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1 Inleiding

Wat maakt wetenschap tot wetenschap? Waarin verschilt het van andere,
meer alledaagse vormen van menselijk redeneren? Het is een vraag waarover
talloze filosofen, wetenschappers en andere intellectuele types zich het hoofd
hebben gebroken, met evenzoveel verschillende antwoorden tot gevolg. Van
de vele gunstige kenmerken die in de geschiedenis aan de onderneming zijn
toegeschreven, zoals objectiviteit, empirisme, precisie en waarheidsdrang,
springt er een het meest in het oog: diepgang. In tegenstelling tot politici
of managers bijten wetenschappers zich vast in zeer nauw omschreven
vragen. Ze zijn pas tevreden als ze het probleem werkelijk doorgronden.
De wetenschap is heel lang bezig met heel weinig.

Dat is meteen haar grootste probleem. Welke kwesties zijn zo veel
hoogintelligente aandacht waard? De wereld is vreselijk groot en complex.
Selectiviteit is dus een noodzaak. Waarop is die selectie gebaseerd? Deze
vraag is zo wezenlijk dat wetenschappelijk onderzoek vaak wordt ingedeeld
naar de manier waarop zij haar beantwoordt. Zowel het lineaire model als het
kwadrantenmodel zijn daarvan een voorbeeld (zie hoofdstuk 2). Het lineaire
model maakt een (gradueel) onderscheid tussen toegepaste wetenschap, die
problemen probeert op te lossen van een groot en direct economisch, politiek
of anderszins maatschappelijk belang, en zuivere wetenschap, die streeft
naar de ontwikkeling en verfijning van algemeen toepasselijke theorieén
en modellen (‘begrip’) waarvan de waarde wordt gevonden in de interne
logica van het vakgebied. In de zuivere natuurkunde, of de zuivere
natuurwetenschap in het algemeen, vindt deze taxatie voornamelijk plaats in
termen van de verklarende en voorspellende kracht van natuurlijke fenomenen
en het aantal aannames dat nodig is om deze kracht te bereiken. De
wiskunde, daarentegen, bestudeert abstracties en axiomatische systemen
waarvan vele geen directe fysische pendant hebben, of lijken te hebben.
Er is a priori vrijwel geen beperking aan de onderwerpen die interessant
zouden kunnen zijn. Dat maakt de vraag van selectie voor de wiskunde nog
fundamenteler.

Het is een vraag met politicke implicaties. De staat bekostigt
immers een aanzienlijk deel van het wetenschappelijk onderzoek. Na de
Tweede Wereldoorlog, waarin de Verenigde Staten en andere landen, met
het oog op militaire toepassingen, voor het eerst op zeer grote schaal
onderzoeksprojecten ontplooiden, hebben veel landen blijvende stelsels voor
onderzoeksfinanciering opgezet. Deze stelsels hadden uitdrukkelijk als doel



niet alleen onderzoek van direct militair nut te bekostigen, maar vooral
ook de zuivere wetenschap. Een van de meest uitgesproken voorstanders
van deze opzet was Vannevar Bush, die, ondersteund met wat later het
lineaire model is genoemd, de stelling verdedigde dat de Verenigde Staten hun
technologische koppositie alleen konden behouden door geld te investeren in
zuiver wetenschappelijk onderzoek dat op geen enkele manier wordt beinvloed
door toepassingsgerichte overwegingen|8]. Het is precies dit standpunt dat
Donald E. Stokes aanvalt in zijn boek Pasteur’s Quadrant [2]. Kern van zijn
betoog is dat de dichotomie die Bush ziet tussen toegepaste wetenschap (‘het
kwadrant van Edison’) en zuivere wetenschap (‘het kwadrant van Bohr’) vals
is: er zijn ook talloze voorbeelden van wetenschappers en wetenschappelijk
onderzoek dat gemotiveerd is door zowel een drang naar wezenlijk nieuw
begrip als naar praktisch bruikbare toepassingen. Stokes noemt dit het
kwadrant van Pasteur.

Stokes gaat in zijn boek vooral in op voorbeelden uit de natuurwetenschap
en de techniek. Wij hebben geprobeerd te achterhalen hoe toepasbaar het
lineaire model en het kwadrantenmodel zijn op de wiskunde. Daarbij hebben
we, bij wijze van case study, de ontwikkeling van het LLL-algoritme als
uitgangspunt genomen. Hoe past deze casus binnen de beide modellen?

Ten behoeve van dit onderzoek hebben we twee interviews afgenomen.
Het eerste was met Hendrik Lenstra, hoogleraar in Leiden en één van de
drie ‘L’s’, het tweede met Ionica Smeets, onderzoeker, wetenschapsjournalist
en Wiskundemeisje!. Zij heeft zich beziggehouden met het LLL-algoritme,
allereerst omdat ze het nodig had voor haar promotieonderzoek. Daarnaast
heeft ze een artikel geschreven over de ontwikkeling van het algoritme.
Dit artikel is helaas niet, zoals aanvankelijk beoogd, gepubliceerd in
een populairwetenschappelijk tijdschrift, maar wel in het boek The LLL
Algorithm: Survey and Applications[1], dat is uitgegeven ter gelegenheid van
het vijfentwintigjarig jubileum van het LLL-algoritme. Korte uitwerkingen
van de interviews zijn als appendix toegevoegd.

Lwww.wiskundemeisjes.nl



2 Modellen voor wetenschap en innovatie

De  subsidiéring  van  wetenschappelijk  onderzoek, als alle
overheidsbestedingen, is onderwerp van voortdurende politieke discussie.
Steeds vaker en steeds opener vragen beleidsmakers en het publiek zich
af of alle investeringen in de wetenschap het land ook wat opleveren. De
vertrouwensband tussen de wetenschap en de overheid is uit het lood
geslagen.

Dat is althans de premisse die de aanleiding vormt van het boek
Pasteur’s Quadrant: Basic Science and Technological Innovation (1997)
van de gerespecteerde Amerikaanse politicoloog en beleidsmaker Donald E.
Stokes (1927-1997). Zijn boek gaat uitgebreid in op zowel de geschiedenis
van onderzoeksfinanciering als het huidige beleid, met name in de Verenigde
Staten, en betoogt dat de problemen samenhangen met onderliggende
gebreken in de visie van velen, uit zowel de politieke als de wetenschappelijke
wereld, op de relatie tussen wetenschappelijke vooruitgang en technologische
innovatie. Deze visie, aangeduid als het ‘lineaire model’, vindt zijn oorsprong
in de opvattingen van een invloedrijke Amerikaanse ingenieur en bestuurder,
Vannevar Bush, en met name in zijn notitie Science, the Endless Frontier
(1945).

Bush schreef dit betoog, gepubliceerd ongeveer twee weken voor
ontploffing van de atoombommen op Hiroshima en Nagasaki, in opdracht van
president Franklin D. Roosevelt, die wilde weten hoe de vaart die de T'weede
Wereldoorlog aan wetenschappelijke en technische ontwikkeling had gegeven
kon worden behouden en benut in naoorlogs Amerika. Bush is een vurig
pleitbezorger van structurele financiering van wetenschappelijk onderzoek
door de staat. Waarom zouden marktpartijen deze financiering niet op
zich kunnen nemen? Hoewel ook R&D-laboratoria, marktonderzoeksbureaus
en verzekeraars onderzoek verrichten, zijn hun investeringen vrijwel altijd
sterk toepassingsgericht: alleen kennis die patenteerbaar is, specifiek nuttig
is voor het eigen bedrijf of expertise oplevert die sneller is in te zetten dan
andere partijen haar kunnen overnemen brengt een concurrentievoordeel met
zich mee. Het gevolg, zo stelt Bush: “Applied science invariably drives
out pure.” Toch is het juist de zuivere wetenschap, “performed without
thought of practical ends,” die uiteindelijk aan de basis staat van de meest
wezenlijke innovatie. Aan de overheid dus de schone taak om het zuiver
wetenschappelijke onderzoek te subsidiéren — liefst zonder zich al te veel met
de inhoud te bemoeien.



In zijn notitie doet Bush gedetailleerde voorstellen voor een ‘National
Research Foundation’. Ze zijn nooit in die vorm uitgevoerd, maar zijn ideeén
hebben wel aan de basis gestaan van de grootschalige organsiaties, zoals de
National Science Foundation in de Verenigde Staten, die overheden van veel
geindustrialiseerde landen na de Tweede Wereldoorlog hebben opgezet.

Statisch en dynamisch

In  Pasteur’s Quadrant noemt Stokes de prestatie van Bush
bewonderenswaardig.  Niet alleen was zijn timing perfect — de afloop
van de oorlog maakte de bevolking als nooit tevoren bewust van het enorme
belang van wetenschap en techniek voor het succes van de natie — hij
baseerde zijn betoog, zo beargumenteert Stokes uitvoerig in hoofdstuk 2
van zijn boek, op ideeén die een sterke weerklank vinden in de Westerse
geschiedenis en filosofie. Het resultaat was ernaar. De opvattingen van
Bush ontwikkelden zich tot het ‘lineare model’, een manier van denken over
wetenschap en innovatie die veel, misschien wel alle, wetenschappers en
makers van wetenschapsbeleid nu bewust of onbewust met zich meedragen.

Stokes  onderscheidt  twee  gerelateerde  maar  verschillende
‘verschijningsvormen’ van het lineaire model. In zijn ‘statische vorm’,
gebaseerd op Bush’ bewering dat zuivere wetenschap wordt bedreven zonder
afleidende gedachten over mogelijk praktisch nut, stelt het model dat er
een eendimensionale schaal bestaat die zuivere wetenschap van toegepaste
wetenschap onderscheidt. Aan de ene kant bevinden zich de wetenschappers
die, als in het klassiek Griekse ideaal van ‘kennis om de kennis’, op zoek
gaan naar fundamenteel inzicht en wezenlijk nieuwe theorieén, zonder zich
zelfs maar af te vragen of deze kennis ooit een maatschappelijk nut zal
hebben. Aan de andere kant van het spectrum staan onderzoekers die,
als de aquaductbouwers of de loodgieters van het oude Rome, streven
naar resultaten die direct leiden tot economisch of maatschappelijk nuttige
toepassingen. Natuurlijk zijn er ook onderzoekers die zich ergens tussen
beide extremen in bevinden, maar — en dit is het wezenlijke punt — een meer
toepassingsgerichte wetenschapper is automatisch minder geinteresseerd in
fundamenteel nieuwe kennis, en vice versa.

De ‘dynamische vorm’ van het lineaire model is gebaseerd op Bush’
bewering dat “basic research is the pacemaker of technological progress”
en dat “a nation which depends upon others for its new basic scientific
knowledge will be slow in its industrial progress and weak in its competitive



postition in world trade.” In het lineaire model komt alle innovatie
van betekenis voort uit nieuwe zuiver wetenschappelijke kennis.  Het
model wordt vaak weergegeven als een stoomschema dat begint bij ‘zuiver
wetenschappelijk onderzoek’ en, langs een keten van pijlen, via ‘toegepast
wetenschappelijk onderzoek’ en ‘ontwikkeling” uiteindelijk uitkomt bij
‘productie en uitvoering’. Er is geen kruisbestuiving tussen de verschillende
stappen: de kennisstroom gaat van de wetenschap naar toepassingen.

