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1 General differential geometry

Readers are supposed to be roughly familiar with this material and should look for proofs or
examples elsewhere (see e.g. the Literature at the end). General relativity (GR) requires a certain
way of presenting it, however, including an emphasis on coordinates and indices. This is needed
both for the PDE part of the course as well as for an understanding of the physics literature.

1.1

1.

Manifolds

A space always means a topological space. The topology of a space X (i.e. the set of its
open sets) is denoted by &'(X), so that U € &(X) means that U C X and U is open.

A (topological) manifold of dimension n is a paracompact Hausdorff space M such that
any x € M has a nbhd U € (M) homeomorphic to some U € O (R") (equivalently, any
x € M has a nbhd U’ € (M) homeomorphic to R” itself, or to some open ball in R").!

. A chart on M is a pair (U, @) where U € 0(M) and ¢ : U — R" is an injective open map.

We write V = @(U). Physicists think of a chart (U, ¢) as a coordinate system on U, in
that one writes @ : U — R" as (¢!,...,¢"), where ¢ : U — R in terms of the standard
basis of R" (i = 1,...,n), and the coordinates (x',...,x") of x € U of x are x' = @' (x).

A C*-atlas on M (where k € NU{o0}) is a collection of charts (Uy, @y ), where M = Ug Uy
(i.e. the Uy form an open cover of M), and, whenever U g = Uy NUp is not empty, writing

Vap = @a(Uqp) C R", the map @g o @y ' : Vo — R is C.

Two C*-atlases (Uq, @o) and (U, ¢.,) on a topological manifold M are equivalent if
their union is a C*-atlas, i.e., if all transition functions (pl’}, o @, and Pp o ((p(’%,)_1 if
defined) are C* (this is indeed an equivalence relation). A CK-structure on M is an equiv-
alence class of C* atlases on M. A smooth manifold is a manifold with C* structure.

Until further notice we henceforth assume that M is a smooth manifold equipped with
some C= atlas (Ug, @q). A smooth function f € C*(M) is amap f: M — R such that
for each a, the map fo ¢y : Vi, — R is smooth.

. Similarly, for two smooth manifolds M,N we say that a map ¥ : M — N is smooth pro-

vided one and hence each of the following equivalent conditions are satisfied:

(a) Foreach f € C(N) the pullback y*f = f oy is smooth, i.e., in C*(M);
(b) For any chart (U, ®) on M and chart (U, ) on N such that U' = w(U) N U # 0, the
function o yo @~ : V' — V is smooth, where V/ = (v~ (U")) C V.

If N = M, an invertible smooth map v : M — M with smooth inverse is called a diffeo-
morphism. Such maps form a group Diff(M) called the diffeomorphism group of M.

In the absence of contrary statements, all maps between smooth things will be smooth.

't follows that M is locally compact. If M is connected, then in the above definition ‘paracompact’ is
equivalent to ‘second countable’. If M is not connected, then second countability is a stronger assumption,
which is equivalent to M being paracompact with at most countably many connected components. See e.g.
http://math.harvard.edu/~hirolee/pdfs/2014-fall-230a-lecture-02-addendum.pdf. For our ap-
plication of manifolds to GR the assumption that M be second countable will do.
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1.2 Tangent bundle
1. A derivation of an algebra A (over R) is a linear map J : A — A satisfying
o(ab) = 6(a)b+ad(b). (1.1)

We write Der(C*(M)) for the set of all derivations on C*(M), seen as a (commutative)
algebra with respect to pointwise operations. This is a C**(M)-module, where the appro-
priate map C*(M) x Der(C*(M)) — Der(C*(M)) is the obvious one, (f0)(g) = f6(g).
In addition, Der(C(M)) is a Lie algebra,? under the bracket

[61,8] = 8108, — 808,. (12)
2. For M = R", it can be shown that each derivation of C*(R") takes the form

wngwwﬁy

= 8¢(f)(1) = X f() = X,( /), (1.3)

where X € C*(R",R") is an (old-fashioned) vector field on R". Conversely, (1.3) defines
a derivation Oy for each vector field X, and this gives a bijection X <+ 8y between the set
X(R") of all vector fields on R”" and the set Der(C*(R")) of all derivations on C*(R").
In fact, this bijection is an isomorphism of C*(R") modules, where X(R") carries the
obvious C*(R") action given by (fX)/(x) = f(x)X/(x). Thus we may, and often will,
identify Der(C*(R")) with X(IR") by looking at a vector field X as the corresponding
derivation 8y. Since a vector field X : R" — R" is given by its components X* : R" — R,
with X¥ € C*(R"), we have X(R") = ¢"C*(R") as a C*(R") module, and hence also

Der(C*(R")) = X(R") = &"C™(R") (1.4)
is a free C**(R") module (namely the n-fold direct sum of C*(R") with itself).

3. If we now define the vector fields X(M) as Der(C*(M)) we are ready, but there is a more
geometric way to define vector fields on manifolds a la C*(R”,R"), namely as sections of
the tangent bundle TM to M. First, a (real, locally trivial) k-dimensional vector bundle
over M is an open surjective map 7 : E — M, where E is a manifold, such that:

(a) For each x € M, the fiber E, = ! (x) is a k-dimensional (real) vector space, i.e.
E, = RK (where k is independent of x).
(b) M has an open cover (U;) with diffeomorphisms ®; : 7! (U;) — U; x R¥ such that:
i. Each restriction ®; : E, — {x} x RFis an isomorphism of vector spaces (x € U;);
ii. If Ujj = UiNU; # 0, then ®;; = ®;0 P ' : Uyj x R — Uj; x RE is the identity
on the first coordinate and a vector space isomorphism on the second one.

2A Lie algebra (over R) is a (real) vector space over K equipped with a bilinear map [-,-] : A x A — A that
satisfies [a,b] = —[b,a] (and hence [a,a] = 0) as well as [a, [b,c]] + [c, [a,D]] + [b, [c,a]] = O for all a,b,c € A. In
finite dimension every Lie algebra comes from a Lie group (Lie’s Third Theorem), but even in the case at hand one
may regard Der(C(M)) as the Lie algebra of Diff(M), seen as a Lie group in an appropriate (difficult) way.



A vector bundle map from mt; : E — M to m : F — Nis apair (¢ : E — F,@,: M — N)
such that 7, o @ = @, o 7y, and each ensuing map @y : Ex — F, () is linear.

The simplest k-dimensional vector bundle over M is E = M x R¥ with 7 given by projec-
tion on the first coordinate (this is called a trivial bundle), but it turns out that there are
many other examples (unless M is simply connected). A section (or cross-section) of E
isamap s: M — E such that Tos = idy (i.e., ©(s(x)) = x for each x € M). Cross-sections
of E = M x RF are simply given by maps §: M — R¥, so that s(x) = (x,5(x)), whence

(M x RK) = (M, RY), (1.5)

where I'(E) is the set of smooth sections of E. Under the action C*(M) x I'(E) — I'(E)
given by (fs)(x) = f(x)s(x), [(E) is a finitely generated projective module over C*(M).
The Serre—Swan Theorem provides an isomorphism between finitely generated projective
modules & over C*(M) and vector bundles E — M over M, in such a way that & = T'(E).
A key step in the construction of E = U,¢pyE, (disjoint union) from & is the identification

Ee=&/(C(Mx)- &) = &/ ~s, (1.6)

where C*(M;x) = {f € C*(M) | f(x) =0} and C*(M;x) - & is the linear span of all fs,
fEC”(M;x),s € &, sothats) ~y sy iff 51 —s5 € C*(M;x)-&. Then E, is a vector space
under the linear structure inherited from & (e.g. [s1]x + [s2]x = [s1 + 2], 0 = [0]; etc.,
where [s], is the equivalence class of s with respect to ~,). Subsequently, the smooth
structure of £ may be (re)constructed from & by reinterpreting § € & asamaps: M — E

through s(x) = [s]x € Ey, and requiring § — s to be an isomorphism & 5 [(E)4

4. The tangent bundle 7 : TM — M is the vector bundle constructed from & = Der(C*(M))
according to the above procedure.” In this case, we have a (linear) isomorphism

Der(C”(M))/ ~x = Der,(C”(M)), (1.7)

where the the right-hand side is the (vector) space of point derivations at x, defined as
linear maps Oy : C*(M) — R that satisfy

0:(fg) = 6:(f)g(x) + £ (x)x(8)- (1.8)
Each derivation § € Der(C*(M)) defines a point derivation &, € Der,(C*(M)) by
6:(f) = 8(/f) (%), (1.9)

and the isomorphism (1.7) is given by [0] — Ox. The fibers TM, = TM of the bundle
TM = UpeyyTeM, (1.10)
which by definition is the tangent bundle, may therefore be written as

T:M = Der,(C*(M)). (1.11)

3A C*(M)-module & is called finitely generated projective if there exists a C*(M)-module .# such that & ©.F
is free, i.e. isomorphic to a direct sum of copies of C*(M).

4This isomorphism sends C*(M;x) - & to T'(E;x) = {s € ['(E) | s(x) = 0}, so that I'(E) /T(E;x) = E,.

SDer(C>(M)) may no longer be free over C**(M), as in the case M = R”, but using charts one can show that it
is at least finitely generated projective.



As can be seen in local charts (where the situation is the same as for M = R"), the
point derivations at x form an n-dimensional vector space with basis (dy,...,d,), where
d; = d/0x', seen as an element of T,M, maps f € C*(M) to d;f(x). Thus TM is an
n-dimensional vector bundle over M, whose smooth structure is defined such that each
derivation 6 of C*(M) is given by a cross-section x — Oy of TM, where O, € T,M. Thus

Der(C*(M)) 2 T(TM) = X(M). (1.12)

Consequently, a vector field X on M, written X € X(M), is a map x — X, (or x — X (x)),
where x € M and X, € T:M, closely related to (but to be distinguished from) the corre-
sponding derivation 8y € Der(C*(M)); the connections is

Xo(f) = 8x (f)(x). (1.13)

Hence we think of a vector field X € X(M) as the collection of all vectors X, € T:M,
whereas we think of the corresponding derivation as a single global operation on C*(M).

5. Point derivations push forward under maps v : M — N: for x € M we have linear maps

Y, : TM — Ty ()N (1.14)
(o) (g) = 8:(y™g) (8 €CT(N)). (1.15)

Collecting these maps gives a vector bundle map v’ : TM — TN (also called v, or T'y).

However, derivations (or vector fields) push forward only if v : M — N is a diffeomor-
phism: the map s, : Der(C*(M)) — Der(C*(N)), or y, : X(M) — X(N), is given by®

v (8) = (v H*odoy” (1.16)

6. One may study tangent vectors X, € T,M in their own right (i.e., not necessarily as the
values of some vector field X at x). Each tangent vector is (nomen est omen!) tangent to
some curve Yy through x, i.e. amap y: I — M where I C R is some open or closed interval
we often (as in: now) assume to contain 0, such that ¥(0) = x. In other words,

X(f) = SO0 (1.17)

which symbolically may be written as X, = ¥ = dy/dt, or even as X, = d/dt, with y
understood. This description gives a geometric perspective on the push-forward of .M
just described: if X = dy/dt is tangent to v, then y'X = d(y oy)/dt is tangent to y(7).

In a chart ¢ : U — R" with x € U, the components Xé, of X, are defined by

d

i i d _; ‘
Xo=X0¢'(x) = 77 (Y(#))jr=0 = E?’l(f)vzov (1.18)

where (1) = @'(y(r)). Strictly speaking, we have @.X, = Y X,0; € Tp(yR"; in prac-
tice, this is often written as X =) ; X 9 € TM, leaving the role of the chart ¢ implicit.

®0ne needs (y~!)* even if N = M, since § o y* fails to be a derivation of C*(M). Please check!



However, the precise version (1.18) gives the transformation rule for vectors under a
change of charts (i.e. of coordinates): if x € Uy NUpg, then (1.17) and (1.18) imply

: Ixp j
xi =Y —L£xi, (1.19)
P ~ dx), *

where X ;3 = Xé, 5 CLC., and the coordinates xi; = (p[i3 (x) of x with respect to @g are seen as

functions of the coordinates xi, = @y (x) of x with respect to g, namely by putting
X (xa) = @ 0 0 (xa), (1.20)

which is really a restatement of the tautology (pli3 = (pl’.3 0@y 0@y (on Ug N Up).

In both differential geometry and GR it is important to distinguish (1.19), which is a
change of coordinates formula for a given tangent vector, from a similar formula that
expresses in coordinates the push-forward of a tangent vector under a map vy : M — M.
Suppose for simplicity that x € U and also y(x) € U. Then, writing X} = X' as above, as

well as y' = @' o yo @~ ! (which near x is a function from V to R), we have

313 X/, (1.21)

(vXx)'=),

Increasing potential confusion, although (1.19) gives different coordinate descriptions of
the same vector X in TM, it may also be seen as the formula for the push-forward of the
vector ¢, X in TR" under the map VB0 Py ! from Vy to Vg within R"™.

. Vector fields X (or, equivalently, derivations) may be ‘integrated’, at least locally, in the
following sense. We say that a curve y: I — M integrates X if X,y = dy(t)/dt, or

d
Xy(t)(f) = Ef<’}/<t>)7 (t € 1)7 (1.22)
for each f defined in a nbhd of y(/). Describing y and X by their coordinate functions
¥ :I — R and X/ : V — R relative to some chart ¢ : U — V, eq. (1.22) becomes

dy! (1)

2 =X 0 Y (0), (= L), (1.23)

For given X, an integrating curve 7 is therefore found by solving a system of n coupled
ODE, subject to some initial condition. The theory of ODE shows that for smooth X (as
we assume), this can always be done locally: for each xy € M there exists an open interval
I C R (with 0 € I) and a curve y: I — M on which (1.22) holds with y(0) = xp. This
solution is unique in the sense that if two curves y; : Iy — M and }» : I, — M both satisfy
(1.22) with 71 (0) = %2(0) = xo, then y; = 1» on I} N I,. Taking unions, it follows that there
exists a maximal interval / on which 7y is defined. However, curves that integrate X may
not be defined for all ¢, i.e., for I = R. This complicates the important concept of a flow
of a vector field X, which is meant to encapsulate all integral curves of X.



In the simplest case where for any x € M there is a curve y: R — M satisfying (1.22) with
7(0) = x, we say that X € X(M) is complete.” In that case, the flow of X is a smooth map
v : R XM — M, written ¥, (x) = y(t,x), that satisfies

Vo(x) =x; (1.24)
d
Xy = o f (Wi (x)) (1.25)

forallx e M,r € R, and f € C*(M). Thus the flow y of X gives “the” integral curve y of
X through xq by ¥(¢) = y;(x0). Any complete vector field has a unique flow. Uniqueness
implies both that M is a disjoint union of the integral curves of X (which can never cross
each other because of the uniqueness of the solution), and the composition rule

Yso Wy = Yt (1.26)

From a group-theoretic point of view, a flow is therefore an action of R (as an additive
group) on M that in addition integrates X in the sense of (1.25). In particular, (1.26)
implies W_; = y, !, so that each v, : M — M is automatically a diffeomorphism of M.

If X is not complete (a case that will be of great interest to GR!), we first define the domain
Dx C R x M of y as the set of all (£,x) € R x M for which there exists an open interval
I C R containing 0 and ¢ as well as a (necessarily unique) curve y: I — M that satisfies
(1.22) with initial condition ¥(0) = x. Obviously {0} x M C Dy, and (less trivially) it
turns out that Dy is open. Then a flow of X is a map y : Dx — M that satisfies (1.24) for
all x and (1.25) for all (¢,x) € Dx. Eq. (1.26) then holds whenever defined.

8. As a first application of flows, let us define the Lie derivative .£xY of some vector field
Y € X(M) with respect to another vector field X € X(M) by

t—0 t t—0 t

(1.27)

where y is the flow of X. Note that ¥y, () — ¥, would be undefined, since Yy, (,) € Ty, (nM
whilst Y, € T,M and these are different vector spaces; the push-forward y; serves to move
Yy to Ty, (yM. A simple computation (Frankel, §4.1) then yields the well-known result

HY = [X,Y], (1.28)

where the commutator is defined by [X,Y]f =X (Y (f)) — Y (X(f)). Note that neither XY
nor YX is a vector field, yet [X,Y] € X(M) is, as may be checked by seeing vector fields
as derivations; see the comments after (1.1). Thus X(M) is a Lie algebra.

In coordinates, where X = Y,;X'0; and Y =Y ;Y/9;, we have [X,Y] = Y,[X,Y]'d;, with

X, =Y (x/9;y' —v/9;x"). (1.29)

J

7A sufficient condition for X to be complete is that it has compact support (so if M is compact, then every
vector field is complete).




1.3 Cotangent bundle and other tensor bundles

Now that we have the tangent bundle 7'M, all other vector bundles relevant to GR follow. First,
the cotangent bundle T*M is defined as T*M = U,cpy T M, where the fibers

T:M = (T,M)" = Hom(T,M,R) (1.30)
consist of all linear maps 0, : T,M — R, i.e., are the dual vector spaces to 7,M, and the smooth
structure of 7*M stipulates that elements 8 € T'(T*M) = Q! (M) = Q(M), called covectors (or
1-forms), consist of those maps x — 6, for which the function x — 6,(X,) from M to R is
smooth for each X € X(M). Since T.M = R" we also have 7'M = R", so that, like TM, also
T*M is an n-dimensional vector bundle over M. In a coordinate systems (x') defined by some
chart ,T;M has basis (dx',...,dx") defined by dx'(9;) = 6;; this is the dual basis to the standard

basis (d1,...,0d,) of T,M defined earlier. Writing 8 = ¥, ;dx’, the components ; are given by
0; = 0(J;). (1.31)

In particular, any f € C*(M) defined a cross-section df € Q(M) by

d .
dfe=Y (a_)];) (x)dx', (1.32)

i

or, free of coordinates, by

df(X) =X(f). (1.33)

1. More generally, let (e,) be a basis of T,M, with dual basis (®“) of T/ M (i.e. ®*(ep) = §).
Once again, if we expand 6 =Y, 6,®“, we have 6, = 6(e,). This may be done at a single
point, but bases like (d1,...,d,) and (dx',...,dx") are defined at each x € U on which
the coordinates x' = ¢(x) are defined. Similarly, some basis (e,) may be defined at each
x € U, where U € 0(M) is not even necessarily the domain of a chart. In that case (e,)
is called a (moving) frame or an n-bein. Abstractly, if E — M is a k-dimensional vector
bundle, one may locally find k linearly independent cross-sections (up,...,u;) of E and
expand any s € I'(E) by s(x) = Y ;s;(x)u;(x), where s; € C*(M) and u; € I'(E).

2. Whereas tangent vectors push forward from M to N under maps y : M — N, covectors
pull back from N to M, like functions: besides the pull-back y* : C*(N) — C*(M) on
functions, any (smooth) ¥ map induces a pullback y* : Q(N) — Q(M) on 1-forms by

(V70):(Xe) = Oy () (Wi Xe), (1.34)
where 6 € Q(N) and X, € T,M. For any f € C*(N) with df € Q(N), this yields
v (df) =d(y" f). (1.35)

However, a decent vector bundle map y* : T*N — T*M is defined only if y is a diffeo-
morphism: with 8, € T,N,y € N,and x =y~ 1(y) € M, Wy (6y) € T"M is defined by

(v 6y)(Xx) = 6,(WiXo). (1.36)

If v is merely injective, then we still obtain a map y* : T*(y(M)) — T*M in this way.



3. Using the canonical isomorphism V** =V for any finite-dimensional vector space V,
given by the map v — ¥ from V to V**, where ¥(0) = 0(v), we reinterpret TM as T**M,
in that we now look at T,M as (T;*M)*. To blur the distinction between V and V** one
may write (6,v) for 6(v), and (v, 8) for ¥(0), and simply declare that (6,v) = (v,0). In
this spirit, for any (k,) € N x N we define a vector bundle T *Y)M over M via its fibers

M = Hom((TM)* x (T; M)\, R), (1.37)

i.e. the vector space of k+ [-fold multilinear maps from (T,M)* x (T;M)' to R, with total
space TkDp = UxeMY}C(k’l)M. We then define F(T(k’l)M) as the set of cross-sections
x — Ty (where T, € Tx(k’l)M) for which the map x — 7,(X; (x),..., Xx(x); ' (x),...,0'(x))
from M to R is smooth for each (X1,...,X;;0',...,0") with X; € X(M) and 6/ € Q(M).
As before, this equips 7*) M with a manifold structure (in that we declare F(T( DM ) to
be the space of smooth cross-sections of 7*)M). Equivalently, we may define T( M
as the tensor product of k copies of 7,M and [ copies of 7,M, making T®D M the (vector
bundle) tensor product of k copies of T*M and [ copies of TM. We then have

TOO N — M x R; (1.38)
TN = T*M; (1.39)
TOOM =TM. (1.40)

In GR, TZ0Mm (carrying the metric) and TGDpm (where curvature lives) will also be
important. Elements of F(T(k’l)M ) are called tensors (or tensor fields, in which case each
T, is regarded as a tensor). If o; € TYM (i=1,...,k)andv; € T.M (j =1,...,]), then
UB @@V ®--®v e M,
having to be a multilinear map from (T,M)* x (T;M)" to R, is naturally defined by
o4& RV @ @v(Xy,..., X 0., 0") = ar (X)) - o (X )vi (01) -+ vy (0).

All this can be rewritten in terms of indices. In terms of the (coordinate) basis (dy,...,d,)
of T,M with dual basis (dx!,...,dx") of T} M, the fiber 75 M then has a basis

(dxil®"'®dxik®aj1®"'®aj1)? (1.41)
where all indices run from 1 to n. Thus T®DM is an n**'-dimensional vector bundle.

Like vectors, tensors at x may be specified by their components with respect to some
basis of 7,M and associated dual basis of 7'M, In the usual coordinate basis (d;) we have

P fl( )dx”® dx’k®8,1® - ®0dj; (1.42)
T (x):Tx(ail, 0 dxt, L dx), (1.43)

1 lk >

where we use the Einstein summation convention: repeated indices are summed over.

Thus the right-hand side of (1.42) should really be preceded by 37 . . ;. Simi-
larly, in an arbitrary basis (e,) of T,M with dual basis (6“) of T,;*M one has

L= 0(x) 0 @ 0% Dep, @ Rep; (1.44)

0D (x) = Te(eq,, .. €q,: 07, 07). (1.45)
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4. We write X0 (M) for T(T*DM), so that X0 (M) = c=(M), OV (M) = X(M), and
XL (M) = Q(M). A tensor T € X% (M) of type (k,I) maps k vector fields (X;,...,X;)

and [ covector fields (8',...,0') to a smooth function on M by pointwise evaluation, i.e.
T: XM x QM) — Cc*(M); (1.46)
(X1, X, 0',...,0) 1 x = T (X1 (%), ... Xk (x);01(x),...,0(x)). (1.47)

This map is evidently k + /- multilinear linear over C**(M), in that

t(fiX1,. . fiXe,810',...,210") = fi--fi-g1---8-T(X1,..., X3 0',...,0"), (1.48)

for all f;,g; € C*(M); here we use the fact that X (M) and Q(M) are C*(M) modules.

Conversely, a map 7 : X(M)* x Q(M)! — C*(M) satisfying (1.48) is given by a tensor
7 e xWd) (M) through (1.47). The proof is easy in local coordinates, where (1.48) yields

t(X1,.., X, 00,00 =1(X]' ;... X} 0,0/ dx)1, ... 0} dxTt)

J1
=X"-- X0 -0/ T(diy,....dy;dx",.dxT),  (1.49)

)
“Ji
i

(x) of 7, by (1.43) and subsequently define 7, itself
by (1.42), we have found the desired tensor that reproduces the given map 7 via (1.47).8

so if we define the components Ti]l -

5. Egs. (1.42) - (1.43) imply the transformation properties of tensors under changes of coor-
dinates (i.e. charts), which physicists even use to define tensors: in the situation of (1.19),

o ad ad ok
(il op) =~ o i S (), (150)
dxg  dxy axﬁ axﬁ b

where the ‘new’ coordinates (xg) = (xllg, e ,xﬁ) are functions of the ‘old’ coordinates

(xo) = (x},,...,x%), cf. (1.20), and hence the matrix (8x2 / 8xg) is defined as the inverse

of the matrix ((Ebc;sl / 8x2), both seen as functions of the (x,). Note that the argument xg
in (1.50) refers to the same point x € M as the argument x, (but in different coordinates).

6. Let y : M — N be smooth. Through its coordinate expression, we may then define

W)EO’I) : TX(O,I)M N Tu(f(z;f))N; (1.51)
W)EOJ)Tx _ Tl]lllil (x) Vf),c(ajl) R ® 'V)/c(ajz)7 (1.52)

which combine into a single (vector bundle) map w(o,z) :T7ODp1 — TODN. However, as
in the special case l;/(o’l) = v/ (from TM to TN), we are generally unable to define maps
x00 (M) — xOD(N). Similarly, y induces maps y&0) : x*0)(N) — x(k0)(p) by the
obvious generalization of (1.34), but in general we cannot define maps TkRON — Tk0)pg.

8 Similarly for vector bundles E — M: amap 7 :I'(E) — I'(E) is induced by a cross-section of the vector bundle
End(E) iff it is C**(M)-linear. Here End(E) = UyepyHom(Ey, E, ), topologized (as usual) by asking precisely those
maps x — Ly, where L, € Hom(E,, E,), to be smooth for which all maps x — L,s(x) are smooth, s € T'(E).
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These defects can be overcome if y is invertible (with smooth inverse), in which case we
may as well take N = M and assume that ¥ : M — M is a diffeomorphism. Then y acts
on vectors in M, whereas y~! acts on covectors (1-forms) in 7*M. We may then define

k _ % . _ " .
Ve = e ) (i) @ () 2w (0) @ 0 u(9y), (153)
as an element of Ty(/lle)) M; note that (w~1)* maps TM to T*( )M whilst y, maps T,M to
Ty(xM. This gives corresponding formulae for cross-sections. Thus a diffeomorphism

¥ : M — M induces all maps wik’l) - ThDp — TRDM as well as (abuse of notation)

W}gkvl) : x(k,l)(M) — x(ki) (M), recovering wio’l) = v/ = y,. We may also replace ¥ in
(1.53) by w~!. This gives similar maps we denote by IV(*k’l), recovering l;/(*] 0= VA

. A natural operation on tensors, which is often used in GR, is fensoring: if 7| € x ki) (M)
and 7, € X2)(M), then 1) @ 1o € XKitkhith)(M) is defined by concatenation, i.e.

10X, Xey, Y1, Yy 01,00 pl L pP) = (1.54)
T (X1, X300, 00) Yy, Yy p s pP). (1.55)
Indeed, X) (M) itself arose in this way by tensoring copies of X0 (M) and X%V (M).

. Another important operation for GR is (index) contraction: If k > 0 and [ > 0, then a
tensor 7 € X %) (M) may be contracted along one fixed upper and one lower index, say
i and j (the result depends on this choice) to a tensor ¢ € X*—1/=1) (M) with two fewer
indices. Let (e,) be a basis of 7,M, with dual basis (@w?) of T;M (i.e. ®“(ep) = &;); in
local coordinates one could take the (d;) basis, with dual (dx'). Then

Ghl,‘..,bi,.‘.,b,( )
Alyeeesljye. A

= ot iy (1.56)

Al yeeey@ye. A

where, according to our standing Einstein summation convention, a is summed over, and
(as usual) a hat means that the given index is omitted. This is easily seen to be independent
of the basis. In GR (and also in Riemannian geometry), an important application will be
to the Riemann tensor R € X3V (M), which is contracted to the Ricci tensor Ry, = RS,

. The Lie derivative £x may be extended to a map Z)gk’l) = % xkhpy — xkhp by
KT = ur%fl(w,*(c) —1) (r e x®Dpy), (1.57)
t—
cf. (1.27). In local coordinates, this gives the following explicit formula:

(gxf)/l Jr_ Xafjl Jl—f-(alei)Tl-jl‘i“j["_"'—’_(a X)TJI

l]i

20N lk IAREN7
—(9; le)szl Jli — e —(0; le)fzjll li, (1.58)
of which (1.29) is clearly a special case. It follows from either (a)—(d) or (1.58) that
[gx,,iﬂy] == G%X’y} . (159)

One may equivalently define the % as the unique linear maps satisfying the rules:

(a) ZLxf =X for functions f € C=(M) = x(%0)pm;

(b) ZxY = [X,Y] for vector fields ¥ € ¥(M) = X0V,

(©) Z(0(Y)) = (%06)(Y)+0(ZY) for covector fields 6 € Q(M) = (10,
d) KX (o®1)=(%0)R1T+ 0K %1 (Leibniz rule) for all higher-order tensors.

12



2 Maetric differential geometry

The material in his chapter may no longer be familiar to all readers, and so it will be developed
in some more detail compared to the previous chapter, but since this is not primarily a course in
(semi) Riemannian geometry but a course in GR, proofs and examples will remain terse.

2.1 (Semi) Riemannian metrics

The main tensor in this course will be the metric tensor g € x20)p1, for which each bilinear

map g, : LM x T:M — R is symmetric (i.e. gx(Xy,Yy) = gx(Yy, X)) and nondegenerate (in that
gx(Xy,Yy) = 0 all Y, € T,M iff X, = 0). It follows from elementary linear algebra that each g,
can be diagonalized, in that T,M has a basis (e,) for which g.(e,,ep) = €,0,5, Where g, = +1.
Furthermore, the number of positive and negative €, is independent of the basis and is called
the signature of g,. If M is connected, then the signature is independent of x, and even if M is
not, we assume this. Thus the signature is a property of g, usually denoted by

(_|_..._|__..._) or <_...__|_..._|_)_

1. The metric is called Riemannian if the signature is (4 ---+), i.e., if each g, is positive
definite (which, given the assumption of symmetry, implies that it is nondegenerate, so a
Riemannian metric is one for which each g, is symmetric and positive definite).

2. The metric is called semi-Riemannian in all other cases (except (—---—), which by a
trivial change of sign in g may be turned into the Riemannian case).

3. The metric is called Lorentzian if dim(M) = 4 and the signature is (— + ++). Hence

1

&x=1m= ; 2.1)

coo |l
co —~o
o—oo
—_—oc oo

with respect to a basis (e,) of the above kind, which is duly called orthonormal.

