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Inleiding

Wiskunde is dat wat zich ‘wiskundigen” noemende mensen doen. Dat doen ze al zo'n
2500 jaar en zullen ze, zolang de mensheid bestaat, hopelijk ook blijven doen. Uit histo-
risch onderzoek in vooral de afgelopen vijftig jaar is duidelijk geworden dat het begrip
wiskunde in een periode van slechts 40 jaar is ontstaan in het Athene van de vierde
eeuw v.Chr,, en dan in het bijzonder in Plato’s Academie.! Deze periode liep van on-
geveer 387 v.Chr., het jaar waarin Plato zijn Academie stichtte, tot de dood van Plato
op tachtigjarige leeftijd in 348 of 347.2 In deze periode werd een praktische bezigheid
die duizenden jaren eerder in de Egyptische en Babylonische beschavingen was ont-
wikkeld als hulpmiddel bij zaken als astronomie, landmeetkunde, handel en belasting-
inning omgezet in een nieuwe wetenschap met een eigen taal en methodiek. De we-
zenlijke kenmerken van de moderne wiskunde, namelijk haar axiomatisch-deductieve
opbouw en het abstracte karakter van wiskundige objecten en structuren, dateren uit
het genoemde tijdvak.? Euclides, Archimedes en Apollonios, van wie de werken pas in
de derde eeuw v.Chr. verschenen, troffen dit raamwerk vrijwel voltooid aan en vulden
het verder in.

Wiskunde heeft zo te zien iets te maken met getallen, figuren, axioma’s, stellingen,
en bewijzen. Bovendien maken andere vakken er gebruik van. Traditioneel was dat
de sterrenkunde, vanaf de 17e eeuw ook de natuurkunde,* en in de 20e eeuw kwam

1. Zie bijvoorbeeld F. Laserre, The Birth of Mathematics in the Age of Plato (Londen, 1964), D.H. Fowler,
The Mathematics of Plato’s Academy (Oxford, 1987), R. Netz, The Shaping of Deduction in Greek Mathematics
(Cambridge, 1999) en, enigszins verouderd maar nog steeds heerlijk leesbaar, Ontwakende Wetenschap
door B.L. van der Waerden (Groningen, 1950). Het is een wijdverbreid misverstand Pythagoras een
belangrijke rol in de geschiedenis van de wiskunde toe te schrijven; zie W. Burkert, Weisheit und Wissen-
schaft: Studien zu Pythagoras, Philolaos und Platon (Niirnberg, 1962). Over de wiskundige activiteiten van
Thales van Milete is te weinig bekend om hem in deze context een prominente plaats te geven.

2. Naast Plato’s eigen vertrek uit het leven verlieten rond die tijd ook Eudoxos (naar verluidt de groot-
ste wiskundige van zijn tijd) en Plato’s belangrijkste leerling Aristoteles (in deze geschiedenis de rol
spelend van de grondlegger van de logica) Athene.

3. Ofschoon concrete wiskundige resultaten van Plato zelf niet bekend zijn, speelde hij in deze ont-
wikkeling vermoedelijk een beslissende rol. Ten eerste hamerde hij in zijn Academie voortdurend op
het belang van de wiskunde. Dit wordt sterk gesuggereerd door dialogen als Meno, Staat, Theaitetos, Phi-
lebos en Timaios en blijkt tevens direct uit latere getuigenissen, met name van Aristoteles. Het invoeren
van wiskunde in het hoger onderwijs voor de Atheense elite, dat tot dan toe voornamelijk uit lichame-
lijke opvoeding, muzikale scholing en retorica had bestaan, was een belangrijke vernieuwing van Plato.
Het wiskundeprogramma op de Academie duurde maar liefst tien jaar. Wie dat had doorstaan kon op
zijn dertigste nog eens verder met een vijfjarige studie van de ‘dialectiek’ (i.e. filosofie naar Socratisch
model), om pas dén in de (hoogste kringen van de) samenleving terug te keren.

4. Dé doorbraak die de huidige natuurkunde mogelijk heeft gemaakt was precies de combinatie van
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daar de informatica bij.> Inmiddels is wiskunde het onzichtbare fundament van een
belangrijk deel van onze technologische infrastructuur, bijvoorbeeld:

e Dienstregeling NS (grafentheorie en combinatorische optimalisatietheorie);

e TomTom (positiebepaling m.b.v. driehoeksberekeningen vanuit gps-data, en te-
vens kortste-pad algoritmen voor de routebepaling met soortgelijke technieken
als bij de NS);

e Elektronisch betalingsverkeer (versleuteling m.b.v. rekenkunde en algebraische
meetkunde);

o MP3/AAC muziekspelers (datacompressie m.b.v. Fourier-analyse);

e Mobiele telefonie (stochastische netwerktheorie en alle tot nu toe genoemde
technieken);

e Google (page ranking methode gebruikt lineaire algebra);

e Bank-, verzekerings-, en pensioenwezen (statistiek, analyse, wiskundig model-
leren);

e Algoritmische handelssystemen op de beurs (wiskunde geheim!);

¢ Containertransport in de Rotterdamse haven (optimalisatie, lineair programme-
ren).

In de geldwereld is de rol van complexe producten het afgelopen decennium sterk
toegenomen; het door zowel aanbieder als afnemer niet goed begrijpen van dergelijke
producten behoort tot de onomstreden oorzaken van de kredietcrisis. Niet voor niets
was het pensioenfonds APG drie jaar lang (2007-2009) hoofdsponsor van het Wiskun-
detoernooi! Een opvallende recente ontwikkeling is de groeiende betrokkenheid van
de wiskunde ook bij de economische, juridische, sociale, en cognitiewetenschappen.
Ook dit heeft uiteraard dan weer maatschappelijke consequenties: forensische statis-
tiek is soms zelfs voorpaginanieuws (het Nederlands Forensisch Instituut was de spon-
sor van het Wiskundetoernooi van 2010). Meer in het algemeen blijkt wiskunde onont-
beerlijk voor het begrip van complexe systemen in een maatschappij die zelf steeds
ingewikkelder wordt. Zelfs ouderwets klinkende bedrijfstakken als plantenveredeling
en fokkerij van dieren - die voor de BV Nederland van groot belang zijn - hebben om
concurrerend te kunnen blijven tegenwoordig grote behoefte aan genetici met een wis-
kundige achtergrond. Er staat echter nog meer op het spel: in een dichtbevolkt land als
Nederland is kennis van een wiskundig gebied als epidemiologie (zowel humaan als
veterinair) letterlijk van levensbelang!

De wiskunde is weliswaar uit haar toepassingen (in de oudheid) voortgekomen, maar
toch ligt het allerminst voor de hand dat wiskunde {iberhaupt toepassingen heeft! Bij

experiment en op wiskunde gebaseerde theorievorming, voor het eerst in primitieve vorm bij Galileo
Galilei (1564-1642) en kort daarna zeer geavanceerd bij Isaac Newton (1642-1727). Zie bijvoorbeeld
het klassieke werk van E.J. Dijksterhuis, De Mechanisering van het Wereldbeeld (Amsterdam, 1950), en
meer recent Floris Cohen, De Herschepping van de Wereld (Bert Bakker, 2007) en Stephen Gaukroger, The
Emergence of a Scientific Culture: Science and the Shaping of Modernity 1210-1685 (Oxford University Press,
2006).

5. De uitvinder van de moderne computer, John von Neumann (1903-1957), was niet toevallig een
wiskundige.
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Plato was dat dan ook niet het geval. Eén van Plato’s belangrijkste ideeén was dat
wiskundige objecten los zouden staan van de empirische werkelijkheid en dus een ab-
stract karakter hebben.® Meer nog dan de bewijstheoretische aard van de wiskunde
(die goed beschouwd slechts een geidealiseerde versie van de retoriek is, een vaar-
digheid die in Athene van groot belang werd geacht) is het deze eigenschap van ab-
stractie die wiskunde vleugels geeft en de ongelofelijke kracht ervan verklaart. Juist de
abstractie maakt het namelijk mogelijk om hetzelfde wiskundige instrumentarium in
schijnbaar totaal verschillende situaties in te zetten. Maar tegelijk is het deze abstrac-
tie van de wiskunde die het moeilijk uit te leggen maakt dat zij zo toepasbaar is! Een
verwant probleem is dat van de (vermeende) waarheid van wiskundige uitspraken. In
de werkelijkheid om ons heen lijkt niets waar, het is eigenlijk maar een rommeltje. Hoe
kan deze werkelijkheid dan een exacte wiskundige beschrijving hebben? Hoe meer na-
druk de waarheid van de wiskunde krijgt, hoe lastiger het is de toepasbaarheid ervan
te begrijpen. Plato’s leerling Aristoteles was het dan ook niet met zijn leermeester eens:
waar Plato dacht dat de zintuigelijk toegankelijke wereld eigenlijk een schijnwereld is
die een vertroebeld beeld geeft van een intellectueel toegankelijke perfecte wereld van
wiskundige ‘vormen’, vond Aristoteles juist het omgekeerde: de wereld om ons heen
is de echte wereld, en de wiskunde geeft daar een geidealiseerd (en dus vertekend)
beeld van.’