Moeilijk verkoopbaar

Wat is volgens Stokes zo problematisch aan deze visie?  Eerst en
vooral: zij simpelweg onjuist.  Stokes geeft tal van voorbeelden van
wetenschappers met een sterk zuiver wetenschappelijke interesse en motivatie
die zich tegelijkertijd intensief bezighielden met problemen uit de industriéle,
medische of economische praktijk. Sterker: een praktisch probleem was
voor hun belangrijkste fundamentele ontdekkingen vaak de aanleiding. Het
toonbeeld van dit soort onderzoek levert Louis Pasteur, de Fransman die
grote bekendheid verwierf met zijn ontdekking van het ‘pasteuriseren’,
‘steriliseren’ en zijn vaccin tegen hondsdolheid. Deze heel nuttige ontekkingen
kwamen echter voort uit een fundamenteel inzicht: infectieziekte, plaag
en bederf onstaan niet vanzelf maar worden veroorzaakt door microben.
Zijn experimenten brachten de genadeklap toe aan de theorie van generatio
spontanea, het idee dat schimmels, maden en andere ‘lagere’ levensvormen
vanzelf ontstaan uit geschikte dode materie. Als zuivere wetenschapper
plaatsen deze inzichten Pasteur op dezelfde hoogte als Antonie van
Leeuwenhoek, Gregor Mendel of James D. Watson en Francis Crick. Waar
moeten we z6 een onderzoeker plaatsen op die eendimensionale schaal uit de
statische vorm van het lineaire model? Ergens in het midden van de lijn, zou
je kunnen zeggen, maar Stokes vindt dat dit geen recht doet aan Pasteurs
werk, dat niet ‘allebei een beetje’ was maar ‘allebei heel veel’.

Ook het dynamische aspect van het lineaire model verdient voor Stokes
een veel kritischere beschouwing dan het doorgaans krijgt. Natuurlijk, het is
een enorme versimpeling — dat hebben anderen v66r Stokes al opgemerkt —
maar dat is niet eens het grootste manco. Ten eerste lijkt het niet juist dat
alle technologische innovatie voortkomt uit wetenschap (het ‘pacemaker’-idee
van Bush). Ook al is de meeste techniek pas goed te begrijpen met
wetenschap, vaak ging de uitvinding vooraf aan de fundamentele kennis die
haar werking verklaart. Bovendien hebben landen als Japan hun sterke



marktpositie in de autoindustrie en de consumentenelektronica meer te
danken aan een voortdurende stroom snelle, kleine verbeteringen in hun
producten dan aan nieuwe fundamentele kennis.

Ten tweede — en dit is nog wezenlijker — is veel zuiver wetenschappelijk
onderzoek alleen mogelijk dankzij de nieuwe techniek; sommige zuivere
wetenschapsgebieden ontlenen daaraan zelfs hun bestaansrecht. Stokes
noemt de vastestoffysica als voorbeeld: deze wetenschap werd en wordt
voor een aanmerkelijk deel gevoed door de wens beter te begrijpen hoe
halfgeleiders werken en te verbeteren zijn. Opnieuw kan ook Pasteur als
voorbeeld fungeren. Brouwers of wijnmakers vroegen Pasteur soms hoe
zij de hardnekkige problemen konden oplossen die zich voordeden in het
vergistingsproces. Het lijkt erop dat Pasteur ze niet alleen kon helpen met
zijn theorie over micro-organismen, maar dat deze praktische problemen voor
zijn theorie ook een belangrijke inspiratiebron waren. Pasteur moedigde ook
zijn studenten aan voortdurend in contact te blijven met de praktijk.

Er is nog een heel andere reden voor kritiek op het lineaire model. Als
wetenschapsfilosofische theorie is het model misschien te simpel, maar dat
zou zo'n probleem niet zijn als het kon bijdragen aan een brede acceptatie
van het nut van wetenschap bij het publiek. Maar volgens Stokes is het
tegendeel waar. Na de Tweede Wereldoorlog voelden de Verenigde Staten
zich nog de hegemoniale natie en de grootste technologische macht. In zo'n
klimaat is het aannemelijk dat de langetermijninvesteringen in wetenschap
ook voornamelijk tot voordeel van het eigen land zullen zijn. De opkomst
van Japan en, meer recentelijk, China en India maken dit verhaal moeilijker
verkoopbaar: stimuleren onze mooie wetenschappelijke resultaten dadelijk
niet de Chinese innovatiekracht? Daar komt nog bij dat kiezers in het
algemeen tegenwoordig misschien een sterkere anti-establishmenthouding
hebben dan vroeger.

Visie

Wat is het alternatief? In hoofdstuk 3 van zijn boek doet Stokes zijn
eigen visie op het verband tussen zuivere wetenschap en innovatie uit de
doeken. In plaats van één dimensie breidt Stokes zijn model uit tot twee (zie
figuur 1.) Stokes’ model is opgedeeld in vier kwadranten. Twee daarvan, ‘het
kwadrant van Bohr’ en ‘het kwadrant van Edison’, zijn vergelijkbaar met de
categorieén ‘zuiver wetenschappelijk onderzoek’ en ‘toegepaste wetenschap’
uit het lineaire model. Stokes voegt daar ‘het kwadrant van Pasteur’



Research is inspired by:

Considerations of use?

No Yes
Pure basic Use-inspired
Yes research basic research
(Bohr) (Pasteur)
Quest for
fundamental
understanding?
Pure applied
No research
{Edison)

Figuur 1: Het kwadrantenmodel van Stokes. Overgenomen uit [2].

aan toe: onderzoek dat gemotiveerd is door zowel een hang naar nieuw
fundamenteel inzicht als de hoop op praktische toepassingen. Eén van de
vier kwadranten blijft in Stokes” model opvallend leeg: het onwaarschijnlijk
klinkende onderzoek dat noch een fundamenteel, noch een toegepast doel
heeft. Haalt dit het kwadrantenmodel niet een beetje onderuit? Stokes
probeert deze kritiek te pareren door te stellen dat zulk onderzoek wel degelijk
bestaat. Te denken valt aan het vergaren van ‘kennis om de kennis’ waaraan
geen fundamenteel belang voor de theorie kan worden toegeschreven, zoals
het samenstellen van de Flora en andere activiteiten die natuurkundigen,
in navolging van Ernest Rutherford, graag mogen afdoen als ‘postzegels
verzamelen’.

In de laatste twee hoofdstukken van zijn boek gaat Stokes uitvoerig in op
de vraag wat zijn kwadrantenmodel zou kunnen bijdragen aan een herstel van
vertrouwen tussen wetenschappers, beleidsmakers en het publiek. Ook geeft
hij een gedetailleerde uiteenzetting van de recente en zeer recente geschiedenis
van het wetenschapsbeleid in de Verenigde Staten. In zijn visie is er zeker
ruimte voor werk in het kwadrant van Bohr. Maar door daarnaast meer
aandacht te geven aan het kwadrant van Pasteur, of het bestaan van dat
soort onderzoek op zijn minst te erkennen en beter voor het voetlicht te
brengen, hoopt hij dat het publiek en de politiek sterker overtuigd raken van
het belang van wetenschap in het algemeen — dus ook van wetenschap met
een fundamenteel doel. Hem lijkt dit effectiever dan blijven vasthouden aan



het bekende verhaal dat zuivere wetenschap ‘ooit ergens goed voor zal zijn,
al weten we nog niet wat.” Tegelijkertijd hoopt hij de wetenschappelijke
wereld, die haar academische vrijheid altijd met verve heeft verdedigd,
ervan te overtuigen dat het sterker benadrukken van een toepassingsgericht
doel niet noodzakelijkerwijs minder aandacht betekent voor het opdoen van
fundamentele kennis. Integendeel: het erkennen van de wisselwerking tussen
theorie en toepassingen kan ertoe leiden dat in toepassingsgerichte projecten
als de kernfusiereactor 66k voldoende investeringen worden gedaan in het
verstevigen van het noodzakelijke theoretisch fundament.

10



3 Het LLL-algoritme

In dit hoofdstuk bekijken we de wiskunde achter het LLL-algoritme. Het
uiteindelijke algoritme is gepubliceerd in het artikel Factoring Polynomials
with Rational coefficients uit 1982[4]. Hieraan voorafgaand was er enige
communicatie geweest tussen Hendrik Lenstra en Lovédsz. Lenstra had
namelijk al een algoritme ontwikkeld om een basis van een rooster te
reduceren. Lovasz had dit echter verbeterd en dat is bekend geworden als het
LLL-algoritme. Het algoritme vindt een gereduceerde basis in een rooster.
Om in te zien hoe het werkt moeten we eerst weten wat ‘gereduceerd’ precies
inhoudt.

3.1 LLL-gereduceerd

Het LLL-algoritme is een basisreductiealgoritme voor roosters.

Definitie: Een deelverzameling L van de n-dimensionale vectorruimte
R™ heet een rooster als er een basis by, by, ...b, van R™ bestaat zo dat

L= Zb={> rblr; € Zvoor 1 <i<n}
=1 =1

In dit geval noemen we b = (by, bs, ...b,) een basis voor L.
Met behulp van het Gram-Schmidtproces kunnen van een basis b een

orthogonale basis b* maken. Dit proces is op de volgende manier inductief
gedefinieerd:

i—1
b = bi— ) b
j=1

<bivb;k'>
Hii = e ey
7777
Definitie: Een basis b = (b1,bs,...b,) voor een rooster L heet
LLL-gereduceerd als
1 .
|,uij|§§voor1§j<2§n (1)

11



cn
3
|7 + priiabi_g [ > Z|bf_1|2 voor I <z<mn (2)

Het LLL-algoritme vindt voor een gegeven basis b een gereduceerde basis b'.
De constante % is willekeurig en kan vervangen worden door een vaste y € R
met }1 <y <l

Uit de eisen (1) en (2) is in te zien dat in een gereduceerde basis de
basisvectoren niet te veel in lengte verschillen en dat de eerste basisvector
relatief klein is. Dit volgt uit de volgende propositie.

Propositie 3.1. Zij by, bs, ...b, een gereduceerde basis in een rooster L in R
met byx, b3, ..b) gedefinieerd zoals hierboven. Dan geldt dat

;> < 27> wvoor 1 < j<i<m (3)

en
1

ba| <275 - (L) (4)
waarbij d(L) de determinant van het rooster is.

Bewijs: Uit de definitie van ‘gereduceerd’ volgt dat

. 3
’bj|2 > (5 - M?i—1)’bi—l‘2 >

bi_1|?
1 |bi—1]

DO | —

voor 1 < i <n. Dus passen we inductie toe, dan volgt dat
b3 < 27771b7]? voor 1 < j < i < n.

Nu gebruiken we wederom de definitie van ‘gereduceerd’ en tevens de definitie
van bf. Dan zien we in dat

i—1
B> = (0P + D byl
7=1
i—1 1
< |br)? —2' by
< P Y 527
7j=1
1 i *|2
= (@ =2
< 2P

12



Maar dan volgt
b7 < 277152 < 2 |op?

Verder hebben we dat d(L) = |det(b],b3,...b%)]. Omdat de b’s een
orthogonale basis vormen volgt dat

d(L) = Hlbfl-

]

3=

Uit voorgaande berekening volgt dan eenvoudig dat [by| < 27 - d(L)x.

Verder kunnen we laten zien dat de andere gereduceerde basisvectoren
niet te veel afwijken van deze eerste basisvector.

3.2 Het algoritme

Het LLL-algoritme werkt als volgt: Bereken p;; en b;, zoals hierboven
gedefinieerd. Begin met k = 2.2

1. Reduceer de lengte van vector by door er |0,5 + ugp—1| keer de vector
bi_1 er vanaf te halen.

2. Kijk nu of by en by_1 voldoen aan de eisen van een gereduceerde basis.
70 ja, ga naar 3.
70 nee, ga naar 4.

3. Reduceer by, door er |0,5+ ug | keer de vector b; er vanaf te halen, voor
l=k—-2,..2,1.
Geldt nu £ = n: Zo ja, Stop. Zo nee, begin opnieuw met k — k + 1.