The Lorentzian case is the one of interest to GR, but we will often invoke examples from Rie-
mannian geometry in order to explain some contrast with the Lorentzian case. Later on, the 3+1
split of M will be such that we look for Riemannian submanifolds of M (to be defined later).
The simplest example of a Lorentzian manifold (i.e., a manifold with Lorentzian metric) is
R* with the standard basis and g, defined by (2.1) for all x. More precisely, we relabel the usual
coordinates of R* as (x*,x!, x2,x?), so that T,R* = R* has the canonical basis (dy,d, s, d3),
with respect to which goo = g(do,do) = —1, gii = g(d;,0;) =1 for i = 1,2,3, and g,y =0
whenever 1 # v. Here we have introduced a convention often used in the (physics) literature:
Greek indices u, v etc. run from 0 to 3, whereas Latin indices i, j etc. run from 1 to 3. Both
Greek and Latin indices midway in the alphabet refer to the canonical coordinate basis d, =
d/0x* or d; = d /dx', whereas indices a, b etc. typically refer to arbitrary bases (e,). The above
example (R*, 1) is called Minkowski space-time, equipped with Minkowski metric 1. It is the
basis of Einstein’s special theory of relativity, of which the general theory of relativity is some
kind of a generalization. What kind exactly remains a source of (largely philosophical) debate:
certainly, Einstein did not succeed in making all motion ‘relative’, as he originally intended.
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2.2 Lowering and raising indices

Let (M, g) be a (semi) Riemannian manifold. Since g is nondegenerate, the distinction between
vectors and covectors is blurred, because we now have canonical (‘musical’) isomorphisms

he M — TEM, b(X) = X3 X' (Y) = go(X,Y); 2.2)
b TEM = TLM, £(0) = 6, g(6;,X) = 6(X), (2.3)
which maps are obviously each other’s inverse, and induce mutually inverse maps
b:X(M)— Q(M); (2.4)
t: QM) — X(M) (2.5)

by pointwise application. This leads to the lowering and raising of indices, which is crucial to
almost any computation in GR. At any point x (which we omit) we define (g%”) as the inverse
(matrix) to (gup), Where g4, = g(eq,ep,) in some basis e, (so that g?g;. = §%). Obviously,

Xo = gaX"; (26)
6 = g6y, 2.7)
which notation may then be extended to any tensor, where the ‘sharp’ and ‘flat’ signs are usually

omitted. For example, (2.6) - (2.7) are simply written as X, = g, X b and 6% = g"b 6y, and for
say the Riemann tensor R € X(31)(M) (with abuse of notation) we may define R € X% (M) by

Rabcd = gaeRch- (28)

The contraction process explained at the end of the previous chapter, which in principle has
nothing to do with the metric, may now elegantly be rewritten in terms of the metric by, e.g.,

Rab = Ricp = 8°Raact (2.9)
end hence may be repeated even in case where the original version doesn’t apply, as in
R=g"Ry. (2.10)

If R € 31 (M) is the Riemann tensor, so that its first contraction R € X9 (M) is the Ricci
tensor, this second contraction yields the Ricci scalar, which again plays a central role in GR.”
Indeed, as we shall see, GR revolves around the Einstein tensor G € X(>0) (M), defined by

Gab = Rab - %gabR- (211)

Abstractly, lowering an index is a map b : X0 (M) — x*+14=D (1) (provided I > 0 of course),
whose definition depends on the index. Taking the first (upper) index for simplicity, we have

T(X1,... . Xk 1:0Y,...,05" ) =T(Xa, ... X 1:X],60",...,0/71). (2.12)
Similarly, raising an index is a map £ : X0 (M) — *=LHD (M) (k > 0), which is defined,
for example once again on the first (lower) index, by

T.(X1,..., X—1:0',..., 0" ) =T(0) . X1,... X, _1;0%,...,0"). (2.13)

9Readers who don’t like the use of the same symbol for (in this case) four different things may either want
to introduce different notations for each different object (such as ‘Riemann’, ‘Ricci’, and ‘R’), which still doesn’t
solve the notation problem for raising and lowering indices except by reinstalling the ‘sharp’ and ‘flat’ symbols
each time, or use Penrose’s abstract index notation, where for example R} _; does not refer to the components of

R in some basis, as in our notation, but simply indicates that R € X3 Indices defining the components of some
tensor should then be added, which often leads to typographically horrible expressions (see e.g. Malament (2012).
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2.3 Geodesics

Intuitively, geodesics are paths of shortest lengths between two given points. This idea only
makes sense in the Riemannian case (as opposed to the semi-Riemannian case), with which
we therefore start: we will then find a redefinition of a geodesic that does make sense also on
semi-Riemannian manifolds. So, at least initially, let (M,g) be a Riemannian manifold. It will
be convenient to use closed intervals I = [a, b] as the domains of curves y: 1 — M.10

1. The length of a curve y: [a,b] — M is defined as

L) = [t ey 070 = [ o), @14

where (t) € Ty, M is the tangent vector to the curve, i.e. 7(7)f = df(y(r))/dt, cf. (1.17).
So in coordinates one has y(t) = (y!(¢),...,7*(t)), where ¥ : [a,b] — R, and hence

&0 (10).50) = 1) LO T — g oppopo. @as)

The length of ¥ is independent of its parametrization (i.e. it only depends on the image
¥([a,b]) in M),!! as opposed to its (kinetic) energy, which is defined as

B0 = [ gy 10, 70) = [ ar |70 216)

Both functionals extend to piecewise smooth curves, simply by splitting the integrals.

2. If M is connected, any two points can be connected by a smooth curve, and hence we
can define the distance d(x,y) between x,y € M as the infimum of L(y) over all smooth
curves v : [0,1] — M with y(0) = x and y(1) = y (one may equivalently use piecewise
smooth curves here, which can alway be smoothened near their bends). This is a metric
on M, whose metric topology coincides with the original topology of M.!?

3. A geodesic (between two given points) is a curve of extremal length. We will not precisely
explain what this problem in the calculus of variations means, since our goal is merely to
derive the alternative (re)definition below that is valid also for the semi-Riemannian case,
and so we just explain how this extremal problem is solved. In general, a functional

b
S() = [ dr 2 (r(e),70) @17)
a
is minimized or maximized by some curve 7 iff the Euler-Lagrange equations hold:
did¥ d9%
7= T 2.18
a9y oy 2.18)

Short of giving an introduction to the calculus of variations,'? here is a heuristic derivation
of (2.18). Let y(¢) a family of curves indexed by s, such that endpoints are fixed, that is,

Ys(a) = v(a); %s(b) = v(b). (2.19)

10Recall our standing assumption that maps, including curves, are smooth.

"'This is an easy calculation, see e.g. Jost, Lemma 1.4.3.

12See e.g. Jost, pp. 14-15.

13We will do so later on, when discussing the derivation of the Einstein equations from the Hilbert action. In
some sense that is easier, since one can work with Banach spaces. Here, the appropriate space of curves in M does
not even have a linear structure and has be treated as an infinite-dimensional manifold modeled on a Banach space.
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Then the extremality condition

ds(y)
ds
gives, on repeatedly using the chain rule and a partial integration,

M:/bdt (838_)/§+8$8_7§) :/bdt (838_}/§+8$i8_}/§)
ds dy. ds  dY ds dy. ds  JYi dt ds
(22 202yor fozan
a dyi dtdyi) ds |, 9V ds’
Then (2.19) gives d¥;(a)/ds = dvy,(b)/ds = 0, so that, for arbitrary y; and hence d7Y;/ds,
eq. (2.20) implies (2.18), in which s is dropped and hence d/dt becomes d/dzt.

For the energy functional (2.16) the Euler—Lagrange equations (2.18) are

¥ (6) + Tl (r(0) ¥ (1) ¥ (1) = 0, (2.22)

=0 (2.20)

(2.21)

or briefly ¥ + Fz.kj/f ¥* = 0, where ¥ = d*y/dt?, and the Christoffel symbols are given by

l]k = %gzm (gmj,k + 8mk,j — gjk,m)a (2.23)
where we have introduced another useful notational convention from GR:

le Ji a,rjl Jl‘ (224)

B0k, Il

Warning: the Christoffel symbols do not form the components of a would-be tensor
“Tex®D (M)”: physicists see this from their incorrect behaviour under coordinate trans-
formations, whereas mathematicians note that I fails the ‘tensoriality test’ stated before
(1.49). We will see, however, that the I'-symbols do combine into the Riemann fensor!

To derive (2.22) for (2.16), i.e., for L (y(t),7(t)) = gi;(v(t))7 (t) ¥ (¢), one uses

A

Sy =&kl I (2.25)
d 83 d i
a9y gzﬂ’ = 2(giju ¥V +&ii¥) = (giju+ g ) V'V + 287 (2.26)

Whereas solutions of (2.22) extremize the energy for any parametrization), for the length
functional (2.14), the Euler-Lagrange equations only take the form (2.22) iff ||y(z)|| is
constant; in paticular, if ||7(z)|| = 1 for all ¢+ € I we say that y is parametrized by arc
length.'* We define a geodesic as a curve 7y that satisfies (2.22). This in turn implies
that [|7(z)| is constant, as can be shown by simply computing d (|| ¥(t )||?)/dt from (2.15).

This time-derivative equals g;;. TV A 28 Jy‘yf Eliminating # via (2.22) then leads to
complete cancellation to zero (for a neater calculation see footnote 22). The definition of
a geodesic therefore depends on the parametrization of y: a reparametrized geodesic may
no longer satisfy (2.22), except when the reparametrization is affine, i.e. t' = at +b.!3

14One has L(y)? < 2(b—a)E(y) for any y: [a,b] — M, with equality iff ||7(¢)|| is constant (Jost, Lemma 1.4.2).
SNonetheless, it is easy to show that some curve Y can be reparametrized so as to become a geodesic iff the
right-hand side of (2.22) equals f - 7' for some f € C*(M); cf. Malament, Prop. 1.7.9.
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We started with the intuitive idea of geodesics as shortest paths between given endpoints.
We now have to add some nuances. First, in M = R" with flat metric (i.e. g;; = &;;
in the usual coordinates) geodesics are straight lines and indeed always form shortest
paths between two given points.!® But this is exceptional. For example, on the sphere,
geodesics are great circles, and hence one has two geodesics between two generic points:
one of minimal length and one of maximal length. These lengths coincide iff the two
points are polar opposites, in which case one has infinitely many geodesics between them.

Second, in the intuitive idea of geodesics the focus was on the endpoints, whereas in defin-
ing geodesics as solutions to the ODE (2.22), the focus is rather on the initial point ¥(0)
and the initial velocity 7(0); indeed, the solution to (2.22) is uniquely defined by these
data, expect for the interval /. Like any solution to an ODE, y has some maximal domain
I C R on which it is defined, and this domain may not equal R. If all geodesics y with
given ¥(0) and 7(0) can be defined on / = R we say that (M, g) is geodesically complete.
The Hopf-Rinow Theorem states that a Riemannian manifold (M, g) is geodesically com-
plete iff it is complete in the metric d derived from g.!” In particular, any compact Rie-
mannian manifold is complete. Trivial examples of incomplete Riemannian manifolds
are provided by open bounded sets Q C R" with flat metric inherited from R”. Many
Lorentzian manifolds of interest to GR (undoubtedly including our universe) are geodesi-
cally incomplete, the proof of which (by means of the famous singularity theorems of
Hawking and Penrose from the 1960s) forms one of the highlights of GR.

2.4 Linear connections

The definition of a geodesic as a curve Y whose tangent vector ¥ satisfies (2.22) along the
entire curve (i.e. for each r where y(¢) is defined) was inspired by the Riemannian case, but it
clearly makes sense for semi-Riemannian manifolds, too. We now move on to give a geometric
perspective on the Christoffel symbols F;k and hence on the curious geodesic equation (2.22).

1. Alinear connection on M (which is the same thing as a connection on the tangent bundle
TM, see below), or, equivalently, a covariant derivative on X(M), associates to each
vector field X € X(M) a linear map Vy : X(M) — X(M), such that:

(a) The map X — Vy is R-linear as well as C*°(M)-linear, i.e.
VixY = fVxY (f€C™(M)); (2.27)
(b) The map Y — VxY is R-linear but not C**(M)-linear: it satisfies the Leibniz rule
Vx(fY)=(Xf)Y +fVxY (f € C*(M)). (2.28)

This definition also makes sense on any open U € &' (M), and in fact if x € U, then VY (x)
only depends on the value of X at x and the restriction of Y to U (this follows from (2.27)
- (2.28) and the definition of a manifold). Hence we may compute covariant derivatives
locally: take a (local) frame (e,) for X(M) (recall that this consists of n maps e, : U — TM
such that at each x € U the vectors e,(x) € T:M form a basis of T,M, a=1,...,n), with

16 According to Newtonian mechanics, in the absence of forces particles move on geodesics (a property that will
reappear through the back door in GR).
17See e.g. Jost, Theorem 1.4.8.
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dual basis (®“) (i.e. the @?(x) € T M satisfy w”(e;) = ;). The given connection V is
then completely characterized by its connection coefficients ®¢,, defined (at each x) by

Ve, = O ec. (2.29)
Indeed, from (1.44) - (1.45) we may write X = X%¢,, where X¢ = 0*(X) € C*(U), so
VxY = Vxa,, (YPe,) = XV, (Y’e;) = X% (e4(Y?) -, + YV, e})
= X (ea(YO) + Y05, e, (2.30)
We write VxY“ for (VxY)?, so that VxY = (VxY%)e,. We therefore have
Vx¥V*=XY"+ o XbY°, (2.31)

where XY* is the (defining) action of the vector field X on the function Y* € C*(U). In
terms of the canonical coordinate basis (e = dy), (@ = dx"), we therefore have

oy = dxP (V,0y); (2.32)
VxYP =X*(9uYP + of\Y"); (2.33)
VuYP =0,YP + of\Y", (2.34)

where V, = Vau; we could have written ¥ ﬁ for 8MY P and even the semicolon notation

Y;ﬁ for V,,YP is en vogue among physicists (we give the general form later on).

2. Linear connections formalize Levi-Civita’s notion of parallel transport.'® 1t follows from
(2.31) or (2.33) that VxY only depends on the values of Y along the flow lines of X, for

Vyra(x) = %Y“(l//,(x))tzo + o ()X ()Y (x), (2.35)

where v is the flow of X. Conversely, given some curve y: I — M with tangent vectors
Y defined along y only, the covariant derivative V;Y of Y along ¥ is well defined for any
vector field Y defined near y(I) or even on ¥(I) alone,'® for in (local) coordinates we have

V)’/Y)’,)(,) =7H(1) (auYf(,) + mﬁv(?’(f))vi(z))

— Ly 4ol (ye) Ty

R0 7 Ty (2.36)

where y* : I — R are the coordinates of the curve (in some given chart), as before. We
then say that some vector Y € T,M is parallel-transported along y (with y(0) = x) by a
vector field 7 — Y, defined along ¥ (i.e. Yy(,) € Ty(\M) if Yy, satisfies

V¥ =0. (2.37)

This generalizes the idea of freely moving vectors in R” from place to place (which one
does without any thought) to arbitrary (semi) Riemannian manifolds; the price one pays
is that such motions can only be carried out once a linear connection has been defined.
Of course, the flat connection on R" (with flat metric g = ), defined in the standard
coordinates by a)[fv =0 and hence V, = d,, reproduces the naive and original case.

18See G. Turato, On the history of Levi-Civitas parallel transport, arXiv: 1608.04986.
19 Abstractly, one equips the pullback y*TM = {(X,t) € TM x I | n(X) = y(t)} of & : TM — M with respect to
y:1— M, seen as a vector bundle over /, with a connection y*V, defined by (y*V)xY =V xxY. See Jost, §4.1.
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3. Like the Christoffel symbols, the connection coefficients do not form the components
of a tensor (the relation between the two will shortly be clarified). However, various
tensors may be defined in terms of the connection. For now, we just define the forsion
ty € X3 (M) of a given linear connection V by

Tv(X,Y, 9) = G(VxY —VyX — [X,Y]); (2.38)

a simple computation shows that this expression is C*°(M)-linear in each entry, so our
‘tensoriality test’ shows 7 is indeed a tensor of the said kind. The commutator vanishes
in the coordinate basis (dy ), so that

hy = 0f, — ol (2.39)
and hence the connection V is torsion-free iff a)ﬁv = a)é)“, ie.,iff Vydy =Vyoy.
4. We now define a geodesic with respect to a linear connection V as a curve Y for which
Vy7=0, (2.40)

i.e., the tangent vector ¥ to ¥ is parallel transported along 7.2° Using (local) coordinates,
(2.40) may be brought into a form that is strikingly similar to (2.22): since according to
(2.36) with Y ~ 7 the expression 7*d,, 7° is just d>yP /dt* = yP, we obtain

7P + of, 7* 7" =0. (2.41)
Thus it is obvious that geodesics are insensitive to the torsion (2.39) of the connection.

Eq. (2.41) looks like the geodesic equation (2.22), with the difference that in (2.41) the coeffi-

cients a)[fv are defined by (2.32) in terms of an arbitrary linear connection V, whereas those in

(2.22) are the Christoffel symbols (2.23) defined by the metric. Their relationship is:

Theorem 1 (Levi-Civita) Any (semi) Riemannian manifold (M, g) admits a unique linear con-
nection V (called the Levi-Civita connection) that satisfies:

1. The torsion Tty associated to V vanishes,
2. The connection V and the metric g are related by the following property:
X(g(Y,2)) =g(VxY,2)+g(Y,VxZ) (X,Y,Z € X(M)). (2.42)
This means that the connection coefficients of V are the Christoffel symbols, i.e.,

ohy =T}, . (2.43)

Proof: using torsion-freeness in the form VxY — VyX = [X,Y], eq. (2.42) may be rewritten as

g(VXY7Z) = %(Xg<sz) +Yg(Z7X) _Zg<X7Y) _g(X7 [Y7Z]) +g([X7Y]7Z) +g(Y7 [Z,X])),
(2.44)
which shows both existence and uniqueness of V. In a coordinate basis, where once again all
commutators vanish, eq. (2.44) immediately gives (2.43) with (2.23).

20 As before, this definition depends on the parametrization of ¥, which ambiguity may be resolved similarly.
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2.5 General connections on vector bundles

For a more general understanding of the above constructions, as well as for a clean extension
of linear connections from vector fields to arbitrary tensors (which one often needs in GR), it is
useful to briefly discuss connections on arbitrary vector bundles.

1. A connection on a vector bundle E — M associates to each vector field X € X(M) a
linear map Vy : I'(E) — I'(E), such that:
(a) The map X — Vy is R-linear as well as C*(M)-linear in X, cf. (2.27);
(b) The map s — Vyxs is R-linear but not C*(M)-linear: it satisfies the Leibniz rule

Vx(fs) = (X[f)s+fVxs (f € C7(M)). (2.45)

A linear connection is just a connection on the tangent bundle; the general story is almost
the same, including the localization of Vxs(x) to the flow lines of X arbitrarily close to
x, and hence to any U € (M), x € U. In particular, define a local frame (u,), where
a=1,....,k =dim(E)), i.e. the rank of E) by the properties that u, € I'(U,E) (i.e. the
restriction of I'(E) =T'(M, E) to some U € 0(M)) and (u,(x)) forms a basis of E, for all
x € U. This once again yields connection coefficients defined by

Vyup = Cppuc; (2.46)
the difference with the tangent bundle is that the three indices carried by C are no longer
of the same type: b and c label basis vectors in E,, whereas p refers to the canonical
coordinate base of T,M (recall that V, = V5, ). Writing s(x) = 57 (x)ua(x), we now have

Vyus® = dus® + Cops®, (2.47)
cf. (2.34). This is often written as
Vus = dus+ ays, (2.48)

in which either s is seen as a vector with components s® relative to the given basis (u,)
and hence @y, is a matrix with components C, or s € I'(E) and o, (x) € Hom(Ex, E).2!

A vector bundle £ may be equipped with a metric, i.e. nondegenerate symmetric bilinear
form g, : E, X E, — R defined for each x € M, smooth in x in the sense that for any
s,t € I'(E) the function g(s,7) : M — R defined by x — gy(s(x),7(x)) is smooth. For
example, a (semi) Riemannian metric on M is a metric on £ = TM in precisely this
sense. A connection V on E is then called metric if for all s,# € I'(E) we have

X(g(s,1)) = g(Vxs,t)+ g(s,Vxt). (2.49)

For example, the Levi-Civita connection on 7'M is obviously metric in this sense.

21 Even more abstractly, connections may be regarded as maps V: T'(E) — T(T*M ® E) = Q! (E), i.e. the space
of E-valued 1-forms, that satisfy V(fs) = df ® s+ fVs; the connection with the main text is Vys = Vs(X). In that
case we may write V = d + @, where ® € Q! (Hom(E,E)), i.e. ® is a 1-form taking values in the vector bundle
Hom(E, E). Even more generally (for those familiar with the de Rham complex Q°® (M) and its relative Q°(E)), we
may define V : Q7 (E) — QP*(E), where p = 0,...,k with Q°(E) = T'(E), as the unique extension of the above
map V : Q%(E) — Q!(E) that satisfies V(o ®5) = do@s+ (—1)Po A Vs, where o € QP (M) and s € T(E).
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2. Furthermore, take £ = T*M, and define V* in coordinates through its components by
V, 6y =6y — T}, 6, (2.50)

where the Fﬁv are the Christoffel symbols defined by some (semi) Riemannian metric
on M, cf. (2.23). This turns out to be a connection indeed (check the axioms), whose
rationale (notably of the minus sign!) is the Leibniz-type property (or product rule)

X(6()) = (Vy0)(¥) + 6(VxY), 2.51)
which may look even more elegant in the form

where by fiat we have declared that on functions (such as (6,Y) = 6(Y)) the covariant
derivative Vy is simply X, i.e. Vxf = Xf, f € C*(M). Eq. (2.51) or (2.52) might, of
course, have been used to define V* : Q(M) — Q(M) in the first place, yielding (2.50). In
fact, any linear connection defines a dual connection V* on T*M by (2.51).

3. Combining (2.34) and (2.50), we define a covariant derivative vkD) . xkl) _y x ki) by

(k) p1- P1 OGP ol ~C
Vi el = outh N A Tty N+ + Tl Th
c P c Y
_Fuvlfo Ve T _Fykavl 0 (2.53)
Y

where the left-hand side, which may also be written TV] vi:u» really means (VL )‘L')ei ’v),’(

For those who don’t like such ‘definitions by formula’, we note that VD) is the unique
connection on T® pp that, similarly to (2.52), satisfies the Leibniz rule

v (X, X, 0", 80

(
T(Vxxl,...,Xk,el,...,el)—f—"'
(X1,..., X, 0',..., V50!, (2.54)

X(t(X1,.... X, 0',...,0") =
_|_
_|_

where the case k = [ = 0 is taken to mean Vgg,o) =X on X0 (M) = C=(M). Eq. (2.54)
recovers V(01 =V on X1 (M) = £(M) as well as VU0 = V* on 0.0 (M) = Q(M).

This construction of V%) works for any linear connection V, but if the latter is the Levi-
Civita connection, then (2.54) implies that its defining property (2.42) comes down to??

v20e=vge=0; (2.55)
also in general, one usually writes V for any V*!)_ Physicists write (2.55) as

guvie = 0. (2.56)

Alternatively, one may recall the description of T *)) M as the (vector bundle) tensor prod-
uct of k copies of T*M and [ copies of TM, and introduce the tensor product connection.

22 As an application, let us show once again that d(||7()||)/dt = O for geodesics y: using (2.54), (2.55), and
(2.40), we obtain d(||7(1)[|*) /dt = dg(v,9)/dt = 1(g(7.7)) = (V48) (7:7) +8(Vy1,7) +&(7,V4¥) = 0+0+0=0.
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Given two vector bundles E(1) — M and E?) — M, with connections V(1) and V), there

is a unique connection VU1®2) on E(M) @ E(?) that satisfies the product rule??
y(1©2) (s(l) ®S(2)) — V(l)(s(l)) 2s? 450 g v (5(2))‘ (2.57)

This may be iterated to the tensor product of finitely many vector bundles, and hence (for
any linear connection V) the connection V&) defined by (2.53) or (2.54) is just the tensor
product of the individual connections on each copy of TM or T*M present in T®0 M.

It follows from (2.51) that (for any V) the connection V&) commutes with contraction.

Contracting the first upper and lower indices and writing GVZ \’,)kl ’L'\‘,'ll\’,)j \’,Jkl , one has

k.l k|l
(Vi rymer b — (v gy (2.58)

and similarly for any other pair of upper and lower indices. In particular, this makes the

physicists’ notation ’L'vll\’,)j C)k’; u unambiguous. For example, for the Ricci tensor we have

Ruvic =Ripyio. (2.59)

If V satisfies (2.55), then V(&) in addition commutes with contraction in the metric sense
explained before (2.10), so that e.g., using (2.56), for the Ricci scalar we have

Ro=Rs=(g""Ruv):c = & "6Ruv +&" " Ruv.c = 8" Ruv:s- (2.60)

Finally, v (&) may be used to rewrite the formula (1.58) for the Lie derivative as
LTl =yl + (VVIX YT+ (VXY T
— (VpXP)Th Bl — o = (Vp XPTD (2.61)

since all Christoffel symbols cancel out (check!).2*

A vector field X for which Zx g =0, and hence Xy, +X,;.v = 0, is called a Killing field >
Flows of Killing fields are isometries, that is, diffeomorphisms preserving the metric. In
the notation of (1.53), this means that l//,(z’o) g = g, which is usually written as y,'g = g.
Since [ %, %] = Zxy) Killing fields always form a Lie algebra, whose associated Lie

group (up to global issues) is the subgroup of Diff(M) consisting of isometries.

For example, using (2.55) we obtain

In Minkowski space-time (R*,7) the Christoffels symbols vanish (at least in the usual
coordinates), so that V,, = d,. Hence Killing fields satisfy the equation

Xy u+Xuyv=0. (2.63)

The general solution is a 10-dimensional vector space (within X(IR*)) with basis
X(y) (@) =8/ (v=0,1,2,3); (2.64)
X(‘L:)G)(x) :xpag_x(FS#? (paazovlvza?’)a (265)

or X(y) = dy and X, ) = XpJds — X50p, where xp = 1psx°. This is the Lie algebra of the
Poincaré-group (which is the subgroup of GL4(R) preserving the Minkowski metric 17).

BIf we realize V@ W as Hom(V* x W*), i.e. the vector space of bilinear maps from V* x W* to R, then, for
veVandw e W, the element v@w € V@W is defined by v w(a, ) = a(v)B(w), where oo € V* and f € W*.

24 & is not a connection (as it fails to be C* (M)-linear in X), but ¥ and Vy both satisfy the Leibniz rule.

Z5Named after the German mathematician Wilhelm Killing (1847-1923), not the movie about Cambodja.
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3 Curvature

The notion of curvature was originally introduces by GauB in the context of lines in R? and R?
and surfaces in R?. The modern approach via connections is highly abstract (and hence very
powerful), but we shall recover at least some of the original ideas of GauB} c.s. later on.

3.1 Curvature tensor

For any connection V on a vector bundle E — M, the following map, indexed by X,Y € X(M),

Q(X,Y): T(E) — T(E): G.1)
Q(X,Y) =[Vx,Vy] = Vixy] (3.2)

is easily checked to be C**(M)-linear in its argument s € I'(E), so that Q(X,Y) defines a cross-
section of I'(Hom(E,E)).?° In addition, Q(X,Y) is C(M)-linear in X and Y, so that in the
usual basis (d,,) associated to a chart defining coordinates (x*) we may write

Vi, Vls(x) = Quy(x)s(x), (3.3)

where Qv = Q(dy,dy) is a linear map E, — E,. Relative to a local frame (u,) for I'(E) in
which s(x) = 52 (x)u,(x), with s* € C*(U) (see text after (2.45)), we may therefore write

Vi, Vy]s?(x) = f)“v(x)sb(x), (3.4)
from which it should be clear that the curvature tensor 2 has four indices: the first two (i.e. a

and b) refer to a basis of E,, whereas the last two (viz. 4 and v) refer to a basis of T,M.

3.2 Riemann tensor

In the case E = TM we now turn to this distinction is blurred, but even there it is good to keep
it in mind. So we now take the Levi-Civita connection V on T M, and hence have

QX,Y): X(M) — X(M); (3.5)
.Q.(X,Y)Z = ([Vx,Vy] _V[X,Y])Z’ (3.6)

where X,Y,Z € X(M), and (3.6) is C*(M)-linear in each of the three separately. Hence
R(6,Z,X,Y)=0(Q(X,Y)Z) (3.7)
defines a tensor R € X(3:) (M) called the Riemann tensor.”’ Or, if we lower the first index,
RW,Z,X,Y)=g(W,(Q(X,Y)Z)). (3.8)

Its Components are
Rguv :R(wpa867au;8v), 3.9

26See footnote 8. This argument is not necessary for what follows, but it does give additional insight.

?’Bernhard Georg Friedrich Riemann (1826—1866) was one of the greatest and most influential mathemati-
cians in recent history. His Habilitationsschrift from 1854 entitled Uber die Hypothesen, welche der Geometrie
zu Grunde liegen is a blueprint for modern differential geometry, especially from a metric point of view. You
can find it for example on https://www.maths.tcd.ie/pub/HistMath/People/Riemann/Geom/Geom. pdf.
Riemann also anticipated applications to physics, though not in the specific way Einstein eventually used his work.
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and similarly to (3.4) we equivalently have, for any vector Z = ZP dp,

[Vu,Vy]ZP = RG,,Z°. (3.10)
Either way, using (2.34) one easily obtains the expression
Rouv =Tovu —Touy +Tal Vo — Thel o, (3.11)
where the Christoffel symbols are defined by (2.23), i.e.,
Ty = 38 (8ouv + 8ov.u — Buv,o)- (3.12)
Regarding R and I as matrices and hence omitting their first two indices, (3.11) reads?®
Quy =’y — oIy + [Ty, Tyl (3.13)
1. It is a nontrivial exercise to prove the Bianchi identities
QX,Y)Z+QY,Z)X +Q(Z,X)Y =0; (3.14)
(VxR)(Y,Z)+ (VyR)(Z,X)+ (VZR)(X,Y) =0, (3.15)
which in coordinates read
ROy +RNyve+ Ry =0; (3.16)
Rouvie + Roeuy + Rovew = 0. (3.17)
Defining the Ricci tensor as before by
Ryy = Rﬁcv, (3.18)
and the Ricci scalar by
R =g Ryy, (3.19)
and finally the Einstein tensor by
Guv = Ruv — 58guvR, (3.20)
the second Bianchi identity (3.17) implies what is often called the Bianchi identity of GR:
VuG*Y =0. (3.21)
Using the metric, once more, we may lower the upper index on R by defining
Roouv = ngwav, (3.22)
which leads to some more identities satisfied by R:
Rpovu = —Rpouv; (3.23)
Ropuv = —Rpouv; (3.24)
Ruvps = Rpopuv, (3.25)

of which the first is trivial from (3.10) and hence did not require lowering indices, the
second states that each map Q(X,Y) is an isometry of 7,M, and the third is conceptually
bizarre, since, as we explained, the first pair of indices plays a completely different role
from the second (and yet one might apparently interchange them).

28Regarding a connection as a map V : Q7 (E) — QPT!(E), as in footnote 21, the corresponding curvature is
simply defined as V2 : Q7 (E) — QP*%(E), so that V2u = R A u for some R € Q*(E). The Bianchi identity (3.15)
below then simply reads VR = 0. The simplest way to prove (3.15) is to use geodesic normal coordinates, cf. §3.3.
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2. The symmetries (3.23) - (3.25) enable one to count the number of independent compo-
nents of the Riemann tensor in various dimensions n, namely n?(n> — 1) /12. Therefore:

(a)

(b)

(c)

In n = 2 one has just Ry21 which (in the Riemannian case) equals
Rip1p = det(g) - K, (3.26)

where K is the scalar (Gaussian) curvature; or, more directly, K = RZ;,. A simple
computation using (3.18), (3.19), and (3.23) - (3.25) then shows that

R=2K. (3.27)

In n = 3 the Riemann tensor has 6 independent components, as does the Ricci tensor,
so these two carry the same geometric information.

In n = 4 (the case of interest to physics) the Riemann tensor has 20 independent
components, whereas the Ricci tensor only has 10 (as does the Einstein tensor). The
geometric information in the Riemann tensor that is not passed in to the Ricci tensor
is contained in the Weyl tensor, which in any dimension n > 2 is defined by

2 2
Coouv = Rpouv + m(gp[vRu]G + go[uRv]p) + m(R ' gp[ugv]c)a
(3.28)
where [---] denotes antisymmetrization in the enclosed indices, much as (---) de-

notes symmetrization in the enclosed indices. In the case at hand, we therefore have

8p[v8ulc = 8pv8uc — 8pu8vo-

Using this notation, we may write (3.23) - (3.24) as R(y5)uy = Rps(uv) = 0, and
similarly we give the symmetries Weyl’s tensor inherits from Riemann’s:

Cipoyvu = 0; (3.29)
Cop(uv) =05 (3.30)
Cuvpos = Cpopuv, (3.31)

The fact that the Weyl tensor is ‘complementary’ to the Ricci tensor comes from
Cuv = Cgcv =0. (3.32)

The Weyl tensor is also called the conformal tensor, since it has he following prop-
erty (cf. Hawking & Ellis, p. 42): a conformal scaling of the metric g+— ¢ =c- g,
where ¢ € C*(M) is strictly positive, does not change ct uv (exercise!).

3.3 Curvature and geodesics

We now give an interpretation of curvature through geodesic deviation, which physicists like.
Let U € 0(R?) be connected and let y: U — M be a family of curves: with (s,) € U we write
Ys(t) = y(s,t), regarding ¢ as the ‘time’ parameter on each curve ¥, and s as a parameter labeling
the curves.

Apart from the usual vector field tangent to y;(¢) along the 7-flow, i.e.,

%
1= 1(9/91) = 5P, (333)
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29

on y(U), which gives the tangent vectors to each ¥, for fixed s as ¢ ‘runs’,~” we now also have a

second vector field tangent to ¥;(¢) along the s-flow, i.e.,

% = 1.(9/25) = 5. .34
Let V be the Levi-Civita connection on 7M. For any vector field Z defined on y(U ), abbreviate
ViZ=V,.Z, (3.35)
ViZ=V,Z. (3.36)
Since [0 /ds,d/dt] =0 on U C R?, on y(U) we have
%', %] =0. (3.37)
Therefore, because V is torsion-free we have the important identity
Vi = Vit (3.38)
Another application of (3.37), with (3.6), is that for any Z € X(y(U)) we have
Vi, V|Z = Q(%, %) Z. (3.39)

Now assume that each curve ¢ — ¥(¢) is a geodesic, so that V,7; = 0, and take Z = 7. Using
also (3.38), eq. (3.39) becomes Jacobi’s equation of geodesic deviation

Vir' = Q%) (3.40)

oyP 9y ayt ayY

2 s _ ppP s s )
Vi ( 95 ) =Row 5 o o5 (3.41)

We now change perspective and start from a single geodesic Y. We then define a Jabobi field
along 7y as any vector field J, defined along 7, that satisfies Jacobi’s equation

Vi =Q(7,0)7; (3.42)
dy* dy°
2 _ pP
R (3.43)

Clearly, any one-parameter family of geodesics produces a Jacobi field along any fixed one of
them by the above procedure, and conversely:

Proposition 2 . Any solution J of (3.42) or (3.43) along 7y enables one to extend Y to a one-
parameter family (Y;) for which y = Yy and
dYs
J= e (s=0). (3.44)
This will be proved in the next subsection, since we need the exponential map for the proof.
Since (3.42) or (3.43) is linear in J, we have a vector space Jy of Jacobi fields along ¥ : [a,b] —
M. Since any such J solves a second-order ODE, it is determined by J(0) and V,J(0), so that

dim(Jy) = 2n. (3.45)

If the initial conditions are J(a) = ¢ ¥(a) and V,J(a) = c27(a), then, since the curvature term in
(3.42) drops out (why?), the solution is simply J(¢) = (¢ + (t —a)c2) ¥(¢). Hence the component
of J along 7 is uninteresting and one usually studies Jacobi fields orthogonal to the given y: a
similar computation shows that if J(0) L 7(0) and V,J(0) L 7(0), then J(z) L ¥(z) for all 7.