6. Plato’s ontdekking van wiskundige abstractie is nauw verbonden met zijn vormenleer (oftewel
ideeénleer, een minder gelukkige naam) en is daar in zekere zin ook de culminatie van, zowel in scherpte
van de formulering als in de nadruk op juist de wiskundige vormen (ten koste van de ethische, waar bij
Socrates de nadruk op lag) in zijn latere geschriften. Volgens deze leer zijn—ruw gezegd—zowel objec-
ten uit de alledaagse waarneming als bepaalde ethische begrippen slechts onvolmaakte afspiegelingen
van oorspronkelijke vormen die zich bevinden in een hoger domein dat als het ware achter de empiri-
sche werkelijkheid verborgen ligt. Dit domein is niet toegankelijk voor de waarneming, maar uitsluitend
voor het denken. Veel wiskundigen verbinden Plato’s cruciale idee van wiskundige abstractie nog steeds
met diens twijfelachtige doctrine dat abstracte wiskundige objecten ‘echt bestaan” in een ‘hogere sfeer’.
Deze combinatie is niet nodig en leidt tot aanzienlijke filosofische problemen. Plato’s nauw gerelateerde
inzicht dat achter de verschijnselen een fraaie wiskundige structuur schuilgaat was daarentegen een
ontdekking van de eerste orde, zonder welke de latere exacte wetenschap onmogelijk of sterk vertraagd
zou zijn geweest. In Plato’s Timaios vinden we bijvoorbeeld de gedachte dat de kosmos op harmonieuze
wijze is georganiseerd als een perfecte meetkundige structuur, namelijk een systeem van concentrische
bollen. Ook de vijf platonische veelvlakken spelen in dit wereldbeeld een belangrijke rol als wiskundige
vormen die achter de waargenomen diversiteit van materile objecten schuilgaat. Deze wiskundige per-
fectie is inderdaad abstract en niet zichtbaar: de verschijnselen maken eerder een rommelige dan een
harmonieuze, laat staan een perfecte indruk. Hier speelde ook een rol dat hogere zaken als muziek en
abstractie het domein van de gegoede burgers (zoals Plato zelf) waren, terwijl toepassingen en zo iets als
werken voorbehouden waren aan slaven. De stricte scheiding tussen zuivere en toegepaste wiskunde
(en meer in het algemeen tussen zuivere en toegepaste wetenschap), die veel wiskundigen (en weten-
schappers) ook nu nog aanhouden, maar die in feite al lang achterhaald is, is daarmee een erfenis van
de scheiding tussen burgers en slaven in Athene. Zie Donald E. Stokes, Pasteur’s Quadrant: Basic Science
and Technological Innovation (Brookings Institution Press, 1997).

7. Je vindt een soortgelijke discussie in een religieuze context: schiep God de mens naar zijn evenbeeld
of schiep de mens God naar zijn evenbeeld? De zogenaamde ‘Platonist” kent de wiskunde een soort
goddelijke, absolute status toe, terwijl een ‘Aristoteliaan” de wiskunde als een menselijke creatie ziet.
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Voorlopig is het voldoende het duale karakter van de wiskunde te beseffen:

e zuiver én toegepast;

e zeker én benaderend (en dus onzeker);

e creatie van de menselijke geest én beschrijving van de werkelijkheid;

e constructie én ontdekking.

Ons huidige begrip van deze dualiteit is terug te voeren tot een diepgaande studie van
de grondslagen van de wiskunde die rond 1900 plaatsvond.® Belangrijke bijdragen aan
deze discussie werden geleverd door Richard Dedekind (1831-1916), Georg Cantor
(1845-1918), Gottlob Frege (1848-1925), Giuseppe Peano (1858-1932), David Hilbert
(1862-1943), Ernst Zermelo (1871-1953), Bertrand Russell (1872-1970), L.E.]. (Bertus)
Brouwer (1881-1966), en in een later stadium ten slotte Kurt Godel (1906-1978) en Alan
Turing (1912-1954). Er zijn dus twee perioden geweest waarin intensief over de vraag
naar de aard van de wiskunde is nagedacht:

1. de 4e eeuw v.Chr,;
2. een tijdvak rond 1900.°

Dat er door de oude Grieken goed over de wiskunde is nagedacht toen deze discipline
ontstond ligt voor de hand, maar wat verklaart het ontstaan van de tweede belang-
rijke grondslagendiscussie in de tweede helft van de 19e eeuw? Deze discussie had
een lange aanloop en had haar oorsprong in het werk van Newton in de 17e eeuw.
Newton was de grootste wiskundige sinds de oudheid. Vanuit modern perspectief
ontwikkelde hij—in een unificatiestap die zijn weerga in de wetenschapsgeschiedenis
niet kent—naast de al bestaande meetkunde en rekenkunde (en tot op zekere hoogte
algebra) een derde tak van de wiskunde, namelijk de analyse, of preciezer gezegd de
voorloper daarvan, de calculus.!’ Hiermee reduceerde hij alle methoden die sinds de
oudheid waren ontwikkeld voor de berekening van lengtes, oppervlakten, inhouden,
snelheden, versnellingen, minima en maxima, enzovoort, tot twee operaties, namelijk

8. Zie voor en korte inleiding M. Giaquinto, The Search for Certainty (Oxford, 2002), en voor een en-
cyclopedisch overzicht I. Grattan-Guinness, The Search for Mathematical Roots, 1870-1940: Logics, Set
Theories and the Foundations of Mathematics from Cantor through Russell to Godel (Princeton University
Press, 2000). Op de website van Desda staat een mooie film van de BBC over dit onderwerp, zie
www.desda.science.ru.nl/cgi-bin/script.pl?archief, nieuws.

9. De precieze duur en eindpunten daarvan worden door verschillende auteurs verschillend genomen,
van 50-90 jaar.

10. Uiteraard kwam deze niet uit de lucht vallen, zie bijv. R. Calinger, A Contextual History of Mathe-
matics (Prentice-Hall, 1999). Sommige onderdelen van de calculus werden na Newton ook ontwikkeld
door Gottfried Wilhelm Leibniz (1646-1716), die soms als mede-grondlegger van de differentiaal- en in-
tegraalrekening wordt beschouwd. Leibniz had tijdens een bezoek aan Londen echter inzage had gehad
in het eerdere werk van Newton, dat pas na de dood van de laatste werd gepubliceerd, maar onder
vakgenoten in Engeland al wel bekend was. In de 18e eeuw ontstond tussen Newton en Leibniz een
gevecht over de prioriteit van de ontdekking van de caclulus, dat na hun dood door hun volgelingen
werd voortgezet. Dit had tot gevolg dat de wiskunde zich in Engeland grotendeels onafhankelijk ont-
wikkelde t.o.v. het continentale Europa. De wet van de remmende voorsprong leidde uiteindelijk tot
een achterstand van Engeland, temeer daar de notatie van Leibniz handiger was en zijn eerste generatie
leerlingen (met name de Bernoulli familie) getalenteerder was dan de club rond Newton. Ook Leonard
Euler (1707-1783), de belangrijkste wiskundige van de 18e eeuw, kwam indirect voort uit de school van
Leibniz.
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differentiatie en integratie,' die ook nog eens de inverse van elkaar zijn.

Niemand twijfelde aan de geldigheid van de stellingen van de meetkunde en de reken-
kunde. Maar in de calculus gebeurden soms rare dingen. Wat betekende bijvoorbeeld
de snelheid van een voorwerp op een bepaald tijdstip? In eerste instantie is snelheid
een gemiddelde over een eindig tijdsinterval (zoveel kilometer per uur bijvoorbeeld),
maar wat gebeurt er precies als dit tijdsinterval naar nul gaat, zoals in het werk van
Newton? Dit stond in nauw verband met de status van ‘infinitesimalen’, de ‘onein-
dig kleine” grootheden als dx die oorspronkelijk de basis van de calculus vormden, al
schudde Newton ze (i.t.t. Leibniz) in zijn latere werk af ten gunste van meetkundig
gedefinieerde limieten. Al waren er rekenregels voor, niemand begreep eigenlijk wat
infinitesimalen of limieten waren. Naast limieten was Newton een fanatiek gebruiker
van oneindige reeksen, waarmee hij bijvoorbeeld integralen uitrekende.'? Dat leidde
echter tot verwarring. Men kende de meetkundige reeks 1 + z + 22 4+ 2 + - - - en zag in
dat dit voor kleine = een steeds betere benadering van 1/(1 — x) vormde. Voor z = —1
echteris dereeks 1 —1+1 -1+ ---, waarover de meningen verschilden. De een groe-
peerde de termen als (1 — 1)+ (1 —1) +- - - en beweerde dat er daarom 0 uit kwam. De
ander schreef de reeks als 1 — (1 — 1) — (1 — 1) 4 - -- en kreeg dus 1 als resultaat. Een
derde noemde de reeks S en bewees dat 1 — S = S, wat S = 1 geeft, toch?

Kortom, de betrouwbaarheid van de wiskunde leek verdwenen, terwijl dat juist haar
bepalende eigenschap zou moeten zijn! Daar stonden dan wel de enorme successen
van Newton en zijn opvolgers tegenover. Zijn belangrijkste opvolger was Euler, die de
wiskunde (en mathematische fysica) van 18e eeuw domineerde. Euler zag wel in dat
er problemen waren met de calculus, en kwam daar gedeeltelijk aan tegemoet door
de krommen van Newton (die in feite werkte met grafieken van functies, die hij zag
als trajecten van deeltjes) te vervangen door het begrip ‘functie’ (zoals gebruikt op het
vwo)."3 Dat deed hij in eerste instantie (in Introductio in Analysin Infinitorum uit 1748)
door middel van een formule, meestal een (eindige of oneindige) machtreeks, zoals bij
de exponentiéle functie, of door een voorschrift, zoals bij de logaritme, die hij introdu-
ceerde als de inverse van de exponentiéle functie (Euler suggereerde dat iedere functie
als een machtreeks kan worden geschreven). Later (in Institutiones Caculi Differen-
tialis uit 1755) werkte hij met functies als grootheden die van een andere grootheid
afhangen.

