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Abstract

There are various symmetries on subsets of the algebra of bounded operators on a
Hilbert space B(H), for example Jordan symmetries on the self-adjoint operators,
Kadison symmetries on the density operators, and Wigner symmetries on the one-
dimensional projections. We first prove the equivalences between these symmetries,
after which we prove that all symmetries are induced by unitary or anti-unitary op-
erators. In the main part of this thesis, we generalise Jordan, Kadison and Wigner
symmetries to maps between state spaces of C*-algebras and prove that these equiv-
alences still hold. In doing so we will fill in all details in previous work of notably
F.W. Shultz (1982).
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Introduction

In the second half of the 1920s quantum mechanics was still a new field of research.
It was around this time that mathematicians and physicists started incorporating
group theory into the mathematical description of quantum mechanics (Scholz 2006).
In 1931 Eugene Wigner (1902-1995) published the book Gruppentheorie und ihre
Anwendung auf die Quantenmechanik der Atomspektren (Wigner 1931), in which he
argued for the use of group theory in quantum mechanics. In this book he gave
the first proof of a theorem that he and John von Neumann first suggested in 1928
(Neumann and Wigner 1928), describing how quantum-mechanical symmetries are
given by unitary or anti-unitary operator on a Hilbert space. This theorem is now
known as Wigner’s Theorem, and is regarded as fundamental.

In this text we will look at a few different symmetries in quantum mechanics,
one of which is the symmetry described by von Neumann and Wigner. Roughly
speaking, a symmetry is a bijective map that preserves the relevant mathematical
structures. We will focus on the algebra of self-adjoint operators, viewed as a Jordan
algebra, the convex set of normal states, and the set of pure states equipped with a
transition probability.

In Chapter 1 we develop the language for the bounded operator case, including
some convexity theory, which will play an important role throughout the thesis. We
start by introducing some probability theory on a finite set, which we interpret as
a classical configuration space, after which we introduce the quantum-mechanical
analogues of their classical counterparts.

In Chapter 2 we equip each of the sets of self-adjoint operators, density operators
and one-dimensional projections with a suitable structure. To this end we introduce
the concept of a transition probability space in great generality, and define a transi-
tion probability on the set of one-dimensional projections. Once we have equipped
the relevant sets with a mathematical structure, we define Wigner, Kadison, and
Jordan symmetries to be bijections that preserve these structures. We prove that
these symmetries are equivalent, and prove that they are all induced by either a uni-
tary or an anti-unitary operator. The difficult part lies in proving that every Jordan
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2 Contents

symmetry is either a *-isomorphism or a *-anti-isomorphism. This is a consequence
of the decomposition of a Jordan map given by Thomsen (Thomsen 1982), which we
work out in great detail.

Chapters 3 and 4 are dedicated to generalising the results from Chapters 1 and 2 in
the context of C*-algebras. The goal of Chapter 3 is finding the C*-algebra analogues
of a Wigner, Kadison, and Jordan symmetry. These symmetries are still equivalent,
as we prove in Chapter 4. In the first section of Chapter 4 we extend the equivalence
between Kadison, and Jordan symmetries to include non-unital C*-algebras. After
that we give the necessary framework to prove the main result from Shultz 1982,
mainly the concept of an orientation of the state space. Once we have done this,
we give a detailed proof of the equivalence between orientation-preserving Wigner
symmetries and *-isomorphisms. In the last section we tweak this result slightly to
prove the equivalence between Wigner symmetries and Jordan symmetries.



Chapter 1

Quantum mechanics on a Hilbert
space

In this chapter we define key concepts we will study throughout this thesis. We
start with a brief introduction into convexity theory and classical mechanics, after
which we will define quantum-mechanical analogues to some classical notions. This
Chapter is based on chapters 1 through 4 of Landsman (2017), with the exception
of Section 1.1.

1.1 Convexity theory

We will see throughout this thesis that convexity plays an important role in the
mathematical description of quantum mechanics, both in the bounded operator case
and in the algebraic case. In this section we define some key definitions regarding
convexity. This section is based on Chapter 1 of Alfsen and Shultz (2001). We use
the letter V to denote a complex vector space.

Definition 1.1. A subset M ⊂ V is said to be an affine subspace if for all x, y ∈M
and λ, µ ∈ R with x+ y = 1 we have

λx+ µy ∈M.

Similarly, a subset K ⊂ M is said to be convex if for all x, y ∈ M and 0 ≤ λ < 1
we have

λx+ (1− λ)y ∈ K.
The convex hull of a subset E of V consists of all elements x ∈ V of the form∑n

i=1 λixi where xi ∈ E and λi ≥ 0 for i = 1, . . . , n and
∑n

i=1 λi = 1. It will be
denoted by co(E).

3



4 Chapter 1. Quantum mechanics on a Hilbert space

(a) Platonic solids (b) Unit ball

Figure 1.1: Two examples of three-dimensional convex subsets.

Figure 1.1 shows some examples of three-dimensional convex subsets.

Definition 1.2. A convex set C of a linear space V is said to be a Euclidean ball
or an n-ball if it is affinely isomorphic to the n-ball

Bn = {(λ1, . . . , λn) ∈ Rn | λ2
1 + · · ·+ λ2

n ≤ 1}, (1.1)

for some n <∞.

Definition 1.3. A convex subset F of a convex set K ⊂ X is said to be a face of
K if the following implication holds for y, z ∈ K and 0 < λ < 1:

λy + (1− λ)z ∈ F ⇒ y, z ∈ F.

For a given subset E of K the intersection of all faces containing E is said to be the
face generated by E, denoted faceK(E).

As the name suggests, a face (in the sense of a flat surface surrounded by edges) of
the platonic solids shown in Figure 1.1a is also a face in the sense of the previous
definition. However, also edges and vertices are faces in the sense of Definition 1.3.

Definition 1.4. A point x in a convex set K is said to be an extreme point if
there is no convex combination x = λy + (1− λ)z with y 6= x, z 6= x and 0 < λ < 1,
or, equivalently, if the singleton {x} is a face of K. The set of all extreme points of
K is called the extreme boundary of K and is denoted by ∂eK.



1.2. The classical case 5

For example, the extreme points of a platonic solid are its vertices and the extreme
points of the unit ball is the unit sphere.

Definition 1.5. A function f from a convex set K to a linear space is said to be
affine if f preserves convex combinations, i.e.,

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y), (1.2)

whenever x, y ∈ K and 0 < λ < 1.

Definition 1.6. Two convex subsets F and G of a real vector space V are said to
be affinely independent if every point z in their convex hull co(F ∪ G) can be
uniquely expressed as a convex combination

z = λx+ (1− λ)y,

where 0 ≤ λ ≤ 1, x ∈ F and y ∈ G. Here uniqueness means uniqueness up to the
indeterminancy of x when λ = 0 and y when λ = 1.

Definition 1.7. We say that a convex set K ⊂ V is the free convex sum of two
convex subsets F and G, and we write K = F ⊕c G, if K = co(F ∪G) and F,G are
affinely independent. Observe that if K = F ⊕c G, then the two sets must be faces
of K. We say that a face F of K is a split face if there exists another face G such
that K = F ⊕c G. In this case G is unique; we call it the complementary split
face of F , and we will use the notation F ′ = G. More specifically, F ′ consists of all
points x ∈ K whose generated face in K is disjoint from F, in symbols

F ′ = {x ∈ K | faceK(x) ∩ F = ∅}. (1.3)

Theorem 1.8 (Krein-Milman). Let V be a real normed vector space with dual V ∗,
and let K be a convex subset of V ∗ that is compact in the w∗-topology. Then ∂eK 6= ∅,
and each point of K lies in the w∗-closure of the convex hull of ∂eK. In other words,

K = co(∂eK)
w∗

. (1.4)

1.2 The classical case

In this section we give a short introduction to the mathematical description of classi-
cal mechanics. Although classical mechanics is a priori deterministic, we will develop
a statistical approach to establish a close analogy between classical and quantum me-
chanics. Because we are only interested in the classical case to illustrate the analogies



6 Chapter 1. Quantum mechanics on a Hilbert space

with the quantum-mechanical case, we can limit ourselves to finite systems. Let X
be a finite set, playing the role of the configuration space of some physical sys-
tem. By a configuration space we mean that every element x ∈ X describes a certain
configuration of the system. Take for instance a lattice A ⊂ Zd for which each site is
the home of some classical object that may assume N different configurations. For
every site we may pick one of the N possible configurations, hence the total amount
of configurations is given by N|A|. In this case the configuration space is X = NA, in
that x : A→ N = {1, . . . , N} describes the configuration in which the site a ∈ A has
configuration x(a) ∈ N . Once you know the configuration of the system, i.e., once
you know which element x ∈ X describes the system, you can determine all other
characteristics of the system.

To develop the statistical approach, we need the following definitions.

Definition 1.9. (a) A probability distribution on X is a function p : X →
[0, 1] such that

∑
x∈X p(x) = 1.

(b) A probability measure on X is a function P : P(X) → [0, 1] such that
P (X) = 1 and P (U ∪ V ) = P (U) + P (V ) whenever U, V ∈ P(X) such that
U ∩ V = ∅.

(c) A random variable on X is a function f : X → R.

(d) The spectrum of a random variable f is the subset sp(f) = {f(x) | x ∈ X}
of R.

Note that there is a bijection between the set of probability distribution p and prob-
ability measures P given by

• P (U) =
∑

x∈U p(x), where U ∈P(X), and;

• p(x) = P ({x}).

Furthermore, every y ∈ X defines a probability distribution py by py(x) = δxy.
Then for the corresponding probability measure Py one has Py(U) = 1 if y ∈ U and
Py(U) = 0 if y /∈ U .

Proposition 1.10. The set Pr(X) of all probability measures on X is convex. Fur-
thermore, the set X is isomorphic to the extreme boundary ∂e Pr(X) through x 7→ Px.

Proof. The proof that Pr(X) is convex is trivial, so we will only prove the second part
of the proposition. Because there is an affine bijection between the set of probability
measures and the set of probability distributions, it is enough to prove that X is
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isomorphic to the set {px | x ∈ X}. Denote the set of probability distributions
by Pd(X), so we want to prove that X is isomorphic to ∂e Pd(X). First, x 7→ px
is trivially bijective, so we only need to show that all px are the extreme points of
Pd(X). Suppose that one has probability distributions p and q and t ∈ (0, 1) such
that px = tp + (1 − t)q. Taking y 6= x yields p(y) = q(y) = 0, so that p = 1 = px.
This shows that {px | x ∈ X} ⊆ ∂e Pd(X). Conversely, suppose that p ∈ ∂e Pd(x),
but p 6= px for all x ∈ X. Then there is some x0 ∈ X with 0 < p(x0) < 1. Now
define q ∈ Pd(X) by q(x0) = 0 and q(x) = p(x)/(1− p(x0)) for x 6= x0. Then

p = p(x0)px0 + (1− p(x0))q (1.5)

is a nontrivial convex combination that yields p. This contradicts the fact that
p ∈ Pd(X), so Pd(X) ⊆ {px | x ∈ X}.

The following theorem gives a very important construction.

Theorem 1.11. A probability distribution p on X and a random variable f : X → R
jointly yield a probability distribution on pf on the spectrum sp(f) by means of

pf (λ) =
∑

x∈X|f(x)=λ

p(x). (1.6)

In terms of the corresponding probability measure P on X, one has

pf (λ) = P (f = λ), (1.7)

where f = λ denotes the closed set {x ∈ X | f(x) = λ} in X. Similarly, the
probability measure Pf on sp(f) corresponding to the probability distribution pf is
given by

Pf (∆) = P (f ∈ ∆), (1.8)

where ∆ ⊆ sp(f) and f ∈ ∆ denotes the set {x ∈ X | f(x) ∈ ∆} in X.

Proof. The proof is trivial and just a matter of writing out definitions.

Because every random variable gives us some information about the system, we also
call them observables . Suppose that the system is mixed, in the sense that there
is probability distribution p such that the probability of the system being in the
configuration x ∈ X is given by p(x). Then we are interested in the expectation
value of a random variable:

EP (f) =
∑
x∈X

f(x)p(x). (1.9)
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Using the previous theorem, this is the same as

EP (f) =
∑

λ∈sp(f)

λpf (λ). (1.10)

We now develop another language to describe the statistical approach to classical
mechanics. Let X still denote a finite set.

Definition 1.12. The algebra of observables is the space C(X) of all complex-
valued functions on X, viewed as a commutative C*-algebra under the pointwise
operations:

(λ · f)(x) = λf(x) (λ ∈ C); (1.11)

(f + g)(x) = f(x) + g(x); (1.12)

(f · g)(x) = f(x)g(x), (1.13)

and with involution and norm given by:

f ∗(x) = f(x); (1.14)

‖f‖∞ = sup
x∈X
{
∣∣f(x)

∣∣}. (1.15)

Although C(X) is called the algebra of observables, the term observables should only
be applied to the self-adjoint elements, i.e., to the random variables. We denote the
set of random variables by R(X), so R(X) = C(X)sa.

Definition 1.13. A state on C(X) is a complex-linear map ω : C(X)→ C satisfy-
ing:

(a) positivity: ω(f ∗f) ≥ 0 for each f ∈ C(X);

(b) normalisation: ω(1X) = 1.

The set of all states is called the state space and is denoted by S(C(X)).

Equivalently, we may define a state on R(X) as a real-linear map ωR : R(X) → R
that satisfies the same conditions. Indeed, we may restrict any state ω ∈ S(C(X))
to the R(X), which gives us a state on R(X). Conversely, given a state ωR on R(X)
we may extend it to a state ω on C(X) by setting ω(f + ig) = ωR(f) + iωR(g), where
f, g ∈ R(X). Hence we can use states on C(X) and on R(X) interchangeably.

It is clear from the definition of the state space that it is a compact convex subset
of C(X)∗. We call elements of the extreme boundary of S(C(X)) pure states and
the set of all pure states the pure state space , which we denote by P (C(X)).
The following theorem establishes the link between states on C(X) and probability
measure (and hence probability distributions) on X.
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Theorem 1.14. The relation ω(f) = EP (f) induces an isomorphism

S(C(X)) ∼= Pr(X) (1.16)

of convex sets. Furthermore, for the corresponding pure states we have

P (C(X)) ∼= X, (1.17)

i.e., any pure state on C(X) is given by ω(f) = f(x), for some x ∈ X.

Proof. Given a state ω, define a function p : X → R by p(x) = ω(δx). Since δx > 0
pointwise, positivity of ω yields p(x) ≥ 0. Because 1X =

∑
x∈X δx, normalisation

then forces
∑

x∈X p(x) = 1, so that p is a probability distribution on X. Hence ω
corresponds to a probability measure P ∈ Pr(X), where P is the probability measure
corresponding to p. Conversely, P ∈ Pr(X) defines a map EP : R(X)→ R, which is
positive and normalised.

It is easy to see that the map ϕ : Pr(X)→ S(C(X)) given by P 7→ EP is convex.
Hence is maps the extreme boundary of Pr(X), which according to Proposition 1.10
is isomorphic to X, onto that of S(C(X)).

1.3 From classical mechanics to quantum mechan-

ics

We now give the quantum analogues to some important classical notions. In this
section H denotes a (possibly infinite-dimensional) Hilbert space.

The quantum analogue of the configuration spaceX is a finite-dimensional Hilbert
space H. Infinite-dimensional Hilbert spaces are the quantum analogues of infinite
phase spaces. For more information on infinite phase spaces we refer to Landsman
(2017), Chapter 3. The quantum analogue of a random variable is a bounded self-
adjoint operator on H, which we call an observable. As the name suggests, an
observable is a physical quantity that can be measured, for instance spin or position.
Given an observable a ∈ B(H)sa, supposing that the system is described by x ∈ H,
the expectation value of the observable a is given by

Ex(a) = 〈x, ax〉. (1.18)

This shows that the element x ∈ H does not uniquely describe the state of the
system. Indeed, suppose that z ∈ T (where T = {x ∈ C | |x| = 1}). Then for every
a ∈ B(H)sa:

Ezx(a) = 〈zx, a(zx)〉 = zz〈x, ax〉 = |z|2 〈x, ax〉 = 〈x, ax〉 = Ex(a). (1.19)
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Hence the unit vector that describes the quantum-mechanical system is unique up
to a phase z ∈ T. So instead of using unit vectors to describe the system, we should
use one-dimensional projections . Denote the set of projections on H by P(H),
so

P(H) = {e ∈ B(H) | e2 = e∗ = e}. (1.20)

Note that for all e ∈ P(H):
Tr(e) = dim(eH). (1.21)

The set of one-dimensional projections P1(H) is then given by

P1(H) = {e ∈ B(H) | e2 = e∗ = e, dim(eH) = 1} (1.22)

= {e ∈ B(H) | e2 = e∗ = e, Tr(e) = 1} (1.23)

= {ex | x ∈ H, ‖x‖ = 1}, (1.24)

where ex is the projection onto xH given by

ex : H → H; y 7→ 〈x, y〉x. (1.25)

The one-dimensional projection ex is also sometimes denoted by |x〉 〈x|. The expec-
tation value of the observable a ∈ B(H)sa is then given by

Tr(exa) = 〈x, ax〉. (1.26)

The quantum analogue of a probability distribution is a density operator (cf.
Appendix A.4).

Definition 1.15. A density operator is a positive trace-class operator ρ on H
such that

Tr(ρ) = 1. (1.27)

Equivalently1, an operator ρ is a density operator if and only if it has a norm-
convergent expansion

ρ =
∑

λ∈spp(ρ)

λ · eλ, (1.28)

where spp(ρ) is some countable subset of R+ with 0 as its only possible accumulation
point, the multiplicity mλ = dimHλ of each eigenvalue λ > 0 is finite, and∑

λ∈spp(ρ)

λ ·mλ = 1. (1.29)

We denote the set of density operators on H by D(H).
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The set of density operators forms a convex subset of B(H). We interpret Tr(ρa) as
the expectation value of the observable a ∈ B(H)sa, i.e.,

Eρ(a) = Tr(ρa). (1.30)

Of course, the one-dimensional projections are in particular density operators, more
precisely, they are the extreme points of the convex set of density operators. Denote
the density operator induced by the unit vector x by ρx, i.e., ρx = ex = |x〉 〈x|.

Lemma 1.16. A density operator ρ is an extreme point of the convex set D(H) of
density operators if and only if ρ = ρx for some unit vector x ∈ H.

Proof. By definition of the density operator we have ∂eD(H) ⊆ P1(H), so it only
remains to be shown that P1(H) ⊆ ∂eD(H). If H is one-dimensional, the claim is
trivial, so suppose that dimH > 1. Let x0 ∈ H be a unit vector and assume that
ρx0 = λρ1 + (1 − λ)ρ2 for some λ ∈ (0, 1) and ρ1, ρ2 ∈ D(H). Let y ∈ H be a unit
vector that is perpendicular to x0. Then

〈y, ρx0y〉 = 〈y, 〈x0, y〉x0〉 =
∣∣〈x0, y〉

∣∣2 = 0, (1.31)

which implies that

0 = 〈y, ρx0y〉 = λ〈y, ρ1y〉+ (1− λ)〈y, ρ2y〉. (1.32)

Because ρ1 and ρ2 are positive we have 〈y, ρiy〉 ≥ 0 for i = 1, 2, which gives us

〈y, ρ1y〉 = 〈y, ρ2y〉 = 0. (1.33)

Now let {vi} be an orthonormal basis for H with v1 = x0. Then

1 = Tr(ρ1) =
∑
i

〈vi, ρ1vi〉 = 〈x0, ρ1x0〉, (1.34)

and similarly 〈x0, ρ2x0〉 = 1. This shows that

〈vi, ρ1vi〉 = 〈vi, ρ2vi〉 = 〈vi, ρx0vi〉, (1.35)

for every vi in the orthonormal basis. It now follows from Theorem A.13 that ρ1 =
ρ2 = ρx0 , so ρx0 is an extreme point of D(H).

1This equivalence follows from the spectral theorem for self-adjoint compact operators.
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The following result is a consequence of the symbolic calculus for normal operators,
which is explained in Section A.3. It explains how a density operator induces a
unique probability measure on the spectrum of an observable. This is the quantum-
mechanical analogue of Theorem 1.11.

Corollary 1.17. Let H be a Hilbert space, let a∗ = a ∈ B(H) and let ρ ∈ D(H)
be a density operator. There exists a unique probability measure µρ on the spectrum
sp(a) for which

Tr(ρf(a)) =

∫
sp(a)

dµρf, f ∈ C(sp(a)); (1.36)

µρ(∆) = Tr(ρe∆). (1.37)

This measure on sp(a) is called the Born measure (defined by a and ρ).
Specifically, a unit vector x ∈ H induces a unique probability measure µx on sp(a)

such that

〈x, f(a)x〉 =

∫
sp(a)

fdµx, f ∈ C(sp(a)). (1.38)

In terms of spectral projections e∆ = 1∆(a) (defined for Borel sets ∆ ⊆ sp(a)), the
Born measure is given by

µx(∆) =‖e∆x‖2 . (1.39)

Proof. See Landsman (2017), Corollary 4.4.

1.4 The state space of the algebra of bounded op-

erators

Just as in the classical case, we can use states to develop the statistical approach
to quantum mechanics.

Definition 1.18. A state on B(H) is a complex-linear map ω : B(H)→ C satisfy-
ing:

(a) positivity: ω(a∗a) ≥ 0, a ∈ B(H);

(b) normalisation: ω(1H) = 1.

The set of all states is called the state space and is denoted by S(B(H)).
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Proposition 1.19. Let H be a Hilbert space. The state space is a w∗-compact convex
subset of B(H)∗.

Proof. It is clear from the definition of a state that the state space is convex. Note
further that it is a w∗-closed subset of B(H)∗. Indeed, suppose that {ωn} is a
sequence in S(B(H)) that converges in the w∗-topology to ω ∈ B(H)∗. Then in
particular

1 = ωn(1H)→ ω(1H), (1.40)

which proves that ω is normalised. In the same way it follows that ω is positive,
so ω ∈ S(B(H)). By Banach-Alaoglu (Theorem A.53) the unit ball is w∗-compact.
Hence the state space is a w∗-closed subset of a w∗-compact subset. This shows that
S(B(H)) is w∗-compact.

By 1.8 the extreme boundary of S(B(H)) is non-empty. We define pure states to be
extreme points of S(B(H)) and the pure state space to be the extreme boundary of
S(B(H)). We denote the pure state space by P (B(H)), i.e., P (B(H)) ≡ ∂eS(B(H)).

Proposition 1.20. Let H be a Hilbert space. Then the pure state space P (B(H))
is non-empty and

S(B(H)) = (co(P (B(H)))
w∗

. (1.41)

Proof. This follows immediately from the fact that S(B(H))) is a w∗-compact subset
of B(H)∗ and Krein-Milman (Theorem 1.8).

The following theorem relates the state space S(B(H)) to the set of density operators
D(H), in the case that H is finite-dimensional.

Theorem 1.21. Let H be a finite-dimensional Hilbert space. Then there is a bijective
correspondence between states ω on B(H) and density operators ρ on H, given by

ω(a) = Tr(ρa). (1.42)

Proof. Because H is finite-dimensional, every operator is trace-class, i.e., B1(H) =
B(H). Then

〈a, b〉 = Tr(a∗b) (1.43)

defines an inner product on B(H). By elementary linear algebra for every ω ∈ B(H)∗

there is a unique a ∈ B(H) such that ω = Tr(a·). It follows easily that ω is positive
if and only if the corresponding a ∈ B(H) is positive. Similarly, ω is normalised if
and only if the corresponding bounded operator has trace 1.
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Let us give an example of a state space. Take H = C2, then the bounded operators
of H are the 2× 2 complex matrices, i.e., B(H) = M2(C). The following proposition
gives a description of the state space of M2(C).

Proposition 1.22. The state space S(M2(C)) of the 2×2 matrices is isomorphic (as
a compact convex set) to the closed unit ball B3 = {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1}.
The isomorphism ϕ : B3 → S(M2(C)) is explicitly given by

ϕ : B3 → S(M2(C));

x 7→ Tr(ρx·), (1.44)

where x = (x, y, z) and ρx is the density matrix given by

ρx = 1
2

(
1 + z x− iy
x+ iy 1− z

)
. (1.45)

On this isomorphism, the extreme boundary

∂eB
3 = S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} (1.46)

corresponds to the set of all density matrices ρ = ρx, where x is a unit vector in C2.

Proof. We follow the proof of Proposition 2.9 from Landsman (2017). The adjoint
of a matrix A = {Aij} is given by A∗ = {Aji}, hence any self-adjoint 2 × 2 matrix
may be parametrized by (t, x, y, z) ∈ R4 as

ρ(t, x, y, z) = 1
2

(
t+ z x− iy
x+ iy t− z

)
. (1.47)

The eigenvalues λi of ρ(t, x, y, z) are

λ± = 1
2
(t±

√
x2 + y2 + z2). (1.48)

Now let ρ = ρ(t, x, y, z) be a density operator. Condition (1.27) yields t = 1. Positiv-
ity of ρ is equivalent to positivity of its eigenvalues, which gives us x2 + y2 + z2 ≥ 1.

For the second claim, note that the ρx are just the one-dimensional projections,
which in turn are the density matrices satisfying ρ2 = ρ, so x2 + y2 + z2 = 1. Finally,
since convex sums tv + (1− t)w in B3 are given by straight line segments connecting
v and w in R3, it immediately follows geometrically that ∂eB

3 = S2.
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By Corollary A.101 the set B(H)sa is monotone complete, i.e., each increasing net of
self-adjoint operators that is bounded above converges strongly (and weakly) to its
supremum. For a bounded increasing net {aλ} in B(H)sa with supremum a ∈ B(H)sa

we write aλ ↗ a to describe this situation.

Lemma 1.23. The following conditions on a state ω ∈ S(B(H)) are equivalent:

(i) For each orthogonal family {ei} of projections (i.e. e∗i = ei and eiej = δij) one
has

ω
(∑

i

ei

)
=
∑
i

ω(ei). (1.49)

Here
∑

i ei is defined as the projection on the smallest closed subspace K of H
that contains each eiH (that is,

∑
i ei = ∨iei in the sense of Theorem A.100).

Furthermore, the sum over i on the right-hand side is defined as the supremum
(in R) of the set of all sums

∑
i∈F ω(ei) over finite subsets F ⊂ I of the index

set I in which i takes values. It is finite because
∑

i∈F ei ≤ 1H and hence, since
ω is positive, ∑

i∈F

ω(ei) ≤ ω(1H) = 1. (1.50)

(ii) ω(a) = limλ ω(aλ) whenever aλ ↗ a.

(iii) ω(a) = Tr(ρa) for some density operator ρ ∈ D(H).

(iv) ω is σ-weakly continuous.

Proof. See Landsman (2017), Corollary 4.13.

Definition 1.24. A state ω ∈ S(B(H)) is called normal if it satisfies one, and
hence all, of the equivalent conditions in Lemma 1.23. We call the set of normal
states on B(H) the normal state space and denote it by Sn(B(H)). We denote
the set of normal pure states by Pn(B(H)).

Using Lemma 1.23, it is easy to see that Sn(B(H)) is a convex subset of S(B(H)).
In fact, it is a split face of the state space, as we will see in Proposition 3.24. This
implies that the extreme boundary of Sn(B(H)) consists of pure states of B(H), i.e.,
Pn(B(H)) = ∂eSn(B(H)). The following theorem gives an isomorphism between the
normal state space and the set of density operators.

Theorem 1.25. The relation ω(a) = Tr(ρa) induces an isomorphism

Sn(B(H)) ∼= D(H) (1.51)
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of convex sets. Furthermore, for the corresponding pure states we have

Pn(B(H)) ∼= P1(H), (1.52)

i.e., any normal pure state on B(H) is given by ω = ωx for some unit vector x ∈ H,
where ωx(a) = 〈x, ax〉.

Proof. See Landsman (2017), Corollary 4.14.

Because every pure normal state is induced by a unit vector in H, we call these states
vector states . Note that for finite-dimensional Hilbert spaces every state is normal.
This follows directly from the first characterisation of a normal functional, because
every orthogonal family of projections consists of at most dimH < ∞ elements.
In that case, Theorem 1.25 simplifies to Theorem 1.21. If, however, H is infinite-
dimensional, then S(B(H)) is strictly larger than Sn(B(H)).



Chapter 2

Symmetries in quantum mechanics

In the previous chapter we introduced the following concepts:

1. Observables , which are the self-adjoint operators B(H)sa.

2. One-dimensional projections P1(H), which according to Theorem 1.25
are in 1-1 correspondence with the normal pure states on B(H).

3. Density operators D(H), which according to Theorem 1.25 are affinely iso-
morphic to the normal state space Sn(H).

In this chapter we will impose more structure on B(H)sa and P1(H) and define
symmetries on B(H)sa, P1(H) and D(H). By a symmetry we mean an invertible
bijection that preserves all relevant structure. In Section 2.3 we will prove that
symmetries on B(H)sa, P1(H) and D(H) are in fact equivalent. In the last sections
of this chapter we will prove that the symmetries correspond in all cases to either
unitary or anti-unitary operators. A key ingredient in proving this is a theorem by
Thomsen (1982), which we will explain in great detail in Section 2.4.

This chapter is largely based on Chapter 5 of Landsman (2017), with the excep-
tion of Section 2.1 and Section 2.4.

2.1 The transition probability

Transition probabilities are a key concept in this thesis and we will use transition
probabilities on different spaces, such as the set one-dimensional projections on a
Hilbert space in this chapter and the pure state space of a C*-algebra in section 3.6.

17
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Definition 2.1. A transition probability on a set X is a function

τ : X ×X → [0, 1] (2.1)

that satisfies τ(x, y) = 1 if and only if x = y, and τ(y, x) = τ(x, y)
A transition probability space is a set P with a transition probability

τ : P × P → [0, 1]. (2.2)

Definition 2.2. Let (P, τ) be a transition probability space and let X ⊆ P . Define
the orthocomplement in P of X by

X⊥ = {x ∈ P | τ(x, y) = 0 for all y ∈ X}. (2.3)

We denote the double orthocomplement by X⊥⊥ = (X⊥)⊥ and similarly X⊥⊥⊥ =
(X⊥⊥)⊥, etc.

Compare this definition to that of orthogonal complement using inner product given
in Definition A.10: the transition probability plays the role of the inner product on
a vector space. This leads to similar results, as stated in the following lemma.

Lemma 2.3. Let X, Y ⊆ P be subsets of a transition probability space such that
X ⊆ Y . Then Y ⊥ ⊆ X⊥ and X⊥⊥⊥ = X⊥.

Proof. It follows immediately from the definition of the orthocomplement that Y ⊥ ⊆
X⊥ and that X ⊆ X⊥⊥. Combining these relations shows that

X⊥⊥⊥ = (X⊥⊥)⊥ ⊆ X⊥ and X⊥ ⊆ (X⊥)⊥⊥ = X⊥⊥⊥. (2.4)

Definition 2.4. Let X be a subset of a transition probability space P . The ortho-
closure of X is defined as X⊥⊥. We call the subset X orthoclosed if X⊥⊥ = X.

Note that it follows from the previous lemma that X⊥ is always orthoclosed.

Definition 2.5. A family of subsets of a transition probability space P is called
orthogonal if τ(x, y) = 0 whenever x and y do not lie in the same subset. A basis
of P is an orthogonal family B of points of P with the property that∑

x∈B

τ(x, y) = 1 ∀y ∈ P, (2.5)

where the sum over x on the left-hand side is defined as the supremum (in R) of all
sums

∑
i∈F τ(x, y) over finite subsets F ⊆ B of the index set B.
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Definition 2.6. A transition probability space is well-behaved if every orthoclosed
subset X of P has the property that any maximal orthogonal subset of X is a basis
of X.

The notion of a basis is due to Mielnik (1968). Mielnik defines transition probabilities
to be transition probabilities in our sense, with the additional requirement that they
are well-behaved. The following theorem proves that every basis of a well-behaved
transition probability space has the same cardinality.

Theorem 2.7. Let (P, τ) be a well-behaved transition probability space and let B1

and B2 be two bases of P . Then B1 and B2 have the same cardinality.

Proof. See Mielnik (1968), Theorem 1.

Lemma 2.8. Let (P, τ) be a well-behaved transition probability space and X be an
orthogonal family of points. Then

X⊥⊥ = {y ∈ P |
∑
x∈X

τ(x, y) = 1}. (2.6)

Proof. Let B ⊆ X⊥ be a maximal orthogonal subset of X⊥. Because X⊥ is ortho-
closed and P is well-behaved, the set B is a basis of X⊥.

Claim: The set X ∪B forms a basis of P .

Proof: Because P is orthoclosed and well-behaved, it is enough to show that X ∪B
is a maximal orthogonal subset of P . Suppose for the sake of contradiction that it
is not a basis. Because X ∪ B is clearly a family or orthogonal points, this implies
that there exists a y ∈ P such that τ(x, y) = 0 for all x ∈ X ∪ B and y /∈ X ∪ B.
Then in particular τ(x, y) = 0 for every x ∈ X, and hence y ∈ X⊥. But because B
is a basis for X⊥ we have

∑
x∈B τ(x, y) = 1, which contradicts our assumption that

τ(x, y) = 0 for every x ∈ X ∪ B. Thus X ∪ B indeed is a maximal orthogonal set,
and hence a basis for P . �

Now suppose that y ∈ X⊥⊥. Then τ(x, y) = 0 for all x ∈ B ⊆ X⊥, and hence

1 =
∑

x∈X∪B

τ(x, y) =
∑
x∈X

τ(x, y). (2.7)

This shows that X⊥⊥ ⊆ {y ∈ P |
∑

x∈X τ(x, y) = 1}. Finally, suppose that y /∈ X⊥⊥.
Then there exists a x ∈ X⊥ such that τ(x, y) > 0. Now choose B to be a maximal
orthogonal subset of X⊥ that contains x. Then 1 =

∑
x∈X∪B τ(x, y) >

∑
x∈X τ(x, y),

which contradicts the fact that X ∪ B is a basis. This implies that {y ∈ P |∑
x∈X τ(x, y) = 1} ⊆ X⊥⊥.
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2.2 Basic mathematical structures of quantum me-

chanics

We view B(H)sa, D(H) and P1(H), not just as sets, but as mathematical structures.
Recall that

P1(H) = {e ∈ B(H) | e2 = e∗ = 2, Tr(e) = dim(eH) = 1}; (2.8)

D(H) = {ρ ∈ B(H) | ρ ≥ 0, Tr(ρ) = 1}; (2.9)

B(H)sa = {a ∈ B(H) | a∗ = a}. (2.10)

The additional structure on P1(H) is a transition probability τP1(H) given by

τP1(H) : P1(H)→ P1(H); (e, f) 7→ Tr(ef). (2.11)

It is easy to see that this is indeed a transition probability, because for one-dimensional
projections ex and ey in P1(H) we have

τP1(H)(ex, ey) = Tr(exey) =
∣∣〈x, y〉∣∣2 . (2.12)

We then define a Wigner map to be a map that preserves this transition probability.

Definition 2.9. Let H1 and H2 be Hilbert spaces. A Wigner symmetry is a
bijection

W : P1(H1)→ P1(H2) (2.13)

that satisfies

Tr(W (e)W (f)) = Tr(ef), e, f ∈ P1(H). (2.14)

We saw in the previous chapter that D(H) is a convex set. This is the relevant struc-
ture on D(H) that we want to preserve. This leads to the definition of a Kadison
symmetry .

Definition 2.10. Let H1 and H2 be Hilbert spaces. A Kadison symmetry is an
affine bijection

K : D(H1)→ D(H2), (2.15)

i.e., a bijection that preserves convex sums.
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Lastly, we add structure to the set B(H)sa by viewing it as a Jordan algebra . We
will discuss Jordan algebras in more detail in Section 3.5, but for now it is enough
to equip B(H)sa with the Jordan product “◦” given by

a ◦ b = 1
2
(ab+ ba). (2.16)

This turns (B(H)sa, ◦) into a real associative vector space. A map that preserves the
Jordan product is called a Jordan map.

Definition 2.11. Let H1 and H2 be Hilbert spaces. A Jordan symmetry is an
invertible Jordan map

J : B(H1)sa → B(H2)sa, (2.17)

i.e., an R-linear bijection that satisfies the equivalent conditions

J(a ◦ b) = J(a) ◦ J(b); (2.18)

J(a2) = J(a)2. (2.19)

Note that every Jordan map J : B(H1)sa → B(H2)sa has a unique extension to a
C-linear map

JC : B(H1)→ B(H2); (2.20)

JC(a∗) = JC(a)∗, (2.21)

which preserves the Jordan product for all a, b, as well as

JC(a+ ib) = J(a) + iJ(b), (2.22)

for all a, b ∈ Asa. We call such a map a complex Jordan map. Conversely, such
a complex Jordan map defines a real Jordan map by restricting it to B(H1)sa.