29See (1.14) for the notation y’. However, note that in ¥, the prime denotes the s-derivative.

26



3.4 The exponential map

In both cases (i.e. Riemannian or Lorentzian), take xo € M and define 7;, C T,,M as the set
of vectors X € T,yM for which the geodesic yx emanating at x with initial velocity X (i.e.,
¥x(0) = x and 7% (0) = X) is defined at least on the entire interval [0, 1]; if (M, g) is complete,
then ¥y, = Ty,M for all x. The exponential map exp, : ¥, — M is defined by

exp,, (X) = % (1). (3.46)

1. Each x € M has a normal neighbourhood U, for which there exists a star-shaped open
subset %, C 7%, such that exp, : %, — Uy, is a diffeomorphism.® Hence any point

x = exp, (X) € Uy, (3.47)

is connected to xo by a geodesic within Uy,, viz. yx, where X = exp;o1 (x). If t — yx(¢)
solves (2.22), then so does ¢ — ¥,x(t/p) for any p > 0, and since their two initial condi-
tions are the same we have yx (t) = ¥px(t/p) for p > 0. Consequently, we have

W (1) = expy, (1X) = %x (1), (3.48)

This curve ¥y is the unique geodesic from xy to x (up to an affine reparametrization) within
Uy, (that is, there may be other geodesics from xj to x, but these leave Uy,). To see this
(cf. O’Neill, Prop. 3.31), consider an arbitrary geodesic ¢ : [0,1] — M with ¢(0) = x and
c(1) = x, and take Y = ¢(0). Uniqueness of geodesics ¢ with given ¢(0) and ¢(0), yields
c(t) =y (t). Then c([0,1]) C Uy, implies Y € %, and the endpoint matching condition
1 (1) = x = ¥x(1) then enforces ¥ = X, which of course implies ¢ = yx.

2. Jacobi fields give the push-forward of the exponential map. For each X € 7, we have
(expy, )y : Tx(T(yM) — TM. Identifying Tx (T\,M) = T, M (i.e. Z € Ty M is identified
with d/dt(X +1Z)— € Tx(Tx,M)), this becomes a linear map (exp,, )y : TyyM — T,M.
Take Z € Ty,M (not necessarily orthogonal to X = Jx(0)) and let Jz(z) be the Jacobi field
along 7y with boundary conditions J(0) = 0 and V,Jz(0) = Z. Then for each ¢ € [0, 1]),?!

(expy,)x (Z) = Jz(1). (3.49)

3. The exponential map leads to the idea of (geodesic) normal coordinates (GNC) relative to
both some xy € M and a choice of an orthonormal basis of 7,,M, defined (at least) on the
chart U,,: the normal coordinates of x € U,, are the coordinates of exp;ol (x) € Ty,M with
respect to the given basis of T,,M. It is a simple exercise to show that in these coordinates

xy = 0; (3.50)
guv(0) = Oy (Riemannian case); (3.51)
guv(0) =Ny (Lorentzian case); (3.52)

guv.p = (0) = ', (0)=0. (3.53)

30A subset V C W of a vector space is star-shaped if v € V implies tv € V for all ¢ € [0, 1], see O’Neill, §3.30.

31The idea of the proof is to construct Jz 2 la (3.44) from the family 7;(¢) = expy, (tX +stZ) of geodesics. Then
W = ¥ and J = (d¥;/ds) o coincides with the right-hand side of (3.49). Furthermore, J(0) = 0 and V,J(0) = Z.
Hence J = Jz, as explained after (3.44), so that Jz(t) = (exp,, );x (tZ). Then take r = 1.
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Furthermore, by (3.48), in GNC geodesics yx emanating from x( are simply given by
T (1) = X*1, (3.54)
and hence at t = | we have 74 (1) = x*. Eq. (2.22) then implies that in GNC,

Iy (x)x*x" =0. (3.55)

Since the velocity || 7x (7)|| = \/ 8y()(¥(2), 7(t)) is constant along ¥y, in GNC we have
guv(x)xHx¥ = gy (0)xHx", (3.56)
since the left-hand side equals |7 (1)||> and the right-hand side is || (0)]|>.
4. We now prove Proposition 2. Given ¥(¢) and J(t), let c(s) be the unique geodesic with

c(0) = y(0); (3.57)
' (0) = J(0), (3.58)

where s € (—0,0) for some 6 > 0, and ¢/(s) = dc(s)/ds as usual. Then define vector
fields V (s) and W (s) along c(s) as the unique solutions of

VV(s) =0; (3.59)
V(0) = 7(0):; (3.60)
VoW =0; (3.61)
W (0) = V,J(0). (3.62)

Then the following family does the job:
%s(2) = expy(5) (tV (5) +stW (s)). (3.63)
e For fixed s, this is % : £ = exp, (tX;), with x; = c(s) and X; =V (s) +sW (s). Now

expy, (1Xs) = ¥ix, (1) = 1%, (1) (3.64)

by (3.48), so ¥s = ¥x,, emanating from ¥;(0) = x;. This is surely a geodesic!
e To prove (3.44), we initially put

J(t) = a’sy )(s=0). (3.65)

Then, using (3.57) - (3.64), we compute

J(0) = W& =0)= d;(;) (s=0)=(0)=J(0);  (3.66)
ViT(0) = Vi g (1) = Vo B0t
= Vo (V(s) +5W(5)) o = W(0) = V,J(0). (3.67)

Since J and J solve the same Jacobi equation along ¥, this implies J = J.
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5. The notable Gaufp Lemma sharpens this to

guv (X)xH = guy (0)xH, (3.68)

or, in coordinate-free form, for arbitrary X € 75, and Y € T, /M),

gx((expy,)x (X)), (expy )x (V) = 8x (X, Y). (3.69)

This states that the radial component of any vector along a geodesic preserves its length
under the exponential map; the presence of the curvature in the right-hand side of (3.42)
prevents exp,, from being an isometry (which it is in flat space). To see that (3.69) is
equivalent to (3.68), note that according to (3.54), in GNC we have

((expy,)x (X)) = XK, (3.70)

so if we write Y € Tx(TyyM) = Ty;M as Y = d(X + sY)|,—o, by definition of the push-
forward (exp,, )y we obtain (exp,, )y (¥) = d(exp, (X +sY))|s—o, Which in GNC gives

((expy)x (Y))H =TYH. (3.71)

Hence the left-hand side of (3.69) is guv(x)X*Y", and since the right-hand side is obvi-
ously g,v(0)X*Y", we have proven the said equivalence.

To prove (3.68) and hence (3.69),32 we note that (3.55) with (3.12) implies
(28up,v — 8uv,p)X*x¥ =0. (3.72)
Furthermore, taking (3.56) at arbitrary ¢, we have
guv (tx)x*x" = gy (0)xHxY, (3.73)

whence
18uv,p (tx)xHx" 4+ 2g 0 (1x)xH = 2,5 (0)x*, (3.74)

by taking d, of both sides. Combining (3.72) and (3.74) yields

d
EOguP (tx)xt — 184 (0)xH) = 0. (3.75)

Hence we may evaluate the expression between brackets at = 1, which gives (3.68).

Combing (3.48), (3.49), and (3.69) then gives, along the geodesic yx (at least for 7 € [0, 1]),

2y () Ux (1), ¥ (1)) = g5y (X, V). (3.76)

For example, on M = R" with Euclidean metric (i.e. g;; = ;;) one simply has Jz(t) =tZ.

32Eq. (3.69) may also be proved directly from (3.49). See O’Neill, Lemma 5.1 or Jost, Corollary 4.2.2.
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3.5 Riemannian versus Lorentzian geodesics

Though formally defined in the same way, there are huge differences between geodesics in
Riemannian manifolds and those in Lorentzian manifolds. First, a vector X € T, M is called:

e timelike if g,.(X,X) < 0;

o nullif g(X,X)=0and X #0;

e spacelike if g.(X,X) > 0;

e causal if g,(X,X) <0and X # 0 (i.e. X is either timelike or null).

Let us denote the set of these vectors at .M by %, A5, 7/, and _¢Z,, respectively.

Similarly, a curve ¥ is called timelike (etc.) if all its tangent vectors y are timelike (etc.).
In physics, timelike curves are potential trajectories of massive particles, whereas massless
particles move on null curves. More generally, physical information is supposed to spread only
along causal curves (this will be one of the theorems of hyperbolic PDE theory).

In the standard basis of R* with Minkowski metric, a vector like (1,0,0,0) is timelike,
(1,1,0,0) is null, and (0, 1,0,0) is spacelike. Thus y(z) = (¢,0,0,0) is a timelike curve, (even a
geodesic), y(t) = (¢,t,0,0) is a null geodesic, etc.

1. We call a Lorentzian manifold (M, g) time orientable if there exists a timelike vector field
T € ¥(M).*3 In Minkowski space-time, just think of 7, = (1,0,0,0) for all x € R*. With

D ={X, € M| g.(T:,X;) <0}, (3.77)

and 97 = — 2, we say that a vector X, is future-directed (fd) if X, € Z;, and past-
directed if X, € 9. For example, T, itself is future-directed.3* We denote the set of
future-directed timelike vectors by %" = %, N 2,7, etc. Thus .#" is the interior of _#.*
and 4, " = 9.7} is the (topological) boundary of .#,}; obviously, #,* = .= UPE. The
set Ay = NV U is called the light cone at x; it is of supreme interest to GR.

Similar terminology applies to curves, e.g. ¥ is future-directed iff y(t) € .@;E ) for all 7.

(a) For x,y € M we say that x < y (or: x precedes y) if there exists a future-directed
timelike curve starting at x and ending at y. Maximizing the length of such curves,
one could replace ‘curve’ by ‘geodesic’ in this definition, and either way, one could
equivalently state the definition in terms of piecewise smooth curves or geodesics:
this is because the concatenation of two curves (or geodesic) x — y and y — z, which
is merely piecewise smooth, can be “smoothened” so as to become a smooth curve
(or geodesic) x — z. In particular, the relation < is transitive.>> This defines sets

If)={heM|x<y}; (3.78)
I (x)={yeM|y<x}, (3.79)

as well as sets J=(x) defined like I (x) with the relation < replaced by <, where x <y
iff there exists a future-directed causal curve (or geodesic) starting at x and ending at y.

3We will later introduce the separate and more subtle concept of a time-function.

34 Although defined also for spacelike vectors, the concept of future-directed is only used in practice for causal
vectors. Two timelike vectors X and Y both lie in either Z;" or 2, iff g,(X,Y) < 0. See O’Neill, Lemma 5.29.

3See e.g. R. Penrose, Techniques of Differential Topology in Relativity (SIAM, 1972), Prop. 2.23.
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2. We may define length in the Lorentzian (and generally in the semi-Riemannian) case by
X1 =V Ig(X, X)], (3.80)

and although for spacelike vectors X this behaves as expected (triangle equality etc.), for
causal vectors one finds the usual inequalities in the opposite direction, namely

X+ Y| = X[+ 1Y ]; (3.81)
lg(X,Y)| = [IX]| - [[Y]]. (3.82)

Nonetheless, one may also define the length of a curve y: [a,b] — M almost as in the
Riemannian case, cf. (2.14), namely by the parametrization-independent expression

1= [ arlpol 68

3. One then has the following contrast between the Riemannian and the Lorentzian cases:

(a) Riemannian case (R): any two ‘nearby’ points x,y (in that y € Uy) are connected by
a unique curve Y of minimal length (necessarily a geodesic) compared to all other
curves ¢ from x to y within Uy,. In this case, (3.83) is of course given by (2.14).

(b) Lorentzian case (L): any two points x and y € Ux with x < y are connected by
a unique timelike fd curve y of maximal length (which is necessarily a geodesic)
compared to all other fd timelike curves ¢ from x to y within U,. In that case,

b
L) = [ dt /= (0. 70)) (3.84)
The proof is as follows. Define the (unit) radial vector field R on U, at z = exp,(Z) by
/
g (0J2) .
[(exp)z(2)]

so that g(R;,R;) = +1 (R) and —1 (L). Taking a curve c as defined above, decompose
¢==4g(¢,R)R+N, (3.86)
where g(N,R) = 0, again with the + sign for R and the - sign for L. It follows that
¢ = g(¢,R)> £ g(N,N), (3.87)
with g(N,N) > 0 also for L (as the vector R is timelike, and hence N is spacelike). Hence

l¢]] > g(¢,R) (R); (3.88)
¢]| < —g(¢,R) (L), (3.89)

since for L we have g(¢,R) < 0. We define the radius function r : U, — R™ by

r(exp,(2)) = |IZ]]- (3.90)
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For any curve 7 — ¢(t) = exp,(C(¢)) in Uy (assumed timelike in the L-case) with ¢(0) = x,

J _i _i B gx(C(t),C(t))
4 ° 0= g I = GV E&(CO,.CO) = 2= r s

e (30, ) 110 (C(0), (exp )l (1))
\/:l:gc(t) ((CXPx)IC(,) (C(1)), (expx)’c([) (C(1)))

where we used Gaul}’s lemma in both the denominator and the numerator. Therefore,

1
1o = [ arle)) > [ drgleto). )y =

== = :i:gc(t)(évR)7 (3.91)

roc=r(y) (R);
0

1

L) = | @t < = [ drste) Ry = | roc=rl) (L)

On the other hand, “the” geodesic within U, from x to y = exp,(Y) is given by 7y, where

1
L(w) = /0 d||w ()|l = 1% ()| = [[Y]] = r(y), (3.92)
since for geodesics ¥ = 9y the velocity ||7(¢)]| is ¢-independent. Thus we conclude that:3¢
L(c) > L(w) (R); (3.93)
L(e) < L(w) L. (3.94)

We finally prove uniqueness of 7, in that we have strict inequalities in (3.93) - (3.94)
except when c is a (necessarily affine) reparametrization of Jy. This goes back to (3.87),

which yields equalities in (3.88) - (3.89) iff g(N,N) = 0, which is the case iff (¢) is
proportional to the radial vector field R. This yields the claim.

4. Similarly but with (even) more effort, one can prove that the causal structure of a Lorentzian
manifold ‘near’ x € M is determined by its linearized structure in T,M, in the sense that

F(x)NU, = exp (FENU); (3.95)
NE(x) MU, = exp, (A EN%); (3.96)
JE(x) MUy = exp (25N Uy), (3.97)

where N*(x) = I (x) NJ*(x). In (other) words, timelike/null/causal curves (or geodesics)
emanating from any point x € M are precisely the images of their linearized counterparts
in T:M under the exponential map exp,, at least in the neighbourhood U, C M of x where
this map is a diffeomorphism.

Although this may sound obvious, the proof is quite nontrivial.*” The main point is that
according to Gaul3’s Lemma (3.69), the two relevant notions of being timelike (etc.) and
future-directed are preserved by the exponential map.

36n the timelike (L) case one can decrease the length of a timelike geodesic y by pushing it towards null curves:
Ifx,y € M can be connected by a timelike curve, then for any € > 0 there is a timelike curve c (far from a geodesic!)
with length L(c) < € (although there is no such curve with length zero). See Malament, Prop. 2.3.2.

37See also Proposition 4.5.1 in Hawking & Ellis, whose (rather vague) proof is based on (our) Lemma 3 below,
which implies that for a timelike geodesic, each level set ., must be spacelike. Consequently, for a timelike
geodesic ¥ the function ¢ — gy (¥(t),¥(t)) is monotonically decreasing (since it can never pick up a positive
contribution from a spacelike component), so that if Y starts out as a timelike geodesic (as is determined by its
tangent vector and hence by the state of affairs in 7,M), it must always remain timelike. A sharper form with a
complete proof is Proposition 2.1 in Senovilla.
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5. We close this section with a very neat and intuitive application of Gaul3’s Lemma. Let
p > 0be such that B, ={Y € T, ,M | ||Y|| < p} lies in ¥#4,, and define the level sets

Sp = {y € TuM | Y]] = p}: (3.98)
yp = eprO (Sp) (399)

In the Riemannian case . is connected, whereas in the Lorentzian case it is discon-
nected: in Minkowski space-time it has one sheet at spacelike distance from xy and two
sheets—one in the fuure and one in the past—at timelike from distance from xg. In what fol-
lows one should avoid null geodesics (since these do not cross .#}). First, each straight
curve ¢ — tX in T, M crosses S, orthogonally: if Z € T;xS,, where p = t[|X]||, then
Z =dc(L)/dAjp— for some curve c(4) in Sp with ¢(0) =X, i.e., [g(c(A),c(A))] = P2,
whence dg(c(A),c(A)) = /dAj—o, whence g(X,Z) = 0 (as in R” with flat metric).

The point is that (3.48) and (3.69) imply the same for the images under eXPy,: for any
W e T, C T,M with w = yx(t) and hence p =¢||X ||, we have g,,(W, 7x (¢)) = 0, hence:

Lemma 3 Each (timelike) geodesic yx from xq crosses the level set .7, orthogonally.

3.6 Conjugate points: definition

What happens for ‘far away’ (instead of ‘nearby’) points in regard to the extremizing properties
of geodesics? This question is answered through the notion of conjugate points, which also play
an important role in the singularity theorems of GR. To motivate their definition, we compute the
second variation of the length functional (3.83). Let us do the Riemannian case and insert the
appropriate sign(s) for the Lorentzian case at the end. First, we recompute the first variation,
using the powerful notion of the covariant derivative that was not yet available to us in §2.3.
Note that, in contrast to our discussion of Jacobi fields, here we neither assume that each 7; is
a geodsic, nor (for later use in computing the second derivative) that it is parametrized by arc
length (i.e. has constant speed). Using (2.54) and (2.55), (3.35) - (3.36), and (3.38), we obtain

:fmi¢%Ammmm

(V
_/ dtg% Vsts(2), %(t)) / dt 8y () Vt¥s (1), % ( )) (3.100)
\/g% (%(1), 15(2)) \/g)/Y (7s(2), %( ))

If we now do put s = 0 (with % = ) and do assume constant speed, say || 7(¢)|| = v, we continue:

/%ﬁWW”’ c/magy Y@, 70)) — 8y (¥ (). V:7(0))
“ 8y(

(7). 7
=l(

since V; = V. For fixed-endpoint variations, where y'(a) = y’(b) = 0, we therefore obtain

dL(Y)

L= =0 = — / dt gy (¥ (), V47(1)), (3.102)

(v, 7 — /dtgy Y(t),VW(t))), (3.101)
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since the boundary term in (3.101) vanishes. Thus we see that the extremality condition L'(y) =

0 enforces the geodesic equation (2.40), since ¥’ in (3.102) is arbitrary and g is nondegenerate.

We now compute the second derivative of L(y;) from (3.100):38

d2L(y,) b9 [ &y (Vin' (1), 15(1)
——(s=0)=
ds? / S\ V&m0 (k). %)

- %/a dt [g%([)(VSV,yS’(t),)‘/s(t)) +g%(,)(V,}/s’(t),Vs}'/s(t))](s = 0)

1 /b , ) 5
— =5 [ dtleyy (Vo (.70 (3.103)

(s=0)

where we used (3.38) to obtain the last term. We rewrite the first term using (3.39), which gives
g% (VYVI% /7 YY)|SZO = gY([st Vl]yla Y) + gY(VIVSylv Y)
. . Lood .
= =g/ QY)Y 1) — & (VY Vi) + L 8y(VsY' D) (3.104)

In the last line, the first term equals —Ry(7,7’,7,7’), the second term vanishes for geodesics,

and for fixed-endpoint variations the third term as usual vanishes upon integration | Cf’ dt. Fur-
thermore, we use (3.38), so that gy(V,%', Vs¥%) = gy(V:¥%', V') Introducing the component

vL=v—v(. D7 (3.105)
of ¥’ that is perpendicular to 7, we have, omitting terms containing V,7 = V;7 =0,
1 .
gy(VivY',Viy') = v—z[gy(vti’/7 N? = gy(VeyL, Viyl). (3.106)

Up to a boundary term vanishing upon integration for fixed-endpoint variations, we may replace
the right-hand side by —g,(y{,V?y!). By the symmetries of the Riemann tensor, we have

—Ry(1.V 1Y) = —Ry(1 YL, 1, ¥L) = Ry (YL, 1.1, vL) = g(YL, Q% vD)Y),  (3.107)
so that we finally obtain Synge’s formula for the second variational derivative of L(y):3°
d>L(ys : .
v =THE 0 = L gy 00,V 0 - 000 7)) G109

Note that we did not assume that the curves Y; were geodesics, except Yy = 7. In the Lorentzian
case, for timelike curves, one obtains exactly the same formula without the minus sign, which
goes back to the one in (3.84); we invite the reader to redo the calculation for this case. 0

As in calculus, L(y) is a local minimum iff L"”(y) > 0, whereas it is a local maximum iff
L"(y) < 0. Itis clear from (3.108) and (3.42) that the critical case L”(7y) = 0 appears precisely
when ¥/ is a Jacobi field. This motivates the following definition:

38We elaborate on Joos, Proof of Theorem 4.1.1, p. 169.

It is quite remarkable that not just in the first variation (3.102), where it is expected, but also in the second
variation (3.108), only the first s-derivative of the family 7; appears.

40See also O’Neill, Theorem 10.4.
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Definition 4 A conjugate point along a geodesic y: [a,b] — M relative to y(a) is a point ¥(c),
c € la,b] for which there exists a nonzero Jacobi field J along ¥([a,c|) that vanishes at a and c.

If J arises from a variation of 7y as in (3.44), then the boundary condition J(a) = J(c) = 0 means
that the variation 7; fixes the endpoints of y.4!

Theorem 5 /. Riemannian case: A geodesic Y : [a,b] — M locally minimizes the length of
curves from y(a) to y(b) iff there is no conjugate point on y that lies between x and y.

2. Lorentzian case: A timelike geodesic 7y : [a,b] — M locally maximizes the length of
curves from y(a) to y(b) iff there is no conjugate point on y that lies between x and y.

The “<” part may be proved by remarking that, as we saw in §3.5.3, in the Lorentzian case
timelike geodesics start out maximizing length, so that L”(y) < 0. According to (3.108), this
remains the case until a conjugate point is encountered, so if this is never the case, one will have
L"(y) < 0 forever (or at least as long as the geodesic is defined). Likewise in the R case.

For the ‘=" part, we show that the sign of L”(y) may indeed change once a conjugate point
(at which its value is zero) has been crossed; in the L case, L” (77) then becomes positive, and
a timelike geodesic can be constructed that is longer than the given one, whereas in the R case
the opposite sign change leads to new and shorter geodesics between the given endpoints).*?

Indeed, let ¢ € (a,b), with associated Jacobi field J along ¥([a,c]) for which J(a) = 0 and
J(c) =0. Then V,J(c) # 0 (since otherwise J = 0), and by Proposition 2 there exists a one-
parameter family of geodesics () for which J = 7/\s:0; since only the component of J that is
orthogonal to 7 is relevant, we can make J orthogonal to 7y altogether, cf. the discussion after
the statement of Proposition 2. Furthermore, we extend J from ¥([a,c]) to y([a,b]) by making
it zero on (c,b]. Now find any vector field K along ¥ : [a,b] — M that is also orthogonal to 7
and in addition satisfies the boundary conditions

K(a) =K(b) = 0; (3.109)
8y(a)(ViJ,K) = 0; (3.110)
8y(e)(ViJ,K) = —v. (3.111)

This is possible, since unlike the Jacobi field J, the vector field K is not meant to satisfy any
particular equation. We now take € > 0 and consider the vector field M = €K + &~ !J. For any
family of curves for which 7/|s:0 = M, we then compute the second variation (3.108), in which

by construction | is replaced by M. Since J satisfies the Jacobi equation, the term proportional
to €72, which only involves J, vanishes. The term proportional to €2, which only involves
K, stands, call it Ce? (where C may have either sign). One of the cross terms proportional to
£-e~ ! =1, involving each of J and K linearly, vanishes by the Jacobi equation for J. In the L
case to be specific (where the - sign in (3.108) has to be deleted), the other cross term contributes

L) = Cet o [digyy 0. VKW - Q0. KO0 G12)

4IThe idea should be clear from the two-sphere, where a continuous family of geodesics emanates from (say)
the South Pole, meeting again at the north pole (which, then, is conjugate to the South Pole relative to any of these
geodesics). The converse is not true, however: the existence of a nonzero Jacobi field J along ¥([a, c]) that vanishes
at both a and ¢ does not guarantee the existence of even two geodesics from y(a) to ¥(c).

42Qur proof is based on the final part of the proof of Hawking & Ellis, Prop. 4.5.8. For alternative proofs see
Jost, Theorem 4.3.1, for R and O’Neill, Proposition 10.10 and Theorem 10.17, or Wald, Theorem 9.5.3, for L.
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Here, using (2.54) and (2.55), we have

d

gyny(J(1), VIK (1)) = E(gy(t)(J(t):VtK(t») —8yn(ViJ (1), ViK (1)), (3.113)

of which the first term vanishes upon integration, as J(a) = J(c¢) = 0. The second term gives
d
—8y()(ViJ (1), ViK (1)) = = (&) (Vi (1), K(1))) + (8y(0) (VI (1), K (1)), (3.114)

whose last term combines with the curvature term in (3.112) to contribute

&y (K (1), VI (1) = Q(1(1),J (1)) ¥(1)),

which vanishes by the Jacobi equation for J (using the symmetries of the Riemann tensor R).
Finally, the first term in (3.114) gives, upon integration, +1, so that overall we obtain L”(y) =
Ce? + 1. Whatever the sign of C, for € small enough we can arrange L” (7) > 0, and so, since it
started out negative, the sign of L (y) has changed across a conjugate point, as claimed.*?

3.7 Conjugate points: existence

In GR (especially in the context of the singularity theorems) the existence of conjugate points
is proved in a very specific way, which we now explain. The following constructions on a
Lorentzian manifold may be performed in either the timelike or the null case, and since it is
enough to make our point we take the simpler former case. We start from a fd timelike vector
field u € X(U) defined locally on some open U C M, normalized such that, at each x € U,

G (thy, ) = uy (x)uH (x) = —1. (3.115)

Integrating this vector field, one obtains a congruence of timelike curves in U, i.e. a foliation of
U by timelike curves c; vice versa, such a congruence yields u = ¢ as its tangent. Two examples:

1. The field u could be the 4-velocity of some (relativistic) fluid moving in the cosmos.

2. In the 3+1 split of M considered later, we will assume the existence of a time-function
t : M — R with (nowhere vanishing) timelike gradient vector field Vt, defined by

Vit = #(dt); (3.116)
(Vo) = gHVopt. (3.117)

One then takes u = n to be unit vector field proportional to Vt, in other words, one defines

n=—LVt; (3.118)
L=1/y/—g(Vt,Vt). (3.119)

#1t is by no means excluded that there may be other variations for which L”(y) remains negative (for example,
by picking some K for which the sign in (3.111) is positive). All that has been proved is the existence of a family
of variations for which the sign does change, which is enough to prove the theorem. A more precise way to handle
this situation is to introduce the index form for the second variation of L, which, across a conjugate point, loses its
property of being negative definite (L) or positive definite (R). See Jost, O’Neill, etc.
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The function L introduced here is called the lapse.** Tt follows that the 3-d hypersurfaces
Y ={xeM|tx) =t} (3.120)

are orthogonal to Vt. Conversely, one could start by assuming a foliation M = U;X; of M
by spacelike hypersurfaces X;, and define u = n as a unit normal vector field to the X;.

Such a timelike vector field u defines a fair amount of derived tensors, each of some importance:

a* =u"Vyut (acceleration); (3.121)
nh = 88 +utu, (spatial projection), (3.122)
kyy = hﬁh“fvp Us (- extrinsic curvature); (3.123)
Wy = k[uv} (vorticity); (3.124)
Ouv = k(uv) — 10h,y (shear); (3.125)
0 =V u! (expansion) (3.126)

where (as agreed earlier) k() = 5 (kuv +kvy) and kp,y) = 3 (kv — kyy ). It follows that

Vuuv = —u'uav ‘I—kuv (3128)

Eq. (3.127) is trivial. The second can be checked by contracting both sides first with u*, then
with ©¥, and finally with vectors orthogonal to u. The first contraction merely reproduces the
definition (3.121). For the second we use (3.115), (2.54), and (2.55) to compute

0= allg(u7u) = (Vﬂg) (l/t, u) —i—g(Vuu,u) +g(u7vuu> = O+2g(u7vﬂu>7 (3129)

whence u¥V uy = g(u,Vyu) = 0. Hence the second contraction gives 0 = 04 0. Finally, the
third contracting reproduces the definition (3.123). What is the meaning of (3.121) - (3.126)?
The interpretation of a = V,u should be clear; it vanishes for congruences of geodesics, for
which

kyv = Vyuy. (3.130)

Furthermore, eq. (3.115) implies
' =0, (3.131)

and if g(u,v) = 0, then b vY = v#, so that &, projects onto the orthogonal complement of u,, In
the second example, this is 7%, in which case the tensor Ay, is a four-dimensional version of
the three-dimensional induced metric in X, in that A,y = g(hﬁ dp,hyds), as is easily checked.
We return to the extrinsic curvature in Chapter 6; this geometric term only makes sense
in the second example above. The three remaining terms, on the other hand, refer to the first
example of fluids: the vorticity tensor (which vanishes in the second example) describes the
rotation of the fluid, the shear (which is traceless) describes the directed volume-preserving
expansion (or, if negative, the contraction), and 6 gives the rate of total volume increase (or, if
negative, the decrease) under the flow. See picture (Malament, p. 174, without permission):

44The existence of a time-function makes M time-orientable, with T = —Vt; in Minkowski space-time, with
t = x°, this would be T = d,, whence the minus sign in T'. The minus sign in (3.118) then makes n future-directed.
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We now derive the fundamental Raychaudhuri equation for 6. Using (3.10), we compute

== Vu (MGVGM\/) — (VuuG)VGuv +Rvp0'ul/l0-up. (3.132)

For geodesics the first term vanishes. Egs. (3.126), (3.130), and (3.127) then yield, along u,
Vi0=6=-10"—o0,u,0" + o' — Ryyutu. (3.133)

Since oy is symmetric, we have o,yo*Y = Tr(c?) > 0, where o is the matrix with com-
ponents o = hHP Opv. In the coming proofs of the singularity theorems we will apply this
equation in the context of example 2 above, where @ = 0. Furthermore, natural positive energy
conditions on the matter content of the universe in combination with the Einstein equations give

Ryvutu¥ > 0. (3.134)
Therefore, the Raychaudhuri equation (3.133) gives 0 + _%92 < 0. If we now assume that
6o =0(1) <0 (3.135)
at some time ¢ = f) € [a, b], then O(t) # 0 near to and hence d(6~1)/dt > 1 near to, or
6 1(t) >0, +1ir. (3.136)

This implies that 8 ~! reaches the value zero, or @ — —oo, at some t, € (g,19+3/|6p|], provided,
of course, that the geodesic in question can indeed be extended to .