11. Newton schreef optimistisch: “could this ever be done all problems whatever might be resolved.”
12. We zouden nu zeggen dat hij de te integreren functie in een Taylor-reeks expandeerde en deze terms-
gewijs integreerde om vervolgens de som te nemen, dus [ dy f(y) = [ dy >, cxy® = 32 cryg
13. “The modern reader is likely to miss the import of this [first] chapter, ‘On Functions in Ge-
neral,” for its main idea has been so totally incorporated into mathematics that we think nothing
of it. This chapter is about functions. It is not about curves. This change of viewpoint repre-
sents a benchmark in the history of the calculus. Newton and Leibniz studied curves. The title of
the first calculus book, Analyse des infiniment petits, pour l'intelligence des lignes courbes (L'Hopital
1696), reflects this early point of view. Agnesi’s book, published the same year as the Introductio,
also studies curves.” Geciteerd uit A Readers Guide to Eulers Introductio door V. Frederick Rickey,
www.math.usma.edu/people/Rickey/hm/Euler—-Introductio.pdf.
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Maar hiermee werden de moeilijkheden met de wiskunde eigenlijk alleen nog maar
erger, want alle problemen met convergentie en limieten kwamen zo met dubbele
kracht terug en leidden tevens tot nieuwe vragen: is iedere functie zoals oorspronke-
lijk gedefinieerd door Euler (dus door een formule of voorschrift) inderdaad te schrij-
ven als machtreeks? Is een machtreeks altijd continu?'* Differentieerbaar? ‘Glad’? Is
een continue functie overal differentieerbaar behalve in eindig veel punten (denk aan
een zaagtand)? Enzovoort. Bovendien voerden Euler en zijn tijdgenoten partiéle diffe-
rentiaalvergelijkingen in, zoals die voor de trillende snaar 8%u/9t* = ¢*9*u/dx* voor
u = u(z,t), waarbij allerlei nieuwe vragen en onduidelijkheden ontstonden, zoals over
het bestaan en de uniciteit van de oplossing (bij gegeven randvoorwaarden) en over
de mogelijkheid om willekeurige oplossingen te schrijven als machtreeksen in sin en
cos.”> Men wist zich met dergelijke kwesties gewoon geen raad. Intussen bleek de
analyse wel het krachtigste middel ooit om de wereld te beschrijven, en verdrong zij
gaandeweg de traditionele disciplines van de wiskunde, zoals de meetkunde. Kortom,
men ging onverdroten door maar maakte zich tegelijk zorgen. Deze werden versterkt
doordat na de Franse Revolutie de gewoonte ontstond om analyse op universiteiten
te onderwijzen,'® zodat een stevige grondslag noodzakelijk was van het soort die de
studenten uit de meetkunde gewend waren.!”

14. Het huidige begrip van continuiteit stamt uit de 19e eeuw en bestond in de tijd van Euler dus
nog niet. Voor Euler was een functie continu als deze functie over haar hele domein door hetzelfde
‘voorschrift’ wordt gegeven. Veel van zijn tijdgenoten dachten bij continuiteit eerder aan de grafiek van
de functie, die bij Euler een ondergeschikte rol speelde. Deze twee begrippen zijn niet hetzelfde. De
functie f : [-1,1] — R gegeven door f(z) = z voor z > 0 en f(z) = —x voor x < 0, oftewel f(z) = |z|,
was voor Euler discontinu, terwijl de grafiek wel degelijke continu is. Ook naar de moderne definitie is
deze functie continu. De stapfunctie daarentegen (i.e. () = 1 voor x > 0 en §(x) = 0 voor z < 0) was
voor iedereen discontinu.

15. De vergelijking voor de trillende snaar heeft als algemene oplossing u(x,t) = f(z + ct) + g(z — ct),
waar f en g ‘willekeurige’ functies zijn. Uit niets volgt dat f en g machtreeksen zijn, zoals in eerste
instantie gedacht door Euler. Als de eindpunten van de snaar vastzitten, geldt «(0,t) = u(L,t) = 0
voor alle ¢, waarbij L de lengte van de snaar is. Hieruit volgt dat g(y) = —f(—y), en dat f(y + 2L) =
f(y), m.a.w., f is periodiek met periode 2L. Als wiskundige zeg je nu dat iedere functie van de vorm
fly) = A, sin(nmy/L) + By, cos(nmy/L) een oplossing geeft, voor willekeurige constanten A4, en B,,
n=0,1,2,3,.... Als fysicus verwacht je dat iedere beginconfiguratie u(z,0) = uo(x) op tijdstip t = O na
loslaten van de snaar een unieke beweging geeft. Als mathematisch fysicus—en dat was vrijwel iedere
wiskundige in de 17e en 18e eeuw—concludeer je dan dat je een ‘willekeurige’ functie uy op het interval
[0, L] die voldoet aan u((0) = uo(L) = 0 kennelijk kunt schrijven als ug(z) = 2> | A, sin(nwy/L).
Deze stap was het begin van wat later Fourier-analyse zou heten; het is duidelijk dat deze redenering
talloze vragen over de analyse oproept, zoals de convergentie van de reeks en de eventuele continuiteit
van de som (als deze bestaat).

16. Tot aan de Franse Revolutie waren vooraanstaande wiskundigen i.h.a. verbonden aan koninklijke
academies of hoven (m.u.v. Newton, die aan de Universiteit van Cambridge werkte). Zij gaven daar
hoogstens onderwijs aan een kleine elite. Op de universiteiten onderwezen destijds tweederangs figuren
totaal verouderde kennis (met uitzondering van filosofie en geneeskunde).

17. Op de middelbare scholen werd destijds als wiskunde uitsluitend Euclidische meetkunde onderwe-
zen, meestal uit de Elementen van Euclides zelf. In Nederland bestond het wiskundeonderwijs tot 1960
uit Euclidische meetkunde, rekenen,goniometrie, trigonometrie, en enige algebra. De analyse wordt dus
pas sinds 1961 op scholen onderwezen, bijna drie eeuwen na haar ontstaan.
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Zoals je in het college Analyse zult leren werden de problemen met dit vak opge-
lost door een goede grondslag.’® Deze kwam voort uit het werk van Augustin-Louis
Cauchy (1789-1857), Peter Lejeune Dirichlet (1805-1859), Karl Weierstrass (1815-1897),
Eduard Heine (1821-1881), Bernhard Riemann (1826-1866), de al genoemde Cantor,
Dedekind, Hilbert, von Neumann, en anderen. Zo gaan onze definities van conver-
gentie en continuiteit terug tot Cauchy (waarna ze door Weierstrass werden geperfec-
tioneerd), gaf Dirichlet de moderne definitie van een functie (als een toekenning van
een element van een bepaalde verzameling aan een willekeurige element van een an-
dere gegeven verzameling), definieerde Riemann de naar hem genoemde integraal,
construeerden Cantor, Heine, en Dedekind op verschillende wijze de reéle getallen (de
eerste twee als limieten van Cauchy-rijen, de laatste als de naar hem genoemde sne-
den),” en gaf Hilbert de moderne abstracte definitie van R (als een volledig geordend
en compleet lichaam), waar de constructies van Dedekind en Cantor-Heine voorbeel-
den van waren. Eind 19e eeuw gold dan ook niet meer de meetkunde maar de analyse
als het summum van wiskundige gestrengheid. Vrijwel alle colleges Analyse in de
wereld verlopen sindsdien op dezelfde manier: definitie van R, limieten, convergentie,
continuiteit, differentiatie, integratie, ... Er gebeuren nog steeds vreemde dingen, zoals
het bestaan van een continue functie die nergens differentieerbaar is, of een functie die
niet integreerbaar is, maar, hoe contraintuitief ook, kan dat blijkbaar allemaal volgens
de definities.

Dit had tot gevolg dat de analyse net als de Euclidische meetkunde op axiomati-
sche grondslag werd gevest. Daardoor werd de analyse een formele aangelegenheid,
waarbij aanschouwelijkheid, intuitie en toepassingen steeds minder belangrijk wer-

18. Voor een bondig overzicht daarvan zie bijvoorbeeld Victor J. Katz, A History of Mathematics: An
Introduction (Addison Wesley Longman, 1998). Uitvoeriger is H.N. Jahnke (Ed.), A History of Analysis
(American Mathematical Society, 2003).

19. De constructie van Heine en Cantor wordt behandeld in het college Getallen, maar voor de zeker-
heid: een rij (a,,) in Q heet een Cauchy-rij als er bij iedere ¢ > 0 (met ¢ € Q) een N € Nis zodat voor alle
m,n > N geldt |a,, —a,| < e. Twee Cauchy-rijen (a,,) en (b,,) heten equivalent als lim,,_, |a, —by| =0,
met andere woorden, er is bij iedere ¢ > 0 een N € Nis zodat |a,, — b,| < € voor alle n > N. Een reéel ge-
tal is ten slotte een equivalentieklasse van Cauchy-rijen in Q. De door Simon Stevin (1548-1620) in 1585
ingevoerde decimaalexpansie van een reéel getal kan worden gezien als een Cauchy-rij: bijvoorbeeld r is
(de equivalentieklasse van) de Cauchy-rij 3, 3.1, 3.14, 3.141, . . .. Soortgelijke constructies verschenen tus-
sen 1870 en 1880 tevens van Méray, Weierstrass, en Thomae. Een meer symmetrische maar equivalente
definitie volgens ditzelfde idee werd later gegeven door Brouwer, als volgt.

We noemen een r1ij ([an, by,]) van gesloten intervallen in Q een Brouwer-rij als [ay+1,bnt1] C [an,by] en
limy, 00 |an, —by| = 0. We verklaren twee Brouwer-rijen ([a,,, b,]) en ([a,, b),]) equivalent als lim,,_, » @y, —
a,| = 0 of lim,,_, |b, — b],| = 0 (deze condities zijn equivalent voor Brouwer-rijen). Een reéel getal is
dan een equivalentieklasse van Brouwer-rijen. Het idee is dat [a,, b,,] voor toenemende n steeds betere
informatie verschaft over het gezochte reéle getal. Zo kan m worden voorgesteld door de Brouwer-rij
3,4],[3.1,3.2], [3.14,3.15, [3.141, 3.142],, . . ..