Recall from section A.2 the definition of a unitary and anti-unitary operator:

Definition 2.12. Let H1 and H2 be Hilbert spaces and u ∈ B(H1, H2). We call u
a unitary operator or a unitary if it satisfies one and hence all of the following
equivalent conditions

(a) u∗u = 1H1 and uu∗ = 1H2;

(b) u is surjective and 〈ux, uy〉H2 = 〈x, y〉 for all x, y ∈ H1.

Definition 2.13. Let H1 and H2 be Hilbert spaces.
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(a) A real-linear operator u : H1 → H2 is anti-linear if

u(λx) = λu(x) (λ ∈ C). (2.23)

(b) An anti-linear operator u : H1 → H2 is anti-unitary if it is surjective, and

〈ux, uy〉H2 = 〈x, y〉H1
(x, y ∈ H1). (2.24)

The adjoint u∗ : H2 → H1 of a bounded anti-linear operator u is defined by the
property

〈u∗x, y〉H1 = 〈x, uy〉H2
(x ∈ H2, y ∈ H1), (2.25)

in which case u∗ : H2 → H1 is anti-linear too. Hence we may equally say that an
anti-linear operator is anti-unitary if u∗u = 1H1 and uu∗ = 1H2.

The goal for the rest of this chapter is to prove that any Wigner, Jordan or Kadison
symmetry is induced by a unitary or anti-unitary in the following sense:

W (e) = ueu∗; (2.26)

K(ρ) = uρu∗; (2.27)

J(a) = uau∗, (2.28)

where u ∈ B(H1, H2) is either a unitary or anti-unitary or a *-anti-isomorphism.
Moreover, u is uniquely determined by the symmetry in question up to a phase. The
theorem involving Wigner symmetries is known as Wigner’s Theorem . It was first
stated by von Neumann and Wigner in 1928, and proven by Wigner in 1931. Mir-
roring the name “Wigner’s Theorem”, we call the statements involving Kadison and
Jordan symmetries Kadison’s Theorem and Jordan’s Theorem respectively. A
direct proof of Wigner’s Theorem is given in Landsman (2017), who follows Simon
(1976). Wigner’s Theorem is first proven for two-dimensional Hilbert spaces, after
which it is generalised to arbitrary Hilbert spaces. We will take a different route,
using the equivalence between Jordan symmetries and Wigner symmetries. Once
we have proven Jordan’s Theorem, Wigner’s Theorem and Kadison’s Theorem will
follow immediately.

2.3 Equivalences between symmetries

We will prove the equivalence between the Wigner symmetries, Kadison symmetries
and Jordan symmetries in the sequence Wigner ↔ Kadison ↔ Jordan. We follow
the proofs from Landsman 2017 almost verbatim. We start by proving Wigner ↔
Kadison.
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Proposition 2.14. There is an isomorphism of groups between:

• The group of Kadison symmetries K : D(H1)→ D(H2);

• The group of Wigner symmetries P1(H1)→ P2(H2),

given by

W = K
P1(H1)

; (2.29)

K
(∑

i

λievi
)

=
∑
i

λiW (vvi), (2.30)

where ρ =
∑

i λievi is some (not necessarily unique) expansion of ρ ∈ D(H) in terms
of a basis of eigenvectors vi with eigenvalues λi, where λi ≥ 0 and

∑
i λi = 1. In

particular, (2.29) and (2.30) are well defined.

Proof. We start with 2.29. Let K be a Kadison symmetry. Because it is affine, it
preserves the extreme boundary. By Lemma 1.16 this means that K maps P1(H1)
bijectively onto P1(H2). So it remains to be shown that K

P1(H1)
preserves transition

probabilities, i.e.,
Tr(K(e)K(f)) = Tr(ef), (2.31)

for all e, f ∈ H1. To prove this, we need the following two claims.

Claim: An affine bijection K : D(H1)→ D(H2) extends to an isomorphism

K1 : B1(H1)sa → B1(H2)sa (2.32)

that is isometric in the trace norm.

Proof: Put K1(0) = 0 and for a > 0, a ∈ B1(H1)+ define

K1(a) =‖a‖1K
( a

‖a‖1

)
. (2.33)

For a ∈ B1(H1)+, a 6= 0 we have Tr(a) = ‖a‖1, hence a/‖a‖1 ∈ D(H1), on which
K is defined. Hence K1 is isometric and preserves positivity. Let λ > 0. Then for
a ∈ B1(H1)+, a > 0 we have λa ∈ B1(H1)+, and

K1(λa) =‖λa‖1K
( λa

‖λa‖1

)
= λ‖a‖1K

( a

‖a‖1

)
. (2.34)
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Note that if a, b ∈ B1(H1)+, then a+ b ∈ B1(H1)+. Now use

a+ b =
(
‖a‖1 +‖b‖1

)
·
(
t
a

‖a‖1

+ (1− t) b

‖b‖1

)
, (2.35)

with t =‖a‖1 /(‖a‖1 +‖b‖1), and equation (2.34) to see that

K1(a+ b) = K1

((
‖a‖1 +‖b‖1

)(
t
a

‖a‖1

+ (1− t) b

‖b‖1

))
=
(
‖a‖1 +‖b‖1

)
K1

(
t
a

‖a‖1

+ (1− t) b

‖b‖1

)
=
(
‖a‖1 +‖b‖1

)
(tK

( a

‖a‖1

)
+ (1− t)K

( b

‖b‖1

)
)

= K1(a) +K1(b) (2.36)

This shows linearity of K1 with positive coefficients on B1(H1)+. Now let a ∈
B1(H1)sa and ue Corollary A.41 to decompose a = a+ − a−, where a± ≥ 0. We
then define

K1(a) = K1(a+)−K1(a−). (2.37)

This is independent of the decomposition of a, for suppose that a+−a− = a = a′+−a′−.
Then by (2.36):

K1(a+) +K1(a′−) = K1(a+ + a′−) = K1(a′+ + a−) = K1(a′+) +K1(a−). (2.38)

Hence for a, b ∈ B1(H1)sa we may compute

K1(a+ b) = K1(a+ + b+ − (a− + b−)) = K1(a+ + b+)−K1(a− + b−)

= K1(a+) +K1(b+)−K1(a−)−K1(b−) = K1(a) +K1(b), (2.39)

since a++b+ and a−+b− are both positive. Because the construction is invertible, we
have now shown that K1 : B(H1)sa → B(H2)sa is an isomorphism. It only remains
to be shown that it is isometric in the trace norm. By Corollary A.41 we have
|a| = a1 + a2. Using this property, we have∥∥K1(a)

∥∥
1

= Tr(
∣∣K1(a)

∣∣) = Tr(
∣∣K1(a+)−K1(a−)

∣∣) = Tr(K1(a+) +K1(a−))

= Tr(‖a+‖1K(a+/‖a+‖1) + Tr(‖a−‖1K(a−/‖a−‖1)))

=‖a+‖1 +‖a−‖1 = Tr(a+) + Tr(a−) = Tr(a+ + a−)

= Tr(|a+ − a−|) = Tr(|a|) =‖a‖1 , (2.40)
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i.e., K1 is a trace norm isometry. �

Claim: For any two unit vectors x, y ∈ H we have the formula∥∥ex − ey∥∥1
= 2
√

1− Tr(exey). (2.41)

Proof: If y = zx for some z ∈ T we have ex = ey, in which case equation (2.41) reads
0 = 0. So assume that x and y are linearly independent. Then everything takes
place in the two-dimensional subspace of H spanned by x = (1, 0) and y = (c1, c2),
with |c1|2 +|c2|2. So we can prove (2.41) using 2× 2 matrices. Then

ex =

(
1 0
0 0

)
, ey =

(
|c1|2 c1c2

c1c2 |c2|2

)
, (2.42)

from which it follows that

(ex − ey)2 = |c2|2 · 12; (2.43)∣∣ex − ey∣∣ =
√

(ex − ey)2 = |c2| · 12; (2.44)∥∥ex − ey∥∥1
= Tr(

∣∣ex − ey∣∣) = 2|c2| . (2.45)

Hence ∥∥ex − ey∥∥1
= 2|c2| = 2

√
|c2|2 = 2

√
1−|c1|2 = 2

√
1− Tr(exey). (2.46)

�

Now let ex, ey ∈ P1(H1). By the first claim we have∥∥K(ex)−K(ey)
∥∥

1
=
∥∥K1(ex − ey)

∥∥
1

=
∥∥ex − ey∥∥1

. (2.47)

Using the second claim, this implies that

2
√

1− Tr(K(ex)K(ey)) = 2
√

1− Tr(exey), (2.48)

and hence
Tr(K(ex)K(ey)) = Tr(exey), (2.49)
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i.e., K
P1(H1)

preserves transition probabilities. We conclude that K
P1

: P1(H1) →
P1(H2) is a Wigner symmetry.

We move on to equation (2.30). Our main concern is that this expression is well
defined, because the norm convergent expansion

ρ =
∑

λ∈spp(ρ)

λ · eλ (2.50)

is in general far from unique. We settle this as follows.

Claim: Let W : P1(H1)→ P1(H2) be a bijection that preserves transition probabili-
ties. Let L ⊂ H be a finite-dimensional subspace, and let {vi} and {v′j} be bases of
L. Then ∑

i

W (evi) =
∑
j

W (ev′j). (2.51)

Proof: From Bessel’s inequality (Lemma A.12) we obtain that for every unit vector
x ∈ H1: ∑

i

∣∣〈vi, x〉∣∣2 ≤‖x‖ = 1. (2.52)

The equality holds if and only if x ∈ L. In other words, ex ≤ eL if and only if x ∈ L,
and hence ex ≤ eL if and only if

∑
i Tr(eviex) = 1. Furthermore, because W preserves

transition probabilities the images W (evi) remain orthogonal. Hence
∑

iW (evi) is a
projection, and for every projection e ∈ P1(H2) we have e ≤

∑
iW (evi) if and only

if Tr(
∑

iW (evi)e) =
∑

i Tr(W (evi)e) = 1. Because W preserves transition probabili-
ties, this is satisfied for e = W (ev′j). Because all W (ev′j) are orthogonal, we conclude
that ∑

j

W (ev′j) ≤
∑
i

W (evi). (2.53)

Interchanging the roles of the two bases gives the converse, yielding the claim. �

Finally, to prove bijectivity of the correspondence K ↔ W , we need the property

K
(∑

i

λievi

)
=
∑
i

λiK(evi), (2.54)

since this implies that K is determined by its action on P1(H1) ⊂ D(H1). In finite
dimension this follows from convexity of K, and we are done. For infinite dimensions
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we need the extension of K (see the first claim) to be continuous in the trace norm,
as well as convergence of

∑
i λievi in the trace norm. To prove the latter, note that

for finite n,m, ∥∥∥∥∥∥
m∑
i=n

λievi

∥∥∥∥∥∥
1

≤
m∑
i=n

|λi|
∥∥evi∥∥1

=
m∑
i=n

λi, (2.55)

where we use the triangle inequality and the fact that evi ∈ D(H1). Because
∑

i λi =
1, the above expression vanishes as n,m→∞.

Lastly, continuity of K1 : B1(H1) → B1(H2) in the trace norm follows from the
fact that K is isometric in the trace norm and hence bounded.

To prove the equivalence between Kadison symmetries and Jordan symmetries we
take a short detour to the real vector space of bounded affine function. In what
follows, for any convex set C, the notation Ab(C)) stands for the real vector spaces
of bounded affine functions f : C → R, that is, bounded functions satisfying

f(tx+ (1− t)y) = tf(x) + (1− t)f(y), x, y ∈ C, t ∈ (0, 1). (2.56)

Proposition 2.15. For any Hilbert space H we have an isometric isomorphism

Ab(D(H)) ∼= B(H)sa, (2.57)

f ↔ a, (2.58)

f(ρ) = Tr(ρa), (2.59)

which preserves the unit as well as the order.

Proof. See Landsman (2017), Proposition 5.17.

The equivalence between Kadison symmetries and Jordan symmetries follows directly
from the following lemma.

Lemma 2.16. 1. There is a bijective correspondence between:

• Kadison symmetries K : D(H1)→ D(H2);

• unital positive linear bijections α : B(H2)sa → B(H1)sa,

such that for any a ∈ B(H)sa one has

Tr(K(ρ)a) = Tr(ρα(a)). (2.60)
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2. A map α : B(H1)→ B(H2) is a unital positive linear bijection if and only if it
is a Jordan symmetry.

Proof. 1. A Kadison symmetry K : D(H1)→ D(H2) induces an isomorphism

K∗ : Ab(D(H2))→ Ab(D(H1)); (2.61)

f 7→ f ◦K, (2.62)

which is unital, positive and isometric. Let

Φi : Ab(D(Hi))→ B(Hi)sa (i = 1, 2) (2.63)

be the isometric isomorphism from Proposition 2.15. Then

α ≡ Φ1 ◦K∗ ◦ Φ−1
2 : B(H2)sa → B(H1)sa (2.64)

is an isomorphism that is also unital, positive and isometric.

Conversely, such a map α : B(H2)sa → B(H1)sa yields a map K directly by
(2.60); to see this, we identify D(Hi) with the normal state space of B(Hi)
through ρ↔ ω (see Theorem 1.25). For ω ∈ Sn(B(H1)) we then define Kω ∈
Sn(B(H2)) to be the state given by

(Kω)(a) = ω(α(a)), (2.65)

or briefly Kω = ω ◦ α.

2. The trivial direction of the proof is from Jordan symmetries to unital positive
linear bijections. Indeed, let J : B(H1)→ B(H2) be a Jordan symmetry. Then
it is clearly a unital linear bijection. Now let a ∈ B(H1)+. Then a = b2 for
certain b ∈ B(H1)sa, and hence J(a) = J(b2) = J(b)2 ≥ 0, which proves that J
is positive.

The nontrivial direction is based on a number of facts from operator theory:

(i) Unital positive linear maps B(H1)sa → B(H2)sa map P(H1) onto P(H2).

(ii) Any two projections e and f are orthogonal (ef = 0) if and only if e+f ≤
1H .

(iii) Any a ∈ B(H)sa is a norm-limit of finite sums of the kind
∑

i λiei, where
λi ∈ R and the ei are mutually orthogonal projections.

(iv) Any unital positive linear map α : B(H1)sa → B(H2)sa is continuous and
of norm 1.
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For details we refer the reader to the proof of Lemma 5.20 in Landsman 2017.
Therefore, by (i), (ii) and (iii), any unital positive linear map α preserves
orthogonality of projections, so if a =

∑
i λiei (finite sum), then

α(a2) = α
(∑

i

λ2
i ei

)
=
∑
i

λ2
iα(ei) =

∑
i,j

λiλjα(ei)α(ej) = α(a)2. (2.66)

By continuity of α, this property extends to arbitrary a ∈ B(H1)sa. Finally,
since

a ◦ b = 1
2
((a+ b)2 − a2 − b2), (2.67)

preserving squares implies preserving the Jordan product ◦.

Corollary 2.17. There is an isomorphism of groups between:

• The group of Kadison symmetries K : D(H1)→ D(H2);

• The group of Jordan symmetries J : B(H2)sa → B(H1)sa,

such that for any a ∈ B(H)sa one has

Tr(K(ρ)a) = Tr(ρJ(a)) (ρ ∈ D(H)). (2.68)

We now move on to Jordan’s Theorem, see Section 2.5.

2.4 Decomposing a Jordan map

The proof of Jordan’s Theorem consists of two main steps: firstly proving that
every Jordan symmetry JC : B(H1) → B(H2) is either a *-isomorphism or a *-anti-
isomorphism, and secondly proving that every *-isomorphism and *-anti-isomorphism
are of the desired form. In his 1982 paper Jordan-morphisms in *-algebras (Thomsen
1982) Klaus Thomsen proved a theorem which allows us to decompose a Jordan map
into three parts: a part that is a *-homomorphism and not a *-anti-homomorphism,
a part that is a *-anti-homomorphism and not a *-homomorphism, and a part that is
both a *-homomorphism as well as a *-anti-morphism. This result is a generalisation
of Størmer (1965), which in turn is a generalisation of Jacobson and Rickart (1950).
Using the special properties of the algebra of bounded operators, we will use this
theorem to prove the first step of the proof of Jordan’s Theorem.

Thomsen’s theorem takes place in a more general setting than Jordan’s Theorem.
For this, we need a more general definition of a Jordan map.
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Definition 2.18. Let A and B be associative algebras over R. A Jordan map is
an R-linear map that satisfies the equivalent conditions

J(a ◦ b) = J(a) ◦ J(b) (2.69)

J(a2) = J(a)2, (2.70)

where ‘◦’ denotes the Jordan product given by

a ◦ b = 1
2
(ab+ ba). (2.71)

As you can see, the only difference between this definition of a Jordan map and the
definition given in Section 2.2 is that we now work with general algebras over R, and
not just with B(H)sa. Now let A be a *-algebra, then Asa is an associative algebra
over R. Just as before, we can uniquely extend a Jordan map J : Asa → Bsa to a
C-linear map

JC : A→ B; JC(a∗) = JC(a)∗, (2.72)

which satisfies
JC(a ◦ b) = JC(a) ◦ JC(b). (2.73)

Let A and B again be *-algebras. We will call a C-linear map ϕ : A → B a Jordan
map if ϕ

Asa
: Asa → Bsa is a Jordan map, in which case

ϕ =
(
ϕ
Asa

)
C. (2.74)

Using this terminology, we can state Thomsen’s theorem.

Theorem 2.19. Let A be a *-algebra, and let ϕ : A → B(H) be a Jordan map.
Assume that ϕ(A) is again a *-algebra. Then there exist three mutually orthogonal
projections pi, i = 1, 2, 3, in the center of the von Neumann algebra generated by
ϕ(A), such that:

(i) ϕ(·)p1 is a *-homomorphism, and not a *-anti-homomorphism;

(ii) ϕ(·)p2 is an *-anti-homomorphism, and not a *-homomorphism;

(iii) p3 is the largest central projection such that ϕ(·)p3 is a *-homomorphism, as
well an a *-anti-homomorphism;

(iv) 1H = p1 ⊕ p2 ⊕ p3.

Conversely, the above conditions (1)-(4), determine the central projections pi uniquely.
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We will prove the theorem by explicitly constructing the projections p1, p2 and p3.
To do this, we need to do some preparatory work in the form of Lemma 2.22 and
Lemma 2.23. To ease notation in these lemmas, we use the following definition.

Definition 2.20. Let A and B be *-algebras and let ϕ : A → B be a Jordan map.
Then we define for a, b ∈ A:

ab = i[ϕ(ab)− ϕ(a)ϕ(b)]; (2.75)

ab = i[ϕ(ab)− ϕ(b)ϕ(a)]. (2.76)

Remark 2.21. It is easy to see that if a, b ∈ Asa, then ab, ab ∈ Bsa. Indeed:

(ab)∗ =
(
i[ϕ(ab)− ϕ(a)ϕ(b)]

)∗
= −i[ϕ(b∗a∗)− ϕ(b∗)ϕ(a∗)]

= −i[ϕ(ba+ ab)− ϕ(ab)− ϕ(b)ϕ(a)]

= −i[ϕ(b)ϕ(a) + ϕ(a)ϕ(b)− ϕ(ab)− ϕ(b)ϕ(a)]

= i[ϕ(ab)− ϕ(a)ϕ(b)]

= ab, (2.77)

and similarly for ab.

Using elementary linear algebra, we can deduce several useful relations concerning
ab and ab. These relations will be useful in the proof of Lemma 2.23. Lemma 2.22 is
due to Herstein (1956).

Lemma 2.22. Let A and B be *-algebras and ϕ : A → B a Jordan map. Then for
all a, b, c ∈ A:

(i) ϕ(aba) = ϕ(a)ϕ(b)ϕ(a);

(ii) ϕ(abc+ cba) = ϕ(a)ϕ(b)ϕ(c) + ϕ(c)ϕ(b)ϕ(a);

(iii) abab = 0;

(iv) abϕ(c)ab = iabϕ((ab− ba)c);

(v) abϕ((ab− ba)c)ab = 0;

(vi) abϕ(ab− ba)ϕ(c)ϕ(ab− ba)ab = 0;

(vii) ab + ac = ab+c, and ab + ac = ab+c;



32 Chapter 2. Symmetries in quantum mechanics

(viii) ac + bc = (a+ b)c, and ac + bc = (a+ b)c.

Proof. (i) For all a, b ∈ A

aba = 2(a ◦ (a ◦ b))− b ◦ (a ◦ a), (2.78)

which shows that

ϕ(aba) = 2ϕ
(
(a ◦ (a ◦ b))

)
− ϕ

(
b ◦ (a ◦ a)

)
= 2
(
ϕ(a) ◦ (ϕ(a) ◦ ϕ(b))

)
− ϕ(b) ◦

(
ϕ(a) ◦ ϕ(a)

)
= ϕ(a)ϕ(b)ϕ(a). (2.79)

(ii) Because for all a, b, c ∈ A

abc+ cba = (a+ c)b(a+ c)− aba− cbc, (2.80)

we can use (2.79) to show that

ϕ(abc+ cba) = ϕ
(
(a+ c)b(a+ c)

)
− ϕ(aba)− ϕ(cbc)

= ϕ(a+ c)ϕ(b)ϕ(a+ c)− ϕ(a)ϕ(b)ϕ(a)− ϕ(c)ϕ(b)ϕ(c)

= ϕ(a)ϕ(b)ϕ(c) + ϕ(c)ϕ(b)ϕ(a). (2.81)

(iii) It now follows from (2.79) and (2.81) that abab = 0 for all a, b ∈ A:

abab = −
[
ϕ(ab)− ϕ(a)ϕ(b)

][
ϕ(ab)− ϕ(b)ϕ(a)

]
= −ϕ(ab)2 +

[
ϕ(ab)ϕ(b)ϕ(a) + ϕ(a)ϕ(b)ϕ(ab)

]
− ϕ(a)ϕ(b)2ϕ(a)

= −ϕ(ab) ◦ ϕ(ab) + ϕ(ab2a+ abab)− ϕ(ab2a)

= −ϕ(abab) + ϕ(ab2a+ abab)− ϕ(ab2a) = 0. (2.82)

(iv) We can now use (2.81) and the Jordan property to see that

ϕ(c)ab (2.83)

= iϕ(c)ϕ(ab)− iϕ(c)ϕ(a)ϕ(b)

= iϕ(c)ϕ(ab) + iϕ(b)ϕ(a)ϕ(c)− iϕ(cab+ bac)

= iϕ(c)ϕ(ab) + iϕ(b)ϕ(a)ϕ(c)− iϕ
(
c(ab) + (ab)c

)
+ iϕ

(
(ab− ba)c

)
= iϕ(c)ϕ(ab) + iϕ(b)ϕ(a)ϕ(c)− iϕ(c)ϕ(ab)− iϕ(ab)ϕ(c) + iϕ

(
(ab− ba)c

)
= i
[
ϕ(ab)− ϕ(a)ϕ(b)

]
ϕ(c) + iϕ

(
(ab− ba)c

)
= abϕ(c) + iϕ((ab− ba)c). (2.84)
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Now multiply both sides of the equation from the left with ab and use (2.82)
to conclude that

abϕ(c)ab = ababϕ(c) + iabϕ
(
(ab− ba)c

)
= iabϕ

(
(ab− ba)c

)
. (2.85)

(v) Multiply equation (2.85) from the right with ab and use equation (2.82) to
conclude that

abϕ
(
(ab− ba)c

)
ab = −iabϕ(c)abab = 0. (2.86)

(vi) Use equation (2.79) and (2.86) and replace c with c(ab− ba) to conclude that

0 = abϕ
(
(ab− ba)c(ab− ba)

)
ab = abϕ(ab− ba)ϕ(c)ϕ(ab− ba)ab. (2.87)

(vii) This follows immediately from the linearity of ϕ.

(viii) This follows immediately from the linearity of ϕ.

Lemma 2.23. Let A be a *-algebra, and let ϕ : A → B(H) be a Jordan map such
that ϕ(A) is a *-algebra. Then(

ϕ(ab)− ϕ(a)ϕ(b)
)(
ϕ(cd)− ϕ(d)ϕ(c)

)
= 0, (2.88)

for all quadruples a, b, c, d ∈ A.

Proof. • We first reduce to the case that (A,ϕ) is unital. For if A is not unital,

then we use the unitisation Ã and define ϕ̃ : Ã→ B(H) by ϕ̃
(
(a, λ)

)
= ϕ(a) +

λ1H . The map ϕ̃ is a Jordan map. Indeed, it preserves the adjoint:

ϕ̃
(
(a, λ)

)∗
=
(
ϕ(a) + λ1H

)∗
= ϕ(a∗) + λ1H

= ϕ̃
(
(a∗, λ)

)
= ϕ̃

(
(a, λ)∗

)
, (2.89)
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and it preserves the Jordan product:

ϕ̃
(
(a, λ) ◦ (b, µ)

)
= ϕ̃

(
1
2
(a, λ)(b, µ) + 1

2
(b, µ)(a, λ)

)
= ϕ̃

(
1
2
(µa+ λb+ ab, λµ) + 1

2
(µa+ λb+ ba, λµ)

)
= ϕ̃

(
µa+ λb+ 1

2
(ab+ ba), λµ

)
= ϕ(µa+ λb+ {a, b}) + λµ1H

= µϕ(a) + λϕ(b) + {ϕ(a), ϕ(b)}+ λµ1H

= 1
2

(
ϕ(a) + λ1H

)(
ϕ(b) + µ1H

)
+ 1

2

(
ϕ(b) + µ1H

)(
ϕ(a) + λ1H

)
= 1

2
ϕ̃
(
(a, λ)

)
ϕ̃
(
(b, µ)

)
+ 1

2
ϕ̃
(
(b, µ)

)
ϕ̃
(
(a, λ)

)
= ϕ̃

(
(a, λ)

)
◦ ϕ̃
(
(b, µ)

)
. (2.90)

Then(
ϕ̃
(
(a, α)(b, β)

)
− ϕ̃

(
(a, α)

)
ϕ̃
(
(b, β)

))(
ϕ̃
(
(c, γ)(d, δ)

)
− ϕ̃

(
(d, δ)

)
ϕ̃
(
(c, γ)

))
=
(
ϕ̃
(
(βa+ αb+ ab, αβ)

)
− ϕ̃

(
(a, α)

)
ϕ̃
(
(b, β)

))
·(

ϕ̃
(
(δc+ γd+ cd, γδ)

)
− ϕ̃

(
(d, δ)

)
ϕ̃
(
(c, γ)

))
=
(
ϕ(βa+ αb+ ab) + αβ1H −

(
ϕ(a) + α1H

)(
ϕ(b) + β1H

))
·(

ϕ(δc+ γd+ cd) + γδ1H −
(
ϕ(d) + δ1H

)(
ϕ(c) + γ1H

))
=
(
ϕ(ab)− ϕ(a)ϕ(b)

)(
ϕ(cd)− ϕ(d)ϕ(c)

)
. (2.91)

This shows that if the statement holds for unital (A,ϕ), it holds for all (A,ϕ).

• Secondly, we will reduce to the case where ϕ(A)′′ is a factor, i.e., where the
center of ϕ(A)′′ only consists of scalar multiples of the identity.

Because we have reduced to the case that (A,ϕ) is unital, the von Neumann
bicommutant theorem states that ϕ(A)′′ is a von Neumann algebra. Because
the norm topology is stronger than the strong topology, every strongly closed
set is also norm-closed. Hence ϕ(A)′′ is a C*-algebra. Let P be the set of pure
states on ϕ(A)′′ and let πa = ⊕ω∈Pπω be its atomic representation. According
to Proposition A.90 this representation is faithful, so it is enough to show that[

(πω ◦ ϕ)(ab)− (πω ◦ ϕ)(a)(πω ◦ ϕ)(b)
]
·[

(πω ◦ ϕ)(cd)− (πω ◦ ϕ)(d)(πω ◦ ϕ)(c)
]

= 0, (2.92)
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for all a, b, c, d ∈ A and ω ∈ P . So let ω ∈ P be a pure state. Note that

πω ◦ ϕ : A→ B(Hω) (2.93)

is a Jordan map because ϕ is a Jordan map and πω is a *-homomorphism.
Further note that and (πω ◦ ϕ)(A) is a *-algebra, because ϕ(A) is a *-algebra
and πω is a *-homomorphism. We now show that πω(ϕ(A)′′) is a factor. By
Corollary A.73 we know that ϕ(A) is σ-weakly dense in ϕ(A)′′. We want to
conclude that πω(ϕ(A)) is σ-weakly dense in πω(ϕ(A)′′), but we cannot do so
directly, because we do not know if πω is σ-weakly continuous. We can work
around this problem by using some results from Chapter 3. Corollary 3.32
shows that πω has an extension to a map from A∗∗ to B(Hω) that is σ-weakly
continuous. Indeed, let ω̃ be the normal state on the enveloping von Neumann
algebra A∗∗ that corresponds to ω. Then Lemma 3.15 and 3.16 show that

πω̃ : (ϕ(A)′′)∗∗ → B(Hω) (2.94)

is σ-weakly continuous, which implies that πω̃(ϕ(A)) is σ-weakly dense in
πω̃(ϕ(A)′′). Because πω̃ is an extension of πω : ϕ(A)′′ → B(Hω) we have

πω̃(ϕ(A)) = πω(ϕ(A)), (2.95)

and
πω̃(ϕ(A)′′) = πω(ϕ(A)′′). (2.96)

This shows that πω(ϕ(A)) is σ-weakly dense in πω(ϕ(A)′′), and hence

πω(ϕ(A))′′ = πω(ϕ(A)′′)′′. (2.97)

Since ω is in particular a pure state on ϕ(A)′′, we have by Theorem A.95 that

πω(ϕ(A))′′ = πω(ϕ(A)′′)′′ = B(Hω). (2.98)

This implies that

Z
(
πω(ϕ(A))′′

)
= B(Hω)′ = C ·1H , (2.99)

i.e.,
(
(πω ◦ ϕ)(A)

)′′
is a factor. We have now shown that in general ϕ(A)′′ is a

direct sum of von Neumann algebras that are factors. Because we can consider
all of the summands independently, we can reduce to the case that ϕ(A)′′ is a
factor.
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For the rest of the proof we will assume that (A,ϕ) is unital and that ϕ(A)′′ is a
factor. Because ϕ(A) is dense in ϕ(A)′′, Lemma 2.22 part 6 implies that

abϕ(ab− ba)ϕ(A)′′ϕ(ab− ba)ab = 0. (2.100)

So we can apply Corollary A.81 to conclude that for all a, b ∈ A,

abϕ(ab− ba) = 0 or ϕ(ab− ba)ab = 0. (2.101)

We use the Jordan property to rewrite

ϕ(ab− ba) = 2ϕ(ab)− ϕ(ab+ ba)

= 2ϕ(ab)− ϕ(a)ϕ(b)− ϕ(b)ϕ(a)

= −i(ab + ab). (2.102)

First assume that abϕ(ab− ba) = 0 in equation (2.101). Using (2.102) and equation
(2.82), we find

0 = abϕ(ab− ba) = −iab(ab + ab) = −i(ab)2, (2.103)

hence (ab)2 = 0. Similarly, the other possibility in equation (2.101) implies (ab)
2 = 0.

If a, b ∈ Asa, we know that ab and ab are self-adjoint. In that case (ab)2 =
∣∣ab∣∣2 = 0

or (ab)
2 = |ab|2 = 0. Therefore, we can conclude that for all a, b ∈ Asa:

ab = 0 or ab = 0. (2.104)

This shows that for all a, b ∈ Asa and c ∈ A:

abϕ(c)ab = 0. (2.105)

Using this relation and Lemma 2.22 part 7 we see that for all a, b, d ∈ Asa and c ∈ A:

0 = ab+dϕ(c)ab+d

= abϕ(c)ab + abϕ(c)ad + adϕ(c)ab + adϕ(c)ad

= abϕ(c)ad + adϕ(c)ab. (2.106)

Combining this with equation (2.104) implies that for all a, b, d ∈ Asa we have ad = 0
or ab = 0, hence:

ada
b = 0. (2.107)
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Replacing a by a+ c and using Lemma 2.22 part 8 we find that for all a, b, c, d ∈ Asa:

0 = (a+ c)d + (a+ c)b

= ada
b + adc

b + cda
b + cdc

b

= adc
b + cda

b. (2.108)

We know that ad = 0 or ab = 0, and cb = 0 or cd = 0, hence (2.108) implies that
ab = 0 or cb = 0. So for all a, b, c, d ∈ Asa:

abcd = 0. (2.109)

Now let a, b, c, d ∈ A and write these as a = a1 + ia2, . . . , d = d1 + id2 with
a1, a2, . . . , d2, d2 ∈ Asa. Then it follows from Lemma 2.22 part 7 and 8 and the
previous relation that(

φ(ab− ϕ(a)ϕ(b)
)(
ϕ(cd)− ϕ(d)ϕ(c)

)
= −abcd
= (a1 + ia2)b1+ib2(c1 + ic2)d1+id2

= (ab11 + iab21 + iab12 − ab22 )(c1d1 + ic1d2 + ic2d1 − c2d2)

= 0. (2.110)

Corollary 2.24. Let A be a *-algebra, and let ϕ : A→ B(H) be a Jordan map such
that ϕ(A) is a *-algebra. Then(

ϕ(ab)− ϕ(b)ϕ(a)
)(
ϕ(cd)− ϕ(c)ϕ(d)

)
= 0, (2.111)

for all quadruples a, b, c, d ∈ A.

Proof. Let a, b, c, d ∈ A. Then by Lemma 2.23:(
ϕ(ab)− ϕ(b)ϕ(a)

)(
ϕ(cd)− ϕ(c)ϕ(d)

)
=
[(
ϕ(d∗c∗)− ϕ(d∗)ϕ(c∗)

)(
ϕ(b∗a∗)− ϕ(a∗)ϕ(b∗)

)]∗
= 0. (2.112)

Using Lemma 2.23 and Corollary 2.24, we are finally able to prove Theorem 2.19.
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Proof of Theorem 2.19. Define

A1 = {ϕ(ab)− ϕ(a)ϕ(b) | a, b ∈ A}, (2.113)

A2 = {ϕ(ab)− ϕ(b)ϕ(a) | a, b ∈ A}. (2.114)

Also define

q1 =
[ ⋂
α∈A1

kerα
]
, q2 =

[ ⋂
α∈A2

kerα
]
, q3 =

[ ⋂
α∈A1∪A2

kerα
]
, (2.115)

where [. . . ] means that we take the orthogonal projection onto the closed subspace
of B(H) between the brackets. Now define

A′1 = {ϕ(ab)− ϕ(a)ϕ(b) | a, b ∈ (A1)sa}; (2.116)

A′2 = {ϕ(ab)− ϕ(a)ϕ(b) | a, b ∈ (A2)sa}, (2.117)

and

q′1 =
[ ⋂
α∈A′1

kerα
]
, q′2 =

[ ⋂
α∈A′2

kerα
]
, q′3 =

[ ⋂
α∈A′1∪A′2

kerα
]
. (2.118)

Claim: We have q1 = q′1, q2 = q′2 and q3 = q′3.

Proof: We prove that q1 = q′1; the other two identities are proven similarly. First
note that A′1 ⊂ A1, and hence ⋂

α∈A′1

kerα ⊇
⋂
α∈A1

kerα. (2.119)

Using Proposition A.30 this shows that q1 ≤ q′1, so it only remains to be shown that⋂
α∈A′1

kerα ⊆
⋂
α∈A1

kerα. (2.120)

Let x ∈
⋂
α∈A′1

kerα. We want to show that αx = 0 for all α ∈ A1. So let α be any

element of A1, i.e., α = ϕ(ab) − ϕ(a)ϕ(b) for certain a, b ∈ A. Write a = a1 + ia2

and b = b1 + ib2 with a1, a2, b1, b2 ∈ A. Then

α = ϕ
(
(a1 + ia2)(b1 + ib2)

)
− ϕ(a1 + ia2)ϕ(b1 + ib2)

=
[
ϕ(a1b1)− ϕ(a1)ϕ(b1)

]
+ i
[
ϕ(a1b2)− ϕ(a1)ϕ(b2)

]
+ i
[
ϕ(a2b1)− ϕ(a2)ϕ(b1)

]
− i
[
ϕ(a2b2)− ϕ(a2)ϕ(b2)

]
= α1 + iα2 + iα3 − α4, (2.121)
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where

α1 =
[
ϕ(a1b1)− ϕ(a1)ϕ(b1)

]
, α2 =

[
ϕ(a1b2)− ϕ(a1)ϕ(b2)

]
,

α3 =
[
ϕ(a2b1)− ϕ(a2)ϕ(b1)

]
, α4 =

[
ϕ(a2b2)− ϕ(a2)ϕ(b2)

]
. (2.122)

Because x ∈
⋂
α∈A′1

kerα and α1, α2, α3, α4 ∈ A′1 we can now conclude that

αx = (α1 + iα2 + iα3 − α4)x = 0. (2.123)

This shows that
⋂
α∈A′1

kerα =
⋂
α∈A1

kerα and hence q1 = q′1. �

Now define pα =
[
Ranα

]
, i.e., the range projection of α, and define

e1 = inf{1H − pα | α ∈ A1};
e2 = inf{1H − pα | α ∈ A2};
e3 = inf{1H − pα | α ∈ A1 ∪ A2}. (2.124)

Claim: We have q1 = e1, q2 = e2 and q3 = e3.

