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Introduction

The constraints that arise from the ADM formulation of the Einstein equation are agreed to be both
crucially important and not fully understood. This thesis is a result of our struggle for understanding
the origin of their Poisson bracket relations that was proposed to emerge from a symmetry struc-
ture inherent to the initial value formulation by Weinstein, Blohmann and Fernandes in the paper
“Groupoid symmetry and constraints of General Relativity” [2]. We find this idea, as well as the
symmetry structure that they propose, very appealing. However, the analysis as presented there might
not be fully satisfactory for the following reasons:

1. There exist no general framework for diffeological algebroids, which inevitably led to a bit
sketchy character of some of the points of the analysis.

2. The diffeological structure that is put on the groupoid feels unnatural and does not make
it crystal clear that the bracket structure thus derived is really emergent from the groupoid
structure.

3. The resulting global structure of the algebroid, just like the general strategy of deriving
it, seems to us to be more complex than necessary.

We aim to make some improvements at all the points mentioned above. The approach that we describe
in details is sketched in the Appendix of [2], all the ideas that we present are basically already there.
We make some changes on the level of the diffeology and develop a detailed analysis through the
group of bisections. We aim to make the derivation conceptually and technically clearer and more
convincing which, in our view, was accomplished this way.

The first part of the thesis aims to improve the situation described in the first point above. We introduce
all the mathematical frameworks that we will use, beginning with a deep, yet elementary analysis
of the theory of diffeological spaces from the sheaf-theoretic point of view. This perspective is not
necessary for the future analysis but certainly helps to understand better the diffeological framework,
especially why it is so useful and efficient. There are no new claims here but all the detailed and
elementary proofs we invented ourselves. Such a self-contained and user-friendly exposition of the
subject is nowhere to be found except here. At the end of this section, we briefly introduce the two
different approaches to diffeological tangent spaces — the internal and external — and conclude that
our analysis is insensitive for this choice.

Next we introduce the concept of a groupoid, Lie groupoid and Lie algebroid and discuss the
generalisation to the diffeological setting, which is an interesting open problem. Since we are
mainly interested in an application of this framework to the symmetry structure described in [2]], and
we discovered that the task of filling this gap exhaustively is not something we could do on the side,
we only filled the gaps relevant for our analysis. The idea is, as suggested in the Appendix of [2]],
to define the diffeological algebroid through the group of bisections with the bracket being given
by the Lie bracket there. An equivalence of this perspective to the standard one was recently proved
for Lie groupoids on compact bases. It seems then a plausible path to take, although it is not clear
under what assumptions such a construction makes sense and leads to something which we would
like to call a diffeological algebroid. However, it does make sense for the case we are interested in —
the algebroid we get is a vector bundle equipped with a bracket and an anchor, just like for the smooth
case, with the only difference being that the base space is no longer a manifold but a diffeological
space. We leave the general case unsolved.

The second part is an application of the partly-developed framework of diffeological algebroids
to the groupoid structure described in [2]. After introducing the concepts and underlying their
importance, we present the groupoid of [2]] and take care of the second point above by putting
a different diffeological structure on the groupoid, which we find simpler and more natural.



Next, by a detailed analysis of the group of bisections, we confirm the choice of g-gaussian extensions
of vector fields defined on hypersurfaces as representing sections of the algebroid which, although
crucial for establishing the bracket structure, we did not find to be done very clearly in the original
approach [2]]. We hope to have thus improved the understanding of the origin of this structure,
certainly we clarified it for ourselves. We also provide a new reasoning pointing at the same
representation via the Lie algebra structure of the group of bisections. On the way, we may have
also provided an interesting link to the approach that Weinstein and Blohmann are sketching at the
end of [3]. There they develop a general theory of Hamiltonian Lie algebroids, still motivated by the
desire of understanding the dynamics of the Einstein’s theory. The diffeological structure of our
choice also simplifies the global structure of the derived algebroid, the approach we present is still
involved, but in our view more straightforward than the original one, which was our third goal. The
triviality of the algebroid bundle, mentioned but not proved in the original paper, is easily seen from
the point of view of our analysis.

We close by summarising what has been done and sketching some interesting lines of further
development of this approach. Among other perspectives, we describe the original motivation of Prof.
Klaas Landsman for looking into these structures — namely, to see if it could be linked to a quantization
framework based on integration of Lie algebroids that he developed in [12]].



Part I
Mathematical framework

In our view, the main purpose of Mathematical Physics is to provide the appropriate mathematical
frameworks for capturing theories of Physics in order to allow for better understanding of the theories
themselves and, ultimately, the physical reality they describe. We think of a framework as appropriate
iff it is capable to grasp all the physical notions that appear in the theory and allows for unambiguous
and precise reasoning with them.

However, what we are going to do here does not fall exactly in the scope of this definition — we aim
to provide an appropriate mathematical framework for providing a partial answer to a meta question
about the structure of a physical theory, namely the theory of General Relativity. The question can
be phrased as follows:

What is the origin of the bracket structure of the constraints of General Relativity?

The partial answer that we want to support and improve was given in [2]] where the authors put
forward a claim that an identical structure is given by the constant sections of an algebroid describing
diffeomorphism invariant deformations of space-like hypersurfaces in Lorentzian manifolds, which
can be derived from a groupoid that captures the global symmetry structure of the initial value
formulation of the Einstein equation.

As we will see, a mathematical framework powerful enough to not only encode this symmetry
structure, but also to support the analysis of the associated infinitesimal structure, i.e. appropriate for
the task, is that of diffeological algebroids. In this part we aim to introduce all the necessary concepts
and provide a sufficient technical and conceptual basis.

We begin by providing basics of the theory of diffeological spaces, which is one of the generalizations
of the manifold framework. The advantages of diffeological spaces over manifolds are, among others,
the simplicity of treatment of functional and quotient spaces — we will need both those features for the
smooth description of our groupoid. Next we dive into the analysis of the structural properties of the
theory of diffeological spaces, providing a detailed, self-contained and user-friendly description of
the sheaf-theoretic perspective on this framework, which is not directly needed for the analysis but
deepens the understanding of this tool.

In the second part we present the concept of a groupoid, Lie groupoid, and its associated Lie
algebroid, and push it a bit in the direction of diffeological algebroids, establishing the ground for
our future analysis. We discuss some perspectives and difficulties of developing a general notion
of a diffeological Lie algebroid, which is central to our task and to the best of our knowledge has not
been treated in the literature before.



1 Diffeological spaces

Diffeology, next to the theory of (very similar) Chen spaces, Frolicher spaces, Differential spaces
of Sikorski etc., is an extension of differential geometry. It was introduced by Jean-Marie Souriau
in 1979 and developed in a textbook [[10] by Patric Iglesias-Zemmour. More recently, topology
of diffeological spaces and different approaches to diffeological tangent spaces were developed and
summarized in the papers [[6] and [5]] by J.D. Christensen, E. Wu and G. Sinnamon. As nicely put
by Patrick [10]:

With a minimal set of axioms, diffeology allows the geometer to deal simply
but rigorously with objects which do not fall within the usual field of differential
geometry: quotients of manifolds (even non-Hausdorff), spaces of functions, groups
of diffeomorphisms, etc. The category of diffeological spaces is stable under
standard set-theoretic operations, such as quotients, products, coproducts, subsets,
limits, and colimits. With its right balance between rigor and simplicity, diffeology
can be a good framework for many problems that appear in various areas of physics.

Sharing his belief in a huge potential for applications of this beautiful concept in different areas
of mathematical physics, we aim to provide a relatively self-contained and accessible description
by introducing all the notions from the ground up and providing detailed and elementary proofs that
can not be found elsewhere.

First, we introduce the concept of a diffeological space as sets equipped with a specified set of smooth
parametrizations (plots) subject to the three natural conditions (smooth compatibility, covering and
sheaf conditions), describing along the way how manifolds fit into this framework. Next, we present
basic constructions that allow to naturally equip products, sub-spaces, quotients, functional spaces
etc. of diffeological spaces with their own, inherited diffeological structure.

Next, we switch to the the sheaf-theoretic perspective - after reflecting on the already discovered prop-
erties of the category {Diffeo} of diffeological spaces and smooth maps between them, we carefully
introduce the basic notions from the abstract sheaf theory. We then show how the category { Diffeo}
fits into this framework by proving its equivalence (Theorem to the category ¢Shcoy{Eucl}
of concrete sheaves on the Euclidean site modelled on the category {Eucl} of open subsets of Eu-
clidean spaces and smooth mappings. Having achieved that, we explore how the nice properties
of the category of diffeological spaces can be understood from this perspective.

Finally, we describe different kinds of tangent structures that can be associated to diffeological spaces
— again using the power of the Category Theory, we describe the concepts of an internal and external
tangent spaces and discuss some of their properties. We also introduce the very natural notion
of a diffeological infinite jet bundle. Even though it can be argued that Frolicher spaces or Differential
spaces are better suited to deal with the tangent structures — there is less confusion about how these
concepts should be generalized from the manifold framework — we find the richness of the theory
of diffeological tangent spaces not only interesting but also potentially advantageous.



1.1 Basics

We will now introduce the basic notions and constructions from the theory of diffeological spaces.

1.1.1 Definitions

In this paragraph, we would like to introduce the notion of a diffeological space and diffeologically
smooth map and explain how they can be understood as a generalization of a manifolds and smooth
maps between them. Let us begin with the definition of a diffeological space:

Definition 1.1. A parametrization of a set X is a map ¢ : U — X, where U is an open subset
of a Euclidean space R" of arbitrary dimension n € N.

Definition 1.2. A diffeological space, denoted (X,Dx) is a pair of sets, where X is the set we are
concerned with and Dy is the set of parametrizations of X, called plots, subject to the following
natural conditions:

i) Dx is closed under composition with smooth maps (smooth compatibility condition):

0:U—X, {f:U —-U}eC”(U,U) = {¢pof:U —X}e Dy,

ii) compatible plots defined on an open cover of an open subset of a euclidean space can
be (uniquely) glued together to give another plot (sheaf condition):

V{{¢;:Ui—=X}eDx,U=JUi}: ¢ilurw, = 9jlv,nu; 3{9:U =X} €Dx: oluy, =0 Vi,

iti) all constant maps are plots (covering condition):

o:Usu—¢(u)=x€X Yyey = ¢ €Dy,

We refer to the set Dx as a diffeology or a diffeological structure on X.

Definition 1.3. On any set X we can put one of the “extreme” diffeologies: the one that considers
all maps to X as plots, called the coarse diffeology, and the one for which the only plots are constant
maps - the discrete diffeology.

Very much like topology, diffeology can be generated:

Definition 1.4. Let .% denote some family of parametrizations of a set X. The diffeology
generated by F, denoted (F), is the finest (smallest) diffeology on X containing .7 :

(Z):= () Dx,

FCDy
where Dy runs over all the diffeologies on X.

Further, a diffeological structure does not require an underlying topology — it generates oneﬂ

Definition 1.5. The D-topology on a diffeological space (X,Dyx) is the finest topology making all
the plots smooth:

AcOp(X) & ¢ "(A)eoWU)V{p:U—-ACX}cDy,

where Op(X) denotes the set of all subsets of X that are Dy -open.

IFor the complete treatment of D-topologies we refer to [6].



Among other perspectives, the notion of a diffeological space can be regarded as generalization of that
of a smooth manifold:

Lemma 1.1. A manifolds becomes a diffeological space when plots are defined to be those
parametrizations that are smooth (in the manifold sense).

Proof. We will use small roman numbering to refer to the Definition [I.2] of a diffeological space.
A map f:R" DU — M to the m-dimensional manifold M is smooth (in the manifold sense) iff
for any local chart y : M DA —V CR™, the map y o f:U — V is a smooth (subsets of) between
Euclidean spaces. Constant parametrizations composed with charts give rise to constant maps, which
are smooth — this assures (i); composition of smooth maps between open subsets of euclidean spaces
(that arise after the composition with charts) is again smooth, which gives compatibility requirement
(ii); finally, compatible family of smooth maps f; : U; — M defined on an open cover | JU; = U gives
rise to a family of smooth maps x o f; : U; — V and hence can be uniquely glued to a smooth map
on the whole U and since this needs to work for any local chart, we get a smooth map f: U — M and
hence (iii) also holds. O

Definition 1.6. We call the diffeology described above the manifold diffeology.

From now on, we consider all manifolds as diffeological spaces equipped with manifold diffeologies.
Let us now have a look at the concept of a smooth map between diffeological spaces:

Definition 1.7. We call a function between diffeological spaces f : (X,Dx) — (Y,Dy) a smooth map,
denoted f € C*(X,Y), iff it takes plots to plots, i.e. it’s composition with any plot on the source space
gives a plot on the target space:

{f:X—>Y}eC?(X,)Y) & {fo¢p:U—Y}eDy V{¢p:U — X} € Dx.
Remark. Clearly, the identity map is always smooth.

Let us first acknowledge some nice properties of the smooth maps just defined:

Lemma 1.2. Smooth maps between diffeological spaces compose.

Proof. Let X % Yy —% 5 7 and ¢ € Dy. Since f is smooth, {fo ¢} € Dy. Hence, since g is

also smooth, we have {go(fo@) = (gof)o¢} € Dz and since ¢ was arbitrary, we get that go f
is smooth itself. O

Lemma 1.3. Smooth maps are D-continuous.

Proof. Let f € C*(X,Y), A € Op(Y). Since f is smooth, for any ¢ € Dy we have fo ¢ € Dy.
Further, since A is Dy-open, for any ¢ € Dx we have that (fo¢)~!(A) = ¢ !(f~!(A)) is open, and
hence, since ¢ was a plot on X, we get that f~!(A) is Dy-open. O

And back to the manifold example:

Lemma 1.4. Smooth maps between manifolds are precisely smooth in the diffeological sense, when
manifolds are considered diffeological spaces equipped with manifold diffeological structures.

Proof. Let f: M — N, where M and N are manifolds equipped with manifold diffeologies, and denote
by x and 7 the local charts defined on the neighbourhoods of x € M and f(x) € N, respectively.
Then, since y and ) were arbitrary, f is smooth as a map between manifolds iff y ! o f o] is smooth
as a map between Euclidean spaces. Now take a plot on M, i.e. amap ¢ : U — M such that y o ¢
is smooth (again as a map between Euclidean spaces). Moreover, let us assume that f o ¢ (U) fits into
the domain of 1. Then f is smooth as a map between diffeological spaces iff for each ¢ as above
we have that f o ¢ is a plot on N, and hence 1) o f o ¢ is a smooth map between Euclidean spaces. But
¢ = x ' oy o¢ and hence we can write o fod = (nofox ") o(xo¢). We now see that, that since



(x 0 ¢) is smooth, 170 f o ¢ is smooth iff (n o fox '), i.e. the requirements of manifold-smoothness
and diffeological smoothness are indeed equivalent. O

From now on, unless stated otherwise, we will use the term ’smooth map’ for maps between
diffeological spaces (including manifolds) that are smooth in the above sense. We also give C*(X,Y)
the universal meaning of diffeologially smooth maps.

Remark. When we put on the open subsets of euclidean spaces the manifold diffeology, plots on a set
X are precisely the smooth maps between diffeological spaces:

90:U—XeDxy & ¢cC°(U,X),
and hence there is no ambiguity in referring to plots as smooth parametrizations.

Two diffeological spaces are indistinguishable as such iff they are diffeomorphic — just like for
manifolds, we define:

Definition 1.8. Two diffeological spaces (X,Dx) and (Y,Dy) will be called diffeomorphic, denoted
(X,Dx) ~ (Y,Dy), iff there is smooth bijection with a smooth inverse between them. Such a map
is called a diffeomorphism.

Remark. Clearly, (X,Dx) ~ (Y,Dy) iff X Y and Dy Y, Dy, where by "=" means bijective sets.

1.1.2 Basic constructions

In this paragraph we describe the basic constructions concerning diffeological spaces. In particular,
we will explain how natural diffeological structures can be put on subsets, cartesian products, quotient
and functional spaces, as well as on coproducts, fibered products and pushout sets. We will also prove
the smoothness with respect to this diffeologies of the maps naturally arising in this contexts.

Definition 1.9. The subspace diffeology, denoted Dacyx, is given on a subset A C X of a diffeological
space (X,Dx) by taking plots to be those parametrizations which composed with the inclusion
i:A— X give plotson X:

{9 :U—A} €EDscx < {io9p:U—X}€Dy.

The subspace diffeology is simply the coarsest one for which the inclusion map is smooth. Naturally,
we have:

Lemma 1.5. The restriction of a smooth map to the subset is again smooth for the subspace diffeology.

Proof. Take a smooth map {f : X — Y} € C*(X,Y) and a subset i : A — X. The restricted map
fla : A =Y is smooth for the subspace diffeology iff for any plot ¢ € Dscx, we have f]40¢ € Dy.
Now, since f € C*(X,Y) and io ¢ € Dx, we have {fo(io@) = (foi)od = flac¢} € Dy. O

Definition 1.10. The product diffeology Dx «y is given on a cartesian product X X Y of diffeological
spaces (X,Dx) and (Y,Dy) by taking plots to be those parametrizations which, when composed with
projections, are plots on the factors:

O0:U—XXxY€EDyyy & myopeDx & nyo¢ € Dy,
where my and Ty are the canonical projections.

We see that the product diffeology is in turn the finest one making the projections 7y and 7y smooth,
and that the definition can be easily generalized to arbitrary finite products. Somewhat similarly,
we have a natural diffeological structure on a disjoint union:



Definition 1.11. The quotient diffeology is a diffeology Dy x) given on an image (X) of a surjective
function T defined on a diffeological space (X,Dx) by taking plots to be those parametrizations that
are given by composition of © with a plot on X:

¢0:U—n(X)eDyy) & ¢=moy, yeDy.

This is the coarsest diffeology making & smooth. Given an equivalence relation on a diffeological
space, the canonical projection 7 : X — X/ ~ provides the diffeology on the quotient space, which
the given name.

We can also easily define a diffeological structure on the space of smooth functions between diffeo-
logical spaces:

Definition 1.12. The functional diffeology is a diffeology Dc~(x y) given on a set of smooth func-
tions C*(X,Y) between two diffeological spaces (X,Dx) and (Y,Dy) by taking plots to be those
parametrizations for which the evaluation map is smooth:

0:U—=C*(X,Y) €EDe=ixy) & evyg:UxX =Y eC™(UxX,Y),

where evy : U x X 3 (u,x) — ¢(u)(x) € Y is the evaluation map and we consider the manifold
diffeology on U and the product diffeology on U x X.

As an illustration of the introduced notions, let us prove the following simple fact in details:

Lemma 1.6. The composition of smooth maps is a smooth map between functional spaces.

Proof. Consider {f:X — Y} €C?(X,Y) and {g:Y — Z} € C*(Y,Z) and equip the functional
spaces with the functional diffeologies just defined. The composition of smooth functions is a map:

C*(X,Y)xC*(Y,Z) > (f,g) = cmp(f,g) :=go f €C™(X,Z),

and we consider the product-functional diffeology on the domain and the functional diffeology on the
codomain. It is smooth iff for any plot ¢ : U > u > (fy,84) € C*(X,Y) x C*(Y,Z) the map:

cmpod:Uduw— g,of, €C°(X,Z)
is a plot on C*(X,Z). Now, ¢ is a plot on a product space, i.e. we have that both maps:
mo¢:Udu— f,€C(X,Y) & modp:Usdur—g,€C(Y,2)

are smooth, which because of the functional diffeology that we put on C*(X,Y) and C*(Y,Z)
translates to the smoothness of the relevant evaluation maps:

eVimopy U XX D (u,x) = fulx) €Y & evig,opy:U XY 3 (u,y) = gu(y) € Z.
Hence, since the composition of smooth maps is again smooth (Lemma|[I.Z), we get that the map:
eViempog} - UxX 3 (ux) = gu(fulx)) €Z

is smooth, which means precisely that cmp o ¢ is a plot on C*(X,Z). O

For the sake of completeness, let us also spell out how disjoint unions, fibered products and pushout
sets are also naturally equipped with inherited diffeological structures:

10



Definition 1.13. The coproduct diffeology Dx\y is given on a disjoint union X UY (coproduct)
of diffeological spaces (X,Dx) and (Y,Dy) by taking the plots to be those parametrizations that
locally factor through a plot in either X or Y, i.e. for every connected component U; C U of an open
subset of a Euclidean space we have:

{(P U —)XUY} eDxy & {H‘MEDX : (P’Ul- ZiXOl//,'} V {HniEDy : (MUI- = l'yOT",'}7
where iy : X — X UY <Y iy are the canonical inclusions.

This is the coarsest diffeology making the inclusions iy and iy smooth, and we see that plots
of coproduct diffeology on a disjoint union space are locally given along factors and that the
definition above can also be easily generalized to arbitrary finite coproducts. Let us first recall the
definitions of a fibered product and a pushout set:

Definition 1.14. Given two functions with the same codomain, f : X — Z and g : Y — Z, we define
the fibered product of X and Y via:

XxzY :={(x,y) eXxY: f(x)=g()} X xY.