Een Dedekind-snede is een paar (L,U)met L C QU C Q LUU =Q,LNU =0, enl < u voor alle
Il € Lenu € U. Als L een bovengrens b (in Q) heeft, of U een ondergrens o, dan staat (L, U) voor het
getal b resp. o in Q, nu gezien als deelverzameling van de de verzameling R van alle Dedekind-sneden.
Als dit echter niet het geval is, is de snede (L, U) een irrationeel getal in R. We kunnen 7 bijvoorbeeld
identificeren met de snede (L, U) waarbij L bestaat uit alle ¢ € Q zodat ¢ < a,, voor zekere n, terwijl
U bestaat uit alle r € Q zodat » > b, voor een bepaalde, met (a,) = 3,3.1,3.14,3.141,... en (b,) =
4,3.2,3.15,1.142, . . ..
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den. Een soortgelijke trend speelde zich in andere gebieden van de wiskunde af. Zelfs
de Euclidische meetkunde bleek niet perfect. Sommige definities (bijvoorbeeld van een
punt) waren onduidelijk en bepaalde bewijzen waren niet strict deductief vanuit de
axioma’s (maar gebruikten intuitie of waren zelfs ronduit onvolledig). Dit leidde tot
een nieuwe axiomatisering van de meetkunde door Hilbert (Grundlagen der Geome-
trie, 1899), waarin aanschouwelijkheid geen enkele rol meer speelt. Nog belangrijker
dan Hilberts verbeterde axioma’s en bewijzen was daarbij zijn eis dat begrippen als
‘punt, lijn, en vlak’ slechts een notatie zijn en net zo goed vervangen kunnen wor-
den door ‘liefde, wet, en schoorsteenveger’, zolang ze maar worden gebruikt zoals de
axioma’s voorschrijven.?’ Ook de meetkunde werd dus geformaliseerd. Ten slotte ont-
stonden nieuwe, realiteitsvreemde gebieden als algebraische rekenkunde, projectieve
meetkunde, lineaire algebra, algebraische logica, en differentiaalmeetkunde (met name
in willekeurige dimensies), waarvan de mogelijke toepassingen in ieder geval op dat
moment ver te zoeken waren.”

In de 19e eeuw vond aldus een ontwikkeling plaats die het aangezicht van de wis-
kunde voor altijd zou veranderen. Van Aristoteles en Euclides tot en met Newton en
Euler ging de wiskunde, ondanks haar abstractie, over de werkelijkheid en was zij
‘waar’. De Euclidische meetkunde beschreef de ruimte om ons heen, getallen kom je
overal tegen, en de analyse beschreef de natuur(kunde) of was tenminste concreet.
Nu, in de 21e eeuw (en gedurende het grootste deel van de 20e eeuw) zou niemand
het in zijn hoofd halen om in het bos naar een 10-dimensionale vector-ruimte of een
C*-algebra te zoeken. De wiskunde is autonoom geworden, en deze stap naar zelfstan-
digheid werd gezet in de 19e eeuw.*

De conclusie is dat wiskunde twee verschillende kanten heeft, die samen het vak vor-
men. De ene kant heet syntax: dit is een puur symbolische kant, die met een spel als
schaken te vergelijken is. Wiskundige uitspraken zijn dan bepaalde welgedefinieerde

20. Zo schreef Hilbert op 29-12-1899 aan Frege: “Ich will nichts als bekannt voraussetzen (...) Wenn ich
unter meinen Punkten irgendwelche Systeme von Dingen, z.B. das System: Liebe, Gesetz, Schornsteinfe-
ger ..., denke und dann meine sdmtlichen Axiome als Beziehungen zwischen diesen Dingen annehme,
so gelten meine Sétze, z.B. der Pythagoras, auch von diesen Dingen.” Dit was een reactie op een eer-
dere brief van Frege, waarin deze ten onrechte opmerkt dat Hilbert begrippen als punt en lijn bekend
veronderstelt, zodat hij het (in tegenstelling tot Euclides) niet nodig vond om ze expliciet te definiéren.
Hilbert zegt daarover zelfs: “Hier liegt wohl der Cardinalpunkt des Misverstandnisses.” Voor de Ne-
derlandse lezer: het kardinale misverstand bij Frege (overigens niet de minste), dat helaas nog steeds
leeft bij de medewerkers van het Freudenthal-Instituut in Utrecht die in de jaren "80 het zgn. ‘realisti-
sche” wiskundeonderwijs in Nederland hebben ingevoerd (later ‘contextrijk” geheten), is dat wiskunde
noodzakelijkerwijs aan de werkelijkheid gerelateerd moet worden en dat alle symbolen en constructies
dus ook echt bestaan. Het tegendeel is waar: op het niveau waarop de wiskunde zekere resultaten geeft
betekenen de symbolen juist helemaal niets, zoals Hilbert (maar voor hem al George Boole en Federigo
Enriques) zeer scherp inzag.

21. Later kwamen er volkomen onverwachte toepassingen van bijvoorbeeld de differentiaalmeetkunde
in de Algemene Relativiteitstheorie van Einstein (1915) en de van de lineaire algebra in oneindige di-
mensie (i.e. functionaalanalyse) in de kwantummechanica (1930). Zulke toepassingen zouden onmoge-
lijk zijn zonder het abstracte karakter van de moderne wiskunde.

22. Zie ]. Gray, Plato’s Ghost: The modernist Transformation of Mathematics (Princeton University Press,
2008).
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combinaties van symbolen; we zullen later precies zijn hoe dat werkt. Een voorbeeld
is 2 +2 = 5 (terwijl 2 + 2 = geen uitspraak is). Deze symbolen betekenen in eerste
instantie niets, hoewel het handig kan zijn als je er een bepaalde voorstelling bij hebt
(zoals bij het symbool P voor punt, L voor lijn, en V' voor vlak in de Euclidische meet-
kunde). Dan zijn er definities en axioma’s die de symbolen aan elkaar relateren (er is
geen stricte scheiding tussen definities en axioma’s). Stellingen zijn uitspraken die je
volgens bepaalde logische regels (die zelf eigenlijk ook weer keuzes zijn: er bestaan
verschillende logische systemen om wiskunde te doen) uit de axioma’s en definities af
kunt leiden, zoals 2 4- 2 = 4. Zulke stellingen zeggen (nog) niets over de werkelijkheid.

Het schaakspel geeft hier een nuttige analogie. Bord en stukken staan dan voor wis-
kundige symbolen, definities voor de loop der stukken, axioma’s voor de beginstand,
en algemene logische regels voor de spelregels. Een wiskundige uitspraak is analoog
aan een stand, in de zin van een willekeurige configuratie van de schaakstukken op
het bord. Een wiskundige stelling is een uitspraak die kan worden bewezen; zo is een
schaakstelling een stand die volgens de regels uit de beginstand kan ontstaan.

De tweede kant van de wiskunde heet semantiek: hierbij wordt de syntax op de een
of andere manier geinterpreteerd.” Je kunt de symbolen P, L, en V uit de abstracte
Euclidische meetkunde bijvoorbeeld interpreteren als punten, lijnen en vlakken in de
natuurlijke zin. Hierbij ga je er vanuit dat deze laatste ook echt bestaan. Zo'n interpre-
tatie is zinvol als de ‘echte” punten, lijnen en vlakken aan precies dezelfde axioma’s
voldoen als de abstracte. Vaak is dat maar bij benadering het geval. De stellingen op
syntactisch niveau erven de interpretatie van de symbolen en zeggen dan iets over de
werkelijkheid. Maar wat ze zeggen is meestal slechts een benadering, omdat de inter-
pretatie zelf al slechts een benadering was. Dit is precies wat Albert Einstein uitdrukt
met de volgende beroemde woorden:

“Voor zover de conclusies van de wiskunde met de werkelijkheid te ma-
ken hebben zijn ze niet zeker, en voor zover ze zeker zijn verwijzen ze
niet naar de werkelijkheid.”

Het college Inleiding in de wiskunde is een eerste kennismaking met de (logische) taal
van de wiskunde. Je leert deze taal in de meeste vakken gebruiken, en het tweedejaars
college Logica gaat dieper op deze taal in (en wie dan nog geen genoeg heeft van de
formele kant van de wiskunde kan in de master een vak als Axiomatische Verzamelin-
genleer volgen). Net als bij het leren van een natuurlijke taal geven we dus niet eerste
alle regels en gaan dan pas praten; het praten en de regels gaan hand in hand, en ieder
jaar kom je weer een stukje verder (dit proces gaat eigenlijk je hele wiskundige leven
door).

Veel plezier!

23. Logici bedoelen met semantiek meestal de interpretatie van een of andere syntactische theorie in de
verzamelingenleer; we gebruiken de term hier veel breder.



Propositielogica

“They who are acquainted with the present state of the theory of Symbolic
Algebra, are aware of the validity of the processes of analysis does not
depend upon the interpretation of the symbols which are employed, but
solely upon the laws of their combination.”