Proof: We prove that q1 = e1; the other two identities are proven similarly. We will
show that q1 = e1 by proving that q1 ≤ e1 and e1 ≤ q1.

We first show that q1 ≤ e1. Let α = ϕ(ab) − ϕ(a)ϕ(b) ∈ A1. Then according to
A.14 we can decompose H as

H = Ranα⊕ Ranα
⊥

= Ran pα ⊕
(

Ran pα
)⊥
. (2.125)

Using Theorem A.25 we can rewrite this decomposition further as

H = Ran pα ⊕ ker p∗α = Ran pα ⊕ ker pα. (2.126)

Let x ∈ H be any element of H and decompose it as x = y + z with y ∈ Ran pα and
z ∈ ker pα. Note that α∗ = ϕ(b∗a∗)− ϕ(b∗)ϕ(a∗) ∈ A1 and

Ran pα ∩ kerα∗ = Ranα ∩
(

Ranα
)⊥

=
(

Ranα)⊥⊥ ∩
(

Ranα
)⊥

= {0}. (2.127)

So for 0 6= y ∈ Ran pα we have y /∈ kerα∗ and thus q1y = 0. Then

q1x = q1(y + z) = q1y + q1z = 0 + q1z

= q1(y − y) + q1(z − 0) = q1(1H − pα)y + q1(1H − pα)z

= q1(1H − pα)(y + z) = q1(1H − pα)x. (2.128)
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This shows that q1 ≤ (1H − pα) for all α ∈ A1, and hence

q1 ≤ inf{1H − pα | α ∈ A1} = e1. (2.129)

So it remains to be shown that e1 ≤ q1. To this end, note that for all

α =
[
ϕ(ab)− ϕ(a)ϕ(b)

]
∈ A′1 (2.130)

we have:

α∗ = ϕ(ba)− ϕ(b)ϕ(a) = ϕ(ab+ ba)− ϕ(ab)− ϕ(b)ϕ(a)

= −
[
ϕ(ab)− ϕ(a)ϕ(b)

]
= −α. (2.131)

Using this relation and Theorem A.25 we see that

kerα = ker−α = kerα∗ =
(

Ranα
)⊥
. (2.132)

Now decompose H, using the relation above and the previous claim:

H = Ran q1 ⊕
(

Ran q1

)⊥
=
⋂
α∈A′1

kerα⊕
( ⋂
α∈A′1

kerα
)⊥

=
⋂
α∈A′1

(
Ranα

)⊥ ⊕ ( ⋂
α∈A′1

(
Ranα

)⊥)⊥
=
⋂
α∈A′1

(
Ranα

)⊥ ⊕ ( ⋃
α∈A′1

Ranα
)⊥⊥

=
⋂
α∈A′1

(
Ranα

)⊥ ⊕ ⋃
α∈A′1

Ranα. (2.133)

Let x ∈ H be any element of H and decompose it as x = y + z with

y ∈ Ran q1 =
⋂
α∈A′1

(
(Ranα)⊥

)
; (2.134)

z ∈
(

Ran q1

)⊥
=
⋃
α∈A′1

Ranα. (2.135)

Then it follows immediately that

q1x = q1(y + z) = y. (2.136)
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Since z ∈
⋃
α∈A′1

Ranα there are zn ∈
⋃
α∈A′1

Ranα such that zn converges to z in H.

Now let αn ∈ A′1 be such that zn ∈ Ranαn. Because e1 ≤ 1H − pα for all α ∈ A′1, we
have e1 = e1(1− pα) for all α ∈ A′1, and hence:

e1x = e1(y + z)

= e1y + lim
n→∞

e1zn

= e1y + lim
n→∞

e1(1H − pαn)zn

= e1y + lim
n→∞

e1(zn − zn)

= e1y

= e1q1x. (2.137)

This shows that e1q1 = e1 and hence e1 ≤ q1. We can therefore conclude that
e1 = q1. �

Claim: The projections q1, q2 and q3 are central in the von Neumann algebra gener-
ated by ϕ(A).

Proof: We prove the statement for q1; the other statements are proven analogously.
We first show that q1 ∈ ϕ(A)′′. Because q1 = inf{1H − pα | α ∈ A1} it is enough to
show that 1H − pα ∈ ϕ(A)′′ for all α ∈ ϕ(A). Since 1H ∈ ϕ(A)′′ it is even enough to
show that pα ∈ ϕ(A)′′. By definition, pα is the range projection of α ∈ A1 ⊆ ϕ(A).
Because ϕ(A)′′ is a von Neumann algebra and von Neumann algebras contain range
projections, we have pα ∈ ϕ(A)′′.

Secondly, we show that q1 ∈ ϕ(A)′; the proofs for q2 and q3 go analogously. We
want to show that q1ϕ(a) = ϕ(a)q1 for all a ∈ A. Decompose H as follows:

H =
⋂
α∈A1

kerα⊕
( ⋂
α∈A1

kerα
)⊥
. (2.138)

Note that the range space of q1 is invariant under ϕ(A), i.e.,

ϕ(a)
⋂
α∈A1

kerα ⊆
⋂
α∈A1

kerα, (2.139)

for all a ∈ A. Indeed, let a ∈ A, x ∈
⋂
α∈A1

kerα, and α = ϕ(bc) − ϕ(b)ϕ(c) ∈ A1.
Then

αϕ(a) =
[
ϕ(bc)− ϕ(b)ϕ(c)

]
ϕ(a)

= −
[
ϕ(bca)− ϕ(bc)ϕ(a)

]
+
[
ϕ(bca)− ϕ(b)ϕ(ca)

]
+ ϕ(b)

[
ϕ(ca)− ϕ(c)ϕ(a)

]
= −α1 + α2 + ϕ(b)α3, (2.140)
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where

α1 = ϕ(bca)− ϕ(bc)ϕ(a); (2.141)

α2 = ϕ(bca)− ϕ(b)ϕ(ca); (2.142)

α3 = ϕ(ca)− ϕ(c)ϕ(a), (2.143)

and α1, α2, α3 ∈ A1. Because x ∈
⋂
α∈A1

kerα, it follows immediately that

αϕ(a)x = (−α1 + α2 + ϕ(b)α3)x = 0, (2.144)

so ϕ(a)x ∈ kerα, and hence

ϕ(a)x ∈
⋂
α∈A1

kerα. (2.145)

Because
⋂
α∈A1

kerα is invariant under ϕ(A) we also know that
(⋂

α∈A1
kerα

)⊥
is

invariant under ϕ(A). Now let x ∈ H and write it as x = y+ z with y ∈
⋂
α∈A1

kerα

and z ∈
(⋂

α∈A1
kerα

)⊥
. Then

q1ϕ(a)x = q1ϕ(a)(y + z)

= ϕ(a)y + 0

= ϕ(a)q1y + ϕ(a)q1z

= ϕ(a)q1x, (2.146)

which shows that q1 ∈ ϕ(A)′. So now we know that q1 ∈ ϕ(A)′′∩ϕ(A)′, which proves
that q1 is central in the von Neumann algebra generated by ϕ(A). �

The second claim showed that

q1 = inf{1H − pα | α ∈ A1},
q2 = inf{1H − pα | α ∈ A2},
q3 = inf{1H − pα | α ∈ A1 ∪ A2}, (2.147)

which in turn means that

1H − q1 = sup{pα | α ∈ A1},
1H − q2 = sup{pα | α ∈ A2},
1H − q3 = sup{pα | α ∈ A1 ∪ A2}. (2.148)
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Now define

p1 = 1H − q2, p2 = 1H − q1, p3 = q1. (2.149)

We now show that p1, p2 and p3 satisfy the requirements of the theorem. The third
claim showed that p1, p2 and p3 are central projections. We now show that they are
mutually orthogonal and that p1 +p2 +p3 = 1H . Let α ∈ A1 and β ∈ A2. By Lemma
2.23 we have α∗β = 0, so Ran β ⊆ kerα∗ = (Ranα)⊥, and hence

Ran β ⊆ (Ranα)⊥. (2.150)

Because (Ranα)⊥ is closed we have (Ranα)⊥ = (Ranα)⊥, and

(Ranα)⊥ =
(
(Ranα)⊥⊥

)⊥
= Ranα

⊥
, (2.151)

which implies pαpβ = 0 for all α ∈ A1 and β ∈ A2. Because {pα | α ∈ A1} and
{pβ | β ∈ A2} are bounded sets in B(H), it follows from Lemma A.49 that

p2p1 =
(

sup
α∈A1

pα
)(

sup
β∈A2

pβ
)

= sup
α∈A1

sup
β∈A2

(
pαpβ

)
= 0. (2.152)

This shows that p1 and p2 are mutually orthogonal and hence that p1 + p2 is a
projection. Because A1 ⊆ A1 ∪ A2 and A2 ⊆ A1 ∪ A2, we can immediately conclude
from (2.148) that

p1 ≤ 1H − p3 and p2 ≤ 1H − p3. (2.153)

This shows that

(p1 + p2)(1H − p3) = p1(1H − p3) + p2(1H − p3) = p1 + p2, (2.154)

which implies

p1 + p2 ≤ 1H − p3. (2.155)

Again, it follows from Lemma A.49 that for every α ∈ A1 and β ∈ A2

p1α = 0, p2β = 0, (2.156)

and hence

p1pα = 0, p2pβ = 0. (2.157)

Because pα ≤ p2 for all α ∈ A1 and pα ≤ p1 for all α ∈ A2, the above relation shows
that [

p1 + p2

]
pα = pα, (2.158)
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for all α ∈ A1 ∪ A2. Hence
pα ≤ p1 + p2, (2.159)

which shows that
1H − p3 = sup

α∈A1∪A2

pα ≤ p1 + p2. (2.160)

Because p1 + p2 ≤ 1H − p3 and 1H − p3 ≤ p1 + p2 we have

p1 + p2 = 1H − p3, (2.161)

and hence
p1 + p2 + p3 = 1H . (2.162)

Now use this relation to see that

p1p3 = p1(1H − p1 − p2) = p1 − p1 − p1p2 = 0, (2.163)

and similarly p2p3 = 0. So the projections p1, p2 and p3 are mutually orthogonal. It
is clear from equation (2.148) and equation (2.156) that for all a, b ∈ A,

ϕ(ab)p1 − ϕ(a)p1ϕ(b)p1 = [ϕ(ab)− ϕ(a)ϕ(b)]p1 = 0, (2.164)

which shows that ϕ(·)p1 is a *-homomorphism. Now suppose that p1 6= 0. By
equation (2.148) this means that there exists an α = ϕ(ab) − ϕ(b)ϕ(a) ∈ A2 such
that α 6= 0. Then

ϕ(ab)p1 − ϕ(b)p1ϕ(a)p1 = αp1 = p1pαα = pαα = α 6= 0, (2.165)

which shows that ϕ(·)p1 is not an anti-morphism. The proof that ϕ(·)p2 is a *-
anti-homomorphism and not a *-homomorphism and the proof that ϕ(·)p3 is a *-
homomorphism as well as a *-anti-homomorphism are similar. Lastly, suppose that
there is a central projection p such that ϕ(·)p is a *-homomorphism as well as a
*-anti-homomorphism. Then

p[ϕ(ab)− ϕ(a)ϕ(b)] = 0 = p[ϕ(ab)− ϕ(b)ϕ(a)], (2.166)

for all a, b ∈ A. This shows that Ran p ⊆ kerα for all α ∈ A1 ∪ A2 and hence:

Ran p ⊆
⋂

α∈A1∪A2

kerα = Ran p3. (2.167)

This implies that p ≤ p3, which proves that p3 is the largest central projection such
that ϕ(·)p3 is a *-homomorphism, as well as a *-anti-homomorphism.
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Finally, we show that the conditions in the theorem determine p1, p2 and p3

uniquely. So assume that p1, p2 and p3 satisfy the conditions of the theorem and let
q1, q2 and q3 be as in equation (2.148). We show that p1 = 1H − q2, p2 = 1H − q1

and p3 = q3. By the previous argument, we have p3 ≤ q3. Because p3 is the largest
central projection such that ϕ(·)p3 that is a *-homomorphism, as well as a *-anti-
homomorphism, we also have q3 ≤ p3. This proves that p3 = q3. Furthermore,
p1 + p2 + p3 = 1H , which implies

p1 ≤ 1H − p3; (2.168)

p2 ≤ 1H − p3; (2.169)

p1 + p2 = 1H − p3. (2.170)

Let a, b ∈ A. Because p1 is a central projection such that ϕ(·)p1 is a *-homomorphism,
we have

ϕ(ab)p1 − ϕ(a)p1ϕ(b)p1 = [ϕ(ab)− ϕ(a)ϕ(b)]p1 = 0, (2.171)

and hence
p1pα = 0, (2.172)

where α = ϕ(ab)− ϕ(a)ϕ(b) ∈ A1. This shows that

p1(1H − pα) = p1, (2.173)

for all α ∈ A2, and therefore,

p1 ≤ inf{1H − pα | α ∈ A1} = q1. (2.174)

Similarly, p2 ≤ q2. This in turn implies that 1H−q1 ≤ 1H−p1 and 1H−q2 ≤ 1H−p2.
Therefore,

1H − q2 = (1H − q2)(1H − p3) ≤ (1H − p2)(1H − p3) = 1H − p2 − p3 = p1, (2.175)

and similarly,
1H − q1 ≤ p2, (2.176)

where we used the fact that (1H − q2)p3 = (1H − q1)p3 = 0. When we combine these
inequalities we find that

1H − p3 = (1H − q1) + (1H − q2) ≤ p1 + p2 = 1H − p3, (2.177)

so the equalities must hold, i.e.,

1H − q2 = p1, (2.178)

1H − q1 = p2. (2.179)
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In the next section we study the case where the *-algebra A is the algebra B(H)
of bounded operators on a Hilbert space. In this case the possibilities for central
projections are limited, because the center of B(H) only consists of scalar multiples
of the identity. We will use this fact to prove that every Jordan symmetry is either
a *-isomorphism or a *-anti-isomorphism.

2.5 Proof of Jordan’s Theorem

We are now able to prove Jordan’s Theorem. Throughout this sections we use the
following notation: let u ∈ B(H1, H2) be a unitary operator. We denote by αu the
*-isomorphism from B(H1) to B(H2) given by

αu(a) = uau∗, (2.180)

for all a ∈ B(H1). Similarly, let u ∈ B(H1, H2) be anti-unitary. We denote by α′u
the *-anti-isomorphism from B(H1) to B(H2) given by

α′u(a) = ua∗u∗. (2.181)

Theorem 2.25 (Jordan’s Theorem). Any Jordan symmetry JC : B(H1)→ B(H2) is
given by either

JC(a) = αu(a) ≡ uau∗, (2.182)

where u ∈ B(H1, H2) is unitary and is determined by JC up to a phase, or by

JC(a) = α′u(a) ≡ ua∗u∗, (2.183)

where u ∈ B(H1, H2) is anti-unitary and is determined by JC up to a phase.

The first step of the proof is a consequence of Theorem 2.19.

Proposition 2.26. A Jordan symmetry JC : B(H1)→ B(H2) is either a *-isomorphism
or a *-anti-isomorphism.

Proof. Let J : B(H1)→ B(H2) be a Jordan symmetry. Then in particular B(H2) is
a *-algebra, J is a Jordan map and J(B(H1)) = B(H2) is again a *-algebra. The
von Neumann algebra generated by J(B(H1)) is just B(H2), the center of which only
consists of scalar multiples of the identity. Now let p1, p2 and p3 be the projections
as in Theorem 2.19. Since these are central projections, we have p1, p2, p3 ∈ {0, 1H2}.
Because p1 + p2 + p3 = 1H2 , exactly one of p1, p2 and p3 equals 1H2 , and both
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other projections equal 0. Suppose that p3 = 1H2 , which would imply that J is a
*-isomorphism as well as a *-anti-isomorphism. Then for all a, b ∈ B(H1):

J(a)J(b) = J(ab) = J(b)J(a). (2.184)

This implies that J(B(H1)) ⊆ Z(B(H2)) = C ·1H2 ( B(H2), which contradicts the
assumption that J is bijective. So we have p3 6= 1H2 and hence p3 = 0. We can
now conclude that p1 = 1H2 and p2 = 0, i.e., J is a *-isomorphism, or p1 = 0 and
p2 = 1H2 , i.e., J is a *-anti-isomorphism.

It remains to be proven that every *-isomorphism of B(H) is given by αu for a certain
unitary operator u ∈ B(H1, H2), and every *-anti-isomorphism is given by α′u for a
certain anti-unitary operator u ∈ B(H1, H2). We work towards this result using the
following two lemma’s.

Lemma 2.27. Let α : B(H1)→ B(H2) be an *-isomorphism and a ∈ B(H), then∥∥α(a)
∥∥ =‖a‖ . (2.185)

Proof. Since α is injective, this follows from part (iii) of Theorem A.67.

Lemma 2.28. Let α : B(H1) → B(H2) be a *-isomorphism and e ∈ B(H1) a one-
dimensional projection, then so is α(e).

Proof. First note that α preserves projections: α(e)2 = α(e2) = α(e) and α(e)∗ =
α(e∗) = α(e), which shows that α(e) is a projection. Further note that for all a ∈
B(H)+ we have a = b∗b for certain b ∈ B(H) and hence α(a) = α(b∗b) = α(b)∗α(b) ∈
B(H)+. This shows that α preserves positivity and hence order. The one-dimensional
projections are minimal non-zero projections in the lattice of projections, i.e, they are
atoms (see Definition A.99). Because α preserves projections and order, it restricts
to an isomorphism of the lattice of projections in B(H1) to the lattice of projections
in B(H2). Hence it preserves atoms, because atoms are intrinsically defined by the
partial order.

We are now ready to give a constructive proof of the following proposition.

Proposition 2.29. Any isomorphism α : B(H1) → B(H2) takes the form α = αu,
where u : H1 → H2 is unitary and uniquely determined by α up to a phase.

Proof. For some fixed unit vector x ∈ H2, take the corresponding one-dimensional
projection ex and define a new unit vector y ∈ H1 (up to a phase) by

ey = α−1(ex). (2.186)
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Now any z ∈ H1 may be written as z = ay, for some a ∈ B(H1). We attempt to
define an operator u : H1 → H2 by uz = α(a)x, i.e.,

uay = α(a)x. (2.187)

It is not immediately clear that this is well defined, because many different operators
a may give rise to the same z. Fortunately, we may compute

‖ay‖H1
=
∥∥aeyy∥∥H1

=
∥∥aey∥∥B(H1)

=
∥∥α(aey)

∥∥
B(H1)

=
∥∥α(a)α(ey)

∥∥
B(H2)

=
∥∥α(a)ex

∥∥
B(H2)

=
∥∥α(a)x

∥∥
H2

=‖uay‖H2
, (2.188)

so that if ay = by, then α(a)x = α(b)x and hence u is well defined. By this compu-
tation u is also isometric. It is also surjective: for suppose that x′ ∈ H2, then there
is a a ∈ B(H2) such that ax = x′ and hence

uα−1(a)y = α(α−1(a))x = ax = x′. (2.189)

Because u is an isometric surjection, it is unitary. The property α(a) = uau∗ is
equivalent to ua = α(a)u, which in turn is equivalent to uaby = α(a)uby for any
b ∈ B(H1), which by definition of u is the same as

α(ab)x = α(a)α(b)x. (2.190)

But this holds by virtue of α being a *-isomorphism. Finally, all arbitrariness in u
lies in the lack of uniqueness of y.

We use the previous proposition to prove that every *-anti-isomorphism is of the
form α′u.

Proposition 2.30. Any *-anti-isomorphism α : B(H1) → B(H2) takes the form
α = α′u, where u : H1 → H2 is anti-unitary, and uniquely determined by α up to a
phase.

Proof. Let v ∈ B(H1) be an anti-unitary operator and define

β : B(H1)→ B(H1) (2.191)

a 7→ va∗v∗. (2.192)

Then α ◦ β is a *-isomorphism, to which Proposition 2.29 applies, so that

α ◦ β = αũ, (2.193)
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for some unitary ũ ∈ B(H1, H2). Hence

α(a) = α(β ◦ β−1(a)) = α ◦ β(v∗a∗v) = ũv∗a∗vũ∗, (2.194)

so that α(a) = ua∗u∗ with u = ũv∗, which is an anti-unitary operator. The lack of
uniqueness of u is inherited from the unitary case.

The proof of Jordan’s theorem now just consists of assembling the different parts of
the proof.

Proof of Jordan’s Theorem. Let JC : B(H1) → B(H2) be a Jordan symmetry. By
Proposition 2.26 it is either a *-isomorphism or a *-anti-isomorphism. If it is a
*-isomorphism, Proposition 2.29 shows that it is of the form JC = αu, where u ∈
B(H1, H2) is a unitary operator and determined by JC up to a phase. If, on the other
hand, JC is a *-anti-isomorphism, then Proposition 2.30 shows that JC = α′u, where
u ∈ B(H1, H2) is an anti-unitary operator and determined by JC up to a phase.

Using the equivalences of the previous section, we can now prove Kadison’s Theorem
and Wigner’s Theorem.

Theorem 2.31 (Kadison’s Theorem). Any Kadison symmetry K : D(H1)→ D(H2)
is given by either

K(ρ) = αu(ρ) ≡ uρu∗, (2.195)

where u ∈ B(H1, H2) is unitary and is determined by K up to a phase, or by

K(ρ) = αu(ρ) ≡ uρ∗u∗, (2.196)

where u ∈ B(H1, H2) is anti-unitary and is determined by K up to a phase.

Proof. Let K be a Kadison symmetry. By Corollary 2.17 there is a bijective equiv-
alence between Kadison symmetries from D(H1) to D(H2) and Jordan symmetries
fromB(H2)sa toB(H1)sa. Let J be the corresponding Jordan symmetry. By Theorem
2.25 either JC = αu for some unitary operator u ∈ B(H2, H1) determined by J (and
hence K) up to a phase, or JC = α′u for some anti-unitary operator u ∈ B(H2, H1) de-
termined by J (and hence K) up to a phase. Then for all ρ ∈ D(H) and a ∈ B(H2)sa

Tr(K(ρ)a) = Tr(ρJ(a)) = Tr(ρuau∗) = Tr(u∗ρua). (2.197)

By Theorem 1.25, equation (2.197) implies that K(ρ)a = u∗ρua, i.e., K = αu∗ , with
u∗ ∈ B(H1, H2) unitary or anti-unitary and determined by K up to a phase.
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Finally, we use the equivalence between Kadison symmetries and Wigner symmetries
to prove Wigner’s Theorem.

Theorem 2.32 (Wigner’s Theorem). Any Wigner symmetry W : B(H1) → B(H2)
is given by either

W (e) = αu(e) ≡ uαu∗, (2.198)

where u ∈ B(H1, H2) is unitary and is determined by W up to a phase, or by

W (e) = αu(e) ≡ ueu∗, (2.199)

where u ∈ B(H1, H2) is anti-unitary and is determined by W up to a phase.

Proof. Let W be a Wigner symmetry. By Proposition 2.14 there is a unique Kadison
symmetry K : D(H1) → D(H2) such that W = K

P1(H1)
. By Kadison’s Theorem,

K = αu, where u is either a unitary or an anti-unitary operator and is determined
by K up to a phase. Hence

W (e) = K
P1(H1)

(e) = αu P1
(e) = ueu∗, (2.200)

where u ∈ B(H1, H2) is unitary or anti-unitary, which is determined by W up to a
phase.



Chapter 3

Algebraic quantum theory

In the previous chapter we introduced some important concepts in quantum mechan-
ics, namely one-dimensional projections, density operators and self-adjoint operators
(observables). Our starting point was a Hilbert space, but the important symmetries
(Wigner, Kadison, and Jordan symmetry respectively) act only on the operators on
that Hilbert space, rather than on the elements itself. So the question arises if we
could develop a theory that does not have a Hilbert space as a starting point, but
a generalisation of the set of bounded operators thereon. It turns out that we can
indeed develop such a theory, where we generalise the algebra of bounded operators
to a C*-algebra. This is called algebraic quantum theory. In the next section we
introduce suitable replacements for Wigner, Kadison, and Jordan symmetries.

3.1 The state space of a C*-algebra

The first step to generalising to algebraic quantum physics is finding suitable replace-
ments for one-dimensional projections, density operators and self-adjoint operators.
The easiest way to do this is to use states , because by definition states only act on
the operators and do not rely on the underlying Hilbert space. Recall that a state
on B(H) is a normalised positive complex linear map ω : B(H)→ C (cf. Definition
1.18).

Definition 3.1. A state on a C*-algebra A is a functional ω : A→ C that satisfies

(a) positivity: ω(a∗a) ≥ 0, a ∈ A;

(b) normalisation: ‖ω‖ = 1.

51
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Note that if the C*-algebra A is unital, the condition that a state is normalised
simplifies to the condition that ω(1A) = 1.

The following Proposition is a (partial) generalisation of Proposition 1.19.

Proposition 3.2. Let A be a C*-algebra. The state space is a convex subset of A∗.
If A is unital, then the state space S(A) is w∗-compact.

Proof. Let ω, ω′ ∈ S(A) and t ∈ [0, 1]. It is clear that tω + (1− t)ω′ is still positive,
so we only need to show that tω + (1 − t)ω′ is normalised. If A is unital, then for
any positive functional σ ∈ (A∗)+ it follows from Theorem A.65 part (ii) that

‖σ‖ = σ(1A). (3.1)

So for unital A we have∥∥tω + (1− t)ω′
∥∥ = tω(1A) + (1− t)ω′(1A) = 1, (3.2)

which proves that tω+(1−t)ω′ is a state. If A is not unital, we can use the canonical
approximate unit {eλ}λ∈Λ and Theorem A.65 to conclude:∥∥tω + (1− t)ω′

∥∥ = t lim
λ
ω(eλ) + (1− t) lim

λ
ω′(eλ) = 1. (3.3)

The proof that S(A) is w∗-compact for unital A is exactly the same as for Propo-
sition 1.19, namely by noting that S(A) is a w∗-closed subspace of the w∗-compact
unit ball A∗≤1.

Remark 3.3. If A is a non-unital C*-algebra, the state space may not be w∗-closed in
A∗, and hence not w∗-compact. For instance, take A = C0(R), which is a C*-algebra
under pointwise addition and multiplication, involution

f ∗(x) = f(x), (3.4)

and
‖f‖∞ = sup

x∈R
{
∣∣f(x)

∣∣}. (3.5)

For all n ∈ N, let the functional ωn : C0(R)→ C be given by

ωn(f) = f(n). (3.6)

Then ωn is a state on C0(R), but the {ωn}n∈N converges pointwise to 0, i.e., for all
f ∈ C0(R)

lim
n→∞

ωn(f) = lim
n→∞

f(n) = 0. (3.7)

This shows that C0(R) is not w∗-closed.
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Just as in the case A = B(H) we define pure states to be extreme points of the
pure state space and the pure state space to be the extreme boundary of S(A). We
denote the pure state space by P (A), i.e., P (A) = ∂eS(A). For unital C*-algebras,
we can generalise Proposition (1.20).

Proposition 3.4. Let A be a C*-algebra. Then the pure state space P (A) is non-
empty and

S(A) = (co(P (A))
w∗

. (3.8)

Proof. This follows immediately from the fact that S(A) is a w∗-compact subset of
of A∗, and Krein-Milman (Theorem 1.8).

This proof does not work for non-unital C*-algebras, because in that case the state
space is not w∗-compact. However, we can tweak the proof slightly to get the fol-
lowing result, which in particular shows that the pure state space is non-empty.

Proposition 3.5. Let A be a C*-algebra and let B be the set of positive functionals
with norm smaller or equal to 1, i.e., B =

(
A∗)+

≤1 (the quasi-state space).

(i) B is convex and w∗-compact subset of A∗.

(ii) The extreme points of B consist of 0 and the pure states of A.

(iii) B is the w∗-closed convex hull of 0 and the set of pure states.

Proof. We follow the proof of Dixmier (1977), Proposition 2.5.5.

(i) The proof that B is convex follows from the fact that the convex sum of two
positive functionals is positive and Theorem A.65.

(ii) Let ω, ω′ ∈ B and t ∈ (0, 1) be such that

tω + (1− t)ω′ = 0. (3.9)

Let {eλ}λ∈Λ be the canonical approximate unit of A. Then

0 = t lim
λ
ω(eλ) + (1− t) lim

λ
ω(eλ) = t‖ω‖+ (1− t)

∥∥ω′∥∥ . (3.10)

It follows that ‖ω‖ =‖ω′‖ = 0 and hence ω = ω′ = 0. This shows that 0 is an
extreme point of B. Now let ω 6= 0 be an extreme point of B. By Krein-Milman
(Theorem 1.8) such an extreme point exists. To conclude that ω ∈ P (A)
we only need to show that ‖ω‖ = 1. Suppose for the sake of contradiction
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that ‖ω‖ < 1. Then 1
‖ω‖ω ∈ B, and we can write ω as a non-trivial convex

combination of 0 and 1
‖ω‖ω:

ω =‖ω‖
( 1

‖ω‖
ω
)

+ (1−‖ω‖)0. (3.11)

But this contradicts the fact that ω is an extreme point of B. Hence ‖ω‖ = 1,
i.e., ω ∈ P (A).

(iii) By the first part and Krein-Milman we have

B = co(∂eB)
w∗

. (3.12)

By the second part, this is the same as

B = co(P (A) ∪ {0})
w∗

. (3.13)

In view of Theorem 1.25, it would be logical to generalise normal states and normal
pure states of A and view these as generalisations of density operators and one-
dimensional projections. However, although we can indeed generalise the notion of
a normal state (which we do in the following section), not all C*-algebras admit
pure normal states, as is the case for L∞(0, 1). Hence we cannot develop algebraic
quantum theory using normal states and pure normal states. Instead, we use states
and pure states, which always exist by Proposition 3.4 and Proposition 3.5. However,
normal states are still of great importance, so we will study them in the next section.

3.2 Normal maps and the normal state space

In this section we focus on the concept of normal functionals on C*-algebras and nor-
mal maps between C*-algebras. We are especially interested in normal functionals
on von Neumann algebras, which we study in detail. For the proofs of the results,
we refer to Alfsen and Shultz (2001), but other books like Pedersen (1979) and Kadi-
son and Ringrose (1986) also give a detailed description of normal functionals and
normal maps.

The following Lemma is the von Neumann algebra version of Proposition A.50.
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Lemma 3.6. The self-adjoint part of a von Neumann algebra is monotone complete.
More specifically, if M is a von Neumann algebra acting on a Hilbert space H and
{aλ} is an increasing family bounded above in Msa, then {aλ} has a supremum in
Msa, and a is also the limit of {aλ} in each of the weak, strong σ-weak, and σ-
strong topologies. Moreover, a is also the supremum of {aλ} in B(H). Similarly for
decreasing nets.

Proof. See Alfsen and Shultz (2001), Lemma 2.81.

Definition 3.7. A positive linear functional ϕ on a C*-algebra A is said to be nor-
mal if ϕ(a) = limλ ϕ(aλ) for each increasing net {aλ} with supremum a in A. More
generally, a linear functional on A is said to be normal if it is a linear combination
of normal positive linear functionals on A.

Definition 3.8. Let A be a C*-algebra. The set of all normal states on A is called
the normal state space of A and we denote it by Sn(A).

The previous definition clearly generalises Definition 1.24. What follows is a short
overview of some characteristics of normal functionals.

Theorem 3.9. A positive linear functional ϕ on a von Neumann algebra M acting
on a Hilbert space H is normal if and only if is is σ-weakly (or σ-strongly) continuous.

Proof. See Alfsen and Shultz (2001), Theorem 2.86.

Corollary 3.10. The normal functionals on a von Neumann algebra M form a
norm-closed subspace of M∗, and the normal states separate the points of M , i.e.,
for each non-zero a ∈M there is a normal state ω such that ω(a) 6= 0.

Proof. See Alfsen and Shultz (2001), Corollary 2.88.

Definition 3.11. The Banach space of all normal linear functionals on a von Neu-
mann algebra M is called the predual of M and is denoted by M∗.

The name “predual” suggests that if we take its dual, we end up with the original
space. The following theorem proves that this is indeed the case.

Theorem 3.12. If M is a von Neumann algebra, then the map Ψ: M → (M∗)
∗

defined by (Ψa)(ω) = ω(a) for a ∈ M and ϕ ∈ M∗ is a surjective isometric isomor-
phism and a homeomorphism from the σ-weak topology on M to the w∗-topology on
(M∗)

∗. Moreover Ψa ≥ 0 if and only if a ≥ 0.

Proof. See Alfsen and Shultz (2001), Theorem 2.92.
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An interesting side note is that Kadison proved that 3.6 and 3.10 are necessary and
sufficient conditions to describe von Neumann algebras. The following theorem states
this result.

Theorem 3.13. A C*-algebra A acting on a Hilbert space H is a von Neumann
algebra if and only if Asa is monotone complete and the normal states separate the
points of A.

Proof. See Alfsen and Shultz (2001), Theorem 2.93.

We now turn our attention to normal maps between C*-algebras, and especially
normal maps between von Neumann algebras.

Definition 3.14. Let ϕ : A → B be a positive linear map from a C*-algebra to
another. We say ϕ is normal if aλ ↗ a implies ϕ(aλ) ↗ ϕ(a) for increasing nets
{aλ} in Asa.

Lemma 3.15. A positive linear map ϕ from a von Neumann algebra M into a von
Neumann algebra N is normal iff it is σ-weakly continuous.

Proof. See Alfsen and Shultz (2001), Lemma 2.99.

Lemma 3.16. If ω is a normal state with GNS-representation πω on a von Neumann
algebra M , then πω is a normal positive map from M into B(Hω).

Proof. See Alfsen and Shultz (2001), Lemma 2.101.

To each positive normal functional of a von Neumann algebra M we assign a unique
projection p ∈M in the following way.

Lemma 3.17. If M is a von Neumann algebra and ω ∈ M+
∗ , then there is a (nec-

essarily unique) least projection p ∈M such that ω(p) =‖ω‖.

Proof. See Alfsen and Shultz (2001), Lemma 2.132.

For example, if M = B(H), and ω = ωx for certain x ∈ H, i.e., ωx(a) = 〈x, ax〉 for
every a ∈M , then p = ex = |x〉 〈x|.

Definition 3.18. Let M be a von Neumann algebra and ω ∈ M+
∗ . Then the least

projection p ∈ M such that ω(p) = ‖ω‖ is called the carrier projection (or just
carrier) of ω, denoted by carrier(ω).
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We will use the carrier projection in Section 3.6 to define transition probabilities on
P (A).

We have now defined the carrier of a single positive normal functional, but we
can generalise this to the carrier of a subset of M+

∗ .

Lemma 3.19. If M is a von Neumann algebra and F is a subset of M+
∗ , then

there is a least projection p ∈ M such that ω(p) = ‖ω‖ for all ω ∈ F , namely
p = inf{carrier(ω) | ω ∈ F}.

Proof. See Alfsen and Shultz (2001), Lemma 3.19.

Definition 3.20. If M is a von Neumann algebra and F is a subset of M+
∗ , then

the least projection p ∈ M such that ω(p) =‖ω‖ for all ω ∈ F is called the carrier
projection of F and is denoted by carrier(F ).

If F is not just a set, but a face of the normal state space of M , it has additional
properties, which we explain in the following proposition and theorem.

Proposition 3.21. Let F be a face of the normal state space Sn(M) of a von Neu-
mann algebra M and set p = carrier(F ). Then the norm closure F of F consists of
all σ ∈ Sn(M) such that σ(p) = 1.

Proof. See Alfsen and Shultz (2001), Proposition 3.30.

Corollary 3.22. The norm closure of a face F of the normal state space Sn(M) of
a von Neumann algebra M is a face.

Proof. See Alfsen and Shultz (2001), Corollary 3.32.

