. In sum, the solutions of the Einstein equations satisfy all desirable properties:

1. Existence global in space and local in time (with satisfactory regularity dictated by regu-
larity of the initial data (Σ, g̃i j, k̃i j), including smoothness for smooth initial data;

2. Uniqueness up to diffeomorphism;

3. Causal propagation, in that initial data at Σ0 ⊂ Σ determine the solution within D+(Σ0),
or, equivalently, gµν(t,x) is determined by initial data within the causal past J−(t,x) of
(t,x), both statements again up to diffeomorphism;

4. Cauchy stability, in that the 4d metric g continuously depends on the initial data (Σ, g̃i j, k̃i j),
as formalized in Theorem 30.

Nothing is implied about global existence in time. Thus the next step is a proof of at least
timelike geodesic completeness (cf. Definition 8), which is a very active area of research.134

133See Choquet-Bruhat, Appendix III, Theorem 2.15.
134Largely initiated by Christodoulou & Klainerman, The Global Nonlinear Stability of the Minkowski Space

(Princeton University Press, 1994); see also Christodoulou (2008).
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