4. Verwissel de vectoren by en by_q en ga door met £ — k — 1.

Hierbij is het van belang dat de vectoren b; en de getallen p;; constant worden
bijgewerkt wanneer de vectoren veranderen.

2In stadium k voldoen de vectoren b, ...by_1 aan de eerste eis van een gereduceerde
basis.

13



4 Geschiedenis van het algoritme

Het LLL-algoritme is begonnen met een vraag aan Hendrik Lenstra gesteld
door Peter van Emde Boas. Van Emde Boas was in die tijd (rond 1980)
bezig met een probleem samen met Alberto Marchetti-Spaccamela. Hij had
de vraag: “Gegeven drie punten met rationale coérdinaten in een vlak, is het
mogelijk om in polynomiale tijd te bepalen of er een punt bestaat met gehele
coéfficiénten dat binnen de driechoek van deze drie punten ligt?” Hendrik
Lenstra wist dat dit probleem allang opgelost was door Gauss. Het antwoord
is ‘ja’.

Hendrik Lenstra dacht dat het hiermee opgelost was, maar van Emde Boas
kwam enkele maanden later weer bij Hendrik Lenstra met een vergelijkbare
vraag. Dit keer kwam hij samen Marchetti. Lenstra dacht in eerste instantie
dat hij dit al had opgelost. Maar de vraag was dit keer of het op eenzelfde
manier ook werkte in meerdere dimensies. Na wat er na hebben gekeken
kwam Hendrik Lenstra, wederom, vrij snel met het antwoord ‘ja’. Hierdoor
kwam Lenstra’s algoritme voor geheeltallig lineair programmeren tot stand.
Hieronder nog even voor de duidelijkheid de formulering van de tweede vraag:

Vraag 2. Stel n en m zijn positieve reéle getallen, zij A een m X n matrix
met gehele getallen als invoer en b € Z™.

Is er een vector x € 7" met Ax < b, zo dat Z" N K leeg is als K = {x €
R"|Az < b}?

Lineair programmeren is ook wel bekend als lineaire optimalisatie. Dat is
het probleem van maximalisering of minimalisering van een lineaire functie
over convexe veelvlakken, die voortgebracht zijn door niet-negatieve lineaire
randvoorwaarden. Hendrik Lenstra was hier eigenlijk helemaal niet mee
bezig. Zo zei hij: “Zonder de vraag over de driehoeken in geheeltallige
roosters was ik er nooit opgekomen.”

Toen La&szlo Lovasz zich ermee ging bezighouden, was hij met iets
anders bezig. Zijn intentie was helemaal niet het algoritme te verbeteren
(wat hij uiteindelijk wel deed), maar hij was bezig met een detail in de
ellipsoidemethode. Lovasz zei hierover: “De ellipsoidemethode is ontwikkeld
door Sovjetonderzoekers eind jaren 70. Khachiyan merkte op dat het
algoritme kon worden gebruikt om lineaire programmeerproblemen op te
lossen in polynomiale tijd, wat een groot onopgelost probleem was.”

Lovasz leefde in Hongarije, maar kon slechts af en toe reizen. Het
[Jzeren Gordijn gordijn maakte dat moeilijk. Eind jaren zeventig was hij

14



in Canada en in de zomer in Stanford. Daar ontmoette hij Peter Gacs en
daar had iemand het artikel van Khachiyan naar hen verzonden. Toen hij
weer terugging naar Hongarije zag hij nog de mogelijkheid om Amsterdam
en Bonn te bezoeken. In Amsterdam ontmoette hij Lex Schrijver en in Bonn
Martin Groétschel. Hij besprak met hen de ellipsoidemethode, waarover zij
enthousiast werden. Ze hebben er uiteindelijk een boek over geschreven, maar
kwamen erachter dat één ding ontbrak. In Bonn had Lovasz toevalligerwijs
een lezing van Hendrik Lenstra over geheeltallig programmeren gehoord.
Hierin kwam het probleem van het zoeken naar korte vectoren in roosters
naar voren. Lovasz bedacht dat dit precies de stap was die ze misten.

Hebberig

Ongeveer gelijktijdig kwam ook Arjen Lenstra, broer van Hendrik en nog
student, met het basisreductieprobleem in aanraking. Hij was bezig met zijn
scriptie over polynoomfactorisatie over algebraische getallenlichamen. Dit
werd over het algemeen gedaan met de Berlekamp-Henselmethode. Maar er
was een groot probleem, want in de laatste stap kon de rekentijd exponentieel
worden in de graad van het polynoom. Iedereen had zichzelf ervan overtuigd
dat het probleem waarschijnlijk echt niet in polynomiale tijd oplosbaar
was: men was juist bezig met een zoektocht naar polynomen waar de
Belekamp-Henselmethode ontzettend lang over deed.

Deel van de opdracht van Arjens scriptie, waarvan Peter van Emde Boas
de begeleider was, was deze methode te implementeren. Toen Arjen Lenstra
het hierover had met zijn broer Hendrik Lenstra, zag Hendrik een stap
die je beter kon vervangen door een roosterreductiestap. Arjen en Hendrik
kwamen erachter dat de cruciale, niet-polynomiale stap in Berlekamp-Hensel
vervangen kon worden door kortstevectorberekeningen. En deze konden
weer vervangen worden door roosterreductie. Leuk maar nutteloos, dacht
men. Want het vinden van de kortste vector noch de basisreductie verliep
in polynomiale tijd. Arjen had wel geobserveerd dat het algoritme sneller
kon worden gemaakt. Maar niemand leek er iets om te geven, want het was
toch exponentieel over de graad van het polynoom. Arjen: “Ik gebruikte de
roosterreductie van Hendriks artikel over geheeltallig lineair programmeren.
Dit reductiealgoritme werkte niet in polynomiale tijd, maar wat maakt dat
uit? Het oorspronkelijke probleem was al exponentieel, dus wat verlies ik
ermee? Dus werd het algoritme geimplementeerd, en het werkte prachtig.”

Van dit alles was Lovasz niet op de hoogte toen hij nog wat zat na te
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denken over de lezing van Hendrik Lenstra in Bonn. Hem leek dat er nog
wel wat te verbeteren viel aan het basisreductiealgoritme dat hem juist was
gepresenteerd. Snel begon hij te brainstormen, te schrijven en te prutsen
met zijn rekenmachine. Lovasz kwam erachter dat het beter was om niet
te ‘hebberig’ te zijn in het basisreductiealgoritme. Waar Hendrik Lenstra
gedurende het algoritme telkens de kortste vector uit de basis vooraan in de
rij zette, begreep Lovasz dat je beter alleen naburige vectoren kon verwisselen
en dan nog enkel wanneer er, in zekere zin, duidelijk voortgang mee kan
worden geboekt. Lenstra zegt hierover: “Ik had een zeer naieve manier voor
het vinden van de benodigde transformatie, waarbij deze methode alleen
polynomiaal® is voor vaste dimensie n. Lovéasz vond een algoritme om dit te
doen in polynomiale tijd voor variabele n.”

Lovasz stuurde een brief over =zijn verbeterde roosterreductie in
polynomiale tijd naar Henkdrik Lenstra. Die begon direct met zoeken
naar fouten in zijn bewijs. Lenstra wist immers dat zon algoritme de
niet-polynomiale stap in het polynoomfactorisatiealgoritme kon vervangen.
In een brief aan Lovasz zei hij: “Sinds ik jouw brief heb ontvangen ben
ik verbaasd, want het blijkt dat uit jouw basisreductiealgoritme volgt dat
er een polynomiaal algoritme is voor factorisatie in Q[X]. Tk ben op zoek
gegaan naar fouten in het bewijs, maar ik heb er nog geen gevonden.” Men
was zo overtuigd dat het factoriseren niet kon in polynomiale tijd (aangezien
getallen ontbinden in priemfactoren niet polynomiaal was) dat ze dachten
dat ze wel ergens een fout zouden hebben gemaakt. Die bleek er niet te zijn
en zo kwamen ze plotseling tot de conclusie dat polynomen met rationale
coéfficiénten konden worden ontbonden in polynomiale tijd.

3Deze polynomialiteit zit hem in de afhankelijkheid van het aantal operaties van de
lengte in bits van de basisvectoren. De te reduceren basisvectoren worden gegeven in Z"
of Q". Daaraan kan dus een eindig aantal bits worden toegekend. Hendrik Lenstra’s
algoritme was weliswaar polynomiaal in deze lengte van de basisvectoren, maar niet in
hun aantal.
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5 Complexiteit en P = NP

Bij een algoritme vraagt men zich af of het snel werkt. Het is namelijk
niet gewenst dat het heel erg lang duurt voordat het algoritme klaar is met
rekenen. De maat voor de snelheid van een algoritme is de complexiteit. De
complexititeit van een algoritme is de hoeveelheid elementaire operaties die
nodig zijn tot het algoritme termineert. Dit aantal operaties is uitgedrukt
als functie van de lengte van de invoer. Deze lengte is het aantal bits dat
nodig is om de invoer te representeren. In het algemeen wordt de invoer k
binair gerepresenteerd. De lengte van de invoer is dan %log(k) = n.

De complexiteit van een algoritme is niet het aantal operaties, maar de
orde hiervan. We gebruiken de grote-O-notatie voor de orde. Een functie
f(z) heeft orde g(x), genoteerd als f(x) = O(g(z)), dan en slechts dan als er
een constante M bestaat zo dat f(x) < M - g(x), voor alle x groter dan een
zekere xy. Een algoritme heeft een polynomiale complexiteit als de rekentijd
T(n) een polynoom in de lengte van de invoer als bovengrens heeft. Kort
gezegd: T'(n) = O(n™) voor een zekere constante m.

5.1 Pen NP

Er bestaan verschillende klassen van algoritmen, afhankelijk van de
complexiteit. Dit zijn de complexiteitsklassen. De twee belangrijkste
complexiteitsklassen zijn P en NP. Voor we verder kunnen ingaan op deze
klassen moeten we kijken naar het soort problemen. Er zijn beslisproblemen
en zoekproblemen. Beslisproblemen zijn vragen waarop met ‘ja’ en ‘nee’ kan
worden geantwoord. Een eenvoudig voorbeeld is: “Voor z,y € N, is x een
deler van y?” In het geval van een zoekprobleem willen we ook echt een
oplossing voor het probleem vinden. Een voorbeeld is de vraag: “Wat is z
gedeeld door y?”

De klasse van zoekproblemen is equivalent aan de klasse van
beslisproblemen.  Voor ieder zoekprobleem kunnen we namelijk een
beslisprobleem maken. Andersom kunnen we bij ieder beslisprobleem een
zoekprobleem maken. Aan de bovenstaande voorbeelden is te zien hoe we
van de ene klasse naar de andere kunnen overstappen. De complexiteitsklasse
P is gedefinieerd als de klasse van alle beslisproblemen die in polynomiale
tijd zijn op te lossen met een deterministische Turingmachine. P staat voor
deterministic Polynomial time.

De complexiteitsklasse N P, daarentegen, is gedefinieerd als de klasse
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van alle beslisproblemen die in polynomiale tijd zijn op te lossen met een
niet-deterministische Turingmachine. Voor een probleem in deze klasse
geldt dat een oplossing niet altijd in polynomiale tijd is te vinden, maar
wel in polynomiale tijd te verifiéren. Dus er bestaat een deterministische
Turingmachine die in polynomiale tijd laat zien dat een waarde x een
oplossing is voor het beslisprobleem. NP staat voor Non-deterministic
Polynomial time. Merk op dat P een deelklasse is van N P.