Theorem 3.23. Let M be a von Neumann algebra with normal state space Sn(M),
and denote by F the set of norm-closed faces of Sn(M), and by P the set of all
projections in M , each equipped with the natural ordening. Then there is an order-
preserving bijection Φ: P → F . The map Φ and its inverse are explicitly given by
the bijection

F = {σ ∈ Sn(M) | σ(p) = 1}; (3.14)

p = carrier(F ). (3.15)

Proof. See Alfsen and Shultz (2001), Theorem 3.35.

Proposition 3.24. The normal state space of a von Neumann algebra M is a split
face of the state space of M (cf. Definition 1.7).
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Proof. See Alfsen and Shultz (2001), Corollary 3.42.

Proposition 3.25. Let Sn(M) be the normal state space of a von Neumann algebra
M . Then the intersection of any family of split faces of Sn(M) is a split face.

Proof. See Alfsen and Shultz (2001), Corollary 3.43.

The bounded operators on a Hilbert space form a von Neumann algebra, so we can
apply Theorem 3.23 to B(H). This even gives us more detail on the dimension of a
norm-closed face.

Theorem 3.26. Let H be a Hilbert space, let Sn(B(H)) be the normal state space of
B(H) and denote by Fp the norm-closed face of Sn(B(H)) associated with a projection
p ∈ B(H). Then the map p 7→ Fp determines an isomorphism from the lattice of
closed subspaces of H to the lattice of norm-closed faces of Sn(B(H)). This map
carries subspaces of dimension k <∞ to faces of dimension k2 − 1. Each such face
can be inscribed in a Euclidean ball, and it is a full Euclidean ball if and only if k = 2.

Remark 3.27. We say that a convex set K is inscribed in a Euclidean ball B if
there is an affine isomorphism ϕ of K into B which takes every extreme point of K
to a point on the surface of B.

Proof. See Alfsen and Shultz (2001), Theorem 4.6.

The following corollary looks specifically at projections on linear subspaces spanned
by a family of unit vectors.

Corollary 3.28. Let H be a Hilbert space and let Sn
(
B(H)

)
be the normal state

space of B(H). If p is the projection onto the closed subspace spanned by a family of
unit vectors xλ in H, then the norm-closed face F associated with p is the smallest
norm-closed face of Sn

(
B(H)

)
that contains the vector states ωxλ (λ ∈ Λ).

Proof. See Alfsen and Shultz (2001), Corollary 4.7.

3.3 The enveloping von Neumann algebra

Frequently, we want to work with von Neumann algebras instead of general C*-
algebras. Using the universal representation (given by Definition A.88) we can embed
every C*-algebra into its enveloping von Neumann algebra . This construction
has the additional feature that it extends states on the C*-algebra to normal states
on its enveloping von Neumann algebra.
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Definition 3.29. Let A be a C*-algebra with universal representation πu on the
Hilbert space Hu. Then the von Neumann algebra πu(A)

w
on H is called the en-

veloping von Neumann algebra of A.

Because A is in general not unital, the C*-algebra πu(A) ⊆ B(Hu) is in general not
unital either. So we cannot apply von Neumann’s bicommutant theorem directly to
conclude that πu(A)

w
is a von Neumann algebra. However, according to Theorem

A.87 the GNS-representation πω is cyclic for every state ω ∈ S(A). Because every
cyclic representation is in particular non-degenerate, it follows that the universal
representation is a direct sum of non-degenerate representations and hence is also
non-degenerate. Now, by Proposition A.75 we have

πu(A)
w

= πu(A)
s

= πu(A)′′, (3.16)

which shows that πu(A)
w

is indeed a von Neumann algebra.
The following results show that we can identify the enveloping von Neumann

algebra with the double dual A∗∗, and that we can identify the state space of A with
the normal state space of A∗∗.

Proposition 3.30. Let A be a C*-algebra with state space S(A) and denote the

enveloping von Neumann algebra by Ã. Each ρ ∈ S(A) has a unique extension to

a normal state ρ̃ on Ã, i.e., ρ = ρ̃ ◦ πu where πu : A → B(Hu) is the universal

representation of A. Specifically, ρ̃ is the restriction to Ã of the vector state ωxρ on

B(Hu). Each normal state on Ã arises in this way, i.e., it is the restriction to Ã of
a vector state ωx where x can be chosen to be the distinguished cyclic vector xρ for
some ρ ∈ S(A).

Proof. See Alfsen and Shultz (2001), Proposition 2.124.

Corollary 3.31. The weak and σ-weak topologies coincide on the enveloping von
Neumann algebra of a C*-algebra, and so do the the strong and σ-strong topologies.

Proof. See Alfsen and Shultz (2001), Corollary 2.125.

Corollary 3.32. Let A be a C*-algebra with state space S(A) and and let Ã be its

enveloping von Neumann algebra with normal state space Sn(Ã). The map ω 7→ ω̃

that assigns to each state ω on A the corresponding normal state ω̃ on Ã is an affine
isomorphism from S(A) onto Sn(Ã), which extends uniquely to an isometric linear

isomorphism from the dual space A∗ of A onto the predual Ã∗ of Ã.

Proof. See Alfsen and Shultz (2001), Corollary 2.126.
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Corollary 3.33. If A is a C*-algebra with enveloping von Neumann algebra Ã, then
there is an isometric linear isomorphism Φ of Ã onto A∗∗ defined by the equation

(Φb)(ω) = ω̃(b), (3.17)

where b ∈ Ã and ω 7→ ω̃ is the isomorphism of A∗ onto Ã∗ established in Corollary
3.32.

Proof. See Alfsen and Shultz (2001), Corollary 2.127.

Because we can embed any C*-algebra A into its double dual A∗∗ (see Proposition
A.51), we identify A with its image under this embedding. Thus we write A ⊂ A∗∗,
and for a ∈ A and ω ∈ A∗ we write a(ω) = ω(a). Using the affine isomorphism
described in Corollary 3.32, we identify the state space of A with the normal state
space of the enveloping von Neumann algebra. Lastly, using the isometric linear
isomorphism described in Corollary 3.33, we identify Ã with A∗∗ equipped with the
induced involution and product. Thus from now on we denote the enveloping von
Neumann algebra by A∗∗.

Theorem 3.34. A unital *-homomorphism ϕ : A→ M from a C*-algebra A into a
von Neumann algebra M has a unique extension to a normal *-homomorphism

ϕ̃ : A∗∗ →M. (3.18)

Proof. See Alfsen and Shultz 2001, Theorem 2.129.

Using the enveloping von Neumann algebra, we can extend Theorem A.95.

Theorem 3.35. If π is a representation of a C*-algebra A on a Hilbert space H,
then the following are equivalent:

(i) π is irreducible.

(ii) π(A)′ = C 1H .

(iii) π(A) is strongly dense in B(H).

(iv) π(A) is weakly (or σ-weakly) dense in B(H).

(v) The normal extension π̃ of π maps A∗∗ onto B(H).

(vi) For any two vectors x, y ∈ H with x 6= 0 there is an a ∈ A such that π(a)x = y.
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(vii) Each non-zero vector in H is cyclic for π(A).

(viii) (H, π) is unitarily equivalent to the GNS-representation associated with a pure
state on A.

Proof. See Alfsen and Shultz (2001), Proposition 5.15.

Definition 3.36. Let H be a Hilbert space. For each subset A of B(H)sa denote
the set of operators in B(H)sa, that can be obtained as strong limits of monotone
increasing (respectively decreasing) nets from A by Am (respectively Am).

Let M be a von Neumann algebra and let A ⊂ Msa. Because M is by definition
strongly closed, it contains Am and Am. In the special case that M is the double
dual of a C*-algebra A, we can look at Am and Am. This gives us the following
definition.

Definition 3.37. Let A be a C*-algebra. A projection p ∈ A∗∗ is called open if
p ∈ (A+)m and is called closed if p ∈ (A+)m.

Using closed projections, we can give the C*-analogue of Theorem 3.23.

Theorem 3.38. If A is a C*-algebra with state space S(A), and denote by F the
set of w∗-closed faces of S(A), and by Pc the set of closed projections in A∗∗. Then
there are canonical bijective correspondences between F and Pc given by

F = {σ ∈ S(A) | σ(p) = 1}; (3.19)

p = carrier(F ). (3.20)

Proof. See Alfsen and Shultz (2001), Theorem 3.61.

Note that for projections p, q ∈ A∗∗ we have {σ ∈ S(A) | σ(p) = 1} = {σ ∈ S(A) |
σ(q) = 1} if and only if p = q, because the normal states on A∗∗, i.e., the states on
S(A) separate points. So the bijective correspondence from the previous theorem
implies not only that there is no other closed projection in A∗∗ such that F = Fp,
but also that carrier(F ) is the unique projection such that F = Fcarrier(F ).

3.4 Carriers, covers and the equivalence of states

The center of a C*-algebra A consists of those elements z that commute with all
elements of A. The center is a norm-closed *-subalgebra, i.e., a C*-subalgebra of A.
If M is a von Neumann algebra, then its center is σ-weakly closed, and hence is a
von Neumann subalgebra. A projection in the center of a C*-algebra is said to be a
central projection .
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Proposition 3.39. If σ is a normal state on a von Neumann algebra M , there is a
smallest central projection c ∈M such that σ(c) = 1.

Proof. Suppose that c1 and c2 are central projections such that σ(c1) = σ(c2) = 1.
This implies that 1− c2 is a central projection and that σ(1− c2) = 0. Note that

〈 , 〉σ : M ×M → C; (a, b) 7→ σ(a∗b) (3.21)

is a positive semidefinite sesquilinear form, so that by Cauchy-Schwarz (Theorem
A.2) ∣∣σ(a∗b)

∣∣2 ≤ σ(a∗a)σ(b∗b). (3.22)

Using equation (3.22) we find that

0 ≤ σ(c1(1− c2)) ≤ σ(c∗1c1)σ((1− c2)∗(1− c2)) = σ(c1)σ(1− c2) = 0, (3.23)

and hence

σ(c1c2) = σ(c1(1− c2) + c1) = σ(c1(1− c2)) + σ(c1) = 0 + 1 = 1. (3.24)

Furthermore, c1c2 is a central projection for which c1c2 ≤ c1 and c1c2 ≤ c2. Thus
the collection of central projections on which σ takes the value 1 is directed down-
wards. Because the lattice of projections on a von Neumann algebra is complete (see
Corollary A.101) the decreasing net of such projections converges σ-weakly to its
infimum, which is a projection c ∈M . This projection is central, because the center
M is σ-weakly closed. Because normal states are σ-weakly continuous (see Theorem
3.9) it follows that σ(c) = 1.

Definition 3.40. Let σ be a normal state on a von Neumann algebra M . The
projection c in Proposition 3.39 is called the central carrier of σ, and is denoted
c(σ).

Compare the definition of the central carrier of σ to that of the carrier of σ given in
Definition 3.18. The only difference is that the central carrier is central, whereas the
carrier does not need to be. It follows that for a normal state σ on a von Neumann
algebra M :

carrier(σ) ≤ c(σ). (3.25)

Let σ be a normal state on a von Neumann algebra M . Denote the intersection
of all split faces of Sn(M) containing σ by Fσ, so

Fσ =
⋂
{F | F is a split face of Sn(M) and σ ∈ F}. (3.26)
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By Proposition 3.24 the normal state space of M is a split face and by Proposition
3.25 the intersection of split faces of Sn(M) is a split face. This implies that Fσ is a
split face of Sn(M). We call it the split face generated by σ. Now let σ be a state
on a C*-algebra A and let σ̃ be its normal extension. By the previous argument σ̃
generates a split face of Sn(A∗∗). We can identify S(A) with the normal state space
of the enveloping von Neumann algebra. Hence σ generates a split face of S(A),
which we also denote by Fσ.

Recall from Theorem 3.23 that there is a bijection from the set of projections
in M to the set of norm-closed faces of Sn(M). Denote by Fp the norm-closed face
associated to a projection p ∈M , i.e.,

Fp = {σ ∈ Sn(M) | σ(p) = 1}. (3.27)

The following lemma relates the split face generated by a state to the face generated
by its central carrier.

Lemma 3.41. If σ is a state on a C*-algebra or a normal state on a von Neumann
algebra, then

Fσ = Fc(σ). (3.28)

Proof. See Alfsen and Shultz (2001), Lemma 5.1.

Definition 3.42. Let A be a C*-algebra with state space S(A) and let π : A→ B(H)
be a representation with normal extension π̃. The central cover of π is the central
projection c(π) in A∗∗ such that ker(π̃) =

(
1− c(π)

)
A∗∗.

To complicate things further, let us define the central cover of a self-adjoint element
instead of a state. If p ∈ M is a projection in M and c ∈ M is a central projection,
we say that c dominates p if c ≥ p, or, equivalently, if cp = p. Note that if c1 and
c2 are two central projections that dominate p, then c1c2 dominates p. Indeed,

c1c2p = c1(c2p) = c1p = p. (3.29)

Hence the infimum of all central projections dominating p also dominates p. Because
the center of M is σ-weakly closed, the infimum is a central projection. Recall from
Definition A.78 that the range projection of a self-adjoint element a ∈ M is the
smallest projection p such that pa = a. We denote the range projection by r(a).

Definition 3.43. If a is a self-adjoint element in a von Neumann algebra M , then
the least central projection dominating r(a) is called the central cover of a and is
denoted c(a).
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Note that for every projection p ∈ M we have r(p) = p, in which case the central
cover of p is just the smallest central projection dominating p.

Definition 3.44. Let M be a von Neumann algebra. A projection p ∈M is said to
be abelian if pMp is an abelian subalgebra of M

Definition 3.45. Let M be a von Neumann algebra. M is said to be of type I if it
has an abelian projection p such that c(p) = 1

We associate to each state σ a projection, namely carrier(σ), to which in turn we
associate a central projection, namely the central cover of carrier(σ). We also di-
rectly associate a central projection with the state σ, namely the central carrier c(σ).
Each state also has a corresponding representation, namely its GNS-representation
to which we associate a third the central projection c(πσ). The following lemma
relates these three central projections.

Lemma 3.46. Let σ be a state on a C*-algebra A and let πσ be its GNS-representation.
Then

c(πσ) = c(carrier(σ)) = c(σ). (3.30)

Proof. For the proof that c(πσ) = c(σ), see Alfsen and Shultz (2001), Corollary 3.41,
Lemma 5.1 and Corollary 5.5. We now prove that c(carrier(σ)) = c(σ). By definition
of the carrier projection and the central carrier we have

carrier(σ) = inf{p ∈ A∗∗ | p is a projection and σ̃(p) = 1}; (3.31)

c(σ) = inf{c ∈ A∗∗ | c is a central projection and σ̃(c) = 1}. (3.32)

Hence it follows immediately from these definitions that c(σ) is the smallest central
projection that dominates carrier(σ), i.e., c(carrier(σ)) = c(σ).

Proposition 3.47. If A is a C*-algebra and π : A→ B(H) is an irreducible repre-
sentation, then π∗ is an affine isomorphism of the normal state space of B(H) onto
Fc(π). In particular, if σ is a pure state on A, then π∗σ is an affine isomorphism of
the normal state space of B(Hσ) onto Fσ.

Proof. See Alfsen and Shultz (2001), Corollary 5.16.

Recall from Definition A.92 that two representations (H1, π1) and (H2, π2) are unitar-
ily equivalent if there exists a unitary u ∈ B(H1, H2) such that uπ1(a)u∗ = π2(a) for
all a ∈ A. The following definition gives a similar description of unitary equivalence
of states.
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Definition 3.48. Two states σ and ρ on a C*-algebra A are unitarily equivalent
if there is a unitary u ∈ A such that

ρ(a) = σ(uau∗) for all a ∈ A. (3.33)

It turns out that for pure states these notions of unitary equivalence coincide via
the GNS-construction. Moreover, we can relate it to the split face generated by the
states and their central carriers.

Theorem 3.49. Let σ and ρ be pure states on a C*-algebra A with state space S(A).
The following are equivalent.

(i) σ is unitarily equivalent to ρ.

(ii) πσ is unitarily equivalent to πρ.

(iii) σ and ρ generate the same split face of S(A).

(iv) c(σ) = c(ρ).

(v) There is a unit vector x ∈ Hσ such that ρ = ωx ◦ πσ = 〈x, πσ(·)x〉.
Proof. See Alfsen and Shultz (2001), Theorem 5.19.

Definition 3.50. Let A be a C*-algebra and let P ⊆ P (A) be a maximal set of
pairwise inequivalent (i.e. pairwise not unitarily equivalent) pure states. Then

πra =
⊕
σ∈P

πσ (3.34)

is called the reduced atomic representation of A.

Strictly speaking, we cannot speak of the reduced atomic representation of A, because
we choose the set P and this choice is not unique. However, it follows from Theorem
3.49 that if we choose a different maximal set of pairwise inequivalent pure states, say
P ′, then

⊕
σ∈P ′ πσ is unitarily equivalent to

⊕
σ∈P πσ. So up to unitary equivalence,

the reduced atomic representation is unique.

Theorem 3.51. Let A be a C*-algebra and let πra be its reduced atomic representa-
tion. Then πra is faithful and

πra(A)′′ =
⊕
σ∈P

B(Hσ). (3.35)

Proof. See Kadison and Ringrose (1986), Proposition 10.3.10. The proof follows from
the fact that the atomic representation is faithful (Proposition A.90) and the fact
that for pure states σ its image πσ(A) is weakly dense in B(Hσ) (Theorem 3.35).
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3.5 Jordan algebras

We have already seen several Jordan maps, which preserve a certain Jordan product.
However, we have not given the general definition of a Jordan algebra. In this
section we give an introduction to Jordan algebras, JB-algebras (which are the Jordan
analogues of C*-algebras) and JBW-algbras (which are the Jordan analogues of von
Neumann algebras). In the next section we will use several results about JBW-
algebras to define a transition probability on P (A).

Definition 3.52. A Jordan algebra over R is a vector space A over R equipped
with a commutative bilinear product ◦ that satisfies the identity

(a2 ◦ b) ◦ a = a2 ◦ (b ◦ a). (3.36)

Lemma 3.53. If A is an associative algebra over R, then A equipped with the product

a ◦ b = 1
2
(ab+ ba) (3.37)

is a Jordan algebra.

Proof. It is clear that ◦ is a commutative, bilinear product. So we only have to check
if the relation (3.36) holds. Note that a ◦ a = a2, so that

(a ◦ a ◦ b) ◦ a = 1
2
(a2b+ ba2) ◦ a (3.38)

=
1

4
(a2ba+ ba3 + a4b+ aba2) (3.39)

= 1
2

(
a2[1

2
(ba+ ab)] + [1

2
(ba+ ab)]a2

)
(3.40)

= a2 ◦ (b ◦ a). (3.41)

In any Jordan algebra we define the triple product {abc} by

{abc} = (a ◦ b) ◦ c+ (b ◦ c) ◦ a− (a ◦ c) ◦ b. (3.42)

Note that for the Jordan algebra from Lemma 3.53, the triple product is given by

{abc} =
1

4
(abc+ bac+ cab+ cba) +

1

4
(bca+ cba+ abc+ acb)

− 1

4
(acb+ cab+ bac+ bca)

= 1
2
(abc+ cba). (3.43)
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Definition 3.54. A JB-algebra is a Jordan algebra A over R with identity element
1A equipped with a complete norm satisfying for all a, b ∈ A:

‖a ◦ b‖ ≤‖a‖‖b‖ , (3.44)∥∥a2
∥∥ =‖a‖2 , (3.45)∥∥a2
∥∥ ≤∥∥a2 + b2

∥∥ . (3.46)

Lemma 3.55. The self-adjoint part of a unital C*-algebra A is a JB-algebra with
respect to the Jordan product a ◦ b = 1

2
(ab+ ba).

Proof. Let a, b ∈ Asa. Because the self-adjoint part of a unital C*-algebra is an
algebra over R, Lemma 3.53 shows that 1

2
(ab+ ba) indeed defines a Jordan product.

Because a C*-algebra is in particular a normed algebra, we can conclude that (3.44)
holds:

‖a ◦ b‖ =
∥∥1

2
(ab+ ba)

∥∥ ≤ 1
2
(‖ab‖+‖ba‖) ≤‖a‖‖b‖ . (3.47)

Property (3.45) follows directly from the fact that‖aa∗‖ =‖a‖2 for all a ∈ A. Because
a and b are self-adjoint we have a2, b2 ≥ 0 and hence a2 + b2 ≥ a2. This implies that∥∥a2
∥∥ ≤∥∥a2 + b2

∥∥, so (3.46) holds.

Because a von Neumann algebra is in particular a unital C*-algebra, the previous
lemma implies that Msa is a JB-algebra for every von Neumann algebra M .

Definition 3.56. An ordered Banach space A is monotone complete if each in-
creasing net aα which is bounded above has a supremum a in A. We denote such a
net by aα ↗ a. A bounded linear functional σ on a monotone complete space A is
normal if whenever aα ↗ a, then σ(aα)→ σ(a)

Definition 3.57. A JBW-algebra is a JB-algebra that is monotone complete and
admits a separating set of normal states.

JB-algebras are the Jordan analogs of a C*-algebras and JBW-algebras are the Jor-
dan analogs of von Neumann algebras, as you can see by looking at Theorem 3.13.
The only JBW-algebra we will be working with in this thesis is the set of self-adjoint
elements of a von Neumann algebra. However, note that the definition of a normal
functional given by Definition 3.56 differs slightly from that of a normal functional
on a C*-algebra given by Definition 3.7. The following proposition proves that these
definitions are in fact compatible.

Proposition 3.58. Let M be a JBW-algebra. Every normal linear functional on M
is the difference of positive normal linear functionals, and the normal state space of
M is a split face of the state space of M .
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Proof. See Alfsen and Shultz (2003), Proposition 2.52.

Corollary 3.59. Let M be a von Neumann algebra. Then Msa equipped with the
Jordan product a ◦ b = 1

2
(ab+ ba) is a JBW-algebra.

Proof. It follows from Lemma 3.55 that Msa is a JB-algebra. Proposition 3.58 shows
that the normal states on Msa are precisely the normal states on Msa viewed as a
JB-algebra. Theorem 3.13 proves that Msa is complete and that the normal states
on Msa separate points.

Definition 3.60. A projection p is an JBW-algebra M is abelian if the algebra

Mp = {pMp} (3.48)

is associative.

Let M be a von Neumann algebra and p a projection in M . Then by equation (3.43)
the algebra (Msa)p is just pMsap. By Alfsen and Shultz (2003), Proposition 1.49,
it follows that p ∈ Msa is abelian in the sense of Definition 3.60 if and only if it is
abelian in the sense of Definition 3.44. So the definition of an abelian projection in
a JBW-algebra generalises the definition of an abelian projection in a von Neumann
algebra given in Definition 3.44. Hence the following definition is a generalisation of
Definition 3.45.

Definition 3.61. A JBW-algebra M is type I if it contains an abelian projection
with central cover 1M .

Recall that a minimal non-zero element of a lattice is called an atom. Note that the
lattice of projections for the von Neumann algebra M and the JBW-algebra Msa are
the same. Therefore, the set of atoms in M is identical to the set of atoms in Msa

and hence the following proposition also holds for von Neumann algebras.

Proposition 3.62. A JBW-factor M is type I if and only if it contains an atom.

Proof. See Alfsen and Shultz (2003), Proposition 3.44.

3.6 Transition probability on the pure state space

The goal of this section is to define a transition probability on the pure states of a C*-
algebra that in some way generalises the transition function on the one-dimensional
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projections of a Hilbert space. Let H be a Hilbert space. Recall that the transition
function on P1(H) was given by

(e, f) 7→ Tr(ef) (e, f ∈ P1(H)). (3.49)

Denote this transition function by τP1(H). We want to give τP1(H) in such a way that
we can use Theorem 1.25 to define a transition function on Pn(B(H)).

Lemma 3.63. Let H be a Hilbert space and x, y ∈ H unit vectors. Then

Tr(exey) = inf{〈x, ax〉 | a ∈ B(H)sa, 0 ≤ a ≤ 1H , 〈y, ay〉 = 1}. (3.50)

Proof. The proof is due to Landsman (2017), Proposition 5.18.
Since Tr(exey) = 〈x, eyx〉, we are ready if we can show that the infimum is

reached at a = ey. Therefore, we prove that for any a as specified we must have

〈x, ax〉 ≥ Tr(exey) =
∣∣〈x, y〉∣∣2. To do so, we are going to find a contradiction if

〈x, ax〉 < Tr(exey), (3.51)

for some such a. Indeed, 〈y, ay〉 with ‖a‖B(H) ≤ 1 and ‖y‖ = 1 imply, by Cauchy-

Schwarz (A.2, that ay = y Since a∗ = a (by positivity of a), we also have a : (C ·y)⊥ →
(C ·y)⊥, so we may write a = ey + a′, with a′y = 0 and a′ mapping (C ·y)⊥ to itself.
Then a ≥ 0 implies a′ ≥ 0. If (3.51) holds, then 〈x, a′x〉 < 0, which contradicts
positivity of a′ (and hence of a).

Definition 3.64. Let H be a Hilbert space and Pn(B(H)) be its normal pure state
space. Then τB(H) : Pn(B(H))× Pn(B(H)), given by

τB(H)(ωx, ωy) = inf{ωx(a) | a ∈ B(H), 0 ≤ a ≤ 1H , ωy(a) = 1}, (3.52)

for all ωx, ωy ∈ Pn(B(H)) defines a transition probability on Pn(B(H)).

Remark 3.65. It is not immediately clear that τB(H) defines a transition probability.
However, this follows directly from the previous lemma and Theorem 1.25. Indeed,
let ωx, ωy ∈ Pn(B(H)). Then

τB(H)(ωx, ωy) = inf{ωx(a) | a ∈ B(H), 0 ≤ a ≤ 1H , ωy(a) = 1}
= inf{〈x, ax〉 | a ∈ B(H)sa, 0 ≤ a ≤ 1, 〈y, ay〉 = 1}
= Tr(exey) = Tr(eyex) = τB(H)(ωy, ωx). (3.53)

Furthermore, τB(H)(ωx, ωy) = Tr(exey) = 1 if and only if ex = ey, in which case
y = zx for certain z ∈ T. This implies that τB(H)(ωx, ωy) = 1 if and only if ωx = ωy.
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Hence the pairs (P1(H), τP1(H)) and (Pn(B(H)), τB(H)) are isomorphic as sets with
a transition probability. We now aim to generalise this transition function to one
on the pure state on a general C*-algebra. For unital C*-algebras, we can mirror
Definition 3.64:

Definition 3.66. Let A be a unital C*-algebra with pure state space P (A). Then
the function τ : P (A)× P (A)→ [0, 1], given by

τ(σ, ρ) = inf{σ(a) | a ∈ A, 0 ≤ a ≤ 1A, ρ(a) = 1}, (3.54)

for all σ, ρ ∈ P (A) defines a transition probability on P (A).

The following proposition gives a more intuitive way to interpret the transition prob-
ability on P (A). In fact, it proves that equation (3.54) defines a transition probability
in the first place. We will see later on in Proposition 3.80 that the dichotomy is valid
even if A has no unit.

Proposition 3.67. Let A be a unital C*-algebra and define τ by equation (3.54).
Then

τ(σ, ρ) = 1− 1

4
‖σ − ρ‖2 , (3.55)

and the following dichotomy applies:

(i) If σ and ρ are unitarily equivalent, so that we may assume that the associated
cyclic vectors xσ and xρ lie in the same Hilbert space, we have

τ(σ, ρ) = Tr(exσ , exρ) =
∣∣〈xσ, xρ〉∣∣2 . (3.56)

(ii) If σ and ρ are unitarily inequivalent, then

τ(σ, ρ) = 0. (3.57)

Proof. See Landsman (2017), Proposition C.177.

We still need to define a transition probabiliy on P (A) that also holds for non-unital
C*-algebras. This will be accomplished in Theorem 3.79, which requires considerable
preparation. The key to defining the transition probability lies in the fact that we
can identify the pure states of A with the pure normal states of A∗∗. We start by
embedding A into its enveloping von Neumann algebra A∗∗, as described in section
3.3. According to Corollary 3.59 the self-adjoint elements of A∗∗ form a JBW-algebra.
Corollary 3.32 gives an affine isomorphism from the convex set S(A) onto the convex
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set Sn(A∗∗). Because the map is affine, it maps the extreme boundary of S(A), i.e.,
the pure states P (A), onto the extreme boundary of Sn(A), i.e., the pure normal
states Pn(A∗∗).

Define a state on a JB-algebra as usual as a positive linear functional of norm
1. Let A be a C*-algebra. Note that we can uniquely extend a state, or indeed any
functional, on the JB-algebra Asa to a state on A by setting

σ(a+ ib) = σ(a) + iσ(b), (3.58)

for every σ ∈ S(Asa) and a, b ∈ Asa. Conversely, every state on a C*-algebra A
defines a state on the JB-algebra Asa. Therefore, we can use S(A) and S(Asa)
interchangeably and the same holds for normal states and pure states.

Lemma 3.68. Let M be a JBW-algebra, and F a non-empty set of positive normal
functionals on M . Then there is a smallest projection p such that ω(p) =‖p‖ for all
ω ∈ F .

Proof. See Alfsen and Shultz (2003), Lemma 5.1.

Definition 3.69. Let M be a JBW-algebra, and F a non-empty set of positive normal
functionals on M . The smallest projection p such that ω(p) = ‖p‖ for all ω ∈
F is called the support projection or carrier projection1of F , and is denoted
carrier(F ). For a single positive normal functional ω we refer to the carrier projection
of the set {ω} as the carrier projection of ω.

Definition 3.70. Let M be a JBW-algebra with normal state space Sn(M), and let
p be a projection in M . Then we define the norm-closed face Fp of Sn(M) by

Fp = {ω ∈ Sn(M) | ω(p) = 1}. (3.59)

We say Fp is the face of Sn(M) associated with p. We call a face of the form
Fp a projective face.

Given a projective face F we can find the projection p ∈ M such that Fp = F by
using the following proposition.

Proposition 3.71. If p is a projection in a JBW-algebra M , then

p = inf{a ∈M | 0 ≤ a ≤ 1M and ω(a) = 1 for every ω ∈ Fp}. (3.60)

1Note that for the JBW-algebra Msa this definition of the carrier projection coincides with
Definition 3.20.
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Proof. See Alfsen and Shultz (2003), Proposition 5.8.

Note that Proposition 3.71 implies that

carrier(Fp) = p, (3.61)

which implies that there is a bijective correspondence between projections in a JBW-
algebra and projective faces. This is the JBW-algebra version of Theorem 3.23. We
now want to find a bijective correspondence between certain projections, namely
atoms, and certain projective faces, namely faces containing only a single extreme
point. Recall from Corollary A.101 that the lattice of projections of a von Neumann
algebra M is complete. Recall from Definition A.99 that an atom is a minimal non-
zero projection, i.e., p is an atom if for all projections q such that q ≤ p we have
q = 0 or q = p.

Proposition 3.72. Let M be a JBW-algebra with normal state space Sn(M). The
map p 7→ Fp is a 1-1 correspondence of atoms of M and faces of Sn(M) consisting
of a single extreme point.

Proof. See Alfsen and Shultz (2003), Proposition 5.39.

Definition 3.73. Let p be an atom in a JBW-algebra M with normal state space
Sn(M). We denote by ωp the unique extreme point of Sn(M) satisfying Fp = {ωp}.

Proposition 3.74. Let p and q be atoms in a JBW-algebra M . Then

ωp(q) = ωq(p). (3.62)

Proof. See Alfsen and Shultz (2003), Corollary 5.57.

If A is a C*-algebra with enveloping von Neumann algebra A∗∗ the extreme points
of Sn(A∗∗) are precisely the normal extensions of the pure states of A. Hence Propo-
sition 3.72 gives a 1-1 correspondence between pure states of A and their carrier
projections, which are atoms in A∗∗.

Lemma 3.75. Let p be a projection in a JBW-algebra M . Then there is a smallest
central projection c(p) ≥ p.

Proof. See Alfsen and Shultz (2003), Lemma 2.37.

Definition 3.76. Let p be a projection in a JBW-algebra M . The smallest central
projection c(p) ≥ p is called the central cover of p.2
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Lemma 3.77. Let M be a JBW-algebra, and p and q distinct atoms in M . Then
either c(p) = c(q) or c(p) ⊥ c(q).

Proof. See Alfsen and Shultz (2003), Lemma 5.53.

Corollary 3.78. Let A be a C*-algebra and let σ and ρ be pure states of A. Then
σ and ρ are unitarily inequivalent if and only if c(σ) ⊥ c(ρ).

Proof. Because σ and ρ are pure states their central carriers are atoms of A∗∗. By
Lemma 3.46,

c(carrier(σ)) = c(σ), c(carrier(ρ)) = c(ρ). (3.63)

By Theorem 3.49 we have c(σ) 6= c(ρ). Then by Lemma 3.77 it follows that c(σ) ⊥
c(ρ).

As we explained earlier, every extreme point of Sn(A∗∗) corresponds to a unique pure
state ω ∈ P (A). Thus Proposition 3.72 gives a 1-1 correspondence of atoms of A∗∗

and pure states of A. We denote by ωp the pure state on A corresponding to the
atom p ∈ A∗∗. As in Section 3.3 we denote the normal state on A∗∗ corresponding
to a state ω ∈ S(A) by ω̃. To ease notation we denote carrier(ω) by pω.

Theorem 3.79. Let A be a C*-algebra. The map

τ : P (A)× P (A)→ [0, 1]; (ρ, σ) 7→ σ̃(pρ), (3.64)

defines a transition probability on P (A).

Proof. Because σ̃ is a state, it is by definition a positive linear functional of norm 1.
Because pρ is a projection it is in particular positive and

∥∥pρ∥∥ = 1. This implies that
τ(ρ, σ) ≥ 0, and

τ(ρ, σ) = σ̃(pρ) =
∣∣σ̃(pρ)

∣∣ ≤‖σ̃‖∥∥pρ∥∥ = 1 · 1 = 1. (3.65)

So τ is indeed a map from P (A) × P (A) to [0, 1]. It follows from Proposition 3.74
that τ(ρ, σ) = τ(σ, ρ), hence τ is symmetric. Lastly, we have to show that τ(ρ, σ) = 1
if and only if ρ = σ. This follows immediately from the fact that

{ρ̃} = Fpρ ≡ {ω ∈ Sn(M) | ω(pρ) = 1}. (3.66)

2Note that for the JBW-algebra Msa, where M is a von Neumann algebra, this definition of the
central cover coincides with that given in Definition 3.43.
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We have now defined a transition probability on P (A), but it is not immediately
clear why this is the transition probability we want to work with. The following
proposition shows that it is in fact a generalisation of the transition probability
given in equation (3.54), because the dichotomy from Proposition 3.67 still applies.

Proposition 3.80. Proposition 3.67 also holds verbatim for non-unital C*-algebras.

Proof. We first prove the dichotomy. To do this, we describe σ̃ and pρ, after

which the proof follows easily. View the enveloping von Neumann algebra Ã as
πu(A)′′ ⊆ B(Hu). Let xσ ∈ Hσ ⊆ Hu be the cyclic vector associated with the GNS
representation of σ. Note that according to Proposition 3.30 the normal extension
of σ is the restriction of the vector state ωxσ to Ã, i.e., σ̃ = ωxσ Ã

. Similarly for ρ:

ρ̃ = ωxρ Ã
.

Claim: For a pure state ρ ∈ P (A) we have pρ ≡ carrier(ρ̃) = 〈xρ, ·〉xρ = exρ , i.e., the
projection onto the unit vector xρ ∈ Hu.