A pushout set is a notion similar in some senseﬂ

Definition 1.15. Given two functions with the same domain, f:Z — Z and g : Z — Y, we define the
pushout set to be:
XUzY :=XUY/~,

where “~” denotes the following equivalence relation: x ~y iff 3,c7 such that f(z) =x and g(z) = y.

Combining the constructions already introduced, we can easily put diffeological structures on them:

Definition 1.16. We equip a fibered product set X X 7Y with the subspace-product diffeology, denoted
Dxx,v. This diffeological structure is referred to as the pullback diffeology.

Definition 1.17. We equip a pushout set with the coproduct-quotient diffeology, denoted Dx\,,y, and
refer to it as the pushout diffeology.

I'We will make this *sense’ precise in the next section, after introducing limits and colimits.

11



1.2 Sheaf-theoretic perspective

The category {Diffeo} of diffeological spaces and smooth maps is equivalent to the category of con-
crete sheaves on the Euclidean site (Theorem [I.T8). We find this perspective not only very appealing
but also enlightening. The language of sheaf theory we are going to introduce, allows to see the
concept of a diffeological space in a different light. Especially, the nice properties of {Diffeo}
that we have seen can be more deeply understood when we adapt this perspective. After carefully
introducing general concepts, we aim to simplify things by making them explicit, providing detailed,
elementary proofs and always looking for an optimal way of presentation. Our purpose is, except
deepening our own understanding of this beautiful concept, to produce a relatively self-contained and
comprehensible presentation of the theory of diffeological spaces with some didactic flavour. We refer
to [1] for a slightly more complete treatment and to the relevant articles on nlab that we found very
useful while writing this section.

1.2.1 Categorical preliminaries

While introducing basics of the Category Theory, we will also provide some important examples
to be used later on and establish some notation. Let us start from the very beginning:

Definition 1.18. A category € = {%y,€\} is a basic mathematical structure that consists of a set
of objects 6y and a seﬂ of arrows €\ connecting them, subject to the following conditions:

i) arrows that meet can be composed (closedness of composition):
gof

Vf,g € : AL>BL>CH(gOf)€<€1: AT>BT>Cc0mmute,

ii) order of composition does not matter (associativity of composition):
folgoh)=(fog)oh,
iii) for each object C € € there is an identity arrow Idc, pointing from C to itself, such that:
V{A-—LsCy: ldeof=f, & V{C-—25BY}: golde—g.

Remark. We will use the terms arrow and morphism interchangeably. By a diagram in 4’ we mean
a drawing with objects of & represented (usually) by capital Latin letters and arrows representing
morphisms between them, usually 'named’ with the use of small Latin letters. We also introduce
the notation ¢’ (A, B) for the collection of all morphisms in 4] from A € % to B € 6. In Category
Theory, we consider two arrows f, f' € € (A, B) to be the same, denoted f = f”, iff the diagram:
/!
A= B

commutes, i.e the arrows f and f’ can be interchanged in any diagram in % with no effect, and thus
are indistinguishable in the realm of the category % ’. Inherent in the category structure of € are two
projections s,z : 1 — %y called the source and target projections, that take an arrow to it’s starting
or ending point, respectively:

f

oA > {A B} —— Bc %,

e.g. two arrows, f and g, can be composed to (go f) iff t(f) = s(g).

'In general, neither % nor %) are assumed to be sets, but merely proper classes. However, we do not need
such a level of generality for our purposes. A category as we define it is usually called small.

12



Many interesting categories consist of objects that are sets, or sets with some additional structureE]
and arrows that are just maps preserving this structure and forming a set that is closed with respect
to the (associative) composition and contain the identity functions. Let us here give some examples
of those that we will be referring to later on and introduce some notation:

{Set} denotes the category of sets and functions,

{Vect} denotes the category of vector spaces and linear maps,

{Mfid} denotes the category of manifolds and smooth maps,

{Diffeo} denotes the category of diffeological spaces and smooth maps.

As we have seen in the previous section, given a pair of diffeological spaces we can form a third one
with the cartesian product or a disjoint union as the underlying set with a relevant, canonical diffeo-
logical structure, and that this construction generalizes to arbitrary finite products and coproducts.
We say that the category {Diffeo} has finite products and coproducts.

We have also seen that the set of smooth functions between any two diffeological spaces is also
naturally equipped with a canonical diffeological structure — the functional diffeology. We say that
{Diffeo} is closed. The diffeological space C*(X,Y) is called the exponential object of (X,Dx) and
(Y,Dy). A category that is closed and has finite products, e.g. {Diffeo}, is called cartesian closed.

Last but not least, we have shown that a diffeological structure is naturally inherited from a diffeolog-
ical space on any quotient space.

Notice also that there is a distinguished one-point diffeological space — indeed, there is only one way
in which we can equip the one-point set with the diffeological structure, namely by declaring all
of the functions from the open subsets of Euclidean spaces into {x} to be plots. Notice, that in this
degenerate case the coarse and discrete diffeologies coincide. This diffeological space has a property
that for any other one (X,Dyx) the is a unique function !y : X — {*}, which is trivially smooth since
every parametrization into {x} is a plot. Such an object in a category — with a unique arrow from any
other object — is called a terminal object.

We also have another distinguished diffeological space with a similar property — the one modelled
on the empty set. Indeed, since there are no maps into the empty set @, there is only one way we can
make it a diffeological space, namely by declaring Dy := 0, i.e. there are no plots on (. All the axioms
are then trivially satisfied, and since there is always a unique function from 0 to any diffeological
space — the empty function, since there are no elements in () — which is trivially smooth since there
are no plots on @. Such an object in a category — with a unique arrow to any other object — is called
an initial object.

The category {Mfld} deals relatively well with products — we have a natural manifold structure
on cartesian products of manifolds — but it fails to simply include the other derived spaces:

(a) The disjoint union of two manifolds M LI M, is naturally a manifold itself iff they have the
same dimension: dim(M;) = dim(M,).

(b) The theory of infinite-dimensional manifolds is rich and difficult, it’s often far from obvious
if a given functional space is a manifold or not (and in which sens this question should
be conveniently considered) [citation].

(c) The quotient space M /G, where M is a manifold and G a Lie group is a manifold iff the
action of G on M is free and proper [citation].

Thus we see that the category {Diffeo} has many structural advantages over the category {Mfld}.
Indeed - the simplicity in which it deals with functional spaces and quotients is precisely the reason
for which it will be a convenient framework for our purpose.

UIf such a category admits an object formed on the one-point set, we call it concrete.
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As a next step towards the theory of sheaves we introduce the concept of a functor, which can
be understood as a map between two categories respecting their structures. But before doing so, let
us introduce a few more example of categories that will enrich our exposition and will be of future use:

Example 1.7. A group (G,-) can be understood as a category ¥, called a group category, with one
object, i.e. 9 = {x} and arrows from it 1o itself corresponding to each if the group elements. The
identity arrow 1d, corresponds to the group identity e € G, associativity and closure conditions being
already present in the definition of a category. Notice also, that because of the group structure each
arrow has a two-sided inverse. Groups are then one-point categories with all the arrows invertible.

Example 1.8. By {Eucl} we will denote the Euclidean category with open subsets of Euclidean
spaces as objects and smooth maps between them as arrows. It can be seen as a full sub-category
of the category {Mfld}, meaning that its objects are manifolds and morphisms are precisely the
smooth maps between them.

Example 1.9. Any topological space (B, ) defines a category, denoted by 9B, with open subsets
of B as objects: BBy = O'(B), and arrows given by inclusions: U —V € %, iff U C V. Closedness for
composition follows since the inclusion is transitive, associativity is obvious and we have identities
since U C U always.

Definition 1.19. Given two categories ¢ and 7 a functor F : € — 9, is a pair of parallel maps:
F={F:% — %, F:6 — %},
such that the image of any diagram in € is a diagram in 9, i.e. F:
i) respects the source and target projections: s(F1(f)) = Fo(s(f)) & t(F1(f)) = F(t(f)),
ii) is compatible with the composition: Fi(go f) = Fi(g) o Fi(f),

where by the abuse of notation we denote by s, t and ” o’ the source projection, target projection and
composition, respectively, of both categories.

Remark. The first requirement means that for all A, B € 6 and any f € €' (A, B) we have:
F: {4 15 B} — (R@) Y RB).
Remark. Tt follows that F' respects the identity morphisms: Fy (Idc) = Idg,(c).-
Example 1.10. We always have the identity functor, which sends each object and arrow to itself.

Example 1.11. We can think of a functor that sends sets with some additional structure to simple
sets and special maps preserving the given structure to themselves, e.g. U : {Vect} — {Set}. This
is an example of a forgetful functor, i.e. one that ’forgets’ part of the structure.

Example 1.12. A group homomorphism h: (G,-) — (H,*) is the same thing as a functor 4 — €.
Indeed, the requirement h(g-g') = h(g) *h(g') for g,g' € G can as well be understood as the second
condition on the arrows that represent g and g' in 9, first one being trivial since both the categories
have only one object. This is a perfect example of a functor that simply respects the categorical
structures.

Example 1.13. We have a functor {Eucl} — {Mfld} that reinterprets open subsets of Euclidean
spaces as special kind of manifolds. Similarly, we have a functor {Mfld} — {Diffeo}, which
understands manifolds as special diffeological spaces. This are examples of inclusion functors.

A functor as defined above is sometimes called covariant to distinguish between another class of very
natural objects:

Definition 1.20. Given two categories € and 2 a contravariant functor F : € — 9, is a pair
of parallel maps:

F={F:% — %, Fi:% — 2},

such that the image of any diagram in € is a diagram in 9 with reversed arrows, i.e. F:
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i) switches the source and target projections: s(Fi(f)) = Fo(t(f)) & t(Fi(f)) = Fo(s(f)),

ii) is compatible with the composition (of reversed arrows): Fi(go f) = F1(f) o Fi(g).
Remark. The first requirement now means that for all A, B € %) and any f € € (A, B) we have:

F
F: {4 5B o {Ra) & ke

Remark. A contravariant functor ¢ — 2 is the same thing as a covariant functor €°? — &, where

®°P denotes the category constructed from % by reversing the direction of all of the arrows, which

is the same thing as switching s for 7 and vice versa.

1.2.2 Sheaves on sites

We are now ready to present the archetypal sheaf that will serve us an illustration and motivation
for the more general concept that we are going to develop in this paragraph. Consider a sheaf
of continuous functions on a topological space:

Example 1.14. Given a topological space (B, J) we define a contravariant functor F : B — {Set},
or equivalently a functor €°P — {Set}, called a sheaf of continuous functions on B, that assigns
to any open subset U € O (B) the set F(U) of continuous real-valued functions defined on U, and the
restriction map lyy : F(V) > f — flu € F(U) to each of the arrows U — V in 2, i.e. inclusions
U CV. We see, that reversing the arrows is the most natural thing to do in this kind of a situation.
It can be pictured as a diagram:

U%V

ok

FU) <% Fv)
For the second requirement, let us take U CV CW and F € F(W) = C*(W,R). Composi-
tion of this chain of inclusions is simply the inclusion U C W, so F takes it to the restriction
lwu: F(W) — F(U). If we apply the functor to the inclusions separately and compose afterwards
instead, we get a composition of restrictions |w,yo|vy, which is the same thing since (f|v)|v = flu.

Let us now point out an important property of the sheaf defined above. Consider an open cover
U = |; U; of some U € O(B) together with a family of continuous functions f; € F(U;) that are
compatible on the intersections — such a collection will be called a compatible family:

Definition 1.21. Given an open subset U € O(B) with an open cover U = |J;U; we call a family
of continuous functions F = {f; : Uy — R | i € I} a compatible family iff:

filvnw; = filuiow;, Vi

It is an elementary property of continuous functions, that such a compatible family can be glued
together to give a continuous function on the whole U. We will refer to this as the gluing property
and call such a glued function f € F(U) an amalgamation of the compatible family:

Definition 1.22. Given an open subset U € O'(B) with an open cover U = | J; U; and a compatible
family & ={f; : Uy — R | i € I} we call the function f € F(U) an amalgamation of F iff-

flu; = fi Vi

Moreover, the gluing has a unique outcome: given two functions f, f' € F(U), we know that if they
agree on each of the members of the covering, they need to agree on the whole U. The elements
of F(U) are then defined locally with respect to the topology on B - this is called the locality
property. Together, they give that the amalgamations as above not only exist but are unique:
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For every covering U = |J;U; and a compatible family F = {f; € F(U;) | i € I} there is a unique
amalgamation f € F(U) of .Z.

We will refer to this as the sheaf property. It can be understood as follows: elements of F(U) for
the sheaf F : 28 — {Set} on any object U € %, is fully determined by their compatible values on any
covering of U.

The functor just described can be generalized in different directions. Firstly, we could consider
functions to be only k-times differentiable or merely continuous, and so on. As a next step, we could
give up on thinking of elements of F(U) as functions at all and consider them as abstract elements
of sets that are assigned to open subsets of B instead. However, we would probably like to put some
extra conditions on such a generalized object to assure that the nice property described above still
hold, in a more abstract sense. Indeed, this will be the defining property distinguishing sheafs from
more general class of objects called pre-sheafs. Finally, we can also try to generalize this concept
so that it makes sense for a broader class of categories than just those that come from topological
spaces. This is the plan, so bear with us! More concretely, we are going to:

1) Define a pre-sheaf on a general category, forgetting about topological spaces and functions
2) Generalize the notion of an open covering to a general category by introducing sites{l-]

3) Define sheaves in this general setting

4) Show how a diffeological space can be understood as a concrete sheaf on a site of {Eucl}

5) State and prove the equivalence of categories {Diffeo} and the category of those sheaves
Definition 1.23. A pre-sheaf F on a category € is a functor from the opposite category to {Set}, i.e.:

F:¢° - {Set}.

Simple as that. Notice here, that we have a natural notion of sub-presheaf. Indeed, given a pre-sheaf
F : €°P — {Ser} we can think of a sheaf H which sends objects of € to the subsets of the sets that
are assigned by F and respects the arrows:

Definition 1.24. A sub-presheaf H of F : €°P — {Set}, denoted by H C F, is a pre-sheaf on € sat-
isfying:
H(C) CF(C) Yeew,, H(f)=F )|y Yrevno)-

Now, all we need to do in order to state the sheaf property in the more general context is to generalize
the notions of an open cover, a compatible family and an amalgamation.

There are various ways to generalize a notion of an open cover to an arbitrary category, the
Grothendieck topology being probably the most classical and widely used one. However, we find the
notion of a coverage [16] advantageous for the following reasons:

1. it is simpler and easier to introduce — there is only one condition that we need to impose
on the coverings and no additional notionsE]

2. it is more natural as a generalization of the topological notion — taking the standard open
covers constitute a coverage for %, which is not the case for the Grothendieck topologyE]

I'We actually do not need the full generality as on out category the notion of an open cover is very natural
and we feel that does not necessary need to be that strongly supported. Hence, the reader not interested in the
general theory of sheaves (what a pity!) is welcome to skip this part and move directly to the Definition

2Grothendieck distinguishes covering sieves and imposes three conditions in his definition. See also [14]
and [11].

3Sieves are by definition downwards-closed while topological coverings very well might not be.
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and yet it gives rise to a Grothendieck topology and moreover defines the same sheaves [1]. We will
then use the concept of a coverage to define sites, and later sheaves.

Let us denote the collection of open covers of U by Cov(U). In terms of sets, we write U = |J; U; and
require all the U;’s to be open. However, if we want to free ourselves from the context of topological
space, we need to focus on the properties that are natural in the categorical context, i.e. on the arrows,
and forget about set-theoretic operations. Notice first that since an open cover of U is a family
of open subsets of U, for each U; we have an arrow U; — U in 4. As a property distinguishing
a covering Sy ={U; € O(B) | i€ 1, |J;U; =U} € Cov(U) from an arbitrary collection of open
subsets of U we can choose the following: for any open subset V C U, we have the intersection
SynNV ={U;NV | i€ I} that covers V. In other words, for any Sy € Cov(U) and V C U we have
Sy NV € Cov(V). Clearly, since U is open itself, if the above holds it follows that Sy covers
U. Moreover, for each element U; NV of the covering Sy NV we have a natural inclusion U; NV C U;.
The idea is now to reformulate this property in terms of arrows in %, alone, i.e. without referring
to the set-theoretic intersection, and treat it as an essential characteristic of the notion of an open
cover. Writing g*(Sy) for Sy NV and V; for U; NV, the above property may be then formulated
in abstract terms as follows:

For any covering Sy € Cov(U) and a subset g : V C U there exist a covering g*(Sy) € Cov(V)
such that for all of its members {iy : V; C V} € g*(Sy) we have a member of the original covering

vi v,

{i:U; CU} € Sy and an inclusion f; : V; C U; such that goi, = io f;, i.e we hav Jiv Jf .
v —~*5uU

We call ¢g*(Sy) a pull-back of Sy along g and refer the above property as stability under pull-

back. Now, equipping an arbitrary category with a coverage is nothing but declaring which of the

families of morphisms we consider to be covering. Since the characterization above generalizes
straightforwardly to an arbitrary category [16], we can simply define:

Definition 1.25. A coverage on a category €, denoted by Cov, is a pull-back stable assignment

of a collection Cov(C) of families of morphisms into C to each of the objects C € %y, i.e. we have:
A

V{Sc € Cov(C), g:A—C} 3g*(Sc) € Cov(A) :Vjeg"(Sy) 3{i;€Sc.fi€6i}: l" J,._,. .

A—t.cC
Elements of Cov(C) are called coverings of C, a pair (€ ,Cov) is called a site.

Remark. The category 2 is naturally a site if we declare coverings to be the usual open covers.

Now, when we know what means for a family of morphisms in a site to be covering, we are almost
ready to state the condition for a presheaf on (¢,Cov) to be a sheaf. But first, because we decided
to forget about functions, we need to state what means for a family of elements x; € F(C;), where
F is a pre-sheaf on € and C; € % for all i, to be compatible. Again, we need to get rid of a set-
theoretic operation of intersecting elements of an open cover that appear in the definition of a covering
family in the context of Z. The idea here is to exchange the requirement that the elements of the
family agree on all intersections of the members of a covering for the equivalent one, namely that
they agree on all of their common subsets:

Definition 1.26. Given a pre-sheaf F : € — {Set} on a site (¢,J), a compatible family for a covering
{i:Ci—C | iel} €Cov(C) isacollection of elements x; € F(C;), such that for any pair of morphisms
ai:A—Ciandaj:A— Cjwithioa; = joaj we have Fi(a;)(x;) = Fi(a;)(x;) € F(A).

'We believe that only the commutative diagrams are worth drawing, and hence do not indicate the commuta-
tivity in any way.

17



Remark. The pair of morphisms in the above definition corresponds to a subset of an intersection
of U;NUj, while Fi(a;) and Fy(a;) are the relevant restrictions.

Just like for a sheaf of continuous functions, we define an amalgamation of a compatible family:
Definition 1.27. Given a pre-sheaf F : € — {Set} on a site (¢,Cov) and a compatible family
x; € F(G;) for a covering {i: C; — C | i € I} € Cov(C), is an amalgamation of x; € F(C;) an element
x € F(C) such that F\(i)(x) = x; for all i.

Finally, we define sheaves on (%,Cov) to be those pre-sheaves that satisfy the sheaf property:
Definition 1.28. A pre-sheaf F : €°P — {Set} on a site (€¢',Cov) is called a sheaf iff it satisfies the
sheaf property, i.e. for any covering {i: C; — C | i € I'} € Cov(C) and a compatible family x; € F(C;),
there always exists a unique amalgamation.

1.2.3 Category of diffeological spaces as a sheaf category

We are really close now to being able to see that a diffeological space is actually a sheaf on a site,
and how the smooth functions can be understood from this point of view, which is the focus of this
paragraph.

The site we are interested in is formed on {Eucl} — the category of the domains of the plots, which
is in a way very close to being a topological space: each object U € {Eucl}, is an open subset
of a Euclidean space, U C R" for some n € N, and hence admits a natural notion of an open cover
coming from the topology on R":

Definition 1.29. Since the inclusions are smooth, we can define a coverage on { Eucl}, end hence the
Euclidean site, by simply declaring the coverings for R" O U € {Eucl}, to consist of the topological
open covers of U in R".

Lemma 1.15. The coverage on {Eucl}, as just defined, satisfies the pull-back stability requirement.

Proof. Let’s fix U,U’ € O(R"), an open cover {U; | i € I} € Cov(U), i.e. a collection of open
subsets of U such that U = |J,; U;, and a smooth function g : U’ — U. We can define the pull-back
of {U; | i € I'} along g to be:

g{Uilien})={g'(Uy)|iel}.

They are open since g is smooth and hence continuous and U;’s are open. They cover U’ because it’s
a domain of g and U;’s cover the whole U. The maps j and f; from the Definition [I.25]are constructed
as follows: f; := g|,-1(y,) and j is the inclusion g N U cu. O

A diffeological space is defined as a ser X equipped with some additional structure. If it is about
to correspond to a sheaf, the set itself has to be a part of its definition. Notice first, that the objects
of {Eucl} have an underlying structure of sets — they are subsets of Euclidean spaces. Moreover,
a one-point space {*} = R’ is clopen and hence an object of the the catego {Eucl} — it is its
terminal object. We call such a category — with objects formed on sets and admitting a terminal object
on the one-point set — concretdﬂ For any concrete category % and a fixed set X, we have a very
naturaﬂ pre-sheaf on % which assigns to each object the set of all functions from its underlying set
to X and the pre-composition operation to the morphisms:

IThis is compatible with the convention that the one-point space is a manifolds.