52 P=NP?

Een onopgelost probleem in de theoretische informatica is de vraag of de
klassen P gelijk is aan de klasse N P. Dit is kort samen te vatten in de vraag:
“Als ja-antwoorden op een ja/nee-vraag ‘snel’ kunnen worden geverifiéerd,
kunnen de antwoorden dan ook ‘snel’ gevonden worden?” Met snel bedoelen
we ‘in polynomiale tijd’. Een polynomiaal algoritme is over het algemeen
ook snel in de praktijk, maar dit is niet altijd zo. De vraag of P gelijk is aan
NP is zelfs één van de Millennium Prize Problems. Het wordt dus gezien als
één van de belangrijkste problemen voor de wiskunde in de 21e eeuw. Een
belangrijke klasse voor deze vraag is de klasse N P-compleet. Een probleem
Q@ is een N P-compleet probleem als het een NP probleem is, zodanig dat
ieder ander probleem in N P is te reduceren tot (). Dit reduceren moet echter
wel in polynomiale tijd gebeuren.

We zien dus dat ook N P-compleet een deelklasse is van NP. Maar
waarom is deze klasse belangrijk voor de vraag of P = N P? Stel: we kunnen
van een N P-compleet probleem () laten zien dat het in P zit. Dan volgt
dat P = NP, want voor een willekeurig N P-probleem R hebben we een
polynomiaal algoritme dat een vraag met betrekking tot probleem R omzet
naar een vraag in probleem (). Die vraag van () is in polynomiale tijd op te
lossen, omdat we aannamen dat () € P. De samenstelling van de reductie en
@ is wederom een polynomiaal algoritme. Dus hebben we een polynomiaal
algoritme om probleem R op te lossen.

Er zijn zowel positieve als negatieve gevolgen als blijkt dat P =
NP. Een positief gevolg is dat veelvoorkomende N P(-complete) problemen
toch ‘snel’ blijken te zijn. FEen bekend voorbeeld is Travelling Salesman
Problem, de vraag wat de korste route is tussen n steden. Verder zijn
veel algoritmen die worden gebruikt in operations research en integer
programming N P-compleet.

Dit gevolg is eigenlijk ook een negatief gevolg. Er zijn problemen die
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nu nog ‘moeilijk’ zijn waarvan we willen dat dat zo blijft. Bijvoorbeeld het
ontbinden van een natuurlijk getal in priemfactoren en het discrete logaritme
probleem. De cryptografie heeft bijvoorbeeld erg veel baat bij deze ‘moeilijke’
problemen. Zo zijn alle public-key cryptosystemen gebaseerd op dit soort
problemen (zie hoofdstuk 6). Zo ook zijn internetbetalingen en transacties
veilig omdat er een ‘moeilijk’ probleem is dat het beschermd. Wanneer dit
allemaal ‘snelle’ algoritmen blijken te zijn moeten al deze systemen worden
gewijzigd of vervangen. Een tussenpersoon zou anders eenvoudig betalingen
kunnen aanpassen.

Er is nog een verschil in het soort bewijs dat kan worden gevonden. Als er
een constructief bewijs wordt gevonden, dan hebben we een direct probleem.
Dan zijn direct alle ‘moeilijke’ problemen ‘makkelijk’. Wanneer er echter een
niet-constructief bewijs het licht ziet, dan weten we wel dat deze problemen
‘snel’ zijn, maar een ‘snel’ algoritme moet dan eerst nog gevonden worden
voordat het problemen oplevert.

5.3 Een doorbraak

Hendrik Lenstra, Arjen Lenstra en L&azslé Lovasz hebben hun algoritme
gepubliceerd in een artikel genaamd Factoring Polynomials with Rational
Coefficients [4] in 1982. In dit artikel wordt het algoritme gebruikt voor
polynoomfactorisatie over Q. Dit artikel was een grote doorbraak, want het
algoritme voor polynoomfactorisatie, waarvan het LLL-algoritme dus een
onderdeel is, was een polynomiaal algoritme. Terwijl wiskundigen over de
hele wereld er vanuit gingen dat zo’n algoritme niet bestond. Iedereen had
het sterke vermoeden dat polynoomfactorisatie, in ieder geval over QQ, geen
P-probleem was. Mensen waren zelfs bezig met het zoeken naar worst-case
scenario’s. Het vinden van een polynomiaal algoritme voor een probleem dat
verwacht werd niet in P te zitten is natuurlijk één punt voor P = NP, in
het nadeel van P # NP.

Bijna alle experts op het gebied van complexiteitstheorie geloven dat
P # NP. Dit blijkt uit een poll van William Gasarch, professor in de
informatica aan de universiteit van Maryland|[3]. Hierin zijn experts gevraagd
naar hun mening over P = NP en wat ze verwachten van het bewijs. Veel
theoretisch informatici zien weinig hoop, aangezien er in de afgelopen dertig
jaar ook geen vooruitgang is geboekt. Tevens bestaat het vermoeden dat
deze vraag onafthankelijk is van ZFC, de axioma’s van Zermelo-Fraenkel en
het keuze-axioma. Dit zou de vraag of P = NP een gelijke status geven als
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de continuiimhypothese. Een andere kijk op de zaak is dat er nooit een bewijs
zal worden gevonden: “Als een eenvoudige vraag zoals de laatste stelling van
Fermat al zo'n lang bewijs heeft, dan zijn er zeker ook vragen waarvan het
bewijs te lang is om te vinden.” Lészlé Lovéasz heeft er het volgende over
gezegd: “Probably some new math modeling the information flow through
a boolean circuit. With luck, something like algebraic topology or algebraic
geometry will be used.” Waar de meeste experts het over eens zijn is dat er
sowieso onderzoek moet worden gedaan naar zowel de hypothese P = NP
als naar de hypothese P % NP.
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6 Toepassingen van het LLL-algoritme

Waarom zouden we een case study doen over het LLL-algoritme? Er zijn
genoeg algoritmen om uit te kiezen. Waarom geen case study over het
algoritme van Euclides of het quick-sortalgoritme? Een belangrijke reden is
het aantal toepassingen van het LLL-algoritme. Sinds de publicatie van het
algoritme duikt het regelmatig op. Daarnaast zijn er bij het ontstaan van het
algoritme veel toevalligheden betrokken. Zo is er de toevallig wijze waarop
Hendrik Lenstra op basisreductie uitkwam, via Van Emde Boas. Daarnaast is
er Lovasz die de lezing van Lenstra kon gebruiken voor zijn eigen onderzoek.
Ook hebben we Arjen Lenstra die op het juiste moment bezig was met zijn
masterscriptie over polynoomfactorisatie.

Het artikel waarin het LLL-algoritme is gepubliceerd, had in de titel
‘polynoomfactorisatie’ en niet ‘basisreductie’. De auteurs hebben hiervoor
gekozen omdat de factorisatie juist het bijzondere resultaat is, niet de
reductie. Of zoals Hendrik Lenstra in ons interview verwoordde: “Niemand
wordt geil van een korte vector in een rooster.” De eerste belangrijke
toepassing van het algoritme is dus polynoomfactorisatie. Deze toepassing
is niet erg praktisch. De toepassing zelf is een zuiver wetenschappelijk
onderwerp: polynoomfactorisatie wordt in ‘de praktijk’ niet gebruikt. Andere
toepassingen van het LLL-algoritme zijn ook al eerder aan bod gekomen. Zo
is er ook de ellipsoidemethode waarvoor Lovész het algoritme nodig had.
Tenslotte is er het geheeltallig programmeren, de oorspronkelijke toepassing
van Hendrik Lenstra.

Er zijn ook praktische toepassingen van het LLL-algoritme. Zo kan
het worden gebruikt bij het converteren van JPEG-plaatjes om de juiste
kleurenruimte te vinden. Ook kan het worden toegepast in draadloze
netwerken met meerdere zenders en ontvangers. We zullen nu echter diep in
gaan op één specifieke toepassing van het LLL-algoritme in de cryptografie.
We bekijken een cryptosysteem gebaseerd op het knapzakprobleem en laten
met behulp van het LLL-algoritme zien dat dit systeem onveilig is. Deze
toepassing kwam vrij snel na de publicatie van het algoritme, namelijk in
1984 door A. Shamir[7].

6.1 Het knapzakprobleem en cryptografie

Het knapzakprobleem is een bekend probleem in het lineair programmeren.
We zijn hier echter enkel geinteresseerd in een toepassing van het probleem in
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de cryptografie. Het probleem is als volgt: We hebben een knapzak en willen
deze vullen met blikken voedsel. Ieder blik heeft ook een bepaalde inhoud
en een bepaalde voedingswaarde. Nu is de vraag: “Welke blikken nemen
we mee in de knapzak, op zo'n manier dat zo veel mogelijk voedingswaarde
wordt meegenomen?”

Een speciaal geval hiervan is wanneer de inhoud gelijk is aan de
voedingswaarde.  Dan wordt de vraag: “Welke deelverzameling van
blikken geven de inhoud van de knapzak als som?” Dit is bekend als
het deelverzameling-som-probleem. Het is goed mogelijk dat er niet zo'n
deelverzameling bestaat en soms is de verzameling te groot om snel de
optimale oplossing te vinden. Het deelverzameling-som-probleem is, net
als het algemene knapzakprobleem, NP-compleet. Er is echter een speciaal
geval waarvoor dit probleem eenvoudig is op te lossen, namelijk wanneer de
elementen van de verzameling een superstijgende rij vormen.

Definitie: Een eindige rij r = (ry, 79, ...7,,) met r; € N heet een

i—1
superstijgende rij als voor alle i € {2,3,..n} geldt dat r; > Z r;.

j=1
Zij r = (ry,ra,..r,) een superstijgende rij en zij m een natuurlijk
getal. De vraag of er een deelverzameling van r is waarvan de som m is, is
nu eenvoudig op te lossen. Neem de grootste r; zodanig dat r; < m. Dit
getal is zeker nodig voor de gewenste deelverzameling, want het is groter
dan de som van de voorgaande getallen en de daarop volgende getallen zijn
allemaal te groot. Neem nu de grootste r; kleiner dan m — r;, enzovoorts.
Dit proces eindigt wanneer we een getal overhouden kleiner dan ry of als ry
in de som zit. Als we nul overhouden, hebben we de gewenste deelverzamling
gevonden. Houden we een getal groter dan nul over, dan hebben we in ieder
geval de maximale deelverzameling-som kleiner dan m gevonden.

In 1978 werd een cryptosysteem ontwikkeld door Merkle en Hellman|6].
Dit systeem is gebaseerd op het knapzakprobleem, meer specifiek, op
het deelverzameling-som-probleem. Dit was een van de eerste public key
cryptosystemen. Een cryptosysteem is een systeem om ‘veilig’ boodschappen
te kunnen verzenden en ontvangen. Veilig betekent in dit geval: zonder dat
een derde persoon de boodschap kan lezen. Een public key cryptosysteem is
een systeem waarbij degene die de boodschappen ontvangt, een openbare
sleutel heeft die iedereen kan zien. Die sleutel wordt gebruikt om
de boodschap te coderen. De gecodeerde boodschap wordt vervolgens
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verzonden, waarna de ontvanger de boodschap kan decoderen met behulp
van zijn privésleutel. Deze privésleutel is, zoals de naam doet vermoeden,
alleen bekend bij de ontvanger en met behulp van deze sleutel is decoderen
eenvoudig. Nu is een public key cryptosysteem veilig wanneer het niet
mogelijk is om snel, dat wil zeggen in polynomiale tijd, een gecodeerd bericht
te decoderen zonder kennis van de privésleutel.