We now transform this into a conclusion about conjugate points. Intuitively, gravity is at-
tractive and leads to positive curvature as in (3.134), making geodesics converge, as on the
sphere. Mathematically, we return to Jacobi’s equation (3.42) - (3.43). We take some fixed
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geodesic 7 : [a,b] — M with ¥ = u, and consider the three-dimensional vector space of Jacobi
fields along 7y with initial conditions

J(a) = 0; (3.137)
J(a) L y(a). (3.138)

It is convenient to introduce a three-dimensional frame (e;(¢),ex(t),e3(t)) along y(¢) that is

an orthonormal basis of Tyto)j/ and satisfies Vye; = 0; this guarantees that the frame remains

orthonormal as well as orthogonal to }'/.45 Then
. 3 .
J=Je=) Jej, (3.139)
i=1

with J' = g(J,e;). Therefore, since ¥ = u and V is torsion-free (which gives Vil =V;57), we
may compute, using @y, = 0 and hence k;; = kj; (this is not really necessary, but convenient):

dJ

Ji= = ViJ'=Vig(J,e;) = g(Vil,ei) = g(Vit,er) = Fg(Vu,e) = k7. (3.140)

Linearity of Jacobi’s equation—in J(¢)) and hence also in the initial data J(a), cf. (3.137)-gives
Ji(t) = Ai;(t)J (to) (3.141)
for some 3 x 3 matrix A(¢), so we have
TH(t) = Aij(0)J (10) = kij(1)J7 (1) = kij()A (1) (10), (3.142)
so that Ay = k;jA jx, or k = AA™!, and hence, since 6 = tr(k) = tr(k), we finally obtain
0 =tr(AA7"). (3.143)

Now A itself is finite along 7, and so is A, so if, in the scenario just considered, 0 starts out with
some negative value at fg, it can only blow up at z, if A(t;)~! does, i.e., if A(ty), which equals
the identity at = #(, has an eigenvalue zero. But this implies that there exists some initial value
J(to) for which J(t;) = 0, which by definition means that y(z) is a conjugate point with respect
to Y(tp). In summary: if 6(y(tp)) < O somewhere along ¥, then y(z;) is a conjugate point with
respect to y(to) iff lim,_;, 6(f) = —eo, and hence we have proved an important result:

Proposition 6 Let vy be an element of a congruence of timelike geodesics (or, equivalently, a
timelike vector field u such that V,u = 0, with y = u) with vanishing vorticity (which is the case
iff the congruence is orthogonal to some foliation of M or U € (M) by spacelike hypersur-
faces). If the positive curvature condition (3.134) holds along the congruence, and if in addition
0(y(t9)) < 0 somewhere along Y, then y has a (later) conjugate point relative to y(ty), provided
that the geodesic in question can indeed be extended from ty all the way to t,.

4This simple construction works because ¥ is a geodesic. Along more general curves one needs the so-called
Fermi derivative V’; e; instead of the covariant derivative Vye;, see Hawking & Ellis, §4.1.
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4 Singularity Theorems

Proposition 6 is a key to the singularity theorems of Hawking and Penrose, which were sug-
gested by the earliest exact solutions to Einstein’s equations.*®

ds® = —di® +a(t)*(dy® + f(x)*(d6> +sin> 0d¢?)), 4.1)

where ds? is just the physicists” notation for the metric, the space-time is M = (0, ) x I, where
¥ = §° (the 3-sphere) and f(y) = siny for k = 1 (positive curvature), £ = R> and f(x) = x
for k = 0 (no curvature), and ¥ = H?> (the 3-dimensional hyperboloid) and f()) = sinh y for
k = —1 (negative curvature). Finally, the function a(z) depends on the precise matter content
of the Universe. These are the three versions of the Friedman (-Robertson—Walker) Universe,
and the point of interest here is that although the metric looks reasonably well behaved as t — 0
(e.g.a(t) ~ 12/3 for a dust-filled spatially flat universe, which is admittedly not smooth atz = 0),
the Ricci scalar (and hence the geometry) blows up. The precise form of R(¢) again depends on
the matter, but in the same case one finds R(¢) ~ t~2. Note that the point t = 0 is not included
in the space-time M (where we assumed smoothness of all things!).
Potential or actual singularities are even more glaring in the Schwarzschild solution

~1
ds® = (1 — 27'") dr* + (1 - 27'”) dr* 4 1r*(d6* +sin® 0d ¢?), (4.2)
where m > 0 is the mass of some gravitating object and M = R x X, where at least initially, in
polar coordinates (r,6, @), the spatial part £ C R is restricted to » > 2m. Here the value r = 2m
looks threatening, as does r = 0 (although the latter is not in the domain of the solution).

Even Hilbert and Einstein himself were confused about the meaning of these apparent or
real singularities,*’ but today it is clear that » = 2m is just a singularity of the coordinate system
in which the Schwarzschild solution is expressed,*® whereas r = 0 would be a real singularity,
where, as in the Friedman solution, the curvature blows up.49 Nonetheless, the precise definition
of a “real” singularity remained unclear until the 1960s. One almost paradoxical feature of
the problem is that singularities exclude smoothness (of any relevant geometric object, like
geodesics or curvature), whereas (M, g) is smooth by definition, so that potential points where
g 1s zero or some curvature invariant is infinite are excluded from space-time! This marks a
decisive difference with say singularities in the electro-magnetic field (or any other field except
gravity), which are definable on a given space-time background. Furthermore, there may be
singular situations with regular curvature (as in the case of gravitational shock waves).

Whatever the precise definition of a singularity, until the 1960s it was also quite unclear
whether “real” singularities were generic or exceptional (in the sense of only occurring in very
special solutions with a high degree of symmetry, and hence being absent in “realistic” solu-
tions); for example, Einstein maintained the latter. This was all sorted out by Hawking and
Penrose (and a few others) in the period 1965-1970; the subject was essentially closed with the
appearance of the book by Hawking & Ellis in 1973. The upshot is that, roughly speaking, a
space-time is deemed singular iff it contains an incomplete causal geodesic.

46This motivation is merely heuristic and hence we run ahead of our later rigorous discussion of these solutions.

47See J. Earman, Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Space-
times (OUP, 1995).

“8This is not to say that nothing interesting happens at » = 2m. Indeed, in this region ¢ becomes spacelike and r
becomes timelike, and the hypersurface » = 2m is an event horizon, a concept to be defined later.

49This time the singularity is detected by the strange scalar RP "V Rpouv, which goes like r®asr—0.
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Definition 7 A (smooth or continuous) curve c : [a,b) — M (where b € R, b > a) is (future)
extendible if it has a (smooth or continuous) extension c : [a,b] — M, and is (future) inex-
tendible otherwise.”® Equivalently, defining an endpoint of ¢ : [ — M as a point z € M such
that for any nbhd U of 7 there is t € I such that c(s) € U for all s > t, c is future (in)extendible iff
it has (no) endpoint.>' Past (in)extendibility for curves c : (a, bl — M is defined analogously.
A curve is incomplete if it is inextendible and has finite arc length, and complete otherwise.>>

In the Riemannian case, the Hopf-Rinow Theorem (already mentioned just before §2.4) states
that a Riemannian manifold (M, g) is geodesically complete iff it is complete in the metric d
derived from g. In this theorem, using the terminology of the above definition we may obviously
replace geodesic completeness by the condition that every geodesic with finite arc length has
an endpoint (and hence can be extended). Contrapositively, (M,d) is (metrically) incomplete
iff there is at least one geodesic with finite arc length but no endpoint. For example, for M = R
(with flat metric) the geodesic ¢ : [0,1) — M defined by ¢(f) =t is extendible and has endpoint
z =1, but the same curve is inextendible in M = R\ {1}, where indeed it has no endpoint. Thus
R is (metrically = geodesically) complete, whereas R\ {1} is not. Of course, though illustrative,
this is a somewhat trivial case, since we may simply add the point z = 1 to the latter space.
To exclude such trivial cases, we extend the previous definition as follows.

Definition 8 A Lorentzian manifold (M,g) is extendible if there exist a Lorentzian manifold
(M',¢") and an isometric embedding i : M — M’ (so that i*g' = g), and inextendible if rhis
is not the case. It is incomplete if it contains an incomplete geodesic, and singular if it is
incomplete and either inextendible, or has no extension in which all its incomplete geodesics
extend to complete ones (i.e. in any extension at least one geodesic remains incomplete).>

‘Timelike geodesic completeness has an immediate physical significance in that
it present the possibility that there could be freely moving observers or particles
whose histories did not exist after (or before) a finite interval of proper time. This
would appear to be an even more objectionable feature than infinite curvature and
so it seems appropriate to regard such a space as singular. (...) We shall therefore
adopt the view that timelike and null geodesic completeness are minmum condi-
tions for space-time to be considered singularity-free. Therefore, if a space-time
is timelike or null geodesically incomplete, we shall say that it has a singularity.’
(Hawking & Ellis, p. 258).

So the example just given of a one-dimensional manifold (with flat metric) with a point removed
is incomplete but non-singular. The FRW universe, on the other hand, is really singular, since it
has past-directed timelike geodesics ending at + = 0 (we cannot prove this rigorously now, but
it turns out that this space-time is inextendible because the curvature blows up as ¢ — 0).

In line with this quotation (which departs from the more accurate Definition 8), the Hawking—
Penrose singularity theorems and related results “merely” prove the existence of incomplete
(timelike or null) geodesics; inextendibility of space-time has to be established separately.

A curve ¢ : [a,b] — M is always extendible to ¢ : [a,b + ), for some € > 0

31r is easy to show that ¢ has an endpoint iff ¢(I) lies in a compact subset of M (O’Neill, Lemma 1.56).

3280 for b = o a geodesic ¢ : [a,o0) — M is always complete.

31f one replaces “Lorentzian manifold” in these definitions by “space-time”, one assumes that the data satisfy
the Einstein equations. We will return to this matter.
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4.1 Global hyperbolicity and existence of geodesics of maximal length

The singularity theorems a la Hawking and Penrose are proved by the following strategy:

1. Physical arguments (from either the expansion of the universe or the clustering of matter)
justify the curvature condition (3.134) and the condition (3.135) on the expansion 6.

2. These imply the existence of conjugate points on timelike geodesics (cf. Proposition 6).
3. According to Theorem 5, geodesics with conjugate points cannot maximize length.
4. Global assumptions imply that such geodesics do maximize length (cf. Proposition 12).

5. This apparent contradiction is resolved by realizing that the existence of conjugate points
is based on the assumptions that all geodesics in question can be extended at least to the
first conjugate point, so that the real conclusion is geodesic incompleteness of space-time.

In particular, against the expectations of Einstein himself singularities turn out to be generic.
The simplest result in this direction is Hawking’s singularity theorem from his 1966 PhD Thesis.

Clause 4 (to be addressed in the next section) and clause 1 are both based on the physically
reasonable assumption of global hyperbolicty, which will also play a key role in the discussion
of the Cauchy problem for the Einstein equations. For convenience, from now on we say:

Definition 9 A space-time is an oriented and time-oriented connected Lorentzian manifold.

Let (M,g) be a space-time. We return to the relation <, which was defined by x < y if there
exists a future-directed timelike curve (or geodesic) starting at x and ending at y. Further to the
sets I (x) as defined in (3.78) - (3.79), we more generally define

ITA) =Ugeal T (x) = {yeM | Ix € A: x <y} (AC M); (4.3)
I (A) =Useal (x)={yeM|IxcA:y<x} (ACM). (4.4)
Here the first equality signs are definitions, and establishing the second ones are exercises.

Similarly, one defines J*(A), where < is replaced by <, where x < y iff there exists a future-
directed causal curve (or geodesic) starting at x and ending at y. Transitivity of < then gives

(' (A) =17(4), (4.5)

and it easy to show that for any A C M the sets I=(A) are open (see O’Neill, Lemma 14.3).
In Minkowski space-time, /7 (x) is the open set enclosed by the future light-cone emanating
from x, J* (x) is its closure, and J* (x) — I'"(x) is its boundary, that is,

) ={eR|(*-222-Y ' —x)?>0," >} (4.6)
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(yi —xi)2 > O,y0 > xo}; 4.7)
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Tty ={yeR*| (¥ —x0)* -
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(' —x)?=0,y" > ). (4.8)
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Furthermore, for x < y the so-called double cone or diamond
J(x,y)=J (x)NJ(y) 4.9)

is compact in Minkowski space-time.** However, these properties need not be true in arbitrary
space-times: simply removing a point shows that neither J= (x) nor J(x,y) need to be closed (let
alone compact). Properties that do prevail in general include:>

e If x < yandc: [a,b] — M is a causal curve from x to y such that c([a,b]) NI (x) = 0,
then c is a null curve.

e I*(x) is the interior of J*(x). Equivalently: the boundary dI* (x) is a null surface.>

e J(x) C It (x), with equality iff JT (x) is closed.

We saw that the relation < is transitive. Is it also anti-symmetric? By convention, we do not al-
low curves of zero length, that is, one has x < x iff there is a genuine closed timelike curve from
x to x (as in Godel’s solution to the Einstein equations, or in the Taub—-NUT solution).”” Hence
< is an order relation iff (M, g) contains no closed timelike curves, in which case we say that
the space-time satisfies the chronology condition. However, both the singularity theorems and
well-posedness of the Cauchy problem for the Einstein equations require stronger conditions.

Definition 10 A space-time (M, g) is called:
1. causal if it contains no closed causal curves.

2. strongly causal if any nbhd U, of any x € M contains Vy, € O (M) such that any timelike
(or, equivalently, causal) curve with endpoints in Vy entirely lies in V>3

3. globally hyperbolic if it is (strongly) causal and all sets J(x,y) are compact.™®

The idea of strong causality is that there aren’t even any timelike curves that start and end
arbitrarily closely near x, which is something like a chronology condition stabilized against
perturbations. If J(x,y) fails to be compact, there is an incomplete causal curve emanating at x
that disappears into some singularity. This curve lies in the past of y and hence is “visible” from
y (which is deemed undesirable). We will need two implications (which are even equivalent
definitions) of the notion of global hyperbolicity, namely, with details in the next two sections:

e Compactness of the space C(x,y) of continuous fd causal curves from x to y (x < y);

e Existence of a Cauchy surface in M.

34J(x,y) is the smallest subset of M that contains all fd causal curves from x to y (J(x,y) = @ unless x < y).

3See R. Geroch & G. Horowitz, Global structure of spacetimes, General Relatvity: An Einstein Centenary
Survey, eds. S.W. Hawking & W. Israel, pp. 212-293 (CUP, 1979), for the simple proofs. This article is a very
useful introduction to the ideas discussed in this chapter, to which Geroch himself made decisive contributions.

6This means that for any y € 9™ (x) there is a null geodesic y emanating from y that lies in 917 (x).

370r, for a very simple example: take the Minkowski hypercylinder M = {(x°,%) ¢ R* |0 <" < 1}/ ~, where
(0,%) ~ (1,%), with induced Minkowski metric. Then I (x) =1~ (x) = M for all x € M.

3Equivalently, for any compact K C M any causal curve ¢ : (a,h) — K can be extended to c : [a,b] — K, where
the case a = —oo and/or b = o is included by asking that lim,_, ;.. ¢(z) € K also. See e.g. Wald, Lemma 8.2.1.

Here it does not matter if we impose the condition for all x,y € M, all x < y, or all x < y. It can be shown
that if all sets J(x,y) are compact, then causality and strong causality are equivalent, see Minguzzi & Sanchez,
arxiv:gr-qc/0609119 or Bernal & Sanchez, arxiv:gr-qc/0611138.
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4.2 Existence of geodesics of maximal length

We now complete our journey from local to global properties of geodesics by proving the exis-
tence of fd timelike geodesics of maximal length. For x < y, let C(x,y) be the space of contin-
uous fd causal curves ¢ from x to y, up to reparametrization (i.e. one uses the image c([a,b]) in
M rather than the function c : [a,b] — M ),%0 topologized by letting any open nbhd of ¢ € C (x,y)
consist of all fd causal curves y whose image lies in some open nbhd of ¢([a, b]) in M.5!

Proposition 11 A time-oriented Lorentzian manifold (M, g) is globally hyperbolic iff the space
C(x,y) of continuous fd causal curves from x to y is compact for all x < .9

This is a pretty difficult result, so we just sketch the outline of the proof.®3 If C(x,y) is compact,
then so is J(x,y); this follows from the continuity of the evaluation map

ev:C(x,y) x[0,1] = M; (4.10)
ev(c,t) =c(t). (4.11)

The argument below will show that (M, g) is strongly causal. For the converse implication, we
need to turn M into a metric space inducing the manifold topology, which cannot come from
the Lorentzian metric g, but, in a singularly ugly move, comes from an ancillary Riemannian
metric &, see §2.3.2. The Arzela—Ascoli Theorem then states that C(x,y) is compact iff:54

1. Eachset {c(t) | c€ C(x,y)} C M, € (0,1), is bounded (and hence has compact closure);

2. The family C(x,y) is equicontinuous, i.e., for each ¢ € [0, 1] and each € > 0 there is 6 > 0
such that if |s —#| < &, then d(c(s),c(r)) < € for all ¢ € C(x,y).

It is easy to show that both conditions are satisfied iff there is some 0 < K, < o such that
Ly(c) < Ky, forall c € C(x,y), 4.12)

where L, is the length computed from 4 (and similarly, in the next step dj, will be the distance
computed from 4). Indeed, if this is the case, then

dh<xvc<t)) < Lh(c) < Kx,y7 (4.13)

which makes the set {c(7) | c € C(x,y)} in clause 1 of the Arzela—Ascoli Theorem bounded.
Assuming c is parametrized by arc length, we have

Ly(c(s,t)) = Ly(c)|s —1|, 4.14)

and hence
dp(c(s),c(r)) < Ly(c)|s —t] < Kyy. (4.15)

This proves equicontinuity. We now finish the proof with a few observations:

%0Since the previous definition of fd causality of a smooth (or C 1Y curve relies on its tangent vectors, one calls a
continuous curve c : [a,b] — M fd causal if for any € (a,b) with normal nbhd U, ;) (cf. §3.4), and any ¢" <" such
that c([¢',#"]) C Uy one has ¢(t') < ¢(¢"), i.e., there exists a smooth fd causal curve from ¢(¢') to ¢(¢#"). This in fact
implies that ¢ is locally Lipschitz and hence C' almost everywhere (of course with an fd cause tangent vector).

®IThis is the quotient of the compact-open topology on C([0,1],M) by the equivalence relation given by
reparametrization, restricted to those timelike curves ¢ in C(]0, 1],M) that satisfy ¢(0) = x and ¢(1) =y, see C.J.S
Clarke, The Analysis of Space-Time Singularities (CUP, 1993), §6.2.2.

©2This was Leray’s original definition of global hyperbolicity in 1952, cf. Hawking & Ellis, §6.6).

63See Hawking & Ellis, P rop. 6.6.2, or Choquet-Bruhat, Theorem XI1.10.2, fo complete proofs.

%4Since the parametrization of ¢ € C(x,y) does not matter, we put c : [0, 1] — M.

44



1. Contrapositively, the non-existence of a uniform bound K ,, for L, (c) blasts both clauses
I and 2.

2. Eq. (4.12), in turn, is guaranteed when J(x,y) is compact (in which case it may be covered
with finitely many open sets of the kind U,) and M is strongly causal (which prevents
causal curves from re-entering U, arbitrarily often, a possibility that would indefinitely
increase the length of a curves and hence drive K , to infinity).

3. The last comment also proves the necessity of strong causality for compactness of C(x,y).

This completes the sketch of the proof of Proposition 11.
The following result is crucial for the Hawking—Penrose singularity theorems:

Proposition 12 If (M, g) is globally hyperbolic, then any x € M and y € I (x) are connected
by a smooth fd timelike geodesic of maximal length (among all curves from x to y).

The full proof takes pages to develop in detail,%> so we just give an outline.®® Through approx-

imation of continuous curves by smooth ones, the length functional ¢ — L(c) defined by (3.84)
makes sense on C(x,y), and is upper semicontinuous.®’” Via compactness of C(x,y), global
hyperbolicity then implies that L assumes its maximum

O(x,y) =sup{L(y) | y:10,1] = M,y(0) = x,y(1) =y, y fd timelike curve}, (4.16)

at some curve ¥ € C(x,y). This a priori merely continuous curve is in fact a (smooth) geodesic.%®

Moreover, the maximum geodesic may be found as follows: if (c,) is a sequence of curves in
C(x,y) for which L(c,) — £(x,y), then ¢, — 7.5

5See Penrose, passim, Hawking & Ellis, §6.7, O’Neill, Chapter 14, Senovilla, Ch. 2.

There is also a second proof, which starts from the pointwise length function £ : M x M — [0, 0] defined by
(4.16), where we put £(x,y) = 0 except for x < y. If £ is finite, then it is lower semicontinuous. Indeed, by definition
of the supremum, for any € > 0 there exists some ¢y, : x — y for which L(cy,) = £(x,y) — %8. Furthermore, by
§3.5.3 we can find a nbhd U, of (say) y such that for any z € U there exists a curve cy; : y — z with length
L(cy) < %8. Violation of lower semicontinuity of £ at y would mean that L(cy;) < ¢(x,y) — € for all z € U and all
curves ¢y, : X — z, but in fact the concatenation of ¢y, and c,,, which has length L(c,,) + L(c,), can be smoothened
so as to have length within %8 of the latter, which leads to a contradiction. If M is globally hyperbolic, then ¢ is
also finite and continuous: since J(x,y) is compact, the cover (V;), where z € J(x,y), has a finite subcover (V,).
This makes ¢(x,y) finite, since each fd timelike curve from x to y can enter each (V;,) at most once, and its segment
within (V,;) has finite length. Compactness of J(x,y) also yields upper semicontinuity of ¢(x,y) (see Hawking
& Ellis, p. 216). For each z € J(x,y), define W, = (U;NJ(x,y))”, which is a closed and hence compact subset
of J(x,y), and consider the function z — £(x,z) + £(z,y) on W,. This function is continuous and hence takes a
maximum at say zi, to which (by §3.5) there is a unique fd timelike geodesic ¥, from x to z;. Restarting this
construction from z; and repeating the process extends this geodesic, and a proof by contradiction to compactness
(cf. Hawking & Ellis, p. 216-217) shows that the ensuing geodesic eventually reaches y and maximizes #(x,y).

"That is, for each ¢ € C(x,y) and each & > 0 there is a nbhd I of ¢ such that L(y) < L(c) + & for all y € T. See
Hawking & Ellis, Lemma 6.7.2 or Wald, Prop. 9.4.1. Increasing the length of a fd timelike curve ¢ can only be
done by adding fd timelike pieces, which can be done only in a limited way in a small nbhd V of ¢. Decreasing its
length, on the other hand, can be done at will even within V by moving ¢ close to a chain of almost null directions
(see footnote 36). Hence lower semicontinuity (i.e., L(y) > L(c) — € for all ¥ € T) typically fails.

%8For the proof that a continuous timelike curve of maximal length must be a geodesic see O’Neill, Proposition
14.19 (note that Hawking & Ellis, p. 215, only arrive at C' geodesics, as does Choquet-Bruhat, Theorem XI1.9.5).
Roughly, if between any two of its points it would not be a geodesic, then, if necessary chopping the non-geodesic
part up into smaller pieces, we could construct a nearby geodesic whose length would be longer, see §3.5.3.

®This follows from an extension of Weierstrass’s theorem from topology: if K is compact, then an upper semi-
continuous function f : K — R has a maximum (and a lower semicontinuous function g : K — R has a minimum).
In the present context see also O’Neill, Lemma 14.14 and Proposition14.19.
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4.3 Global hyperbolicity and Cauchy surfaces

Both the singularity theorems and the solution of the Cauchy problem for the Einstein equations
rely on the fundamental notion of a Cauchy surface, defined as follows.

Definition 13 A Cauchy surface in a space-time (M,g) s a subset ¥ C M with the property
that each inextendible timelike curve intersects X in exactly one point.

There are various easy consequences of this definition, which we will not need and hence will
not prove, but they do clarify the idea and hence we state some of them for completeness.”°

Proposition 14 Let (M, g) be a space-time with Cauchy surface ¥ C M. Then:
1. Any other possible Cauchy surface in M is diffeomorphic to ¥;

Y is a three-dimensional embedded spacelike submanifold of M ;!

Y is achronal in the sense that for all x,y € X it cannot be that x < y;

Every causal curve meets ¥ (though not necessarily in one point);

SO

Defining the domain of dependence (or Cauchy development) D (S) of a subset S C M
as the set of all points y € M for which every past-directed timelike curve (or geodesic)
emanating from y intersects S, and similarly, the domain of influence D™ (S) by changing
past-directed to future-directed in the previous definition, one has

DEX)=D"(Z)uD (L) =M, (4.17)
which is necessary and sufficient for a closed achronal set ¥ C M to be Cauchy surface.
6. Defining the future/past Cauchy horizon H" (S)/H ™~ (S) of any subset S C M by

H*(S)=D"(S)—1"(D"(S)); (4.18)
H (S)=D (S)—I"(D(S)), (4.19)

HY(X)=H (X) =0, (4.20)

and this condition equally well holds iff a closed achronal set ¥ C M is a Cauchy surface.

70 See e.g. Hawking & Eliis, Ch. 6, O’Neill, Ch. 14, Wald, Ch. 8, or Minguzzi & Sanchez. The entire theory
was initiated by Geroch and others in the late 1960s in the topological case, and was extended to the smooth case
by Bernal and Sanchez between 2003-2005. For the smooth results see the review Recent progress on the notion
of global hyperbolicity, arXiv:gr-qc/0712.1933, based on the following three papers by Bernal and Sanchez:
On smooth Cauchy hypersurfaces and Geroch’s splitting theorem, arXiv:gr-qc/0306108,

Smoothness of time-functions and the metric splitting of globally hyperbolic spacetimes, arXiv:gr-qc/0401112,
Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions, arXiv:gr-qc/0512095.

"IThe notion of an embedded submanifold will be given in §6.

72 A point lying beyond the future Cauchy horizon of S will be influenced by events outside S, and so H™(S)
measures the failure of S to be a Cauchy surface.
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The idea is that everything happening at y € D™ (S) is determined by the state of affairs at S. For
example, in 2d Minkowski space-time R?, for S = IR, the x-axis, D™ (S) is the upper half plane
and D~ (S) is the lower half-plane, so that S is a Cauchy surface. Removing just (0,0) from
the x-axis removes the interior of the forward light cone emanating from (0,0) from the earlier
DT (S). Taking S; = {0} x [—1,1], it follows that D" (S) consists of the triangle with vertices
(—1,0), (1,0), and (0, 1), the associated Cauchy horizon H* (S) consists of the two upper sides
of this triangle. Removing (0,0) from S removes the double cone with vertices (0,0), (—3, 1),

(0,1), and (1,1) from D*(S), whereas H* (S) suddenly consists of two zig-zag teeth (draw!).
The following result (often used as the definition of global hyperbolicity!) is very deep:
Theorem 15 A space-time (M, g) is globally hyperbolic iff it has a Cauchy surface ¥.

The proof is based on the construction of a time-functiont : M — R, see §3.7.2. If ¢ is any time-
like curve, then g(Vt,¢) = ¢(t), whose left-hand side is non-zero. Hence t either increases or
decreases along fd timelike curves, and (if necessary changing its sign) we assume t increases.
To construct t, we once again take some auxiliary Riemannian metric 4 on M, as well as
some at most countable open cover (V,,) with precompact elements (i.e. V,~ is compact for each
n), so that M = U, V,,, with some associated partition of unity (¢,) subordinate to the cover.”?
We then turn the standard Riemannian measure L, induced by 4, defined in coordinates by

duy(x) =+/h dx (4.21)

see also the next section, into a probablhty measure V;, = ¥ L, where ¥ : M — R is defined by

o I
4.22

The define functions @* : M — R* by o* (x) = v, (J *(x)), in terms of which

t(x) =1In (2;8) . (4.23)

Fairly technical arguments then show that:

1. tis continuous because J* are closed (which follows from global hyperbolicity);
2. tis strictly increasing along fd timelike curves (idem);

3. Each level set
Y ={xeM|tx)=t} (4.24)

is a Cauchy surface.
Corollary 16 For a globally hyperbolic space-time (M, g) with Cauchy surface ¥ we have
M=RxYX; (4.25)
M = U;cRY,. (4.26)

More specifically: M is diffeomorphic to R X X in such a way that under the pertinent diffeo-
morphism each subset {t} x £ C R x X corresponds to a Cauchy surface X; C M.

Note that (4.25) is quite intuitive: since each inextendible fd timelike curve hits X exactly once,
we may take such a curve ¢, normalize the time-function t(x) such that £ = ¥, and define a
map M — R x X by x — (t,0), where r = t(x) and ¢ € Z is the point where ¢ hits X.

Given the definition (4.24) of ¥;, eq. (4.26) is almost a triviality.

3This means that @, € C*(V;,) and ¥, @,(x) = 1 for all x € M.
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4.4 Hawking’s singularity theorem

In his honor, we now discuss Hawking’s singularity theorem from 1965/66, which regarding
both its assumptions and the design of its proof remains a model for all subsequent results.
Its underlying intuition comes from the FRW cosmologies, and so it describes Big Bang type
singularities (black hole type singularities are covered by Penrose’s singularity theorems, which
unfortunately we cannot discuss at this stage because of their heavy reliance on null geodesics).

Let (M, g) be a globally hyperbolic space-time with Cauchy surface X, and recall the situ-
ation described in §3.7. We consider a congruence of timelike geodesics () emanating from
¥,”* with initial velocities (i.e. tangent vectors) 7 = u orthogonal to ¥; this is called the normal
geodesic congruence emanating from X. Cosmological applications require these to be past di-
rected (pd), but if our universe is ever going to approach a big crunch,’> the same construction
works for future-directed geodesics.”® Thus we also obtain the quantities defined in (3.121) -
(3.126), especially the latter (i.e. the expansion 6 = V,u#* = tr(k) of the congruence).

To understand what follows, one more geometric construction is needed, which will be
studied in great detail in our discussion of the Cauchy problem to come, namely the extrinsic
curvature of £ C M. This is a tensor field K € X(20) (X) initially defined merely on X by

where X,Y € X(X) and N is the normal vector field on X (whose sign is a matter of convention).
This definition is predicated on the fact that Vx N is tangent to X, which is an easy consequence
of the property g(N,N) = —1. Similarly, it is easy to show that K is symmetric, namely:

k(X,Y)=—g(VxN,Y)=g(N,VxY)=g(N,VyX) =k(Y,X). (4.28)
From K, we define the mean (extrinsic) curvature H : ¥ — R of X as
H(x) =tr(Ky) = ZKx(e,-(x)7ei(x)), (4.29)
i=1

where (e;(x)) is any orthogonal basis of T,X, x € X. Since k in (3.123) is spatial (because of the
projections 4 in its definition), because of the (conventional) minus sign in (4.27), on X we have

6=-H. (4.30)
Let us give some Riemannian examples, which can be found in almost all pertinent textbooks:
e For the sphere of radius a, i.e., Sg CR3 (with flat metric), we have H = —2/a.
e For the cylinder of radius a, i.e., Cg C R3 (with flat metric), we have H = —1/a.
e For any plane in R? (with flat metric) we have H = 0.

Here the normal vectors used in the definition (4.27) are outward, and we see from these exam-
ples that negative K, and hence positive 0, gives diverging geodesics normally emanating from
Y. By the same token, negative 0 gives converging normal geodesics; as stated, we assume this
in the past direction. After this preparation we are in a position to state Hawking’s theorem.

740r some relatively open subset thereof—the congruence may be defined locally, but even so global hyperbol-
icity is needed to prove existence of geodesics with maximum length.

3Current observations show that this will not happen, since at the moment the expansion is even accelerating.

76Regarding (4.26), note that a normal congruence at £ = X may no longer be orthogonal to other level sets ;.
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Theorem 17 Let a space-time (M, g) be globally hyperbolic with Cauchy surface X. Assume:
1. The curvature satisfies R,y y* 7" > 0 along all timelike geodesics y;
2. The mean extrinsic curvature of X is (uniformly) positive in the past direction.

If H > Hy > 0 in clause 2, then no past directed timelike geodesic emanating from ¥ can have
(arc) length greater than 3 /Ky, and hence (M, g) has incomplete geodesics.

It is sufficient to prove this for timelike geodesic normally emanating from X, since other time-
like geodesics are even shorter (exercise). The proof is by contradiction:

1. If there is such a geodesic, say from x € X to y < x, then by Proposition 12 (with past
and future exchanged) there is one of maximal length, call it y (this step uses global
hyperbolicity).

2. By Theorem 5, ¥ cannot have conjugate points.

3. By Proposition 6, however, ¥y does have conjugate points (this step uses the assumptions
on the curvature R,y of (M, g) and on the extrinsic curvature of ¥ C M), provided y can
be extended far enough.

4. Hence the geodesic in question cannot exist, and the conclusion follows.

Note that the time to reach the singularity increases as the mean extrinsic curvature X decreases,
in accordance with intuition: less curvature means less focusing.

Stephen Hawking in 1960
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S5 The Einstein equations

On Thursday November 25, 1915, Albert Einstein wrote down the immortal equations77

R’uv_%g’uvR: 87.[T‘uv, (5.1)

whose left-hand side we have already seen, and whose right-hand side will be explained in §5.2.
The Einstein equations (5.1) are widely considered to be the most beautiful equations in all of
physics (or perhaps even all of science), and they are certainly the most accurately tested ones.
The relate the geometry of space-time, construed as a Lorentzian manifold (M, g), to its matter
content, given by 7,v; as Misner, Thorne, and Wheeler (1973) put it: “matter tells space how
to curve” (followed by: “and space tells matter how to move,” namely on geodesics).”® In this
sense, (5.1) are 10 coupled second-order partial differential equations for the components g, of
the metric given Ty,y, but in fact there will be additional equations for the matter fields contained
in T,, which also depend on the metric, and one should really consider the total system.