2There is some ambiguity in defining the notion of a concrete category, a concrete site and a concrete
pre-sheaf — namely in the place where we put the requirements connected to the terminal object. However,
it does not matter for the notion of a concrete sheaf, which is the object we are really interested in.

31t is almost the same notion as that of a contravariant Hom functor, the difference being that the sets
of arrows are taken in {Set}, and not as usually in the category itself.
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Fx - P — {Set}
C s {Set}(C,X),
{g:C' = CY— {_og:{Set}(C,X) — {Set}(C',X)}.

We already see that when applied to { Eucl} this gives all functions from open subsets to our chosen
set, i.e. all possible parametrizations. Lets then take a look at something smaller:

Definition 1.30. Given a set X, a concrete pre-sheaf Dy : €°P — {Set} on a concrete category
€ is a sub-presheaf Dx C Fx that agrees on the terminal object € to X, i.e. Dx ({*}) = FX({*})EI

Remark. Notice that, since points of X correspond one-to-one to functions pointing at them from the
one-point set, we have Fx{+} 2 X. The compatibility on the one-point-set requirement is imposed
in order to be able to extract the set X from a concrete functor via X = Dy {*}.

And finally we can define:

Definition 1.31. A concrete sheaf on the Euclidean site will be called a diffeological sheaf.

And appreciate our first important result [[1]], [15]:

Lemma 1.16. Diffeological spaces are in one-to-one correspondence with diffeological sheaves.

Proof. As noted above, the idea is that Dy (U) simply gives all the plots U — Dx {*} = X, and hence
Dy defines the whole diffeological structure on X — we will now refer to the elements of Dx (U), for
any U € {Eucl},, as plots. We divide the proof into the following stepsﬂ

1) Smooth compatibility (i) is equivalent to Dx being a sub-presheaf of Fx : { Eucl}°? — {Set}.
For any smooth f : U’ — U we have Dx(f) : Dx(U) — Dx(U’) that maps ¢ — fo ¢, and

hence fo¢ € Dx(U'), i.e. for any plot ¢ : U — X the map fo ¢ is a plot U’ — X if only
f is smooth with respect to the diffeology on (X, Dy ).

2) The sheaf condition (ii) is equivalent to the sheaf property of Dx.

Take an arbitrary covering U = |J;U;, i : U; C U and a family of plots {¢; : U; = X |i €1}
compatible in the sheaf sense, i.e for all pairs of smooth maps a;: V — U;and a; : V — U;
such that ioa; = joa; we have:

Dx(ai)(9;) = ¢ica; = ¢pjoa; = Dx(a;)(9;)-

The sheaf condition on Dy says that we then have a unique amalgamation, i.e. a plot
¢ € Dx(U) such that:

Dx (i) = ¢; Vier-

We will show that this is exactly the same statement as the sheaf condition (ii) by comparing
the relevant definitions.

(a) (coverings) Because of the natural coverage that we put on {Eucl}, the notions of a cov-
ering in {Eucl} and the one we standard one we use in (ii) are exactly the same.

(b) (compatible families) The condition ioa; = joa; gives us that the functions
a; and a;j have a common image V' := ¢;(V) = a;(V) contained in the intersection
ViCcunuU i, and that they agree on it, i.e. as functions into V' they are the same

By = we denote here the bijection of sets.
2The small Roman numbering refers to the Deﬁnitionof a diffeological space.
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— let us denote the surjective function that they both represent by a : V — V’. The
sheaf-theoretic compatibility condition then reads:

Dx (a;)(¢i) = pica= ¢ilyroa= ¢jlyoa= ¢;oa= Dx(a;)(9;),

and since a is an arbitrary map with an image V' C U; N Uj, this means that the plots
¢; and ¢; agree on all of the common subsets of U; and U;:

oilv = 9jlv YV CUNU;,

which is equivalent to the compatibility on in the usual sense: ¢i|v;v; = @jlvinv;-

(c) (amalgamations) We have Dx (i) = Dx(U; CU)(¢) =]y,¢ = ¢|u,, and hence the
properties of being an amalgamation also agree in both languages.

We then see that all of the notions that appear in the formulations of a sheaf property coincide,
and since statements have exactly the same form the sheaf properties are indeed equivalent.

3) The covering condition (iii) is equivalent to the requirement Dx ({x}) = Fx ({*}) (plus the
smooth compatibility property (i)).

The set Dx{*} consists of plots {*} — X, which need to be constant. Moreover, any
constant parametrization (uniquely) factors through {x}, and hence, because of the smooth
compatibility condition, the set Dx{x} is isomorphic to the subset of X for which constant
maps are plots. Then, requiring Dx ({*}) = Fx({x}) means that all the constant maps

are plots.
O

We now see that the concept of a diffeological sheaf is precisely what we want if the generalized
smooth space that it represents is to be modelled on a set (concrete) with the smooth structure
compatible with the change of parametrizations (pre-sheaf condition) and the topological structure
(sheaf condition) of Euclidean spaces.

The collection of diffeological sheaves is naturally equipped with the structure of a category, the
arrows being given by natural transformations. Let us define:

Definition 1.32. Given two functors F,H : € — 9, a natural transformation, denoted ) : F = H
is an assignment to any object C € 6y an arrow {nc : F(C) — H(C)} € 9, such that for any
{f:C— C'} € 61 we have the (commuting) naturality square:

Fi(f)

F(C) Fo(C)

Nc lnc/ :

Ho(€) Y po(c)

It is an easy exercise to check that taking the functors 4 — 2 as objects and the natural trans-
formations as arrows we get a category structure — composition is composition of the naturality
squares, associativity follows from their commutativity and the identity functors serve as the iden-
tities — we will refer to such categories as functor categories. We then have a category structure
on the collection of pre-sheaves on a category %', denoted PSh(%’) and its full subcategory Shc,, (%)
of sheaves.

Since diffeological spaces are special kinds of sheaves, we can consider the category of diffeological
sheaves with the arrows given by natural transformations. More concretely, given two diffeological
sheaves Dy, Dy : {Eucl} — {Set}, a natural transformation between them is an assignment of plots
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U — Y to plots U — X. Indeed, n : Dx = Dy is an assignment to any object U € {Eucl}, a map
Nu : Dx(U) = Dy(U) such that for any smooth malﬂg : U’ — U we have the naturality square:

Dx(U) —=% Dx(U')

an J{nU’ :

Dy(U) —= Dy(U")

Hence we have a functor category of diffeological sheaves and natural transformations between them
— let us denote it by ¢Shcoy{ Eucl}, where ¢ comes from concrete and Sh denotes sheaves taken with
respect to the coverage Cov on {Eucl}. We can now state and prove our second important result [1]]:

Lemma 1.17. Smooth maps between diffeological spaces are in one-to-one correspondence with
natural transformations in the functor category of diffeological sheaves:

cSheov{Eucl}(Dx,Dy) =2 C”(X,Y).

Proof. A smooth function between two diffeological spaces f € C*(X,Y) gives a natural transforma-
tion f : Dx = Dy via:

fui=fo_:Dx(U)2 ¢+ fop € Dy(U) VU € {Eucl},,
where fo¢ € Dy (U) iff f € C*(X,Y) and the naturality square is just the associativity of composition:

fo(9og)=(fo9)og

Conversely, a natural transformation 7 : Dy = Dy defines a smooth function 1, : X — Y when we
(again) identify plots from the one-point set with their images, e.g ¢, : {x} —»x € X withx € X —
we will refer to this as the point-map bijection. The function 1), is then given by taking x € X to
the element in ¥ corresponding to 7, (9x) : {*} — Y. We will show that these operations are each
others inverses.

Notice first that (f){*} takes a plot ¢, € Dx{*} to fo ¢, : {*} — f(x), and hence (f).(x) = f(x) €Y.
Since x was arbitrary, the covering condition gives (f). = f.

For the other direction, notice first that 7}, = 11 holds iff:

(W) (u) = (Mo y)(u) = (Y (u)) = Nu(y)(u) €Y

for all y € Dx (U) and an arbitrary u € U, where the first two equalities is just unpacking the definition
of 7. (). We then need to show that n, (y(«)) = Ny (y)(u). To see why this is true, let us consider
the following naturality square:

Dx{x} —=5 Dx(U)

lﬂ{*} lny P

Dy{x} —=5 Dy(U)

where g :=!y is the unique function U — {*}. For the indicating plot of y(u) € X, i.e. Oy € Dx{x},
the commutativity of the above naturality square gives:

N} (Pyiy) 08 = MU (Sy(w) ©8)-

INotice the change of direction of g comparing to the definition of a natural transformation — this is because
we are now dealing with contravariant functors.
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But notice that on the left hand side we have a function that takes u € U to the point in Y indicated
by the plot (.} (Py(w))- i-€.:

Ny (Pyw)) 08 : U du—nu(w(u) €Y.
Further, on the right hand side we take 1y of the plot on X that takes u € U to ¢ (u):
¢l]/(u)og: Usu— W(”) €X,

and hence we have Ny (@y(,) 0 g) = Nu (W) (u). We then see that . (y)(u) = ny(y)(u) € Y and
since ¥ € Dx (U) and u € U were arbitrary, this finishes the proof. O

We have just seen that diffeological sheaves and natural transformations between them correspond
to diffeological spaces and their smooth maps. We will now make this statement firmer by stating
what exactly does it mean for two categories to be essentially the same. Let us first define:

Definition 1.33. We say that two objects C,C' € €y are isomorphic, denoted C = C', iff they are
connected by an isomorphism, i.e. an invertible arrow:

C=C & I{f:C—=C},{g:C—=Cleb : gof=1Idc & fog=1Idc.

Remark. The isomorphism of objects in {Ser} is a bijection of sets, in {Vect} it is an invertible linear
map, in {Mfld} and {Diffeo} the relevant diffeomorphisms, and so on, i.e. the objects are isomorphic
iff they are indistinguishable from the point of view of a given categorical structure.

Definition 1.34. Given two functors, F,H : € — 2, we call a natural transformation 1 : F = H
a natural isomorphism iff each of its components N¢ : F(C) — H(C) is an isomorphism, i.e. it is in-
vertible as an arrow in the functor category and we have F(C) = H(C) via ¢ forall C € 6.

Remark. Natural isomorphisms play the role of isomorphisms between functors — since we do not
distinguish between isomorphic objects, we can consider the two functors connected by a natural
isomorphism the same, and hence we will write F' = G in such a situation.

We consider two categories equivalent iff there is a relevant of a kind of an isomorphism between them:

Definition 1.35. We say that two categories, € and 9, are equivalent, denoted € = 2, iff we have
a pair of functors:

F:¢—>9, G.:9—%

that are inverses to each other up to a natural isomorphism, which means precisely that we have:

FoG=Idy, GoF ~Idy.

Let us now state the most important result of this section, which summarizes most of the effort that
we have made so far, and prove it using the last two Lemmas:

Theorem 1.18. The category of diffeological spaces and smooth maps is equivalent to the functor
category of diffeological sheaves:

{Diffeo} = cShcov{Eucl}.

Proof. In the light of the Lemma|l.16] we define the functor F : {Diffeo} — cShc,{Eucl} to be the
one that takes a diffeological space (X,Dy) to a pre-sheaf Dy on the Euclidean site that assigns
the plots U — X to the open subsets U and the pre-composition operation to the smooth maps
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between them. The smooth maps between diffeological spaces are, of course, taken to the natural
transformations vie the construction from the Lemma[[.T7l The first functor then looks like this:

F : {Diffeo} — cShcoy{Eucl}
(X,Dx) I—>D)(7
{f:X =Y} f:=fo_:Dx= Dy.

Let us define the inverse functor G : ¢Shc,,{Eucl} — {Diffeo} to take the sheaf Dy to a diffeological
space formed on its image on the one-point set with the disjoint union of all the plots as Dy, and
a natural transformation to the corresponding functions as in the Lemma|l.17}:

G : cSheoy{Eucl} — {Diffeo}

Dx— (Dx{=}, || Dx(U)),
Ue{Eucl},

{N:Dx=Dy}—»{nN.: X =Y}

The claim is now that Go F = Id{py,,\, and F o G = Id.g,., (Eucry- Notice here, that from the
Lemma I.16]it follows that replacing the diffeological space with the corresponding sheaf and back
gives the same diffeological space, i.e. we always have that Go F(X,Dx) = (X,Dyx), and similarly
F oG(Dx) = Dx. Let us denote these isomorphisms by é(X)DX) and pp,, respectively. Further,

in the Lemma|l.17|we have shown that (f), = f and ). = 1, which gives the commutativity of the
naturality squares for £ : GoF = ld(pieoy and p : F oG = Id g, (Eucl):

GoF ol
GoF(X,Dyx) _Gry) GoF(Y,Dy) FoG(Dy) _fe6) FoG(Dy)

\F(X .Dx) lg(y,oy) ’ iPDX lppy ;

f
(X, Dx) B E— (Y, Dy) Dy 1 Dy
and hence Go F and F o G are indeed naturally isomorphic to the identity functors. O

Remark. From now on, we will use those two equivalent definitions interchangeably, i.e. a diffeologi-
cal sheaf might be referred to as a diffeological space or a natural transformation as a smooth map,
along the line of the equivalence just described.

We have thus shown that the theory of diffeological spaces is actually a theory of concrete sheaves
on the Euclidean site. We find this very interesting, for various reasons. Firstly, as we will shortly see,
from this perspective the origin of some of the nice categorical properties of {Diffeo} — namely the
existence of the diffeological structure on all kinds of derived spaces — can be understood. Secondly,
as seen by many to be the main purpose of speaking about mathematical structures in categorical
terms, it allows for generalizations: we could now change the underlying site for something more
general’|or simply different forget about sets and just deal with abstract, not necessary concrete
sheaved’|etc., and as long as we keep to the sheaf on a site framework, there is a fairly good chance
that the categorical properties will continue to hold.

LA friend of mine, Nesta van der Shaaf, is aiming for the category of super cartesian spaces.

2We are wondering, what would be the result of restricting to the one-dimensional plots, like for Frolicher
spaces, by taking the site to be formed on the first two Euclidean spaces: the one-point set {} and R (plus the
empty set), with the same coverage.

3This is the idea of a smooth set [17].
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1.2.4 Sheaf-theoretic origin of categorical properties

In this paragraph we are going to show how the fact that we have natural diffeological structure
on different kinds of derived spaces can be understood as a consequence or in the light of the
sheaf-theoretic perspective.

Limits and colimits

Let us first broaden a bit more our categorical language by introducing the concepts of limits and
colimits, which we will need not only to understand why products, coproducts, fibered products,
pushout sets, one-point set and an empty set come naturally equipped with inherited diffeological
structures, but also for the definitions of the tangent spaces in the coming section.

The categories that we have seen so far were all very rich in the sense of having many objects and
arrows. However, it is useful to realize that simple diagrammatic structures can also be thought
as categories. For example, a one object category with the identity arrow alone is a category. For two
objects, we have a discrete category — the one with the identity arrows alone, the indiscrete category,
where we have all the possible arrows, i.e. also an arrow between the objects in both directions and
two other categories with one of the non-identity arrows missing, etc The functors from such simple
categories can then be thought of as mimicking their shape in the target category:

° A

SN N

We will thus refer to a functo“|Y : .# — % as a diagram of shape .# in %. It is a very useful picture
to keep in mind, especially because we will now be actually interested in such simple diagrams only.
Let us now define:

Definition 1.36. A cone for a diagram Y : % — € is a natural transformation M : Ac = Y, where
Ac : I — € is the constant functor that sends every object of & to C € € and each arrow to ldc.
Remark. A cone for Y can be then represented as a diagram in % with the object C on the top and
an arrow C — Y (i) for any object i € .%, such that we have:

PN

Yo(i) ———— Yo())

for all the arrows Y (i) — Yo(/) in the image of Y. This justifies the terminology.

In general, we have multiple cones for a given functor, i.e. for a diagram of a given shape. However,
there might be a very special one:

Definition 1.37. A cone for a diagram Y : % — € is called limiting, denoted My : Aiim; = Y iff
for any other cone N : Ac = Y we have a unique arrow C — limY such that for all i € Fy we have:

C limY

~N

Yo (i)

'We can of course always add as many arrows as we want.
2Usually the category .# is required to be small, but those are the only categories we are considering (see the

Definition [_Il_g])
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This is referred to as the universal property of a limiting cone.

Definition 1.38. A limit of a diagram Y : & — €, denoted limY, is the vertex of the limiting cone.

Remark. If we had two such limiting cones, we would have an arrow between their vertices both
ways, and hence they need to be isomorphic, and because of the above commutativity requirement
the cones coincide. Notice also, that such limiting cones do not need to exist.

As usually with the category-theoretic notions, we also have the dual one — that of a colimit, and just
like with the covariant and contravariant functors, it’s all about the direction of the arrows. Keeping
the notation as above, we define:

o the cocones the same way as we defined cones with the arrows now pointing into C,

o the limiting cocone to be the one that comes with an arrow colimY — C and

e the colimit of a functor to be its vertex.

In other words, colimits are limits in the opposite category, and vice versa.

The concepts of a limit and colimit are useful for us at this point because they allow for a generalization
of notions such as products, direct sums, pull-back sets and fibered products from the category of sets
and functions to an arbitrary one. We will point out some examples of the relevant constructions,
leaving some of the details to the reader. Let us first consider a functor from the discrete 2-object
category to {Set}:

Yy:{oe} — {55}

A cone Ap = Y for such a diagram is then of the form:

P
/ \,) ,
S S

i.e. we have a pair of functions from f: P — S and g : P — §’. The universal property of the limiting
cone means that for such a cone we always have a unique function 4 : P — [imY  such that:

i.e. any pair of functions to S and S uniquely factors through the set limF , which is the distinguishing
property of the product S x . Indeed, it is the only set for which such a function, given by:

h:=fxg:P>3p—(f(p)g(p)eSxs,

always exists and is unique. We then have limYy = § x §’. With a similar argument one can show
that the colimit of this functor is the disjoint union of S and &', i.e. colimYy = SUS'. It is also easy
to see that this construction generalizes to finite products and disjoint unions, which for the reason
that should be clear by now will be referred to as coproducts.
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To see how the fibered products and pushout sets also arise as limits and colimits, let us consider the
following functor:

° kY
Y, : l > lg.
e —— @ S f%B

A cone for such a diagram is of the following form:

J
H 4

i 8

Y— v

$>B

and the universal property for the limiting one means that for any diagram as above we have a unique
arrow i : P — limY | such that:

This is in turn a distinguishing property of a fibered product, with projections 7s and g coming from
the product projections 7y and m,. We then have limY , = § x5 §’. Similarly, the pushout set arises
as a colimit of this functor, i.e. we have colimY , = SLjg S’

Notice also that the limit of a functor
Yo:{e}—S,

is, regardless the chosen set S, the one-point set limY, = {x}. Indeed, it is the only set for which we
always have a unique map from any other, while the the colimit is always the empty set: colimY, = 0
for a similar reason. We then also recover the initial and final objects of {Ser} as a colimit and a limit,
respectively.

Thus, we generalize products, coproducts, fibered products and pushouts to an arbitrary category
by identifying them with the, existing or not, limits or colimits of the corresponding diagrams.

We have already seen that all the above sets that can be constructed as limits or colimits of diagrams
in {Set} can be equipped with the inherited diffeological structures, and this is not a coincidence —
in fact, it can be shown that the category cShco,{ Eucl} is complete and cocomplete, meaning that
it admits all ﬁniteﬂ limits and colimits [1] — the existence of the inherited diffeological structures
on the products, coproducts, fibered products, pushout sets, one-point set and the empty set can
be simply seen a consequence of this fact. The completeness and cocompleteness properties are
generally true for sheaf categories, and the existence of the inherited diffeological structures on those
sets can be seen as a consequence of {Diffeo} being a sheaf category at heart. Indeed, the existence
of the relevant object in a sheaf category is basically a consequence of its existence in {Set}. There
are some details we will skip here, but as an enlightening illustration of this fact, let us consider
a simpler case of a pre-sheaf category:

! Finite refers to the cardinality of the object set of the domain of functors we consider, i.e. we have limits
and colimits to all of the diagrams that we previously referred to as simple

26



Lemma 1.19. Limits and colimits in pre-sheaf categories can be computed point-wisely, meaning
that for a diagram Y : % — PSh(%), we have:

(limY)(C) =lim(Y(C)) Veeg, colim(Y)(C) = colim(Y(C)) Ve

i.e the (co)limiting object for Y is a pre-sheaf on € that takes an object C € € to the set constructed
as a (co)limit of a diagram in {Set} that arises by evaluating a diagramY onC € €.