(George Boole, Mathematical Analysis of Logic, Preface)

De eerste stap in de axiomatische opbouw van welk gebied van de wiskunde ook is de
ontwikkeling van een geschikte logische taal. Dat is op vele manieren geprobeerd, en
we volgen in dit college de mainstream: eerste-orde logica (oorspronkelijk ontwikkeld
door Frege en anderen, en later door Hilbert en zijn leerlingen gekozen als de basis
van de wiskunde). Die zou in principe direct in volle glorie ingevoerd kunnen worden,
maar uit didactische overwegingen bespreken we in dit hoofdstuk eerst een op zichzelf
staand fragment daarvan, de propositielogica. Net als bij alle andere vormen van logica
is het bij de propositielogica de bedoeling om aan te geven wat:

e de notatie is (i.e. welke symbolen in de taal voorkomen);

o de regels zijn om welgedefiniéerde formules (wff’s) en vervolgens uitspraken
samen te stellen; in de propositielogica vallen deze samen (in eerste-orde logica
zijn uitspraken speciale formules).

e de axioma’s zijn (die als uitgangsspunten van bewijzen dienen);
e de deductieregels zijn (die formuleren hoe een correct bewijs verloopt);
e de regels zijn die bepalen of een bepaalde uitspraak (on)waar is.

De eerste vier punten heten de syntax en het laatste heet de semantiek van de axio-
matisering. We maken hier dus al een principieel verschil tussen bewijsbaarheid en
waarheid. Het eerste is een puur syntactisch begrip, te vergelijken met het correct vol-
gen van de regels van het schaakspel om zo een partij te spelen. Het tweede heeft te
maken met de interpretatie van het formalisme in de werkelijkheid. In de wiskunde
van Euclides tot ongeveer 1900 werd dit verschil (behalve wellicht door enige logici)
niet gemaakt en werd ook gedacht dat de begrippen waarheid en bewijsbaarheid het-
zelfde waren.

11
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We zullen zien dat de waarheid van een uitspraak geen absoluut begrip is, maar is ge-
definieerd ten opzichte van een bepaalde interpretatie van de uitspraak. In de proposi-
tielogica is een dergelijke interpretatie zeer eenvoudig, in de eerste-orde logica wordt
het al ingewikkelder. Een uitspraak in de propositielogica die onder alle interpretaties
waar is heet een tautologie (en omgekeerd heet een uitspraak die onder alle interpre-
taties onwaar is een contradictie). Een uitspraak heet een stelling of heet bewijsbaar
als deze in een eindig aantal stappen uit axioma’s kan worden afgeleid met behulp
van bepaalde deductieregels. Een tautologie is dus totaal anders gedefinieerd dan een
stelling, en toch zullen we zien dat een uitspraak een tautologie is desda zij bewijsbaar
is (het eerste diepe resultaat in dit college!).

2.1 Notatie

De notatie van de propositielogica bestaat uit twee groepen symbolen:

1. De zuiver logische symbolen zijn -, A, V, —, en L. Dit zijn de bekende af-
kortingen voor resp. niet, en, of, impliceert en falso, de altijd onware propositie.
Maar let op! De hier gegeven betekenis van de zuiver logische symbolen is in
principe niet nodig, omdat deze betekenis volgt uit de later op te stellen regels
voor het gebruik van de symbolen.

2. De niet-logische symbolen van een theorie in de propositielogica zijn vastgelegd
in een lijst of alfabet S = {pi, ps, ...}, ook wel geschreven als {p,q,r,...}. Deze
symbolen staan voor atomaire of elementaire proposities, die het eenvoudigste
voorbeeld zijn van uitspraken (zie volgende punt). Formeel is deze lijst S een
aftelbare verzameling, maar dat begrip moeten we nog officieel definiéren. Op
dit moment is het slechts belangrijk dat we willekeurig veel atomaire proposities
tot onze beschikking hebben (al wordt de lijst S soms ook eindig genomen).
Syntactisch zijn de p; slechts symbolen. Semantisch kun je ze binnen of buiten de
wiskunde interpreteren zoals je wilt, zoals bijvoorbeeld: p; betekent “7+5 = 12”
en p, staat voor “het regent” (en het is november).

3. We gebruiken ook haakjes (, ). Deze zijn soms (maar niet altijd!) overbodig als
we afspreken dat:
e — sterker bindt dan V en A;
e V en A op hun beurt weer sterker binden dan —.

Voorbeeld: p; — ps V ps is hetzelfde als p; — (p2 V p3), maar in (py — p2) V ps zijn
de haakjes noodzakelijk! De uitspraken of wff’s (i.e. welgedefiniéerde formules) van
de propositielogica, genaamd «, 3, . . ., of ¢, ¢ etc., zijn alle uitdrukkingen in de boven-
staande symbolen die als volgt tot stand komen:

i) Ieder niet-logisch symbool p € S is een uitspraak, evenals L.
ii) Als o een uitspraak is, dan is -« dat ook;

iii) Als a en j uitspraken zijn, dan zijn a A 5, a V 3, en a« — 3 dat ook.
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Dit is een iteratief voorschrift: als je regel ii) toepast op regel i) kom je bijvoorbeeld op
a = —p;, en dan kun je volgens iii) met zeg § = ps maken: « — [, oftewel —p; — ps.
En daaruit kun je bijvoorbeeld weer maken (—p; — p4) V ps, enzovoort. Let op: we
gebruiken het (niet-logische) symbool = hier informeel om een uitspraak een naam te
geven. De notatie & = —p; betekent dus: de uitdrukking —p; heet «, of wordt afgekort
als a.. Als logisch symbool treedt = pas op in de eerste-orde logica.

We noteren de (aftelbare) verzameling uitspraken (i.e. wft’s) over een alfabet S als
U(S); ook hier gebruiken we het begrip ‘verzameling’ nog informeel (denk gewoon aan
een lijst). lets geavanceerder kunnen we U(S) definiéren als de kleinste verzameling
met de volgende eigenschappen:

1. U(S) bevat alle atomaire proposities p; € S (oftewel: S C U(5));

2. L eU(S);

3. Alsa € U(S),dan —~«a € U(S);

4. AlsaeU(S)enp e U(S),dana A e U(S),aV e U(S),ena— € U(S).

We zullen verzamelingstheoretische symbolen als C later invoeren; S C U(S) staat
voor: als p € S, dan p € U(S). Let op! Dit is een implicatie buiten de syntax van de
propositielogica, zodat we deze iets formeler niet schrijven als p € S — p € U(S) maar
alsp € S = p € U(S). Eigenschap 3 kan evenzo worden geschreven als: o € U(S) =
—a € U(S), enzovoort. De logische regels voor het gebruik van = zijn wel hetzelfde
als voor — (die regels moeten we uiteraard nog geven!). Officieel zeggen we dat =
een symbool in de metataal is, dat is de taal waarmee we over de propositielogica
praten (die zelf dus ook haar eigen taal heeft, die we nu aan het ontwikkelen zijn).
Onze metataal is een combinatie van natuurlijke taal en af en toe een symbool als =-.
Ook de metataal kan volledig geformaliseerd worden, met als onderliggende logica
propositielogica (dit kan zonder in een vicieuze cirkel te geraken), maar dat gebeurt
zelfs niet in het vak Logica. Als je dit wel doet, krijg je zo iets als het volgende bewijs
van de uitspraak 1 + 1 = 2 uit Principia Mathematica van Russel & Whitehead (uit
1913), die zij noteren als:

%54 -43. F: ., fel.D:anpf=A=.aUpe2
Dem.

F.x54-26. DF:.a=/e.f=""y. D:aUBE2. = .0 #y.

[x51 - 231] =.teNidy=A.
[%13 - 12] =.anNf=A
- (1) % 11-11-35.
Fo.(Fr,y)a=le.f=1y. D:aUB 2. =.anf=A

F.(2).%11-54.%52-1. DF .Prop

13
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2.2 Semantiek en waarheid

We onderbreken nu de opbouw van de syntax en gaan verder met de semantiek van de
propositielogica (die namelijk straks de regels voor het bewijzen op puur syntactisch
niveau zal motiveren). De semantiek van de propositielogica is extreem simpel: het
maakt niet uit wat iedere atomaire propositie p; betekent, het maakt alleen uit of deze
waar is (of niet). Of dit zo is hangt af van de betekenis van p; en van de toestand in
de wereld (of in de wiskunde), en deze laatste geven we aan met v. Als p;, (met een
bepaalde betekenis) waar is in de toestand v, noteren we v(p;) = 1, en als p; onwaar is
schrijven we v(p;) = 0. Als p; dus staat voor “het regent” en het regent in toestand v,
dan geldt v(p;) = 1. Als p; staat voor “2 + 2 = 5” en v volgt de gebruikelijke regels van
de wiskunde, dan geldt v(p;) = 0. Zodra we dus weten wat iedere p; € S betekent en
tevens de toestand v kennen, hebben we een afbeelding

v:S = {0,1}, 2.1)

genaamd een valuatie op S. Als zuiver wiskundigen kunnen we gewoon uitgaan van
zo'n v zonder te denken aan betekenissen en toestanden. We zullen de notatie in (2.1)
later uitvoerig definiéren (het gaat hier om een functie), maar denk nu eenvoudig aan
een lijst waarden {v(p1),v(p2), .. .}. De notatie — in (2.1) is hoogst ongelukkig, omdat
dit symbool al binnen de propositielogica was gedefinieerd, maar het is niet anders: de
implicatie in logica wordt altijd als — genoteerd, en een functie altijd wordt geschreven
als f : X — Y, en dat terwijl deze twee pijlen niets met elkaar te maken hebben. Sorry!
Het punt nu is dat, gegeven v, ook de (on)waarheid van een willekeurige uitspraak
a € U(S) volgt. Het allereenvoudigste voorbeeld is: als v(p;) = 0, dan is v(—p;) =1, en
omgekeerd: als p; niet waar is, dat is niet-p; waar. Een ander voorbeeld is: als v(p;) = 0
env(pe) = 1, danis v(p; V p2) = 1, maar v(p; A p2) = 0. Alle mogelijkheden staan in de
volgende waarheidstabellen (de kolom onder <+ komt later aan bod):

ANV | =]