5.1 The Hilbert action

As noticed independently by Hilbert and Einstein in 1916, the Einstein equations (5.1) can be
derived from a variational principle. The geometrical quantity to be extremized in order to
obtain the left-hand side is the (Einstein-) Hilbert action for the gravitational field, defined by

S6(e) = | d*+v/=g(OR() (5.2)
where g = det(g) is the determinant of the matrix g, (in any basis), and R is the Ricci scalar
R - g“vRuv7 (5.3)

cf. (2.10) and (2.9). More precisely, we assume M is orientable, and (5.2) should either be
written as a sum over various coordinate patches using a partition of unity, or else in a geometric
form (for which we have hardly developed the machinery).” As in the geodesic case, we now
consider a family of metrics gy, and compute dSg(gs)/ds. This requires some preparation.

"MIn fact, Einstein used a somewhat different notation; what he literally wrote was Gy, = —K(Tj — %g,-mT).
For the moment we omit the infamous cosmological constant A, which Einstein added in 1917 on the left-hand
side through a term Agyy in order to stabilize the Universe, but after he recognized the expansion of the Universe
he withdrew it and called his introduction “the biggest blunder of his life” (his real blunder, though, was missing
the theoretical derivation of an expanding Universe from (5.1), which was left to Friedman and Lemaitre.). The
cosmological constant made a spectacular come-back at the end of the 20th Century, when it was discovered that
the Universe expands more rapidly than could be explained by (5.1) with known forms of matter. It has become
customary to move the term Agyy to the right-hand side and regard it as an unknown contribution to 7y, called
dark energy, which is estimated to comprise as much as 70% of the total energy of the Universe! See R.P. Kirshner,
The Extravagant Universe: Exploding Stars, Dark Energy, and the Accelerating Cosmos (Princeton University
Press, 2002) for the inside story of this discovery and its history.

78The second part is a consequence of (5.1), but the proof is tricky and we will show this only for a fluid.

79 A manifold is called orientable if there is an atlas (within the equivalence class of atlases defining the manifold,
cf. §1.1) for which all transition functions @g o @ ! have positive Jacobian. An orientation of an orientable
manifold is an atlas satisfying this condition. It can be shown that M is orientable iff it admits a nowhere vanishing
n-form @ € Q"(M); one then only accepts charts ¢ whose coordinates (x',...,x") satisfy ®(d,...,d,) > 0. In
the presence of a metric we then normalize @ such that in all coordinates ®(d,...,d,) = \/E , where again g =

det(g), i.e., ®, = v/|g(x)|dx! A--- Adx". This condition is well defined, since @ keeps this form under coordinate

transformations (exercise: one has , /|g(xg)| = J‘;ﬁl V/|g(xa)|, where Jo5 = det |8x§ /dxy,| is the Jacobian of the

coordinate transformation from x¢ to xg). For any f € C;°(M) one then has [y, f@ = [, d"x+/[g(x)|f(x). We also
assume sufficient decay of the integrand in (5.2) for the integral to make sense (though not necessarily R € CZ°(M)).
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1. In any coordinate system we have (for Lorentzian siganture, as we assume throughout)
duv/—g=+v—8Ip. (5.4)

Since the first term in (3.12) cancels the last if v = p, we have Fﬁp = 18P°gpo u- Diago-

nalizing the symmetric invertible matrix (gp¢ ), yielding nonzero eigenvalues (Ao, ..., A3)
and realizing that (gP?) is its inverse gives
duo A3

gPGng# = _),O 4+ ... _13 . (5.5)

But also 5 3 (G A o 30
A v_g:g—la“g: uAo- 3): RO TR (5.6)

V=8 Ao+ 23 Ao A3

2. For any vector field X we define its divergence as

V-X=V,.X" (.7)

Eq. (5.4) then implies
V—gV-X =09d,(vV/—gX"), (5.8)

and hence, by Stokes’s Theorem ( = Divergence Theorem = Gauf3’s Theorem),°

/d4x\/—g(x)V-X(x):/ d’G-X, (5.9)
M oM

where dM is the boundary of M (if M = 0, then the right-hand side vanishes assuming
sufficient decay of X at infinity), and d>G is the (outward) normal volume element of M.

3. Each of the three terms in the integrand \/—g g" Ry, in (5.2) depends on the metric g,y
and hence has to be varied. The variation of the Ricci tensor seems the most complicated
case, but surprisingly it contributes a divergence term and hence makes no contribution to
the Einstein equations (5.2). This is surprising, because definitions (3.11) and (3.18) give

Ruy =Thyp —Thp v+ 06Ty, — 06T (5.10)

pu

whose first two terms contain second-order derivaties of g;,. Their variation would there-
fore in principle be expected to give a fourth-order PDE, but this does not happen.8!

80Continuing the previous footnote: eq. (5.8) takes the abstract form Zxw = @V - X. Cartan’s formula for the
Lie derivative of exterior forms states that %y = dix + ixd, where X € X(M), i.e., for any p-form o € QP (M),
p >0, we have Zxa = d(ixa) +i(da), where d : QP (M) — QPT1(M) is the exterior derivative (defined in
coordinates by (dQ)y,..u, ., = Iy ¥y -p,,,) and ix : QP (M) — QP~1(M) is the insertion operation, defined in
coordinates by (ix 0)y,...u, = X Oy pry.-p,- Since @ € Q"(M) we must have dw = 0, so that Cartan’s formula
gives Zx o = d(ix ®), and hence, with the first equation in this footnote, @V - X = d(ix®). The abstract version
of Stokes’s Theorem states that [,,do = [3,, , for any o € Q"(M), so that [}, ®V-X = [;,,ix®, which is (5.9).

81 Lovelock’s Theorem states that in d = 4 the Einstein—Hilbert action (5.2) is the only possible geometric quan-
tity giving rise to second-order PDE in the components of the metric, expect for adding a constant A to the Ricci
scalar R, which would lead to a cosmological constant in (5.1). The proof is a rather dull kind of bookkeeping; see
A. Navarro & J. Navarro, Lovelock’s Theorem revisited, https://arxiv.org/pdf/1005.2386.pdf.

Einstein temporarily used unimodular coordinates, in which g = det(g) = —1. In such coordinates he wrote
down the Lagrangian %z = —g”"l"ecl"gu, partly inspired by the Lagrangian for the free electromagnetic field

— % g“"FVGF#G, and partly by the fact that (this times almost trivially) it gives second-order PDE. This corresponds
to the fourth term in (5.10); the third vanishes if g = 1, cf. (5.4), and the first two terms merely bring a divergence.
So Einstein had essentially the right Lagrangian already in 1913, of which /—gR is the correct geometric form.
See H.R. Brown, Physical Relativity: Space-time structure from a dynamical perspective (OUP, 2005), §9.2.
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4. Indeed, writing 6F (g) = dF (g)/ds|s— and d(gs)uv/ds|s—o = 8gpuv, we claim that

g"VORyy =V -X; (5.11)
Xt =V,8g"Y —VH§g), (5.12)

where indices are always raised and lowered with the metric g = g;—9. However, this
leads to the ambiguous notation gV, which could mean either (0g)*" = ghP gV S g0,
or §(g"V) = —gHPg¥°dgps, see below. To avoid this we will henceforth write dy,, for
Oguv, so that the first equation above becomes d"¥ = gtP¢V%d,,, and the second is

8gHY = —g"Pg"%d,q, (5.13)

which follows from g*Vgy, = 5#, and hence 0 = 0(g"" gvp) = (88"Y)gvp + 8" dyp.
The key step in the proof of (5.11) -(5.12) is the relation

STy = L(Vudh +Vydl —VPdyy), (5.14)
as can be showed by a lengthy computation, but also by the following instructive trick:

(a) First note that although the coefficients Fﬁv do not form the components of a ten-
sor, their variation (‘)Tﬁv does. This is true far more generally: if V and V are
connections on a vector bundle E, then (Vx — Vy)s is C*°(M)-linear in s € I'(E)
(unlike Vys and @Xs), since the spoiler (X f)s in the Leibniz rule (2.45) drops
out of the difference. As a case in point, let V be the Levi-Civita connection for
a given metric g and let V be the one for some other metric . We then have a
tensor I € (21 (M), defined by I'(X,Y,0) = 6(VxY — VxY), whose connection
coefficients are Fﬁv — fﬁv, cf. (2.32). In particular, we make take g = g5, and
since SFZV(g) = limsﬂo(l"ﬁv(gs) - Fﬁv(g)) /s, we may conclude that the coeffi-
cients 6Fﬁv form the components of a tensor 6T

(b) Let ¢ and 7 be tensors of the same type, say (1,1) Then ¢ = 7 is true iff for each
x € M one has 0y (x) = 7,/ (x) in just one specific coordinate system (x*) defined on
some nbhd U of x, which system may even depend on x. For in that case we have
Ox(9u,dx") = 7(dy,dx"), and so, by C*(M)-linearity of ¢ and 7 in its arguments,
o(X,0) =1(X,0), where we write X = X*d,, and 6 = 6,dx" as usual, for some

X* eC?(U) and 6y € C*(U). And similarly for tensors of any type (k).

(c) It therefore suffices to verify (5.14) in geodesic normal coordinates, where at x = xg
we have V = 0, cf. (3.53). In GNC one does not even need (5.13), since §gP° in
(3.12) multiplies terms that vanish at x¢, and hence (5.14) is almost trivial.

Similarly, noting that in GNC the variation SR,y only employs the first two terms in
(5.10), in which 5(Fﬁv7p) =dp SFZV (etc.) can be computed from (5.14), one obtains

SRuv = 3(VpVudy) +VpVydl —V,Vydh — VPV ,dyy), (5.15)
where we note that the third term is symmetric in ¢ and v because of (3.10) and (3.24).

Contraction with g"" then makes the first two terms identical to each other, and similarly,
the last two, and immediately leads to (5.11) - (5.12).
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5. The computation of §,/—g is based on the relation dg/dg,v = g"¥g,%* which implies

a\/—g 1 Jdg
VT g M T T2 gy e Y S e OO

6. Since we already know g,y from (5.13), we are finally in a position to compute:

Sole) = P8 - 0) = [ atxS(v e Ruv)

— [ (6386 Ruy + v (5" Ry + v/ =28 SRy
_ / d*xy/"g (16" R — R )dyy + /a PEH(V gy — V,d))

M M
:/Md4x\/_—g(R#v—ég#vR)Sg“V, (5.17)

where we used (5.13) to obtain the last term, and assume hat d,, has compact support: if
JdM = 0 this immediately gives the last line, and if not, d;;y should vanish on dM 8

If there were no matter in the Universe, requiring Sg;(g) = 0 for arbitrary variations dy,y
(or, equivalently, dg"") therefore already gives us the vacuum Einstein equations

7. It was a fact of great importance to Einstein that the gravitational action (5.2) is, as he
called it, generally covariant, i.e., invariant under arbitrary coordinate transformations.
We would now rather say that S;(g) is invariant under (orientation-preserving) diffeo-
morphisms, so if we consider special variations for which g, = ¢; g, where @ is a one-
parameter group of diffeomorphisms of M arising as the flow of a vector field X € X(M)
having compact support (in which case it is complete), we have Sg(¢*g) = Sg(g),3* and
hence S;;(g) = 0 for any metric g (i.e., whether or not Si;(g) = 0 for arbitrary variations).
On the other hand, as a special case of (1.57), for the above variations g; = @;g we have

dgs
ds

and for these specific variations we therefore have d,y = VX, + VX, where we used
(2.62). Using the notation (3.20), as well as the symmetry of Gy, we therefore have

0=Sp(e) == | d*xy/=gG*(V,Xy+ ViXy)

:2/ d4x\/—_g(V“G“")Xv—2/ d*x/—gVu(G*VXy). (5.20)
M M

Asin (5.17) the last term is a boundary integral, which vanishes if X has compact support.
The first term must vanish for arbitrary X, which recovers the Bianchi identity (3.21).

(s=0)= %xg, (5.19)

82This follows from linear algebra: dg/dguy = m"Y, i.e. the minor = cofactor of gy, and g"¥ =m"* /g.

8370 be honest, we have not even defined manifolds with boundary ...

$41n the notation of the previous footnotes, we have Sg(g) = [, @gR,, Where we have now explicitly indicated
the g-dependence of @ and R. Then @* W, = W+, and Q* Ry = Ry, 50 that Wyp+gRp+e = @* W0 Ry = @, (WgR,).
For any top-dimensional form o € Q" (M) (with compact support) one has [, *a = [}, &, so we may compute

Sc(9*g) = /Mw(p*gR<p*g :/M‘P*(ngg) = /M OgR, = SG(g).
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5.2 The energy-momentum tensor

The left-hand side of the Einstein equation (5.1) describes the geometry of space-time. The
right-hand side T}y (times 87), called the energy-momentum tensor, describes the matter con-
tent of the universe. The first thing one infers from (5.1) is that 7 € X(20) (M) has to satisfy

T‘uv == T'v“7 (521)

or T(X,Y) = T(Y,X). This makes index raising unambiguous, so that we may freely write T}’
for either gtP Ty, or gP Typ. As a case in point, the physical interpretation of 7,y is that T,)'¢¥
is the energy-momentum four-vector of matter, relative to an object (sometimes mistakenly
described as an “observer”, as if there were such things throughout the universe!) moving along
a timelike (or even null) curve ¢. We will usually work in the setting of §3.7, so that u = ¢ is
a timelike unit vector normalized by (3.115), interpreted as the four-velocity of an “observer”
(sic) moving along with whatever matter is described by 7. In that case,

E =T (u,u) = Tyyutu" (5.22)

is the (relative) energy density of the matter. Similarly, one has a (covariant) momentum density
Pt = —hy T uP, (5.23)

cf. (3.122), which is orthogonal to u, i.e., g(P,u) = 0. The fully orthogonal projection of T, viz.
Suv = hyhSTpe, (5.24)

is the stress tensor (of the given matter): if X and Y are spacelike unit vectors orthogonal to u,
then S(X,Y) is the force exerted by the matter in the direction X on the spacelike unit surface
element normal to Y (and vice versa, since S(X,Y) = S(Y,X)). This gives the decomposition

Tuy = Suv +Pyuy + Pyuy + Euyuy. (5.25)

Since the Einstein equations may be rewritten as
Ryy = 8m(Tyy — 38uvT), (5.26)
where T = Tﬁt = g“vTuv is the trace of T, it is often useful to know that, as implied by (5.25),
T=S-FE, (5.27)

where S = gV, is purely spatial, i.e. S = Y} | S(e;,e;) for some o.n.b. (e;) orthogonal to u.
For example, we may now rewrite the curvature condition (3.134) in Hawking’s Theorem 17 as

E>-S. (5.28)
More generally, the strong energy condition (SEC) requires for any timelike vector field & that
T(§7€):Tuv§”§v > %g“vﬁuész%g(é,é)T. (5.29)

Since the trace T may well be negative, this strengthens the weak energy condition (WEC)

T(8,8)=0. (5.30)
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For & = u, this just means E > 0. To complete this list of energy conditions, we also mention
the (strengthened) dominant energy condition ((S)DEC), which requires (5.30) and T# &V to
be causal (timelike, provided 7,y # 0). We also have the fundamental conservation law

VT =0, (5.31)

which follows either from the Bianchi identity (3.21) and Einstein’s equation (5.1), or from an
argument like the one in §5.1.7, provided T}}' can be derived from an action principle, see below.

Proposition 18 Suppose a symmetric tensor T,y satisfies DEC and and (5.31). If S C M is an
achronal set on which Ty,y = 0, then Ty also vanishes on D(S), cf. (4.17).

This is in fact a very hard result (see Hawking & Ellis, §4.3 for an equivalent claim).?> To see
SDEC in action, we mention another difficult result, making an insight of Einstein’s rigorous:3°

Proposition 19 Suppose a symmetric tensor T,y satisfies SDEC and and (5.31). Letc : 1 — M
be a curve such that Ty = 0 outside any nbhd of c¢(I) but Ty (c(t)) # 0 for somet € 1. Then ¢
can be reparametrized (if necessary) so as to become a timelike geodesic, cf. (2.40)

The idea is that Ty, describes a point-like “test-particle”, which moves under the influence of
gravity but does not act as a source. Note that the Einstein equations (5.1) are not even assumed!
A much simpler result can be derived for so-called dust, with energy-momentum tensor

T’u\/ :pu#uv, (5.32)

where p € C*(M) is the mass density and u is as above, including (3.115). Eq. (5.31) gives

V”(pu“) u+pV,uu=0. (5.33)

Since g(u, V,u) = 0 because of (5.31), contraction with u yields two independent conditions
Vu (put) =0; (5.34)
V=0, (5.35)

of which the first is a conservation law and the second is just the geodesic equation for u. Eq.
(5.32) is a special case of the energy-momentum tensor of a perfect fluid, which is given by

Tuv = (€+ p)uguy + pguv = Euyuy + phyy, (5.36)

where the energy density € is related by the pressure density p through some equation of state,
such as p = 0 (dust, as above) or p = 1¢ (ultrarelativistic fluid). Eq. (5.31) now gives

(e+p)Vuu! +u(e) = 0; (5.37)
(64 p)Vuu + V9, p =0, (5.38)

called the (relativistic) Euler equations. The quantities (5.22) - (5.24) are obviously given by

E=c¢; (5.39)
P=0; (5.40)

so that S =3p and T = 3p — €. The energy conditions then come down to (nontrivial exercise!):

850ur formulation of Proposition 18 follows Malament, Prop. 2.5.1.
86See Geroch & Jang, Motion of a body in general relativity, J. Math. Phys. 16, 65-67 (1975).
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e SECholdsiff e+p>0and €+ 3p > 0;
e WECholds iff e+ p >0and € > 0;
e DEC and SDEC coincide in the case of (5.36) and both hold iff € > |p]|.

Except for fluids,®” most energy-momentum tensors of interest to GR are derived from an action
principle, like the Einstein equations in which they appear. The idea is that the “coupling” of
gravity to matter is described by a functional Sy/(g, ), where @ generically stands for all matter
fields, so that, analogously to (5.17), one has

Shi(g, @)= / d*x/—g Ty 88", (5.42)
where the prime has the same meaning as in §5.1 (varying the metric), or, as physicists write,
Tyy = —ZW. (5.43)
In this notation, the Einstein equation (5.1) then simply states that
o
v (S6(2) + 167Su(5.9)) =0 (5:44)
This equation for the metric g,y is to be supplemented with equations for the field(s), viz.8?
oS
OSul&,@) _ (5.45)
60
The simplest example is a scalar field ¢ € C*(M), whose action functional is
Sule.0) =~} [ V=g (e" 0o+ V(0) =4 [ (6(V9.V)+V(p)), (540

where V : R — R is a “potential” (which for a free field equals V(@) = 1m?@?). The computa-
tion (5.17), with R,y replaced by dy, @9y ¢ (so that there isn’t even a boundary term) gives

Tuv = 0u@dvo —1g,v(8(VO,VO)+V(9)). (5.47)
Another case of interest is the electromagnetic field A € Q' (M), with F = dA € Q*(M), or
Fuv — 8HAV - avAu — VHAV - V\/A’u’ (5.48)

where the last equality follows because V is torsion-free. The (free) action is
Sulg.A) =1 | d'xy/=gg"" FuvFpo =~ [ P2 (5.49)
M M
with F2 = FyyF*Y, from which a brief computation yields the energy-momentum tensor

Tyy = ngFupFVO' - %gquz, (5.50)

where the last term comes from the variation of \/—g and the first one comes from 6(g"Pg"?).

87Even for ideal fluids one has a (constrained) action principle due to A.H. Taub, but it is extremely contrived.

81n order to obtain the correct Einstein equations one is, of course, free to vary prefactors and even signs in
(5.43) and (5.44), but our choice matches the convention for 7,y in quantum field theory (with respect to which
one should actually multiply Newton’s constant G with the factor 167 in (5.44) and with 87 in (5.1).

89We might as well write these as 5(Sg(g) +Su(g, ¢))/8¢ = 0, since S;(g) is independent of .
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5.3 Electromagnetism: gauge invariance and constraints

We elaborate on electromagnetism, since it allows us to make an important conceptual point
with regard to the Einstein equations. First, the equation of motion for Ay, obtained by varying
Ay (but not gv) in (5.49), or indeed in any action Sy(g,A) = [, d*x/—g L (A,dA), is

SSul(s.A) _ 0L 9L
SA, 94, V9(dvAy)

=0, (5.51)

where (compared to the usual Euler-Lagrange equation in flat space) the covariant derivative
V. appears because of (5.8). For the specific action (5.49) this immediately yields
V,F'H* =0, (5.52)

which may, more intrinsically,” be written in terms of the Hodge dual as d * F = 0 (similarly,
the other half of the Maxwell equations is dF = 0, which is automatic given F' = dA), or as

DA, —Vu(VyAY) =0, (5.53)

where [ = gP°V,V; is the covariant d’ Alembertian. To make our point it is enough to work
in Minkowski space-time, in which V|, = 8u, AV = —Ajp, AT = A; (i=1,2,3), and

O=—d>+A. (5.54)

In parallel with the discussion in §5.1.7, the action (5.49) is gauge invariant, in that we have
Sm(A+dA) = Sy (A), say for all 2 € C°(R*). This invariance under A, = dy A yields

0= /R Ay FHOuA = — /R ,d*xAduoyF*H (5.55)

for all A € C°(R*), which gives the Bianchi identity for electromagnetism, i.c.
dudvF"H =0. (5.56)

This is so obvious (in view of the antisymmetry of F) as to be disappointing, but it must be
stressed that (5.56) is similar to (3.21) in being an identity, which holds irrespective of the
equations of motion. See below for its thrust! Another consequence of gauge invariance is that

the equations of motion (5.53) are simultaneously underdetermined and overdetermined:
e They are underdetermined in that: if A solves (5.53), then so does A +dA, A € C” (R4);
e They are overdetermined in that the initial values are constrained (i.e. cannot be arbitrary).

The first point is immediate from (5.53). For the second, since (5.53) looks hyperbolic we set
up a Cauchy problem and give initial data A, (¥) and A, (¥) atx” =¢ =0, where ¥ = (x!,x%,x°).
However, defining the electric field in covariant form by E, = F,yn", or with respect to the

4-velocity u = (1,0,0,0), by E; = Fjy = djAg — dA; (i = 1,2,3), eq. (5.52) for u = 0 reads

C=0"Fy=0diFp=V-E=0Ag—0(dyA") = AAg—dp(V-A) = 0. (5.57)

“In coordinates the Hodge dual of F is xFy, = % g% gﬁ"spgquaﬁ, where € is the Levi-Civita tensor.
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This is not an evolution equation but a constraint on the initial data, called the Gauf law. To
address the first problem we pick a gauge condition, which we take to be the Lorentz gauge.

G=0dAY =0. (5.58)
Preparing for GR, we introduce the notation R, = 9V Fy, so that (5.52) is R, = 0, and also
Rj =Ry +0,G=0Ay, (5.59)
so that instead of the awkward equations of motion (5.52) or (5.53) we would like to put
R =0. (5.60)

In order to solve (5.52) or (5.53) via (5.60), we now proceed as follows:

1. Solve the wave equation (5.60) for each u =0, 1,2, 3 (in fact the case u = 0 will be trivial,
see below), subject to initial data A, (¥) and A, (¥) att = O that respect both the constraint

C(0,%) = AAy(X) — diA;(¥) = 0, (5.61)
and the gauge condition
G(O,)?) = 8,-A,~()?) —A()()?) =0. (562)

To show that this can indeed be done, first take Ag(¥) = Ag(¥) = 0 (which, incidentally,
solves (5.60) by Ag(x) = 0), so that (5.61) and (5.62) become d;A; = 0 and J;A; = 0,
respectively. For example, take A;(X) = 0 but A;(¥) # 0 arbitrary, and solve the elliptic
equation AA = —d; A, for A. Replacing A; by A; + d;A then satisfies (5.62).

2. From the definitions (5.61) and (5.62) of C and G, respectively, we immediately obtain
G=—-C+R5. (5.63)
From the Bianchi identity (5.56), i.e. dydyd*AY = 9, dydVA* (overkill!) we find
0G = d*Ry,. (5.64)
Egs. (5.60), (5.61), and (5.63) imply G(t = 0,%) = 0. Egs. (5.64) and (5.60) also imply
OG(x) =0. (5.65)
With the initial conditions G(¢ = 0,¥) = 0, this implies G(x) = 0 for all x € R* by the
standard theory of the wave equation. This is called the propagation of the gauge.
3. Similarly for the constraint (5.57). Using the Bianchi identity (5.56), we obtain
C=—0yoyF" = —09,0yF"" + 3;0yF"' = 0;0,F"' = O;R; = 0;(RF — 9,G).  (5.66)
Assuming the initial value (5.61) as well as either the ‘gauged’ equations of motions
(5.60) for u =i and the gauge condition and (5.62), which implied G = 0, or the dynami-

cal Maxwell equations (5.52) for i = i, eq. (5.66) implies C(x) = 0 for all x, so that, once
again given (5.61), we obtain C(x) = 0 altogether, i.e. propagation of the constraint.

In conclusion, Maxwell’s equations (5.52) or (5.53) may be solved by solving the ‘gauged’
Maxwell equations (5.60) subject to initial data A, (r = 0,X) and A, (r = 0,X) that respect both
the (initial data) constraint (5.61) and the (initial data) gauge condition (5.62). Indeed, as we
have seen, together with (5.60) these two conditions on the initial data guarantee that both the
constraint (5.57) and the gauge condition (5.58) hold everywhere, and the latter implies that
the ‘gauged’ equations (5.60) actually coincide with the original ones, i.e. (5.52) or (5.53).
In particular, since (5.60) is hyperbolic, the usual theory of the wave equation shows that the
solution is unique (given the initial conditions). The case of GR will be quite similar!
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5.4 General relativity: diffeomorphism invariance and constraints

To start, Einstein’s equations (5.1) have two key features analogous to Maxwell’s equations:

e They are underdetermined in that: if a metric g solves (5.1), then so does y*g, for any
diffeomorphism y of M (not necessarily an isometry, for which case the claim is trivial!).

e They are overdetermined in that the initial values are constrained (i.e. cannot be arbitrary).

The first point was already made in connection with the action principle, cf. §5.1.7, but of course
it also follows from Einstein equations (5.1) themselves, which free of coordinates read

G(g) =87T(g,9), (5.67)

where G is the Einstein tensor (3.20). From (1.53) with y ~~ l,l/_l, (2.44), (3.6) and (3.8) we
obtain R(y*g) = y*R(g) (where we explicitly denote the dependence of the Riemann tensor R
on the metric g), and similarly for the Ricci tensor, the Ricci scalar, and the Einstein tensor, i.e.

G(y'g) = ¥ G(g). (5.68)

Similarly, the energy-momentum tensor 7'(g, ¢) should be constructed in such a way that

T(y*g, v o) =v"T(g,¢), (5.69)

and hence Einstein’s equation for g, i.e., G(g) — 87T (g, ¢) = 0 implies

G(y*g) —8aT(y'g, v 9)=y*(G(g) —8nT(g,9)) = v 0=0. (5.70)

In what follows we just discuss the vacuum case (T = 0), since the general case is similar.”!

Our discussion takes place in coordinates (which is typical for PDE aspects of the Einstein

equations), but in the next chapter we will also develop a purely geometric view of the situation.
From (3.11), (3.12), and (3.18) we easily obtain, in any coordinate system,

Ruv =—18P%guv po — 38°° (8po,uv — &ov,up — 8up,ov) + F(g,9%), (5.71)

where F(g,dg) contains only first derivatives of the metric.”? For the Einstein tensor this gives

Guv = —138"°(guv.po +8po.uv — 8ov,up — Sup,ov — guvgaﬁ (8ap.po —&oa,pp)) +F(g,g).
(5.72)

Although this point will be studied in great detail in the next two chapters, we now point out
(though in a somewhat superficial and coordinate-dependent way) that the ten (vacuum) Einstein
equations G,y = 0 (and more generally the full equations Gy = 877),) come in two groups:

e The six dynamical equations G;; = 0, where i, j = 1,2,3 as usual;

e The four constraints C;, = G0 =0, where u =0,1,2,3.

91The discussion revolves around second derivatives of guv in the Einstein equation, which are absent in T,y .
92We will later see that in the relevant PDE theory only the highest derivatives of the unknown functions count.
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This can be seen from (5.72), using a coordinate system where g0 = 0 (so that googoo =1):5
none of the constraints contain second-order derivatives of the components of the metric.

As in (5.53), the first term in (5.71), which is essentially [g,y, is favourable towards a good
PDE theory (as we will see, it makes the spatial components of g satisfy a hyperbolic evolution
equation), but the other three terms, which are the anlogue of the second term in (5.53), ruin this
and hence should be removed by a clever choice of coordinates (which makes them disappear).

The simplest way to do this (introduced by Choquet-Bruhat) is to use the wave gauge®*

WH =0 =0, (5.73)
where the covariant D’Alembertian [, is defined, on any tensor, by

O, = g°°V, V. (5.74)

9

In (5.73) the coordinate functions x* are scalar functions, 5. 50 that, dgx* being a 1-form,

= —gPThs. (5.75)
Using (3.12), this yields a key result, where H(g,dg) has a similar meaning as F(g,dg):
gupava +gvpaqu = gpc(gpcr,uv —8ov,up — gup,cv) +H(g,dg). (5.76)
Therefore, analogously to (5.60), the wave-gauged (or reduced) vacuum Einstein equations
Ry = Ruy + 4 (8updyWP + gypduWP) =0, (5.77)
take the desirable (quasi-linear hyperbolic) form (starting with the D’ Alembertian):
Ry = —18°8uv.po +1(2,08) = 0. (5.78)
From (5.77) we also define the reduced Einstein tensor
so that, provided the metric solves (5.77), the Einstein tensor is related to the wave gauge by
Guv = 5(8uvOpWP = gupdyWP — gypduWP). (5.80)

In particular, the four constraints C, are linear combinations of the four time-derivatives
WH and of the W* themselves and their spatial derivatives. Conversely, the W* are linear
combinations of the constraints Cy;, and the W and their spatial derivatives. For example, in

coordinates where (at = 0) one has goo = —1 and go; = 0, these linear relations are simply
Co=L(WO—a;Ww/); (5.81)
Ci = %(&WO —g,'jo). (5.82)

93This restriction is only necessary to see that Gog = 0 is a constraint.
%Coordinates satisfying (5.73) are often called harmonic or wave coordinates. See Choquet-Bruhat), §VL.7.
95 As opposed to components of a 4-vector. Choquet-Bruhat even writes x(*) as a warning.
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So if we impose both the constraints and the gauge conditions att = 0, i.e.,

Cu(t=0,%) = 0; (5.83)
WH(t=0,%) =0 (5.84)

and also assume the reduced Einstein equations (5.77), then automatically,
WH(t=0,X)=0. (5.85)
Parallel to step 2 for electromagnetism, we apply the Bianchi identities VK G,y =0, i.e.
g"P (0p Gy — FguGGV — ngGug) =0, (5.86)

to (5.80). This gives a hyperbolic quasi-linear PDE for WP whose principal term is 0 d, WP,
since to leading order the first two terms on the right-hand side of (5.80) cancel out. Given the
initial conditions (5.84) and (5.85), by quasi-linear hyperbolic PDE theory this implies

WH(x) =0 (5.87)

altogether; the underlying assumptions were the reduced Einstein equations (5.77) or (5.79) and
the initial value conditions (5.83) - (5.84).

Step 3 for electromagnetism also applies here: once again, the Bianchi identities, in full:

show that the constraints C;; satisfy a linear homogeneous first-order symmetric system of
of PDE’s, provided we assume either the reduced Einstein equations GZV;{ = 0 and the gauge
condition as above, or, equivalently, the original Einstein equations G;; = 0 (which would spoil
homogeneity). If we assume C, = 0 at t = 0, the unique solution of this system is C; (x) =0
at all x. So just as for the gauge condition, assuming the constraints at + = 0 and the reduced
Einstein equations (of which this time only the spatial and hence dynamical part is needed)
guarantees that the constraints are always satisfied. In sum, if we assume:

1. The constraints C, =0 atz = 0;
2. The wave gauge condition WH =0 att = 0;
3. The (quasi-linear hyperbolic) reduced Einstein equations Rﬁ’v =0or Gﬁ’v =0,

then the full (vacuum) Einstein equations G,y = 0 or R,y = 0 hold (at least locally).
We will make this more precise in the final chapter on quasi-linear hyperbolic PDE’s.
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6 Submanifolds

Differential geometry started with the study of two-dimensional submanifolds S of R? (i.e.
surfaces) by Gaul}, and in GR a crucial role will be played by (spacelike) three-dimensional
submanifolds S of a four-dimensional Lorentzian manifold M. This leads to an interplay be-
tween the intrinsic geometric properties of S and the additional (‘extrinsic’) geometry obtained
from its embedding S < R3 or S < M. This interplay was already analyzed by GauB himself.

6.1 Basic definitions

One may define a submanifold S of M (where M is any manifold) in two equivalent ways:
either as a subset S C M of M with certain (good) properties, or as a manifold in its own right
(a concept already defined, of course) plus an explicit map F : § — M with certain properties.
The former leads to the latter by considering the inclusion map S < M, whereas the latter leads
to the former by identifying S with its image F(S) C M (which may lead to some confusion!).