Proof. Lets consider a cone 1 : Ap = Y with a vertex D € PSh(%). For each arrow {a: i — j} € %
we then have a commutative trangle of natural transformations of the form:

D
i nj
Y() /—W\ Y()

where Y(i),Y(j) € PSh(€). Evaluating this diagram on an object C € € gives a diagram in {Set}:

)

D(
(71)/ WC
()(C) Yie Y(j)(C

v )¢ )

Let us now take the limiting cone &(C) : Ay (c) = Y(C) in {Set}, composed from the triangles
as above. The universality property then says that we have a unique function z(C) : lim(Y(C)) — D(C)
such that for each {a : i — j} € . we have a diagram in {Set}:

(Mi)e mj)e
5 lim(Y(C)) »
y \j
Y(i)(C) Yl Y(j)(©)

We can then define a presheaf (limY)(C) :=1im Y (C) and a natural transformation 2 : D = (limY)(C)
point-wisely, i.e. via he := h(C) and similarly &; : (limY)(C) = Y(i) via (§)c := &(C);. It is then
the unique one for which in the sheaf category we have:

An exactly analogous proof works for colimits. O

We then see that the existence of limits and colimits in pre-sheaf categories is a direct conse-
quence of their existence in {Ser}. However, if we want to apply this construction to our category
cSheoy{Eucl} things get a little more tricky — while limits of concrete sheaves are again concrete
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sheavesE] colimits might not be. However, there are operations of sheafification and concretizatiorﬂ
that take the resulting pre-sheaves to the elements of cShe,,{Eucl} that are limits of the relevant
diagrams in there. Since we want to keep our presentation elementary, instead of going into details
here we will show how this works on some examples — we will construct the product and the terminal
object — and refer an interested reader to [1].

Lets consider a functor Y as before but with cShe,,{Eucl} as its codomain:
Xx : {0 0} d {DX Dy},

which is now a diagram in {Diffeo}. A cone for this diagram is of the form:

where Dy is an arbitrary diffeological sheaf with natural transformations to Dx and Dy. Following
the prescription above, we define the limiting sheaf as follows:

Dx X Dy : {Eucl}°" — {Ser}
U Dx(U) x Dy (U),
{fi U — U} — {Dx(f) XDy(f) ZDx(U) XDy(U) —)Dx(U/) XDy(U/)}

Let us now check that the universal property holds and that this is the diffeological space we expect:

Lemma 1.20. The functor Dx x Dy is a limit of Y in c¢Shco,{Eucl} and corresponds to the product
X XY equipped with the product diffeology, i.e. we have:

limXX = DX X Dy gDXXy.

Proof. Notice first that since the underlying set is given by evaluation on the terminal object, we have:
DX X Dy{*} = Dx{*} X Dy{*} ~X XY.

Moreover, evaluating the limiting cone on {*} by definition gives a limiting cone in {Set}:

XxY
y XY} 7
X Y

and hence, because of the bijection of the Lemmall.17] the natural transformations of the limiting
cone in {Diffeo} are given by:

Ty o_:Dx XDy = Dx, yo_:Dx XDy = Dy.

I'The sheaf property is a consequence of the fact that the inclusion She,, (%) < PSh(%) is a left adjoint, the
proof of the concreteness property can be found in [1].

20ne can see the effect of those operations in the definition of a coproduct diffeology, where we need to deal
with the connected components of the open subsets separately.
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The universal property means here that we should always have a unique natural transformation
p : D = Dx x Dy such that:

Dx Dy

But again, p is given by a composition with a function 4 : Z — X x Y, and similarly n = fo_ for
f:Z—Xand & =go_forg:Z— Y. Hence, evaluating the above diagram on {x} gives that indeed
there is always a unique such p, namely we need to take i := f X g.

Further, since plots are the same things as smooth parametrizations, taking (Z,Dz) to be an open
subset of a Euclidean space equipped with the manifold diffeology, the universality property, once
again evaluated on {x}, gives us a unique plot ¢ : U — X x Y for any pair of plots ¢x € Dx(U)
and ¢y € Dy (U) such that my o ¢ = ¢x and 7y o ¢ = ¢y. Conversely, since composition of smooth
maps is smooth, any plot on X x Y defines such a pair of plots on X and Y and hence all of the plots
on X x Y arise in this way.

We then see, that the sheaf thus defined is the same as the one given by the product set equipped with
the product diffeology, i.e. Dy x Dy ~ Dy y. From the Lemma[I.T6]it then follows that it is an object
in ¢Shcey{ Eucl}, which finishes the proof. O

Let us now see how a terminal object of { Diffeo}, i.e. the one-point set with all the parametrizations
smooth, arises in a similar manner. Notice first, that the corresponding diffeological sheaf is of the
form:

Dy, - {Eucl}?” — {Set}
U {ly:U—{x}},
{fU/—>U}i—>{’U l—)!UOf:!U/}7

mn

where with "!" we denoted the unique functions taking all of the points in the domain to the only
element of {x}. But since the one-point sets are all isomorphic, it is the same thing as a constant
sheaf Dy = A{*}. Notice now, that when we consider the functor:

Y, : {e} = Dx,

the point-wisely calculated limit takes every object to the limit in {Ser}, i.e. the one-point set and
we have Ag,y = limY,.

Similar analysis can be done to show that the diffeological structure on fibered products is also
a consequence of a sheaf-theoretic structure of {Diffeo} and the fact that those are spaces that arise
as limits in {Set}. As mentioned before, colimits arise in a similar manner — we just need to make
sure in the end that the resulting pre-sheaves are concrete sheaves. Hence, the origin of the natural
diffeological structure on disjoint unions, pushout sets and an empty set can be recognized to be the
fact that {Diffeo} is a sheaf category at heart plus that we have the sheafification and concretization
functors with some nice structure-preserving properties

ISee [I].
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Cartesian closedness

Except for the inherited diffeological structures on the sets that arise as limits and colimits in {Ser},
we have also seen that the category {Diffeo} is closed, i.e. it admits an exponential object for any
pair of diffeological spaces (X,Dx) and (Y,Dy) given by the diffeological space of smooth maps
C>(Y,X) equipped with the functional diffeology. We then would like to see how C*(Y,X) arises
parallelly to the exponential object in {Set}. Let us recall:

In {Set}, the exponential object of S and T is the set of functions 7 — S denoted by S” = {Set}(T,S).
It comes naturally equipped with the evaluation map:

{f:P=S"} = ev(f): (p.t) = f(p)(t) €S,

which provides a bijection {Set}(P,ST) =2 {Set}(P x T,S) that we can treat as a defining property
of the set ST — clearly, this is the unique set with such a property, and it always exists. We will
now use the coresponing version of this isomorphism to define the sheaf D?X and then show that
it is indeed the diffeological space of smooth maps with functional diffeology:

Lemma 1.21. We have a unique object D?X € cShcov{ Eucl} for which the following holds:
cSheo{Eucl}(Dz,DY¥) 2 ¢Sheg,{ Eucl}(Dz x D, Dy). (%)

Moreover, the isomorphism above is necessarily given by the set-theoretic evaluation map applied
to the functions corresponding to the natural transformations, i.e. we have:

cSheoy{ Eucl} (DZ,D?X) 3N =(Mso_) — (ev(n.)o_) € cSheoy{Eucl}(Dz x Dx,Dy).

Further, the diffeological space corresponding to D?X is isomorphic to the space of smooth func-
tions between X and Y equipped with the functional diffeology, i.e. we have an isomorphism
in cSheoy{Eucl}:
Dx ~ (o
Dy* = (C*(X,Y),De=(x y))-

Before we proceed to the proof, let us recall a few facts about the one-point set and show how they
generalize to the corresponding facts concerning the terminal object A{*} € cSheov{Eucl}. Notice
now, that the point-map bijection that we have seen and used, i.e. the correspondence between the
constant functions @, : {*} — x € X and the elements x € X that we have seen, gives us the following
bijection:

{Set}({+},X) = X.

Similarly, an object in a category can be identified with the set of arrows pointing at it from the
terminal object — this is generally true for concrete categoriesﬂ and especially in ¢Shcy,{Eucl}.
We then haveﬂ that for any Dy € cSheov{Eucl}:

cSheoy{Eucl} (A{*} ,Dx) = Dy.

Indeed, any natural transformation 7 : A, = Dx picks an element of Dx (U) for each U € {Eucl},
in a way compatible with composition with smooth functions between them, and considering all
such natural transformations gives the whole Dy, and thus we recover the diffeological structure
of (X,Dx). Moreover, in {Set} we also have:

{x}xX X,

'In fact morphisms from the terminal object generalize the notion of an element of an object from {Ser}
to arbitrary categories (admitting a terminal object).
2This is in fact an incarnation of the Yoneda lemma.
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which holds more generally as well. In our case, the presheaves Dx and Ay,y X Dx agree point-wisely,
precisely because of the above isomorphism, and hence they define the same diffeological spaces, i.e.
for any Dx € cShco,{Eucl}, we also have:

A{*} X Dx = Dy.
Equipped with this very useful observations, we are now ready to prove the Lemma[[.21}

Proof. Using the above observations, setting Dz = Ay, in (%) gives:

DDX = CShCOV{EuCl} (A{ } X Dx,Dy) = CSthv{Eucl} (Dx,Dy) ~C*(X,Y),

which was one of our claims. Notice however, that by now the last equivalence, denoted by "~" is just
the set-theoretic one — we also want to show that the diffeology on D?X and C*(X,Y) agree. But let
us first take a closer look at the isomorphism (). Notice, that since the above holds, we have that the
underlying set of Dy Dx is contained in the set (isomorphic to the set) of functions YX. Now, con51der1ng
a general Dy again, in the light of the Lemma - a natural transformation 1 : Dz = Dy Dx has
to be of the formn =n,o_wheren,: Z—Y X . Similarly, since we have Dz X Dy = Dzxx, a natural
transformation & : Dz X Dx = Dy is of the form & = &, 0_for &, : Zx X — Y. If we now take a pair
of constant plots:
¢ {x} = 2€Z, ¢y {x} > (2,y) €ZXY,

the isomorphism relates 1(¢,) = ¢, o 1., which corresponds to 1.(z) € YX via the point-map
bijection, to (¢, ) = ¢, o &,, which in turn corresponds to &, (z,x) € Y, and hence we can identify
&.(z,x) = N«(2)(x). The () is then indeed given through the set-theoretic evaluation map on the
underlying functions.

Using this and the Lemma it is not difficult to see now that the diffeology defined by DLY)X
is actually the functional diffeology. Indeed, take Dz to be a subset U of the Euclidean space with its
manifold diffeology and notice that since plots are the smooth parametrizations, we have:

e by the Lemma , themap ¢ : U — D?X is a plot iff the transformation ¢ = ¢ o _ is natural,
e the transformation ¢ = ¢ o _ is natural iff = ev(¢) o _ is and

e again by the Lemma the transformation ev(¢) o _ is natural iff ev(¢) is smooth.
Hence, recognizing ev(¢) = evy, we recover the Definition of the functional diffeology:
{¢:U = C°(X,Y)} €DYX(U) & evy €C(UXX,Y).

‘We have thus established that the diffeological space corresponding to the diffeological sheaf DX,
defined by requiring (¥), is indeed isomorphic in { Diffeo} to C*(X,Y) with functional diffeology. [

We then see, that the existence of the exponential objects in {Diffeo} is also strongly tightened to the
corresponding property of the category {Ser} and the fact that it is a category of sheaves.
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Subsets and quotients

We would also like to see the diffeological spaces that arise as subsets and quotients in the context
of the the category ¢Shc,,{Eucl}. In order to do that, we need to generalize the concepts of an in-
clusion of sets and a quotient projection - i.e. one that comes while taking a quotient with respect
to an equivalence relation on a set — to the more general context of arbitrary categories. Since the
mentioned functions are special kinds of surjections and injections, we will first generalize those.
Let us then make here a simple observation: if two functions composed with an injective function
agree, they are the same, and similarly if they agree when pre-composed with a surjective function.
Conversely, if a function has one of those properties, we can conclude that it is injective or surjective,
respectively. Injections and surjections can be then generalized to arbitrary categories as follows:

Definition 1.39. An arrow in a category € is called a monomorphism, denoted by m : M — C, iff for
any pair of arrows f,g: C' — C we have:

mof=mog =f=g

Definition 1.40. An arrow in a category € is called an epimorphism, denoted by e : E — C, iff for
any pair of arrows f,g: C — €' we have:

foe=goe =f=¢g

Remark. The notions just defined are dual to each other in the sense that monomorphisms are exactly
epimorphisms in the opposite category, and vice versa.

Notice here, that since the natural transformations in sheaf categories are functions in {Set} at each
component and their composition is a composition of those, an arrow in Sh(%’) is a monomorphism
or an epimorphism precisely if all those functions are injective or surjective, respectively. We then
have the following nice Lemmas for our sheaf category ¢Shc,,{ Eucl}:

Lemma 1.22. A natural transformation 1 : Dx = Dy is an epimorphism iff the corresponding
function M, is surjective.

Proof. By definition, such 7 is an epimorphism iff for any pair of arrows &,p : Dy = Dz from
& on = p on it follows that & = p. But notice, that £ o1 = p o1 reads:

‘5*011*0(15 :P*OT]*O(D v(PEDy)

which, because of the covering property, holds iff &, o . = p, o 1.. Similarly, & = p holds iff &, = p,,
and we can conclude that the natural transformation 1) is an epimorphism in ¢Shc,,{ Eucl} iff the
function 7. is an epimorphism in {Set}, i.e. a surjection. O

By a very similar analysis we also have:

Lemma 1.23. A natural transformation 1 : Dx = Dy is a monomorphism iff the corresponding
Sfunction 1, is injective.

While generalizing inclusions and quotient projections we will take a slightly different approach than
we took so far. Instead of finding the properties that distinguish them from arbitrary functions and can
be spelled out solely in terms of the arrows in {Set}, i.e. functions, in order to use use them to define
the generalized notions, we will state some categorical definitions and then prove that they collapse
to the ones we are interested in when considering {Set}. Focusing on the inclusions for a while, let
us define:
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Definition 1.41. An arrow in a category € is called a strong monomorphism iff it is a monomorphism
i: M — C such that for any diagram of the form:

.,

_8

w4 ™

M
i
c

where e is an epimorphism and f, g are arbitrary, there is a unique diagonal arrow h : B— M making
the whole thing commute.

Let us now argue that the notion of a strong monomorphism is a legitimate candidate for a generaliza-
tion of the set-theoretic inclusions:

Lemma 1.24. An function between sets is an inclusion iff it is a strong monomorphism in {Set}.

Proof. Notice first, that since i is injective, it is a bijection onto its image and we have i(M) = M.
Further, since e is surjective and the square commutes, we also have g(D) = i(M). The function
g then gives a unique function into M simply by g : B> d ~— g(d) € M. The square from the definition

then collapses to:
E
N
e bl
g

B—— M

and we have no other choice than to take & := g, which is always there, makes everything commute
and is uniquely determined. Clearly, such g is at hand for an arbitrary g and fixed i only if the injection
i is in fact an inclusion. O

The following Lemma describes the relation between the internal inclusions, i.e. strong monomor-
phisms in ¢Shc,y{ Eucl}, and the notion of the subspace diffeology:

Lemma 1.25. A natural transformation 1 : Dy = Dy in cSheo{Eucl} is a strong monomorphism
iff N« : A — X is an inclusion of sets and Dy is equipped with the subspace diffeology:

Dp = (A,Dacx).

Proof. By definition, a natural transformation 7 is a strong monomorphism in ¢Shc,,{Eucl} iff
it is a monomorphism and for any diagram of the form:

DYL)DA

o

DZ*>DX

where A and p are arbitrary and & is an epimorphism there is a unique i : Dz = D4 making the
whole diagram commute. Our, favourite by now, Lemma[I.17]tells us that we actually have the four
smooth functions that define the natural transformations above via pre-composition:

2,*
Dy i> Dy

lé* o jmo_ :

PxO_
DZ e DX
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Further, from the Lemmas and we know that 7, is injective and &, : Y — Z is surjective.
We then have the following diagram in {Set}:

A

lg* [ne-

z - x
and the existence and uniqueness of u as above is equivalent to the existence of a unique . : Z — A
making the last diagram commute, i.e. by the Lemma[T.24]it is there iff the function 7, is actually
an inclusion. Moreover, requiring i and 7 to be natural fixes the diffeology on A. To see this,
take Z = U to be an open subset of a Euclidean spaces with the manifold diffeology, &, = Idy and
p« ={w:U — X} € Dx(U) with an image contained in A so that the square commutes. It then

collapses to:
A
1
¢

U—X

where h = A, = i, : U — A is unique and since we need / to be natural, it is actually a plot on A. We
then have that every plot on A comes from a composition with the inclusion map, i.e. D4 C Dacy,
while the other inclusion holds iff 1 is natural. Indeed, notice that 7 is natural iff for any plot
on ¢ : U — A, the parametrization i o ¢ is a plot on X and hence Dscxy C D4. We can then conclude
that in order for 1 to be a strong monomorphism, the diffeology on A needs to be exactly the subspace
diffeology inherited from X. O

The fact that any subset of a diffeological space inherits a unique natural diffeological structure can
be phrased as follows:

Definition 1.42. We say that a concrete category € is closed for subsets iff for any inclusion function
i:{Set}, > A — C € 6 there is a unique object in € with the underlying set A for which i becomes
a strong monomorphism.

Lemma 1.26. The category cSheoy{Eucl} is closed for subsets.

Proof. From the Lemma[I.25| we know that such an object is always uniquely given by the diffeolog-
ical space equipped with the subspace diffeology. O

Let us now finally take a look at the quotient diffeological structures. As we will see, the notions
of an inclusion and a quotient projection are closely related which will allow us to take a very similar
approach. We thus define the strong epimorphisms:

Definition 1.43. An arrow in a category € is called a strong epimorphism iff it is an epimorphism
e : E — D such that for any diagram of the form:

<

e i

>

f
—
8
—

= 4— ™

Q

where m is a monomorphism and f,g are arbitrary, there is a unique diagonal arrow h: B — M
making the whole thing commute.

Remark. A strong epimorphism is one for which any monomorphism is strong — and vice versa.
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Let us first argue, that the notion of a strong epimorphism is a legitimate candidate for a generalization
of the quotient projections:

Lemma 1.27. A function between sets is a quotient projection iff it is a strong epimorphism in {Set}.

Proof. Consider an equivalence relation on a set E and take e to be the corresponding projection
so that e(x) = e(x') iff x ~ x’ for x,x’ € E and B = E /~. Since i is injective, the commutativity of the
square:

E%

M
bl
E/~ 5 C

means that f is constant on the equivalence classes and hence defines a function from the quotient
f+E/~ — M, which makes the upper triangle commute. Further, since the square commutes, we also
have io f = g and we need to take /& := f which always exists and is uniquely determined.

Conversely, such /4 is always at hand only if the surjection e is in fact a quotient projection. Indeed,
consider i = Idys. The square then collapses to:

E
1N

e 9
B M

and hence /1 = g. But notice, that the commutativity of this triangle means that for any x € E we have
gle(x)) = f(x), i.e. f is constant on the equivalence classes defined by x ~ x’ iff e(x) = e(x’) and
since f is arbitrary and e is surjective, the domain of g needs to be the quotient E/~ and e becomes
the quotient projection. O

The following Lemma describes the relation between the internal quotient projections, i.e. strong
epimorphisms in ¢Shc,, { Eucl}, and the notion of the quotient diffeology:

Lemma 1.28. A natural transformation 1 : Dy = Dy in c¢Shcoy{Eucl} is a strong epimorphism iff
N« : Y — Z 2 Y/~ is a quotient projection and Y |~ is the equipped with the quotient diffeology:

Dz = (Y /~,Dy,v))-

Proof. Exactly like in the proof of the Lemma|[I.25] using the notation from there, the square which
is used to define the strong is actually given by a diagram in {Set}:

Yy 24

lé* jn* :

z -2 x
with all the functions smooth, 7, injective and &, surjective. The natural transformation i : Dz — Dz
is once again given through the unique W, : Z — A making the above diagram commute, which
by the Lemma .@is there iff the function &, is actually a quotient projection and we getﬂZ >Y/~.
We will now see that the smoothness of &, and p, fixes the quotient diffeology on Z. Notice first, that
the smoothness of &, means that for any ¢ € Dy we have {,0¢ € Dz, i.e. D¢, (v) € Dz. For the other

I'We will stick to Z for now to keep the notation cleaner.
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inclusion, we need to show that each ¢ € Dz factors through a plot on Y. To see this, take A =Y and
N« = Idy i.e. consider the square:

y —* L,y

2 I: .

zey)~ 2

Notice first, that Idy is of course injective, [, = p, picks an element of Y for each class in ¥ /~ and
A projects all the elements of a class to the chosen one, for all classes. We then have &, o i, = Idy.
Further, the smoothness of w, gives that y := u, o ¢ € Dy for any plot ¢ € Dz. We then have:

oy =8 o009 =1Idz0¢ =9,

which finishes the proof. O

The fact that any quotient of a diffeological space inherits a unique natural diffeological structure can
be phrased as follows:

Definition 1.44. We say that a concrete category € is closed for quotients iff for any quotient
projection e : {Set}, > Z — C € 6 there is a unique object in ‘€ with the underlying set Z for which
e becomes a strong epimorphism.

Lemma 1.29. The category cShcov{Eucl} is closed for quotients.