Proof: By definition

carrier(ρ̃) = inf{p ∈ Ã | p is a projection and ρ̃(p) = 1}. (3.67)

First note that exρ is a projection and

ρ̃(exρ) = ωxρ(exρ) = 〈xρ, exρ(xρ)〉 = 〈xρ, 〈xρ, xρ〉xρ〉 = 〈xρ, xρ〉2 = 12 = 1. (3.68)

Now suppose that q ∈ Ã is a projection in Ã such that ρ̃(q) = 1. Then

1 = ρ̃(q) = 〈xρ, q(xρ)〉, (3.69)

which implies that q(xρ) = xρ. The smallest projection q ∈ Ã such that q(xρ) = xρ
is precisely the one-dimensional projection onto the unit vector xρ, i.e., exρ ≤ q and
hence carrier(ρ̃) = exρ . �

Now suppose that ρ and σ are unitarily equivalent. Let (Hρ, πρ, xρ) be the GNS
representation of ρ. Using Theorem 3.49 we may assume that cyclic vector of σ lies
in the same Hilbert space. Then

τ(ρ, σ) = σ̃(pρ) = ωxσ(exρ) = 〈xσ, exρ(xσ)〉

= 〈xσ, 〈xρ, xσ〉xρ〉 = 〈xρ, xσ〉〈xσ, xρ〉 =
∣∣〈xρ, xσ〉∣∣2 . (3.70)
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Finally, suppose that ρ and σ are not unitarily equivalent. By Corollary 3.78 we
have c(σ) ⊥ c(ρ), and hence by Lemma 3.46, c(pσ) ⊥ c(pρ). This implies

1A∗∗ − c(pρ) ≥ c(pσ), (3.71)

indeed
(1A∗∗ − c(pρ))c(pσ) = c(pσ)− c(pρ)c(pσ) = c(pσ). (3.72)

Note further that 1A∗∗ − c(pρ) is a central projection, so in particular

0 ≤ σ̃(1A∗∗ − c(pρ)) =‖σ̃‖
∥∥1A∗∗ − c(pρ)

∥∥ = 12 = 1. (3.73)

Because σ̃ is positive it follows that

1 = σ̃(c(pσ)) ≤ σ̃(1A∗∗ − c(pρ)) ≤ 1, (3.74)

so that
1− σ̃(c(pρ)) = σ̃(1A∗∗ − c(pρ)) = 1. (3.75)

This shows that σ̃(c(pρ)) = 0. Because 0 ≤ pρ ≤ c(pρ) we have

0 ≤ σ̃(pρ) ≤ σ̃(c(pρ)) = 0, (3.76)

so we can conclude that τ(σ, ρ) = σ̃(pρ) = 0.
It only remains to be shown that τ(ρ, σ) = 1 − 1

4
‖ρ− σ‖2. First suppose that

ρ and σ are unitarily equivalent. This proof is identical to that in the unital case,
given in Landsman (2017), Proposition C.177. If ρ = σ, the identity is trivial, so
suppose that ρ and σ distinct pure states. Let πρ be the GNS-representation of ρ
and let xρ and xσ be the unit vectors in Hσ such that ρ = ωxρ ◦ πρ and σ = ωxσ ◦ πρ.
Then

‖ρ− σ‖ = sup{
∣∣ρ(a)− σ(a)

∣∣ | a ∈ A, ‖a‖ = 1}
= sup{

∣∣〈xρ, πρ(a)xρ〉 − 〈xσ, πρ(a)xσ〉
∣∣ | a ∈ A, ‖a‖ = 1}

= sup{Tr((exρ − exσ)πρ(a)) | a ∈ A, ‖a‖ = 1}
= sup{Tr((exρ − exσ)a) | a ∈ πσ(A), ‖a‖ = 1}
= sup{Tr((exρ − exσ)a) | a ∈ B(Hρ), ‖a‖ = 1}
=
∥∥exρ − exσ∥∥1

, (3.77)

where ‖·‖1 is the trace norm on B1(Hρ). In the fifth step we used the fact that
the map a 7→ Tr(ba) is σ-weakly continuous for any b ∈ B1(Hρ). Indeed, that is
how σ-weak continuity was defined in Definition A.46. Hence instead of taking the
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supremum over all a ∈ πρ(A), we can take the supremum over its σ-weak closure.
Because σ is a pure state, its GNS-representation is irreducible and hence it follows
from Theorem 3.35 that πσ(A) is σ-weakly dense in B(Hσ). So we can take the
supremum over all a ∈ B(Hσ). The last step then follows from Theorem A.54.

Because ρ and σ are distinct, the unit vectors xρ and xσ are not proportional,
so we may work in the 2-dimensional Hilbert space spanned by xρ ≡ (1, 0) and
xσ ≡ (c1, c2), with |c1|2 +|c2|2 = 1, just as we did in the proof of Proposition 2.14. In
that case,

(exρ − exσ)2 = |c2|2 · 12; (3.78)∣∣exρ − exσ ∣∣ =
√

(exρ − exσ)2 = |c2| · 12; (3.79)∥∥exρ − exσ∥∥1
= Tr(

∣∣exρ − exσ ∣∣) = 2|c2| . (3.80)

Using equation (3.77), this gives

1− 1

4
‖ρ− σ‖2 = 1− 1

4

∥∥exρ − exσ∥∥2

1
= 1−|c2|2 = |c1|2 =

∣∣〈xρ, xσ〉∣∣2 = τ(ρ, σ). (3.81)

Now suppose that ρ and σ are not unitarily equivalent. Then τ(ρ, σ) = 0, so we
want to show that ‖ρ− σ‖ = 2. It follows from the triangle inequality that

‖ρ− σ‖ ≤‖ρ‖ −‖σ‖ = 2, (3.82)

so we only have to show that ‖ρ− σ‖ ≥ 2. Because the central carriers of ρ and σ
are perpendicular (Corollary 3.78), it follows that their carrier projections are also
perpendicular. Indeed:

pρpσ = c(pρ)pρc(pσ)pσ = c(pρ)c(pσ)pρpσ = 0. (3.83)

By a similar argument as before, we have

0 ≤ ρ(pσ) ≤ ρ(1A∗∗ − pρ) = 0, (3.84)

which shows that ρ(pσ) = 0. Similarly, we have σ(pρ) = 0. Hence

(ρ− σ)(pρ − pσ) = ρ(pρ) + σ(pσ) = 2. (3.85)

Because pρ and pσ are perpendicular projections,
∥∥pρ − pσ∥∥ ≤ 1. Hence

‖ρ− σ‖ ≤ (ρ− σ)(pρ − pσ) = 2. (3.86)
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3.7 Uniform structure

As we will see in Sections 4.7, to ensure that the equivalence between Wigner sym-
metries, Kadison symmetries and Jordan symmetries still holds, we have to add the
additional requirements that a Wigner symmetry be uniformly continuous . For
more information on uniform structures, see Bourbaki (1989), Chapter II. Recall the
definition of uniform continuity of functions between metric spaces:

Definition 3.81. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y
is called uniformly continuous if for every ε > 0 there exists a δ > 0 such that
for every x, y ∈ X with dX(x, y) < δ, we have dY (f(x), f(y)) < ε.

General topological spaces do not have a metric, so we cannot at once generalise
the notion of uniform continuity to topological spaces. We need some structure to
replace the metric, which we call the uniform structure. To define it, we first need
to define a filter.

Definition 3.82. Let X be a set. A filter U on X is a collection U ⊆ P(X) of
subsets of X such that

(a) U ∈ U and U ⊆ V imply V ∈ U ;

(b) U ∈ U and V ∈ U imply U ∩ V ∈ U , and;

(c) ∅ /∈ U .

This brings us the the definition of uniform structure and the new definition of
uniform continuity.

Definition 3.83. A uniform structure or uniformity on a set X is a structure
given by a set U of subsets of X×X that satisfies conditions (1) and (2) of Definition
3.82, and that also satisfies the following conditions:

(a) Each U ∈ U contains the diagonal ∆X = {(x, x) | x ∈ X};

(b) If U ∈ U , then UT ∈ U , where UT = {(y, x) | (x, y) ∈ U};

(c) If U ∈ U , then there is some V ∈ U such that V 2 ⊆ U , where

V 2 = {(x, z) | ∃y ∈ X : (x, y) ∈ V (y, z) ∈ V }. (3.87)

The elements of U are called entourages of the uniformity defined on X. A
set endowed with a uniform structure is called a uniform space.
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Definition 3.84. A fundamental system of entourages of a uniformity U
is any set B of entourages such that for every U ∈ U there exists a V ∈ B so that
V ⊆ U .

Definition 3.85. If X and Y are uniform spaces with uniform structures UX , re-
spectively UY , a function f : X → Y is uniformly continuous if f−1(V ) ∈ UX
whenever V ∈ UY . By f−1(V ) we mean the set

{(x, y) ∈ X ×X | (f(x), f(y)) ∈ V }. (3.88)

Proposition 3.86. Let X, Y and Z be uniform spaces. If f : X → Y and g : Y → Z
are two uniformly continuous maps, then g ◦ f is uniformly continuous

Proof. This follows immediately from the definition of uniform continuity.

It is not immediately clear how uniform structures generalise the notion of uniform
continuity. We will show that every metric induces a uniformity and that a function
between metric spaces is uniformly continuous in the sense of Definition 3.81 if and
only if it is uniformly continuous in the sense of Definition 3.83.

Definition 3.87. Let (X, d) be a metric space. Then the Ud-uniformity is the
smallest uniformity on X ×X containing all

Uε ≡ {(x, y) ∈ X ×X | d(x, y) < ε}, (3.89)

where ε > 0.

By definition of a uniform structure, this implies that U ∈ UX if and only if U
contains Uε for certain ε > 0, i.e. {Uε | ε > 0} is a fundamental system of entourages
for Ud.

Lemma 3.88. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y be a
function. Then f is uniformly continuous in the sense of Definition 3.81 if and only
if it is uniformly continuous in the sense of Definition 3.83.

Proof. First assume that f is uniformly continuous in the sense of Definition 3.81
and let V ∈ UdY . Then there is an ε > 0 such that UY

ε ∈ V . Let δ > 0 be such that
dY (f(x), f(y)) < ε whenever dX(x, y) < ε. Then:

f−1(V ) ⊇ f−1(UY
ε )

= f−1({(x, y) ∈ Y × Y | dY (x, y) < ε}
⊇ {(x, y) ∈ X ×X | dX(x, y) < ε} = UX

δ , (3.90)
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which implies that f−1(V ) ∈ UdX , and hence that f is uniformly continuous in the
sense of Definition 3.83. Conversely, assume that f is uniformly continuous in the
sense of Definition 3.83 and let ε > 0. Then f−1(UY

ε ) ∈ UdX , so there exists a
δ > 0 such that UX

δ ⊆ f−1(UY
ε ). Now let x, y ∈ X with dX(x, y) < δ. Then

(x, y) ∈ UX
δ ⊆ f−1(UY

ε ) and hence (f(x), f(y)) ∈ UY
ε , i.e., dY (f(x), f(y)) < ε. This

shows that f is uniformly continuous in the sense of Definition 3.81.

The uniformity we will use is the w∗-uniformity on A∗.

Definition 3.89. Let A be a Banach space. The w∗-uniformity Uw∗ on A∗ is the
uniformity given by the fundamental system of entourages consisting of all subsets of
the type

Ua
ε ≡ {(σ, ρ) ∈ A∗ × A∗ |

∣∣σ(a)− ρ(a)
∣∣ < ε}, (3.91)

where a ∈ A and ε > 0.

The w∗-uniformity on P (A) ∪ {0} ⊂ A∗ is just {U ∩ (P (A) ∪ {0}) | U ∈ Uw∗}.

3.8 Mathematical structures in algebraic quantum

theory

We now have all the ingredients to define Wigner, Kadison and Jordan symmetries
in algebraic quantum theory. In the following definition the continuity of the maps
is defined with respect to the w∗-topology.

Definition 3.90. Let A and B be C*-algebras. A Kadison symmetry is a home-
omorphism K : S(A) ∪ {0} → S(B) ∪ {0} that maps 0 to 0 and is affine on S(A).

Because for unital C*-algebras the state space is a w∗-closed subset of their dual
space, the previous definition in that case simplifies to the following.

Definition 3.91. Let A and B be unital C*-algebras. A Kadison symmetry is
an affine homeomorphism K : S(A)→ S(B).

Definition 3.92. Let A and B be C*-algebras. A Wigner symmetry is a uni-
formly continuous bijection W : P (A)∪{0} → P (B)∪{0} with uniformly continuous
inverse that maps 0 to 0 and that preserves transition probabilities, i.e.,

τ(W (σ),W (ρ)) = τ(σ, ρ), (3.92)

for all σ, ρ ∈ P (A).
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Similarly, for unital C*-algebras we can drop the requirement that a Wigner sym-
metry has to map 0 to 0.

Definition 3.93. Let A and B be unital C*-algebras. A Wigner symmetry is a
uniformly continuous bijection W : P (A)→ P (B) with uniformly continuous inverse
that preserves transition probabilities, i.e.,

τ(W (σ),W (ρ)) = τ(σ, ρ), (3.93)

for all σ, ρ ∈ P (A).

For both Kadison symmetries and Wigner symmetries we had to add continuity
requirements. Jordan symmetries, however, remain almost unchanged.

Definition 3.94. Let A and B be C*-algebras. A Jordan symmetry is an invert-
ible Jordan map

J : Asa → Bsa, (3.94)

i.e., an R-linear bijection J : Asa → Bsa that preserves the Jordan product

a ◦ b = 1
2
(ab+ ba). (3.95)

As in the previous chapter, every Jordan map J has a unique extension to a C-linear
map

JC : A→ B; (3.96)

JC(a∗) = JC(a)∗, (3.97)

which preserves the Jordan product, as well as

JC(a+ ib) = J(a) + iJ(b), (3.98)

for all a, b ∈ Asa. We call such map a complex Jordan map. Conversely, such a
complex Jordan map defines a real Jordan map by restricting to Asa.

Now that we have generalised the notion of Wigner, Kadison and Jordan symmetries,
we can further develop algebraic quantum theory. Although there does not exist a
generalised version of Wigner’s Theorem, the equivalences between Wigner, Kadison
and Jordan symmetries still hold. The next chapter is dedicated to proving those
equivalences.



Chapter 4

Symmetries in algebraic quantum
theory

The goal of this chapter is to prove that Wigner, Kadison and Jordan symmetries
are equivalent. We will do this by first showing that K ↔ J and then that W ↔ J .
The first equivalence follows from the unital case that is proven in Alfsen and Shultz
(2001). The equivalence between Wigner symmetries and Jordan symmetries follows
from a result by Shultz (1982), which we will explain in great detail. To be able to
do this, we need to define an orientation of the state space (Section 4.2) and we need
to look at the “atomic part” of the enveloping von Neumann algebra (Section 4.4).
Then we have the tools to prove the result by Shultz (1982), which we do in Section
4.5 and Section 4.6. Finally, we will tweak the result from Section 4.5 slightly to
prove the equivalence between Wigner symmetries and Jordan symmetries.

4.1 Equivalence between Kadison symmetries and

Jordan symmetries

The correspondence between Kadison symmetries and Jordan symmetries for unital
C*-algebras is proven in Alfsen and Shultz (2001) through the equivalence with unital
order isomorphisms, just as we did with Lemma 2.16.

Proposition 4.1. Let A and B be unital C*-algebras. Then Φ 7→ Φ∗ is a bijective
correspondence between Jordan symmetries Φ from A onto B, and affine homeomor-
phisms from S(B) onto S(A).

Proof. See Alfsen and Shultz (2001), Corollary 4.20.

81
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The goal for the rest of this section is to generalise this result to all C*-algebras.
Let Ã be the unitisation of A, as in Definition A.57. Then A is an ideal in Ã and

Ã/A is one-dimensional. Let ω0 be the state given by:

ω((a, λ)) = λ. (4.1)

Then ω0 is the unique state on Ã that annihilates A, in the sense that ω((a, 0)) = 0
for every a ∈ A.

Lemma 4.2. Let A be a C*-algebra with unitisation Ã and let ω0 be the unique state
on S(Ã) that annihilates A. Then {ω0} is a split face of the state space of Ã and
the complementary split face with the relative w∗-topology can be identified with the
state space of A.

Proof. First note that ω0 is a pure state. For suppose that there exist σ, ρ ∈ S(Ã)

and t > 0 such that ω0 = tω1 + (1− t)ω2. Then for all (a, µ) ∈ Ã:

µ = ω0((a, µ)) = ω0((a, 0)) + ω((0, µ))

= [tω1((a, 0)) + (1− t)ω2((a, 0))] + [tω1((0, µ)) + (1− t)ω2((0, µ))]

= [tω1((a, 0)) + (1− t)ω2((a, 0))] + µ[tω1((0, 1)) + (1− t)ω2((0, 1))]

= [tω1((a, 0)) + (1− t)ω2((a, 0))] + µ, (4.2)

so we must have:
tω1((a, 0)) + (1− t)ω2((a, 0)) = 0, (4.3)

for every a ∈ A. Because ω1 and ω2 are positive, it follows that

ω1((a, 0)) = ω2((a, 0)) = 0 (4.4)

for every a ∈ A. But then ω1 and ω2 are states on Ã that annihilate A and ω0 was
the unique state to do that. So we conclude that ω1 = ω2 = ω0, i.e., ω0 is a pure
state. Note further that ω0 is abelian , i.e., πω0(A) is an abelian subset of B(Hω0).
Then by Alfsen and Shultz (2001), Proposition 5.63(ii), the split face generated by
ω0 only consists of ω0, i.e.,

Fω0 = {ω0}. (4.5)

Let F be the complementary split face of {ω0}. Recall from Definition 1.7 that this

means that S(Ã) = co({ω0}∪F ) and that every ω ∈ S(A) can be uniquely expressed
as a convex combination

tσ + (1− t)ω0, (4.6)
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where 0 ≤ t ≤ 1 and σ ∈ F . Let ω ∈ S(A). Identify ω with ω̃ ∈ S(Ã), given by

ω̃((a, λ)) = ω(a) + λ. (4.7)

We want to show that S(A) = F under this identification. By Definition 1.7, F is
given by

F = {ω ∈ S(Ã) | faceS(Ã)(ω) ∩ {ω0} = ∅}. (4.8)

Let ω ∈ S(Ã). Then

ω((a, λ)) = ω((a, 0)) + ω((0, λ)) = ω((a, 0)) + λω((0, 1)) = ω((a, 0)) + λ. (4.9)

Define α ∈ [0, 1] by
α = sup{ω((a, 0)) |‖a‖ ≤ 1}. (4.10)

If α = 0 we have ω((a, λ)) = λ, i.e., ω = ω0. If 0 < α < 1, then the map σ given by

σ(a) =
1

α
ω((a, 0)) (4.11)

is a state on A and
ω = ασ + (1− α)ω0, (4.12)

which implies that ω0 ∈ faceS(Ã)(ω). Thus for all ω ∈ F we have α = 1, in which case

ω is a state on A, i.e., F ⊆ S(A). It remains to be shown that S(A) ⊆ F . Suppose

that this is not the case. Then there exists ω ∈ S(A), σ ∈ S(Ã) and t ∈ (0, 1) such
that

ω = tσ + (1− t)ω0. (4.13)

But then

1 = sup{ω((a, 0)) |‖a‖ ≤ 1} = sup{tσ((a, 0)) |‖a‖ ≤ 1}
= t sup{σ((a, 0)) |‖a‖ ≤ 1} ≤ t < 1, (4.14)

which leads to a contradiction. Hence S(A) ⊆ F , from which it follows that F =
S(A).

So we can identify S(A) with a face of S(Ã). Let σ and ρ be pure states of A. We
are interested in the face that σ and ρ generate in S(A), so we want to make sure
that

faceS(Ã)(σ, ρ) = faceS(A)(σ, ρ). (4.15)

The following lemma proves that this in indeed the case.
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Lemma 4.3. Let K be a convex set and F a face of K. If E ⊆ F , then

faceK(E) = faceF (E). (4.16)

Proof. The face F contains the set E, so faceK(E) ⊆ F . Note that G ⊆ F is a face
of F if and only if G is a face of K. Indeed, suppose G is a face of F and that
x, y ∈ K and t ∈ (0, 1), so that tx + (1 − t)y ∈ G. Because F is a face of K and
G ⊆ F it follows that x, y ∈ F . Because G is a face of F , we can conclude that
x, y ∈ G, which shows that G is a face of K. Conversely, suppose that G is a face of
K and let x, y ∈ F and t ∈ (0, 1), so that tx + (1− t)y ∈ G. Because G is a face of
K it follows that x, y ∈ G, which implies that G is a face of F . Hence

faceK(E) =
⋂
{G | G is a face of K that contains E}

=
⋂
{G ∩ F | G is a face of K that contains E}

=
⋂
{G | G is a face of F that contains E} = faceF (E). (4.17)

Proposition 4.4. Let A and B be C*-algebras. Then Φ 7→ Φ∗ is a bijective corre-
spondence of Jordan symmetries Φ from A onto B, and Kadison symmetries from
S(B) ∪ {0} onto S(A) ∪ {0}.

Proof. Let Ã be the unitisation of A and B̃ be the unitisation of B. Define Φ̃ : Ã→ B̃
by

Φ̃
(
(a, λ)

)
= (Φ(a), λ). (4.18)

Then Φ̃ is a Jordan symmetry, because it is clearly a C-linear bijective map and it
preserves the Jordan product:

Φ̃
(
(a, λ) ◦ (b, µ)

)
= Φ̃

(
1
2
(ab+ µa+ λb, λµ) + 1

2
(ba+ µa+ λb, λµ)

)
= Φ̃

(
(a ◦ b+ µa+ λb, λµ)

)
= (Φ(a) ◦ Φ(b) + µΦ(a) + λΦ(b), λµ)

= 1
2
(Φ(a)Φ(b) + µΦ(a) + λΦ(b), λµ) + 1

2
(Φ(b)Φ(a) + µΦ(a) + λΦ(b), λµ)

= 1
2
(Φ(a), λ)(Φ(b), µ) + 1

2
(Φ(b), µ)(Φ(a), λ)

= Φ̃
(
(a, λ)

)
◦ Φ̃
(
(b, µ)

)
. (4.19)

Conversely, every Jordan symmetry Φ̃ : Ã → B̃ induces a unique Jordan symmetry
Φ: A→ B by restricting to the first coordinate. So there is a bijective correspondence
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of Jordan symmetries Φ: A → B and Jordan symmetries Φ̃ : Ã → B̃. Therefore,
by Proposition 4.1, Φ 7→ Φ̃∗ is a bijective correspondence of Jordan symmetries
Φ: A→ B, and affine homeomorphisms from S(B̃) onto S(Ã). Lemma 4.2 gives us

S(Ã) = S(A)⊕c {ωA0 }; (4.20)

S(B̃) = S(B)⊕c {ωB0 }. (4.21)

Now let ϕA be the map from S(Ã) = co(S(A)∪{ωA0 }) onto co(S(A)∪{0}) that takes
ωA0 onto {0}, and similarly for ϕB. Then ϕA and ϕB are affine homeomorphisms.
Hence Φ 7→ ϕA ◦ Φ∗ ◦ (ϕB)−1 is a bijective correspondence of Jordan symmetries
between A and B and affine homeomorphisms from the convex hull co(S(B) ∪ {0})
onto the convex hull co(S(A)∪{0}) taking 0 to 0. Finally, because this map is affine
and takes 0 to 0, we get a bijective correspondence of Jordan symmetries between A
and B and Kadison symmetries from S(B) ∪ {0} onto S(A) ∪ {0}. This proves the
proposition.

4.2 Orientation of state spaces

Let A be a C*-algebra with state space S(A) and denote the set of all faces of S(A)
by F (A). Let σ and ρ be pure states of A. Recall that the face of S(A) generated
by σ and ρ is the intersection of all faces of S(A) containing σ and ρ:

faceS(A)(σ, ρ) =
⋂
{F | F ∈ F (A), σ, ρ ∈ F}. (4.22)

In this section we describe the faces of S(A) generated by pure states and give them
something called an orientation. The following theorem gives an description of the
faces generated by pure states on a unital C*-algebra. Later on, we generalise this
to all C*-algebras. Recall from Definition 1.2 that a 3-ball is a convex set that is
affinely isomorphic to the unit ball B3 ⊂ R3.

Theorem 4.5. Let σ and ρ be distinct pure states on a unital C*-algebra A. If the
GNS-representation πσ and πρ are unitarily equivalent, then the face generated by σ
and ρ is a 3-ball. If these representations are not unitarily equivalent, then the face
they generate is the line segment

[σ, ρ] = {λσ + (1− λ)ρ | λ ∈ [0, 1]} (4.23)

in S(A).
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Proof. We follow the proof given by Alfsen and Shultz (2001), Theorem 5.36. First
suppose that σ and ρ are unitarily equivalent. Then by Theorem 3.49, c(σ) = c(ρ),
hence by Lemma 3.41 they generate the same split face of Sn(A∗∗), i.e., Fσ = Fρ.
According to Proposition 3.47, the map

π∗σ : Sn(B(Hσ))→ Fσ (4.24)

is an affine isomorphism. Because σ and ρ are extreme points of Fσ and π∗σ is an
affine isomorphism, there are extreme points σ′, ρ′ ∈ Sn(B(Hσ)) such that σ = π∗σ(σ′)
and ρ = π∗σ(ρ′). It is now enough to show that the face generated by σ′ and ρ′ in
Sn(B(Hσ)) is affinely isomorphic to a 3-ball. The extreme points of Sn(B(Hσ)) are
the vector states, so there are linearly independent unit vectors x, y ∈ Hσ such that
σ′ = ωx and ρ′ = ωy. Let p be the projection onto the closed subspace of Hσ spanned
by x and y. Then by Corollary 3.28 the face generated by σ′ and ρ′ is equal to Fp,
which, by Theorem 3.26 is a 3-ball.

Now suppose that σ and ρ are not unitarily equivalent. Then the split faces they
generate are not equal, so we may assume without loss of generality that τ /∈ Fσ. It
then follows from Alfsen and Shultz (2001), Proposition 1.30 that the face generated
by σ and τ is [σ, τ ].

Let us look at two examples to illustrate Theorem 4.5. We saw in Chapter 1 that
the state space of the 2× 2 complex matrices is isomorphic as a compact convex set
to the closed unit ball (Proposition 1.22). The pure state space P (M2(C)) is then
isomorphic to the unit sphere

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}, (4.25)

which shows that all pure states are unitarily equivalent. Note further that the only
faces of B3 is are single pure states or B3 itself. This shows that the face generated
by two distinct states σ and ρ is affinely isomorphic to B3, i.e., it is a facial 3-ball.

Now take as a C*-algebra A = C⊕C with pointwise addition and multiplication,
and norm given by ∥∥(a, b)

∥∥ = max{|a| ,|b|}. (4.26)

The unit in A is the element (1, 1), the adjoint of an element (a, b) ∈ C⊕C is given
by (a, b), and the positive elements of A are {(a, b) ∈ (R+)2}. Let t ∈ [0, 1]. Then
the map ωt : A→ C given by

ωt(a, b) = ta+ (1− t)b (4.27)

is a state on A, and in fact all states arise this way. So S(A) = {ωt | t ∈ [0, 1]} ∼= [0, 1]
and P (A) = {ω0, ω1} ∼= {0, 1}. The states ω0 and ω1 are not unitarily equivalent
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and the face generated by ω0 and ω1 is the entire state space (and line segment)
S(A) = [ω0, ω1], as predicted by Theorem 4.5.

Definition 4.6. Let K be a convex set. A facial 3-ball is a 3-ball that is a face of
K.

Figure 4.1: The left-handed orientation is shown on the left and the right-handed
orientation is shown on the right.

In the next section we define orientations of facial 3-balls, and moreover we want our
choice or orientation for each facial 3-ball to be continuous. First, recall that there
are two orientations of R3, namely the left-handed and the right-handed orientation,
as shown in figure 4.1. Let {x,y, z} be an ordered orthonormal basis of R3. The
basis is called right-handed if, when you move the palm of your right hand from
the basis vector x to the basis vector y, your thumb points towards the direction
of z, and analogously for the left-handed orientation. Recall that the group O(3) of
real orthogonal 3 × 3 matrices M is defined by either one of these four equivalent
conditions:

(i) MMT = MTM = 13;

(ii) M is invertible and M−1 = MT ;

(iii) M is an isometry, i.e., ‖Mx‖ =‖x‖ for every x ∈ R3;

(iv) M preserves the inner product, i.e., 〈Mx,My〉 = 〈x,y〉 for all x,y ∈ R3.

It follows from the definition of O(3) that det(M) = ±1 for every M ∈ O(3). Thus
O(3) consists of two parts, namely

O− = {M ∈ O(3) | det(M) = −1}, (4.28)

O+ = {M ∈ O(3) | det(M) = 1} ≡ SO(3). (4.29)
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Orthogonal maps preserve orientation if whenever {x,y, z} is a right-handed
(respectively left-handed) basis of R3, the basis {Mx,My,Mz} is also right-handed
(respectively left-handed). Of course, that means that a map reverses orientation
if whenever {x,y, z} is a right-handed (respectively left-handed) basis of R3, the
basis {Mx,My,Mz} is left-handed (respectively right-handed). The orientation-
preserving orthogonal maps are precisely the elements of SO(3), and the orientation-
reversing orthogonal maps are precisely the elements of O−.

Lemma 4.7. Any affine bijection ϕ : B3 → B3 in R3 is given by an orthogonal map
R ∈ O(3).

Proof. We give a sketch of the proof. For a detailed proof, we refer the reader to
Landsman (2017) Lemma 5.11. First, because ϕ is affine it maps the boundary
∂eB

3 = S2 bijectively onto itself. Second, because 0 is intrinsic to the convex struc-
ture (it is the unique point with the property that for any x ∈ S2 there exists a
unique x′ such that 1

2
x + 1

2
x′ = 0, namely x′ = −x), ϕ maps 0 onto itself. Third,

for x ∈ B3 and t ∈ [0, 1] the second point implies that

ϕ(tx) = ϕ(tx + (1− t)0) = tϕ(x) + (1− t)ϕ(0) = tϕ(x). (4.30)

The same then holds for x ∈ B3 and all t ≥ 0 as long as tx ∈ B3. This shows that
for all x,y ∈ B3 for which x + y ∈ B3, we have

ϕ(x + y) = 2ϕ(1
2
x + 1

2
y) = 2 · (1

2
ϕ(x) + 1

2
ϕ(y)) = ϕ(x) + ϕ(y). (4.31)

In particular, because ϕ(0) = 0, equation (4.31) implies that

ϕ(−x) = −ϕ(x). (4.32)

Now, for some nonzero x ∈ R3, take s ≥ ‖x‖ and t ≥ ‖x‖. Then equation (4.30)
implies that

sϕ
(x
s

)
= sϕ

( t
s

x

t

)
= tϕ

(x
t

)
. (4.33)

We may therefore define a map R : R3 → R3 by

R(0) = 0; (4.34)

R(x) = s · ϕ(
x

s
) (x 6= 0), (4.35)

for any choice s ≥‖x‖. For x ∈ B3 we may take s = 1, so that R extends ϕ. Linearity
of R follows from equation (4.31), (4.32) and (4.33). Finally, R is an isometry by
(4.35) and step one of the proof. Being also linear and invertible, R must therefore
be an orthogonal transformation.
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Using this lemma, we can define the concept of orientation on a facial 3-ball.

Definition 4.8. Let K be a convex set and F a facial 3-ball. A parametrisation
of F is an affine bijection ϕ : B3 → F . Let Φ be the set of all affine bijections. We
define an equivalence relation ∼ on Φ by

ϕ1 ∼ ϕ2 ⇔ det(ϕ−1
2 ◦ ϕ1) = 1, (4.36)

where we view ϕ−1
2 ◦ ϕ1 as an element of O(3). Because det(ϕ−1

2 ◦ ϕ1) = ±1 there
are exactly two equivalence classes, which we refer to as being opposite to each
other. Each equivalence class of affine bijections is called an orientation of F . If
ϕ : B3 → F is a parametrisation, we refer to [ϕ] as the orientation of ϕ. If F and G
are 3-balls equiped with orientations [ϕ1] and [ϕ2] respectively, and ψ : F → G is an
affine bijection, we say ψ preserves orientation if [ψ ◦ ϕ1] = [ϕ2], and reverses
orientation if the orientation [ψ ◦ ϕ1] is the opposite of [ϕ2].

Definition 4.9. Let S(A) be the state space of a C*-algebra A. The notation
Param(S(A)) denotes the set of all parametrisations of facial 3-balls of S(A). We
equip Param(S(A)) with the topology of pointwise convergence of maps from B3 into
the space S(A) with the w∗-topology.

Let us unpack this definition. First write

Param(S(A)) = {ϕ : B3 → S(A) | ϕ(B3) is a facial 3-ball of S(A) and

ϕ : B3 → ϕ(B3) is an affine isomorphism}. (4.37)

Now let {ϕn} be a sequence in Param(S(A)), and let ϕ ∈ Param(S(A)). We say
that {ϕn} converges to ϕ (and write ϕn → ϕ) if ϕn(x) → ϕ(x) for every x ∈ B3 in
the w∗-topology, i.e., ϕn → ϕ if and only if

ϕn(x)(a)→ ϕ(x)(a), (4.38)

for all x ∈ B3 and a ∈ A.

Definition 4.10. We let BS(A) denote the set of facial 3-balls equipped with the
quotient topology from the map of Param(S(A)) onto BS(A) given by ϕ 7→ ϕ(B3).

The set BS(A) consists of all facial 3-balls, so by definition of a facial 3-ball and the
set Param(S(A)) we have

BS(A) = {ϕ(B3) | ϕ ∈ Param(S(A))}. (4.39)
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Let F be a facial 3-ball of S(A), so F ∈ BS(A), and let ϕ : B3 → BS(A) be an
affine isomorphism. Then for every affine isomorphism ψ : B3 → F there is a unique
M ∈ O(3) such that ψ = ϕ ◦ M , namely M = ϕ−1 ◦ ψ. Hence we can describe
every facial 3-ball as an element of Param(S(A))/O(3), and BS(A) is homeomorphic
to Param(S(A))/O(3).

Definition 4.11. We call OBS(A) = Param(S(A))/SO(3) the space of oriented
facial 3-balls of S(A). We equip it with the quotient topology. If ϕ ∈ Param(S(A)),
then we denote its equivalence class by [ϕ], which is an orientation of the 3-ball ϕ(B3).

Let us also unpack this definition. First, write

OBS(A) = {[ϕ] | ϕ ∈ Param(S(A))}. (4.40)

A sequence [ϕn] in OBS(A) converges to [ϕ] ∈ OBS(A) if and only if there are Mn ∈
SO(3) such that Mnϕn → ϕ in Param(S(A)). Because BS(A) is the space of all facial
3-balls and OBS(A) is the space of all oriented facial 3-balls, there is a canonical map
π from OBS(A) to BS(A), given by

π : OBS(A) → BS(A); [ϕ] 7→ ϕ(B3). (4.41)

Proposition 4.12. Let S(A) be the state space of the C*-algebra A. The spaces
OBS(A) and BS(A) are Hausdorff, the canonical map from OBS(A) onto BS(A) is
continuous and open, and OBS(A) → BS(A) is a Z2 bundle.

Proof. See Alfsen and Shultz (2001), Proposition 5.40.

By a Z2 bundle we mean a surjection such that the preimage of every element contains
exactly two elements. This is the case because every facial 3-ball admits precisely
two different orientations.

Definition 4.13. Given a bundle p : X → Y , a cross-section or section of p is a
map s : Y → X such that p(s(y)) = y for every y ∈ Y , i.e., s(y) ∈ p−1(y) for every
y ∈ Y .

Definition 4.14. Let S(A) be the state space of the C*-algebra A. A continuous
cross-section of the bundle OBS(A) → BS(A) is called a global orientation, or
simply an orientation, of S(A).

What does it mean for a cross-section to be continuous? Let π : OBS(A) → BS(A)

be the canonical map and s : BS(A) → OBS(A) be a continuous cross-section. So s
maps a facial 3-ball F to one of its two possible orientations. Now let {Fn} be a
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sequence in BS(A) that converges to a facial 3-ball F ∈ BS(A). Let s(Fn) = [ϕn] and
s(F ) = [ϕ]. Note that this implies that Fn = ϕn(B3) and F = ϕ(B3). Because
s is continuous, the sequence {[ϕn]} converges to [ϕ] in OBS(A), i.e., there exists
Mn ∈ SO(3) such that Mnϕn converges to ϕ in the sense of equation (4.38). Because
Fn → F , Fn = ϕn(B3) and F = ϕ(B3) we know that there exist Mn ∈ O(3) such
that Mnϕn → ϕ, but the point is that because s is continuous, we can choose the
Mn to be in SO(3).

Now the question remains: does such a continuous cross-section exists? It turns
out it does, but to prove this, we first need to define the orientation induced by A. To
do this, recall from Proposition 1.22 that the state space of the 2×2 matrices M2(C)
is isomorphic to B3. For the next lemma and definition, we identify S(M2(C)) with
B3.

Lemma 4.15. If F is a facial 3-ball in the state space of a unital C*-algebra A, and
p is the carrier projection of F in A∗∗, then pA∗∗p is *-isomorphic to M2(C). If π is
any *-isomorphism from pA∗∗p onto M2(C), then π∗ is an affine isomorphism from
the state space B3 onto F , i.e., π∗ is a parametrisation of F .

Proof. See Alfsen and Shultz (2001), Lemma 5.43.

Concretely, the map π∗ is given by

π∗ : B3 → F ; x 7→
(
ω : a 7→ Tr(ρxπ(a))

)
, (4.42)

where ρx is the density matrix given by

ρx = 1
2

(
1 + z x− iy
x+ iy 1− z

)
. (4.43)

Definition 4.16. Let A be a unital C*-algebra with state space S(A), and F a facial
3-ball of S(A) with carrier projection p. Let π be any *-isomorphism from pA∗∗p
onto M2(C). The orientation on F induced by A is the equivalence class of the
map π∗ from B3 onto F .