Het RSA-cryptosysteem, momenteel het meestgebruikte cryptosysteem,
is gebaseerd op het feit dat het moeilijk is om een getal te
ontbinden in priemgetallen. Het cryptosysteem gebaseerd op het
deelverzameling-som-probleem is niet in gebruik want het is geen veilig
systeem. Zoals verderop in dit hoofdstuk zal blijken kan het LLL-algoritme
worden gebruikt om dit aan te tonen. We zullen nu eerst bekijken hoe dit
cryptosysteem werkt, waarna we zullen aantonen dat het is te kraken met
behulp van het LLL-algoritme.

6.2 Een cryptosysteem
Voor het knapzakcryptosysteem zijn de volgende dingen vereist:

e Een superstijgende rij w = (wy, wo, ...wy,).

e Fen ¢ > iwi.

i=1
e Een r zo dat ggd(r,q) = 1.

Bereken vervolgens eerst b = (by, bs, ...b,), waar b; = rw; (mod q). Merk op
dat b in het algemeen geen superstijgende rij is.

b is nu de openbare sleutel en de privésleutel is (w,r,q). Nu wil A(lice)
een bericht a = (aj,as,...a,) sturen naar B(ob). Het bericht is in het
eenvoudigste geval een stuk tekst, maar het kan ook een bestand of een
plaatje zijn. De boodschap wordt in ieder geval binair geschreven. Dat wil
zeggen dat voor alle ¢ a; enkel een 0 of een 1 kan zijn. Hoe de boodschap
wordt omgezet tot binaire code is voor dit verhaal niet relevant.

Voordat A de boodschap verzendt, wordt deze met behulp van de

openbare sleutel b tot ¢ = Zaibi gecodeerd. Daarna zendt A ¢ naar

=1
B. a heet in de cryptografie de plaintext en ¢ wordt de cyphertext
genoemd.  Merk hierbij op dat we nu te maken hebben met een
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deelverzameling-som-probleem, want ¢ is de som van een deelverzameling
van b. Dit komt precies omdat alle a;’s 0 of 1 zijn.
B kent de privésleutel en kan daarmee c ontcijferen, zodat hij de originele
boodschap, de plaintext a, weer terugkrijgt. Kortom, B weet ¢ en zoekt
n

a = (ay,as,...a,) zo dat ¢ = Zaibi. Het decoderen gaat op de volgende
i=1
manier:

B berekent ¢ = ¢er~!

(mod ¢). Dan volgt dat

n

d=crt = Zaibﬂ’_l (mod q)

=1
n

Z a;wgrr~" (mod q)

=1
Z a;W; (mod q)
i=1

Maar dit is een eenvoudig geval van een deelverzameling-som-probleem,
omdat w een superstijgende 1ij is. Merk op dat 77! bestaat, omdat
ggd(r,q) = 1, en tevens dat ¢ < ¢, omdat > w; < q.

6.3 Het systeem gekraakt

Zoals al eerder is gezegd, is dit systeem niet veilig. Iemand die enkel de
gecodeerde boodschap en de openbare sleutel kent kan ook snel, dat wil
zeggen in polynomiale tijd, de originele boodschap terugvinden. Een kraker
kan op de volgende manier te werk gaan.

Met enkel kennis van ¢ en b = (by, bs, ...b,) wordt de volgende matrix M
gemaakt:

1 0 0 O

0 1 0 O

M = [nxn O1><n . ) : .
b —c . . : .

0O 0 ... 1 0
b1 bg Ce bn —C

Deze matrix kunnen we zien als n + 1 kolomvectoren die een rooster
opspannen. Passen we op dit rooster het LLL-algoritme toe, dan komen
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er korte vectoren uit. Het enige wat het algoritme doet is vectoren bij elkaar
optellen en van elkaar aftrekken en verwisselen. Om dus de —c¢ in matrix M
klein te krijgen, telt het algoritme er andere basisvectoren bij op. Hierdoor
veranderen de bovenste n rijen van de matrix natuurlijk ook. De lege kolom
die boven —c is geplaatst houdt bij welke waarden er bij —c zijn opgeteld.
Voor iedere keer dat b; bij ¢ is opgeteld, wordt de waarde van de ¢ rij in
de lege kolom met één verhoogd. Nu is het zo dat het zeker is dat een
deelverzameling van b als som c¢ oplevert. Omdat het algoritme de vectoren
zo klein mogelijk probeert te maken, zal de —c uiteindelijk 0 worden. In
die kolom staan dan enkel nullen en enen, namelijk één 1 voor iedere b; die
er nodig was om —c nul te maken. De oplossing die de kraker zoekt, staat
dus in die kolom die enkel nullen en enen bevat. Die kolom zal de originele
boodschap a zijn. Kortom: iedereen kan zonder privésleutel de cyphertext
decoderen.

Natuurlijk kan ook zonder LLL-algoritme iedereen de originele boodschap
terugvinden: men loopt gewoon alle mogelijkheden af. Het probleem is
echter dat er dan 2" mogelijkheden gecontroleerd moeten worden. Dat kost
erg veel rekentijd: het is NP. Het LLL-algoritme is wel een polynomiaal
algoritme, dus een kraker is met bovenstaande methode ‘weinig’ tijd kwijt
met het vinden van de originele boodschap. We zien hieraan dat het
knapzakcryptosysteem niet veilig is. Er zijn varianten van dit cryptosysteem
bedacht, waaronder een waarbij de b worden gemaakt door herhaalde
vermenigvuldiging. Bijna al deze systemen blijken niet veilig te zijn.
Natuurlijk is geen enkel systeem dat momenteel bestaat veilig als blijkt dat
P=NP.

Zoals al eerder gezegd, is het knapzakprobleem een N P-compleet
probleem. Maar hierboven staat een methode om in polynomiale tijd een
oplossing te vinden voor een deelverzameling-som-probleem. Is dit dan toch
P? Het antwoord is nee. Dit is niet waar omdat we hier in een speciaal
geval zitten. We weten namelijk dat er een deelverzameling is die als som
precies ¢ heeft, zo is ¢ geconstrueerd. In het algemeen is de vraag: “Is er een
deelverzameling met als som een gegeven waarde?” of “Zoek de maximale
som van deelverzamelingen kleiner dan een gegeven waarde.” In dat geval is
het, vooralsnog, niet mogelijk om een antwoord te geven in deterministische
polynomiale tijd.
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7 Wiskundigen in het kwadrant van Pasteur

In dit hoofdstuk vragen we ons af of we reden hebben te denken, afgezien
van het LLL-algoritme, dat het kwadrant van Pasteur in de wiskunde
bestaat. Zijn niet alle wiskundigen, in tegenstelling tot andere exacte
wetenschappers, altijd in te delen als ‘puur theoretisch onderzoek’ en ‘puur
toegepast onderzoek’? Dat is maar zeer de vraag. In dit hoofdstuk zullen we
voorbeelden bespreken van wiskundigen en wiskundig onderzoek die een veel
duidelijker toepassingsgericht karakter hebben. In veel voorbeelden gaat het
ofwel om onderzoekers die direct of indirect bij het LLL-algoritme betrokken
waren, ofwel om onderzoekers die Hendrik Lenstra of Ionica Smeets noemde
als mogelijke voorbeelden van ‘wiskundige Pasteurs’. Doen zij inderdaad
onderzoek met een concreet, maatschappelijk toepassingsdoel? En, wellicht
meer voor discussie vatbaar: mogen wij van dit onderzoek 66k fundamenteel
nieuwe wiskundige kennis verwachten?

De hieronder genoemde gebieden zijn een selectie. In het bijzonder lijken
ook de stochastiek en statistiek, die wij niet zullen bespreken, typische
voorbeelden van werk in het kwadrant van Pasteur.

7.1 Operations research en combinatoriek

Van alle toegepaste wiskunde is het directe economische nut van operations
research misschien wel het duidelijkst. Deze tak van de wiskunde houdt
zich bezig met het zoeken van optimale of bijna optimale oplossingen van
ingewikkelde beslisproblemen[10]. Typische toepassingen liggen in sectoren
als de logistiek, maakindustrie (denk aan voorraadbeheer), telecommunicatie
en zelfs dienstverlening (denk aan het maken van personeelsroosters). In
vrijwel alle gevallen gaat het om het vinden van de voordeligste strategie
voor allerlei micro-economische keuzes. Wat is de kortste route die langs
alle klanten van vandaag leidt? Wat zijn de grootste bottlenecks in het
internetverkeer en hoe lossen we die het efficiéntst op? We bespreken hier
voorbeelden van wiskundig werk binnen de vaak gerelateerde gebieden van
operations research, optimalisatie, die meestal tot de operations research
wordt gerekend, en combinatoriek, met name de grafentheorie.

De grenzen zijn overigens zeker niet precies afgebakend. Het is opvallend
hoe vaak wij in ons onderzoek namen zijn tegengekomen die werken op
een snijvlak van deze disciplines: de combinatorische optimalisatie. Dit
is bij uitstek het gebied van Laszl6 Lovasz, die voor zijn werk tal van
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prijzen in de wacht heeft gesleept, maar ook van bijvoorbeeld Alberto
Marchetti-Spaccamela, die samen met Peter van Emde Boas Hendrik Lenstra,
tot zijn aanvankelijke irritatie, op het spoor van de roosterbasisreductie
zette. De bekendste Nederlandse naam in dit gebied is ongetwijfeld Lex
Schrijver. Hij ontving in 2005 de Spinozapremie, de ‘Nederlandse Nobelprijs’
die in 1998 ook aan Hendrik Lenstra is toegekend (die overigens niet met
combinatoriek maar vooral met de computationele getallenleer naam heeft
gemaakt). Schrijver heeft, in de woorden van het juryrapport, “samenhang
gebracht in de combinatorische optimalisering” en dit veld “naar een hoger
niveau getild”[11].  Schrijver houdt zich niet alleen bezig met zuivere
wiskunde: hij speelde een actieve rol in het opstellen van het Spoorboekje
2007, een samenkomst van theorie en praktijk die de andere projectgroep
van het Modellenpracticum uitvoerig zal bespreken.

Hier zullen we proberen een idee te geven van dit vakgebied en zijn
toepassingsmogelijkheden door nog iets verder in te gaan op het werk van
Lovasz. Men zou misschien verwachten dat combinatorische optimalisatie
een vak is waarin concrete toepassingen voorop staan, maar dat is zeker
niet altijd het geval. Vrijwel alle publicaties van Lovasz hebben juist een
zeer sterk theoretisch karakter, met titels als The Geometry of Logconcave
Functions and an O(n3) Sampling Algorithm; Reflection positivity, rank
connectivity, and homomorphism of graphs; Finitely forcible graphons; of A
Borsuk theorem for antipodal links and a spectral characterization of linklessly
embeddable graphs. Waar gaat zijn vak over, behalve grafentheorie? We
beschouwen een niet al te esoterisch voorbeeld uit een van zijn bekendere[12]
papers: On the Shannon Capacity of a Graph (1979)[5].

In dit artikel berekent Lovasz de Shannoncapaciteit (de bandbreedte, in
ict-taal) van communicatiekanalen die op een bepaalde manier met een graaf
zijn te modelleren. Stel dat je telkens een kort elektrisch signaal door een
kabel stuurt, met telkens gelijke amplitude en frequentie maar met steeds
andere fase (ten opzichte van een zeker referentietijdstip). Deze fase is uit te
drukken in een getal van 0 tot 27, maar met dien verstande dat 0 weer heel
sterk op 27 lijkt. Of stel dat je een signaal verstuurt door borden in de lucht
te houden in felle regenboogkleuren. Het zijn dus kleuren uit de kleurencirkel,
die je wederom zou kunnen beschrijven door een hoek in radialen modulo 27.
Neem nu aan dat de ontvanger de gemeten hoek discretiseert tot vijf waarden:
A, B, C, D en E. Dit zijn de signalen waaruit de afzender zijn bericht
heeft opgebouwd. Door meetonnauwkeurigheden op grote afstand gaat de
datacommunicatie soms fout, maar nooit op een dramatische manier: men
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D C

Figuur 2: De vijthoekgraaf. Lovasz heeft de Shannoncapaciteit berekend van
communicatiekanalen die deze graaf beschrijft.

verwart misschien een C' met een B of een D, maar nooit met een A of een
E. Vanwege het cyclische domein van het signaal is het ook mogelijk dat £
en A verward worden. Je zou de situatie kunnen beschijven met de graaf in
figuur 2. Hierin geeft elke knoop een mogelijke waarde van het signaal aan,
en een kant geeft aan dat twee waarden mogelijk verward kunnen worden.
Stel dat we één teken per milliseconde verzenden. Wat is dan de capaciteit
van het datakanaal?