Proof. From the Lemma[I.28] we know that such an object is always uniquely given by the diffeolog-
ical space equipped with the quotient diffeology. O

We have thus seen how all of the natural constructions that we presented in the first section can
be re-understood in the light of the sheaf-theoretic perspective on the category of diffeological spaces
and smooth maps between them. This is the only detailed and accessible presentation of this facts
that we are aware of.
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1.3 Tangent spaces
Let us begin with a quotation from [10]:

"There are indeed many ways to think about tangent spaces, which are equivalent
for manifolds but not when applied to diffeological spaces [...] different kinds of
questions may need different versions of tangent bundles."

We are then going to introduce two approaches to tangent spaces — internal and external. As we will
see, the ambiguity of diffeological tangent spaces doeas not influence our analysis, and hence it will
not be as exhaustive as in the previous section — we will just introduce the notions, sketch the proofs
and infer what is relevant. We refer an interested reader to [5].

1.3.1 Internal

This paragraph deals with the concept of an internal tangent space, which is defined solely by the
plots centered at a given point of a diffeological spaces. Let us first introduce yet another perspective
on a diffeological space (X, Dy): just like manifolds can be seen as open subsets of a Euclidean space
glued together, a diffeological space can also be seen as being glued from the domains of its plots
in the following sense:

Definition 1.45. For a given diffeological space (X,Dyx), a category of plots on X, denoted
{Eucl}/X, has plots as objects and triangles of the form:

where ¢, v € Dx and f € C*(U,V) as arrows.

Remark. This is an example of a slice category, i.e. one given by arrows into a fixed element of
a bigger category, here the category of diffeological spaces {Diffeo}.

Lemma 1.30. A diffeological space (X,Dx) can be recovered from its category of plots {Eucl} /X
as a colimit of the forgetful functor:

v—>F v
Uy : {Eucl}/X; > ¢\J % s {f:U -V} € {Eucl}, C {Diffeo},.
X

Proof. (sketch) A natural transformation 1 : Ux = Ay is given by plots that were originally the
elements of {Eucl}/X, i.e. for ¢ : U — X we have Ux(¢) = U and hence we can put:

Nn:=¢:U—X.

For any other cocone & : Uy — Y, we have:

U—F——V

R
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and since the diagram is in {Diffeo}, all of the components of & have to be plots, i.e. & € Dy (U),
and hence the map ¢ — & can be interpreted as a natural transformation /4 : Dx (U) = Dy (U ), which
then gives a unique smooth map {4, : X — Y} € C*(X,Y) making everything commute. O

To define an internal tangent space 7,X we need to restrict the category { Eucl} /X to the plots centered
atx € X:

Definition 1.46. The category of pointed diffeological spaces, denoted {Diffeo},, is a category
of diffeological spaces together with distinguished points(X,x) as objects, and smooth functions
respecting them as arrows:

{f: (X,x) = (V,y)} € {Diffeo},(X,x),(Y,y)) & feC(X,Y) & f(x)=y.

Definition 1.47. We denote by {Eucl}, a subcategory of {Eucl} of connected Euclidean spaces
pointed at zero.

Definition 1.48. For a given pointed diffeological space (X ,x), a category of plots centered at x € X,
denoted by {Eucl},/(X,x), has plots defined on objects of { Eucl} such that ¢(0) = x € X, as objects
and triangles of the form:

! (v,0)

U,0)
X( )% ’
X,x

where ¢,y € Dy, f € C*(U,V), and f(0) =0, as arrows.

(

Remark. The category of plots centered at x € X is a subcategory of the comma category in {Diffeo} .
Definition 1.49. We denote the forgetful functor {Eucl},/(X,x) — {Eucl}y by Ux y)-

We can now define the internal tangent space as follows [J5]]:

Definition 1.50. An internal tangent space T, X to a diffeological space (X,Dx) at a point x € X
is the vector space given as a colimit of the functor:

(Bucl}y/(X,%) 2% (Euclyy —s {Veer}
where Ty takes elements of { Eucl}, to their tangent spaces at zero and smooth maps to derivatives:
T:{f:(U,0)—= (V,0)} — {Tof:ToU— TyV}.
Remark. We see that the internal tangent space is a vector space by definition — it is an object in { Vect}.

The operation of taking a tangent spaces can be extended to a functor T : {Diffeo}, — {Vect} as a left
Kan extension of Tj along the inclusion of { Eucl} into pointed diffeological spaces {Diffeo},:

{Eucl}, LN {Vect}

I

{Diffeo},

but we will not go into detail here.
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1.3.2 External

In the manifold framework, tangent vectors can be defined as derivations on the algebra of germs
of smooth functions. This perspective can be naturally generalised to the diffeological setting.

Definition 1.51. We will denote by (X)) the category of open subsets and inclusions on a topologi-
cal space given by equipping a diffeological space (X,Dx) with the D-topology. The full subcategory
of Ob(X) on those opens that contain x € X will be denoted by Op (X, x).

We now have a natural sheaf of diffeologically smooth functions on &p (X) assigning to D-opens
containing x € X the spaces of smooth real functions on them, equipped with functional diffeologies:

X . ﬁD(X) — {Diﬁeo}
B'CB )y :C”(B,R) = C"(B,R),

and its pointed version:

G(ny) : ﬁD(X,x) — {Diﬁeo}
x€B' CB —]gp :C”°(B,R)— C”(B'R),

where each element f € G(x ,)(B) is a smooth map, for a manifold diffeology on R, defined on a D-
open neighbourhood of x € X and has a well-defined value f(x) € R. We now define the space
of germs at x € X:

Definition 1.52. For a pointed diffeological space (X ,x) the space of germs at x € X, denoted G, X,
is defined to be the colimit of Gx y).

Remark. The space G,X can be understood as C*(By,R) for the smallest possible By € Op(X)
containing x € X. Indeed, the colimiting element is the one for which we have an inclusion of By to any
other element of Op (X, x).

Notice here that an element [f] € G,X still has a well-defined value [f(x)], which makes G,X an
R-algebra under point-wise defined operations of addition, multiplication and scalar multiplication.
Moreover, all those operations are smooth for the diffeology on G, X coming from the functional
diffeology on the spaces C*(B,R).

Just like for manifolds, the tangent vectors, which we now call external since they can be defined
through not only the diffeological structure of X but also via the manifold and ring structures of real
numbers, are derivations on the algebra of germs:

Definition 1.53. A derivation on the diffeological R-algebra G,X, i.e. a smooth R-linear map
D : GxX — R satisfying the Leibniz’s rule:

D([f[g]) = D([fDg(x) + f(x)D([g),

will be called an external tangent vector at x € X. The space of all external tangent vectors is the

external tangent space and is denoted by T.X.

Remark. The external tangent space 7,.X is a real vector space under point-wise addition and scalar
multiplication; the Leibniz’s rule implies that D([c]) = 0 for any D € 7,.X and a germ constant function
c: B— R. The operation of taking an external tangent space can be easily extended to a functor:

T : {Diffeo}, — {Vect}
{f:(X.0) = ¥y} = {T:X 5D~ fu(D) € TyY},
wherd] £..(D)([g]) := D([g o f]) for a germ [g] € G, Y.

'Even though g might not be defined on the whole image of f, since the latter is smooth and hence
D-continuous and takes x to y, the germ [go f] at x € X is well-defined.
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1.3.3 Comparison

The computations of tangent spaces for different, more or less pathological from the manifold point
of view, examples done in [5] are summarised there in the following table:

Diffeological space Base point Internal External
discrete diffeclogical space any point RO RO
indiscrete diffeological space any point RO RO
topological space with continuous diffeology | any point RO RO
smooth manifold of dimension n any point R™ RrR™
axes in R? with the pushout diffeology 0 R2 R?
axes in R? with the sub-diffeclogy 0 R2 R2
three lines intersecting at 0 in R? 0 RS R3
with the sub-diffeology

R™ with wire diffeology (n > 2) any point 33;2‘;?;:1}316 RrR™
1-dimensional irrational torus any point R R?
quotient space R"/O(n) [0] RY R
[0, 00) with the sub-diffeology of R 0 RO R
vector space V with fine diffeology any point Vv
diffeomorphism group of a 1. C* vector

compact smooth manifold M M fields on M

The two concepts disagree in some very singular cases, but they often agree, including of course
for manifolds and, what is important for our analysis, also for diffeological groups. This frees our
analysis of the ambiguity of the definition of the diffeological tangent space. The best intuition
to use for our purpose is that the tangent vectors are pushed forward to the diffeological space by the
one-dimensional plots.
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2 Groupoids and algebroids

Another beautiful concept that we will need for our analysis of the symmetry structure of the initial
value formulation of General Relativity is that of a groupoid. This is a more general notion than
that of a group structure: while groups can be understood as representing symmetry transformations
of an object, the framework of groupoids is reach enough to include the invertible transformations
between possibly different objects.

Just like groups, groupoids can also be equipped with manifold structure, giving rise to Lie groupoids.
Moreover, parallel to the construction of a Lie algebra from a Lie group, from a given Lie groupoid
we can construct a Lie algebroid which is a very general and natural object generalizing both Lie
algebras and tangent bundles.

Since the symmetry structure that we will be studying in detail in the coming chapter is not modelled
by a Lie groupoid but by a diffeological groupoid, and what we will be actually interested in is the
associated algebroid structure, we will attempt to generalize some of the constructions from the
theory of Lie groupoids and their associated algebroids to the diffeological setting. To the best of our
knowledge, diffeological algebroids have not been treated in detail in the literature before — we do not
aspire to fill this gap exhaustively, but merely point at some strategies of how the generalization might
be approached. We aim to establish a ground firm enough to fully support the analysis of the next
chapter.

We start by defining groupoids as purely algebraic structures and give some examples. Next, we put
some smoothness on their underlying sets and maps and hence arrive at a notion of a Lie groupoid.
Further, we generalize the notion of a Lie algebra to that of a Lie algebroid to finally discuss the
generalization of this construction to the diffeological setting.

We refer to [13]] and [12] for the general theory of Lie groupoids and algebroids and to [10] for the
theory of diffeological groupoids.
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2.1 Groupoids

The notion of a groupoid is such a general and natural one that the neatest way to define it is to distin-
guish groupoids among general categoriesﬂ

Definition 2.1. A groupoid & is a category where all arrows are isomorphisms.

Remark. As noted in the previous section (see "Categorical preliminaries"), groups can be charac-
terised as one-object categories with all the arrows invertible. Hence, the above is a straightforward
generalization where we simply drop the one-object requirement. A groupoid can be also understood
as a group for which an arbitrary pair of elements might not be composable, and when it is, the
operation is associative.

The definition above can be unpacked to an equivalent one:

Definition 2.2. A groupoid {G = Q} consists of two sets, G and Q, which will be called the
arrow space and the object space/base, respectively, together with:

o two maps s,t : G — Q, called the source projection and the target projection,
e the inclusion map € : Q — G, taking Q > q — €(q) :=1d, € G,

o the partial multiplication L : G+ G — G, taking GxG > (g,h) — u(g,h) =: gh for:

GxG:={(g,h) eGxG:s(h)=t(g)}

is the space of composable arrows,

o the inversion map I : G — G, taking g+ g~ =:1(g),

which are subject to the following conditions:
1. s(gh) = s(h) and t(gh) =1t(g) for all (g,h) € GG,
g(hl) = (gh)l for all g,h,l € G such that s(g) = t(h) and s(h) =t(I),

soe=Idg=tog, ie s(Idy) =q=1t(ldy) forall g € Q

A o=

gldy) =g =1d;ggforallg e G

5. I(g) = ¢! € Gis a two-sided inverse of g € G: s(g7') =t(g) and t(g~") = s(g) so that
both (g,g~ ') and (g~ ',g) are in Gx G and we have g~'g = Id, and gg ' = Id, ).

Lemma 2.1. The two definitions given above coincide.

Proof. We simply need to take G := & and Q := &. Indeed, the projections s and ¢ are assigning
to each arrow its starting point, i.e. a source and the end-point, i.e. target, respectively. Moreover,
the inclusion map € is well defined since we always have a unique identity arrow for any object
of a category. Further, the set of composable arrows simply consists of the arrows that meet and
hence can be composed and finally the inversion map exists iff the arrows in & are invertible. The
requirements (1 — 5) are simple properties of categorical composition of arrows. O

Remark. If the base has only one element, all the arrows are composable, i.e. G* G = G X G and
we indeed get an ordinary group: {G = {*}} ~ G.

For any element of the base we have a natural group associated to it:

I'We again do not worry about the "big" structures, see the Definition 4) of a category that we use.
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Definition 2.3. The isotropy group, or automorphism group of q € Q is defined by

i.e. G, consists of the arrows that start and end at q and hence can all be composed. This is indeed
a group with multiplication and inverse map inherited from {G = Q} and Id, acting as a unit.

Remark. An isotropy group of a group seen as a groupoid is the group itself: {G = {*}} = G(,; =G.

Before putting more structure on groupoids, we will give a few examples to illustrate this notion:

Definition 2.4. The simplest groupoid that is not a group is pair groupoid over the base Q, denoted
Boxo = {0 x Q = Q}. The arrows are simply ordered pairs G = Q X Q > (q,q'), which represent
the arrows connecting them that can be composed iff they meet, i.e.:

GxG:={((¢:4):(d".4") 14 =4"},

the result of the composition being, of course, the arrow (q,q"), i.e.:

1:G6GxG>3((¢:9),(d.q") — (¢:9)(d.4") = (a,4")-

The inclusion is simply given by €(q) := (q,q), the inversion map switches the order: 1(q,q') := (¢, q),
while the source and target maps are the product projections: s(q,q') = ¢ andt(q,q4') = q.

Definition 2.5. Another example can be formed when we take the base Q = Sub(V) to be the set
of sub-spaces H C'V of a fixed vector space V with the invertible linear maps between them as arrows,
&(H,H') = Inv(H,H') and composition as partial multiplication. The arrows are composable when
the codomain of the first map coincides with the domain of the second, there are identities Idy
corresponding to each subspace, and each morphism is invertible. Isotrophy groups of H is its group
of endomorphisms End(H).

Definition 2.6. The archetypal example of a groupoid is a fundamental groupoid
or Poincaré groupoid of a topological space (B,7), denoted I1,(B), with objects being
points of the space B and morphisms the endpoint-preserving homotopy classes of paths between
them.

We are now ready to equip our groupoids with smooth structures and generalize relevant the notions
from Lie theory.
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2.2 Lie groupoids and Lie algebroids

If the arrow and object spaces of a groupoid are equipped with manifold structures compatible with
given maps, we arrive at the notion of a Lie groupoid, generalizing that of a Lie group:

Definition 2.7. A Lie groupoid is a groupoid such that:

1. the sets G and Q are manifolds,

2. the projections s and t are surjective submersions,

3. the partial multiplication (g,h) — gh and the inclusion map € are smooth.
From this definition it follows [[12]] that in a Lie groupoid:

e the inclusion map &€ is an immersion,

o the inversion map / is a diffeomorphism,

the set G * G is a closed submanifold of G X G,

for each ¢ € Q the fibers s~!(¢) and t~!(q) are submanifolds of G,

for each g € Q the isotrophy group G is a Lie group.

Lemma 2.2. A Lie group is a Lie groupoid over a one-point base.

Proof. Indeed, for a Lie group the corresponding groupoid {G = {*}} ~ G is a Lie groupoid: a one-
point set is trivially a manifold, projections s and 7 are trivial s, =!g : G 3 g — {*} and hence smooth,
the inclusion map points at the identity: € : {*} — e € G, i.e. is constant and hence smooth. O

Another example of a Lie groupoid is a pair groupoid &y« = {M x M = M} formed on manifold
M. Indeed, the product M x M is naturally equipped with a manifold structure which makes the
projections submersions and the smooth inclusion € : M 3 x — (x,x) € M x M. The multiplication
can be understood as a projection M x M x M 3 (x,y,z) ~ ((x,y), (y,z)) + (x,2) € M x M, and hence
is also smooth.

Just as a Lie algebra associated to a Lie group can be defined in two equivalent ways — as a tangent
space at the identity with a commutator given through the tangent map to the adjoint representation
or as an algebra of left-invariant vector fields on the group — a Lie algebroid can also be viewed from
two different yet equivalent perspectives.

Notice first that the tangent space at the identity of a group is the same thing as a normal bundle taken
with respect to the inclusion € : {*} — e € G. Indeed, for an immersion i : A < M the normal bundle
is defined as a quotient bundle:

_ TMlia)

Ti(TA)

Hence, for € : Q < G and Q = {x} it is a bundle over the one-point manifold, i.e. a vector space.
Moreover, T{*} = {x} = *(T{*}) and we get:

i

TG|8(Q)
NéQ=—=2>=TG =T1,G=:g.
0 & (T0) |& () g

Let us now generalize the notion of a left-invariant vector field to the context of groupoids:

Definition 2.8. A left-invariant vector field on a Lie groupoid {G = Q} is a vector field X* € Z*(G)
on the arrow space satisfying the following conditions:

s Xt =0 & X*(hg) = (Lg):X"(h) ¥(8,h) € G*G,
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where Lg is the lefﬂ multiplication Ly (h) = hg.

Notice that for a Lie groupoid {G = {x}} the projection ¢ is constant and hence #, is identically
zero and since G * G = G X G the second requirement is the usual one for left-invariant vector fields
on G. Moreover, a left-invariant vector field on a Lie groupoid is fully determined by its value along
£(Q). Indeed, we have:

X"(g) = X"(Id,()8) = (Lg): X" (Id,(4))

Further, since so € = Idg and we require 5, X L = 0, the tangent part of X along £(Q) needs to vanish
and we get:

T(N¢(Q) = 27(G).

A natural generalization of the notion of a Lie algebra to the theory of Lie groupoids is then the space
of sections of the normal bundle N¢(Q) equipped with the bracket coming from local left-invariant
extensions to the neighbourhood of £(Q), i.e. for any pair of sections 07,0 : Q — N(Q) we haveﬂ

{Gl ) 62} = [0-1L7 O-2L:|a

where {-,-} is the bracket on I'(N*(Q)) and the superscript L denotes the left-invariant extension.
Notice however, that unlike in Lie algebras, the bracket structure on I'(N¢(Q)) is now in general
dependent on the point on £(Q) — structure "constants" are in general functions on the base space.
Notice also, that since € is an immersion, N¢(Q) can be seen as a vector bundle over Q itself, and
hence we also have a C*(Q,R)-module structure on the space of sections. Moreover, we have
a natural vector bundle map:

a .= t*|N£(Q) . NS(Q) — TQ7

such that for any pair of sections 01,03 : Q — N¥(Q) and a smooth function f € C*(Q,R) we have:
ac{o1,0:} = ao o], 0] |r 7G) = I* o1, 03] |r TG) = [r.of ’t*GZ] (o) — laco1,a002]r(rg),

{GlafGQ} [Glaf 62 ‘r TG) fL[GlLaGZL ‘F(T(;>+Gl (f )62 :f{61a62}+(a061)(f)627

where by - we denote the extension of f compatible with (fo) = fLol, i.e. a function on G that
is constant on orbits of the adjoint action and agrees with f on £(Q). Such a structure is called a Lie
algebroid:

Definition 2.9. A Lie algebroid, denoted {A{..y — Q}, is a vector bundle p : A — Q over a base
manifold Q equipped with a bundle map a: A — T Q:

A—% 4 TQ

NS

and a Lie bracket {-,-}4 on the space T'(A) of smooth, compactly supported sections of A and
we require these structures to be compatible in the following sense.ﬂ

i) ao{Gl,Gz}A = [aoGl,aooz]r(TQ) for all 01,0, € F(A),
ii) {01,f02}a = f{01,02}a+ (a0 01)(f)02,

where [-,-] denotes the commutator of vector fields over Q and f € C*(Q,R).

'In groupoid notation composition puts the first element on the right.
2The space of left-invariant vector fields on G is closed under the commutator.
3 Actually, the first requirement follows from the second one and hence could be skipped in the definition.
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Wrapping up what was said so far, we define:
Definition 2.10. The Lie algebroid {A(®)y. y — Q} of a Lie groupoid & = {G = Q} is given by:

e the vector bundle A(®) := N¢(Q, N(0) % TO

e the anchor map a := (t*)|N€(Q)’ \ ‘/
0

o the bracket {-,-} o) inherited from 2°"(G).

We have seen that a Lie algebroid of a Lie group is the usual Lie algebra. For our favourite example
of a pair groupoid &y = {M x M = M}, the associated algebroid is the tangent bundle TM.
Indeed, the normal bundle with respect to the inclusion € : M 3 x — (x,x) € M x M gives:

NeQ = TGleg) (TMXTM)|ewy TMOTM _
e (TQ)  e(TM) —  TM

™.

Another way to see this is to notice that a vector field on €(M) is a pair of vector fields:
Z(MxM)|gp) 2 X = (X1,X0) eC(MDM),

and if we want it to be left-invariant we need s, X = X; = 0 with X; arbitrary, which also makes the
bracket trivial. The anchor is then the identity /d7)s and the projection p : TM — M the usual one.