1. Let S be a manifold. A map F : S — M defines a submanifold F (S) C M provided:*®

(a) F is a homeomorphism onto its image F(S) (in particular, F is injective);

(b) F,:T,S— Tr (M is injective for all u € S (equivalently, has rank equal to dim(S)).

2. A subset S C R" is a k-dimensional submanifold of R" iff each u € S has a nbhd U €
O'(R") in R" such that SN U is homeomorphic to some W € &(R¥) via & : W — R” (i.e.
SNU = §(W)), for which in addition each map & : T,RF — Te () R" is injective (y € W).

Subsequently, we say that S C M is a k-dimensional submanifold of a manifold M (where
dim(M) = n) iff for each u € S and each chart (for M) ¢ : U — V C R" with x € U, the
image @(SNU) is a k-dimensional submanifold of R” (in the sense just defined).

3. These definitions are equivalent in the way just mentioned (see e.g. Andrews, Prop. 3.2.1).

The main point is to exclude unwanted things like o¢ C R? (intersection) or Z C R? (corner).

6.2 Classical theory of surfaces

The classical theory of surfaces © C R> was largely based on local constructions. Let U C R? be
open and let F : U — R3 satisfy the two conditions above, with image £ = F(U). The standard
coordinates u = (u',u*) on U induce the same coordinates on X (i.e. the point F (u',u?) € £ C

IR? is said to have coordinates (u?,u?), too) and come with three vector fields on X, defined by

X =F'(d/du'); (6.1)

X = F'(d/du?); (6.2)

gtk (6.3)
X1 % Xa |

where injectivity of F/ implies that the denominator in (6.3) is nonzero. For the same reason,
the triple (¥,X,,N) forms a basis of T, R3 = R3, whilst (¥,X) is a basis of TruE uel.

%Recall that F is smooth. Technically, we define an embedded submanifold. A weaker notion, called an
immersed submanifold, in which the first condition is dropped, makes sense but wil not be used in these notes.

62



~ We let early Greek alphabet indices o, B etc. run through 1, 2, and also i = 1,2, 3, so that
F':U — R are the coordinates of F, regarded as functions of (u',u?). Then (6.1) - (6.2) is just

xt, = OF' |ou® = 9o F' (a=1,2;i=1,...,3), (6.4)

In the 19th century two tensors on X were identified (to be used in a very similar way in GR):
1. The first fundamental form § is the metric induced by the Euclidean metric § on R3, i.e.
g=F"4, (6.5)

where F* = F(20) : x20)(R3) — x(29)(%) is the pullback of F : U — R? defined after
(1.52). This simply means that g is the restriction of § to £ C R?, that is,

gX,Y)=6(X,Y)=(X,Y), (6.6)

where (,-,-,) is the standard inner product in R3, and X,Y € X(X). In the (u',4?) coordi-
nates on X, the components of ¢ are given by

gaﬁ :g(a‘x’aﬁ): <)_C‘067)_C’ﬁ>7 (6.7)
where we collectively write o and f for u and v. By construction,

5 3 JF! QF!
Sap = l;m "9uB’ (6.8)

from which we see that although the (9;,d,) basis is orthonormal in U C R?, its push-

forward to £ may no longer be orthonormal in R? (this depends on F).

2. To define the second fundamental form k, we first observe that for vector field X € X(X)
is also a vector field on R? (restricted to ¥), so that along X we may define the 3-vectors

L dN
VxN =X%— 6.9
X IR (6.9)

where X = X%Xy; if X, = Xp,) is tangent to a curve F (y' (1), Y*(r)), then X* = dy* /dt), _;
we may then also write VyN(u,v) = dN(y' (1), }/z(t))/dq,:() (the notation Vy is used be-
cause from a higher perspective one uses covariant differentiation with respect to the
Levi-Civita connection defined by the flat metric § on R3). One could also simply say

VyxN' = XN' = X*9yN' (i=1,2,3), (6.10)
which is (2.31) with vanishing Christoffel symbols (in R3). Since <N ,]_\7 ) =1, we have
0=X(1y) =X((N,N)) = (VxN,N) 4 (N,VxN) = 2(VxN,N), (6.11)

so that VXI_\? is orthogonal to N (in R3), and hence it must be tangent to X. In other words,
we have the Weingarten map (with a minus sign for historical reasons)

W:TE - TY; (6.12)
X — —VxN. (6.13)
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Strictly speaking we should write W, .y : T, , X — T{,, )X, etc. Finally, we define k by
k(X,Y)=gW(X),Y) = —g(VxN,Y) = —(VxN,Y). (6.14)
It is easy to show that the second fundamental form thus defined is symmetric, i.e.,
k(X,Y) =k(Y,X), (6.15)

or (VyN,X) = (VxN). To see this, note that (N,X) = 0 (since X and Y are tangent to X
and hence orthogonal to N), hence 0 =Y ((N,X)) = (VyN,X) + (N, VyX). Since V (as
the flat Levi-Civita connection on R3 ) is torsion-free, we have VyX = VxY — [X Y], so

<VY]_\77X> = _<]_\77VYX> = _<]_\77VXY> +<J_\77 [XaY]> = _<]_\7aVXY> = <VX]_\77Y>7 (616)

because (N, [X,Y]) = 0 (because [X,Y] is tangent to ¥ whenever X and Y are). This
computation also yields an alterative expression for k, which is manifestly symmetric:

kop = (Rap.N); 6.17)
Xop = 9dpXa; (6.18)
in terms of F : U — R3, the components of the vector Xop are x 5= 9% F/Qu®duP .
. Many computations in the theory of surfaces use the Gaufi—Weingarten equations
faﬁ = f‘gﬁfy+l~<aﬁl_\7; (6.19)
JaN = —khg, (6.20)
where the FZC p are the Christoffel symbols (as originally introduced!) associated to the

metric ¢ on X, and I}g = gﬁﬁcay, where (gP7) is the inverse matrix to (gﬁy) as usual.
Weingarten’s eq. (6.20) is just a restatement of (6.14). GauB’s eq. (6.19) is simply the
expansion of the 3-vectors ¥, in terms of the basis (%4, %,,N). The specific form kaﬁ

of the coefficient of N follows from (6.17). To derive the coefficient of Xy, let us assume
(6.19) for initially unknown coefficients f‘zé B ‘We then obtain

(. ¥ap) = Top (¥ ¥s) = 3yl ap, (6.21)
so that 1:2; p= g"? (Xs,Xqp). The relation (2.23) then follows from (6.18), which yields
2(Xs5,Xap) = g (X5, Xa) + 0o (Xs,%p) — Js(Xas X ) (6.22)
. The classical theory also heavily relies on the Gaufi—-Codazzi equations
RS = Kkop — Kikay; (6.23)
kap.y+ Topkys = kayp +Tokps, (6.24)

where ngﬁ is the Riemann tensor as defined (in terms of the metric & on X) in (3.11),

indices are raised with the aid of g as usual (e.g. 7(7‘? — g% 7(3 y)»> and I~ca% g =03p l}ay.
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The GauB—Codazzi equations (for § and k) follow from the identity
i.e., dyXyp = dgXay. Indeed, from the GauB—Weingarten equations one easily finds
faﬁy — fayﬁ = (ngﬁ — 7(75,]2053 + ]}gi(ay))?g
+ (kap,y+ TEpkys — kay.p +Toykps)N, (6.26)
so that Gaul3’s equation (6.23) is the tangential (to X) component of (6.25), whilst Co-
dazzi’s equation (6.24) is its normal component. Eq. (6.23) is especially interesting, since
it relates the intrinsic geometry of X (represented by its Riemann curvature tensor) to its

extrinsic geometry (represented by the second fundamental form). In fact, Gaul3’s famous
Theorema Egregium easily follows from (6.23). Following Gaul}, we define

K = det(W) = det(k)/det(g) (Gaupfcurvature); (6.27)
H=tr(W)=tr(g 'k) = (mean curvature), (6.28)

where W is the Weingarten map (6.12) - (6.13), and k and § are the matrices defined by
(6.7) and (6.17). In terms of the eigenvalues k7 and k> of W we therefore have

K = K1 1; (6.29)
H=x1+x. (6.30)

Then the Theorema Egregium is nothing but the relation (3.27) we already saw.

6.3 Hypersurfaces in arbitrary (semi) Riemannian manifolds

For applications to GR we need a similar theory, in which ¥ C M is a submanifold of codimen-
sion one of a Lorentzian manifold M, i.e. dim(X) = m and dim(M) = m+ 1 = n (where m = 3 for
GR); such a submanifold is often called a hypersurface. Without much extra effort, we will de-
velop the theory in both the Riemannian and the Lorentzian case (the general semi-Riemannian
case requires too many adaptations). Thus we assume that M carries either a Riemannian or a
Lorentzian metric g, with associated Levi-Civita connection V on TM, and that X carries the
induced metric § € X(>9) (M) defined by the inclusion 1 : £ < M, i.e.

g=1g, (6.31)

which simply means that g, (X, Yy) = gx(Xx, Yy) for any X,, Yy € T,X C T,M, with x € £. In both
cases, we assume (X, g) to be a Riemannian manifold in its own right (which in the Lorentzian
case 1s not automatic and forces X to be spacelike). The induced metric ¢ induces an associated
Levi-Civita connection V on T'Z, whose relationship with V we will now unearth. The ensuing
GauB—~Weingarten equations require a choice of normal unit vectors N, € T,M to T,M (i.e.
gx(Ny,X,) = 0 for all X, € T,M, where x € M), generalizing (6.3). In general, there is no
canonical choice of Ny, but any two choices differ by a sign and we assume that we can make a
smooth choice x — N, throughout M.°7 The normalization of N, carries a “timelike” subtlety:

gx(Ny,Ny) =1 (Riemannian case); (6.32)
gx(Ny,Ny) = —1, (Lorentzian case). (6.33)

97A sufficient condition is that M be connected and simply connected (cf. Kobayashi & Nomizu, Vol. 2, p. 5).
In GR the presence of a time orientation will fix N, which we may require to be future directed.
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Then the orthogonal projection (which is independent of the choice of Ny) onto T, M is

m: TM— TM C TM (6.34)
7o (Xy) = Xy — gx(Xx, Nx)Ny; (Riemannian case); (6.35)
7 (Xx) = Xy + g¢(Xx, Nx)Ny; (Lorentzian case), (6.36)

since one requires 7, (Ny) = 0 (and 7 (X,) = X, if X € T, M).
1. The key to the entire (metric) theory of hyersurfaces is the result
n(VxY)=VxY (X,Y € X(M)), (6.37)

where the covariant derivative VxY on the right-hand side is clearly defined (as an element
of X (M )), but also the covariant derivative VxY in M on the left-hand side is well defined,
even though Y is merely a vector field on M rather than on all of M: as in the comment
preceding (2.35), if X € X(M) and Y € X(M), then the value of VxY only depends on the
restriction of Y to M (indeed, it only depends on the values of ¥ along the flow lines on X,
which lie in M), and so VY is defined (as a vector field on M) even when Y € X(M).*8

To prove (6.37), we write V4 Y for m(VxY), so that (in the Lorentzian case for simplicity)
V4Y = VxY +g(VxY,N)N. (6.38)

We first check that V’ is a covariant derivative on X(M). Linearity in Y is obvious (since
both g and Vy are linear), as is rule (2.27). Rule (2.28) follows from the corresponding
rule for V and the property g((Xf)Y,N) = (X f)g(Y,N) = 0 (since Y € X(M)). To make
the identification V/ = V we next need to check that V' is torsion-free, which is the case:

VS(Y—VQ/X:VXY—VyX+g(VXY—VyX,N)N
=[X, Y] +g([X,Y],N)N
= [X,Y], (6.39)

since V (being the Levi-Civita connection on TM) is torsion-free, and [X,Y] € X(M),
assuming X,Y € X(M), so that g([X,Y],N) = 0. Finally, V' should satisfy (2.42), i.e.

X(8(Y,2)) = &(Vx¥,2) +§(Y,VxZ) (X,Y,Z € X(M)). (6.40)
This is quite obvious, since for X,Y,Z € X (M) we have
§(VxY.Z) = g(VxY,Z) = g(VxY +g(VxY,N)N.Z) = g(VxY.Z), (6.41)

since g(N,Z) = 0, and so the right-hand side of (6.40) equals g(VxY,Z)+g(Y,VxZ). By
(2.42) for V and g, this in turn equals X (g(Y,Z)) = X(g(Y,Z)), and we are done.

2. Eq. (6.37) implies the general Gauf—Weingarten equations, where still X,Y € X(M):

VxY = VxY +k(X,Y)N (Riemann); (6.42)
VxY = VyY —INc(X,Y)N (Lorentz); (6.43)
VxN = -W(X). (6.44)

%BIn other words, if one insists that Vy : X(M) — X(M), one may extend ¥ € X(M) to any vector field on M
and if X € X(M), then VxY is independent of the extension.
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Here (6.44) is the definition of the (generalized) Weingarten map W, : .M — T, M (as be-
fore, since g(N,N) = +1, we have g(VxN,N) = 0 and hence VxN € TM). Furthermore,
taking the (metric) inner product of (6.42) - (6.43) with N, and using (6.32) - (6.33) as
well as the relation

which is proved in the same way as in the text between (6.15) and (6.16), we obtain
k(X,Y) =g(W(X),Y), (6.46)

This once again defines the (generalized) second fundamental form ke x0(p). The
same calculation (6.16) as before shows that k is symmetric, as in (6.15), viz.

k(X,Y) = —g(VxN,Y) = g(N,VxY) = g(N,VyX) = k(Y,X). (6.47)

3. We now derive the general Gaufi—-Codazzi equations, which, for W. XY, Z € X (M ), are:
RW,Z,X,Y)=RW,Z,X,Y)+k(W,Y)k(X,Z) —k(W,X)k(Y,Z) (Riemann); (6.48)
RW,Z,X,Y)=RW,Z,X,Y)+k(W,X)k(Y,Z) —k(W,Y)k(X,Z) (Lorentz); (6.49)
R(N,Z,X,Y) = (Vxk)(Y,Z) — (Vyk)(X,Z), (6.50)

where R € X3 (M) and R € x5 1)( M) are the Riemann curvature tensor for the Levi-
Civita connection V on TM and V on TM, respectively. The Codazzi relation (6.50) is

the same for the Riemannian and the Lorentzian cases. These equations follow from two
computations, which we perform for the Lorentzian case,” i.e. using (6.43). The first is:

VxVyZ = Vx(VyZ—k(Y,Z)N)

= VxVyZ —k(X,VyZ)N — X (k(Y,Z))-N — k(Y,Z)VxN
= VxVyZ+W(X)k(Y,Z) — (k(X,VyZ)+ X (k(Y,Z)))N. (6.51)
The second computation, which uses torsion-freeness of V, i.e.
VxY —VyX = [X,Y], (6.52)
1s
VixyZ=VixyZ-k(X,Y],Z)N
= V[X v)Z — (k(VxY,Z)—k(VyX,Z))N. (6.53)

The definition (3.6) of curvature, combined with the ‘covariant Leibniz rule’

X(k(Y,Z)) = (Vxk)(Y,Z) + k(VxY,Z) +k(Y,VxY), (6.54)

which is a special case of (2.54),!%

Q(X,Y)Z= (VxVy—VyVx —Vix y))Z
=QX,Y)Z+W(X)k(Y,Z) —W(Y)k(X,Z)
+ ((Vyk)(X,Z) — (Vxk)(Y,Z))N. (6.55)

then yields, after some neat cancellations,

Taking the (metric) inner product with W and using (6.46) yields Gau3’s equation (6.49),
whereas the inner product with N and using (6.33) yields Codazzi’s equation (6.50).

9The reader is invited to prove the Riemannian case (6.48) with (6.50) him/herself.
100Recall that unlike k, the metric is covariantly constant, i.e. Vxg =0 forall X € %(M ), cf. (2.56).
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6.4 Fundamental theorem for hypersurfaces

The preceding material comes to a head in the fundamental theorem for hypersurfaces, which
was proved (by different means) in the 19th century. We discuss the proof in some detail, since
it will turn out to be a good preparation for the 3+1 split of the Einstein equations later on.!!

Theorem 20 Let (M,g) be a connected and simply connected m-dimensional Riemann mani-
fold equipped with a second tensor k € x(20) (M) satisfying the Gauf3—Codazzi equations

; (6.56)

RW,Z,X,Y) +k(W,Y)k(X,Z) —k(W,X)k(Y,Z) =0
=0. (6.57)

Z
(Vxk)(Y,Z) — (Vyk)(X,Z)

Then there exists an isometric embedding F : M — R™* for which the second fundamental
form is the given tensor k, and such an embedding is unique up to Euclidean motions (i.e. up to
isometries, which are combinations of translations and rotations).

For general M the above theorem holds at least locally, in that any uy € M has a connected
and simply connected neighbourhood U € O(M) for which the above claims hold.

Note that (6.56) - (6.57) arise from (6.48) - (6.50) by putting R = 0 (because R+ g
equipped with the flat Euclidean metric), and have (6.23) - (6.24) as their coordinate version.
The latter were admittedly written down and derived for m = 2, but simply letting the indices
o, B etc. run from 1 to m rather than from 1 tot 2 immediately generalizes our treatment of the
classical theory of surfaces to any dimension (alas with some loss to visualisability).

We just prove the local version of Theorem 20 by PDE methods, which is enough to make
our point, namely showing the role of the GauB—Codazzi equations as integrability conditions.

Let us initially assume we found an F : U — R™*! satisfying the conditions in the theorem.
Its uniqueness may be reformulated as the conjunction of the following local conditions:

1. For arbitrary xo € R"™*!, the map F satisfies F (ug) = xo;

2. For some fixed orthonormal basis (e, ..., ey) of T,,M and an arbitrary orthonormal basis
(f1:--- fmg1) of Ty R™H =2 R™H its derivative satisfies ) (eq) = fo (0 =1,...,m).

Without loss of generality we may choose geodesic normal coordinates on U relative to u, cf.
(3.52) - (3.53), so that e, = dg = d/du®* is indeed orthonormal at least at uy. Furthermore, we
may pick coordinates (x') on R™*! (i=1,...,m+ 1) such that f; = 9 /dx’ fori =1,...,m. The
components F'(u%*) of F : U — R™*! then satisfy the (initial) condition

%(uo)=5& (¢=1,...omi=1,...,m); (6.58)
aFm+1
IR (up) =0 (x=1,...,m). (6.59)

In addition to F, we have to define a normal field N on U, whose components N' satsify

N'(up) =0 (i=1,...,m); (6.60)
N"™ () =1. (6.61)

191Qur proof is based on Kobayashi & Nomizu, Vol. 2, §VIL7.
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If we recall (6.4) as well as (2.50), whose asterisk we omit, for eachi=1,...,m+ 1 we have
(?a/aua dFi)B = xixﬁ — I:Z;Bx;,, (6.62)
so that, introducing 1-forms 8’ € Q(U) foreachi=1,...,m+ 1 via
0 = dF", (6.63)

Using the notation Vo = v, /oue, Gauld’s equation (6.19) for (X ) is then equivalent to

(Va0')p =kogN' (@, =1,...,m). (6.64)

Conversely, if 8° € Q(U) satisfies (6.64), then there exists F € C*(U) such that (6.63) holds.
We start with a computation which is valid for any 6' € Q(U) and uses the Leibniz rule
(2.54):102

do'(X,Y) =X(6'(Y))—Y(6'(X))— 6'([X,Y])
= (Vx0')(Y)+6'(VxY) — (Vy6')(X) — 6'(VyX) — 6'([X,Y])
= (Vx6')(Y) — (Vy6')(X) + 6'(7(X,Y))
= (Vx0)(Y) — (Vy8)(X), (6.65)

since the Levi-Civita connection V is torsion-free, cf. (2.38). Eq. (6.64), then gives
d0'(9q,9p) = (Vo0')(dp) — (V50')(da) = N'(kop —kpe) =0 (6.66)

by symmetry of the second fundamental form k. The Poincaré Lemma then gives (6.63).
It is convenient to replace the 1-forms 6’ by the corresponding vector fields Z' = #(6') on U

(i=1,...,m+ 1), in terms of which (6.64) becomes (writing Zlﬁ for (Zi)ﬁ)

ozP
du®

Similarly, in terms of Z; Weingarten’s equation (6.20) becomes

bzl =N'Zb, (6.67)

ON' = B
30 = —kopZy, (6.68)
We may rewrite the coupled PDE’s (6.67) and (6.68) on U, i = 1,...,m+ 1, more elegantly as

VxZ'=N'W(X); (6.69)
XN' = —k(X,Z"), (6.70)

for X € X(U) and N' € C*(U), subject to the initial conditions (6.60) - (6.61) for N’, as well as

Z%(up)=6% (a=1,....mi=1,...,m); (6.71)
7%, (up) =0 (ot 6.72)

1021n the first line we use the identity do(X,Y) = X(@(Y)) — Y (@(X)) — ®([X,Y]), valid for any @ € Q(U).

Il
S
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We derived (6.69) - (6.70) with (6.71) - (6.72) from the existence of F : U — R™*! with the
desired properties (as stated in the theorem). Conversely, if we can solve these equations for Z'
(and N, we may construct F via ol = I)(Zi) and (6.63), having the right properties.

We now show that this can be done. To begin with, we show that the integrability conditions
for (6.69) - (6.70) are the GauB—Codazzi equations (which should come as no surprise, since
(6.69) - (6.70) are a version of the Gaul—Weingarten equations). From (6.70) we derive both

[X,YIN' = —Xk(Y,Z") +Yk(X,Z'); (6.73)
[X,Y|N' = —k([X,Y],Z). (6.74)

so that Xk(Y,Z") — Yk(X,Z') = k([X,Y],Z"); a computation very similar to (6.65) then rewrites
this as Codazzi’s eq. (6.57). Similarly, practically the same computation as (6.51) - (6.55),
using (6.57), shows that (6.69) implies Gaul}’s eq. (6.56). Thus the GauB3—Codazzi equations
are necessary for the solvability of (6.69) - (6.70), which explains their role in Theorem 20.

To show that they are also sufficient, we have to make our hands dirty (as usual in PDE
theory). We take geodesic normal coordinates (u%) relative to ug € U (it may be necessary to
shrink U in order to make it a normal nbhd) and some fixed orthonormal basis (ey,...,e,) of
T.,M, so that the coordinates (u',...,u™) specify the point u = ¥;(1), where 7; is the (unique)
geodesic having ¥;(0) = up and 7;(0) = u®eq (summation convention!), as usual.

For fixed u € U, define a vector field Z' and a function N’ along this geodesic ¥; by solving

Vi Z' =N'W (7): (©6.75)
TN’ = —k(1:,Z"), (6.76)
at least for ¢ € [0, 1], or, in coordinates, where Z' = (Zl-l, ...,Z") as above, and ru = Y;(t),
dzP (1 i .
AN P () 28() = N R 677)
dN;(t) B
7 —kap (tu)u®Z;, (6.78)

with initial conditions Z*(0) = 8% (i <m), Z%, (0) =0, N'(0) = 0 for i <m, and N, 11 (0) =1,
cf. (6.71) - (6.72) and (6.60) - (6.61). Here we identified Z(t) with Zi(tu), etc. These solutions
exist and are unique by standard ODE theory. Finally, define Z' € X(U) and N' € C*(U) by

Z'(u) = Z'(1); (6.79)
Ni(u) = N'(1), (6.80)
where of course the Z' and N on the right-hand side depend on u by construction. We claim

that this pair (Zi ,Ni) solves (6.69) - (6.70) with the right initial conditions (6.71) - (6.72) and
(6.60) - (6.61). To prove this, it is convenient to introduce two constant vector fields on U by

X=0q4 (@=1,...,m); (6.81)
Y =a%0y, (6.82)
where (a',...,a") are the normal coordinates of some fixed a € U. The equations
VyZ = N'W(Y); (6.83)
YN' = —k(Y,Z)) (6.84)
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then hold along the geodesic y;(¢) for ¢ € [0, 1], since there they coincide with (6.75) - (6.76).
We claim that along ¥;(¢) the functions (Z',N') defined by (6.79) - (6.80) also satisfy

Vy(VxZ —=N'W(X)) = (XN +k(X,Z))W (Y ); (6.85)
Y(XN' +k(X,Z) = —k(Y,VxZ' — N'W (X)), (6.86)

which equations are none other than (6.83) - (6.84) with the substitutions
7' s VyZl = N'W (X); (6.87)
N~ XN+ k(X,Z1). (6.88)
Now note that the initial conditions to (6.85) - (6.86) follow from those to (6.83) - (6.84), viz.

; (6.89)

6Xzi(u())—N(u())iW ( ) 0;
0. (6.90)

XN (ug) + Ky (X, Z1)

Indeed, by the construction of geodesic normal coordinates, at the point ug, the pair (Z!,N')
satisfies (6.83) - (6.84) for any Y, and so in particular it does so for X. The point now is that,
(6.85) - (6.86) being a first-order system, its unique solution with initial conditions zero is zero,
which by (6.87) - (6.88) shows that (Zi ,Ni) solves (6.69) - (6.70), with given initial conditions.

It remains to derive (6.85) - (6.86) from (6.83) - (6.84) and the Gaul3-Codazzi equations.
The argument should be familiar by now, but here we go! To derive (6.85), we compute

Vy(VxZ = N'W (X)) = VyVxZ' — (YN )W (X) — N'Vy (W (X))

=VxVyZ' — Q(X,Y)Z' — (YN)W (X) — N'((VyW)(X) + W (VyX))

— T (VW (Y)) + (X, ZW(Y) — K(Y,Z)W (X)

— (YN)W (X) = N'((VyW)(X) + W (VrX))

— (XN +R(X,Z)W(X) + N (Tx (W (1)) = (FyW)(X) =W (9yX))

= (XN +k(X,Z)W(Y), (6.91)
wherg we use GauB} in the form (6.55) to pass to the second line, we use (6.84) to cancel the
term k(Y,Z")W (X) on the previous line, and finally the coefficient of N' in the penultimate line
is zero by Codazzi’s equation (6.57), which emerges after using (2.54) to write VX(W(Y ) =
(VXW)( ) —|—W(VXY) and noting that W(VxY) — W(VyX) = W(VxY — VyX) = 0 because

VxY = VyX, since V is torsion-free and [X,Y] =0 for the constant vector fields (6.81) - (6.82).
Similarly, to derive (6.86), using (6.84), (2.54), Codazzi’s (6.57), and (6.83), we compute

Y(XN'+k(X,Z")) = XYN' +Yk(X,Z') = —Xk(Y,Z') + Yk(X,Z')
= (Vyk)(X,Z") — (Vxk)(Y,Z)) + k(Vy X, Z") — k(VxY,Z")
—k(Y,VxZ) +k(X,VyZ)
= —k(Y,VxZ') +k(X,N'W(Y))
= —k(Y,VxZ' —N'W (X)), (6.92)

since k(X,W (Y)) = k(Y,W(X)); in coordinates this is the identity I}aygy‘sfcgﬁ = I}Bygy‘sfcga.
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7 The Einstein equations as PDE’s

In this chapter we transform the Einstein equations (5.1) into a system of six hyperbolic evo-
lution equations en four elliptic constraint equations. Some first steps in this direction have
already been taken in §5.4, especially the introduction of a suitable gauge condition, but to re-
ally get the analysis going we need a so-called 3 +1 split of space-time. This split is far from
unique and understanding this non-uniqueness is an essential part of the analysis.!??

We initially assume we already have a space-time (M, g), where g solves the Einstein equa-
tions (for some energy-momentum tensor). We then choose a spacelike Cauchy (hyper)surface
¥ C M, and apply the theory of the previous chapter, obtaining initial data (g,k) on X, con-
strained by the Gau3-Codazzi equations. In this chapter we investigate the implications of the
assumption that g solves the Einstein equations; this amounts to rewriting these abstract gener-

ally covariant equations in d = 4 in terms of concrete non-covariant 3 4 1-dimensional data.

7.1 Lapse and shift

‘First we must step back and note that the problem of picking an appropriate coor-
dinate system typically is split into two parts: choosing a time slicing (i.e., a time
coordinate), and picking a spatial gauge (i.e., spatial coordinates). The time slicing
determines what shape the spatial slices X; take in the enveloping spacetime. The
lapse L determines how the shape of the slices X; changes in time, since it relates the
advance of proper time to coordinate time along the normal vector N* connecting
one spatial slice to the next. Picking a time slicing or a time coordinate therefore
amounts to making a choice for the lapse function. Letting the lapse vary with po-
sition across the spatial slice takes advantage of the freedom that proper time can
advance at different rates at different points on a given slice. The shift S, on the
other hand, determines how spatial points at rest with respect to a normal observer
N* are relabeled on neighboring slices. The spatial gauge or spatial coordinates is
therefore imposed by a choice for the shift vector.

(Baumgarte & Shapiro, Numerical Relativity, p. 88).

We assume (M, g) is globally hyperbolic and hence has a Cauchy surface (see Definition 13)
as well as a time function t : M — R for which g(Vt,Vt) < 0; see §3.7.2 and the proof of
Theorem 15. We already introduced the lapse function L = 1/./—g(Vt, Vt) and the associated
normalized timelike vector field N = —LVt, cf. (3.118) - (3.119), so that g(N,N) = —1, and N
is normal to any (necessarily spacelike) hypersurface ¥, see (4.24): indeed, of X € T,X;, then

g(X,Vt) = (dt)(X) =Xt =0, (7.1)

since t is constant along X;. In what follows, we take ¥ = X (or any other fixed value of 7).
We now choose coordinates ()co,x1 ,xz,x3) adapted to the foliation M = U,Y,, in that W=t
(more precisely, x’(x) = ¢ provided x € ¥;), and the x' are (typically local) coordinates initially
onX (i=1,2,3), but subsequently on any slice ¥;, since if y € ¥, the flow line of the vector field
Vit (or N) hits ¥ in exactly one point xo € X; if the latter has coordinates xy = (O,x1 ,xz,x3), the
former is assigned coordinates y = (¢,x!,x? x*). This construction also gives a diffeomorphism

M =R x X, which maps y € %, to (,X), where (0,X) € £ is related to y as just explained.

103 A g00d reference for this chapter is Gourgoulhon (whose 7 is our eg), though we rewrote all his calculations.
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Given (local) spatial coordinates (xl,xz,x3) on X any x € ¥ one then has natural (local)

tangent vectors e; = d; to X, as well as a natural one-form 6° = dt. The completion of (e;) to
a basis by adding (dp) is somewhat defective, in that the latter may not be orthogonal to . To
correct for this one introduces a shift vector S = Si9; (sums over i, Jj are of course from 1 to 3),
where the S’ are called the shift functions, such that ey = dy — S is orthogonal to X. We then
have a frame (e,) with dual coframe (6?), that is, 89(e,) = & for a,b =0,1,2,3, defined by

eo =0, —S'0;; ei = d;; (7.2)

6° = dr; 0" = dx' + S'dt. (7.3)
. By definition of the lapse and the shift, we then have the useful relations

g=-L*(0")*+g;;0'0/; (7.4)

e = LN = —L*Vt; (7.5)

dt = dt; (7.6)

Vi = g"%; (7.7)

L= 1)V, 78)

Si = —g10/g%; (7.9)

Ny = (-L,0,0,0); (7.10)

N* = (1/L,—S/L). (7.11)

Consequently, the metric and its inverse take the form
—L2+S;87 S S S

S1 g & & | _ [ -LP+S8 S
= ~ - - = ~ ; 7.12
Suv $? 821 &2 &2 S &8ij (7.12)
S3 831 8&xn &3
—1/L? St/L?
uv _
8 —( Si/LZ gij_SiSj/LZ ) (7.13)

where g is the matrix inverse to g; ; and spatial indices are raised and lowered with these spatial
metric (so thate.g. S;S/ = g;;5'S/). Thus L and S’ may also simply be seen as parametrizations of
the non-spatial components of the metric. In particular, S' = 0, which is possible even globally,
as shown only relatively recently,'% corresponds to g”° = go; = 0, so that the metric g assumes a
block diagonal form. If, in addition, L = 1, then g% = goo = —1 but this choice is generally not
globally possible; we will see shortly that the flow lines of the vector field would be geodesics in
that case, whose focusing and hence crossing (in the presence of positive curvature) obviously
invalidates the underlying coordinate system. See also the end of this section.