Een voor de hand liggende schatting zou zijn: één bit per milliseconde.
Het maximale aantal gegarandeerd onderscheidbare tekens uit de graaf is
immers twee: A en C, bijvoorbeeld, of B en E, maar niet A, C' en F want
dat levert al een mogelijke verwarring op tussen A en E. Per milliseconde
zijn er dus twee mogelijkheden, oftewel 2 log 2 = 1 bit. Maar we kunnen iets
slimmers verzinnen. We verdelen het hele signaal in blokken van twee. Bouw
nu een bericht op uit de volgende codewoorden: AA, BC', CE, DB en ED.
Deze vijf woorden zijn nooit te verwarren: AA niet met BC' omdat de A
en de C niet te verwarren zijn, BC' niet met £ D omdat de B en de E niet
te verwarren zijn, et cetera. We kunnen slechts één codewoord verzenden
per twee milliseconden, maar zo'n codewoord bevat wel 2log 5 ~ 2,322 bits
aan informatie. Per milliseconde is dat %210g5 = 2log/5 ~ 1,161 bits:
meer dus dan met de teken-voor-tekenmethode. De vraag is nu: wat is
de maximale capaciteit van dit kanaal als we onze codewoorden willekeurig
lang mogen maken (en dus geen rekening houden met het probleem van
tijdelijke opslag van heel lange codewoorden, benodigde rekenkracht, et
cetera)? Lovész kon bewijzen dat voor de vijfhoek een bitrate van % log V5,
die we al met codewoorden van slechts twee signalen konden bereiken, ook
maximaal is. In dit voorbeeld bereikten we die capaciteit toevallig al met
codewoorden van slechts twee signalen, maar het is in principe ook mogelijk
dat de maximale capaciteit alleen maar asymptotisch te bereiken is door
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steeds langere codewoorden te gebruiken. In het algemeen is het vraagstuk
zeer moeilijk oplosbaar. Lovéasz vond een functie waarmee een bovenschatting
van de Shannoncapaciteit van willekeurige grafen te berekenen is.

Dit uitgebreide voorbeeld toont aan dat ogenschijnlijk simpele vragen
uit de informatietheorie en informatica heel ingewikkelde en diepzinnige
antwoorden kunnen vergen. Vaak zijn methoden uit de combinatoriek
en combinatorische optimalisatie nodig, en, zoals het werk van Lovasz
en vele anderen laat zien, is het ook een belangrijke inspiratiebron voor
wezenlijk nieuwe inzichten in die vakgebieden. Zo geldt het probleem van de
Shannoncapaciteit van grafen nog steeds als zeer moeilijk[13]. Tegelijkertijd
ligt een belangrijk toepassingsgebied voor de hand: de datacommunicatie.
Kunnen we daarom dit soort werk als een typisch voorbeeld voor het
kwadrant van Pasteur zien? Zoals het combinatorische werk van Schrijver
heeft laten zien zal dat in veel gevallen heel redelijk zijn. Maar in onze ogen
is het bovenstaande voorbeeld uit het werk van Lovasz toch net iets meer
‘Bohr’” dan ‘Pasteur’.

Ten eerste heeft goed zoeken ons geen toepassingen opgeleverd waarin
de Shannoncapaciteit van een graaf, dus de theoretische limiet die Lovasz
probeert te vinden, in praktische datacommunicatietoepassingen werd
gebruikt. (Dit in tegenstelling tot het begrip Shannoncapaciteit in het
algemeen, en de formule van Shannon-Hartley in het bijzonder, waarnaar
een korte zoektocht direct heel toepassingsgericht werk oplevert[14].) De
redenen liggen voor de hand: het berekenen van de theoretische limiet is voor
een willekeurige graaf heel lastig, terwijl toepassers vooral geinteresseerd zijn
in de kanaalcapaciteit die met een enigszins redelijke woordlengte te behalen
is. Niet alleen zijn die vaak met wat trial-and-error wel in goede benadering
te vinden, vaak neemt de meeropbrengst van extra lange woorden heel snel
af.

Ten tweede is het niet duidelijk dat Lovasz dit werk uitvoerde met meer
dan een vaag idee van mogelijke toepassingen. Hij rept daar in ieder geval
met geen woord over in zijn artikel. Het is vrijwel zeker dat hij niet direct
met toepassers contact heeft gehad. Deze aanpak past goed in het kwadrant
van Bohr, of in het lineaire model: een moeilijk wiskundig probleem proberen
op te lossen, misschien geinspireerd maar zeker niet opgelegd door de echte
wereld, en het aan anderen laten om daar al dan niet iets mee te doen.
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7.2 Numerieke wiskunde

Het is nauwelijks een overdrijving om te stellen dat vrijwel alle problemen uit
de natuurkunde uiteindelijk neerkomen op het oplossen van ofwel integralen
ofwel (partiéle) differentiaalvergelijkingen. In sommige gevallen, zoals de
elektronenbanen van het waterstofatoom, is met pijn en moeite een exacte
oplossing te vinden in termen van elementaire functies. Veel vaker komt het
voor dat de oplossingen, als al kan worden aangetoond dat ze bestaan en
goed gedefinieerd zijn, niet algebraisch te vinden zijn. In zulke gevallen
moeten numerieke methoden uitkomst bieden. De numerieke wiskunde
probeert continue problemen op de een of andere manier te discretiseren om
ze vervolgens in een goede benadering door computers op te laten lossen. Het
praktische belang van zulke methoden is nauwelijks te overschatten. Zonder
numerieke wiskunde waren stromingsleer, fysische chemie of theorie van
gecondenseerde materie waarschijnlijk weinig meer dan fraaie intellectuele
bouwsels zonder al te grote voorspellingskracht buiten de allersimpelste
gevallen.

Een bekende naam in dit vakgebied is Alfio Quarteroni. Het was zijn
naam die als eerste in het hoofd van Hendrik Lenstra opkwam toen wij
hem vroegen of hij voorbeelden kon noemen van wiskundigen die hij tot
het kwadrant van Pasteur zou rekenen. Deze Italiaan heeft vele bijdragen
geleverd aan meer algemene methoden om allerlei problemen met numerieke
methoden op te kunnen lossen. Je zou dit zeker fundamenteel relevant
onderzoek kunnen noemen. Zo mocht Quarteroni in 2006 een plenaire
lezing houden op het International Congress of Mathematicians, een zeer
prestigieuze conferentie die eens in de vier jaar wordt gehouden en waar
ooit Hilbert zijn beroemde lijst van 23 onopgeloste wiskundige problemen
presenteerde. Hij zet deze kennis echter ook voortdurend in om allerlei
heel concrete problemen aan te pakken, vooral op het gebied van de
stromingsleer. Zo heeft hij gewerkt aan het modelleren van de menselijke
bloedsomloop[15][16]. Dit soort onderzoek is niet alleen een heel pittige
en wiskundig interessante testcase van en stimulans voor de numerieke
methoden die in de stromingsleer gebruikt worden, maar het wordt bovendien
uitgevoerd met de hoop dat het in de toekomst leidt tot beter begrip van,
en misschien wel betere behandelmethoden voor, medische problemen als
aderverkalking[17].

Maar de toepassingen kunnen nog veel concreter. In 2003 hielp
Quarteroni met zijn vloeistofdynamische simulaties het Zwitserse team eerste
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te worden in America’s Cup, de bekendste zeilwedstrijd ter wereld[18], een
overwinning die nog nooit door een Europees team in de wacht was gesleept.
Het bleef niet bij één in het oog springend project: van 2003 tot 2007 was hij
actief betrokken bij het plan van de eveneens Zwitserse avonturier Bertrand
Piccard om zonder tussenstops de wereld rond te vliegen in een volledig
op zonne-energie werkend vliegtuig[19]. Of dit soort werk nog een zuiver
wiskundige relevantie kan worden toegedicht is natuurlijk de vraag.

7.3 Cryptografie

We komen nog even terug op de cryptografie. In zekere zin is dit zowel het
oudste als het modernste toepassingsgebied van de wiskunde. Julius Caesar
gebruikte al een eenvoudig ‘substitutiecijfer’ om te voorkomen dat de vijand
de berichten aan zijn generaals zou kunnen onderscheppen:

If he had anything confidential to say, he wrote it in cipher,
that is, by so changing the order of the letters of the alphabet, that
not a word could be made out. If anyone wishes to decipher these,
and get at their meaning, he must substitute the fourth letter of
the alphabet, namely D, for A, and so with the others.
—Suetonius, Life of Julius Caesar[20]

Het is heel eenvoudig om geheimschrift van dit type te ontcijferen, maar
in de tijd van Caesar was het zeker beter dan niets. (Er zijn overigens
antieke bronnen die suggereren dat Caesar ook complexere vormen van
versleuteling gebruikte.) In de Tweede Wereldoorlog lag dat wel anders.
Genoodzaakt door de gigantische schaal van de militaire operaties en het
enorm toegenomen belang van radiocommunicatie, die door iedereen is af te
luisteren, bereikte de cryptografie nieuwe hoogten. De Duitse strijdmacht
gebruikte ingenieuze versleutelingskastjes, de Enigma-machines, nota bene
uitgevonden (of althans gepatenteerd) door een Nederlander, die wel een
behoorlijk grote mate van cryptografische veiligheid boden[21].

Terwijl iedereen in het geallieerde kamp de hoop had opgegeven op
het ontcijferen van de Enigma-machine die de Duitse marine in gebruik
had, wist een jonge wiskundige, Alan Turing, het probleem toch op te
lossen[22]. In Bletchley Park, het zenuwcentrum van ontcijferaars dat
in allerijl was opgetrokken uit de Britse wiskundige elite van die tijd,
ontwikkelden Turing en anderen een machine, de ‘Bombe’; die in hoog tempo
de brute rekenkracht kon leveren die toch nog nodig was om de sleutels
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van de vijand te kunnen vinden. De vaardigheid om de radioberichten
van de Duitsers te ontcijferen, met name die van en naar de gevreesde
U-boten, leverde de geallieerden een enorm strategisch voordeel op. Maar
Turing heeft ook enorme bijdragen geleverd aan de theorie, zelfs aan de
grondslagen van de wiskunde. Aan de hand van zijn concept van de
‘universele machine’, nu beter bekend als de Turingmachine, bewees hij
dat het onmogelijk is een programma te schrijven dat vooraf kan bepalen
of een willekeurig gegeven algoritme zijn berekening in eindige tijd kan
afronden, een stelling die equivalent is met de onvolledigheidsstelling van
Godel. Het is aannemelijk is dat tussen het theoretische en praktische werk
van Turing een duidelijke kruisbestuiving heeft plaatsgevonden. Opmerkelijk
genoeg voor een wiskundige van Cambridge probeerde Turing steeds zijn
theoretische ideeén met werkende apparaten in de praktijk te brengen. Helaas
is het hem nooit gelukt om voor zijn hartenwens, de bouw van een échte
‘universele machine’, de handen op elkaar te krijgen, maar zijn visionaire
blik is overduidelijk nu zijn universele machine ons overal omringt. Bij Alan
Turing waren het zuivere en het praktische onmiskenbaar in één persoon
verenigd.