We have thus seen how the concept of a Lie group and its associated Lie algebra can be naturally
generalised to Lie groupoids and algebroids.
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2.3 Notes on diffeological Lie algebroids

The construction of a Lie algebroid from a Lie groupoid, as presented in the previous section, relies
heavily on tools of differential geometry that we have not developed for general diffeological spaces.
It seems that the easiest way to generalize it to the diffeological setting is to slightly change the
perspective and find a different characterisation of the algebroid bundle. As we will see, the space
of sections of a normal bundle N¥Q can be seen as a Lie algebra of a Lie group associated to the Lie
groupoid. Let us introduce the following [18]]:

Definition 2.11. The group of bisections, denoted B(®), of a Lie groupoid & = {G = Q} is given
by smooth sections of G with respect to the source projection s : G — Q for which composition with
the target projection is a diffeomorphism:

B(®):={{0:0—G}eC”(Q,G): soo=Idy, toc €Diff(Q)},
with the group structure inherited from the groupoid as follows:
o multiplication is given by 6 xp := o (c-p,p), where 6-p : =G otop,
e inverse map is given by 6! :==1(co(toc)™!),

o identity is given by the inclusion map: 0 *€ = 0 = € 0.

Remark. For a one-point base Q = {*}, sections are just elements of the group and we have B(&) ~ G.
It is illustrative to see that the inverse and multiplication defined above are indeed compatible:

o lxo(x)= I(oo(to G)_l) x0o(x)=p(I(co(to o) ' o), o(x))
= u(I(co(t00) o100 (x).0(x) = u(I(6(x).0()) = £(x).
An element of B(®) is a map assigning to each point ¢ € Q an arrow in & that starts at €(g) in such
a way that the ending point depends smoothly on g with multiplication of sections coming from the
composition of arrows in & but not in a straight-forward, point-wise way — we would then miss out

on the inter-connectivity of the base of the groupoid and could grasp only something like a bundle
of groups, which is not nearly as natural or interesting.

To illustrate this notion, let us take a look again at the group of bisections of a pair groupoid &y }
over a manifold M. It consists of maps of the form:

B(Gyxm) 26 :M3x— (0(x),x) e M XM,

and hence is fully determined by ¢ € Diff (M ). Multiplication is simply given by composition of those
diffeomorphisms:

G#p(x) = u(6010p(x),p(x) = (po6(x),p(x)) (P(x),x) = (p o G(x),),
the identity corresponds to the identity /dy; and the inverse map inverts the diffeomorphisms:

e(x) = (ldy (x),x), 67'(x)= (07" (x),).

The group of bisections of a pair groupoid on a manifold M is therefore isomorphic to its diffeomor-
phisms group:

B(®yxm) = Diff (M).
It has only recently been shown that a group of bisections of any Lie groupoid & on a compact base

admits a natural locally convex Lie group structure for whose Lie algebra is isomorphic to the Lie
algebra I'(A(®)) of sections of the associated Lie algebroid [18]]:
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Lemma 2.3. The Lie algebra T.B(®) of the group of bisections B(®) of a Lie groupoid {G = Q}
with a compact base Q is isomorphic to the space of sections T'(A(®)) of the Lie algebroid A(®)
of & with the algebroid bracket.

Proof. We will not give the full proof here, but only sketch how this can be true. An element of the
Lie algebra v € B(®) is given by a tangent vector at the identity € € B(®), i.e. corresponds to a class
of curves V = [c]. Since € is injective, such a curve:

c: 137t~ c(1)=6; € B(®)
corresponds to a one-parameter family of diffeomorphisms of the neighbourhood of £(Q) in G via:
6::€(0)3¢e(x)— 6:(x) €G

such that 8 = Idg () and hence 6o (x) = €(x) for all x € QEI The tangent vector that it represents
gives then a section of the normal bundle:

d
V= C(O) = EéT’TZO € F<N£Q)7

and hence we have:
T.B(®) = T(N°(Q)) = T(A(®)).

Notice here that the space of maps & : €(Q) — €(X) associated to sections 6 € B(®) naturally
inherits a group structure from B(®&):

€(Q)3&(x) = p-G(x):=(pog)xG(x) =pogorob(x) =p*6(x) €G.

Moreover, the left-invariant extension of the vector V € T.B(®) to a vector field VX on the neigh-
bourhood of the identity corresponds to the left-invariant extension of the vector field V € T'(N¢(Q))
to a vector field V;, on the groupoid G, and hence the Lie algebra structure of T, B(®) is equivalent
to the algebroid structure of A(®). Indeed, the left-invariant extension of V on B(®) is given by:

d

VE(D) = (Lp)wv(e) = (Lp)*(ﬁ

. d .,
O-T|‘c:0) = %(Gf‘p)|r:0’

while its left-invariant extension on G satisfies:

d . d
$: VL= 72(5060)| g = Frlde(o)] g =0,

Vi(g) = (L)X (i) = 5 ((6201(6))8)
But notice that for {g : x —7(g)} € G and any p, such that p,(x) = g we have:
Ge- Byt (1) > 6o % pylx) = (6201(g))s.
and since s,V = 0 is always satisfied, the two characterisations agree: V. (p,)(x) = VE(g). O

The space of sections of a Lie algebroid of a Lie groupoid over a compact base can then be seen as the
Lie algebra of its Lie group of bisections. Moreover, again for the compact base, the groupoid itself,
and hence the whole algebroid structure with the algebroid bundle and the anchor map, can be recon-
structed from a given group of bisection [19]. The idea is now to “project” the problem of defining

'The map & can be understood as the one that pre-composed with € gives &, i.e. o0& = 6, and as such
is uniquely determined by 6.
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general diffeological algebroids associated to diffeological groupoids to a much simpler one, namely
defining diffeological Lie algebras of diffeological groups and diffeological Lie algebroids through
the diffeological Lie algebras of their groups of bisections. It is not clear today how this program
can be completed, or even how the diffeological Lie algebroids should be defined in general, and
what needs to be assumed to assure that the whole structure is encoded in the group of bisections.
However, as we will shortly see, being a diffeological group is not such a strong requirement and for
any diffeological groupoid, its groups of bisections always inherits a diffeological group structure —
in a way things get simpler than in the Lie framework. When it comes to the anchor map, it is not
even clear if the sections of the diffeological tangent bundle always admit a commutator bracket
or an action on functions on the base — it may depend on the chosen definition of a tangent bundle
in the first place. To the best of our knowledge, these things have not yet been fully investigated; since
we were striving for the application to General Relativity and the groupoid that we wanted to analyze,
although far from being a Lie groupoid, still did not seem to require a full generality of the missing
framework, we did not focus on answering those questions, which also from today’s perspective seem
at least big enough for a full Master’s project. We have a feeling, that defining those notions properly
could give a beautiful and rich theory of diffeological Lie algebroids.

In the application we are concerned with, the diffeological groupoid is formed on quotient spaces
of mappings between manifolds and hence, as we will see, the tangent vectors to its group of bisections
are actually vector fields, and so are the sections of the diffeological tangent bundle of the base. The
algebroid bracket is then defined through the commutator of their left-invariant extensions, and the
anchor is a simple map between vector bundles over a diffeological space, which is not a manifold
but it is a topological space so we can spell out the trivialisation conditionm We leave the question
of under which assumption on a diffeological groupoid such a rich structure of the tangent space
at the identity to the group of bisections can be derived, open for further investigation.

Let us now get back to the diffeological setting and define what we can — diffeological groupoids and
their groups of bisections.

Definition 2.12. A diffeological group is a group equipped with a diffeology compatible with the
group operations, i.e. multiplication G x G — G and the inverse map G — G are smooth maps.

Remark. A Lie group is a diffeological group for the manifold diffeology.

Naturally, we also have a natural notion of a diffeological groupoicﬂ— its just a groupoid with G and
0 equipped with diffeologies such that the structure maps are smooth:

Definition 2.13. A diffeological groupoid is a groupoid such that:

i) the arrow space G and a base Q are diffeological spaces,

ii) the projections s and t, partial multiplication (g,h) — gh, the inclusion map € and the
inverse map I are smooth.

Remark. Lie groupoids are diffeological groupoids when G and Q are equipped with the manifold
diffeologies. Moreover, similarly to the manifold case, diffeological groupoids over the one-point
space are simply diffeological groups, and so are the isotropy groups.

The definition of the group of bisections of a Lie groupoid makes perfect sense in the diffeological
setting. We the have:

Lemma 2.4. The group of bisections B(®) of a diffeological groupoid is a diffeological group.

I'Which we do not do in the end for time-related reason.

2A diffeological groupoid is an internal groupoid in the category of diffeological spaces, unlike the Lie
groupoids (because of the submersion requirement on the projections).
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Proof. We put on a diffeological groupoid B(&) = {G = Q} the subspace-functional diffeology
restricted by the requirement that plots must remain plots when composed with the inverse map:

{evy : U x X 3 (u,x) = 6,(x)} € C*(U x Q,G)
{9:Uu— 6,€B(®)} €Dpe) © &
{evy : U xX 3 (u,x) = I06,(x) € G} € C*(U x Q,G).

Since composition of smooth maps is a smooth operation for the functional diffeology, so is multipli-
cation in B(®), smoothness of the inverse map being forced by the above definition. O

Hence the program that we sketch here seems to make sense. Diffeological algebras of diffeological
groups also have not yet been properly worked out in details, however it seems to be a reasonable
claim that, under some mild assumptions on the diffeological structure of a groupE] diffeological
groups admit diffeological algebras which are diffeological vector spaces, i.e. diffeological spaces
with smooth addition and scalar multiplication, equipped with a bracket emergent from the group
structure like for the manifold case. For example, it has been shown [J5] that the internal and
external tangent spaces at the identity of a diffeological group are isomorphic Moreover, taking
X to be a manifold M, we get the algebra of vector fields:

Tya, Diff (M) = 2 (M),

and hence 774, B(Gpxm) = T(A(Spxm)), as expected.

The isomorphism above can be intuitively understood in the light of the Proposition 3.3 of [5], which
says that the internal tangent space is spanned by vectors "pushed forward" from the neighbourhood
of zero in R by the one-dimensional pointed plots. Indeed, a one-dimensional pointed plot:

: (170) HDlﬁC(M)a ¢(O) = Idy,
corresponds to a one-parameter family of diffeomorphisms:
(1,0) > t+— o € Diff (M), oy = Idy,

and pushing-forward the tangent vector at 0 € R simply means:

d d
¢* (d’r) = E(Xﬁ;h:(} S %(M)

A complete proof of this fact, relying on the compact manifold structure of M, can be found
in [5]]. We will use this kind of approach in our analysis of the diffeological algebroid of hypersurface
deformations in the second part.

Let us also mention here a different approach to generalizing the notion of a Lie algebroid to the
diffeological setting that we came up with. Notice that (in the manifold setting) the tangent bundle
along £(Q) can be seen as a pullback [13]:

NeQ =ker(Ts)|¢(g) ———— ker(Ts) CTG

J{ J{n ‘k()r(Ts) ’

0 £ G

I'We need to make sure that there are not foo many plots of a group.
2 Also, the simpler notion of a tangent cone [3]] seem to agree here (e.g. one get a proper vector space).

50



and since € is an immersion, it splits for TG|g+(7¢) = TQ © N*(Q). Moreover, since s and ¢ are
surjective submersions and ¢ o € = Idgp = s o €, we have

TGle-(ro)
TQ

1%

ker(s*|£*(TQ)) ENE(Q).

Tangent maps and their kernels, which are vector bundles, are easily defined for both approaches
to the tangent spaces that we described, and hence the algebroid bundle could be defined in the
diffeological context as A(&) := ker(s.|¢=(rg)) C TGle(g)- We believe it should not be difficult
to show that 7, B(®) =2 I'(ker (s.|¢+(r¢)) ). However, there is still a problem of defining the bracket,
which should now come from the commutator of diffeological vector fields, that also, to the best
of our knowledge, have not yet been studied in full generality.

There are many interesting and unsolved issues in the context of diffeological spaces, their tangent
structures, diffeological groups, groupoids and algebroids, and we are glad that we had a chance
to discover these missing aspects of our knowledge on smooth spaces and symmetry structures.
However, we will leave it here for now and move to the beautiful theory of General Relativity, where
we hope to make an enlightening use of these concepts.

1t is a matter of convention now if we use s, or t, here.
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Part 11
General Relativity

We are now going to apply the framework that we have developed in the previous chapter to the
theory of General Relativity, especially to the problem of deriving the constraints bracket relation
from the global symmetry structure of the initial value formulation of the Einstein equation. The idea
is to follow the path of [2] and analyse the algebroid associated to the groupoid presented there and
describing evolutions of space-like hypersurfaces in a diffeomorphism invariant way.

First we are going to introduce the dynamical approach to the Einstein equation, which as such
is timeless, and explain how the constraints and their bracket relations can be derived. In the next
section we describe the mentioned groupoid and equip it with a simple diffeological structure,
different from the one used in [2]. We then analyse in detail the group of bisections that it gives
rise to and its tangent space at the identity, which we identify with the sections of the algebroid
bundle. Finally, we show that the bracket of constant sections of the algebroid bundle is identical
to the bracket structure between the constraints.

1 Dynamical approach to the Einstein equation

The theory of General Relativity is timeless in spirit — the Einstein equation:

1 8nG
G(8)uy :==R(&uy — ER(g)guﬁv tAuy =3 Tuy

binds the space-time metric tensor g with energy-momentum tensor 7y, y, which are defined on the
whole space-time M at once, so to say. To make it into a dynamical field theory that we are used
toE] one can choose a foliation of the space-times and project the equation with respect to it. When
one further assumes that the space-time M is globally hyperbolic in the first place, meaning that
it admits a foliation by Cauchy hypersurfaces and pick one of those, the result of such an approach
is a field theory of Riemannian metrics ¥ € Riem(X) on X and their “time derivatives”, which are
now dependent not only on the symmetric tensor 7 which measures how the metric is changing when
we change a Cauchy surface, but also on the way in which the neighbouring slices are glued together
into M, grasped by a pair (S%,L) of a shift vector field and a lapse function on X, which are then
additional degrees of freedom if we want our new, projected equations to be covariant as was the
original one. We then get a field theory of (yy.v,k,S", L) for which (8%, L) are not dynamical variables.
When we perform a Legandre transformation of this system, we get the so-called ADM formalisrn
which is a Hamiltonian approach to the projected Einstein field equations. Due to the additional
degrees of freedom, it is a constrained system with a vector constraint associated to S’ called the
momentum constraint and a function associated to L called the energy constraint. If we try hard
enough, we can put a well-defined Poisson structure on the phase space of the system, which gives
us the non-trivial bracket relations between the constraints, the so-called constraints bracket. What
is striking, is that the structure “constants” are not constant but depend on the point in Riem(X).
Understanding this structure is the goal of the research program to which this work aims to contribute.
As an introduction, we will now give some details on the constructions sketched above. This
is standard material, we refer to [8]] and [20] for the missing details.

IThe question if this is the right thing to do is a valid one.
2In tribute to R. Arnowitt, S. Deser and C. W. Misner.
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1.1 Initial value formulation

To consider the Einstein equation as an evolution problem, we need to choose a foliation of the
manifold M that is going to be our space-time, i.e. a one-parameter family of embeddings:

X:RXXE—>M, X,(x) =X(x,1), X, : 2 M,
such that for each ¢ € R the map:
X L= X(X)=% CM,

is a homeomorphism, ¥, are Cauchy surfaces in (M,g) and X provides a topological isomorphism
spaces ¥ X R ~ M. The foliation X, together with the choice of coordinates on X, gives us global
coordinates on M via p = (x,t) € ¥, C M, with the initial value Cauchy surface being

Y=Yy ={(x,)eM|t=0)}CM.

We can then define the evolution vector field:

Definition 1.1. The evolution vector field X of the foliation X : R x ¥ — M is given at p € M
by the differential of X with respect to t:

. 0
X(p) = Ex(xat”p:(nt)'

Thanks to the Lorentzian metric g on M, the evolution vector field X can be decomposed into
a tangential and a normal part with respect to the foliation leave at any given point p € M:

X*(p) =L(p)a*(p) +S'(p), (D

where 7(p) is the unit normal, so that g, ya*A" = —1.

Definition 1.2. We call the function L defined above the lapse function and the accompanying vector
field S' € X (M) the shift vector field.

Remark. The shift vector field S'(x,?) at the point p = (x,?) is then by definition tangent to the
hypersurface ;.

If we further require the foliation to be oriented accordingly to the embedded Cauchy surfaces,
L:¥ — R, needs to be positive and monotonically increasing. Further, since each ¥, is space-like,
the vector field X is time-like and we have:

guvX'XY = —L*(p)+gi;(p)S'(p)S’ (p) < 0.

Remark. Lapse and shift can be thought of as a convenient way to parametrize the 3 + 17 diffeo-
morphism invariance of (M, g). For given local coordinates on ¥, for some 7 € R, we can still decide
on the parametrization of the orthogonal direction through the lapse function and also choose coordi-
nates on all the other slices, but only such that we get a smooth parametrization of neighbourhoods
in M, i.e., the transition functions on M need to be smooth, and hence coordinates on neighbouring
slices are given by specifying a vector field that describes how the coordinates shift as we move along
the increasing ¢ parameter.

The evolution vector field is thought of as describing (not surprisingly) the evolution of the data given
on the Cauchy surface 2. The (local) time can be then interpreted as the function 7 : M — R that gives
rise to the one-form df and hence (because of the the duality given by g) to a vector field Vi = dit ,
such that:

X(p)-Vi=—1,
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since then for p = (x,7) and p’ = (x, + 8t), we have:
i(p') =i(p) — Vi-X(p)8t =1(p) + 5t

Hence we can think of the foliation leaves as time slices and setting 7 |z, = 0 we have:

[Nl

t:f_l(t), f: m OX_I,

where 7, is the projection onto R from the domain of X : R x £ — M. Since we want to think of the
Einstein equation as an initial value problem for data defined on X, we need to find a way to think
of g|s restricted to TX as a Riemannian metric on X alone. We then define:

Definition 1.3. The 1% fundamental form vy is the Riemannian metric tensor on X pulled back from
(M, g) via the embedding Xy : ¥ — M:

Y= (Xo)+& € Riem(X),

where Riem(X) denotes the space of 3-dimensional Riemannian metrics on £. A metric ¥ above
is given for any value of € R, and hence we have one on any slice:

V(1) := (X;)«g € Riem(Z),

and since X is a foliation of the whole M, we have thus defined y on each point p = (x,7) € M.
Furthermore, it can be extended by zero to a 4-dimensional tensor field ¥ € S (M )E] It is then related
to the Lorentzian metric g on M via [20]:

Yuv(x,1) = guv(x,1) 4+ (x,1)AY (x,1).
Notice now that thanks to (1)) we have A* = L~!(X* — §7), and the relation (1.1} gives:
8uyv ="Yuyv —Aphy = Yu,v _Liz(Xu _SIJ)(XV - Sv)7

so that the Lorentzian metric tensor takes the form:

—L?+y;Sisl st st 88

2uy = s! i N2 M3
v s L1 Y2 13
s B V2 V3

Hence knowing the projected metrics (¢) together with the lapse function L(x,7) and the shift vector
field S(x,) on each time slice is equivalent to knowing the whole metric tensor g on M:

g=g(1,L,S").
The vacuum Einstein equation can be understood as a field equation for the Einstein-Hilbert action:
4
§= /1;/] V=8 R(g)7

which thanks to the Gauss-Codazzi equations can be rewritten in a projected form as follows:

s= [ V&R = [ dr [ LYTORO) +or) — (er(0)?),

'We denote by S?(M) the space of symmetric covariant 2-tensor fields on the manifold M.

54



where k € S?(X) is the 2"¢ fundamental form which plays the role of the “time derivative” and is given
as a function of the lapse, shift, v and 7 through:

LS. = =5 Lo 1) = g7 { Lo (0~ )},

The Lagrangian of General Relativity is then a real functional of the form:

L:T(Riem(X) x (Z ()& .Z (%)) 3 (v.1,5,S,L,L) — /):L\ﬁ/{3R(y)+tr(k2)— (tr(k))*} € R.

1.2 Constraints bracket

Performing the Legendre transform on the projected Lagrangian of General Relativity gives the
so-called ADM Hamiltonian. The lapse function and shift vector field are then treated as additional
variables, and since their time derivatives do not appear in the Lagrangian, they give rise to the
constraints:

Cmo(y, 77:) == *Zle(TE) = O’

Con(, ) = —*R(9) + (%) = 3 () =0,

where 7 € S?(X) is the variable conjugate to 7. These constraints can be made into functions on the
phase space T*Riem(X) by pairing with vector field X and a function ¢ on X [2]:

Cixg): (1,7) = /ZW{ Y(X,Cno (1, 7)) + & - Com (7, 70) }. )

Defying Cx ) = Cix.,0) + C(0,9) =: Cx + Cy, the Poisson bracket structure of the constraints can
be shown to be [2]

{Cx,Cy} =Cix y), 3)
{Cx,Cy} =Cx oy, 4
{Co,Cy} = Cogradyy—wsradys- o)

This is the structure we will be interested in deriving in the coming section. What is interesting is that
in the last equation we see the dependence on the metric v € Riem(X). For this reason it is a plausible
idea to look at a groupoid as a potential source of this bracket structure, since the algebroid bracket can
depend on a point in the base, which will be related (in a non-trivial way) to the space of Riemannian
metrics Riem(X).