T 0O 0/0j0| 1 1
0 01 0O 1/,0|1|1 /0
10 1 0{0[1]0/0O0

1 11111

Deze tabellen worden als volgt gebruikt (waar a en 3 willekeurige uitspraken zijn):

e Voor iedere valuatie v geldt v(_L) = 0.
e Alsv(a) =0,dan v(—a) =1 enals v(a) = 1, dan v(—-a) = 0.
e Alsv(a) = 0env(f) = 0, dan v(a A B) = 0; als v(a) = 0 en v(f) = 1, dan

v A B) =0,
als v(a) = lenv(f) = 0, dan v(a A B) = 0, als v(a) = 1 en v(5) = 1, dan
viaAB) = 1.

e Alsv(a) = 0Oenv(f) = 0, dan v(a VvV ) = 0, als v(a) = 0 en v(B) = 1, dan
v(aVp) =1,

als v(a) = lenwv(B) = 0, dan v(a VvV ) = 1, als v(a) = 1 en v(5) = 1, dan
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vV p) =1.

e Als v(a) = 0env(f) = 0, dan v(a — 5) = 1, als v(a) = 0 en v(B) = 1, dan
vl = B) =1,
als v(a) = lenv(f) = 0,dan v(a — 5) = 0, als v(a) = 1 en v(f) = 1, dan
vl — B) = 1.

o Alsv(a) = 0env(f) = 0, dan v(ax <» B) = 1, als v(a) = 0 en v(B) = 1, dan
v(a > B) =0,
als v(a) = lenv(B) = 0, dan v(cx <» ) = 0, als v(a) = 1 en v(f) = 1, dan
v(a <+ p) = 1.

We kunnen dit ook een tikje anders (en handiger) opschrijven: tot nu toe waren —,
A, V, and — bedoeld om uitspraken o en 3 aan elkaar te plakken. Nu gebruiken we
dezelfde symbolen om de getallen 0 en 1 aan elkaar te plakken, volgens de regels die
uit de waarheidstabellen afgelezen kunnen worden, dus

-0=1; -1=0; (2.2)
0AD=0; O0A1=0; 1A0=0: 1Al=T1: (2.3)
OV0=0; OVli=1 1v0=1; 1VI1=1; (2.4)
0=0=1 0=1=1 1-0=0; 1—1=1. (2.5)

Nu kunnen we voor iedere uitspraak ¢ de waarde v(y) uitrekenen door de volgende
regels toe te passen:

v(Ll) =0; (2.6)
v(—a) = —v(a); (2.7)
v A B) = v(a) A v(B); (2.8)
vV B) = v(a) Vu(B); (2.9)
vl = B) =v(a) = v(B). (2.10)

Een paar voorbeelden illustreren wat hier wordt bedoeld en hoe je moet rekenen. Stel
@ = —p1 V po. Dan:

v(p) = v(—p1 V p2) = v(=p1) Vu(pe) = —0(p1) V v(ps). (2.11)

Stel nu dat v(p;) = 1 en v(py) = 0. Uit (2.7) volgt ~v(p;) = 0 en in (2.4) staat 0 V 0 = 0,
zodat v(yp) = 0. Met v(p1) = 0 en v(p2) = 0 komt er echter v(¢) = 1 (ga na). Nu geven
we een voorbeeld waarin slechts de implicatie — voorkomt. We willen weten of de
uitspraak

U= (p1 = (p2 = p3)) = (o1 = p2) = (p1 = p3)) (212)
waar is, gegeven bepaalde v(p1), v(p2), en v(ps); ga na dat de uitspraak (2.12) volgens
de drie regels i), ii), en iii) boven kan worden gemaakt! Net als boven vinden we:

v() = v((p1 = (p2 = p3)) = ((p1 = p2) — (Pr = p3))) (2.13)
=v(p1 — (p2 = p3)) — v((p1 — p2) — (P1 — p3)) (2.14)
= (v(p1) = v(p2 = p3))) = (V(p1 = p2) = v(p1 — p3)) (2.15)
= (v(p1) = (v(p2) = v(p3))) = ((v(p1) = v(p2)) = (v(p1) = v(p3))).  (2.16)

15
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Stelnu dat v(p1) = 1, v(p2) = 0, en v(p3) = 1. Dan volgt uit (2.5):

L (2.17)
v(p1) = v(p2) =0 (2.18)
1 (2.19)

Dit geeft
) =1—-1)—->0—-1)=1—-1=1. (2.20)

Formeel kunnen we dit soort berekeningen als volgt samenvatten:

Stelling 2.1 Iledere functiev : S — {0, 1} kan uniek worden uitgebreid tot een functie
v:U(S) — {0,1} die voldoet aan (2.6) t/m (2.10).

Het bewijs van deze stelling volgt formeel door inductie op het aantal symbolen in een
uitspraak ¢ € U(S), maar omdat we deze techniek nog niet behandeld hebben is het
voldoende om het idee te schetsen: voor iedere ¢ € U(S) bereken je v(¢) juist uit de ei-
genschappen (2.6) t/m (2.10) die hier vereist worden, en dat geeft een welgedefinieerd
en uniek antwoord.

Met (2.12) is iets bijzonders aan de hand, dat niet voor iedere uitspraak geldt: de uit-
spraak ¢ in (2.12) is altijd waar (i.e., voor alle keuzes van v(p;), v(p2), en v(p3))! Dit kun
je eenvoudig zelf nagaan. Sterker nog, als oy, as, a3 willekeurige uitspraken zijn (dus
niet noodzakelijk atomaire proposities), dan is ook

V= (a1 = (g = a3)) = (a1 = az) = (1 — a3)) (2.21)

altijd waar. Ook dit volgt weer op dezelfde manier, waarbij je in de bovenstaande aflei-
ding v(p;) steeds vervangt door v(«;), i = 1,2, 3. Voor dergelijke bijzondere uitspraken
bestaat een aparte naam:

Definitie 2.1 Een uitspraak ¢ die voor alle mogelijke valuaties v aan de atomaire pro-
posities py, pa, . . . die er in voorkomen waar is, heet een tautologie, notatie: F ¢. Omge-
keerd heet een uitspraak die voor alle valuaties v onwaar is een contradictie.

Zo is @ — « een tautologie, hoe a ook is opgebouwd uit de py, ps, . . .. Dit volgt direct
uit (2.5), want
vl — a) =v(a) = v(a) =1, (2.22)

aangezien v(a) = 0 of v(ar) = 1 en zowel 0 — 0 = 1l als 1 — 1 = 1. Contradicties
geven niets nieuws, want een uitspraak « is een contradictie desda de negatie —« een
tautologie is (en omgekeerd, zoals volgt uit (2.31) onder: « is een tautologie desda de
negatie —a een contradictie is). We krijgen heel veel tautologieén als we een nieuw
logisch symbool <+ invoeren door a «+ 3 te definiéren als afkorting voor

aef=(a—= PN B —a). (2.23)
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De al eerder opgeschreven waarheidstabel voor « is makkelijk na te rekenen (opgave),
bijvoorbeeld:
0<0=0—=0A0—=0=0A0=1. (2.24)

Hier is alvast een flink aantal tautologieén, waarvan die met < uiteraard ook waar
zijn met — in plaats van <+, en bovendien met < in plaats van <+, in de zin dat a <
hetzelfde betekent als 5 — «a.

Fa A B+ —(a— —p); (2.25)
Fa A B < —(-aV —p); (2.26)
FaV g < =(-a A —p); (2.27)
FaV (< -a— (2.28)
Fa — [ < —-aV S, (2.29)
Fa — [+ =(aN-p); (2.30)
F-—a < o (2.31)
FaV (—a); (2.32)
Fla = 8) < (08 — —a); (2.33)
Foa — (o — B); (2.34)
Fa — (=4 — =(a— B)); (2.35)
Fla = p) = ((ma—= §) = B); (2.36)
EB — (a— B); (2.37)
S8 (1= 8) = (B> ) = (8= ) (238)
F(-ma — —=8) = ((ha — B) = a); (2.39)
FlaA(a— b)) — f; (2.40)
Foa < (a — 1); (2.41)
Fa A -a+ L (2.42)
L - a. (2.43)

In al deze tautologieén zijn, «, 8, etc. willekeurige uitspraken, volgens de regels op-
gebouwd uit de p; € S, L, en de logische connectieven. Een abstracte tautologie als
1 — « staat dus eigenlijk voor oneindig veel concrete tautologieén waarin voor o een
concrete uitspraak wordt ingevuld.

Laten we ter afsluiting even ingaan in de verschillen tussen het gebruik van de logische
connectieven in de wiskunde en in de natuurlijke taal. Hier moet je erg mee oppassen!

e De conjunctie A (“en” ) heeft in de natuurlijke taal soms een tijdselement: ik
ga naar huis en zet thee. Dat tijdselement is er in de wiskunde niet: alles heeft
eeuwigheidswaarde!

e De disjunctie V (“of” ) heeft in de natuurlijke taal vaak een exclusieve betekenis:
de dood of de gladiolen. In de wiskunde is dit niet zo: volgens de waarheidstabel
dat oV 3 is ook waar als o en 3 beide waar zijn. Zie ook opgave 2.2.