In switching between four-dimensional and 3 + 1-dimensional arguments and computations,
it turns out to be convenient to have a 4d-version of the 3d-objects g and k defined on X (and

indeed on each hypersurface ¥,). These are given in any coordinates by, cf. (3.122) - (3.122),'0
8uv = 8uv +Nuly; (7.14)
kuv = —ghgoVpNs. (7.15)

104See the second paper by Bernal and Sanchez cited in footnote 70.
105Note the minus sign in (7.15) compared to (3.123), which is a consequence of different conventions in fluid
mechanics and differential geometry.
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Note that indices are raised and lowered with g, so that &), = 6 +NyN" (also called /), taken
at x € M, is the matrix of the orthogonal projection operator 7, : T,M — T, X defined by g,
cf. (6.36). Unlike the original § € X(29)(Z), the new g € X(29) (M) is defined on any pair of
vectors X,Y € T,M (x € L), though the extension is somewhat trivial in that g(X,N) = 0 for any
X,Y € T:M, whilst g(X,Y) defined from (7.14) equals the original g(X,Y) defined from (6.31).
Hence the ambiguous notation is admissible and it is always clear which & is meant. Likewise
for k in (7.15). In terms of the projection 7, for all x € £ and X,Y € X(M) we have (check!)

&x(X,Y) = g(m(X),m(Y)); (7.16)

ke(X,Y) = k(m(X), me(Y)), (7.17)

where k € X(29 (M) is defined by k(X,Y) = —g(VxN,Y), or kyy = —VuNy. This also yields
VuNy = —kyy — NyAy, (7.18)

where the ‘acceleration’ A of the vector field N is defined by A = VN, so that the flow of N is
geodesic iff A = 0. To prove (7.18), one may separately check the N — N, the N —X, the X — N,
and the X — X contractions. For example, N*NVV; N, = N¥A,, which equals the right-hand
side —N“N"(—fcuv +NyAy), since IEMVN“N" =0by (7.17) and N*N, = g(N,N) = —1. Etc.
We now shed completely new light on the extrinsic curvature k of ¥ C M by showing that

k=—-1%g (7.19)
=1L %8, (7.20)

-2

seen equalities between symmetric tensors in either X(29)(Z) or (29 (M); in the former case
the proof of (7.19) in fact implies that Zyg € X(>0)(X). In arbitrary coordinates, we have

]Euv = —%gNguw (7'21)
— —%L_lo%()guv- (7.22)
In X-adapted coordinates we may restrict to spatial indices: used (7.2) and (1.58), eq. (7.22) is

(0 — ZL5)gij = —2Lkij, (7.23)

which is an important step towards the 3 + 1 decomposition of the Einstein equations.
To derive (7.19) we first use the (1,0) case of (2.61) with X = N to compute

LNy = NYVyNy + (VuNY)Ny = NYV N, = VN, (7.24)
since the in second term, (V,N")N, vanishes because g(N,N) = N'N, = —1, for
NYV Ny = g(N,VuN) = 19ug(N,N) = 19, (—1) = 0. (7.25)
Using this as well as (7.18), the (2,0) case of (2.61) with X = N then gives
Ly(NuNy) = NyVNNy + Ny VN, = NyAy + NyAy. (7.26)
From (7.14), (2.62), (7.18), and (7.26) we then obtain, at last,
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We derive (7.20) from (7.19) using a general fact, namely, writing A, = NVV,N,, as before,
Ay =0y(InL) =L"'g}0,L, (7.28)

where we use the notation 9# = g‘VL dy for the derivative along .19 Note that the projection
gﬁ reconfirms that A is tangent to X (i.e., orthogonal to N), which we already knew because of
g(N,VyN) = 0. Using (7.18) and (7.14), eq. (7.28) is equivalent with

VNNy = NHVyNy = L~ (N#Nydy, +9y)L, (7.29)

which we will now prove, using torsion-freeness of V, which implies V 0y f = Vydy, f for any
feC>(M). We write (7.10) as Ny, = —Ld,t and compute

=L 'N*NydyL — N*NyoyL™' — LN*V N, = L™ (N*Ny 9y + 9y )L, (7.30)
where we used (7.25). Using (7.5), (1.58), and (7.19), we then compute

= —2Lkyy. (7.31)

This exemplifies a general phenomenon concerning %, : if any tensor T € x(k0) (M) satisfies
(X1, X)) = t(7(Xy),...,w(Xk)), (7.32)

i.e., T is purely spatial, or, equivalently 7(Xj,...,X;) = 0if X; = N for at least one i, then also
LoyT(X1,....Xp) = Loyt(m(X1),. .., m(Xk)), (7.33)

that is, also 2,7 is purely spatial. This most easily follows from the Leibniz rule for £
and hence the case k = 1. Since ep = LN we may as well derived (.Z,,7)(ep) = O from the
assumption T, (eg) = 0: using (1.58) and %, eg = [eo,ep] = 0, we obtain

(.,%OT) (e()) = e()(’?:(e())) + T(.ﬁ/ﬂeoeo) =0+0=0.

7.2 Beyond GauB-Codazzi

Further steps towards the 3 4+ 1 decomposition of the Einstein equations involve the Gaul3-

Codazzi identities (6.49) - (6.50), we which for future use we write in general coordinates as
88 8yE3Rpouy = Rysap + kyaksp — kypkas: (7.34)
22 @INRpouy = Vkay — Vakgy, (7.35)

where we recall that (g}, ) is the matrix of the orthogonal projection of T,M onto T,X, so that in
Y-adapted coordinates we may rewrite these expressions as

Riju = Riji + kick j1 — kirk ji; (7.36)
Riow = Viki — Vicki, (7.37)

106This is consistent with notation V for the covariant derivative within £ defined with respect to § because of
(6.37), which in coordinates reads g;’LVvYP =V,YP.
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where the left-hand side of (7.37) is only valid for zero shift; more generally, it would be
N°R;s1- The other cases follow from the symmetries (3.23) - (3.25) of R. Thus the GauB rela-
tion describes the value of the Riemann tensor at four orthogonal vectors, whereas the Codazzi
relation gives its value at three spatial and one orthogonal direction. In GR these will lead to a
geometric formulation of the constraints inherent in the Einstein equations. For the dynamical
(evolution) equations we will need the case of two spatial and two orthogonal vectors; unlike
the previous two cases, which just rely on the embedding ¥ C M, this new case will contain
expressions like éfeofc, which unlike the above 617@7{ involves derivatives in the orthogonal di-
rection. Thus the case of two orthogonal vectors relies on the time function, or, equivalently, on
the foliation M = U,%; (at least near ¥ = ¥). The ensuing Ricci identity we need reads!'?’

R(W,N,X,N) = L™ (L, k(X, W)+ VyVxL) + (X, W), (7.38)
where X, W € TxX. In general coordinates this expression reads
gﬁggNGN"RpGuv = L (Lykop +VaVpL) + ki, (7.39)

where l}é p= l%apfcg, in which the indices on k are raised and lowered with either g or g (this

does not matter because any action of the terms Ny Ny in (7.14) contracts to zero on I~<), and
VgL = 8ﬁL. In adapted coordinates (with in addition a zero shift vector, as before), this is

RinO = Li1 (Dfeo]}ij —+ 6,’6]'14) —+ /~€lll~€§ (7.40)
To derive (7.39), we first note that (7.18) and (7.28) give
As in the derivation of the Gau3—Codazzi equations, we start from (3.10), this time with Z = N

REwN® = (VyVy =V, V IN® = =V, (kS +Ny9PL) + V. (kf) + Ny 0P L)
= Vyki) — Vukh + (VyNy — VuNy)OP L+ (NyVy — NyV ) 9P L. (7.42)

This gives
NONYRpouv = Vvkou — N¥Vukoy + 9y (InL)dp(InL) + VudpL+ Ny VndpL,  (7.43)

whose last term will vanish upon contraction with g‘ﬁ‘ in (7.39). We rewrite the second term
NYV kpy using the fact that NVk,y = 0 and hence also V,(NVkpy) = 0. This gives

—N"V K = VN = —k0k), —kKON,0" (InL), (7.44)

whose last term will disappear upon contraction with gg in (7.39). We now replace the covariant

derivative in the first term VNI}p u by a Lie derivative. Our favorite rule (2.61) gives
Loskou = Veskpu + (Ve kov + (Vped kuv, (7.45)

in which on the right-hand side we substitute ¢y = LN and hence V., = LV (recall that unlike
the Lie derivative %%, the covariant derivative Vx is C*(M)-linear in X). In the remaining

107This relation is better named after Darmois (1927) and ADM (i.e. Arnowitt, Deser, and Misner, 1962).
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terms we use (7.41). Many of the ensuing terms drop out after contraction with gb, gg‘ , and after
a lengthy but straightforward computation we obtain

8ol Vvkou = L™ Vekep +2k5p. (7.46)
Using (7.45) and (7.46) in (7.43) finally gives (7.38), as follows:
GhZINONY Roopy = L™ Lok + 285 — K25+ da(InL)Jp (InL) + V 4 Ip L
(a%okaﬁ —I—VaVBL) +kaﬁ' (7.47)

Subsequently, for the Einstein equations we do not need the full Riemann tensor Rpsy v but
its contractions R,y = Rﬁ pv = 8P°Rp v (the Ricci tensor) and R = gHVR,y (the Ricci scalar).
The corresponding contracted Gaulf relations easily follow from (7.34), and are given by

ZaZpRuv + 838N NP Rpopuy = Rap + Tr (K)kep —koyg: (7.48)
R+2N*NYRyy = R+ Tr (k)* — Tr (k%), (7.49)
where we used the identity %75, g’; = gPH = gPH + NPNH and wrote
Tr (k) = kiy = g"Vkuv = 8"V kuvs (7.50)
Tr (k%) = gk, = 8"V kupkly = 8"V 8P kupkvo. (7.51)
In adapted coordinates with vanishing shift, where Tr (k) = gVk; ; etc., these relations would be
Rij+ Roioj = Rij + Tr (k)k;; — k7;; (7.52)
R+2Ryy = R+Tr (k) — Tr (k). (7.53)
Similarly, the contracted Codazzi relations (which stop at one stage) follow from (7.35) as
NHGY Ry = 0a Tr (k) — V kb, (7.54)
which in the same notation as (7.52) comes down to
Roi = O/Tr (k) — V &/ (7.55)
The contractions of (7.39) are slightly more involved. First, (7.48) and (7.39) give
Rop+Tr(B)kap — Ko — 2a8pRuv = L~ (Lopkap + Va VL) + ko, (7.56)
from which we obtain
ZulpRuy = —L ™' (Loykap +VaVpL) + Rop + Tr (k)kgp — 255 (7.57)

Contracting both sides with g%B_ and defining A = goPV VaVﬁ, gives
R+N*NYRyy = —L7 (3% L kop +AL) + R+ Tr (k)* — 2Tr (K%), (7.58)
Since % Gop = —2Lkyp by (7.22), we have £, §*F = 2Lk*F, cf. (5.13), and hence
G Lokop = Loy Te (k) —kop Loy = Loy Tr (k) — 2LTr (K?), (7.59)
where of course %, Tr (k) = eo(Tr (k )) Hence (7.58) may be rewritten as
R+N*NYRyy = —L7' (L, Tr (k) + AL) + R+ Tr (k)*. (7.60)
Using (7.49), we finally obtain the twice contracted version of (7.39), namely
R=R-2L7(Z,Tr(k) +AL) + Tr (k)* + Tr (k?). (7.61)

7



7.3 The 3+1 decomposition of the Einstein equations

We now have all information for projecting the Einstein equations (5.1), with 7}, decomposed
according to (5.25), in three different directions, namely, contracting with:'%8

e The spatial part g, g;, which gives the dynamical equations

Lo8uv = —2Lkyy. (7.63)

These follow from (5.26), (7.57), (5.27), and (7.22). As already noted, in X-adapted
coordinates eq. (7.63) becomes (7.23), and with (7.62), one may write the system as

(8, — gs)i(ij = —?ﬁquLL(I?ij +Tr (];)]NC,] — 27(,21 +47T(<S — E)g,'j — ZS,']')); (7.64)

(8, — gs)gij = —2Lkij, (7.65)
where, using (1.58) and (2.62), respectively, the two Lie derivatives may be written as

gsi(ij = Slo"?ll}ij + l%ﬂ&,‘Sl + I~ci18jS’; (7.66)
Zsgii=ViS;+V,S:. (7.67)

e The timelike part N*N*, which gives the so-called Hamiltonian constraint
R+ Tr(k)* —Tr(k*) = 16nE, (7.68)

which follows from (5.1) and (7.49); it plays a key role in (canonical) quantum gravity.

e The mixed part g NV or gEN 1, producing the momentum constraint
Vuky — VyTr (k) = 87P,, (7.69)
which follows from (5.1), whose g;vR term contracts to zero, and (7.54). Equivalently,
gV ki; — VTr (k) = 8xP.. (7.70)

Altogether, in adapted coordinates, eqgs. (7.64), (7.64), (7.68), and (7.70) form a coupled system
of 16 PDE’s for 16 unknown functions (g; j,l}i j,L,Si) defined on the Cauchy hypersurface X,
where the ; ; may be exchanged for the time-derivaties d;§;; through (7.65), leaving 10 coupled
PDE’s for 10 unknowns (g;;,L, S%), similar to the original covariant Einstein equations (which
are 10 coupled PDE’s for the 10 components g,y of the four-dimensional metric). In the latter
case, the spatial part consists of six evolution equations, whereas the other two parts contain
only first time derivatives of the spatial metric and no time derivates of the lapse and shift
functions at all; hence these act as four constraints on the initial data (g; s 0:8i j), or, in general,

on (g;j,kij). Also cf. §5.4. The lapse and shift functions are not determined by the equations at
all and hence can be (more or less) freely chosen; doing so amounts to fixing a (local) gauge,

108The letters S and Suv on the right-hand sides below refer to the energy-momentum tensor, whereas the S in
%s on the left and the S’ on the right refer to the shift vector, sorry!
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which preferably makes the evolution equations hyperbolic, and in addition is favorable for
existence and uniqueness results and/or numerical computations.

The most primitive way of doing this is to try S’ = 1 L = 1, or, equivalently, g% = go; =0
and g% = goo = —1, which is possible at least locally. This implies that the flow lines to the
normal vector field N are geodesics, which, recalling that A = VyN, follows from (7.28). In
such coordinates the evolution equations (7.64) - (7.65), in vacuum for simplicity, become

0 gij =48 (Gija+ 8 ij— &ujik — Git,jk) + - (7.71)

where the dots stand for terms with first or no derivatives. Though hyperbolic, this is a poor
system because of geodesic focusing, which may lead to coordinate singularities at times where
regular solutions might exist (the advantage though is that time equals proper time along N).

A more sophisticated gauge, in the spirit of the analysis in §5.4, is the (covariant) wave
gauge [x* = 0, which in the (noncovariant) 3 +1 split yields the lapse and shift functions as

(0, — §79;)L = —Tr (k)L?; (7.72)
(0 —879;)8" = —(§9;InL+ g/, ) L*. (7.73)

Both analytic and numerical goals (notably stability) are even better served with a combination
of the 4 = 0 component of this gauge, i.e. Dgxo =0, and zero shift §' = 0 (called the harmonic
gauge). Since (7.73) is empty in that case, we are just left with

L= —Tr(k)L>. (7.74)
Another popular choice (especially for stability results) is maximal slicing, defined by
Tr (k) =0, (7.75)

i.e. each X; has mean zero curvature, which implies that, when X, is compact, it has maximal
volume (compared with other slicings). Since Tr (k) is just (minus) the expansion 6 in the
Raychaudhuri equation (3.133) and the singularity theorems, putting it equal to zero clearly
prevents at least the focusing mechanism studied in that context and hence avoids coordinate

singularities arising through focusing. Eq. (7.72) fixes L through
AL= —Tr(k*)L. (7.76)

See the book by Baumgarte & Shapiro cited at the beginning of this chapter for more informa-
tion on optimal slicings, and Choquet-Bruhat & Ruggeri, Hyperbolicity of the 3 + 1 system of
Einstein equations, Communications in Mathematical Physics 89, 269-275 (1983) for a proof
of hyperbolicity of the Einstein equations in the harmonic gauge.

79



7.4 Existence and maximality of solutions

In this section we restrict ourselves to the vacuum case Ty = 0; most conclusions survive in
the presence of matter, though often at the cost of additional assumptions and complications.

The analysis in §5.4 shows that the Einstein equations G,y = 0 or R,y = 0, seen as PDE’s
for the components g,y of the metric, are both overdetermined because of the presence of
constraints on the initial data, and underdetermined because of diffeomorphism invariance. The
first point was clarified in §7.3 and means that the initial data (X, g;;,k;;), where (X, §;;) is some
3d Riemannian manifold and k; ; is an additional symmetric tensor on X of type (2,0), satisfy
the Hamiltonian constraint (7.68), with £ = 0 in the vacuum case, as well as the momentum
constraint (7.70), with P, = 0 in vacuo. These constraints will be studied in more detail in §7.5

The traditional strategy to address these problems, due to Choquet-Bruhat, was explained
in §5.4: one solves the reduced Einstein equations (5.77), which are quasi-linear second-order
hyperbolic PDE’s, and imposes both the wave gauge condition (5.73) and the (ungauged) con-
straints at t = 0, cf. (5.83) - (5.84). This guarantees that the wave gauge (5.73) as well as the
constraints hold at all times—at least for which solutions to (5.77) exist—and hence, by (5.77),
also the original Einstein equations (5.1) are solved. This procedure by no means restores
uniqueness: any diffeomorphism y of M that is the identity before and at ¥ C M but is nontriv-
ial at later times does not change the initial conditions yet y*g solves the Einstein equations,
and generally y*g # g at later times (of course, y*g will not satisfy the wave gauge).

In any case, this procedure leads to solutions that are local in space and local in time:

e Locality in space follows from the use of specific coordinates (i.e. those satisfying (5.73).

e Locality in time is all the existence theorems for quasi-linear second-order hyperbolic
PDE’s provide (we discuss the function spaces for solutions in the next chapter).

In what follows, we improve this situation twofold in a way specific to the Einstein equations.

Local existence in space turns into global existence in space by globalizing the gauge. This
is done as follows. First, a well-known concept in Riemannian geometry is that of a harmonic
map h : M — M between Riemannian manifolds (M, g) and (M, §), where  is assumed smooth
or at least C2. These maps can be described abstractly, but is is easier (and sufficient for our
purposes) to use local coordinates (x*) on M and likewise (&) on M. Any map & : M — M has
an associated energy functional, defined by

E(h) = /M d*x+/g(x)ec(h); (7.77)

ex(h) = 38"V (x)8ij(h(x))

(7.78)

where h' are the components of / relative to the (£'). This expression turns out to be independent
of the coordinates.!%® For example, if M = [a, b] with flat metric, then E(f) is the energy (2.16)
of a curve in N. Another example is N = R with flat metric, in which case E(h) = [,, Vh-Vhis
the Dirichlet integral of h (which plays a fundamental role in the theory of the Laplace equation
Ah =0 on M). It can be shown that i extremizes E (h) iff it solves

92h (x) Ih(x) . i (x) IRk (x)
uv _ Y i =
§ (8x“9x" uv (%) oxP + D (h(x) dx*  IxV ) 0

(7.79)

109Gee e.g. Jost, §8.1.
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where and Fﬁv and f;k are the Christoffel symbols for g and g, respectively. Thus 4 is called
harmonic if it solves (7.79). Exactly the same constructions work in Lorentizian geometry, in
which case a solution of (7.79) is called a wave map. In that case, standard hyperbolic PDE
theory yields existence and uniqueness of solutions /|y and h|2 subject to initial conditions on a

Cauchy surface in M (where h = 0,;h as defined earlier for guv)-

In order to provide the right version of the wave gauge enabling global solutions in space, we
pick some fiducial metric ¥ on ¥ and put the metric § = —dr* +y on M = R x X. Anticipating
that (M, g) will be globally hyperbolic, we write M = R x X, and declare that g satisfies the
g-wave gauge iff the identity map id : M — M is a wave map (i.e. with respect to g and g).
It follows from the coordinate-independent nature of (7.79) that this condition is coordinate-
independent also; one can also see this explicitly by noting that g satisfies the g-wave gauge iff
WH =0 for each u=0,1,2,3, where, cf. (5.73) and (5.75),

WH = gPV (I, —Tpy). (7.80)

Since the difference between two connections (metric or otherwise) is a tensor, this confirms the
purely geometric and hence global nature of the g-wave gauge. In particular, unlike the case of
the original wave gauge, the index u is now a true vector index in that W* are the components
of a vector. Thus the coordinate-dependence of the original wave gauge has been traded for
g-dependence.!' We now follow the same steps as for the wave gauge, replacing W by W
from (5.76) till the end of §5.4, with the same concusions: the reduced Einstein equations are
quasi-linear and hyperbolic, the gauge and the constraints propagate, etc., with the difference
that none of the arguments now depend on the choice of local coordinates on X and hence any
solution is globally defined (in space). Existence of g (local in time, so on / X ¥ for some
open interval I C R) solving the Einstein equations once again follows from PDE theory (see
Theorem 30 in the next chapter), and the appropriate statement of uniqueness is as follows.

To be precise, we write a space-time solving Einstein’s equations for given initial data
(X,8,k) as (M,g,1), where 1 : £ < M injects the given manifold X into M; in particular, § = 1*g
and k are the first and second fundamental forms of the embedding, respectively.!'! If (M, g) is
globally hyperbolic with Cauchy surface 1(X), then the triple (M, g,1) is called a Cauchy devel-
opment (or globally hyperbolic development = GHD) of the initial data (X, g, k), which will be
fixed throughout the following discussion (and are always assumed to satisfy the constraints).
Note that, as stated at the end of Theorem 30, the ‘global in space, local in time’ space-times
arising from the solution of the Einstein equations in a g-wave gauge are in fact globally hy-
perbolic and hence provide Cauchy developments or GHD of the initial data. These solutions

arose from a very special procedure, but the general situation is as follows. 12

Proposition 21 (Geometric uniqueness of solutions of Einstein’s equations) Any two Cauchy
developments (My,g1,11) and (M3,g2,12) of the same (smooth) initial data are locally isomet-
ric, in that 11(X) and 1,(X) have open neighbourhoods Uy and Uy in M| and M,, respectively,
such that (Uy,g1) and (Ua, g2) are isometric through a diffeomorphism y : Uy — U, satisfying

Vg =g (7.81)
Yol =1. (7.82)
101f » = R3 and y = §, one recovers the original wave gauge, but only in Euclidean coordinates!

I1Recall that a space-time is an oriented and time-oriented connected Lorentzian manifold, cf. Definition 9.
"2Corollary 16 states: (M, g) globally hyperbolic = M = R x ¥, but the converse is true as well.
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The proof is rather technical (cf. Choquet-Bruhat, Theorem 8.4, p. 168), but the idea is to
construct wave maps h; : M—M; (= 1,2), suitably shrunk to as to become diffeomorphisms,
and define g; = hlg; on M; this step brings both g; and g, into the § wave gauge. These
new metrics then solve the same equations (namely the reduced Einstein equations and the ¢
wave gauge condition) with the same initial conditions, and hence they must coincide by local
uniqueness result from hyperbolic PDE’s. From g} = g} we obtain g» = (h; ' oha)*g1 = y*g1.

We now come to the (formal) culmination of the ‘local in time’ approach to the Einstein
equations. A maximal Cauchy development (Mmax, max, lmax) Of given (smooth) initial data
(X,8,k) is a Cauchy development with the property that for any other Cauchy development
(M, g,1) of these data there exists an embedding W : M — M. that preserves time orientation,

metric, and Cauchy surface, i.e., one has Y*gmax = g and Y o1 = 1y, cf. (7.81) - (7.82).

Theorem 22 (Choquet-Bruhat and Geroch) Each smooth initial data (X,8,k) set satisfying
the constraints has a maximal Cauchy development (Mmax, 8max, lmax ), Which is unique up to
time-orientation-preserving isometries fixing the Cauchy surface 1(X) C Mmax, as in (7.82).

Both for understanding the claim and outlining its proof it is useful to rephrase Theorem 22
in terms of partially ordered sets (posets). As mentioned above, Cauchy developments even of
fixed initial data are far from unique due to diffeomorphism invariance of the Einstein equa-
tions, but we consider two solutions equivalent if they can be transformed onto each other by a
diffeomorphism respecting t as well as time orientation: thus we say that

(Mi1,81,1) = (M2,82,12) (7.83)

iff there is a time-orientation preserving diffeomorphism y : M} — M, satisfying (7.81) - (7.82).

This is an equivalence relation on the set GHD(L, g, k) of all globally hyperbolic (i.e. Cauchy)

developments of the data (X, g, k), and we denote the (quotient) set of its equivalence classes by

[GHD|(Z, g,k). As usual, we write [M, g, 1] for the equivalence class of (M, g,1). Initially, put

(My,81,1) < (M, 82,12) (7.84)

iff there is a embedding v : M1 — M, such that (7.81) - (7.82) hold (and, being an embedding,

y must satisfy conditions 1 and 2 in §6.6.1). This fails to be a partial ordering on GHD(Z, g,~k)
(it fails the antisymmetry axiom), but it does descend to a partial ordering on [GHD|(X, g, k),
i.e., by abuse of notation we have [M},g1,1;] < [M>,g>, 1] provided (7.84) holds. This makes

(|[GHD|(X, g,k) <) a poset. Recall that a top element T € P of a poset (P, <) is an element for
which x < T for all x € P; a top is unique if it exists.!!3 Theorem 22 then comes down to:

Theorem 23 The poset ([GHD|(X,&,k) <) has a top element (which is necessarily unique).

In their article in 1969, Choquet-Bruhat and Geroch, sketched a proof based on Zorn’s lemma,
which they even had to use twice. Since Zorn’s Lemma has no place in mathematical physics,
we now outline a recent constructive proof due to Sbierski.!'* Note, in particular, that Theorem

23 implies that the maximal Cauchy development (Mmax, gmax, lmax) 1S unique up to isometry.
To get a glimpse of the proof, we first rephrase Proposition 31 in terms of the above poset:

13 This is not to be confused with a maximal element m € P, where for all x € P one has m < xiff x = m. Maximal
elements are typically non-unique if they exist, and even if they are unique they may not be top elements.

!145ee J. Sbierski, On the existence of a Maximal Cauchy Development for the Einstein Equations - a dezorni-
fication, https://arxiv.org/pdf/1309.7591.pdf, or Ann. Henri Poincaré 17, 3-1-329 (2016). It must be
admitted that the set-theoretic complications in this proof, which our outline omits, including weak versions of the
Axiom of Choice, make this proof hardly more attractive than the original one by Choquet-Bruhat and Geroch.
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Any two Cauchy developments (My,g1,11) and (Ma,g2,12) of given initial data have a common
Cauchy development (M, g, 1), in that (M, g,1) < (My,g1,11) as well as (M, g,1) < (M2,g2,1).

Indeed, take M = Uy, with y; : M — M, given by the embedding i : Uy C My, and yp : M — M,
defined by y» = yoi, where y is the map from Proposition 31. More strongly, we even have:

Lemma 24 Any two Cauchy developments (My,g1,11) and (M3,g2,12) have a maximal com-
mon Cauchy development (M',g',1"), in that any other common Cauchy development satisfies

(M, g,1) < (M, g, U). (7.85)

Indeed, if {Uy} is the set of all U;’s appearing in Proposition 31, i.e. Uy C M) and given
maps Yy : Uy — M, etc., then one may simply take the union M’ = Uy Uy, with the obvious
embedding M’ C My, and map y : M' — M, given by y(x) = yu(x) if x € Uy. Conversely:

Lemma 25 Any two Cauchy developments (M1, g1,11) and (M>,g2,12) have a common exten-
sion (M12,g12,112), in that (M1, g1,11) < (M12,812,12) as well as (Ma,82,12) < (M12,812,112).

From this step onwards, the constructions become a bit ugly. Define
My = (M| M)/ ~, (7.86)

where M| |M> is the disjoint union of M| and M,, and we say that x ~ y if eitherx =y or x €
M' C My and y = y(x), where y : M’ — M, has just been defined. This space naturally inherits
a metric g1, from (My,g;) and (M3, g2), since for x € M\M' we may put g1»([x]) = g1 (x), for
y € Mo\ y(M') we have g12([y]) = g2(y), noting that [x] = x and [y] =y in those cases, whereas
for x € M) and y = y(x), so that [x] = [y], we put gi2([x]) = g1(x) or g2(y); these coincide
since Y is an isometry. The obvious maps M| — My, and M, — M, are isometries for g1, by
constructions. Similarly, we obtain embeddings ¥ — M|, and X <— M), from the given ones
Y < Mj and X — M, (the main difficulty in the proof is to show that M1, is a Hausdorff space).
The construction of the maximal space-time My, is an extension of (7.86): one defines

Munas = (LIaM2) / ~, (7.87)

where {M, } is the set of all Cauchy developments (of the given initial data), and we identify
X € M; and y € M, (where 1 and 2 are generic values of 1) iff x ~ y as defined after (7.86).
Also, the constructions of the metric gmax, the embedding 1., and the (isometric) embeddings
W, 1 M) — M,y are entirely similar to the case (7.86) just explained; maximality is obvious.

However, it by no means follows that (Mmax,&max, lmax) 1S maximal as a solution to the
vacuum Einstein equations with given initial data, for this is a weaker notion than a Cauchy
development of these data: the difference lies in £ being a Cauchy surface for (M,g) in the
latter case, but not in the former. All that follows is that for any such space-time (M’,g’) in
which (Mmax, €max, Imax) can be (properly) isometrically embedded, the ensuing copy of X in
M’ (arising from ¥ < M < M’) cannot be a Cauchy surface. In particular, ¥ C M’ has a
nonempty Cauchy horizon, which indicates an end to predictability (at least from the point of
view of X). The strong cosmic censorship hypothesis (or conjecture) excludes this possibility, at
least for ‘generic’ initial data (it cannot always be true). This is a very active area of research.!!

155ee Ringstrém’s book for an introduction and Mihalis Dafermos, The cosmic censorship conjectures in classi-
cal general relativity, https://www.youtube.com/watch?v=ZBYAbe jIvB4, for a more recent overview (2017).
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7.5 Conformal analysis of the constraints: Lichnerowicz equation

The initial value constraints (7.68) - (7.70) may also be analyzed from a PDE point of view. In
the simplest case the metric is static, which means that (M, g) has a timelike Killing vector field
u* and has a foliation M = U,X; whose leaves X, are orthogonal to u* (equivalently, @,y = 0,
see (3.124)). In that case, in the right (i.e. adapted) coordinates the g,y are time-independent,
as for the Minkowski metric or the Schwarzschild solution.''®. Hence k = 0, and if we also
assume vacuum for simplicity, then the only constraint on the ensuing initial data (X, g;;) is

R=0. (7.88)

This is a vastly underdetermined system, since the 6 independent components of the metric
gij are subject to just one equation, but this doesn’t mean that the solution is trivial. This is a
problem in pure Riemannian geometry, which was first addressed by Yamabe in 1960. Yamabe
argued—a complete proof was only given in 1984 by Schoen—that any Riemannian metric y on
a compact manifold X (without boundary) admits a conformal rescaling

5 =Qy, (7.89)

where the conformal factor Q € C*(X) is strictly positive (so that g is a Riemannian metric on
Y), such that the Ricci scalar R = Rz of g is constant.!!” Straightforward computations give

R=-8Q7°L,Q, (7.90)
where the linear differential operator Ly is given by

in which Ay, = A j 1s the Laplacian on X defined by 7, and Ry is the Ricci scalar defined by
Y (though three-dimensional, we omit tildes on geometric quantities defined by ¥; those with a
tilde are defined by ). Given 7, eq. (7.88) then becomes an equation for the scalar €2, namely

L,Q=0. (7.92)

This is a linear elliptic PDE, which can indeed be solved if X is compact. In GR, this argument
applies more generally (e.g. assuming £ — 0 at infinity in the non-compact case).

Ellipticity is here to stay, but linearity is typical of the assumption k = 0, and will be replaced
by gruesome nonlinearities in general. Indeed, already the next case, where k; ;7 0but Tr (k) =
0, is highly nonlinear.!'® The constraints (7.68) - (7.70), again in the vacuum case, simplify to

R—Tr(k*) =0; (7.93)
gV kij = 0. (7.94)

16 Birkhoff s Theorem implies that rotational symmetry implies that the metric is static, see e.g. Hawking & Ellis.

'"In the context of GR, adding a cosmological constant A modifies (7.88) to R = 2A.The possible signs of R, i.e.
R = 0,41 up to rescaling, are restricted by the topology of ¥ and define the so-called Yamabe class of X.

8Foliations with Tr (k) = 0 are called maximal slicings. This is related to the Plateau Problem: if ¥ C M has
Tr (k) =0, and . C X is a two-dimensional surface, then the volume of any three-dimensional S C X with 9§ = .7
is maximal compared to the volume of competing S C M subject to dS =.7 C X. In the purely Riemannian Plateau
Problem the volume (or, as in the original problem in one dimension lower, the surface area of the enclosed region)
would be minimal, but in the Lorentzian case it is rather maximal, for similar reasons why the length of timelike
geodesics is maximal rather than minimal: excursions of S outside ¥ are in the timelike direction and the signature
of the Lorentzian metric then reduces the volume (rather than increasing it as in the Plateau Problem).
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We now also choose some symmetric tensor k;; on X, such that

Y'Vikij =0, (7.95)
but freely otherwise. It is easy to show that if we relate k to k via
kij = Q %kij, (7.96)
then (7.95) implies (7.94) and hence only (7.93) remains, which turns out to be equivalent to
LQ+ 1T (H)Q 7 =0. (7.97)

This equation can be analyzed by traditional methods from nonlinear elliptic PDE’s (notably by
constructing both sub- and super-solutions, i.e. replacing “= 0" by “< 0” and “> 07).