Theorem 4.17. The state space S(A) of a unital C*-algebra A is orientable. Specif-
ically, the orientation of each facial 3-ball induced by A gives a global orientation of
S(A).

Proof. See Alfsen and Shultz (2001), Theorem 5.54.

The attentive reader has noticed that the last lemma and theorem were stated for
unital C*-algebras. We will now generalise this to all C*-algebras.
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Theorem 4.18. Let σ and ρ be distinct pure states on a C*-algebra A. If the GNS-
representation πσ and πρ are unitarily equivalent, then the face generated by σ and
ρ is a 3-ball. If these representations are not unitarily equivalent, then the face they
generate is the line segment [σ, ρ].

Proof. Let Ã be the unitisation of A and let ω0 be the state given in equation (4.1),

i.e., let ω0 be the unique state on Ã that annihilates A. Denote the complementary
split face of ω0 by F . By Lemma 4.2 we can identify F with the state space of A.
Now let σ and ρ be pure states on A, hence σ, ρ ∈ F . By Theorem 4.5 the face they
generate is a 3-ball of S(Ã). By Lemma 4.2 and Lemma 4.3 we have:

faceS(Ã)(σ, ρ) = faceF (σ, ρ) = faceS(A)(σ, ρ). (4.44)

Hence faceS(A)(σ, ρ) is a facial 3-ball of S(A). Now let σ and ρ be unitarily inequiv-

alent pure states of S(A). Then by Theorem 4.5 the face they generate in S(Ã) is
equal to the line segment [σ, ρ]. Again, using Lemma 4.2 and Lemma 4.3 we can
conclude that this is equal to the line segment [σ, ρ] in S(A).

The orientability of Ã now follows from the orientability of A, as stated in the
following theorem.

Theorem 4.19. The state space S(A) of a C*-algebra A is orientable. Specifically,
the orientation of each facial 3-ball induced by A gives a global orientation of S(A).

Proof. Because the split face generated by ω0 is just {ω0}, it follows from Theorem

3.49 that ω0 is not unitarily equivalent to any other pure state on Ã. By Theorem
4.18 this implies that ω0 is not an element of any facial 3-ball of S(Ã). This implies

that every facial 3-ball of S(Ã) lies in the complementary split face of ω0, which

we identified with S(A) in Lemma 4.2. So every facial 3-ball of S(Ã) lies in S(A).
Therefore the bundles OBS(A) → BS(A) and OBS(Ã) → BS(Ã) are identical, so ori-

entations of S(A) coincide with orientations of S(Ã). Hence by Theorem 4.17 the
orientation of each facial 3-ball induced by A gives a global orientation of S(A).

Every *-isomorphism and *-anti-isomorphism between C*-algebras induces a bijec-
tion between the corresponding state spaces. The following proposition states when
the induced bijection preserves orientation and when it reverses orientation.

Proposition 4.20. Let A and B be C*-algebras with state spaces S(A) and S(B).
If Φ: A → B is a *-isomorphism, then Φ∗ preserves orientation, and if Φ is a *-
anti-isomorphism, then Φ∗ reverses orientation.
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Proof. See Alfsen and Shultz (2001), Proposition 5.55.

Theorem 4.21. If Φ: A→ B is a Jordan symmetry between C*-algebras, then Φ is
a *-isomorphism if and only if Φ∗ preserves orientation, and is a *-anti-isomorphism
if and only if Φ∗ reverses orientation.

Proof. See Alfsen and Shultz (2001), Theorem 5.71 for the proof of the unital case.
Now suppose that A and/or B are non-unital C*-algebras. Then the Jordan product

on Ã is given by

(a, λ) ◦ (b, µ) = 1
2
(a, λ)(b, µ) + 1

2
(b, µ)(a, λ)

= 1
2
(ab+ µa+ λb, λµ) + 1

2
(ba+ µa+ λb, λµ)

= (a ◦ b+ λa+ µb, λµ), (4.45)

for all (a, λ), (b, µ) ∈ Ã, and similarly for B̃. Let Φ be a Jordan symmetry on A,

then Φ̃ given by
Φ̃((a, λ)) = (Φ(a), λ) (4.46)

is a Jordan symmetry between Ã and B̃. Indeed, it is clearly C-linear and bijective,
and

Φ̃((a, λ) ◦ (b, µ)) = Φ̃(ã ◦ b̃+ µa+ λb, λµ)

= (Φ(a) ◦ Φ(b) + µΦ(a) + λΦ(b), λµ)

= Φ̃((a, λ)) ◦ Φ̃((b, µ)). (4.47)

Hence Φ̃ is a *-isomorphism if and only if Φ̃ preserves orientation, and is a *-
anti-isomorphism if and only if Φ̃∗ reverses orientation. Now note that Φ̃ is a *-
isomorphism if and only if Φ is a *-isomorphism, and Φ̃ is a *-anti-isomorphism if
and only if Φ is a *-isomorphism. This concludes the proof.

In the next corollaries the continuity of the maps ϕ and ϕ−1 is defined with respect
to the w∗-topology.

Corollary 4.22. Let A and B be unital C*-algebras with state spaces S(A) and
S(B). Let ϕ : S(B) → S(A) be an affine homeomorphism, and Φ: A → B the map
such that Φ∗ = ϕ on S(B). Then Φ is a *-isomorphism if and only if ϕ preserves
orientation.

Proof. First note that by Proposition 4.1 there exists a Jordan symmetry Φ: A→ B
such that ϕ = Φ∗. By Theorem 4.21, Φ is a *-isomorphism if and only if Φ∗ = ϕ
preserves orientation.
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Using Lemma 4.2 we can extend Corollary 4.22 to include the non-unital case, which
proves the equivalence between orientation-preserving Kadison symmetries and *-
isomorphisms.

Corollary 4.23. Let A and B be C*-algebras with state spaces S(A) and S(B). Let
ϕ : S(B) ∪ {0} → S(A) ∪ {0} be a Kadison symmetry, and Φ: A→ B the map such
that Φ∗ = ϕ on S(B) ∪ {0}. Then Φ is a *-isomorphism if and only if ϕ preserves
orientation.

Proof. Let ϕ : S(B) ∪ {0} → S(A) ∪ {0} be a Kadison symmetry, i.e. a homeomor-
phism that maps 0 to 0 and is affine on S(B). Extend ϕ to

ϕ : co(S(B) ∪ {0})→ co(S(A) ∪ {0}), (4.48)

by setting
ϕ(λω + (1− λ)0) = λϕ(ω), (4.49)

which is an affine homeomorphism between co(S(B)∪ {0}) and co(S(A)∪ {0}). Let

Ã be the unitisation of A and let S(Ã) be its state space. Let ωA0 be the unique state

on Ã that annihilates A. By Lemma 4.2 we have

S(Ã) = S(A)⊕c {ωA0 }, (4.50)

so the map
ψA : S(Ã) = co(S(A) ∪ {ωA0 })→ co(S(A) ∪ {0}) (4.51)

that takes ωA0 to 0 is an affine homeomorphism, and similarly for

ψB : S(B̃) = co(S(B) ∪ {ωB0 })→ co(S(B) ∪ {0}). (4.52)

Then
(ψA)−1 ◦ ϕ ◦ ψB : S(B̃)→ S(Ã) (4.53)

is an affine homeomorphism between state spaces of unital C*-algebras. Define
Ψ: Ã→ B̃ by

Ψ((a, λ)) = (Φ(a), λ). (4.54)

Then Ψ∗ = (ψA)−1 ◦ ϕ ◦ ψB. By Corollary 4.22 Ψ is a *-isomorphism if and only if
(ψA)−1 ◦ ϕ ◦ ψB preserves orientation. Note that Ψ is a *-isomophism if and only
if Φ is a *-isomorphism and (ψA)−1 ◦ ϕ ◦ ψB preserves orientation if and only if
ϕ preserves orientation. We conclude that Φ is a *-isomorphism if and only if ϕ
preserves orientation.
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In the case that A = B(H) we prefer to work with the normal state space instead
of the entire state space, as we did in the first two chapters. The following result is
an application of Theorem 4.21 to B(H) using the normal state space instead of the
entire state space.

Proposition 4.24. Let H1 and H2 be Hilbert spaces and Sn(H1), respectively Sn(H2)
their normal state spaces. Let ϕ : B(H1) → B(H2) be a Jordan symmetry. If ϕ is
a *-isomorphism (*-anti-isomorphism), then ϕ∗ maps each facial 3-ball of Sn(H2)
orientation-preservingly (orientation-reversingly) onto a facial 3-ball of Sn(H1).

Proof. See Alfsen, Hanche-Olsen, and Shultz (1980), Proposition 6.2.

4.3 Double orthocomplement

In this section, we describe the pure states in the face generated by σ, ρ ∈ P (A),
using the double orthocomplement from Definition 2.2. This is done in Proposition
4.27. Using this description, it follows easily that a bijective map P (B)→ P (A) that
preserves transition probabilities, also preserves equivalence of pure states (Corollary
4.28). Let A be a C*-algebra and let σ, ρ be unitarily equivalent pure states. Recall
from Theorem 4.18 that the face generated by σ and ρ, which we denote by face(σ, ρ),
is affinely isomorphic to the closed unit ball B3 ⊂ R3. Denote by S2(σ, ρ) the extreme
boundary of face(σ, ρ).

Lemma 4.25. Let A be a C*-algebra, let σ and ρ be distinct unitarily equivalent
pure states, and let ϕ : B3 → face(σ, ρ) be an affine isomorphism. Then ϕ bijectively
maps S2 onto S2(σ, ρ) and S2(σ, ρ) consists of all pure states in face(σ, ρ).

Proof. Let ϕ : B3 → face(σ, ρ) be an affine isomorphism. Because ϕ is affine, it maps
the extreme boundary of B3, i.e., the unit sphere S2, bijectively onto the extreme
boundary of face(σ, ρ), i.e., S2(σ, ρ). Let ω ∈ S2(σ, ρ) and let ω1, ω2 ∈ S(A) and
λ ∈ (0, 1) be such that λω1 + (1 − λ)ω2 = ω. Because ω ∈ face(σ, ρ) it follows
from the definition of a face that ω1, ω2 ∈ face(σ, ρ). Since ω is an element of the
extreme boundary of face(σ, ρ) this implies that ω1 = ω2 = ω, which proves that
ω ∈ P (A). Finally, note that these are all the pure states in face(σ, ρ), because every
ω ∈ face(σ, ρ) that is not on the extreme boundary can be written as a non-trivial
combination of states on the extreme boundary and hence is not pure.

We now want to describe S2(σ, ρ) using the transition probability from Theorem
3.79. We will use the terminology from Section 2.1.
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Theorem 4.26. Let A be a C*-algebra and P (A) its pure state space. Then P (A)
equipped with the transition probability defined in Theorem 3.79 is a well-behaved
transition probability space.

Proof. This follows from Landsman (1998), Theorem 2.8.2 and Proposition 3.80.

This brings us to our next proposition, in which we describe the pure states in the
face generated by σ and ρ using the double orthocomplement. This result is stated,
but not proved in Shultz (1982).

Proposition 4.27. Let σ, ρ ∈ P (A). Then the set of pure states in the face generated
by σ and ρ is given by {σ, ρ}⊥⊥.

Proof. First suppose that σ and ρ are not unitarily equivalent. In that case, Theorem
4.18 states that

face(σ, ρ) = [σ, ρ] = {λσ + (1− λ)ρ | λ ∈ [0, 1]}, (4.55)

which implies that the pure states in face(σ, ρ) are precisely σ and ρ. According
to Proposition 3.80, we have τ(σ, ρ) = 0, so {σ, ρ} is a family of orthogonal points.
Then by Theorem 4.26 and Lemma 2.8,

{σ, ρ}⊥⊥ = {ω ∈ P (A) | τ(ω, σ) + τ(ω, ρ) = 1}. (4.56)

Now suppose that ω ∈ {σ, ρ}⊥⊥. Using Proposition 3.80 and the fact that σ and ρ
are not unitarily equivalent, we know that ω is equivalent to either σ or to ρ. If ω is
equivalent to σ, we have

1 = τ(ω, σ) + τ(ω, ρ) = τ(ω, σ), (4.57)

and because τ is a transition probability, this implies that ω = σ. Analogously, if we
assume that ω is equivalent to ρ it follows that ω = ρ. This proves that

{σ, ρ}⊥⊥ = {σ, ρ} = face(σ, ρ) ∩ P (A). (4.58)

Now suppose that σ and ρ are unitarily equivalent, so that according to Theorem
4.18 the face generated by σ and ρ is a 3-ball. As before, we denote the pure states
of that 3-ball by S2(σ, ρ). So we want to prove that

{σ, ρ}⊥⊥ = S2(σ, ρ). (4.59)

We first give a precise description of S2(σ, ρ). Because σ and ρ are unitarily equiv-
alent, we may assume that the associated cyclic vectors xσ and xρ lie in the same
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Hilbert space, which we denote by H. As usual, we denote the GNS-representation of
σ by πσ. Then according to Proposition 3.24 the split face generated by σ, which we
denote by Fσ, is affinely isomorphic to the normal state space of B(H). By Theorem
3.49 the split face generated by σ is the same as the split face generated by ρ. So we
have σ, ρ ∈ Fσ = Fρ, and Fσ is a split face. In particular, Fσ is a face that contains
both σ and ρ, hence face(σ, ρ) ⊆ Fσ.

It now follows from Lemma 4.3 that we can identify face(σ, ρ) with a face of the
normal state space of B(H), namely the face generated by the vector states ωxσ and
ωxρ . By Corollary 3.28 this is the norm-closed face Fp = {ω ∈ Sn

(
B(H)) | ω(p) = 1}

where p is the projection onto span{xσ, xρ}. Because the normal pure state in B(H)
are precisely the vector states, we see that

faceS(B(H))(ωxσ , ωxρ) ∩ P (B(H)) = faceSn(B(H))(ωxσ , ωxρ) ∩ P (B(H))

= Fp ∩ P (B(H))

= {ωy | y ∈ H, ‖y‖ = 1, ωy(p) = 1}. (4.60)

Let ωy be such that ωy(p) = 1. Then

1 = ωy(p) = 〈y, py〉, (4.61)

which implies that py = y, i.e., y ∈ span{xσ, xρ}. Conversely, if y is a unit vector in
span{xσ, xρ}, then ωy(p) = 1 and ωy ∈ Fp ∩ P (B(H)). This shows that S2(σ, ρ) is
isomorphic to {ωy | y ∈ span{xσ, xρ}, ‖y‖ = 1}.

Denote the pure states in a subset X of S(A) by P (X).

Claim: Let F be a split face of S(A) and let F ′ be its complementary split face. Then
P (F )⊥ = P (F ′).

Proof: By definition of the complementary split face we have S(A) = F ⊕c F ′. By
definition of the orthocomplement

P (F )⊥ = {σ ∈ P (A) | τ(σ, ρ) = 0 for all ρ ∈ P (F )}. (4.62)

Let ω be a pure state. It follows that either ω ∈ F or ω ∈ F ′. If ω ∈ F , then
in particular ω ∈ P (F ) and τ(ω, ω) = 1 6= 0. Hence ω /∈ P (F )⊥. This shows
that P (F ′) ⊆ P (F )⊥. Conversely, suppose that ω ∈ P (F )⊥, so τ(ω, ρ) = 0 for all
ρ ∈ P (F ). Then we must have ω /∈ P (F ), hence ω ∈ P (F ′). This shows that
P (F )⊥ ⊆ P (F ′) and hence P (F )⊥ = P (F ′). �
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To ease notation, denote the set {σ, ρ} by S. Clearly, S ⊆ Fσ. Then S ⊆ P (Fσ),
which implies that

S⊥ ⊇ P (Fσ)⊥ = P (F ′σ). (4.63)

Therefore,

S⊥ = P (F ′σ) ∪ (S⊥ ∩ P (Fσ)), (4.64)

and

S⊥⊥ =
(
P (F ′σ) ∪ (S⊥ ∩ P (Fσ))

)⊥
= P (F ′σ)⊥ ∩ (S⊥ ∩ P (Fσ))⊥

= P (Fσ) ∩ (S⊥ ∩ P (Fσ))⊥. (4.65)

We can conclude that the double orthocomplement of S calculated in P (A) is the
same as the double orthocomplement calculated solely within P (Fσ). Because Fσ is
affinely isomorphic to Sn(B(H)), the double orthocomplement of S is isomorphic to
the double orthocomplement of {ωxσ , ωxρ} in Sn(B(H)). Recall that for vector states
ωx, ωy ∈ Sn(B(H)) we have

τ(ωx, ωy) =
∣∣〈x, y〉∣∣2 , (4.66)

so τ(ωx, ωy) = 0 if and only if the unit vectors x and y are orthogonal. Then

{ωxσ , ωxρ}⊥⊥ = {ωy | y ∈ {xσ, xρ}⊥⊥, ‖y‖ = 1}
= {ωy | y ∈ span{xσ, xρ}⊥⊥, ‖y‖ = 1}
= {ωy | y ∈ span{xσ, xρ}, ‖y‖ = 1}. (4.67)

As we deduced in equation (4.60), these are precisely the vector states in the face
generated by ωxσ and ωxρ . Hence both {σ, ρ}⊥⊥ and S2(σ, ρ) ∩ P (A) are isomorphic
to

{ωy | y ∈ span{xσ, xρ}, ‖y‖ = 1} (4.68)

under the same isomorphism, which implies that S2(σ, ρ) = {σ, ρ}⊥⊥.

Corollary 4.28. Let A and B be C*-algebras, and ψ : P (B) → P (A) a bijection
that preserves transition probabilities. Then ψ preserves equivalence of pure states,
and maps S2(σ, ρ) onto S2(ψ(σ), ψ(ρ)).
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Proof. Let X ⊆ P (B). Then:(
ψ(X))⊥ = {ω ∈ P (A) | τ(ω, ρ) = 0 ∀ρ ∈ ψ(X)}

= {ω ∈ P (A) | τ(ψ−1(ρ), ψ−1(ω)) = 0 ∀ρ ∈ ψ(X)}
= {ω ∈ P (A) | τ(σ, ψ−1(ω)) = 0 ∀σ ∈ X}
= {ψ(ν) | ν ∈ P (B), τ(σ, ν) = 0 ∀σ ∈ X}
= ψ(X⊥). (4.69)

Let σ, ρ ∈ P (B). Using Proposition 4.27 and the fact that ψ(X)⊥ = ψ(X⊥), we find:

σ, ρ equivalent⇔ {σ, ρ}⊥⊥ properly contains {σ, ρ}
⇔ ψ({σ, ρ}⊥⊥ = {ψ(σ), ψ(ρ)}⊥⊥ properly contains {ψ(σ), ψ(ρ)}
⇔ ψ(σ), ψ(ρ) equivalent. (4.70)

Now let σ, ρ be unitarily equivalent pure states of B. Again, using Proposition 4.27
and the fact that ψ(X)⊥ = ψ(X⊥), we find:

ψ
(
S2(σ, ρ)

)
= ψ

(
{σ, ρ}⊥⊥

)
= ψ({σ, ρ})⊥⊥

= {ψ(σ), ψ(ρ)}⊥⊥ = S2(ψ(σ), ψ(ρ)), (4.71)

so ψ maps S2(σ, ρ) onto S2(ψ(σ, ψ(ρ)).

4.4 Atomic algebras

In this section we will decompose A∗∗ into two part, namely a part that is “atomic”
and a part that contains no atoms. Let [σ] denote the equivalence class of all states
that are unitarily equivalent to σ ∈ P (A). The aim of this section is to prove that
the atomic part of A∗∗ is given by⊕

[σ]∈P (A)/∼

c([σ])A∗∗ ∼=
⊕

[σ]∈P (A)/∼

B(Hσ). (4.72)

Once we have proven this, we can identify the normal pure states of the atomic
part of A∗∗ with the normal pure states of A∗∗ itself. We will also show that A is
isomorphic to a certain subset of the atomic part of A∗∗.

Definition 4.29. A von Neumann algebra M is atomic if every non-zero projection
dominates an atom.
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Definition 4.30. A JBW-algebra M is atomic if every non-zero projection domi-
nates an atom.

Note that the von Neumann algebra M is atomic if and only if the JBW-algebra Msa

is atomic.

Lemma 4.31. Let M be a JBW-algebra, and P the lattice of projections in M .
The supremum in P of the atoms in M is a central projection z such that zM is
atomic and (1− z)M contains no atoms. This decomposition of M into atomic and
non-atomic parts is unique.

Proof. See Alfsen and Shultz (2003), Lemma 3.42.

Let A be a C*-algebra, let A∗∗sa be the associated JBW-algebra, and let z be the
central projection from Lemma 4.31. Then z is also the central projection such that
zA∗∗ is atomic and (1− z)A∗∗ contains no atoms. We now give a description of the
atomic part of A∗∗. Denote by “∼” the equivalence relation on P (A) given by unitary
equivalence of pure states and denote by [σ] the equivalence class of σ ∈ P (A) in
P (A)/ ∼.

Corollary 4.32. Let A be a C*-algebra and let z be the central projection such that
zA∗∗ is atomic and (1− z)A∗∗ contains no atoms. Then

zA∗∗ =
⊕

[σ]∈P (A)/∼

c(σ)A∗∗. (4.73)

Proof. By Theorem 3.49 c(σ) = c(ρ) for pure states σ and ρ if and only if σ and ρ
are unitarily equivalent. Hence c([σ]) is well defined, and so is⊕

[σ]∈P (A)/∼

c([σ])A∗∗. (4.74)

We first show that

z =
∑

[σ]∈P (A)/∼

c([σ]). (4.75)

By Proposition 3.72 and equation (3.61) the atoms in A∗∗ are precisely the carriers
of the pure states σ ∈ P (A), so by Lemma 4.31,

z = sup{carrier(σ) | σ ∈ P (A)}. (4.76)
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By Lemma 3.46 the smallest central projection dominating carrier(σ) is precisely
c(σ). Let w be the supremum of {c(σ) | σ ∈ P (A)}, i.e.,

w = sup{c(σ) | σ ∈ P (A)}, (4.77)

which is a central projection in A∗∗. Because carrier(σ) ≤ c(σ) for all σ ∈ P (A),
we have z ≤ w. On the other hand, for every σ ∈ P (A), z is a central projection,
which dominates carrier(σ). By definition c(σ) is the smallest central projection that
dominates σ, hence c(σ) ≤ z for every σ ∈ P (A). It follows that

w = sup{c(σ) | σ ∈ P (A)} ≤ z, (4.78)

from which we conclude that w = z. Because unitarily equivalent pure states have
the same central carrier (see Theorem 3.49 part (iv)), it follows that

z = sup{c([σ] | [σ] ∈ P (A)/ ∼}. (4.79)

Let σ and ρ be unitarily inequivalent pure states, so that c([σ]) 6= c([ρ]). By Corollary
3.78 we have c([σ]) ⊥ c([ρ]) and hence by Theorem A.100:

c([σ]) ∨ c([ρ]) = c([σ]) + c([ρ]). (4.80)

We can now conclude that

z = sup{c([σ] | [σ] ∈ P (A)/ ∼} =
∑

[σ]∈P (A)/∼

c([σ]). (4.81)

Because the elements of {c([σ] | [σ] ∈ P (A)/ ∼} are orthogonal, this shows that

zA∗∗ =
⊕

[σ]∈P (A)/∼

c(σ)A∗∗. (4.82)

Note that by equation (4.73) and Lemma 4.31, we have

A∗∗ =
⊕

[σ]∈P (A)/∼

c([σ])A∗∗ ⊕ (1− z)A∗∗. (4.83)

Corollary 4.33. Let A be a C*-algebra and let z be the central projection from
Lemma 4.31. Then there is a bijective correspondence between the following sets:
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• Pn(A∗∗);

• Pn(zA∗∗);

•
⋃

[σ]∈P (A)/∼ Pn(c([σ])A∗∗).

These bijective correspondences are explicitly given by extending the pure normal
states with 0 to the larger space, and of restricting the pure normal states to the
smaller space.

Proof. Let ρ ∈ Pn(c[σ]A∗∗). Extend ρ by 0 on all other summands of equation (4.73).
This gives a pure normal state on zA∗∗. Extend ρ by 0 on all other summands of
equation (4.83). This gives a pure normal state on A∗∗.

Let ρ ∈ Pn(A∗∗). Then ρ(c[ρ]) = 1, so ρ restricted to c([ρ])A∗∗ gives a pure normal
state on c([ρ])A∗∗. Furthermore, by 3.78 we have ρ(c[σ]) = 0 for every σ ∈ P (A)
that is unitarily inequivalent to ρ. By equation (4.73) we have

ρ(z) =
∑

[σ]∈P (A)/∼

ρ(c[σ]) = ρ(c[ρ]) = 1, (4.84)

so ρ
zA∗∗
∈ Pn(zA∗∗). Let ρ ∈ Pn(zA∗∗). Extend ρ by 0 on (1− z)A∗∗. Then

ρ(1A∗∗) = ρ(z) + ρ(1− z) = 1, (4.85)

so ρ is a pure normal state on A∗∗. Furthermore,

1 = ρ(z) =
∑

[σ]∈P (A)/∼

ρ(c[σ]). (4.86)

Because ρ is pure, ρ must be equal to 0 on all but one of the summands. Hence there
is a σ ∈ P (A) such that ρ(c[σ]) = 1. Hence ρ restricts to a pure normal state on
c([σ])A∗∗.

It is easy to see that the constructions given above are inverses of each other, i.e.,
first restricting a state to a smaller space and then extending by 0 to the original
space gives the original state, and vice versa.

Corollary 4.34. Let z be the central projection in A∗∗ such that zA∗∗ is atomic and
(1− z)A∗∗ contains no atoms. Then A is *-isomorphic to zA.

Proof. Define ϕz : A → zA by a 7→ za. Because z is a central projection, it follows
easily that ϕz is a *-homomorphism. Indeed, for all a, b ∈ A:

ϕz(a)∗ = (za)∗ = a∗z∗ = za∗ = ϕz(a
∗); (4.87)

ϕz(ab) = zab = zazb = ϕz(a)ϕz(b). (4.88)
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So we only need to show that ϕz is an isomorphism, i.e., that it is bijective. Surjectiv-
ity of ϕz is obvious, so we will only show injectivity. Let a, b ∈ A be distinct elements
of A. By equation (4.73) it is enough to find a pure state σ such that c(σ)a 6= c(σ)b.
Because the atomic representation is faithful (see Proposition A.90), there exists a
pure state σ ∈ P (A) such that πσ(a) 6= πσ(b). Because π̃σ : c(σ)A∗∗ → B(Hσ) is a
*-isomorphism we have:

π̃σ(c(σ)(a− b)) = π̃σ(c(σ))π̃σ(a− b)
= 1Hσ(π̃σ(a)− π̃σ(b))

= πσ(a)− πσ(b) 6= 0, (4.89)

from which we conclude that c(σ)(a− b) 6= 0, and hence c(σ)a 6= c(σ)b.

We now want to prove that each summand in equation (4.73) is a type I factor.

Lemma 4.35. Let A be a C*-algebra and σ a pure state on A. Then

c(σ)A∗∗ ∼= B(Hσ), (4.90)

and c(σ)A∗∗ is a type I factor.

Proof. By Lemma 3.46 we have c(σ) = c(πσ). By definition of the central cover
(Definition 3.42), c(πσ) is the central projection in A∗∗ such that

ker(π̃σ) =
(
1− c(πσ)

)
A∗∗, (4.91)

where π̃σ is the normal extension of πσ. Because the GNS-representation of a pure
state is irreducible, Theorem 3.35 part 5 shows that π̃σ maps A∗∗ onto B(Hσ). Hence
π̃σ

c(σ)A∗∗
is a *-isomorphism from c(σ)A∗∗ onto B(Hσ). Because B(Hσ) is a factor

and B(Hσ) is isomorphic to c(σ)A∗∗, we can conclude that c(σ)A∗∗ is a factor. Lastly,
we have to show that c(σ)A∗∗ is of type I. This follows directly from Proposition 3.62
and the fact that carrier(σ) ∈ c(σ)A∗∗ is an atom in c(σ)A∗∗.

Corollary 4.36. Let A be a C*-algebra, let πra be the reduced atomic representation
and let z be the central projection such that zA∗∗ is the atomic part of A∗∗. Then

zA∗∗ ∼= πra(A)′′. (4.92)

Proof. This follows directly from Theorem 3.51 and Lemma 4.35.
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4.5 Wigner symmetries that preserve orientation

In this section we establish an equivalence between Wigner symmetries that preserve
orientation and *-isomorphisms. The key results, namely Proposition 4.38, Theorem
4.41 and Theorem 4.42 are due to Shultz (1982). However, we greatly increased the
details in his proofs of Proposition 4.38 and Theorem 4.42 in order to complete the
argument.

We start with the following Theorem, which just paraphrases results from Chap-
ters 1 and 2.

Theorem 4.37. A bijective map ψ from Pn(B(H2)) onto Pn(B(H1)) that preserves
transition probabilities extends to a unique affine isomorphism of the normal state
spaces and is induced by a unique *-isomorphism or *-anti-isomorphism Ψ from
B(H1) onto B(H2).

Proof. By Theorem 1.25 a bijective map from Pn(B(H2)) onto Pn(B(H2)) that pre-
serves transition probabilities is equivalent to a Wigner symmetry ψ′ from P1(H2)
onto P2(H1). Because Wigner symmetries and Kadison symmetries are equivalent,
ψ′ extends to a unique affine isomorphism from D(H2) onto D(H1). Again, using
Theorem 1.25, this means that ψ extends to a unique affine isomorphism of the nor-
mal state spaces. By Corollary 2.17 every Kadison symmetry is induced by a Jordan
symmetry and by Proposition 2.26 every Jordan symmetry is either a *-isomorphism
or a *-anti-isomorphism.

Corollary 4.23 showed the equivalence between orientation-preserving (reversing)
Kadison symmetries and *-isomorphisms (*-anti-isomorphisms). We now want to
look at bijections between the pure state spaces, rather than the entire state spaces.
We still need the notion of orientation, but now on the pure states. Recall from The-
orem 4.19 that A induces a global orientation of S(A). By restricting each induced
orientation of a 3-ball face(σ, ρ) to its extreme boundary S2(σ, ρ) we get a collection
of orientations of all 2-spheres S2(σ, ρ). We refer to this collection of orientations as
the canonical orientation of P(A). If we ignore topology and only look at the
pure states, we get the following result.

Proposition 4.38. Let A and B be C*-algebras. A bijective map ψ : P (B)→ P (A)
is induced by a *-isomorphism (*-anti-isomorphism) of the atomic part of A∗∗ onto
the atomic part of B∗∗ if and only if ψ preserves transition probabilities and preserves
(reverses) orientation.

Remark 4.39. What do we mean if we say that a *-isomorphism Ψ from the atomic
part of A∗∗ onto the atomic part of B∗∗ induces ψ? Using Lemma 4.31, denote the
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atomic part of A∗∗ by zAA
∗∗ and the atomic part of B∗∗ by zBB

∗∗. The pure states of
A correspond to the pure normal states of A∗∗. Corollary 4.33 gives a correspondence
between the pure normal states of A∗∗ and the pure normal states of zA∗∗. So identify
P (A) with Pn(zAA

∗∗) and P (B) with Pn(zBB
∗∗). Then ψ is a bijective map

ψ : Pn(zBB
∗∗)→ Pn(zAA

∗∗). (4.93)

We say that Ψ: zAA
∗∗ → zBB

∗∗ induces ψ : P (B)→ P (A) if

Ψ∗ = ψ : Pn(zBB
∗∗)→ Pn(zAA

∗∗). (4.94)

Proof of Proposition 4.38. We will only prove the correspondence between *-isomor-
phisms of the atomic parts and maps that preserve transition probabilities and ori-
entation. The proof for *-anti-isomorphisms and orientation-reversing bijections is
analogous.

First suppose that ψ is induced by a *-isomorphism Ψ from the atomic part of
A∗∗ onto the atomic part of B∗∗, in the sense of Remark 4.39. By Proposition 4.20
this map preserves orientation. We still need to show that ψ preserves transition
probabilities.

Claim: Let σ ∈ Pn(zBB
∗∗). Then Ψ−1 : zBB

∗∗ → zAA
∗∗ maps the carrier projection

of σ onto the carrier projection of ψ(σ) = Ψ∗(σ).

Proof: Let pσ be the carrier projection of σ and pψ(σ) be the carrier projection of
ψ(σ). First note that pσ ≤ c(σ), so that pσ ∈ zBB∗∗. Because Ψ is a *-isomorphism,
Ψ−1(pσ) is a projection. Then

ψ(σ)(Ψ−1(pσ)) = σ
(
(Ψ ◦Ψ−1)pσ

)
= σ(pσ) = 1, (4.95)

which shows that pψ(σ) ≤ Ψ−1(pσ). On the other hand Ψ(pψ(σ)) is a projection and

σ(Ψ(pψ(σ))) =
(
σ ◦Ψ ◦Ψ−1

)(
Ψ(pψ(σ))

)
= (Ψ∗ ◦ σ)(pψ(σ)) = ψ(σ)(pψ(σ)) = 1, (4.96)

which shows that pσ ≤ Ψ(pψ(σ)) and hence Ψ−1(pσ) ≤ Ψ−1
(
Ψ(pψ(σ))

)
= pψ(σ). We

conclude that pψ(σ) = Ψ−1(pσ). �

Let σ, ρ ∈ Pn(zBB
∗∗). Then by Theorem 3.79 and the claim we have

τ(ψ(σ), ψ(ρ)) = ψ(σ)(pψ(ρ)) = (σ ◦Ψ)(Ψ−1(pρ)) = σ(pρ) = τ(σ, ρ), (4.97)

i.e., ψ preserves transition probabilities.
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Conversely, suppose that ψ : P (B)→ P (A) preserves transition probabilities and
orientation. Because ψ preserves transition probabilities, Corollary 4.28 implies that
it preserves equivalence of pure states. Using Corollary 3.32, identify the state space
of A (respectively B), with the normal state space of A∗∗ (respectively B∗∗). Hence
ψ is a bijection from {ρ ∈ Pn(B∗∗) | ρ ∼ σ} onto {ρ ∈ Pn(A∗∗) | ρ ∼ ψ(σ)}.
By Lemma 4.35 and equation (4.73), the atomic part of B∗∗ is the direct sum of
type I factors c([σ])B∗∗ ∼= B(Hσ), where [σ] denotes the equivalence class of σ ∈
P (B). Using Corollary 4.33, identify the states in the equivalence class of σ ∈ P (A)
with the pure normal states of c([σ]A∗∗). Because ψ preserves the equivalence pure
states, ψ bijectively maps the pure normal states of c([σ])B∗∗ ∼= B(Hσ) onto those
of c([ψ(σ)])A∗∗ ∼= B(Hψ(σ)). So we have a bijection

W : Pn(B(Hσ))→ Pn(B(Hψ(σ))), (4.98)

which preserves transition probabilities and preserves orientation. Then by Theorem
4.37 this bijection extends to a unique affine isomorphism

K : Sn(B(Hσ))→ Sn(B(Hψ(σ))), (4.99)

which preserves orientation. Furthermore, K is induced by a unique *-isomorphism
or *-anti-isomorphism

J : B(Hψ(σ))→ B(Hσ). (4.100)

In particular, J is a Jordan symmetry that preserves the orientation of facial 3-balls in
the normal state space. By Proposition 4.24, this implies that J is a *-isomorphism.
Let

Ψ[σ] : c([ψ(σ)])A∗∗ → c([σ])B∗∗ (4.101)

be the corresponding *-isomorphism between c([ψ(σ)])A∗∗ and c([σ])B∗∗. Then Ψ[σ]

is the unique *-isomorphism that induces

ψ : Pn(c[ψ(σ)])A∗∗)→ Pn(c([σ])B∗∗). (4.102)

Note that because ψ preserves the equivalence of pure states we have⊕
[σ]∈P (B)/∼

c([ψ(σ)])A∗∗ =
⊕

[σ]∈P (A)/∼

c([σ])A∗∗. (4.103)

Let Ψ be the direct sum of all *-isomorphisms Ψ[σ], i.e.,

Ψ =
⊕

[σ]∈P (B)/∼

Ψ[σ]. (4.104)

By equation (4.73) this is a *-isomorphism that maps the atomic part of A∗∗ onto
the atomic part of B∗∗, and induces ψ.
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The *-isomorphism from the previous proposition maps zAA
∗∗ onto zBB

∗∗, but this
does not necessarily mean that it maps zAA onto zBB. We would like this to be the
case, because according to Corollary 4.34 the algebras A and zAA are *-isomorphic,
as are B and zBB. If the map Ψ maps zA onto zB, then using the *-isomorphism
from Corollary 4.34, we find a *-isomorphism from A onto B that induces ψ. The key
to proving that Ψ maps zAA onto zBB is the fact that every C*-algebra is weakly
perfect .