Note here that, even though the bracket structure above is derived for the vacuum case, introducing fields on
the space-time does not influence it [9].
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2 Diffeological algebroid of hypersurface deformations

The aim of this section, and indeed the main goal of this thesis, is to improve the derivation of the
algebroid structure associated to the groupoid describing the symmetry of the initial value formulation
of the Einstein equation proposed in [2]] by Weinstein, Blohmann and Fernandes. In the previous
chapter we have provided a framework sufficient for this purpose.

It is a legitimate question to ask here why we should be interested in this groupoid structure, for
which we would like to give the following answers:

1. Because it is beautiful and naturally associated to the conceptual and mathematical frame-
work of General Relativity.

2. Because the algebroid structure that we get is identical to the Poisson bracket structure that
appears when one considers the ADM approach to Einstein equation.
Further, one may ask why this bracket structure is important. My answers are as follows:

(a) Because it is there.

(b) Because, as claimed in [9]], under some plausible assumptions the constraints themselves
can be recovered from this bracket structure alone.

We find each of the mentioned reasons convincing, however the last one seems to be important
not only from an aesthetic or idealistic perspective but also from the conceptual point of view. Let
us mention here the main points of the 1976 paper [9] by Hojman, Kuchar and Teitelboim. The
authors show that when we interpret the deformation vector field as the generator of evolution
of fields on the space-time, which we find a very plausible thing to do, and apply it to the space-time
metric itself, we can conclude that the lapse and shift, seen as components of this generator, has
to satisfy commutation relations of the constraints. Furthermore, they prove that if we want the
change of an arbitrary functional on the phase space to be generated via a the Poisson bracket with
the “hamiltonian”, which is now understood to be a pair: a vector field called super-momentum
and a function called super-hamiltonian defined on the space-time, as quantities dependent on the
canonical variables and require the Poisson bracket to be of the same form as the commutator of the
generators of the deformations, we inevitably end up with the ADM hamiltonian. Therefore, if we can
show that the kinematical setting of the theory of gravity, which can be understood to be given
by diffeomorphism invariant evolutions of 3-dimensional hypersurfaces in 4-dimensional, Lorentzian,
globally hyperbolic space-times and grasped by the groupoid of [2], gives rise to the bracket structure
in question, the interpretation of [9] allows us to recover the full Einstein equation. We can then
conclude that the Einstein’s theory is somehow dynamically empty — everything is already present
in the chosen kinematical framework. Making their points clear in the context of the mathematical
framework put forward by Weinstein, Blohmann and Fernandes and addressed in this work would
be one of the directions of development of the old program aiming to understand the dynamics
of General Relativity.

The plan of this section is as follows. After presenting the groupoid proposed in [2]], we take the
strategy of deriving its associated algebroid that was suggested in the Appendix there and described
in some detail in the first part of this work. Namely, we put a natural diffeological structure on the
groupoid that allows for a detailed analysis of the associated group of bisections. Next we argue
that the Lie algebra of this group is indeed given by the commutator of g—gaussia extensions
of vector fields given solely on the embedded surfaces. They can be identified with pairs consisting
of a function and a vector field on the non-embedded hypersurface, i.e. the “space” itself, and
constitute the fibers of the algebroidE] We also show that the algebroid bundle is a trivial diffeological

I'We change the terminology a little bit and call them simply Gaussian.
2Here we fully agree with [2].
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fiber bundleE] We also present another argument that leads to the same conclusion. Namely, we argue
independently that the algebroid bundle is of the form as just explained when we identify it with the
normal bundle of the groupoid, and then show that left-invariant vector fields that the group structure
of the group of bisections generates can be understood as g-gaussian extensions

IThis was missing in [2].
2This kind of reasoning was also suggested in the Appendix of [2]].
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2.1 Groupoid symmetry

In this section we are going to present the groupoid that naturally appears when one considers the
dynamical approach to the Einstein equation, proposed by Weinstein, Blohmann and Fernandes in [2].
We provide some interesting details about well-definiteness of multiplication missing in the original
presentation.

As we have just seen, in order to consider the Einstein equation as an evolution problem we break
the 4-dimensional diffeomorphism invariance of the theory by choosing a foliation, which is then
somehow restored by the freedom of choosing the lapse function and shift vector field that together
fix the way in which the neighbouring time slices are to be glued into a 4-dimensional, Lorentzian
manifold. This 3 + 1” diffeomorphism invariance of the problem forces us to consider classes
of embedded hypersurfaces as solutions to the initial value problem of the projected Einstein equation.
Indeed, any two Cauchy developments of the same initial data are isometric in the neighbourhood
of the initial value hypersurface, and obviously agree in it. The solutions of the initial value problem
are then only given up fo the isometries preserving the embedded initial value hypersurface. Following
[2], given a (fixed) 3-dimensional manifold ¥, we define the space of X-universes, which consists
of all such a classes{]]

Definition 2.1. The space of L-universes, denoted $\(X), consists of equivalence classes of embed-
dingsﬂi : X — (M,g) of X such that:

i) (M,g) is a 4-dimensional, connected, Lorentzian manifold,
ii) i:X <= M is a proper embedding of ¥ into M as a space-like hypersurface,

and two embeddings are equivalent iff there is an orientation-preserving isometry making

2N

M— M

a commutative diagram. We will write i ~ i’ and [i] = [i'] € ().
Remark. Note that to each class a unique Riemannian metric tensor y; € Riem(X) is associatedﬂ
Indeed, for i ~ i’ we have:

*

"¢ = (yoi)'g' = (i)' (v'g)=()s,

We want to construct a groupoid over /(%) that represents possible global evolutions of an embedded
hypersurface regardless of the details of the ambient space-time. It is then naturaﬁ] to consider the
classes of pairs of such embeddings, and again following [2] we define:

Definition 2.2. A groupoid of X-evolutions, denoted &y = E(X) = U(X), is given by:

1. The space €(X) consists of classes of pairs of embeddings (iy,io), where i1,ip : £ — M are
embeddings as before and two pairs are equivalent iff there is an orientation-preserving

'Withour assuming that the Einstein equation is satisfied.

2The space of all such embeddings in the hyperspace of [9].

3The 2" fundamental form k := —% 7 1s not necessary preserved by such isometries [4].

4 A pair groupoid does not make a lot of sense here since the evolution must be representable in a one fixed
space-time manifold. This is really a brilliant construction of the authors of [2] that we learned to appreciate.
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isometry making the inner and outer triangles in the following diagram commute:

M /—> M
We will writd!| (i1, io) ~ (i{..iy) and [irio] = [i},ip] € €(Z).

2. The structure maps are defined similarly to the pair groupoid, defining:

i) the source and target projections s,t : €(£) — () by [i] «—— [i1,io] —— [io),
ii) the inclusion € : () — &(X) by &([i]) == [i,i],

iii) the inverse map by [il,io]il = [io,i1],
iv) the partial multiplication by:

EX)* €(X) = {([ia,01], [i1,i0]) | W] =[]} w([iz, 1], [insio]) == [iasio]-

Remark. Since the classes [i,i] and [i] are essentially the same, the map ¢ is injective; and since
[i,i] is always in (), the maps s and 7 are surjective.

It is illustrative to see that this simple multiplication in (X) does not depend on the representatives:

Lemma 2.1. The multiplication in €(X) is well-defined.

Proof. Notice first that without loss of generality we can assume that i = i; so that all three embed-
dings have the same target manifold M. Indeed, since i; ~ i1, we have an isometry y : M; — M;,

and hence [ip,7]] = [Woip,i1]. If we now take another representative for each of the elements
of €(X) that we want to multiply:

(12,11)’\‘(1,2,1/1), (llalo)N(l/lalé))a

we are given two pairs of commuting triangles:
M —> M M —> M

Notice now, that y» | and y o both preserve ij (X), i.e. agree on this hypersurface, and hence can
be glued there to give a smooth isometry o preserving ip(Z) and i>(X) so that we have:

O

Notice here that since the embeddings are proper, a pair of those ip,i; : £ < M into the same target
space-times M induces a diffeomorphism:

eviio)=i1oiy ' 1ig(X) = i1 ().

'We write the pairs in (1,0)-order for better compatibility with the groupoid multiplication.
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Further, the partial multiplication of X-evolutions can understood as a composition of these diffeo-
morphisms. Indeed, the multiplication operation corresponds to:

(ioir!, iroigt) v (ioigh) = (noiy ') o (i1 oiy!).

Let us also take a look here at the isotropy group €(X); of an element [i] € £I(X). Itis given by those
elements g = [i,ig] € €(X) for which:

s([ir,dol) = [io] = [ia] = #([ir, o))

with multiplication corresponding to composition of the isometries. Since i; and iy have the same
target: iy,ip : £ < M;, the equality of classes [ip] = [;] means that we have an isometry y € Iso(M;, g;)
such that iy = yoij. Notice that if for a given pair of embeddings such an isometry exists, it is unique.
Moreover, having fixed an isometry, for any representative [i] 3 ip : £ < X we get i := ¢ o iy so that
[io] = [i1]. The isometries of M; are then in one-to-one correspondence with the elements of the
isotropy group. For elements of &(X) we have ij oiy ! — y: and hence the composition corresponds
to the composition of isometries and we can conclude:

@(Z)[l] = ISO(thi).
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2.2 Diffeological groupoid

Since we want to analyze the algebroid associated to the groupoid of X-evolutions By, let us first
explain how it can be naturally made into a diffeological groupoid. The choice of a particular
diffeological structure that we make is different than the one made in [2]. We find our approach much
simpler and much more natural, which are important advantages for the following reasons. Firstly,
since this helps us make our analysis simpler and clearer, at least in our view, than the original one.
Secondly, the algebroid structure essentially depends on this choice and since we would like to think
of the bracket structure as really emergent from this symmetry structure, it is very important to assure
that we are not implicitly assume anything on the way. We also provide details missing in the original
paper, e.g. prove that the resulting structure is a diffeological groupoid.

The space of X-universes is a quotient of a subspace of the space of mappings from X with varying
codomains. It is then natural to consider the quotient diffeology. For the space of mappings itself,
we can think of a functional diffeology if we consider manifold diffeologies on ¥ and the target
space-times and restrict ourselves to those parametrizations, for which locally the latter does not
change. We define:

Definition 2.3. A parametrization ¢ : U — $U(X) is a plot iff:

1. ¢ :uw [iy] (quotient diffeology),

2.VYueU FueV,e0U): M;, =M, YveV,(fix the target),

u

3. Yu € U the map evy : V, x L3 (v,x) = iy(x) € M, is smooth (functional diffeology).

u

To equip the space of arrows €(X) with a diffeological structure, we will go along similar lines: before
taking the quotient, we consider the diffeology on the space of pairs of embeddings by assuming that
the target space-time is locally fixed and that the local evaluation maps are smooth:

Definition 2.4. A parametrization ¢ : U — E(X) is a plot iff:

1. ¢:u— [(il)u7 (iO)u] (quotient diffeology),

2. VYueU JueV, e ﬁ(U) : M(il)v = M(l'o)v = M(il)u = M(io)u Vv € V, (fix the target),

3. YueU themap evy : Vy x L3 (v,x) — ((i1)v(x), (i0)v(x)) € M;, x M;, is smooth (functional
diffeology).

Smoothness of the structure maps of &(X) = £I(X) then becomes trivial:
Lemma 2.2. With the diffeologies just defined, &y becomes a diffeological groupoid.

Proof. Notice first that since we are using quotient diffeologies, all plots come from compositions
with the projections and hence we can focus on smooth parametrizations of the space of embeddings
and the space of pairs of embeddings ($1(X) and &(X) before taking quotients. Then we see that:

e the projections s,7 : €(X) — 4U(X) are smooth, since for any parametrization ¢ of the space
of pairs of embeddings we have ev;.p = Mo evy and eviop = Ty © evy, which are smooth
if only evy is;

e the inclusion is smooth since for any parametrization ¢ of the space of embeddings we have
eveop = evy X evy, which is smooth iff evy is;

e the inversion map is smooth, since for any parametrization ¢ of the space of pairs of embed-
dings we have evjoy = inv o evy, where inv denotes exchanging the product factors, which
is smooth iff evy is;
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e since the set of composable arrows in €(X) is naturally equipped with the product-subspace
diffeology, any parametrization ¢ of this space is a plot iff the 3-factor evaluation maps

evy : Vux 23 (v,x) = ((i)v(x), (i0)v (%)), (o)v(x)) € My, % Miig), <X M(jy),
are smooth, and the map ev..¢ is smooth iff 7y o evy and 7, o evy are.

O

Let us here also take a look at the D-topologies on 4{(X) and €(X). By definition, a subset of a diffeo-
logical space is D-open iff it is an image of a plot. Because of the diffeology we put on £4(X), an open
subset there consists of the classes of those embeddings that can be represented in a single manifold
in such a way that these representatives are all connected by a smooth deformation given by the
evaluation map of a plot. Similarly, D-opens in &(X) consist of classes of pairs of such embeddings.

Notice also that a plot on 4{(X) determines a plot on the space of Riemannian metrics on X. Indeed,
for a smooth parametrization ¢ : U > u > [i,] € (X), the map:

U3 uws Y, =iz8 € Riem(Z)

is well defined by the Remark (2.1) and smooth thanks to the smoothness of the evaluation mapE]

I'This looks a lot like the requirement 4. in the definition of the diffeological structure on the groupoid given
in [2].
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2.3 Group of bisections

In this paragraph we are going to take a close look at the space of bisections associated to By, given
by:
B(65) = {6 €C”(U(X),€(X)): 506 =Idyy), to6 cDiff (U(T))}

and the multiplication defined in (2.11). The definition above means that & is smooth, so 6i] = [i]
for all [i] € U(X) and [i] — ¢ o 6]i] is a diffeologically smooth, invertible map with a smooth inverse.
Notice first that smoothness of 6 means:

{0:Usum[i)eU(X)} €Dyy) = {600:U>uw 6[iy) € €X)} €Dg(y)-
It follows that for a smooth section & we have:

1. The section & is actually given on the level of the embeddings: 61i,] =: [0 (i), 0°(i)].

2. If ¢ € Dyy). ie. the locaﬂ evaluation map:

evy i Vu x L3 (u,x) — i,(x) € M;

u

is smooth, from the smoothness of 6 and the form of the diffeological structure on &(X)
it follows that the evaluation maps associated to so & and 7 o 6 are also smooth:

eVg0op : Vu X L3 (v,x) = c’(i,)(x) € Mo
eVglop i Vu X L3 (1,x) = o' (i,)(x) € Mg

where since classes in €(X) are formed on the pairs of embeddings with the same target
manifold we were allowed to put M;,) := Mg1;,) = Mgo(;,)-

(o

Hence we have a pair of maps:
6%, 0! Emb(Z) — Emb(T),

where €mb(X) denotes the space of embeddings. To handle these, let us take look at the section
6 locally in the sense of D-topology on 4U(X), i.e. fix an open subset A € Op(U(X)) given by the
image of aplot ¢ : U 5 u — [i] € 4U(X). Let us further restrict it to V,, C U for some u € U and fix
a representative i := i, : X — M := M;,. Such an open set A; € Op(L1(X)) is then given by a subset:

Ui={i(x) |veV,, xeZ} CM,

up to the choice of the representative i € [i], i.e. up to the isometries on U; preserving i(X). Let
us forget for a while about this invarianceE] and see how far we can get after fixing such U;. The maps
o' and ¢? give us a pair of maps:

PO M D U; 3 iy(x) = 6°(iy) (x) € My,
P M2 U; 3 in(x) = 0! (i) (x) € Mg,

and hence locally 6 and ! are given by composition with the maps just defined:

%) =%oi, o'(iy) =W oi, Ve,

'In the sense of the definition 1)
ZWe can do it since we are working with quotient diffeologies and hence all plots arise as compositions
of plots on bigger spaces with the projections.
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Clearly, the maps ¥ need to be smooth for the section & to be smooth. Moreover, we will show that
they are diffeomorphic onto their images. To see this, notice first that since ¢! induce a diffeomor-
phism on $(X) via:

106 :U(X) 3 [i] — [0 (i)] € U(X).

The smooth inverse (£ o &)™, similarly to the original map, needs to be given on the level of embed-

dings:
(to6)" i) = [(a") ()]
The map (6!)~!: €mb(X) — Emb(L) is again smooth and hence locally we can represent it by the
manifold map as we did with ¢!:
(o) ol (i) ®loc!(iy), P Moy =M Ve,

For (t06)~! to be the relevant inverse, we need:
[(6") oot (W] =[] View,
and hence there has to be an isometry ¥ € Iso(M) such that:
yod! oWl oi, =i, Yy,

The map yo®} provides then the smooth local inverse to P}. Let us now take a look at the
requirement s o & = Idy(x). In terms of the maps ¥, this means that:

so6[i] = [0°(i)] = [¥)oi] =[i] Yiev,,

and hence ‘I‘? is actually a locally defined isometry. We can then invert ‘I’? and define a local
diffeomorphism via:
F(6): =) oW :MDU U CM,

where U' = (¥9)~! (¥} (U)). We have then managed to associate a diffeomorphism between two
subsets of a Lorentzian manifold to the section 6 € B(®x) at the cost of restricting our attention
to the small neighbourhood of [i] € A; and choosing a representative i € [i]. The section & can be then
locally understood as F;(6) given up to the isometries on U preserving i(X), and hence essentially
given by ! (6). A section & € B(®y) restricted to A; corresponds then to a class of diffeomorphisms
of Uj i

[Fi(6)] € Diff (Ui, g,i) := Diﬁc(U")/Iso(U,',g7 i)
where Diff (U;) denotes the group of diffeomorphisms of a neighbourhood U; of i(X) C M, and

Iso(U;, g,i) denotes the group of isometries of (U;, g) fixing the embedded hypersurface i(X). Let
us now take a look at multiplication in B(®y):

P61l = u(poro6[il,61i]) = u(p oto [0 (1), 0°(0)]. [0 (1), (i)
= u(plo' (i), 0" (1).0°(@))) = [p' (6" (1)).p°(6' ()] [0 (1), 6°()] = [p 0 6" (i), 0°()].

Note that these two elements can be multiplied because [p°(i)] = [i] for all embedding. For & close
to the identity € € B(®y) in the sense that [c!(i)] € A; so that we can apply ¥} (p) to ¢! (i), and
sufficiently small V,,, at the level of the maps ¥ we get:

pl o O'I(iV) = lyzl p) OLP} (6)oiy, GO(iV) = LP?(CA’) Oy,

I There might be some difficulties in making this quotient into a well-defined group since 15010c(i) (M) is not
a normal subgroup of Diff;,.(M, g,i).
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which can be represented as follows:
Wi (p*6) =W (p)o¥;(6), W (p+6)="](p)o¥)(6),
and at the level of diffeomorphisms F reads:
F(p+6)=((6)) " o (¥?(p) " oW}(p) 0¥ (8): M2U - U" C M,

where U” = (W(p*6)) "' o (¥} (p + 6)(U). Hence, at the level of classes in Diff;,.(M,g,i), the
composition in B(®yx) for 6 close to the identity € and at the neighbourhood of [i] € {(X) simply
corresponds to composition of diffeomorphisms:

[Fi(p+6)] = [Fi(p) o Fi(6)].

Notice here that we have a natural quotient diffeological structure on Diff;,.(M, g,i) coming form the
one on B(®yx) and associated to this construction — plots on Diff,,.(M, g,i) simply come from those
on Diff j,(;) (M) through the maps F;(6). Furthermore, since composition in Diff;,.(M, g,i) comes
from composition of F;’s which is a smooth operation between functional spaces, it is smooth for
this diffeology. Finally, the additional requirement that we put on B(®y) assures the inverse map
to be smooth as well, and hence we can conclude that Diff;,.(M, g,i) equipped with this diffeology
is a diffeological gI‘OI/lpP_-I In a small neighbourhood U of the identity we then haveﬂ

B(By) D Ue|, = Diff (Ui, g.i) = DW(Ui)/Iso(U,-,g, i)

Notice that the neighbourhoods Ug € Op(B(®5x)) and A; € Op(LU(X)) and U; C M; are interlinked
in the sense that U, is determined by A;, which is in turn given by U;, i.e. an image of a plot going
through [i] € Y(X). Since the plot is arbitrary, they should all be thought of as infinitesimally small.

ISee the footnote at the previous page.
21t would be interesting to see the connection of this realisation to the ideas described in §11.6 of [3].
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2.4 Algebroid

We are now going to determine the tangent space at the identity to the group of bisections B(®y),
whose elements correspond to sections of the algebroid bundle. From [5] we know that it should
be determined by the one-dimensional plots.