17
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e De wiskundige implicatie — is het meest ongebruikelijk ten opzichten van de

natuurlijke taal, voor het feit dat « — (3 altijd waar is als « onwaar s, i.e. v(a) = 0
geeft v(a — ) = 1, onafhankelijk van v(5). Deze eigenschap maakt de uit-
spraak L — (3 een tautologie voor iedere /3, want v(_L) = 0 voor iedere valuatie
v. In de natuurlijke taal hangen a en 3 in a — [ meestal samen: “als ik harder
tiets, dan haal ik de trein.” Stel dat ik niet harder fiets, dan blijft deze uitspraak
waar, zoals in het wiskundige gebruik van —. Maar de uitspraak “als ik harder
fiets, dan kwalificeert Nederland zich voor het WK” is waar als ik niet harder
tiets, ongeacht of Nederland zich kwalificeert, en dat is vreemd. Sterker nog,
als ik niet harder fiets, is ook de uitspraak: “als ik harder fiets, dan kwalificeert
Nederland zich niet voor het WK” waar! Of: “als Nederland beter gaat spelen
en alle concurrenten voortaan alles verliezen, kwalificeert Nederland zich niet
voor het WK”. Deze uitspraak is wiskundig gesproken waar als Nederland juist
niet beter gaat spelen, maar in de natuurlijke taal is de uitspraak nooit waar, of
Nederland nu beter gaat spelen of niet. De wiskundige afspraak kan worden be-
grepen uit het volgende voorbeeld: “als n < 10, danisn < 100”. Deze moet waar
zijn ongeacht de waarde van n. Als n > 10 is het antecedent onwaar, maar de
uitspraak blijft staan, of n < 100 of niet. Uiteindelijk gaat het hier om een con-
ventie, maar deze blijkt heel handig te zijn (terwijl een andere waarheidstabel
voor — rampzalig zou zijn).

Inleveropgaven: 2.1a) en 2.2.

Opgave 2.1

a) Laat zien dat de uitspraak (2.12) een tautologie is.

b) Reken de waarheidstabel voor « na.

¢) Laat zien dat een uitspraak o <+ [ een tautologie is desda voor iedere va-
luatie v geldt: v(a) = v(B).

d) Laat zien dat (2.25), (2.28), (2.29), (2.32), (2.37), (2.38), (2.39), (2.40), (2.41)
tautologieén zijn.

Opgave 2.2

Je kunt een “exclusieve of” invoeren, genaamd V., door middel van
aVeB=(aVp)A=(aApb). (2.44)

a) Bereken de waarheidstabel voor V. en concludeer dat dit inderdaad de “ex-
clusieve of” is.

b) Stel nu dat « = p; = p, en 8 = —p; — py, waarbij p; betekent: “ik heb
(tussen mijn kaarten) een koning” en p, betekent: “ik heb een aas”. Stel dat
voor een bepaalde valuatie v de uitspraak « V. § waar is. Heb ik een aas of
niet?
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Opgave 2.3

De Sheffer stroke | (in de computerwereld vaak NAND genoemd) maakt uit
twee bestaande uitspraken « en /5 een nieuwe uitspraak |5 = —~(a A 3).

a) Geef de waarheidstabel van de Sheffer stroke.

b) Laat zien dat ~a < (a]a) en a V 8 < (o]a)|(B]|F) tautologieén zijn.

Opgave 2.4

1.

Er bestaat een voor de hand liggend maar interessant verband tussen proposi-
tielogica en elektronische circuits (ontdekt door Claude Shannon, volgens velen
de grondlegger van het informatietijdperk). Zo'n circuit heeft ruw gezegd als
doel om bij iedere mogelijke stand van n aan/uit schakelaars een lamp wel of
niet te doen branden. Het circuit bestaat uit drie soorten poorten, genaamd OR,
AND, en NOT, verbonden door draden: de OR en AND poorten hebben twee
ingangen en één uitgang, en de NOT part heeft één ingang en één uitgang.! Het
circuit als geheel heeft n ingangen p, t/m p,, dat zijn de aan/uit schakelaars,
en één uitgang, die de lamp voedt. Door alle draden gaat wel of geen stroom,
aangegeven met 1 resp. 0.; als p; aan staat geeft die stroom 1, en als hij uit staat
stroom 0, aangegeven met p; = 0 of p; = 1.

Een draad kan vertakken (opsplitsen) en bij vertakking houden alle takken dan
dezelfde waarde van de stroom. De schakelingen gedragen zich volgens de
waarheidstabellen van de bijbehorende logische symbolen: \ bij OR, A bij AND,
and — bij NOT (voorbeelden: als 1 in NOT gaat komt er O uit, als 1 en 0 in OR
gaat komt er 1 uit, enzovoort).

Er zijn nu twee soorten problemen. Het ene is om een circuit te bouwen dat bij
iedere mogelijke stand van de schakelaars een gegeven uitgangsstroom heeft.
Een klassiek voorbeeld is de wisselschakeling: deze verbindt twee schakelaars
(‘beneden’ en ‘boven’ ) met een lamp, die brandt als beide schakelaars aan staan
of beide uit staan, maar niet brandt als een van de twee aan staat en de ander uit.
Het andere probleem is om bij een gegeven circuit te bepalen of er stroom uit het
circuit komt, als functie van de waarden van de p;,. Om dergelijke problemen op
te lossen identificeren we iedere schakelaar met een atomaire propositie, iedere
poort met het bijpehorende logische symbool (het symbool — wordt hier dus
niet gebruikt), en het circuit C' met een uitspraak v uit de propositielogica. Bij
gegeven waarden van de p; komt er stroom uit C' desda v = 1. De wisselschake-
ling correspondeert bijvoorbeeld met de uitspraak

v = (=p1 A —p2) V (p1 A p2), (2.45)

en het bijbehorende circuit is

In diagrammen kun je de poorten desgewenst met een cirkel, vierkant, e.d. aangeven

19
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Wisselschakeling

a) Geef de waarheidstabel voor de uitspraak (2.45) en ga na dat dit circuit
inderdaad de wisselschakeling realiseert.

b) Geef een uitspraak en een circuit dat de volgende schakeling realiseert: er
zijn opnieuw twee schakelaars, maar nu brandt de lamp als één van de
twee aan is en de andere uit (en brandt niet als ze beide aan of beide uit
staan).

20
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2.3 Tautologieén en overbodigheid van logische symbolen
We beginnen dit intermezzo af met twee eenvoudige opmerkingen over tautologieén:

Stelling 2.2 1. AlsF aenF a — (3, dan F ( (semantische modus ponens).
2. AlsF a <+ 3, dan geldt: = o desda = (3 (interpretatie van het symbool <).

Dit volgt uit de waarheidstabellen van — resp. <». De aanname in het eerste lid is
v(a) = 1l env(a — ) = 1 voor iedere valuatie v, en volgens de tabel voor — is dit
alleen mogelijk als v(5) = 1, voor alle v. Daarmee is § dus per definitie een tautologie.
Voor het tweede lid geeft v(a <+ ) = 1 slechts de twee mogelijkheden: v(a) = v(3) =0
en v(a) = v(f) = 1. De informatie v(a) = 1 dwingt dus v(3) = 1 af, en omgekeerd.

Uit de lange lijst van tautologieén boven nemen we de volgende drie gevallen apart:

Fa A B+ =(a— —p); (2.46)
FaV p < (ma— f); (2.47)
Foa < (o — L1). (2.48)

Dit stelt ons in staat om de symbolen A, V, and — te elimineren en in principe dus alleen
met — en L te werken. Uit opgave 2.1 (c) volgt namelijk dat een uitspraak a <+ 3 een
tautologie is desda voor iedere valuatie v geldt: v(«) = v(f). Stel nu dat je v(p) wilt
bepalen via de rekenmethode die uitgaat van (2.2) t/m (2.10). Uit (2.46) volgt dat als
je v(a A ) tegenkomt, je hetzelfde getal (0 of 1) krijgt als wanneer er =(a — —f3) had
gestaan in plaats van o A 3. Analoog voor (2.47) en (2.48). Voor het berekenen van de
(on)waarheid van een uitspraak maakt het dus niets uit of er a A /5 staat of (o« — —f3),
en analoog voor de andere twee gevallen. Aangezien (in de propositielogica) de beteke-
nis van een uitspraak volledig ligt in haar (on)waarheid, te beginnen met de atomaire
proposities p;, kunnen we dus overal o A § vervangen door —(o« — —f3), enzovoort.
Hetzelfde zal straks gelden voor bewijzen. Daarmee kun je in principe propositielo-
gica doen met als logische symbolen uitsluitend — en L, en als dat handig is zullen we
dat ook vaak doen! Als er toch o A 3 staat, wordt dat als een atkorting beschouwd voor
—(a = =), waarbij - dan weer een afkorting is voor § — L (en analoog « V ), net
zoals we <« direct als afkorting hebben ingevoerd door middel van (2.23). Het symbool
< in (2.46) wordt dus de definitie van A, en analoog met V en —:

alp=-(a— —p); (2.49)
aVp=(-a—=pb); (2.50)
—a = (a— 1). (2.51)

Dit zul je in het dagelijks leven niet zo snel doen (probeer maar eens een gesprek te

i

voeren zonder “en”, “of”, en “niet”!), maar vooral in de theorie van formeel bewijzen
straks is het handig.
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24 Formeel bewijzen

Formeel bewijzen (wat Euclides en Newton e.a. dus enigszins halfhartig deden, maar
wat sinds ongeveer 1900 dankzij het werk van Russell, Hilbert, en andere grote wis-
kundigen goed begrepen is), behoort tot de essentie van de moderne wiskunde. De
regels daarvoor, die we nu gaan geven voor het eenvoudige geval van propositielo-
gica, kunnen als onderdeel van de “definitie’ van wiskunde worden gezien. We hebben
al opgemerkt dat de wiskunde een soort spel met spelregels is, en daar zijn de regels
voor formeel bewijzen onderdeel van. Deze regels zijn echter niet (zoals bij veel an-
dere spellen) willekeurig. We hebben al opgemerkt dat formeel bewijzen geen gebruik
mag maken van de betekenis van de symbolen (dit was in feite het grote inzicht van
Boole, Hilbert, en anderen). De opzet van een bewijs heeft in principe dus niets te ma-
ken met de valuaties v. Maar het volgende moet beslist vermeden worden: Stel dat een
uitspraak ¢ bewezen kan worden (we noteren dan: - ¢) en dat er een valuatie v is met
v(p) = 0. Dan zouden we een stelling hebben bewezen die in een bepaalde interpreta-
tie onwaar is! De wiskunde kan de tent dan wel sluiten, niemand vertrouwt ons dan
nog. Om dit te voorkomen moet een bewijsbare uitspraak dus een tautologie zijn:

Fo =F. (2.52)

N.B. Dit is een uitspraak over propositielogica, niet in propositielogica, en wat er staat
is niets dan een afkorting voor: als een uitspraak ¢ (volgens de nog op te stellen regels)
bewezen kan worden, moet ¢ een tautologie zijn, i.e. waar zijn onder alle valuaties v.
Deze eigenschap heet de gezondheid van de propositielogica. Het zou natuurlijk ook
mooi zijn als de regels voor bewijzen krachtig genoeg zijn om omgekeerd ook iedere
tautologie te kunnen bewijzen:

Fo =Fp. (2.53)

Deze eigenschap heet de volledigheid van de propositielogica. Als (2.52) en (2.53)
beide gelden, volgt dus dat een uitspraak bewijsbaar is desda deze een tautologie is:

o S Eo. (2.54)

Dit zal inderdaad het geval zijn, zodat de bewijsmethode van de propositielogica fei-
telijk perfect is. Let op: (2.54) wordt straks een stelling over propositielogica!

Formele bewijzen worden opgeschreven door gebruikte resultaten en aannamen naast
elkaar boven een streep te zetten, en de daaruit getrokken conclusie onder de streep
te zetten. Dit is puur een notatie, die je ook door een verhaal in woorden zou kunnen
vervangen. Het lastigste onderdeel is het invoeren van aannamen, die later in het be-
wijs weer moeten worden opgeheven. Als bovenaan de streep « staat, betekent dit dat
we « al hadden bewezen, bijvoorbeeld in een ander (deel van het) bewijs; we mogen
deze uitspraak dan steeds blijven gebruiken. Als er echter [a] staat, is o een aanname,
die later moet worden opgeheven. De regels voor formeel bewijzen zijn dan als volgt.?

2. Voorlopig hebben we nog geen axioma’s; we zullen (2.52) later aanpassen met axioma’'s.
3. Filosofische opmerking: uit deze regels volgt dat de pijl — zich gedraagt als een implicatie, i.e. als
een “als ...dan” operatie. Ludwig Wittgenstein zie zelfs over natuurlijke taal: “meaning is use”.
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We werken voorlopig alleen met — en L, waarbij —a een afkorting is voor a@ — L.

1. % (i.e. uit a volgt a: als je o« eenmaal hebt, mag je die steeds blijven gebruiken).

2. @ g mdl (genaamd —-Eliminatie of —E of (syntactische) modus ponens).
[a]
3. .-+ (—-Introductie of —I), met als speciaal geval: P
3 a— .
a— [

Hier is o niet een al bewezen uitspraak, maar een aanname. Zodra daaruit
is bewezen, dient o weer te worden opgeheven (door deze bijvoorbeeld door
te strepen of uit te gummen). De puntjes staan dus voor een bewijs van 3 uit
a en de conclusie @ — /3 kan verder in het bewijs steeds gebruikt worden; de
aanname a mag echter niet meer worden gebruikt zodra deze door de conclusie
a — [ is opgeheven! Het speciale geval volgt als de aanname « niet eens nodig
isom a — 3 te bewijzen (en dan ook niet achteraf hoeft te worden opgeheven).

4. i: (L-Eliminatie of LE, geleerd: ex falso sequitur quod libet).
[—a]

5. .-+ (RAA = Reductio Ad Absurdum = bewijs uit het ongerijmde).
4

(67

Voor de volledigheid geven we ook de regels voor de andere logische symbolen, indien
deze onafhankelijk worden gebruikt; dan heb je alle regels op één pagina. Deze regels
volgen uit de voorgaande en de definities (2.49) - (2.51), zie uitleg laten en opgaven.

a f ., aAp aApB N

6. N (A-Introductie) , , e 3 (A-Eliminatie);
o I} . aVp -« TR
7. oV B en—— 3 (\/-Introducﬂe),#(\/-E11m1nat1e),

[o]

8. .-+ (—-Introductie);

L
ie%
9. % (=-Eliminatie).
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De gang van zaken wordt hopelijk duidelijk uit voorbeelden. Een typisch bewijs bevat
meerdere aannamen (die allemaal op het eind opgeheven moeten worden!).

[o]
1. - a — a. Bewijs: o
a— o
Stap 1: regel 1;
Stap 2: regel 3. In deze stap wordt de aanname [a] opgeheven.

2. b — (o — (). Bewijs: a[i]ﬁ .
B—(a—p)
Stap 1: regel 3 (speciaal geval rechts);
Stap 2: regel 3 (geval links). In deze stap wordt de aanname [/5] opgeheven.

[a] [ao— 1]
3. Fa— Bewiis: -
. Fa— ——a. Bewys: =

a— ((a—1)— 1)

Stap 1: —-Eliminatie op de bovenste rij (modus ponens);
Stap 2: —-Introductie op de aanname [aw — L] (nu opgeheven) en _L;
Stap 3: —-Introductie op de aanname [a] (nu opgeheven) en (& — L) — L.

4 F(B—=(y—=9)—=>((B—v) —(B—0)). Here we go:

(5] [8 =]
v [8—= (v —9)]
)
5
B—0

(B—=7) = (B—9)
B—=(y—=0)=((B=7)—=(B—=9)

Stap 1: —-Eliminatie op [S] en [8 — 7].

Stap 2: —-Eliminatie op [B]en [8 — (v — J)].

Stap 3: —-Eliminatie op yeny — ¢.

Stap 4: —-Introductie op [3] (nu opgeheven) en 6.

Stap 5: —-Introductie op [ — 7] (nu opgeheven) en 8 — 4.

Stap 6: —-Introductie op [ — (7 — )] (nu opgeheven) en (5 — ) — (8 — 9).

5. F (= = —a) = (o — ). Dit is een leerzaam voorbeeld met RAA:

[—5] [-8 = —a] [o]
a— L
1
s
a— [
(8 = =) = (a = B)
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Stap 1: —-Eliminatie op [-8] en [-8 — —a] (N.B. ~a =a — 1).
Stap 2: —-Eliminatie op [a] en L.

Stap 3: RAA op [-5] (nu opgeheven) en L.

Stap 4: —-Eliminatie op [o] (nu opgeheven) en §.

Stap 5: —-Eliminatie op [+ — —a] (nu opgeheven) en o — .

Om de bewijsregels voor A en V en — af te leiden (uit die voor — en _L) is een nieuwe
notatie nodig. Stel I' = {a,...,®,} is een eindige lijst van uitspraken, en ¢ is een
uitspraak. We noteren I' - ¢ als ¢ kan worden bewezen uit de aannamen o, t/m «,

en de bovenstaande regels. Deze aannamen spelen de rol van axioma’s; we gaan daar
a

volgende week nader op in. De bewijsregel staat dus voor {a, 5} F a A 3,

A B
oftewel: {o, 8} F ((a — =) — L). Bewijs (ga zelf na welke regels zijn gebruikt!):
o B [a = =]
-3
1
(a > —=p) — L

Ten slotte merken we op dat de hier gegeven bewijsregels ook gelden voor de metataal,
i.e. het bewijzen over propositielogica wordt door dezelfde regels geregeerd als het
bewijzen binnen propositielogica! Met andere woorden, de metataal waarmee we (tot
nu toe) over de logische taal spreken, te weten propositielogica, is zelf eigenlijk ook
propositielogica, zij het niet geformaliseerd (hetgeen zoals eerder opgemerkt wel kan).

Opgave 2.5

Bewijs de volgende uitspraken:

F——a = a; (2.55)
Fla—=p) = ((8—=7) = (a=7); (2.56)
F oo — (o — f); (2.57)
F(a— B) = (7 = —a). (2.58)
Opgave 2.6
De notatie I' U {«} staat voor de lijst/verzameling I' = {a, ..., a,, a} (met ' =

{ou, ..., a,}). Leid uit de bewijsregels de volgende Deductiestelling af:

Stelling 2.3 I' - o« — S desdal' U {a} - f.

25



Concept: 7 september 2017

26

Antwoorden (2.58) graag zelf doen, geen tijd meer ):

[zo]  [mor— 1]

= RAA in tweede stap en opheffing van aanname —a.
o =«
[o] [a — 5]
p [ =]
g
a—

(B=7) = (a=7)
(=)= (=) = (a—=7))

1. —-Eliminatie op [a] en [& — (] en opschrijven aanname [5 — 7].
2. —-Eliminatie op S en [ — v].
3. —-Introductie op [¢] (nu opgeheven) en o — .
4. —-Introductie op [8 — 7] (nu opgeheven) en .
5. —-Introductie op [« — (] (nu opgeheven) en (5 — ) = (o — 7).
[a]  [a— 1]
€L
s
a—

—a = (o — f)

1. —-Eliminatie op de bovenste rij.

2. 1-FEliminatie.

3. —-Introductie op de aanname [a] (nu opgeheven) en 3.

4. —-Introductie op de aanname [—a] (nu opgeheven) en o — ).

Qp - Qy,
Bewijs Stelling 2.3: VLNR (=): gegeven bewijs voeg o toe en concludeer uit
a—f
aen o — 3 dat § (modus ponens).
Q-0 A Q- O [04
VRNL («=): gegeven bewijs heb je dus ook en daarmee met
B B

—1 de conclusie & — [ (onder opheffing van de aanname [a]).