Definition 4.40. Let A be a C*-algebra. We denote by Au the set of elements
a ∈ zA∗∗ such that a, a∗a and aa∗ are uniformly continuous on P (A)∪ {0}. We say
A is weakly perfect if zA = Au.

Theorem 4.41. Every C*-algebra A is weakly perfect.

Proof. See Shultz (1982), Theorem 17.

The following theorem proves that there is a bijective correspondence Φ 7→ Φ∗ be-
tween *-isomorphisms (*-anti-isomorphisms) Φ: A → B and orientation-preserving
(reversing) Wigner symmetries Φ∗.

Theorem 4.42. Let A and B be C*-algebras and ψ : P (B) ∪ {0} → P (A) ∪ {0} a
bijection with ψ(0) = 0. Then ψ is induced by a *-isomorphism (*-anti-isomorphism)
of A onto B if and only if ψ and ψ−1 are uniformly continuous and ψ preserves
transition probabilities and preserves (reverses) orientation.

Proof. We will only prove the correspondence between *-isomorphisms and uniformly
continuous bijections with uniformly continuous inverse that preserve transition prob-
abilities and orientation. The proof for *-anti-isomorphisms and orientation-reversing
bijections is analogous.

First, suppose that ψ is induced by a *-isomorphism Ψ: A→ B. As in the proof
of Proposition 4.38, this implies that ψ preserves orientation and transition proba-
bilities. So we only need to show that ψ and ψ−1 are uniformly continuous. We will
prove that ψ is uniformly continuous. The proof that ψ−1 is uniformly continuous is
analogous, by noting that ψ−1 = (Ψ−1)∗.

Claim: let Ψ: A → B be a *-isomorphism. Then Ψ∗ : B∗ → A∗ is uniformly contin-
uous.

Proof: Denote the w∗-uniformity of A by Uw∗ and the w∗-uniformity of B by Vw∗ .
By definition of the w∗-uniformity, it is enough to show that for every a ∈ A and



108 Chapter 4. Symmetries in algebraic quantum theory

ε > 0 there is a b ∈ B and a δ > 0 such that

V b
δ ⊆ (Ψ∗)−1(Ua

ε ). (4.105)

So let a ∈ A, ε > 0, and let b = Ψ(a). Then

(Ψ∗)−1(Ua
ε ) = {(σ, ρ) ∈ B∗ ×B∗ | (σ ◦Ψ, ρ ◦Ψ) ∈ Ua

ε }
= {(σ, ρ) ∈ B∗ ×B∗ |

∣∣σ(Ψ(a))− ρ(Ψ(a))
∣∣ < ε}

= {(σ, ρ) ∈ B∗ ×B∗ |
∣∣σ(b)− ρ(b)

∣∣ < ε} = V b
ε . (4.106)

Hence (Ψ∗)−1(Ua
ε ) = V b

ε , which implies that Ψ∗ : B∗ → A∗ is uniformly continuous.
�

Again, denote the w∗-uniformity of A by Uw∗ and the w∗-uniformity of B by Vw∗ .
Furthermore write UP (A)

w∗ for the w∗-uniformity of A∗ restricted to P (A) ∪ {0}, and

VP (B)
w∗ for the w∗-uniformity of B∗ restricted to P (B) ∪ {0}. Let U ∈ UP (A)

w∗ . Then

there exists a Ũ ∈ Uw∗ such that

U = Ũ ∩ (P (A) ∪ {0}). (4.107)

By the above claim, Ψ∗ : B∗ → A∗ is uniformly continuous, so (Ψ∗)−1(Ũ) ∈ Vw∗ .
Then, using the fact that Ψ∗ : B∗ → A∗ is a bijection that maps P (B) ∪ {0} onto
P (A) ∪ {0}, we find:

(Ψ∗)−1(U) = (Ψ∗)−1
(
Ũ ∩ (P (A) ∪ {0})

)
= (Ψ∗)−1(Ũ) ∩ (Ψ∗)−1(P (A) ∪ {0})
= (Ψ∗)−1(Ũ) ∩

(
P (B) ∪ {0}

)
. (4.108)

Because (Ψ∗)−1(Ũ) ∈ Vw∗ , this means that (Ψ∗)−1(U) ∈ VP (B)
w∗ , i.e.,

ψ = Ψ∗ : P (B) ∪ {0} → P (A) ∪ {0} (4.109)

is uniformly continuous.
Now suppose that ψ : P (B) ∪ {0} → P (A) ∪ {0} is a bijection with ψ(0) = 0

that is uniformly continuous, has uniformly continuous inverse, and preserves orien-
tation as well as transition probabilities. Let zA be the central projection such that
zAA

∗∗ is the atomic part of A∗∗ and let zB be the central projection such that zBB
∗∗

is the atomic part of B∗∗. By Proposition 4.38, ψ is induced by a *-isomorphism
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Ψ: zAA
∗∗ → zBB

∗∗. It remains to be shown that Ψ maps zAA onto zBB.

Claim: Let Ψ: zAA
∗∗ → zBB

∗∗ be the *-isomorphism that induces ψ : P (A)∪ {0} →
P (B) ∪ {0} in the sense of Remark 4.39. Then

Ψ(a)(σ) = (a ◦ ψ)(σ). (4.110)

for all a ∈ zAA∗∗ and σ ∈ P (A) ∪ {0}.

Proof: Let ϕ : P (A) → Pn(zAA
∗∗) be the composition of the map from Corollory

3.32, which maps a state on P (A) to a normal state on A∗∗, and the identification of
Pn(A∗∗) with Pn(zAA

∗∗) given in Corollary 4.33. So ϕ is a bijection from P (A) onto
Pn(zAA

∗∗) given by

ϕ(σ) = σ̃
zAA∗∗

, (4.111)

where σ̃ is the normal extension of σ ∈ P (A). We can extend ϕ to a bijection

ϕA : P (A) ∪ {0} → Pn(zAA
∗∗) ∪ {0} (4.112)

by setting ϕ(0) = 0. Similarly, let

ϕB : P (B) ∪ {0} → Pn(zBB
∗∗) ∪ {0} (4.113)

be the bijection from P (B)∪{0} onto Pn(zBB
∗∗)∪{0}. Because Ψ induces ψ in the

sense of Remark 4.39, we have

Ψ∗ = ϕA ◦ ψ ◦ ϕ−1
B : Pn(zBB

∗∗) ∪ {0} → Pn(zAA
∗∗) ∪ {0}, and

ψ = ϕ−1
A ◦Ψ∗ ◦ ϕB : P (B) ∪ {0} → P (A) ∪ {0}. (4.114)

Now let a ∈ zAA∗∗ and σ ∈ P (A) ∪ {0}. Then

(a ◦ ψ)(σ) = a
(
(ϕ−1

A ◦Ψ∗ ◦ ϕB)σ
)

= a
(
ϕ−1(σ̃

zAA∗∗
◦Ψ)

)
= (σ̃

zAA∗∗
◦Ψ)(a)

= σ̃
zAA∗∗

(Ψ(a))

= Ψ(a)(σ), (4.115)

which proves the claim. �



110 Chapter 4. Symmetries in algebraic quantum theory

By Theorem 4.41 the C*-algebras A and B are weakly perfect, i.e.,

{a ∈ zAA∗∗ | a, a∗a and aa∗ uniformly continuous on P (A) ∪ {0}} = zAA

{b ∈ zBB∗∗ | b, b∗b and bb∗ uniformly continuous on P (B) ∪ {0}} = zBB. (4.116)

Let a ∈ zAA. Because ψ is uniformly continuous, the maps

a ◦ ψ : P (B) ∪ {0} → C
a∗a ◦ ψ : P (B) ∪ {0} → C
aa∗ ◦ ψ : P (B) ∪ {0} → C (4.117)

are uniformly continuous, so a ◦ψ ∈ zBB. Using the claim, we see that Ψ(a) ∈ zAA,
hence

Ψ(zAA) ⊆ zBB. (4.118)

Similarly, because ψ−1 is uniformly continuous, we have

Ψ−1(zBB) ⊆ Ψ(zAA). (4.119)

We conclude that Ψ is a *-isomorphism that maps zAA onto zBB and induces ψ in
the sense of Remark 4.39. Let

ϕA : A→ zAA;

ϕB : B → zBB (4.120)

be the *-isomorphisms from Corollary 4.34. Then

Φ ≡ ϕ−1
B ◦Ψ ◦ ϕA : A→ B (4.121)

is a *-isomorphism from A onto B that induces ψ.

4.6 Wigner symmetries that preserve q-closed sets

Instead of requiring a Wigner symmetry to be uniformly continuous and has uni-
formly continuous inverse, we can equivalently require that it preserves q-closed
sets . This result was stated as a corollary of Proposition 4.38 by Shultz (1982),
citing results by Akemann (1969) and Giles, Kummer, and Sneddon (1971), but he
did not give a proof.

Definition 4.43. Let A be a unital C*-algebra. A set X ⊆ P (A) is said to be q-
closed if X consists of all pure states of some w∗-closed face of S(A). We denote
the set of q-closed sets by Q(A).
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Remark 4.44. Let X ∈ Q(A). By Theorem 1.8, the w∗-closed face F of S(A) such
that X = F ∩ S(A) is uniquely determined by X. Hence by Theorem 3.38 there is
a bijective correspondence between closed projections of A∗∗ and q-closed sets of A.

Corollary 4.45. Let A and B be unital C*-algebras and ψ : P (B)→ P (A) a bijec-
tion. Then ψ is induced by a *-isomorphism of A onto B if and only if ψ preserves
transition probabilities and orientation, and ψ and ψ−1 preserve q-closed sets.

One direction of the proof (assuming that ψ is induced by a *-isomorphism) is almost
trivial, as we will see at the end of this section. The other direction however, requires
some work. Shultz here invokes Theorem 5.13 of Giles, Kummer, and Sneddon
(1971), but we will take a different route to avoid a lot of new notation. We will
prove Corollary 4.45, by proving that if ψ is induced by Ψ: zAA

∗∗ → zBB
∗∗ and

ψ−1 preserve q-closed sets, then Ψ∗ and (Ψ∗)−1 preserve q-continuous elements of
A∗∗. Then, using a result from Akemann, Pedersen, and Tomiyama (1973), we can
conclude that Ψ bijectively maps zAA onto zBB, which proves the corollary.

Definition 4.46. Let A be a C*-algebra. We say that an element a ∈ A∗∗sa is q-
continuous if each open set in its spectrum corresponds to an open spectral projec-
tion. We denote the set of q-continuous elements by Cq(A).

It was proven by Akemann (1970) that for unital C*-algebras, the q-continuous
elements of A∗∗ are self-adjoint elements of A. We also want to know if the reverse
is true, i.e., if all self-adjoints elements of A are q-continuous. This was done by
Akemann, Pedersen, and Tomiyama (1973), but in an even more general case. To
state the theorem, we need the multiplier algebra .

Definition 4.47. Let A be a C*-algebra. The multiplier algebra of A is given by

M(A) = {a ∈ A∗∗ | aA ⊆ A and Aa ⊆ A}. (4.122)

Lemma 4.48. Let A be a C*-algebra, which we embed in A∗∗ using the canonical
embedding. Then the self-adjoint part of M(A) is equal to the set of q-continuous
elements of A∗∗.

Proof. See Akemann, Pedersen, and Tomiyama (1973), Theorem 2.2.

Note that for a unital C*-algebra A, its multiplier algebra is just equal to A. In that
case, Lemma 4.48 implies that

{a ∈ A∗∗ | a is q-continuous} = Asa. (4.123)
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We now have to relate q-continuous elements of A∗∗ to elements of zAA
∗∗. The

following lemma does just that, by proving that every closed projection is uniquely
determined by its atomic part. Denote the set of closed projections of a C*-algebra
A by Pc(A) and denote the set of open projections by Po(A).

Lemma 4.49. Let A be a unital C*-algebra and let z be the central projection such
that zA∗∗ is the atomic part of A∗∗. If p, q ∈ A∗∗ are either open or closed projections
and zp ≥ zq, then p ≥ q.

Proof. See Akemann (1969), Theorem II.17.

It is clear that the converse also holds, i.e., if p and q are open or closed projections
and p ≥ q, then zp ≥ zq. Hence the open and closed projections are uniquely
determined by their atomic parts, i.e., for p, q ∈ Pc/o(A) we have zAp = zAq if and
only if p = q. Now define

Pc(zA) = ((zA)+)m = (zA+)m; (4.124)

Po(zA) = ((zA)+)m = (zA+)m. (4.125)

We call elements of Po(zA) q-open projections and elements of Pc(zB) q-closed
projections . Note that by the previous discussion,

Pc(zA) = zPc(A); (4.126)

Po(zA) = zPo(A). (4.127)

Also, define Cq(zA) to be the elements a ∈ (zA∗∗)sa = z(A∗∗sa ) such that each open
set in its spectrum corresponds to a q-open spectral projection. By the previous
discussions we have Cq(zA) = zCq(A).

Corollary 4.50. Let A and B be unital C*-algebras, and let zAA
∗∗, respectively

zBB
∗∗ be the atomic parts of A and B, respectively. Let Ψ: zAA

∗∗ → zBB
∗∗ be a

*-isomorphism. Then Ψ bijectively maps Pc(zAA) onto Pc(zBB).

Proof. We prove that

Ψ(Pc(zAA)) ⊆ Ψ(zBPc(zBB)). (4.128)

The proof that
Ψ−1(Pc(zBB)) ⊆ Ψ(Pc(zAA)) (4.129)

is analogous.
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By Lemma 4.49 there is a bijective correspondence between closed projections of
A∗∗ and their atomic parts. According to Theorem 3.38 and Remark 4.44 we also
have a bijective correspondence between closed projections and q-closed sets. This
gives us a bijective correspondence between Pc(zAA) and Q(A). So let p ∈ Pc(A)
and let Xp be the unique corresponding q-closed set, i.e.,

Xp = {σ ∈ Pn(zAA
∗∗) | σ(p) = 1}. (4.130)

We want to show that Ψ(p) ∈ Pc(B). Note that

XΨ(p) = {ρ ∈ Pn(zBB
∗∗) | ρ(Ψ(p)) = 1}

= {σ ◦Ψ−1 | σ ∈ Pn(zAA
∗∗) and σ(p) = 1}

= {σ ◦Ψ−1 | σ ∈ Xp}
= (Ψ−1)∗(Xp) = (Ψ∗)−1(Xp). (4.131)

Claim: Ψ∗ and (Ψ∗)−1 preserve q-closed sets.

Proof: Let X ⊆ P (A) be q-closed, i.e., X consists of all pure states of a w∗-closed
face of S(A), say F . Because Ψ∗ is an affine homeomorphism (Theorem 4.1), Ψ∗(F )
is a w∗-closed face of S(A). This shows that Ψ∗(X) consists of all pure states of a
w∗-closed face of S(A), namely Ψ∗(F ). Analogously, (Ψ∗)−1 preserves q-closed sets
because

(Ψ∗)−1 : S(A)→ S(B) (4.132)

is an affine homeomorphism. �

The claim shows that XΨ(p) = (Ψ∗)−1(Xp) ∈ Q(B), and hence by the remark follow-
ing Theorem 3.38, Ψ(p) ∈ Pc(zBB).

So if ψ is induced by a *-isomorphism Ψ: zAA
∗∗ → zBB

∗∗, then Ψ and Ψ−1 map
q-closed projections onto q-closed projections. We now want to prove that Ψ maps
q-continuous elements of A onto q-continuous elements of B.

Corollary 4.51. Let A and B be unital C*-algebras and let zAA
∗∗, respectively zBB

∗∗

be their atomic parts. Let Ψ: zAA
∗∗ → zBB

∗∗ be a *-isomorphism. Then Ψ bijectively
maps Cq(zAA) onto Cq(zBB).

Proof. We prove that
Ψ(zACq(A)) ⊆ Ψ(zBCq(B)). (4.133)

The proof that
Ψ−1(zBCq(B)) ⊆ Ψ(zACq(A)) (4.134)
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is analogous.
Let a ∈ Cq(zAA) and let b = Ψ(a). We want to show that b ∈ Cq(zBB). So let

Ea be the spectral measure of a, Eb be the spectral measure of b, and let I ⊂ R be
an open interval. Then, using the fact that Ψ is a *-isomorphism, we find

bI ≡
∫
I

λdEb(λ) =

∫
I

λd(Ψ ◦ Ea)(λ)

= Ψ
(∫

I

λdEa(λ)
)
≡ Ψ(aI). (4.135)

Because a ∈ Cq(zAA), we have aI ∈ Po(zAA). Corollary 4.50 proved that Ψ preserves
q-closed projections and hence also q-open projections. This shows that bI = Ψ(aI) ∈
Po(zBB), from which we conclude that b ∈ Cq(zBB).

Proving Corollary 4.45 is now only a matter of assembling the parts.

Proof of Corollary 4.45. First suppose that ψ is induced by a *-isomorphism Ψ: A→
B. Then by Proposition 4.1 and Theorem 4.21,

Ψ∗ : S(B)→ S(A) (4.136)

is an affine homeomorphism that preserves orientation, so ψ preserves orientation.
It follows from a proof similar to that of Proposition 4.38, that ψ also preserves
transition probabilities. So it only remains to be shown that ψ and ψ−1 preserve
q-closed sets. This proof is practically the same as the proof of Corollary 4.50.

Now suppose that ψ preserves transition probabilities and orientation, and ψ
and ψ−1 preserve q-closed sets. Let zAA

∗∗ be the atomic part of A∗∗ and zBB
∗∗ be

the atomic part of B∗∗. From Proposition 4.38 it follows that ψ is induced by a
*-isomorphism

Ψ: zAA
∗∗ → zBB

∗∗. (4.137)

Just as in the proof of 4.42, it remains to be shown that Ψ maps zAA onto zBB.
Fortunately, this follows directly from Lemma 4.48 and Corollary 4.51.

4.7 Equivalence between Wigner symmetries and

Jordan symmetries

If a C*-algebra A is not a factor, then not all Jordan symmetries are given by *-
isomorphisms, or *-anti-isomorphisms. Hence the condition that a Wigner symmetry
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is orientation-preserving or reversing is too restrictive to find an equivalence between
all Wigner symmetries and all Jordan symmetries. In this section we slightly alter
the proof of Proposition 4.38 and Theorem 4.42 to find the correct equivalence.

Lemma 4.52. Let A and B be C*-algebras. A bijective map ψ : P (B) → P (A) is
induced by a Jordan symmetry of the atomic part of A∗∗ onto the atomic part of B∗∗

if and only if ψ preserves transition probabilities.

Proof. First suppose that ψ is induced by a Jordan symmetry Ψ from the atomic
part of A∗∗ onto the atomic part of B∗∗, in the sense of Remark 4.39. We need to
show that ψ preserves transition probabilities.

Claim: Let σ ∈ Pn(zBB
∗∗). Then Ψ−1 : zBB

∗∗ → zAA
∗∗ maps the carrier projection

of σ onto the carrier projection of ψ(σ) = Ψ∗(σ).

Proof: Let pσ be the carrier projection of σ and pψ(σ) the carrier projection of ψ(σ).
Because Ψ is Jordan symmetry, Ψ−1(pσ) is a projection. Then

ψ(σ)(Ψ−1(pσ)) = σ
(
(Ψ ◦Ψ−1)pσ

)
= σ(pσ) = 1, (4.138)

which shows that pψ(σ) ≤ Ψ−1(pσ). On the other hand, Ψ(pψ(σ)) is a projection and,

σ(Ψ(pψ(σ))) =
(
σ ◦Ψ ◦Ψ−1

)(
Ψ(pψ(σ))

)
= (Ψ∗ ◦σ)(pψ(σ)) = ψ(σ)(pψ(σ)) = 1, (4.139)

which shows that pσ ≤ Ψ(pψ(σ)) and hence Ψ−1(pσ) ≤ Ψ−1
(
Ψ(pψ(σ))

)
= pψ(σ). We

conclude that pψ(σ) = Ψ−1(pσ). �

Let σ, ρ ∈ Pn(zBB
∗∗). Then by Theorem 3.79 and the above claim we have

τ(ψ(σ), ψ(ρ)) = ψ(σ)(pψ(ρ)) = (σ ◦Ψ)(Ψ−1(pρ)) = σ(pρ) = τ(σ, ρ), (4.140)

i.e., ψ preserves transition probabilities.
Conversely suppose that ψ : P (B) → P (A) preserves transition probabilities.

Corollary 4.28 implies that it preserves equivalence of pure states. Using Corollary
3.32, identify the state space of A (respectively B), with the normal state space of
A∗∗ (respectively B∗∗). Hence ψ is a bijection from {ρ ∈ Pn(B∗∗) | ρ ∼ σ} onto
{ρ ∈ Pn(A∗∗) | ρ ∼ ψ(σ)}. By Lemma 4.35 and equation (4.73) the atomic part of
B∗∗ is the direct sum of type I factors c([σ])B∗∗ ∼= B(Hσ), where [σ] denotes the
equivalence class of σ ∈ P (B). Using the Corollary 4.33, identify the states in the
equivalence class of σ ∈ P (A) with the pure normal states of c([σ]A∗∗). Because ψ
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preserves the equivalence pure states, ψ bijectively maps the pure normal states of
c([σ])B∗∗ ∼= B(Hσ) onto those of c([ψ(σ)])A∗∗ ∼= B(Hψ(σ)). So we have a bijection

W : Pn(B(Hσ))→ Pn(B(Hψ(σ))), (4.141)

which preserves transition probabilities. Then by Theorem 4.37 this bijection extends
to a unique affine isomorphism

K : Sn(B(Hσ))→ Sn(B(Hψ(σ))). (4.142)

Furthermore, K is induced by a unique Jordan symmetry

J : B(Hψ(σ))→ B(Hσ), (4.143)

which is either a *-isomorphism or a *-anti-isomorphism by Proposition 2.26. Let

Ψ[σ] : c([ψ(σ)])A∗∗ → c([σ])B∗∗ (4.144)

be the corresponding Jordan symmetry between c([ψ(σ)])A∗∗ and c([σ])B∗∗. Then
Ψ[σ] is the unique Jordan symmetry that induces

ψ : Pn(c[ψ(σ)])A∗∗)→ Pn(c([σ])B∗∗). (4.145)

Note that because ψ preserves the equivalence of pure states we have⊕
[σ]∈P (B)/∼

c([ψ(σ)])A∗∗ =
⊕

[σ]∈P (A)/∼

c([σ])A∗∗. (4.146)

Let Ψ be the direct sum of all Jordan symmetries Ψ[σ], i.e.,

Ψ =
⊕

[σ]∈P (B)/∼

Ψ[σ]. (4.147)

By equation (4.73) this is a Jordan symmetry that maps the atomic part of A∗∗ onto
the atomic part of B∗∗, and induces ψ.

Note that the the proof is almost exactly the same as the proof of Proposition 4.38.
The only difference is that because we do not assume that ψ preserves or reverses
orientation, we cannot make a consistent choice of either only *-isomorphisms or only
*-anti-isomorphisms that induce ψ on the summands of the atomic part. In general
the map Ψ that induces ψ will be a mix of *-isomorphisms and *-anti-isomorphisms.
We now come to the main result of this thesis.
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Theorem 4.53. Let A and B be C*-algebras. Then Ψ 7→ Ψ∗ is a bijective corre-
spondence between Jordan symmetries Ψ from A onto B, and Wigner symmetries
from P (B) ∪ {0} onto P (A) ∪ {0}.

Proof. Let Ψ: A→ B be a Jordan symmetry. By Proposition 4.4

Ψ∗ : S(B) ∪ {0} → S(A) ∪ {0} (4.148)

is a Kadison symmetry, which implies that it preserves the extreme boundary, i.e., Ψ∗

maps P (B)∪{0} onto P (A)∪{0}. The proof that ψ = Ψ∗ : P (B)∪{0} → P (A)∪{0}
preserves transition probabilities is the same as in Lemma 4.52. So we only need to
show that ψ and ψ−1 are uniformly continuous. This proof is analogous to that of
Theorem 4.42, and hence will be omitted.

Now suppose that ψ : P (B) ∪ {0} → P (A) ∪ {0} is a Wigner symmetry, i.e.,
a bijection with ψ(0) = 0 that is uniformly continuous, has uniformly continuous
inverse, and preserves transition probabilities. Let zA be the central projection such
that zAA

∗∗ is the atomic part of A∗∗, and let zB be the central projection such that
zBB

∗∗ is the atomic part of B∗∗. By Lemma 4.52, ψ is induced by a Jordan symmetry
Ψ: zAA

∗∗ → zBB
∗∗. It remains to be shown that Ψ maps zAA onto zBB.

Claim: Let Ψ: zAA
∗∗ → zBB

∗∗ be the Wigner symmetry that induces

ψ : P (A) ∪ {0} → P (B) ∪ {0}. (4.149)

Then
Ψ(a)(σ) = (a ◦ ψ)(σ), (4.150)

for all a ∈ zAA∗∗ and σ ∈ P (A) ∪ {0}.

Proof: See the proof of Theorem 4.42. �

By Theorem 4.41, the C*-algebras A and B are weakly perfect, i.e.,

{a ∈ zAA∗∗ | a, a∗a and aa∗ uniformly continuous on P (A) ∪ {0}} = zAA

{b ∈ zBB∗∗ | b, b∗b and bb∗ uniformly continuous on P (B) ∪ {0}} = zBB. (4.151)

Let a ∈ zAA. Because ψ is uniformly continuous, the maps

a ◦ ψ : P (B) ∪ {0} → C
a∗a ◦ ψ : P (B) ∪ {0} → C
aa∗ ◦ ψ : P (B) ∪ {0} → C (4.152)
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are uniformly continuous, so a ◦ψ ∈ zBB. Using the claim, we see that Ψ(a) ∈ zAA,
hence

Ψ(zAA) ⊆ zBB. (4.153)

Similarly, because ψ−1 is uniformly continuous, we have

Ψ−1(zBB) ⊆ Ψ(zAA). (4.154)

We conclude that Ψ is a Wigner symmetry that maps zAA onto zBB and induces ψ
in the sense of Remark 4.39. Let

ϕA : A→ zAA, and

ϕB : B → zBB (4.155)

be the *-isomorphisms from Corollary 4.34. Then

Φ ≡ ϕ−1
B ◦Ψ ◦ ϕA : A→ B (4.156)

is a Wigner symmetry from A onto B that induces ψ.



Appendix A

Functional analysis and operator
algebras

Throughout the main text we use many results concerning functional analysis and
operator algebras. In an effort to make this thesis almost self-contained, this chapter
offers an overview of the relevant results. Although most results are highly non-
trivial, we state them without proof because they are too general to be included in
this thesis. The proofs can be found in standard text books. For functional analysis
we recommend Rudin (1973) and MacCluer (2009). For operator algebras we recom-
mend Dixmier (1977), Pedersen (1979), Kadison and Ringrose (1983), Kadison and
Ringrose (1986), Blackadar (2006) and Murphy (1990). The appendix of Landsman
(2017) can also be used as a complete introduction into functional analysis as well
as operator algebras.

A.1 Hilbert spaces

We define a vector space to be a complex vector space.

Definition A.1. Let V be a vector space and take x, y ∈ V .

(a) A sesquilinear form on V is a map V ×V → C, written (x, y) 7→ 〈x, y〉 that
is conjugate-linear in the first coordinate and linear in the second.

(b) A hermitian form on V is a sesquilinear form that satisfies 〈y, x〉 = 〈x, y〉.

(c) A pre-inner product on V is a positive hermitian form, i.e., 〈x, x〉 ≥ 0.

119



120 Appendix A. Functional analysis and operator algebras

(d) An inner product on V is a pre-inner product that is positive definite, i.e.,
〈x, x〉 = 0 if and only if x = 0. A vector space V together with an inner product
on V is called an inner product space.

Theorem A.2 (Cauchy-Schwarz). Let V be a vector space and 〈 , 〉 a (pre-)inner
product on V . Then ∣∣〈x, y〉∣∣ ≤√〈x, x〉√〈y, y〉 ∀x, y ∈ V. (A.1)

Definition A.3. Let V be a vector space. A norm on V is a function‖·‖ : V → R+

that for all x, y ∈ V and λ ∈ C satisfies:

(a) ‖x+ y‖ ≤‖x‖+‖y‖;

(b) ‖λx‖ = |λ|‖x‖;

(c) ‖x‖ = 0 if and only if x = 0.

One can easily check that an inner product induces a norm by setting, for all x, y ∈ V ,

‖x‖ =
√
〈x, y〉. (A.2)

Definition A.4. Let V be a set. A metric on V is a function d : V ×V → R+ that
for all x, y, z ∈ V satisfies:

(a) d(x, z) ≤ d(x, y) + d(y, z);

(b) d(x, y) = d(y, x);

(c) d(x, y) = 0 if and only if x = y.

One can easily check that a norm induces a metric by setting, for all x, y ∈ V ,

d(x, y) =‖x− y‖ . (A.3)

Hence, combining (A.2) and (A.3), an inner product also induces a metric by setting

d(x, y) =
√
〈x− y, x− y〉, ∀x, y ∈ V. (A.4)
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Definition A.5. A seminorm on a vector space V is a function p : V → R such
that for all x, y ∈ V and λ ∈ V

(a) p(x+ y) ≤ p(x) + p(y), and

(b) p(λx) = |λ| p(x).

Remark A.6. A seminorm is a weaker notion than a norm. A seminorm is a norm if
it sasitfies p(x) = 0 if and only if x = 0.

Because a seminorm is in general not a norm it does not generate a metric and hence
a topology on the vector space. However, an appropriate family of seminorms can
generate a topology, as the following theorem shows.

Theorem A.7. Let V be a vector space and Γ a family of seminorms on V that
separates the points of V , i.e., if x ∈ V and x 6= 0 then there is an element p ∈ Γ
such that p(x) 6= 0. Then there is a locally convex topology on V in which, for each
x0 ∈ V , the family of all sets

V (x0; p1, . . . , pm; ε) = {x ∈ V | pj(x− x0) < ε ∀j = 1, . . .m}, (A.5)

where ε > 0 and p1, . . . , pm ∈ Γ, is a base of neighbourhoods of x0. With this topology,
each of the seminorms in Γ is continuous.

A net (xλ)λ∈Λ converges with regard to the topology stated in Theorem A.7 if and
only if limλ∈Λ p(xλ − x) = 0 for all p ∈ Γ.

Definition A.8. A Banach space is a normed vector space, that is complete in
the associated metric given by (A.3).

A Hilbert space is an inner product space, that is complete in the associated
metric given by (A.4).

The difference between an inner product space and a Hilbert space is that an inner
product space is not necessarily complete. However, we can complete the vector
space and extend the inner product to turn an inner product space into a Hilbert
space. Hence, an inner product space is also called a pre-Hilbert space .

Proposition A.9. Let H be an inner product space and let Ĥ be the completion of
H with respect to the metric given by equation (A.4). Then there is a unique inner

product on Ĥ extending the inner product of H. We call Ĥ endowed with this inner
product the Hilbert space completion of H.
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Definition A.10. Let V be a vector space with sesquilinear form. Two elements
x, y ∈ V are said to be orthogonal, denoted x ⊥ y, if 〈x, y〉 = 0. Two subsets
E,F ⊂ V are said to be orthogonal, denoted E ⊥ F , if for every x ∈ E and y ∈ F ,
〈x, y〉 = 0. We denote by E⊥ the set of all x ∈ V such that x ⊥ y for all y ∈ E. This
set is called the orthogonal complement of E. Similarly, we denote the double
orthocomplement by E⊥⊥ = (E⊥)⊥, etc.

Definition A.11. An orthonormal set in a Hilbert space H is a set V ⊆ H that
satisfies

(a) 〈v, v〉 = 1 for all v ∈ v,

(b) 〈v, w〉 = 0 for all distinct vectors v, w ∈ V .

Lemma A.12. Let {vi}i∈I be an orthonormal set in H. We have Bessel’s Inequality∑
i∈I

∣∣〈vi, x〉∣∣2 ≤‖x‖2 (x ∈ H). (A.6)

Theorem A.13. Let B = {vi}i∈I be an orthonormal subset of a Hilbert space H.
The following conditions are equivalent (and each defines B to be an orthonormal
basis of H):

(i) Any x ∈ H can be written as x =
∑

i∈I civi.

(ii) For each x ∈ H, one has Parseval’s inequality∑
i∈I

∣∣〈vi, x〉∣∣2 =‖x‖2 . (A.7)

(iii) For any x, y ∈ H one has

〈x, y〉 =
∑
i∈I

〈x, vi〉〈vi, y〉. (A.8)

(iv) B is maximal, i.e., B is not properly contained in any other orthonormal set.

(v) B⊥ = {0}.

(vi) B⊥⊥ = H.

(vii) The closure of the linear span of B is H.
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Theorem A.14. Let H be a Hilbert space and Y ⊂ H a closed subspace of of H,
then

H = Y ⊕ Y ⊥,
i.e., Y and Y ⊥ are closed subspaces of H whose intersection is {0} and whose sum
is H.

Corollary A.15. Let H be a Hilbert space and Y ⊆ H a subspace.

(i) If Y is a closed subspace of a Hilbert space H, then Y ⊥⊥ = Y .

(ii) Y ⊥⊥ = Y .

The above theorem shows that we can decompose a Hilbert space into two orthogonal
closed subspaces, each of which we can interpret as a Hilbert space in its own right.
Conversely, given two (or more) Hilbert spaces, we can form a new Hilbert space by
taking the direct sum.

Theorem A.16. Let H1, . . . , Hn be Hilbert spaces with respective inner products 〈 , 〉i
(i = 1, . . . , n). Let H be the set of all n-tuples (x1, . . . , xn) with xi ∈ Hi (i = 1, . . . , n).
Then there is a Hilbert space structure on H in which the algebraic operations and
inner product are defined by

λ(x1, . . . , xn) + µ(y1, . . . , yn) = (λx1 + µy1, . . . , λxn + µyn); (A.9)

〈(x1, . . . , xn), (y1, . . . , yn)〉 = 〈x1, y1〉1 + · · ·+ 〈xn, yn〉n. (A.10)

The resulting Hilbert space H is called the direct sum of H1, . . . , Hn, and is denoted
by H1 ⊕ · · · ⊕Hn or ⊕ni=1Hi.

The above theorem applies to finite sums of Hilbert spaces. We can generalise this
notion to sums of Hilbert spaces over arbitrary index sets.

Theorem A.17. Given Hilbert spaces Hi (i ∈ I), let L be the set of all families {xi}
such that xi ∈ Hi and

∑
i∈I‖xi‖

2 <∞. Then there is a Hilbert space structure on H
in which the algebraic operations and inner product are defined by

λ{xi}+ µ{yi} = {λxi + µyi}; (A.11)

〈{xi}, {yi}〉 =
∑
i∈I

〈xi, yi〉i, (A.12)

where the sum over i on the right-hand side is defined as the supremum (in R) of the
set of all sums

∑
i∈F 〈xi, yi〉i over finite subsets F ⊂ I of the index set I in which i

takes values. The resulting Hilbert space H is called the direct sum of Hi (i ∈ I),
and is denoted by ⊕i∈IHi.
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A.2 Bounded operators

Definition A.18. Let V and W be normed vector spaces. A linear map a : V → W
is called a bounded linear operator from V to W if there is a finite constant
C > 0 such that ‖ax‖W ≤ C‖x‖V for all x ∈ V .

We denote the set of all bounded linear operators from V to W by B(V,W ). When
V = W we write B(V ) instead of B(V, V ).

Proposition A.19. If a : V → W is a linear map from a normed vector space V to
a normed vector space W , the following are equivalent:

(i) a is bounded;

(ii) a is continuous;

(iii) a is continuous at 0.

Note that B(V,W ) is more than just a set. First, we can define scalar multiplication
and addition pointwise by

(λa)(x) = λax (A.13)

(a+ b)(x) = ax+ bx, (A.14)

which turns B(V,W ) into a vector space. In the special case that V = W we can
define multiplication by composition, i.e., (ab)(x) = a(b(x)), for all a, b ∈ B(V ) and
x ∈ V . This gives B(V ) the structure of an algebra with unit 1V : V → V ;x 7→ x.
We can impose even more structure, like a norm.