Al deze ontwikkelingen dateren van voor de grote opkomst van operations
research of de computertechniek en informatica, die numerieke methoden
voor veel complexere problemen bruikbaar maakten (al liet onder meer het
Mathematisch Centrum, nu CWI, ook eerder wel grote numeriek wiskundige
problemen doorrekenen door ijverige dames, grotendeels met de hand[23]).
Toch is cryptografie ook een heel moderne ontwikkeling. Door de opkomst
van de personal computer en vooral het internet is goede cryptografie, in
het bijzonder public-key cryptography, in de afgelopen tien, vijftien jaar een
fenomeen geworden waarmee vrijwel iedereen dagelijks te maken heeft en
waarvan steeds meer zakelijke transacties athankelijk zijn.

De wiskunde van veiligheid op internet, diep weggestopt achter
webbrowsers en Secure Socket Layers, laat soms onverwacht haar gezicht
zien. In 2005 toonden Arjen Lenstra, Benne de Weger en Xiaoyun
Wang aan dat het niet alleen in theorie maar ook praktisch mogelijk was
twee verschillende websitebeveiligingscertificaten (X.509) te construeren met
dezelfde MDb5-hash (‘handtekening’), een zogenaamde hash collision. Dit
betekent dat deze cryptografische methode niet meer veilig is. Gelukkig
gebruikten webservers toen al meestal het veiligere SHA-1-algoritme, maar
ook dat begint nu haarscheurtjes te vertonen.
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De praktische relevantie van cryptografisch werk is heel groot. Maar
valt het daarmee ook in het kwadrant van Pasteur? Dat zal zeker niet
altijd het geval zijn. Wiskundig is het verschil misschien niet zo interessant
tussen een hash collision van twee willekeurige stukjes data, een resultaat
dat voor MD5 al bekend was, en een collision in de hash-functies van twee
beveiligingscertificaten van een gegeven type, de bijdrage van Arjen Lenstra
cum suis. Maar voor wezenlijke doorbraken in de cryptografie, evengoed als
voor werk aan de complexiteitsklassen van bepaalde algoritmen, zijn vaak
wezenlijk nieuwe wiskundige inzichten nodig. Zoals Hendrik Lenstra aangaf
tijdens ons interview: altijd bestaat de mogelijkheid dat cryptografische
problemen waarvan je hoopt dat ze te moeilijk zijn om te kraken toch simpel
blijken. “Als een cryptosysteem het wiskundegebied X gebruikt, dan is de
enige manier om het te breken of te onderzoeken: meer leren over gebied X.”
Terug naar de zuivere wiskunde dus!
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8 Conclusie

Op het eerste gezicht lijkt het LLL-algoritme duidelijk te passen in het
kwadrant van Pasteur. Er zijn vele, vaak praktische, problemen die met
het LLL-algoritme zijn opgelost. Dit verslag geeft daarvan een uitgewerkt
voorbeeld (zie paragraaf 6.1). Het is echter belangrijk om op te merken dat
Stokes’ kwadrantenmodel niet zozeer draait om de vraag of het bewuste
onderzoek leidt tot praktische toepassingen als om de vraag met welke
intentie het onderzoek aanvankelijk werd uitgevoerd. Ook het atoommodel
van Bohr heeft later immers enorm veel toepassingen gevonden. Wij
geloven dat, zo bezien, de ontwikkeling van het LLIL-algoritme verreweg het
beste geschaard kan worden onder het ‘zuiver wetenschappelijk onderzoek’
(Bush) dan wel ‘kennisgericht maar niet direct toepassingsgericht onderzoek’
(Stokes): het kwadrant van Bohr.

Waaruit blijkt dat de onderzoekers die bijdroegen aan het LLL-algoritme
hoofdzakelijk gericht waren op het vergaren van fundamentele kennis? De
motivatie van iedere onderzoeker is natuurlijk anders, maar wat we over elk
van de betrokkenen weten wijst meestal in dezelfde richting. Van Hendrik
Lenstra hebben wij informatie uit eerste hand.

In Lenstra’s visie leiden fundamentele wiskundige doorbraken in stappen
tot praktische toepassingen: de fundamentele onderzoekers komen met een
geheel nieuw resultaat (zeg: ‘probleem X is in polynomiale tijd oplosbaar’);
iets meer toepassingsgerichte onderzoekers gaan dit resultaat fine-tunen en
verbeteren (een algoritme in P met een complexiteitsveelterm van lagere
graad of met lagere coéfficiénten vinden); weer een ander ziet dat dit
algoritme een bepaald praktisch probleem in principe zou kunnen oplossen,
et cetera. Uiteindelijk komt de vinding zo terecht bij de “mensen in blauwe
overalls” die haar kunnen toepassen in een betaalautomaat of een fabriek.
Deze visie op het proces van innovatie lijkt sterk op het lineaire model, met
name op het aspect van het lineaire model dat Stokes de ‘dynamische vorm’
noemt.

Fundamentele motivatie

In het interview dat wij Hendrik Lenstra hebben mogen afnemen geeft hij
herhaaldelijk aan dat zijn grote passie lag en ligt bij het vooruithelpen van de
wiskunde als zodanig, niet in het inzetten van die wiskunde voor iets anders.
Hoewel hij toepassingen die voortkomen uit werk als het LLL-algoritme met
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interesse volgt, laat hij het graag aan anderen om die toepassingen te vinden:
“Ik heb een stelling en geef hem door.” Hij laat er geen onduidelijkheid over
bestaan dat Lenstra zichzelf helemaal aan het begin zou plaatsen van het
stappenschema dat uiteindelijk tot technologische innovatie leidt: “Na één
stap voel ik al dat ik er niet thuis ben.”

Ook de andere betrokken onderzoekers hadden waarschijnlijk een
duidelijk op fundamentele kennis gerichte motivatie. Zowel Alberto
Marchetti-Spaccamela als Peter van Emde Boas, die Hendrik Lenstra
voor het eerst, bijna tegen wil en dank, op het spoor van het
roosterbasisreductieprobleem zette, hield zich onder meer bezig met
theoretische informatica. Hoewel dit vakgebied naar wiskundige maatstaven
‘toegepast’ is — zo houdt het zich bezig met de complexiteit van algoritmen,
een kwestie die van groot belang is bij het ontwikkelen van efficiénte
computerprogramma’s — is de insteek van veel theoretisch informatici,
waaronder volgens Lenstra zeker ook die van Van Emde Boas en Marchetti,
heel ‘zuiver’ van aard.

En hoe zit het met die andere twee L’s, Laszlé Lovasz en Arjen Lenstra?
Ook zij zijn of waren betrokken bij problemen in de complexiteitstheorie
en algoritmiek. Arjen Lenstra was van de drie de auteur die zich al langer
had beziggehouden met de ontbinding van geheeltallige veeltermen. Hoewel
het hier gaat om een in zekere zin ‘praktische’ vraag — hoe veel rekentijd
is er nodig om zo’n veelterm te ontbinden? — had dit probleem toen, voor
zover ons bekend, geen voorziene toepassing. Ook Arjen Lenstra was dus
vermoedelijk vooral gemotiveerd door de hoop het begrip van fundamentele
wiskundige problemen te vergroten.

Lovész’  voornaamste onderwerp, ten slotte, was (en 1is) de
combinatorische optimalisatie, wederom een vakgebied waarin het vinden
van efficiénte algoritmen een belangrijke plaats inneemt. Hij hield en houdt
zich daarbinnen veel bezig met grafentheorie. Dit is een vakgebied waarin
mogelijke praktische toepassingen vaak voor de hand liggen. Het Travelling
Salesman Problem is daarvan het bekendste voorbeeld. Desalniettemin
maken ook de meeste publicaties van Lovasz een sterk theoretische indruk.
Je zou dit soort werk daardoor zowel in het kwadrant van Bohr als in het
kwadrant van Pasteur in kunnen delen. Cruciaal is hierbij wiens motivaties
je als uitgangspunt neemt. Het is goed mogelijk dat subsidieverstrekkers
de hoop op praktische toepassingen die Lovasz’ vakgebied wekt meewegen
in hun beslissing subsidie toe te kennen aan zijn onderzoek. Zo bezien
zou het onderzoek in het kwadrant van Pasteur moeten worden ingedeeld.
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Pasteur was echter, anders dan Lovész voor zover ons bekend, ook zelf direct
betrokken bij de toepassingen van zijn werk. Hij deed veel van zijn inspiratie
voor zijn theorie over micro-organismen op in brouwerijen en wijnbedrijven.
Bovendien kon hij deze bedrijven, op basis van zijn nieuwe, fundamentele
theorieén, ook direct adviezen geven om het fermentatieproces te verbeteren.
Van een dergelijke directe betrokkenheid is in het werk van Lovasz geen
sprake. Als we uitsluitend Lovasz’ eigen motivatie en werkzaamheden in
ogenschouw nemen, zouden we zijn werk dus duidelijk in het kwadrant
van Bohr moeten indelen of, binnen het lineaire model, onder het zuiver
wetenschappelijk onderzoek.

Verkooppraatje

We hebben gezien dat alle hoofdrolspelers in de ontdekking van het
LLL-algoritme, althans als het gaat om hen persoonlijk, in het algemeen
een duidelijk fundamentele, niet direct toepassingsgerichte motivatie hadden
met het werk waarmee zij rond de publicatie van het artikel (1982) bezig
waren. Maar er zijn meer en meer specifieke redenen om dit werk in het
kwadrant van Bohr in te delen.

Allereerst is daar de naam van het bewuste artikel: Factoring polynomials
with rational coefficients. Deze titel is enigszins opmerkelijk. Het is heel
verdedighaar om te stellen dat het LLL-algoritme een veel grotere impact
heeft gehad dan het ontbindingsalgoritme, waarvoor het artikel het enkel als
‘hulpmiddeltje’ presenteert. (Dit is iets gechargeerd: het artikel besteedt
ook ruim één pagina aan twee kleinere toepassingen op de Diophantische
benadering.) Het LLL-algoritme heeft, zoals in hoofdstuk 6 is beschreven,
inmiddels zeer veel toepassingen gevonden, zowel in de zuivere wiskunde
(voor een selectie van toepassingen in de getaltheorie, zie [9]) als voor
heel praktische problemen (het knapzakcryptosysteem, hercompressie van
JPEG-afbeeldingen, ...) Het boek dat bij de conferentie ter gelegenheid van
de 25e verjaardag van het artikel werd gepubliceerd (LLL+25) heet dan ook
The LLL Algorithm: Survey and Applications[1]: ontbinding van rationale
veeltermen is slechts één van de vele hoofdstukken.