We move to the general case. Here is it customary and physically relevant to move to a
transverse traceless version of k and k, where the traceless part is easy to define, namely

Gij = kij — §Tr (K)3ij: (7.98)
0ij = kij — 3Tr (k) %;. (7.99)
Adding energy-momentum and using the scaling (7.96), this reformulates the constraints as
LQ+1Tr(6H)Q 7 — LTr (k)*Q° = —2nEQ’; (7.100)
Vo — 2(VTr (k))Q° = 87RQ!, (7.101)

the first of which (i.e. the Hamiltonian constraint) is called the Lichnerowicz equation. Defining
the transverse part of o and & is less straightforward: there exists a decomposition

0ij = 0" + (KyX)ij, (7.102)

where oﬁT in traceless and transverse in the sense that
Tr(o) =Y/0i; = 0; (7.103)
Vio T =0, (7.104)

and X is some vector field, on which the conformal Killing operator ky acts by
(IeyX),’j :Vin-l-Vin—%’y,‘ijXk. (7.105)

This generalizes the usual Killing operator KyX = V;X; +V ;X;, whose solutions K, X = 0 are
vector fields whose flow ¢, consists of isometries, i.e., ¢y = 7; vector fields solving I?,,X =0
are vector fields whose flow ¢, consists of conformal isometries, in that ¢;y = Qv for some
Q> 0, as above. The difficult part is the reconstruction of ¢;; from its transverse traceless part
G{ET and X, which may be done by solving a conformal version of the Laplace equation, viz.
AX'=V(KyX)7 = AX'+ V'V ;X7 + RiX/. (7.106)

Note that the kernel of Ay consists of conformal Killing vectors. Likewise for § and &;;. In terms

of the free data 7;j, G}}T, and T = Tr (k), the determined data Q and X are found by solving the
final (conformal) version of the constraints, namely

LyQ+1Tr(of1)Q 7 — L17°Q° = —21EQ’; (7.107)
AyX'—2(V;1)Q°0 = 8xPQ'°. (7.108)

Once this has been done, g;; and k; ; can be (re)constructed via (7.89) and
kij = (RyXij+051)Q7 10+ 2@y, (7.109)

and these solve the original constraints (7.68) - (7.70) in terms of the above free data.
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8 Quasi-linear hyperbolic PDE’s

8.1 Background

1. Multi-indices. Let n > 0 and x € R". It will convenient to write x = (xi,...,x,) rather
than our usual (x!,...,x"). Let & = (a,. .. ®,), with o; € N (where 0 € N), and put
n
o] =Y o 8.1)
i=1
0 \% g \ % ol
pr=(2) (L) zZom..gm=__% . 8.2
(8x1) (axn) ! " oxf O 8-2)
X% = @y (8.3)

2. Distributions. For each measurable (usually open) subset Q C R”, let Z(Q) be C°(Q)
as a set, equipped with the topology in which ¢, — ¢ iff there is a compact K C Q such
that supp(¢,,) C K for all A, and for all multi-indices & one has (implying supp(¢) C K):

ID%(92 = @)l — 0. (8.4)

Elements of 2(Q) are called fest functions. A linear map u : Z(Q) — C is continuous
iff for each compact K C Q there is m € N and C > 0 such that for all a with |ot| < m,

[(u, )| = [u(@)| < ClID“@|-. (8.5)

Distributions are elements of the space 2'(Q) of all continuous maps u : 2(Q) — C.!1°
This space carries the weak topology, in which uy — u iff (uy,¢) — (u, ) for each
¢ € 72(Q). In this topology, Z(Q) is dense in 2'(Q), where u € 2(Q) defines u € 2'(Q)
through the L? inner product, i.e., (u, ) = (&, @) 12(q)- Adding a middle man gives

2(Q) c L}(Q) c 2'(Q), (8.6)

in which each embedding is continuous and dense. This is an example of a Gelfand triple.

Let Q be open in R”. For each «, the weak derivative D%u of u € 2'(Q) is defined by
(D%, ) = (=1)*(u,D¢). (8.7)

This definition may be motivated by faking the formula (u, @) = [ u(x)@(x), which on
repeated partial integration gives (8.7). Any linear partial differential operator may there-
fore be regarded as a map L : 2'(Q) — 2'(Q), with adjoint L* : 2(Q) — 2(Q), i.e.,

(Lu, @) = (u,L*@). (8.8)

For example, if L = D%, then L* = (—1)|“|DO‘. The derivatives in Lu are called weak,
those in L*¢ being classical. Similarly, a solution u € 2'(Q) of a linear PDE Lu = F
(with initial conditions), i.e. (Lu, @) = (u,L* @) for all ¢ € 2(Q), is called weak.

19Here and in what follows, if Q = U;K; for compact i, “for each compact K may be replaced by “for each K;.”
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One has to be careful with (8.8) if Q is not open. For example, if Q = [0,0) x R" and
L= —[=9? — A, then (due to boundary terms in partial integration) the inhomogeneous
wave equation Lu = F with initial conditions u(0,x) = f and (0, x) = g(x) becomes

—/mdt d"qu(p:/wdt/ d"xF(p+/ d"xg(x)p(0,x) — f(x)@(0,x). (8.9)
0 R" 0 Rn R~

For Q = R", another widely used space of distributions is based on the space of rapidly
decreasing (test) functions . (R"), which consists of those f € C*(R") for which the
function x — x*DP f is bounded for all multi-indices o and 8. One often writes

(x) = (1+ |lx|*) /2, (8.10)

and uses x — (x)*DP f, which of course gives the same space. The topology on . (R") is
such that ¢, — ¢ iff for all /,m € N and multi-indices o and B with |¢t| <[ and |B| <m,

1x*DP (95— @) [|ow — 0. (8.11)

The (weak) topology on the space ./ (R") of tempered distributions has u; — u iff there
are [,m € N and C > 0 such that for all o with |a| </ and 8 with |B| < m one has

[(u, 0)| < Clx*DP .. (8.12)
Similarly to (8.6), one has a Gelfand triple (i.e. the embeddings are continuous and dense)
S (R") ¢ L*(R") ¢ &' (R"), (8.13)

and since Z(R") C .(R") continuously, and hence ./ (R") C &'(R"), this extends to

2(R") ¢ S (R") C L*(R") c &' (R") C 2'(R"). (8.14)

. Sobolev spaces. For any s € N, based on (8.6), define the Sobolev space
H(Q) ={uecL*(Q)| D c L*(Q)Va: |a| < s}, (8.15)

where accordingly the derivatives inherent in D* are weak. Clearly, H(Q) = L?(Q), but
it can be shown that all H*(Q) are Hilbert spaces with respect to the inner product

<M,V>S: Z <Dau7Dav>7 (8.16)

|af<s

where Y|4 <, means Y q.|q /<y and (-,-) is the inner product in L?*(Q) (note the danger
of ambiguous notation here: (-,-), often denotes the inner product in L”, but here (-,-)s
stands for the inner product in H*; in our notation the inner product in L> would be (-, -)o).

For QQ = R" a different perspective on Sobolev spaces comes from the Fourier transform

f&)=(@m)™2 | d"x flx)e™; (8.17)

fx) = @m) 2 [ dE ()e, (518
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which make sense as Lebesgue integrals for f € L!(R"). If one also has f € L!(R"), then

v
A

f=f. (8.19)

The scope of these formulae may be extended in at least three different ways: 20

(a) Eq. (8.17) yields a unitary isomorphism L?(R") 512 (R™) of Hilbert spaces.

(b) The Fourier transform also defines a linear homeomorphism . (R") 5.9 (R™).

(c) Defining f for f € //(R") by (f,9) = (f,®), the Fourier transform (8.17) even
defines a linear homeomorphism ./ (R") — ./ (R") of tempered distributions.

Returning to Sobolev spaces, for Q = R” may now (re)define, for any s € R,
H'(R") = {ue .7 (R") | £ = (£)'a(§) € L*(R")}, (8.20)

with inner product

o= [ @EEFAENE) = [ CEA+EDTEIE) 62D

For s € N this reproduces (8.15) as a vector space (a fact that is not obvious), but of course
the inner products (8.16) and (8.21) are different (yet they induce equivalent norms), and
so for s € N one has to specify which one is used. This makes a difference neither for the
Sobolev embedding theorem, which states that for m > 0 and s > m + in, one has

H*(R") C CJ'(R"), (8.22)

where the embedding is continuous with respect to the norm ||u|m.c = ¥jo<m | D%tt[|<o,
nor for the fundamental Sobolev duality theorem, which states that for any s € R one has

HY(R™)* =~ H5(R"), (8.23)

i.e. A € H(R™)* linearly, bijectively, and isometrically corresponds to f € H5(R") via

Au)= | d'xf(x)u(lx) = (f,u). (8.24)

R}’l
Finally, for s > 0 we have our third Gelfand triple
HS(R") C L*(R") € H™*(R"), (8.25)
which analogously to (8.14) may be extended to a ‘Gelfand quintuple’

Z(R") c H'(R") ¢ LA(R") ¢ H5(R") ¢ /'(R"). (8.26)

120 ess well known, if one equips C:°(R") with the unusual norm || f|o = max{|| ||, || /||~ }» with associated

completion denoted by Cjj(R"), then (8.17) yields an isometric isomorphism Cj;(R") 5 C§(R™) as Banach spaces.

For C*-algebra experts we note that the Fourier transform also yields an isomorphism C*(R") 5 Co(R") of
commutative C*-algebras (here C*(R") is the completion of C°(R") in the operator norm obtained by letting
f € C2(R") act on L?>(R") by convolution, whereas Cy(R") carries the supremum-norm). In this case (which
follows from the Riemann—Lebesgue lemma) the Fourier transform is a special case of the Gelfand transform.
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For our kind of PDE’s, R" will be space, and time needs to be treated separately. Typi-
cally, for fixed 7 > 0 one considers Banach spaces like C([0,T], H*(R")), with norm

[ulleo = sup Ju(r)]s, (8.27)
t€[0,T]

or C'([0,T], H*(R")) with analogous norm, or L ([0, T], H*(R")), 1 < p < oo, normed by

1/p
Il = () ardlutollr) 828)

or L*([0,T],H*(R")), with norm

ullew = ess supyego 7 l[u()]s- (8.29)

Here we define LP([0,T],H*(R")), 1 < p < oo, as the completion of C([0,T],H*(R")) in
the norm (8.28), and also (avoiding Banach space-valued measurable functions), define
L>([0,T],H*(R™)) as the (Banach) dual of L'([0,T],H*(R")), in that we identify f €
L=([0,T],H*(R")) with the functional Ay € (L'([0,T],H 5(R")))* given by, cf. (8.24),

Ag) = [ dr(r(e).50) 830)

8.2 Linear wave equations

To see such spaces in action, as before we consider the free wave equation on R e,

(—d?+Au=F; (8.31)
u(0,x) = f; u(0,x) = g(x), (8.32)

For F =0 and n = 1, 3, the (unique) solution (known since the 18th century) is
X+t
u(t) =4 (500 = fx-0)+ [ aven ) =1 ®39)

_ ﬁ/w_x'_tdcz(y) (tg(y)+f(y)—

gl

u(t,x) dif (v) (i _)’i)> ; (n=3). (834

i=1

From this, we see that in n = 1 the solution at (¢,x) only depends on initial data within its causal
past J~(x,t), intersected with the Cauchy surface £ = {(x° = 0,x),x € R"}. Indeed, recall the
causal past J~(,x),emanating from (z,x), and its boundary L™ (¢,x), i.e. the past light cone,

T (t,x) ={(%y) e Ry =0 > [y —x/,»° <% (8.35)
L (t,x) = {(%y) e R" 0 =0 = |y —x],»° <%}, (8.36)

cf. (4.7) - (4.8) with y° > x¥ replaced by y° < x° (as well as x by (¢,x), etc.). In n = 1, we have
ENJ7 (1) ={0° =0,y).y € k—r.x+1]}, (8.37)
whereas in n = 3 the solution u(7,x) even depends on the initial data at XN L~ (x,) only, since

ENL(6,x) ={(° =0,y),[y—x| =1}. (8.38)
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An analogous phenomenon holds in the inhomogeneous case F # 0, in which case the solution
1

_ F(s,y)
u(t,x) = E/L_(t,x) d03(s,y) T

—_ 8.39
S—ty—%) (8:39)

for zero initial data for simplicity, clearly depends on the values of F at the past light cone
L~ (t,x); in other words, F(s,y) only influences u along the forward light cone emanating from
(s,y). The situation in n = 3 (and also in all higher odd spatial dimensions), in which both
initial data f, g and the inhomogeneous term F affect the solution only along future light rays
is called the strong Huygens principle. The (ordinary) Huygens principle, then, formalizes the
situation in n = 1,2, and all higher even dimensions, in which the entire causal future of (s,y)
affects the solution, or, equivalently, u(¢,x) only depends on data within its causal past.
An explicit solution for any F, f, and g may be written down using the Fourier transform:

i(1.8) = costrD (6 + 1 g + [ g a0

as the notation indicates, the formula (8.17) is only applied to the x-variable, and, within the
function classes to be discussed, the actual solution u(z,x) may be (re)constructed from (8.18).
Although the space-time and causal structure of the solution is not at all obvious from this
formula, the advantage is that (8.40) easily implies an energy inequality: for any s € Z,

T
(s Mlsr + e, )]s < Csr ((HstH +1lglls) +/0 dT||F(T»‘)Hs) ) (8.41)

where 0 < T < oo, provided that F € L'([0,T], H*(R")), f € H**!(R"), and g € H*(R"), so that
the right-hand side makes sense. The proof is an exercise, using the fact that (8.21) implies

a2 = [ @&+ €1 la,E)P (8.42)

Corollary 26 For any T > 0 and s € Z, the free wave equation (8.31) - (8.32) with initial
conditions f € H*'(R") and g € H*(R"), and F € L' ([0,T],H*(R")), has a unique solution

u(t,x) € C([0,T],H L (RM)nCl([0,T], H (R")), (8.43)

Uniqueness follows either from the derivation of the explicit solution (8.40) from the initial

data, or from (8.41): if u; and u, both solve (8.31) - (8.32), then u = u; — uy solves (8.31) for

F = f = g =0, so that the right-hand side and hence the left-hand side of (8.41) vanishes, etc.
We now turn to linear wave equations of the form Lu = F with initial data (8.32), and

L:gpc(t7x)ap86+bp(t7x)pp +a(t7x)' (844)

Since we don’t have an explicit solution, the derivation of a suitable energy inequality (to be
used as a lemma for proving existence, uniqueness, and analytic properties of solutions) will
have to be a priori.'*! A particularly useful energy inequality for the operator (8.44) is

t
) ||D“u<r,->||ssc;,r(2 ID%u(0. )+ [ dfllLu(T,-)Hs), (8.43)

|af<1 o<1

121'These a priori derivations are straightforward but very lengthy, and therefore we simply state the results
without derivation; for (8.45) see Sogge, §1.3 and Luk, §4. See also Ringstrom for similar estimates.
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valid forany 0 <t < T < oo, s € Z, and u such that (8.43) holds, as well as Lu € L' ([0, T], H*).1??
This inequality immediately gives uniqueness by the same argument as for the free wave equa-
tion, but existence and regularity require a more advanced, functional-analytic argument. In
order to explain the reasoning, let us first take a simpler situation.'?? For Q C R”, let

L:92'(Q)— 2'(Q) (8.46)

be a linear operator, e.g. as in (8.44), with adjoint L* : 2(Q) — Z(Q) defined by (8.8). As
already mentioned, the PDE Lu = F (with zero initial conditions for simplicity) then means

(u,L" @) = (F, 9) (8.47)
for all ¢ € 2(Q). Throughout the argument, we must assume that, for any net (¢; ) in Z(Q),
Loy L9 = @) — 0. (8.48)

If L* is a bijection, and F € 2'(Q), which is the very least regularity to impose, then we are
done at the coarsest level of proving existence and uniqueness of a solution u € 2’(Q), since its
value at y € 2'(Q) is given by finding the unique ¢ € Z2(Q) for which y = L*¢ and putting

(u, ) = (F,0) (y=L"9). (8.49)

The assumption (8.48) then implies that if y; — vy, i.e., L*¢; — L*¢@, then ¢, — ¢, and
hence (F, ;) — F, ) since F € 2'(Q) by assumption, and hence (u,y;) — (u,y), since
(u,yp) = (F, ;). Thus u is a continuous linear functional on Z(Q) and hence u € 2'(Q).

If L*, still assumed to be injective, merely has dense range ran(L*) C Z(Q), then one still
has existence and uniqueness of u, since for y € ran(L*) eq. (8.49) still works, whereas for y
outside the range of L* we may write y = lim L*¢@, and then (u, ) = limy (F, @, ).

Finally, if L*, still injective, does not have dense range, the Hahn—-Banach Theorem (for
locally convex vector spaces) yields existence of u by extending the solution u : ran(L*) —
C constructed above to a continuous linear map u : 2'(Q) — C, but one loses uniqueness.
Fortunately, in many applications to PDE’s uniqueness still follows from energy inequalities.

Such inequalities also play a central role in refining the above argument. Suppose one has
two Gelfand(ish) triples Z(Q) C W C 2/(Q) and 2(Q) C Z C 2'(Q), where W and Z are
Banach spaces and all inclusion maps are continuous with dense image, and suppose that

lellz <CliL*ollw (Vo € 2(Q)). (8.50)

This ‘energy condition’ supersedes the continuity assumption (8.48) within 2(Q), and is also
more powerful in that it clearly implies that L is injective, which is an essential condition for
the whole analysis to apply in the first place. Furthermore, the inequality (8.50) implies:

Provided L* is injective, for any F € Z* there is a solutionu € W* to Lu = F.

Noting that 2(Q) C Z implies Z* C 2'(Q), and similarly 2(Q) C W implies W* C 2'(Q),
compared with the earlier argument where the assumption F € 2'(Q) gave a solution u €

122Moreover, the derivation requires that gt (z,x), b*(¢,x), and a(t, x) be C* with uniform bounds on all deriva-
tives, where (¢,x) € [0,7] x R", as well as Y, ,,, [g"" (t,x) —nHV| < 1., where 77 is the Minkowski metric.
123G¢e e.g. A. Vasy, Partial Differential Equations (AMS, 2015), Chapter 17.
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2'(Q), we have now strengthened the assumption to F € Z* C 9'(Q), and, given (8.50), ac-
cordingly strengthened the conclusion u € 2'(Q) to u € W* C 2'(Q). Indeed, noting that

ran(L*) C 2(Q) C W, (8.51)
let v € ran(L*), so y = Lo, and define a linear map u : W — C initially on ran(L*) C W by
(u,L* @)w+—w = (F, @)z 7. (8.52)

Because of (8.50), if L*¢; — L*¢@ in W, then @; — ¢ in Z, and hence on the assumption F € Z*,
the functional u defined by (8.52) is continuous on ran(L*) in the (norm) topology of W. Once
again, the Hahn—Banach Extension Theorem (but this time simply for Banach spaces) gives a
continuous extension u : W — C, i.e. u € W*, as claimed.

We now show how the energy estimate (8.45) implies an estimate a la (8.50). For any 7" > 0,
we replace u in (8.45) by ¢ € C°((0,T) x R"), which certainly satisfies the assumptions vali-
dating (8.45), and replace L by L*. Then D%u(0, -) is replaced by D% (0, -) = 0. Furthermore,
for any multi-index , s € R, k € N, and ¢ € H®, by definition of the Sobolev spaces we have

loll-s <C" Y. D% —s—- (8.53)

|l <k

With k = 1, also using the trivial [} dtg(t) < [ dtg(t) whenever 0 <t < T and g(t) > 0, in
this case with g(7) = ||L*¢(7,-)||—s—1, we find, for any s € Z and ¢ € C°((0,0) x R"),

T
o) <€ [ dnio(e, ). (554
This is a special case of (8.50), with
w =LY ([0,T],H* 1 (R")); (8.55)
Z=C([0,T],H 5(R"); (8.56)
wW* =L=([0,T],H "1 (R")); (8.57)
Z* > LY([0,T], H*(R")); (8.58)

the precise form of Z* (which is the space of bounded measures on [0, T'| taking values in H* is
not needed here). Assuming zero initial conditions for the moment, the abstract argument above
therefore gives a solution u € L*([0,T],H**1(R")) for F € L'([0,T], H*(R")), which, by the
original energy inequality (8.45) is also unique. More advanced arguments involving elliptic
regularity further push to solution into (8.43).!>* Finally, the case of nonzero initial data f,g
can be reduced to the case f = g = 0 by a standard trick: for given F, let v solve Lv = F for zero
initial data, define w(t,x) = f(x) +tg(x), and u = v+ w solves Lu = F for given f,g. Thus:

Theorem 27 For any T > 0, let L be defined by (8.44), including all assumption stated after-
wards. For any s € 7, the linear wave equation Lu = F, with F € L' ([0, T],H*(R")) and initial
conditions f € H*'(R") and g € H*(R"), see (8.32), has a unique solution

u(t,x) € C([0,T], H* L (R™) nCl([0, T], HS (R")). (8.59)
Corollary 28 In the setting of the previous theorem, if F, f, and g are smooth, then so is u.

This follows from the Sobolev embedding theorem (8.22). With further effort, one can also
show that the causal properties of the solution relative to F and the initial data f, g are the same
as for the free wave equation, except that the strong Huygens principle need not apply (but the
‘oridinary’ one, implying causal propagation of inital data and F', always does).

1245ee Sogge, p. 20.
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8.3 Quasi-linear wave equations

In either the (naive) wave gauge or its refinement the g-wave gauge, the Einstein equations
(5.79) - (5.80) take the abstract form form Lu = F, where u = g,y and L is like (8.44), with the
difference that in L = gP°(u)dpds the coefficient of the highest- (i.e. second) order derivative
now depends on u, and furthermore F = F(u,du) depends on u and du. Such equations (in the
more general case that g and F may depend on u, du, and even (¢, x)) are called quasi-linear,'
and if the signature of g is Lorentzian, as we of course assume, the PDE is hyperbolic.

We assume for the moment that u takes values in R; the generalization to u = (gyv) tak-
ing values in R!9, is straightforward and will be outlined later. It is also sufficient for later
applications to GR to assume that g°° : R — R is smooth, as is F : R x R"*! = R. So we study

8P (u)dpOsu = F(u,du). (8.60)

As opposed to truly nonlinear hyperbolic PDE’s, the quasi-linear case is relatively easy because
it can be solved by reduction to the linear case, and one can only feel fortunate that the Ein-
stein equations (at least in a suitable gauge) fall into this category. The solution method is a

generalization of the Picard iteration procedure from ODE’s:!° start from the initial data
up(x) = f(x) =u(0,x), (8.61)
and iteratively define uy. | as the solution to the inhomogeneous linear PDE
8P (ux)dp st 1 = F (ug, duy), (8.62)

subject to the initial conditions w1 (0,x) = f(x) and 1441 (0,x) = g(x), as for u itself.'?” For
some given function u(,x), eq. (8.62) is the type of PDE studied in the previous section. Hence
Theorem 27 guarantees a solution for any 7' > 0, but convergence of the iteration and uniformity
of the energy inequality (8.41) in k gives a weaker conclusion compared to the linear case:'?3

Theorem 29 For smooth F(u,du) and smooth gP° (u) sufficiently close to the Minkowski met-
ric,'? eq. (8.60), with initial conditions f € H**'(R") and g € H*(R"), has a unique solution
ue L=([0,T],H Y (R")); (8.63)
ueL”([0,T],H*(R")), (8.64)
provided s > in (i.e. s > 3/2 for n =3). Here T is either arbitrary (as in the linear case), or
there exists T, = T..(|| f|ls+1, ||gl|s) such that ||[D%ul|« = o on [0, T.] x R", for some |a| < 2.
This solution depends continuously on the initial data (so that the Cauchy problem for (8.60)
is well posed in the sense of Hadamard) in the obvious way, i.e., if fi — f in H\(R") and
gk — g in H(R"), then uy — w in L=([0, T], H* (R")) with iy, — 1 in L=([0,T], H*(R")).
Finally, if f € CZ(R") and g € CZ(R"), then u € C([0,T] x R"), ¢f. Corollary 28.
Of course, T < min{7,}. For a trivial example with T, < oo, take (97 — A)u = > with u(0,x) =
1(0,x) = 1 (times a cutoff function), so that u(z,x) = 1/(1 —¢) (for small x), and hence 7* = 1.

125Tn fluid mechanics all these dependencies occur, see e.g. Taylor, Chapter 16, but the abstract theory is similar.

126Recall that an ODE u/(t) = f(t,u(t)) with initial condition u(0) = uo, which is equivalent to the integral
equation u(t) = uo+ J¢ ds f(s,u(s)), may be solved by iteration from uo(t) = up and w1 (t) = uo+ J§ ds f (s, ux(s)).
For suitably regular f, this sequence () uniformly converges to a solution u on some interval [0, T].

127This works if f,g € C2°(R"). For initial data f € H*(R") and g € H**!(R") one needs to approximate f
and g within the spaces mentioned by sequences (f;) and (gx) in fC°(R"), respectively, upon which the initial
conditions for (8.62) change into uy1(0,x) = fi11(x) and tg41(0,x) = gri1(x).

128See Sogge, §1.4, Luk, §6, Choquet-Bruhat, Appendix ITI, or Ringstrém, Chapter 9.

129Think of ¥, 5 [[§°% —1P°||- < 1, as in Sogge. Even for initial data f € H**!(R") and g € H*(R"), one can
make further (rather contrived) regularity assumptions on g°° and F that push u into (8.59). See Ringstrom, Ch. 9.
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8.4 Application to GR

Theorem 29 applies to the Einstein equations in the (¢-) wave gauge, with the following changes:

e Instead of a single unknown u we now have 10 unknowns g, with one equation for each
(but the ensuing system is coupled, since gP° is a function of all g, and so is F(g,dg)).

e The Cauchy surface {t = 0} C R"*! is replaced by a 3d (Riemannian) manifold X.

e The initial data u(0,-) = f and (0, -) = g are replaced by the Cauchy data (g;;, k;;) on X.

e Using either local coordinate patches and a partition of unity, or a background metric é
on ¥ making the construction coordinate-independent (like the g-wave gauge), one can
define Sobolev spaces H*(X) for any s € R (in view of s < in+ 1 in Theorem 29, s € N is
enough).'3? This construction may be extended from functions on X to arbitrary tensors
7 € X0 (T), yielding Sobolev spaces H(Sk’l) (X). Thus one may say, e.g., k € H(sz’o) (X).

e The PDE (8.62) is replaced by the reduced (vacuum) Einstein equations (5.79) or (5.80).

Theorem 30 Let s > 3/2.13! For initial data (X, 8;;,ki;) where § is sufficiently close to é and

g€ HY o (Z): (8.65)
ke Hp (%), (8.66)

there is T > 0 such that the reduced vacuum Einstein equations (5.79) - (5.80) or their counter-
parts in a §-wave gauge, have a unique solution g on M = [0,T] x X, where

guv € C([0,T],H "1 (Z))nCl ([0, T],H (X)); (8.67)
dpguv € C([0,T], H*(X)). (8.68)

Note that (8.22) and (8.65) - (8.66) imply that for s > 3/2 one has § € C'(X) and k € C(X),
whilst (8.67) - (8.68) then imply g € C' (M) and hence dg € C(M). This solution continuously
depends on the initial data on the initial data in that gy — g in ngf(%) (X) and k; — k in Hpy (%)
imply g, — g in L™([0,T],HS"1(X)) as well as dpg; — g in L=([0,T],H*(X)). Finally, if the
initial data (g,k) on ¥ are smooth, then so is g, in which case (M, g) is globally hyperbolic.13?

This theorem concerns the Einstein equations in specific gauges in which they are hyperbolic.
We have already seen that the Einstein equations as such ar not hyperbolic at all and fail to
have unique solutions. The general situations was already described in Proposition 31, which
as stated was valid for smooth initial data, and as such has now been justified by Theorem 30.
It may now be sharpened, since it also holds for ‘rough’ initial data of the kind described in the
above theorem; the proof (by reduction to the wave gauge) goes through virtually unchanged.
Proposition 31 may also be localized, in which case it is best seen as a causality result:

130gee Taylor, Partial Differential Equations, Vol. I, Ch. 4, Ringstrom, Ch. 15, or Choquet-Bruhat, Appendix 1.
131Choquet-Bruhat’s original existence proof had s > 3/2 but (geometric) uniqueness required s > 5/2, see
Choquet-Bruhat, Theorem 8.4, p. 168 (note that her s is our s = 1 so that our s > %n is her s > %n +1, etc.). For
the sharper s > 3/2 for existence and uniqueness, also in Proposition 31 and Theorem 22, see P.T. Chrusciel, On
maximally globally hyperbolic vacuum space-times, J. Fixed Point Theory Appl. 14, 325-353 (2014), Thm. 1.1.
132See Theorem 11.10 in Chapter XII of Choquet-Bruhat, but the claim is natural given M = [0, 7] x Z.
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Proposition 31 Let (g;;,k;;) and (g j,l~<l'- ;) be (smooth) initial data on X that coincide on some
submanifold £y C X. Then any two Cauchy developments ([0,T] x £,g) and ([0,T'] x £,g") of
these data are isometric when restricted to D™ (o) C [0,T"] x Xo, where T" = min{T, T"}.

This does not follow from (the proof of) Proposition 31 alone (i.e. by reduction to a wave
gauge); in addition, one needs a uniqueness (or causality) result for nonlinear wave equations.
For (8.60) and analogous equations, this states that if £y C X is a submanifold, then u = u’ and
i =u' on Lo implies u = u’ on DT (Xy). Equivalently, if the initial data f and g vanish on X,
then the solution u vanishes on D™ (X). This is a localized uniqueness result (for £y = X it is
simply the uniqueness claim for solutions of (8.60)), but it is at the same a causality result,
stating that information (i.e. initial data) propagates causally, i.e. within the forward light-cone.
Much as uniqueness is proved from an energy inequality, the localized uniqueness of the
above kind is proved from a localized energy inequality. We merely explain this for the free
wave equation (Ju = 0 in R”T!, but the principle is the same also in Lorentzian geometry.!3?
For any 0 <t <R, (¢t,x) € R""!, and (reasonable) function u(¢,x), define

E(t,x,R) =1 /y s (1, )2+ Vu(t,y) - Va(t,y)). (8.69)
This is just the energy of u, restricted to the ball B(x;R —1t) C R". If Ou = 0, then,
0<s<t = 0<E(t,x,R) <E(s,x,R). (8.70)
That is, ¢ — E(t,x,R) is monotonically non-increasing. Fix R > 0, and note that
EO.0R) =4 [ d'v(E) +VI0)VI0)) 871

Eq. (8.71) implies that if f(y) = g(y) = 0 for all y such that [y — x| <R, then E(0,x,R) =0, and
hence E(t,x,R) = 0 for all 0 <7 < R by (8.70), and hence u(¢,x) = 0 by (8.71). Taking R =1
shows that if f(y) = g(y) = 0 for all y such that |y — x| <¢, then u(¢,x) = 0. In other words,
if f =g =0 within Xy C X (defined as the t = 0 hyperplane Rjj in R"*+1), then u = 0 within
DT (X). Equivalently, if u; = up and 1y = iy at X, then u; = up in DT (Zp). In case of the
Einstein equations, u; = uy becomes g; = g, (isometrically), as we have seen, but otherwise the
reasoning is the same, ultimately based on the property g; = g» if both metrics are brought into
the same gauge. In sum, the solutions of the Einstein equations satisfy all desirable properties:

1. Existence global in space and local in time (with satisfactory regularity dictated by regu-

larity of the initial data (X, g;;,k;;), including smoothness for smooth initial data;
2. Uniqueness up to diffeomorphism;

3. Causal propagation, in that initial data at ¥y C X determine the solution within DT (X),
or, equivalently, g,;v(¢,x) is determined by initial data within the causal past J~ (¢, x) of
(t,x), both statements again up to diffeomorphism;

4. Cauchy stability, in that the 4d metric g continuously depends on the initial data (X, §;;, k;;),
as formalized in Theorem 30.

Nothing is implied about global existence in time. Thus the next step is a proof of at least
timelike geodesic completeness (cf. Definition 8), which is a very active area of research.!3*

133See Choquet-Bruhat, Appendix III, Theorem 2.15.
134 argely initiated by Christodoulou & Klainerman, The Global Nonlinear Stability of the Minkowski Space
(Princeton University Press, 1994); see also Christodoulou (2008).
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