Definition A.20. Let V and W be normed vector spaces and let a ∈ B(V,W ). We
define the operator norm on B(V,W ) by

‖a‖ = sup{ax |‖x‖V ≤ 1}. (A.15)

In the case that V = W , the operator norm is submultiplicative , i.e., for all
a, b ∈ B(V )

‖ab‖ ≤‖a‖‖b‖ . (A.16)

Proposition A.21. Let V and W be normed vector spaces. Then B(V,W ) is a
normed vector space in the operator norm, where the vector operations are defined
pointwise. If, in addition, W is a Banach space, then B(V,W ) is a Banach space.



A.2. Bounded operators 125

Theorem A.22. Given Hilbert spaces H1 and H2 and a ∈ B(H1, H2), there is a
unique a∗ ∈ B(H2, H1) so that

〈ax, y〉H2 = 〈x, a∗y〉H1 , (A.17)

for all x ∈ H1 and y ∈ H2.

The operator a∗ in the previous theorem is called the adjoint of a. It has some nice
properties, which we describe in the following proposition.

Proposition A.23. For a, b ∈ B(H), we have

(i) a∗∗ = a, where a∗∗ = (a∗)∗;

(ii) (a+ b)∗ = a∗ + b∗;

(iii) (λa)∗ = λa∗ for λ ∈ C;

(iv) (ab)∗ = b∗a∗.

The previous proposition can be easily proven by applying the definition of the
adjoint. The following proposition is of great great importance, and will be one of
the defining characteristics of C*-algebras, which we define in Section A.7.

Proposition A.24. If a ∈ B(H), then ‖a∗‖ =‖a‖ and ‖a∗a‖ =‖a‖2.

Theorem A.25. If a ∈ B(H), then

ker a∗ = (Ran a)⊥; (A.18)

ker a = (Ran a∗)⊥. (A.19)

The following two definitions describe special kinds of operators.

Definition A.26. Let H1 and H2 be Hilbert spaces and u ∈ B(H1, H2). We call u
a unitary operator or a unitary if it satisfies one and hence all of the following
equivalent conditions

(a) u∗u = 1H1 and uu∗ = 1H2;

(b) u is surjective and 〈ux, uy〉H2 = 〈x, y〉 for all x, y ∈ H1.

A related notion is that of the anti-unitary operator .

Definition A.27. Let H1 and H2 be Hilbert spaces.
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(a) A real-linear operator u : H1 → H2 is anti-linear if

u(λx) = λu(x) (λ ∈ C). (A.20)

(b) An anti-linear operator u : H1 → H2 is anti-unitary if it is surjective, and

〈ux, uy〉H2 = 〈x, y〉H1
(x, y ∈ H1). (A.21)

The adjoint u∗ : H2 → H1 of a bounded anti-linear operator u is defined by the
property

〈u∗x, y〉H1 = 〈x, uy〉H2
(x ∈ H2, y ∈ H1), (A.22)

in which case u∗ : H2 → H1 is anti-linear too. Hence we may equally say that an
anti-linear operator is anti-unitary if u∗u = 1H1 and uu∗ = 1H2.

Definition A.28. An operator a ∈ B(H) is called

(a) self-adjoint or hermitian if a∗ = a;

(b) normal if aa∗ = a∗a;

(c) a projection if a = a∗ = a2.

Given a closed subspace Y of a Hilbert space H, Theorem A.14 states that each
vector x ∈ H can be uniquely decomposed as x = y + z with y ∈ Y and z ∈ Y ⊥.
Hence we can define a linear operator pY ∈ B(H) by

pY (y + z) = y, (A.23)

where y ∈ Y and z ∈ Y ⊥. It is easy to see that pY is a projection and we call it the
(orthogonal) projection from H to Y . Conversely, given a projection p ∈ B(H)
we can define

M = {px ∈ H | x ∈ H} = {x ∈ H | px = x}, (A.24)

which is a closed subspace of H. It is easy to see that pY = p. This leads to the
following proposition.

Proposition A.29. The relations (A.23) and (A.24) establish a one-to-one corre-
spondence between closed subspaces Y of a Hilbert space H and projections p acting
on H.

Proposition A.30. If p and q are the projections from a Hilbert space H onto closed
subspaces Y and Z, respectively, the following conditions are equivalent:
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(i) Y ⊆ Z;

(ii) qp = p;

(iii) pq = p;

(iv) ‖px‖ ≤‖qx‖ for all x ∈ H;

(v) p ≤ q.

Another special kind of operator is a compact operator .

Definition A.31. If H is a Hilbert space, a linear map a : H → H is called compact
if the image a(H≤1) of the closed unit ball in H is compact, or, equivalently, if the
image axn of any bounded sequence in H has a convergent subsequence. We denote
the set of compact operators on H by B0(H).

Although we do not require that the linear map a is bounded, it follows immediately
from the second characterisation of compact operators. So as the notation suggests
B0(H) is a subset of B(H). In fact, it forms a C*-subalgebra in B(H), and it is a
two-sided ideal.

Definition A.32. Let V be a Banach space and let a ∈ B(V ). The spectrum of a,
denoted sp(a), is the set of complex number λ such that λ1V − a is not invertible.

Lemma A.33. Let H be a Hilbert space and let a ∈ B(H). The following conditions
are equivalent:

(i) 〈x, ax〉 ≥ 0 for all x ∈ H;

(ii) a∗ = a and sp(a) ⊆ R+;

(iii) a = c2 for some self-adjoint operator c;

(iv) a = b∗b for some operator b.

Definition A.34. An operator a ∈ B(H) satisfying one, and hence all, of the con-
ditions in the previous lemma is called positive and we write a ≥ 0 or 0 ≤ a. We
denote the set of positive operators by B(H)+.

It is clear that a positive operator is in particular self-adjoint. For operators a, b ∈
B(H)sa we write a ≤ b if and only if 0 ≤ b− a.Then “≤” defines a partial ordening
on the set of self-adjoint operators.
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A.3 Symbolic calculus for normal operators

Definition A.35. Let X be a set. A collection Σ of subsets of X is a σ-algebra on
X if

(a) X ∈ Σ;

(b) for each set A that belongs to Σ, the set Ac ≡ X \ A belongs to Σ;

(c) for each infinite sequence {Ai} of sets that belong to Σ, the set
⋃∞
i=1 Ai belongs

to Σ, and;

(d) for each infinite sequence {Ai} of sets that belong to Σ, the set
⋂∞
i=1 Ai belongs

to Σ.

The smallest σ-algebra on X is the indiscrete σ topology given by {∅, X} and the
largest on is the discrete σ-topology P(X), where P(X) is the power set of X.
Every topological space X with open subsets O(X) gives rise to a σ-algebra called
the Borel σ-algebra. This is the smallest σ-algebra of X that contains O(X). We
denote it by B(X). Elements of B(X) are called Borel sets.

Definition A.36. Let X be a set and Σ a σ-algebra on X. A measure is a map

µ : Σ→ [0,+∞] (A.25)

that satisfies µ(∅) = 0 and that is countably additive, i.e.,

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai), (A.26)

for each countable sequence {Ai} of mutually disjoint sets that belong to Σ. A prob-
ability space is a measure space (X,Σ, µ) for which µ(X) = 1.

Definition A.37. A measure space is a triple (X,Σ, µ), where X is a set, Σ is a
σ-algebra on X and µ is a measure.

Definition A.38. Let Ω be a compact Hausdorff space and H a Hilbert space. A
resolution of the identity or spectral measure E relative to (Ω, H) is a map
from the σ-algebra of all Borel sets of Ω to the set of projections in B(H) such that

(a) E(∅) = 0, E(Ω) = 1;

(b) E(S1 ∩ S2) = E(S1)E(S2) for all Borel sets S1, S2 of Ω;
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(c) for all x, y ∈ H, the function

Ex,y : S 7→ 〈y, E(S)x〉, (A.27)

is a regular Borel complex measure on Ω.

Theorem A.39. Let H be a Hilbert space and a ∈ B(H) a normal operator. Then
there exists a unique resolution of the identity E on the Borel subsets of sp(a) which
satisfies

a =

∫
sp(a)

λdE(λ), (A.28)

by which we mean that for every x, y ∈ H:

〈y, ax〉 =

∫
sp(a)

fdEx,y. (A.29)

Furthermore, every projection E(ω) commutes with every b ∈ B(H) which commutes
with a. We shall refer to this E as the spectral decomposition of a.

This gives us the symbolic calculus for normal operators . Let a ∈ B(H)
be a normal operator and let f be a bounded Borel function on σ(a). It is customary
to denote the operator ∫

sp(a)

fdE (A.30)

by f(a). The mapping f 7→ f(a) is a homomorphism of the algebra of all bounded
Borel functions on sp(a) into B(H), which carries the function 1 to 1H , which carries
the identity function on sp(a) to a, and which satisfies

f(a) = f(a)∗, (A.31)∥∥f(a)
∥∥ ≤ sup{

∣∣f(λ)
∣∣ | λ ∈ sp(a)}. (A.32)

If f ∈ C(σ(a)), then equality holds in A.32, and therefore f 7→ f(a) is an isomor-
phism on C(sp(a)) which satisfies

∥∥f(a)x
∥∥2

=

∫
sp(a)

|f |2 dEx,x. (A.33)

If fn converges uniformly to f , then
∥∥fn(a)− f(a)

∥∥→ 0, as n→∞.
If b ∈ B(H) and ab = ba, then f(a)b = bf(a) for every bounded Borel function f .
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Corollary A.40. Every positive a ∈ B(H) has a unique positive square root b ∈
B(H), i.e., a positive operator b such that b2 = a.

We denote the square root of a positive operator a by
√
a. We define the absolute

value of an operator a as the square root of a∗a and denote it by |a|.

Corollary A.41. Any self-adjoint operator a ∈ B(H)sa has a decomposition

a = a+ − a−, (A.34)

where a± ≥ 0. These are unique if they also satisfy a+a− = a−a+ = 0. Furthermore,
a± satisfy

|a| = a+ + a−. (A.35)

A.4 The trace

For a complex n× n matrix A ∈Mn(C) = B(Cn) the trace is defined as the sum of
its diagonal elements, i.e.,

Tr(A) =
n∑
i=1

Aii. (A.36)

Let {e1, . . . , en} be the standard basis of Cn, then

Tr(A) =
n∑
i=1

〈ei, Aei〉, (A.37)

and it is easy to see that this equality in fact holds for every orthonormal basis
{v1, . . . , vn} of Cn. We want to generalise the notion of trace to operators on (possibly
infinite dimensional) Hilbert spaces. Let {vi} be an orthonormal basis for a Hilbert
space H. We can naively define the trace of an operator a ∈ B(H) to be

Tr(a) =
∑
i

〈vi, avi〉, (A.38)

but we run into problems if H is infinite dimensional. In that case the sum given in
the previous equation is not independent of the choice of basis. However, it is easy
to see that for all positive a ∈ B(H) we have for any two bases {vi} and {v′i} that∑

i

〈vi, avi〉 =
∑
i

〈v′i, av′i〉, (A.39)
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where both sides may be infinite (as is the case for 1H , if H is infinite dimensional).
This gives us a well-defined map

Tr: B(H)+ → [0,∞]; (A.40)

a 7→
∑
i

〈vi, avi〉, (A.41)

where {vi} is an arbitrary orthonormal basis of H. Recall that the absolute value
of an operator a ∈ B(H) is defined by |a| =

√
a∗a. We then define the set of

trace-class operators in B(H) by

B1(H) = {a ∈ B(H) | Tr(|a|) <∞}, (A.42)

and the trace norm on B1(H) by

‖a‖1 = Tr(|a|). (A.43)

Lemma A.42. (i) For any a ∈ B1(H) we have

‖a‖ ≤‖a‖1 =‖a∗‖1 . (A.44)

(ii) Any trace-class operator is compact, i.e., B1(H) ⊆ B0(H).

(iii) For b ∈ B(H) and a ∈ B1(H) one has∣∣Tr(ab)
∣∣ ≤‖a‖1‖b‖ . (A.45)

(iv) The trace-class operators B1(H) form a vector space with norm A.43.

We can now extend the trace to all trace-class operators.

Proposition A.43. The map

Tr : B1(H)→ C; (A.46)

a 7→
∑
i

〈vi, avi〉, (A.47)

where {vi} is some orthonormal basis of H, is well defined, linear, and independent
of the choice of basis. Furthermore Tr(ab) = Tr(ba) holds for all a, b ∈ B1(H).
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A.5 Topologies on the set of bounded operators

In this section H denotes a Hilbert space. We already defined a topology on B(H),
namely the topology induced by the operator norm (see Definition A.20). There are
several other topologies on B(H), which are induced by elements in H, trace-class
operators, and compact operators. Figure A.1 gives a graphical representation of
how these topologies relate to each other.

Figure A.1: This is a graphical representation of how the topologies on B(H) relate.
If an arrow goes from topology 1 to topology 2, this means that topology 1 is stronger
than topology 2.

Definition A.44. The strong topology on B(H) is the topology generated by the
family of seminorms of the form

px : B(H)→ R+; a 7→‖ax‖ , (A.48)

where x ∈ H. It follows that the strong topology is weaker than the norm topology
on B(H).

Definition A.45. The weak topology on B(H) is the topology generated by the
family of seminorms of the form

px,y : B(H)→ R+; a 7→
∣∣〈ax, y〉∣∣ , (A.49)

where x, y ∈ H. It follows that the weak topology is weaker than the norm topology
on B(H), and weaker than the strong topology on B(H).
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Definition A.46. The σ-weak topology or ultraweak topology on B(H) is the
topology on B(H) generated by the family of seminorms of the form

pb : B(H)→ R+; a 7→
∣∣Tr(ab)

∣∣ , (A.50)

where b ∈ B1(H). Equivalently, it is the topology generated by the family of semi-
norms of the form

p{xi},{yi} : B(H)→ R+; a 7→ |
∞∑
i=1

〈axi, yi〉|, (A.51)

where {xi} and {yi} are two sequences in H such that
∑∞

i=1‖xi‖
2 <∞ and

∑∞
i=1‖yi‖

2 <
∞. It follows that the σ-weak topology is weaker than the norm topology on B(H),
but stronger than the weak topology.

Definition A.47. The σ-strong topology or ultrastrong topology on B(H) is
the topology on B(H) generated by the family of seminorms of the form

pb : B(H)→ R+; a 7→‖ab‖ , (A.52)

where b ∈ B0(H). Equivalently, it is the topology generated by the family of semi-
norms of the form

p{xi},{yi} : B(H)→ R+; a 7→ (
∞∑
i=1

‖axi‖2)1/2, (A.53)

where {xi} is a sequence in H such that
∑∞

i=1‖xi‖
2 <∞. It follows that the σ-strong

topology is weaker than the norm topology on B(H), but stronger than the strong
topology and the σ-weak topology.

The following lemma summarises how these topologies relate to each other.

Lemma A.48. Let A be a weakly closed *-subalgebra of B(H). The σ-strong topology
on A is stronger than the σ-weak topology, but weaker than the norm topology. The
σ-strong topology on A is stronger than the strong topology, but these two topologies
coincide on the unit ball A1. The σ-weak toplogy on A is stronger than the weak
topology, but these two topologies also coincide on the unit ball A1.

Lemma A.49. The multiplication in a weakly closed *-subalgebra A of B(H) is
separately continuous in each variable with respect to both the σ-weak and the σ-
strong topology. The multiplication is jointly continuous in both variables on the
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unit ball A1 with respect to the σ-strong topology. The involution a 7→ a∗ on A is
continuous with respect to the σ-weak topology. The closures of a convex subset of
B(H) in the σ-weak and the σ-strong topology coincide. The unit ball A1 is compact
in the σ-weak topology.

Proposition A.50. If {aλ} is an increasing net bounded above in B(H)sa, then
{aλ} has a supremum a ∈ B(H)sa, and a is also a strong (and weak) limit of {aλ}.
Similarly for a decreasing net and its greatest lower bound.

A.6 Dual spaces

In the previous section we studied linear maps between normed vector spaces V and
W . In this section we study the special case that W = C. Since C is a Banach
space, it follows from Proposition A.21 that B(V,C) with the operator norm (A.15)
is a Banach space. We call this Banach space the dual space of V and denote it by
V ∗. The elements of V ∗ are called functionals . As in the previous section, we can
impose the operator norm on V ∗, which turns it into a Banach space by Proposition
A.21. In the main text we often use the double dual , that is V ∗∗ = (V ∗)∗, as well
as the fact that we can embed V into V ∗∗, as stated in the following theorem.

Proposition A.51. For any normed vector space V , the map x 7→ x̂ from V → V ∗∗,
given by

x̂(Λ) = Λ(x), Λ ∈ V ∗, (A.54)

is isometric (and hence injective), mapping V onto a closed subspace V̂ ⊆ V ∗∗.

Hence the map V → V ∗∗ is an isometric isomorphism onto its image V̂ . We often
use this fact to identify V with V̂ and view V as a closed subspace of V ∗∗.

There is another norm on the set of functionals on V , which is weaker than the
operator norm, we call it the weak* topology or w∗-topology. It is the weakest
topology that makes all functionals Λ ∈ V ∗ continuous. It follows from Proposition
A.19 that all functionals Λ ∈ V ∗ are continuous, hence the w∗-topology is weaker than
the operator topology. Equivalently, it is the topology of pointwise convergence
because of the following proposition:

Proposition A.52. Suppose that Λn is a sequence in V ∗. We have Λn → Λ in the
w∗-topology if and only if Λn(x)→ Λ(x) in C for all x ∈ V .

Theorem A.53 (Banach-Alaoglu). Let V be a normed vector space. Then the unit
ball of V ∗, i.e., V ∗≤1 ≡ {Λ ∈ V ∗ |‖V ‖ ≤ 1}, is compact with respect to the w∗-topology.
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Theorem A.54. For any Hilbert space H, we have dualities and double dualities

B0(H)∗ ∼= B1(H); (A.55)

B1(H)∗ ∼= B(H); (A.56)

B0(H)∗∗ ∼= B(H); (A.57)

B1(H)∗∗ ∼= B(H)∗, (A.58)

where the symbol ∼= stands for isometric isomophism. Explicitly:

• Any norm-continuous linear map ω : B0(H)→ C takes the form

ω(b) = Tr(ab), (A.59)

for some a ∈ B1(H) uniquely determined by ω, and vice versa, giving a bijective
correspondence between ω ∈ B0(H)∗ and a ∈ B1(H) satisfying

‖ω‖ =‖a‖1 . (A.60)

This equality remains valid if ω is regarded as an element of B(H)∗ via (A.58)
and the isometric embedding B1(H) ↪→ B1(H)∗∗.

• Any norm-continuous linear map ξ : B1(H)→ C takes the form

ξ(a) = Tr(ab), (A.61)

for some b ∈ B(H) uniquely determined by ξ, and vice versa, giving a bijective
correspondence between ξ ∈ B1(H)∗ and b ∈ B(H) satisfying

‖ξ‖ =‖b‖ . (A.62)

A.7 C*-algebras

We saw in section A.2 that for each normed vector space V the set B(V ) has the
structure of an algebra. Equation (A.16), Proposition A.23 and Proposition A.24
described some nice properties that the map a 7→ a∗ has. We can generalise this to
the notion of a C*-algebra. By an algebra, we always mean an associative algebra.

Definition A.55. (a) A normed algebra is an algebra with submultiplicative
norm, i.e.,

‖ab‖ ≤‖a‖‖b‖ , a, b ∈ A. (A.63)

We call a normed algebra algebra unital if it admits a unit, i.e., an element
1A ∈ A such that a1A = 1Aa = a for all a ∈ A.
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(b) A Banach algebra is a Banach space A that is simultaneously a normed
algebra.

(c) An involution on an algebra A is a conjugate-linear map a 7→ a∗ on A such
that a∗∗ = a and (ab)∗ = b∗a∗, for all a, b ∈ A. The pair (A, ∗) is called a
*-algebra.

(d) A C*-algebra is a Banach algebra A with involution in which

‖aa∗‖ =‖a‖2 , a ∈ A. (A.64)

Because a C*-algebra is in particular a normed algebra, it follows that ‖a‖ =‖a∗‖.
As in Definition A.28, we can define certain special kinds of elements.

Definition A.56. Let A be a *-algebra. An element a ∈ A is called:

(a) self-adjoint or hermitian if a∗ = a;

(b) normal if aa∗ = a∗a;

(c) a projection if a = a∗ = a2.

Furthermore, if A is unital, we call an element a ∈ A unitary if a∗a = aa∗ = 1A.

We denote the set of all self-adjoint elements by Asa. Each element a ∈ A has a
unique decomposition a = b + ic with b and c in Asa, namely b = 1

2
(a + a∗) and

c = −1
2
i(a− a∗).

Not every algebra is unital, but it is much easier to work with unital algebras
than with non-unital algebras. Therefore, we embed a non-unital algebra into an
appropriate unital algebra, which we denote by Ã.

Definition A.57. Let A be an algebra. The unitisation Ã of A is A ⊕ C as a
vector space with multiplication given by

(a, λ)(b, µ) = (ab+ λb+ µa, λµ). (A.65)

The unit in Ã is (0, 1). The map a 7→ (a, 0) gives an injective homomorphism from

A to Ã. If we identify A with its image under this homomorphism, we can view A
as an ideal of Ã. We then write a + λ for (a, λ). If A is a normed algebra we can

turn Ã into a normed algebra by setting ‖a+ λ‖ = ‖a‖ + |λ|. In that case A is a

closed subalgebra of Ã. Observe furthermore that if A is a Banach space, then Ã is
also a Banach space. If A is a C*-algebra, then Ã is also a C*-algebra by setting
(a+ λ)∗ = a∗ + λ.
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Definition A.58. Let A be a C*-algebra and a ∈ A. The spectrum of a, denoted
sp(a), is the set of complex numbers λ such that λ1Ã − a is not invertible in Ã. The
point spectrum of a, denoted spp(a) is the set of its eigenvalues, so spp(a) ⊆ sp(a).

Lemma A.59. If x ∈ Asa then sp(x) ⊂ R. If 1A ∈ A and u is unitary, sp(u) is
contained in the unit circle.

Definition A.60. An element x ∈ A is called positive if x is self-adjoint and
sp(x) ⊂ R+. We denote the set of all positive elements of A by A+.

Theorem A.61. Let A be a C*-algebra and A+ be the set of its positive elements.
Then

A+ = {a2 | a ∈ Asa} (A.66)

= {a∗a | a ∈ A}. (A.67)

Lemma A.62. Each self-adjoint element a ∈ A has a decomposition

a = a+ − a−, (A.68)

where a+, a− ∈ A+ and a+a− = 0. These conditions determine a± uniquely, and
‖a‖ = max{‖a+‖ ,‖a−‖}.

Using the positive elements in a C*-algebra, we can define something called an ap-
proximate unit . This is another way to deal with non-unital C*-algebras.

Definition A.63. Let A be a C*-algebra. An approximate unit is a increasing
net {eλ}λ∈Λ of positive elements in the closed unit ball of A such that a = limλ aeλ
for all a ∈ A. Equivalently, a = limλ eλa, for all a ∈ A.

Theorem A.64. Every C*-algebra A admits an approximate unit. Indeed, if Λ is the
upwards-directed set of all a ∈ A+ such that ‖a‖ < 1 and eλ = λ, for all λ ∈ Λ, then
{eλ}λ∈Λ is an approximate unit for A, which we call the canonical approximate
unit.

Theorem A.65. Let ω is a bounded linear functional on a C*-algebra A. The
following are equivalent.

(i) ω is positive.

(ii) For each approximate unit {eλ}λ∈Λ of A, we have ‖ω‖ = limλ ω(eλ).

(iii) There exists an approximate unit {eλ}λ∈Λ of A such that ‖ω‖ = limλ ω(eλ).
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Definition A.66. A *-homomorphism between C*-algebras A and B is a linear
map ϕ : A→ B that for all a, b ∈ A satisfies

ϕ(ab) = ϕ(a)ϕ(b); (A.69)

ϕ(a∗) = ϕ(a)∗. (A.70)

If, further, ϕ is bijective, it is called a *-isomorphism. A *-anti-homomorphism
between C*-algebras A and B is a linear map ϕ : A→ B that for all a, b ∈ A satisfies

ϕ(ab) = ϕ(b)ϕ(a); (A.71)

ϕ(a∗) = ϕ(a)∗. (A.72)

Similarly, a *-anti-isomorphism is a bijective *-anti-homomorphism.

Theorem A.67. Let ϕ : A→ B be a nonzero *-homomorphism between C*-algebras.

(i) The *-homomorphism ϕ is continuous, with norm ‖ϕ‖ = 1.

(ii) Its kernel kerϕ is an ideal in A.

(iii) If ϕ is injective, then it is isometric.

(iv) An *-isomorphism of C*-algebras is automatically isometric.

(v) The range Ranϕ is a C*-subalgebra of B; in particular, ϕ(A) is closed in B.

A.8 Von Neumann Algebras

Definition A.68. Let A be an algebra and B ⊆ A. We define its commutant B′

to be the set of all elements of A that commute with all elements of B, i.e.,

B′ = {a ∈ A | ab = ba ∀b ∈ B}. (A.73)

The double commutant B′′ of B is (B′)′. Similarly, B′′′ = (B′′)′, etc.

The following lemma states some elementary properties of the commutant.

Lemma A.69. Let A be an algebra and B ⊆ A.

(i) B′ is a subalgebra of A.

(ii) If A is a *-algebra and B is self-adjoint, then B′ is a *-subalgebra of A.
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(iii) B ⊆ B′′ and B′ = B′′′.

(iv) If A is a normed algebra, then B′ is closed.

Theorem A.70 (Von Neumann bicommutant theorem). Let M be a *-subalgebra of
B(H) containing the identity operator. Then the following conditions are equivalent.

(i) M = M ′′;

(ii) M is strongly closed;

(iii) M is weakly closed.

Definition A.71. A von Neumann algebra is a strongly closed C*-subalgebra of
B(H) containing 1H .

Remark A.72. The von Neumann bicommutant theorem proves that every von Neu-
mann algebra is also weakly closed. Combining Lemma A.69 and Theorem A.70
we see that for every *-subalgebra C of B(H) the double commutant C ′′ is a von
Neumann algebra.

The following corollary is an extension of von Neumann’s bicommutant theorem,
which shows that a von Neumann algebra is also σ-weakly and σ-strongly closed.

Corollary A.73. Let M be a *-subalgebra of B(H) containing the identity operator
and denote the closed unit ball of M by M1. The following are equivalent:

(i) M (or M1) is weakly closed;

(ii) M (or M1) is strongly closed;

(iii) M (or M1) is σ-weakly closed;

(iv) M (or M1) is σ-strongly closed;

(v) M = M ′′.

By definition of a von Neumann algebra it is a strongly closed C*-algebra containing
the unit element. So for all C*-algebras A acting on a Hilbert space H and containing
1H , the strong closure A

s
is a von Neumann algebra. But what can we say about the

strong closure of a C*-algebra that does not contain 1H? The following definition
and proposition show that for certain non-unital C*-algebras their strong closures
are von Neumann algebras.
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Definition A.74. We say that a C*-subalgebra A of B(H) acts non-degenerately
on H if for each non-zero vector x ∈ H there is an element a ∈ A with a(x) 6= 0.

Proposition A.75. Let A be a C*-subalgebra of B(H) with strong closure M . Then
M is a weakly closed C*-algebra with unit. Furthermore, if A acts non-degenerately
on H, then M = A′′.

Definition A.76. A factor is a von Neumann algebra whose center consists of only
the scalar multiples of the identity.

Remark A.77. If H is a Hilbert space, then B(H)′ = C 1H , i.e., B(H) is a factor.
For it is obvious that (C ·1H)′ = B(H), and since C ·1H is a von Neumann algebra
containing 1H , the von Neumann double commutant theorem implies that C ·1H =
(C ·1H)′′, so B(H)′ = C ·1H .

Definition A.78. If a is a self-adjoint element in a von Neumann algebra M , then
the least projection p ∈M such that pa = a is called the range projection of a and
is denoted by r(a).

Theorem A.79. If M is a von Neumann algebra, then it contains the range projec-
tion of all of its elements.

Proposition A.80. If M is a von Neumann algebra and a, b ∈M with aMb = {0},
then there is a projection z in the center Z(M) such that x ∈ zM and y ∈ (1− z)M .

Corollary A.81. Let M be a factor, and let a, b be a pair of elements in M . Assume
that aMb = 0. Then it follows that a = 0 or b = 0.

A.9 Representations

We view von Neumann algebras a weakly-closed *-subalgebras of B(H) containing
the unit 1H , so all von Neumann algebras are concretely represented. However, we
do not view C*-algebras as norm-closed *-subalgebras of B(H) for a certain Hilbert
space H. We use representations to map C*-algebras onto B(H), which makes
studying them a lot easier.

In this section we use the terminology “state” and “pure state”. These concepts
are defined in Chapter 3. In short, a state is a positive functional of norm 1, and
a pure state is an extreme point of the convex set of states on a C*-algebra. We
denote the set of states by S(A) and the set of pure states by P (A).



A.9. Representations 141

Definition A.82. A representation of a C*-algebra A is a pair (H, π) where H is
a Hilbert space and π : A→ B(H) is a *-homomorphism. We say (H, π) is faithful
if π is injective.

Because π(A) is a C*-subalgebra of B(H), we can define non-degenerate representa-
tions, using Definition A.74.

Definition A.83. A representation (H, π) is non-degenerate if π(A) is non-
degenerate on H.

Definition A.84. Let A be a C*-algebra and (H, π) a representation of A. A vector
x ∈ H is called cyclic if π(A)x is dense in H. If (H, π) admits a cyclic vector it is
called a cyclic representation.

To emphasise that a representation (H, π) is cyclic, with cyclic vector x, we some-
times write (H, π, x) instead of (H, π). It is clear from the definition that a cyclic
representation is non-degenerate.

Definition A.85. If (Hi, πi)i∈I is a family of representations of A, their direct
sum is the representation (H, π) obtained by setting H = ⊕i∈IHi and π(a)({xi}i) =
{πi(a)(xi)}i for all a ∈ A and {xi} ∈ H.

It follows from the definition of the direct sum of Hilbert spaces that (H, π) is indeed
a representation of A. A consequence of this definition is stated in the following
proposition.

Proposition A.86. Let (Hi, πi)i∈I be a family of representation and (H, π) its direct
sum. If for each non-zero element a ∈ A there is an index i ∈ I such that πi(a) 6= 0,
then (H, π) is faithful.

For a given C*-algebra A, we want to find a faithful representation. The Gelfand-
Neumark-Segal construction or GNS-construction for short, will do just
that. The GNS-representation , is a representation that can be constructed from
each positive functional, hence in particular from each state. We will explain the
construction, but will leave out the details. Let σ be a positive functional on a
C*-algebra A. Then

Nσ = {a ∈ A | σ(a∗a) = 0}, (A.74)

is a closed left ideal of A and the map

(A/Nσ)× (A/Nσ)→ C (A.75)

(a+Nσ, b+Nσ) 7→ σ(a∗b)
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is a well defined inner product on A/Nσ. Hence A/Nσ is a pre-Hilbert space and
Proposition A.9 extends it to a Hilbert space, which we call Hσ. For a ∈ A define
π(a) ∈ B(A/Nσ) by setting

π(a)(b+Nσ) = ab+Nσ. (A.76)

The inequality
∥∥π(a)

∥∥ ≤ ‖a‖ holds and π(a) has a unique extension to a bounded
operator πσ(a) on Hσ. The map

πσ : A→ B(Hσ); (A.77)

a 7→ πσ(a) (A.78)

is a *-homomorphism, hence (Hσ, πσ) is a representation of A. It is called the GNS-
representation associated to σ. It turns out that this representation is cyclic.

Theorem A.87. Let A be a C*-algebra and σ ∈ S(A). Then there is a unique vector
xσ ∈ Hσ such that for all a ∈ A,

σ(a) = 〈a+Nσ, xσ〉 (A.79)

Moreover, xσ is a unit cyclic vector for (Hσ, πσ), and

πσ(a)xσ = a+Nσ (A.80)

for all a ∈ A.

Although the GNS-representation associated with a positive functional will in general
not be faithful, we can take the direct sum of appropriate representations and use
Proposition A.86 in order to obtain a faithful one.

Definition A.88. Let A be a nonzero C*-algebra. Then we define its universal
representation to be the direct sum of all representation (Hσ, πσ), where σ ranges
over S(A). We denote it by (Hu, πu).

Theorem A.89 (Gelfand-Neumark). If A is a C*-algebra, then it has a faithful
representation. Specifically, its universal representation is faithful.

It is by Proposition A.86 enough to show that for every a ∈ A there is a σ ∈ S(A)
such that πσ(a) 6= 0. The following proposition states that we do not actually need
all states to form a faithful representation. Just using the pure states turns out to
be enough.
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Proposition A.90. If a is a non-zero element of a C*-algebra A, there is a pure
state σ ∈ P (A) such that πσ(a) 6= 0.

This leads to another faithful representation called the atomic representation .

Definition A.91. Let A be a nonzero C*-algebra. Then we define its atomic rep-
resentation to be the direct sum of all representation (Hσ, πσ), where σ ranges over
P (A). We denote it by (Ha, πa).

Definition A.92. We say that two representations (H1, π1) and (H2, π2) of a C*-
algebra A are unitarily equivalent if there is a unitary u : H1 → H2 such that
uπ1(a)u∗ = π2(a) for all a ∈ A.

Proposition A.93. Let (H1, π1, x1) and (H2, π2, x2) be cyclic representation of a
C*-algebra A. Then there is a unitary u : H1 → H2 such that x2 = u(x1) and
π2(a) = uπ2(a)u∗ for all a ∈ A if and only if

〈x1, π1(a)x1〉 = 〈x2, π2(a)x2〉, (A.81)

for all a ∈ A.

Definition A.94. A representation (H, π) of a C*-algebra A is said to be irre-
ducible if {0} and H are the only closed subspaces invariant under π(A).

Theorem A.95. Let (H, π) be a non-zero representation of a C*-algebra A. The
following conditions are equivalent:

(i) (H, π) is irreducible.

(ii) π(A)′ = C 1H .

(iii) π(A) is strongly dense in B(H).

(iv) For any two vectors x, y ∈ H with x 6= 0 there is an a ∈ A such that π(a)x = y.

(v) Each non-zero vector in H is cyclic for π(A).

(vi) (H, π) is unitarily equivalent to the GNS-representation associated with a pure
state of A.

The equivalence between items (i) and (ii) is known as Schur’s lemma .
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A.10 Lattice of projections

Definition A.96. A lattice is a partially ordered set X in which for pair of elements
x, y ∈ X there exists:

• an element x ∨ y, called the supremum of x and y, such that

x ≤ x ∨ y; (A.82)

y ≤ x ∨ y, (A.83)

and if x ≤ z and y ≤ z for some z ∈ X, then x ∨ y ≤ z;

• an element x ∧ y, called the infimum or x and y, such that

x ≥ x ∧ y; (A.84)

y ≥ x ∧ y, (A.85)

and if x ≥ z and y ≥ z for some z ∈ X, then x ∧ y ≥ z.

Definition A.97. A lattice X is complete if every set S ⊆ X has a supremum
∨
S,

as well as an infimum
∧
S. A complete lattice X has a smallest element 0 =

∨
X

and a largest element 1 =
∧
X.

Definition A.98. A lattice X with 0 and 1 is orthocomplemented if there is a
map x 7→ x⊥, called the orthocomplementation, that satisfies

(a) x⊥⊥ = x;

(b) x ≤ y implies y⊥ ≤ x⊥;

(c) x ∨ x⊥ = 1 and x ∧ x⊥ = 0.

An orthocomplemented lattice X is called orthomodular if it additionally satisfies

(d) if x ≤ y, then y = x ∨ (x⊥ ∧ y).

Definition A.99. Let X be a complete lattice. A non-zero element x ∈ X is an
atom if y ≤ x implies that y = 0 or y = x.

Theorem A.100. The set P of projections in a von Neumann algebra M is an
orthomodular lattice under the ordening induced from Msa, and (pqp)n ↘ p ∧ q
strongly for each pair of elements p, q ∈M . If M acts on a Hilbert space H, then the
ordening in P corresponds to the natural ordening of the subspaces p(H) associated
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with the projections p ∈ M , and for each pair p, q ∈ P the projection p ∧ q is the
projection onto p(H)∩ q(H) and the projection p∨ q is the projection onto the closed
linear span of p(H) ∪ q(H). If p and q are two commuting projections in M , then

p ∧ q = pq and p ∨ q = p+ q − pq. (A.86)

Corollary A.101. The lattice of projections P in a von Neumann algebra M is
complete. More specifically, an increasing net (pλ)λ∈Λ in P converges σ-weakly (and
σ-strongly) to p =

∨
λ∈Λ pλ, which is the supremum of (pλ)λ∈Λ in Msa, as well as in

B(H)sa when M acts on a Hilbert space H. Similarly for decreasing nets and infima.
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