Waarom noemden Lenstra, Lenstra en Lovasz hun artikel dan toch
naar die specifiecke toepassing op ontbinding, in plaats van iets als ‘een
roosterbasisreductiealgoritme met toepassingen in de getaltheorie’? Hendrik
Lenstra en lonica Smeets leggen beide uit dat in die tijd vrijwel alle
wiskundigen die zich met dit onderwerp bezighielden ervan uitgingen dat
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het ontbinden van veeltermen met rationale coéfficiénten niet in polynomiale
tijd te doen was. De redenering was ongeveer: het vinden van de
priemfactorontbinding van gehele getallen is niet polynomiaal (dat wil
zeggen: niet in L = Z2log(n), het aantal bits van het ingevoerde getal
n), dus het ontbinden van hele veeltermen van gehele getallen of breuken
moet dan zeker ook niet polynomiaal zijn. Het werd zelfs als een zinvolle
bezigheid gezien om pathologische gevallen te bedenken waarop bestaande
ontbindingsalgoritmes hun tanden zeker stuk zouden bijten en zodoende aan
te tonen dat die algoritmes in het algemeen niet polynomiaal zijn. Het
LLL-algoritme bewees dat een polynomiaal algoritme wel degelijk mogelijk
was[4]. Dit was een opzienbarend resultaat. Voor ‘de L’s’ was het dan ook
natuurlijk om dit resultaat tot hoofdonderwerp van hun artikel te maken.
Hoewel de auteurs hebben aangegeven dat zij min of meer bij toeval op
hun grote ontdekking stuitten, suggereert hun keuze voor deze titel dat het
vergroten van fundamentele wiskundige kennis meer hun doel was dan het
rechtstreeks bijdragen aan praktische toepassingen, die het ontbinden van
rationale veeltermen, voor zover Hendrik Lenstra bekend, immers niet had.

Het interview met Hendrik Lenstra biedt nog meer redenen om te denken
dat, ook waar het gaat om dit specifieke project, het werk van de drie
auteurs in het kwadrant van Bohr ingedeeld zou moeten worden. Hadden de
auteurs, naast hun fundamentele interesse, niet ook een toepassingsgericht
doel? Hendrik Lenstra zegt daarover: “Wij wisten niet, hoewel het niet
verbaasde, dat het LLL-algoritme verdere toepassing zou hebben.” Dat
kan dus niet de motivatie voor hun werk zijn geweest!* Gevraagd of hij
destijds voor zijn onderzoek een (oneerbiedig gezegd) ‘verkooppraatje’ had
voor subsidieverstrekkers en andere beleidsmakers — een vergezicht op een
aansprekende praktische toepassing waartoe zijn werk zou kunnen leiden —
antwoordde Hendrik Lenstra dat dit niet het geval was. Zoiets wordt alleen
geaccepteerd als je vrij concrete redenen hebt om te denken dat je zulke
ideeén ook zou kunnen waarmaken. Die had hij destijds kennelijk niet,
wat er wederom sterk op wijst dat het onderzoek dat leidde tot LLL niet
toepassingsgericht was.

4Merk opnieuw op dat het kwadrantenmodel alleen toepassingen meeweegt die door de
onderzoekers zelf min of meer werden voorzien of beoogd: ook het atoommodel van Bohr
kreeg immers later zeer veel toepassingen.
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Wiskundige Pasteurs

Maar betekent dit dat het model van Stokes niet van toepassing is op de
wiskunde? Ons lijkt van niet. In hoofdstuk 7 hebben we geprobeerd te
laten zien dat er wel degelijk voorbeelden bestaan van wiskundigen die in
het kwadrant van Pasteur geplaatst kunnen worden. We noemden onder
meer Alan Turing, Alfio Quarteroni en Lex Schrijver. Onze casus leert ons
alleen dat het LLL-algoritme geen argument is voor dit model: het past even
goed in het model van Bush.
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A Interviews

A.1 Henkdrik Lenstra

Met dit interview wilden we een betere inkijk krijgen in de motivatie
van Hendrik Lenstra, maar ook van de andere betrokken wiskundigen.
We proberen met het interview ook een goed idee te krijgen over het
LLL-algoritme in het lineaire en het kwadrantenmodel. Maar voordat we
hier meteen over beginnen, begonnen we met het nog eens terugkijken naar
de geschiedenis van het LLL-algoritme.

Het begon in eerste instantie met geheeltallig lineair programeren, omdat
van Emde Boas en Marchetti bezig waren met de vraag over het vinden
van een punt met geheeltallige codrdinaten in een gegeven driehoek. We
moeten dus gaan kijken naar de oorsprong van lineair programmeren. Lineair
programmeren is eigenlijk uit toepassingen ontstaan. Er zijn namelijk veel
problemen oplosbaar door ze te lineariseren. “De grote link van lineair
programmeren met wiskunde is lineaire algebra, want simpel gezegd is
lineair programmeren lineaire algebra met de gelijktekens vervangen door
ongelijktekens,” aldus Lenstra.

Arjen Lenstra was bezig met factorisatie van polynomen over algebraische
getallichamen, waar hij er door toeval op uitkwam dat dit met behulp van
het LLL-algoritme polynomiaal was. Arjen zat vooral in het vakgebied
van algoritmen en complexiteit, dat toch wordt gezien als meer toegepast.
Polynoomfactorisatie had eigenlijk alleen toepassingen ‘binnen de muren’.
Buiten de wiskunde had het vrijwel geen toepassingen.

Toen Hendrik Lenstra de vragen van Marchetti en van Emde Boas kreeg,
had hij al meteen in zijn hoofd: ‘basisreductie’. Zijn benaderingswijze
destijds noemt Lenstra heel “naief,” maar zijn grote voordeel was dat hij
de ‘taal’ van complexiteitsklassen beheerste. Hendrik was juist bezig in
getaltheorie, waardoor het opvallend was dat ze juist naar hem kwamen
met de vraag. Maar van Emde Boas was een goede vriend van Lenstra,
waardoor het handig was om eerst naar Hendrik te gaan voor deze vraag.
Hij wist daarom dat Hendrik zijn probleem wel kon oplossen. Als van Emde
Boas niet een vriend was geweest, zou hij waarschijnlijk naar Amsterdam zijn
gegaan om zijn probleem op te lossen. Van Emde Boas en Marchetti waren
toch vrij theoretisch ingesteld, maar hadden nog nooit echt goed meegekregen
hoe ze hun probleem goed konden oplossen. Terwijl Hendrik eigenlijk vrijwel
meteen een oplossing uit zijn mouw schudde.
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Het viel ons op dat de drie L’s eigenlijk helemaal niet verbaasd waren dat
er veel toepassingen zouden zijn. Hendrik was zelf niet met deze toepassingen
bezig. Hij heeft een stelling en geeft hem door. Zoals Hendrik dat mooi
verwoordde: “Na één stap voel ik dat ik al niet meer thuis ben.” Hendrik
hield zich dus niet met de toepassing bezig, net als Arjen.

Laszlé Lovasz was net als Hendrik Lenstra zeer zuiver gemotiveerd. Hij is
een combinatoricus en was destijds bezig met combinatorische optimalisatie.
Lovasz was bezig met de ellisoidemethode. Hij kwam er achter dat de
basisreductie van roosters, die Hendrik Lenstra had bedacht, hiervoor zeer
nuttig was. Hij wou deze methode dus optimaliseren. Wat ideaal zou zijn, is
dat dit algoritme uiteindelijk polynomiaal wordt. Want “een P algoritme is
een ‘goed’ algoritme,” volgens Lenstra. In die tijd was dit nog theoretisch,
maar je had er wel echt iets aan als een algoritme aantoonbaar P was.

Hendrik Lenstra had geen ‘verkooppraatje’ voor zijn onderzoek. Dit was
puur omdat zijn ‘doel’ niet lag bij de toepassingen. Of Universiteit Leiden
soms contractresearch uitvoert wist hij niet precies — hij gaat uit van wel
— maar zijn afdeling doet dat niet. Hij zegt dat geld bij het bedrijfsleven
ophalen voor de wiskunde sowieso heel lastig is: “De eerste en tweede
geldstroom, daar hield en houdt het eigenlijk wel mee op.”

Ons leek de correspondentie tussen Lovasz en Lenstra uit het niets
te komen. Daarom vroegen we hoe wiskundigen corresponderen en
correspondeerden. Het blijkt dat je niet zozeer direct naar een specialist
gaat, maar eerst gaat aankloppen bij mensen van je directe omgeving. Hierbij
gaat het bijvoorbeeld over vrienden en familie. “Je gaat niet direct naar een
wildvreemde.”

Het algoritme heeft nog wel wat veranderingen ondergaan na de publicatie
van het artikel. Maar dit waren verandering over de snelheid van het
algoritme. Hierbij gaat het vaak over het begrenzen van tussenresultaten.
Hendrik Lenstra zag zijn rol in het bewijzen dat het algoritme polynomiaal
is, met een zo elegant en kort mogelijk bewijs. “Ik heb de grootste stap
gedaan. Ik haalde het van oneindig naar twintig. De rest mag het van
twintig naar twee brengen.”

Ten slotte vroegen we Hendrik Lenstra waar hij de ontwikkeling van het
algoritme zou plaatsen in de modellen van Stokes en Bush, die we kort uiteen
zetten. Ook vroegen we hem hoe hij in het algemeen denkt over de vragen
die deze modellen proberen te beantwoorden. Hij plaatste zichzelf in het
kwadrant van Bohr. Hij noemde wel enkele namen van wetenschappers
die in het kwadrant van Pasteur zouden passen, waaronder die van Alfio

42



Quarteroni. Desalniettemin is hij blij dat zijn theorieén toegepast worden in
de praktijk. “Ook probeer ik in mijn colleges altijd te laten zien aan studenten
hoe de theorie toepasbaar is voor het oplossen van een aansprekend concreet
probleem.”

A.2 TIonica Smeets

Ionica Smeets kwam in aanraking met het LLL-algoritme door haar
promotieonderzoek. Haar onderzoek ging over kettingbreuken in meerdere
dimensies. Het bleek dat het LLL-algoritme nuttig was voor het
benaderen van deze kettingbreuken. Omdat zij actief is en was als
wetenschapsjournaliste, was het idee van Hendrik Lenstra dat zij hierover een
artikel schreef. Een extra motivatie hiervoor was dat ze het een bijzondere
ontstaansgeschiedenis vond.

Het artikel werd uiteindelijk niet gepubliceerd in een wetenschappelijk
tijdschrift, maar wel nog in een jubileumboek over het LLL-algoritme. Maar
van de ene kant is het te begrijpen dat dit soort abstracte dingen niet
interessant zijn voor een algemeen publiek. Toepassingen in bijvoorbeeld
JPEG zijn daarentegen veel interessanter. Vaak zijn dingen die wiskundigen
interessant vinden te ‘moeilijk’ voor een algemeen publiek. Toch hoeft
het niet allemaal zo moeilijk te zijn. Een goed voorbeeld hiervan zijn de
Wiskundemeisjes, waarvan Ionica er één is, die onder meer een column in
de Volkskrant hebben. Zij ervaart dat je een eenvoudig maar belangrijk
wiskundig principe goed begrijpelijk kunt maken.

Wat wel opviel was dat Hendrik Lenstra, Arjen Lenstra en Lészlé Lovasz
het artikel over het LLL-algoritme bewust op een plek terecht kwam waar
‘echte’ wiskundigen het zouden lezen en niet alleen informatici. De reden
was dat ze graag hadden dat ook deze wiskundigen in aanmerking zouden
komen met complexiteit.

Verder bevestigde Smeets de geschiedenis van het LLL-algoritme. Hieruit
volgde dat Lovasz destijds veel problemen had met het reizen buiten
Hongarije. Dit kwam door het het I[Jzeren Gordijn: ’'maximale kennis
binnenhouden en niet te veel afgeven’ was het Sovjetdenken over wetenschap.
Lovéasz had de meeste invloed op de ontwikkeling van het LLL-algoritme als
zodanig: “Ze hadden het net zo goed het Lovaszalgoritme kunnen noemen.”

Nadat we haar hadden verteld over het model van Stokes, zei ze dat
ze het LLL-algoritme in het kwadrant van Pasteur vond passen. Maar dat
hangt er natuurlijk sterk van af wat je precies als ‘toepassing’ ziet: bedoel

43



je uitsluitend praktische toepassingen of ook toepassingen in concrete maar
voornamelijk wiskundig interessante vraagstukken?
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