Since we have the functional-subspace diffeology{]_-] on B(®y), such a curve centered at the identity
€:3(X) < E(X) is a one-parameter family of sections:

c:(—a,a) =131 c(7) = 6; € B(By),
such that the evaluation mapﬂ
eve 1 I xUX) 3 (1,[i]) — 6¢]i] € E(X)

is smooth and so 6;[i] =70 6p[i] = [i]. An analysis similar to the one presented in the previous
paragraph allows to conclude that, again locally in the sense of picking a small neighbourhood
[{] € A; and 7 € I, for I being an arbitrarily small neighbourhood of 0 € R, we have a neighbourhood
of € € Ug C B(®y) for which the curve ¢ corresponds to a smooth with respect to T family of diffeo-
morphisms F;(7) of an small enough neighbourhood of i(¥) C M, given up the the isometries fixing
i(X). Moreover, for F;(0) is such an isometry itself and hence [F;(0)] = [Idy,]. We then have a curve
through the identity [Idy,] € Diff (U;, g,i):

{I>t—6:€U: C B(®Z)|Ai} ={I> 1 [F(1) € Vi) C Diff (U, g,i) }.

A tangent vector that is represented by a one-parameter group of diffeomorphisms [F;(7)] is given
by pushing forward the tangent vector % € ToR, and hence can be identified with a vector field on U;:

f d

(&)
given up to the isometries preserving i(X) C U;. We can exploit the freedom given by the group
Iso(M,g,i) by partly fixing coordinates on U;. Indeed, since U; can be arbitrarily small, we can
put normal Gaussian coordinates there. We still have a freedom of choosing coordinates on X but
when this is done, the coordinates on U; will be given. The Gaussian normal coordinates are defined
as follows. First, we take a normal, future directed vector field along i(X) and extend it to the
neighbourhood by parallel transport along the geodesics that they define. The flow of this vector
field defines a foliation of U; which we can use to define coordinates: p = (x,t) € U iff p is the point
at which we end up when we move along the integral curve of the extended normal vector field that
crosses i(x) by the parameter value 7. This construction gives a canonical isometry:

_4
4 dt

F(D)(®)],_o € 2 (U)

Ui2U; CExR
fixing i(X). The metric in this representation takes the Gaussian form:
8(1) =nxa+v@),
and since i(X) is fixed by i(X) = {(x,0) € U}, we have y(0) = Y- A vector field Ve Z (U;) can

be thought of as being given up fo the isometries preserving i(X) C U iff it respects the Gaussian
normal coordinates, which can be grasped in various equivalent ways:

IRestricted by the requirement that assures smoothness of the inverse map, see l|
ZSince we are interested in the curve on the infinitesimal neighbourhood of 0 € 7, we can take a > 0 small
enough so that V; = for all 7 € [, i.e. the evaluation map is well-defined for the whole interval I = (—a, a).
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1. Itis generated by a diffeomorphism that intertwines the Gaussian time flow, i.e.:

- d
V= %a7|r:0’

where 7 denotes the extended normal vector field, i.e. P2, takes (x,t) to (x,7 +At);

o o P, = P, 00,

2. Tt respects the normal vector field along i(X) in the sense that:

Lyg(W.it) =0 Ve wy}

3. It respects the Gaussian form of the metric [4], i.e. for a metric:
g =g+Lys.
we have g'(A,7) = —1 and if g(4, W) = 0 than also (4, W) = 0;
4. It respects the Gaussian slicing in the sense that:

where V = X + ¢ is again the normal tangent decomposition of 1% along i(X).

The first characterisation is quite clear — such a vector field is effectively given already in the foliated
neighbourhood. The equivalence of 1. and 2. is argued in [2]], the equivalence of them to 3. in [4].
In [2] it is also proved that such a vector field is determined by its values on i(X) via:

ﬁ(¢) =0, [ﬁ’X] :g”ady(‘l))a

where V = X + ¢ is the normal tangent decomposition of V along i (X). This realisation is crucial
for determining the algebroid bracket. We find the characterisation 4. of our ow very appealing,
and we will show here that it is equivalent to the requirement just mentioned. We will call vector
fields that satisfy 4. above, and hence all the other characterisations, Gaussianﬂ

Definition 2.5. A vector field v defined in the neighbourhood U of a space-like hypersurface i(X),
where i : ¥ — M is a proper embedding and (M, g) is a connected, Lorentzian manifold, is called
Gaussian iff it satisfies:

Zy8=2xY+ 97,
where V =: X + @A is the tangent-normal decomposition along i(X) and ¥ = £;7.
Lemma 2.3. The Gaussian vector fields are generated by its values on i(¥) via:

ﬁ(¢) =0, [ﬁ,X] :grady(¢)-

Proof. We will calculate the Lie derivative of the metric for an arbitrary vector field defined in the
neighbourhood of the embedded hypersurface. We will perform this analysis in Gaussian normal
coordinates that we always have on a sufficiently small neighbourhood of i(X). We then have the
metric in the Gaussian form and hence g(d;,d;) = —1 so that the normal direction is given by /A = d;.
For an arbitrary vector field 2" (U) 3V = X + ¢0; we calculate

Lx(—dt®dt) =0,
Ly (—dt@dt) = -2d¢ ®dt,
Lxy= fo—FZz’%X}/@dt,

g(j)&,'y: ¢’}/'

! Although inspired by a similar equation and calculation found in [2]].

2They are being referred to as "g-gaussian” in [2].

3This is actually a bit tricky and can be done by using the formula % = dix + ixd. We omit “tildas” here
for the clarity of notation, it should be clear from the context if we mean the 3-dimensional Riemannian metric
or its zero-extension to a 4-dimensional tensor.
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Hence calculating the Lie derivative of g with respect to V' gives [2]:

fvg = $X+¢z9,(_dt ®dt + ’)/)
= Lx(—dr@dt) + Lxy+ Lyo, (—dt @dt) + Lyo v
= XxY-i—Zi,?TX}/@dt —2d¢ ®dt + ¢7y.

We then see that V is Gaussian if and only if in Gaussian normal coordinates we have [2]:

. - a1 X
z%}/®dtfd¢®dt & Wfo & jfgmdy(m.

Therefore, any vector field X + ¢# along i(X) can be uniquely extended to a Gaussian vector field
on a Gaussian neighbourhood U 2 i(X) by solving the above equations, which in coordinate-free
form read:

A(¢) =0, [A,X] = grady(9).
O

The algebroid bracket is given by a Lie algebra bracket of the group of bisections. Since B(®y)
is locally given by the quotient:
Diﬂ(U")/lso(Ui, 8,0)>

the Lie bracket should come from the bracket on Diff (U;) which is just a commutator of vector
fields. The algebroid bracket is given by commutator of vector fields generated by the classes of
diffeomorphisms, which as we argued can be identified with Gaussian vector fields. As we have seen,
such vector fields are uniquely given by their values on the embedded hypersurfaces, and hence can
be represented by pairs (X, ) € 2 (X) ®.%(X). We can then conclude:

A6 = 2 (X)o7 (X)|

Moreover, from our construction it is clear that the algebroid bundle is locally trivializable with
respect to the D-topology on {(X). Indeed, we could pick any other u € U from the domain of the
plot which image is the D-open in Op (4U(X)) that we are working on, and get another i = i, for which
the analysis can be repeated with the exact same result. Moreover, even though we did not discuss
diffeological vector bundles, it is clear that the one we are concerned with admits a global, nowhere
vanishing section — we can take any constant section of the form:

UE) s X,9) e Z(E)8F(X) Vjeuw)

and hence we actually have a trivial bundle

A(Gg) ZUE) x (Z(X)DF (X)) |

Denotinﬂ by Gy(X, ¢) the Gaussian extension of (X, ¢) for y € Riem(X) the algebroid bracket reads:

{(X’ ¢)7 (Yv W) }A(sz) M = [G}’[i] (Xa (P)v GY[,'] (Y’ "I/)]

I'This was stated but not proved in [2].
2Such an extension does depend only on the metric on i (X), which is determined by y = i*g and not on the
4-dimensional metric g in the neighbourhood — this is why we change the notation introduced in [2].
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The algebroid bundle is then a fiber vector bundle with the typical fiber 2 (X) & .% (X) and the bracket
given by the commutator of Gaussian extensions of the data given on X. Let us finally calculate the
commutator of the Gaussian extensions:

(Gy(X,9),Gy(Y,y)] = [X + ¢A,Y + yi]
= X, Y]+ X, yily + (94, Y]y + (94, yil]
= X, Y]+ X(y)i - yla,X]y+ (A, Y]y =Y ()A
= [X,Y] + ¢grady(y) — wgrady(¢) + (X (y) =Y (9))A,
When we take a pair of constant sections, this indeed corresponds to the Poisson bracket structure

on the space of constraints of the ADM formulation of the Einstein equation, as we have seen it in the
previous section:

{(Xa(P)a(Yv W)}A(®E) ﬂ(Z) > [l] = ([XvY] +¢gmdy[,~](‘lf) - Wgrad}'[;](¢) ) X(W) 7Y(¢))

We also developed an alternative way of supporting the equation (2.3) that distinguish the Gaussian
vector fields as the right representation of the vectors in the algebroid bundle, which goes as follows.
We will first establish the form of the fibers of the algebroid by an independent reasoning — we will
show that there is a well-defined normal bundle of our groupoid and that it is of the form just
discovered. Let us then take a look at the tangent bundle to the space of X-universes. A smooth curve
¢ : I — Y(X) is of the following form

c:Iatif] e X)) {eve: (1,x) —~iz(x)} €C(IxM,M).

Before taking the class, the evaluation map describes a deformation of i(X) in M. The tangent vector
that it generates is then a vector field along ip(X), given by:

(d d
Cc (d’L’) = Elf(x)lrzo S F(TM‘I(E)),

which can be decomposed into normal and tangential parts:

L1209 = XU+ CNA)),

where 7 is the normal, future directed vector field along i(X). Since i(X) = £, X and ¢ can be inter-

preted as a vector field an a function on X. Furthermore, neither the vector field %if(x) ‘1:0 nor its

decomposition depends on the representative in [ig], and hence we can concludeﬂ

TyU(X) = 2/ (X)o7 ().

Moreover, the tangent space 7¢(X) is determined in a similar way to be of the form:
THE(E) = (2 8.F(2)) x (2/(2) & F(2)) = T(E) x Ty(E),
and hence the embedding € : ${(X) 3 [i] — [i,i] € €(X) pushes forward the vectors via:
gi: Tyth(Z) > (X, 9) = ((X,9),(X,9)) € Tj; 1 €(X).
We then have a well-defined notion of the normal bundle:

¢ CTEE) ey (TUE) X TUE)) o) o, TUE)STUE)
NU(E) = e (TUX)) e*(TU(X)) N TUX) =TUE).

'We again shrink 7 if necessary, and put M := M;,.
21t is actually also a trivial bundle for we can take a constant, nowhere vanishing section as before.
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Given that the algebroid bundle is as above, to determine the Lie algebra of B(®y ), we could think
of determining the left-invariant extensions of the sections of the algebroid bundle:

X (X)eF(x),
i(x)

understood as vectors in T.B(®yx). As we have seen, the multiplication in U, C B(®5x) corresponds
to multiplication of diffeomorphisms:

6P|, = [Fi(6) o F(p)] € Diff (Ui, g.i).

() 3 1 Vy = o) = (5550

The left-invariant extension of V = VL(g) at p € B(®y) is then given by:

VE®) = (L) V() = (L) Vi = (L) - (D)oo = S Fi(p) o (D)

If we now take p = P such that F;(p/) := F;(7’) for some fixed ' € I, the above reads:

N d . d d d
V[,‘L](pr’) = EFi(pr’) OE'(T)’r:O = EFI(T/) OFi(T)‘r:O = EF"(T/—’—T)‘I:O = EF}(T)"C:T/'

Left-invariant extension of V : [i] = (X[;, ¢};)) can be then understood as extending each X[; + ¢y
from i(X) to its neighbourhood in a way compatible with the above relation:

V(6 (2) 3 1 (oA )| = (X(.0(5) € Appgoen(@2).

i(x)

Notice however that we are only given the vector fields %Fi(r) along the embeddings, i.e. precisely
pairs (X(7),9(7)), rather than fully fledged vector fields on the neighbourhoods of i(X)’s that
we could commute — this is a result of the invariance hat was not already taken care of. Before we fix
this, let us make a few simple observations. For simplicity, we assume here that the deformations
F;(7) are time-like in the sense that the functions ¢(7) € % (X) are non-negative. Notice first that the
Lorentzian metrics at each slice of the deformation:

8i(1) ==Fi(1)"glz.,  Eo:={F(7)(i(¥)) [Tel} =L,
are fixed, and so are the Riemannian metrics on the slices:
%(7) :==i"(Fi(7)"g) = (Fi(t) 0i)"g € Riem(X).
Further, notice that at each slice the Lorentzian metric takes the form:
gi(7) =A®i+y(t) =A®a+F(1)7(0),

Now, there is a distinguished way to represent the left-invariant extension of V € T, B(®y) as actual
vector fields defined in the neighbourhoods of i(X)’s — we can simply require that the slices of the
deformation are glued according to the deformation vector fields, i.e. in such a way that the normal
direction does not change The j—rFi(T) becomes then a smooth vector field and, omitting the
subscripts, we have:

”s’ﬂ%F,-(r) Y(T) = «iﬂx(r) Y(T) + (P(T)Z?Y(T)
for each T € 1. Having represented the extension as a proper vector field, we can calculate:
d N d,. . d .
L g8 = EF(T) §= - (Aon+F(1)'y) = EF(T) Y= Lxroi¥ = LXYV+0L0Y.

We have thus established another geometrical perspective on the origin of the bracket structure
in question.

I'This is essentially the choice of a Gaussian representative.
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2.5 Anchor

In this paragraph we are going to determine the anchor a: A(®x) — TIU(X) and show that it satisfies
the usual requirements.

We define the anchor to be the map that associates to pairs (X, ¢) € Aj;(®yx) their Gaussian extensions

with respect to ¥, i.e.:

a:= G[_] :Am(@z) > (X[i]7¢[i]) = Gy[i] (X[i]7¢[i]) = (X[i]v‘l)[i]) S TMH(Z).

We will show that the anchor defined this way satisfies the usual requirement of the Lie algebroid
anchor. Notice first that we have a bracket structure on the space of sections I'(T4(X)) given by the
commutator of the vector fields, i.e. for another curve:

131l e UX)
{eve : (1,x) = iL(x)} €C(Ix M, M),

such that ip = i, we can put:
[fd iz(x) 4 g (x)]
dt dtt

to be the usual commutator of vector fields. Since the algebroid bracket is also given by the
commutator of vector fields and the anchor simply picks the Gaussian extensions among arbitrary
vector fields, for y:= ¥ we indeed have:

ao{(X,0),(Y,¥)}Hil = [Gy(X(: 1), Gy(Yy wip)] = [ao (X.9)[d], a0 (Y, w)[]].

Moreover, we can multiply the sections of the algebroid bundle by smooth functions f € C*((X),R):

FX,9) :(E) 3 [i] = fliI] (X, 9y) = (FLiIXG Sl 9p3)-
We also have an action of the sections 2 (4(X)) on those functions, given by:

(i) ()= Sl €R.

T

and hence we can write:

{(X,0), f(Y, y)}i] :{(Xt]a¢[l]) f[](Y[z Vi) }
= [Gy(X1, 91, Gy (1Y}, fTi1 W)
= [Gy(X,9 ) FHGy (Y wia)]
= fI[Gy(X, 91)> Gy (Y, wia)] + Gy(Xpg, 1) (Fi]) Gy (Vi W)

]
=HX,9), ( )}[lH(aO(X 9)(N X, y),

where again y := ;). We can then conclude that the algebroid that we derived:

U(E) x (2(2)@.F(2)) 2A(6y) °u TU(E) 2 U(E) x (2 (2) @ .Z ()

has all the properties of the usual Lie algebroid except that the base space is no longer a manifold.
Because of the diffeology we put on the space of X-universes, the tangent bundle T4((X) and the
anchor are different than those presented in [2]].
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Summary

We have thus succeed in improving the details of the analysis presented in [2]] that we found disturbing:

1. The framework of diffeological algebroids was discussed broadly enough for the purpose
of the analysis, together with the difficulties that need to be faced when aiming for generality.

2. The diffeological structure was replaced by a simple and natural one that still led to the
desired bracket structure.

3. The resulting global structure of the algebroid got simplified. We find the analysis being still
far from simple, however we feel that the reasoning we present is less sophisticated and the
strategy of deriving the bracket — determine the algebra of the group of bisections — is now
fairly straightforward.

The crucial point for our satisfaction is the realisation that we make at the end of 2.3 where we con-
clude that the local — both in the sense that the sections need to be close to the identity in the sense
of the D-topology on B(®5) and that we need to restrict them to a small neighbourhood in L(X) with
respect to the D-topology there — structure of the group of bisections is given by a quotient of the
group of diffeomorphisms of a neighbourhood of some embedded hypersurface by the group of isome-
tries preserving it. The realisation that we make just after this — that curves through the identity
in B(®y) correspond to curves through the identity in the quotient and hence the bracket structure
of the algebroid is actually determined by the Lie algebra of this quotient groulﬂ— we see as a precise
justification of the use of Gaussian extensions as generating the algebroid bracket in our approach.

Besides that, basic theory of diffeological spaces was reviewed together with different approaches
to diffeological tangent spaces, an introductory text on the sheaf theoretic point of view on the
theory of diffeological spaces was produced. Furthermore, the theory of Lie groupoids and Lie
algebroids was presented in some detail. The initial value formulation of the Einstein equation was
also mentioned together with the original strategy of deriving the constraints and their Poisson bracket
structure, which importance have also been discussed.

Let us mention here some of the further research perspectives that we have in mind in this context.

Relativistic dynamics

As noted before, in the light of the 1976 paper "Geometrodynamics regained" by A. Hojman, K.
Kuchar and C. Teitelboim [9]], where the authors claim that the ADM constraints can be recovered
if we assume their bracket structure, the conclusion that might be inferred from the fact that the
bracket structure is a consequence of the groupoid symmetry could be that the Einstein’s theory
is dynamically empty in the sense that the dynamics is already present in the kinematical setting.
Making their points mathematically sound and connecting these ideas, at least on the conceptual level,
to the groupoid origin of the bracket could be one of the direction of development of this approach.
We find the defining equation of Gaussian vector fields and the differential equations that allow for
the unique extension of the data on an embedded hypersurface especially intriguing. It would be very
interesting to try to interpret them in the context of the dynamics of hypersurfaces deformation and
maybe of the Einstein equation.

Notice also that even though we are used to thinking of ¥ as a Cauchy surface for the whole space-
times, we nowhere assume that it is big. A natural question would be if the geodesic equation could
be somehow recovered as a limiting case of the mentioned differential equations.

ISee the footnote there.
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Quantization as Lie integration

The original motivation of Prof. Klaas Landsman for making me look into these structures was the
quantization framework developed by him in [IZJEI Let us here introduce briefly this idea.

Consider a finite-dimensional physical system on a configuration space given by the tangent bundle
T Q. The spatial, “external” symmetry of this system can be described by a pair groupoid QO x Q = Q,
where a pair (a,b) € Q x Q can be understood as possible initial and final ’position’ of the system
and taking the whole pair groupoid means "it is possible for the system to evolve from one ’position’
to any other". The tangent bundle TQ can be seen as the algebroid A(Q x Q) = T'Q of this pair
groupoid, with the dynamics of the system given through a lagrangian function L: A(Q x Q) — R.
The quantum counterpart of this system can in turn be understood as given by the non-commutative
C*-algebra generated by the pair groupoid, since we have [[12]]:

C(Qx Q) = A (L*(Q)),

where .# (L?(Q)) is the algebra of compact operators of square-integrable functions on Q. Quan-
tization of a simple system with a configuration space T7'Q, seen as replacing the Poisson algebra
of classical observables by the C*-algebra of quantum observables, can be then thought of as re-
placing the commutative algebra C*(A*(G),R), where G is the groupoid describing the external
symmetry of the system, by the non-commutative C*-algebra C*(G) generated by this groupoid.
Instead of C*(A*(G),R), we can also consider the algebra of functions vanishing at infinity on the
dual of the algebroid as the algebra of classical observables. It turns out[12], that it is isomorphic
as a C*-algebra to the one generated by the algebroid:

Go(A7(G)) = C*(A(G)),

when we consider A(G) as a Lie groupoid with fiber-wise addition as partial multiplication. Quanti-
zation of a system can be then understood as literally replacing the algebroid A(G) by the groupoid
G, and grasped by the slogan "Quantization is Lie integration". Taking the classical limit is in turn
replacing the global structure of a groupoid by its linearized, infinitesimal algebroid version.

It can be argued [7]] that the groupoid proposed in [2] is the right generalisation of a pair groupoid
description of external symmetries of a simple one-particle system at the classical level to the case
of the kinematics of hypersurface deformations. It would be then interesting to see if a construction
of an algebra associated to this groupoid parallel to the construction of a C*-algebra from a Lie
groupoid can be performed. It is clear that this cannot be done straightforwardly, since there
is no integration theory for general diffeological spaces and hence the convolution product cannot
be defined in the usual way; A different approach would have to be developed for this purpose.
Unfortunately, since we were fully engaged in the analysis presented in this work, we did not
pursue this question so far Progress at this point may lead to an alternative approach to canonical
quantization of gravity.

'In the context of finite dimensional systems.

2We would like to check if the simplified diffeological framework that we suggest at the end of the paragraph
2.2.3, given by changing the site over which the diffeological sheaves are defined to subsets of R (plus the
one-point set and the empty set, of course), so that we only have zero- and one-dimensional plots would help
in developing integration theory.
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