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The common structure of the space of pure states P of a classical or a quantum
mechanical system is that of a Poisson space with a transition probability. This is a
topological space equipped with a Poisson structure, as well as with a function p : P×P →
[0, 1], with certain properties. The Poisson structure is connected with the transition
probabilities through unitarity (in a specific formulation intrinsic to the given context).
In classical mechanics, where p(ρ, σ) = δρσ , unitarity poses no restriction on the Poisson

structure. Quantum mechanics is characterized by a specific (complex Hilbert space) form
of p, and by the property that the irreducible components of P as a transition probability
space coincide with the symplectic leaves of P as a Poisson space. In conjunction, these
stipulations determine the Poisson structure of quantum mechanics up to a multiplicative
constant (identified with Planck’s constant).
Motivated by E. M. Alfsen, H. Hanche-Olsen and F. W. Shultz (Acta Math. 144 (1980)

267–305) and F.W. Shultz (Commun. Math. Phys. 82 (1982) 497–509), we give axioms
guaranteeing that P is the space of pure states of a unital C∗-algebra. We give an explicit
construction of this algebra from P.

1. Introduction

Section 1.1 motivates the axiomatic study of state spaces (rather than operator
algebras) in the foundations of quantum mechanics. In 1.2 we review the work of
Alfsen et al. on the structure of state spaces of C∗-algebras. In 1.3 we discuss
the concept of a transition probability space, and in 1.4 it is shown how the pure
state space of a C∗-algebra is an example of such a space. Section 1.5 recalls the
concept of a Poisson manifold, and introduces (uniform) Poisson spaces generalizing
this concept. Poisson structures may be intertwined with transition probabilities,
leading to the notion of unitarity, and to the central idea of this paper, a Poisson
space with a transition probability.

In Sec. 2 we introduce our axioms on pure state spaces, and formulate the
theorem relating these axioms to pure state spaces of C∗-algebras. Section 3 outlines
the proof of this theorem, which essentially consists of the reconstruction of a C∗-
algebra from its pure state space, endowed with the structure of a uniform Poisson
space with a transition probability. This reconstruction is of interest in its own
right. Some longer proofs and other technical comments appear in Sec. 4.
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In this paper functions and functionals are real-valued, unless explicitly indicated
otherwise. Hence C(X) stands for C(X,R), etc. Similarly, vector spaces (including
the various algebras appearing in this paper) are generally over R, unless there is
an explicit label C denoting complexification. An exception to this rule is that we
use the standard symbols H for a complex Hilbert space, and B(H) (K(H)) for the
set of all bounded (compact) operators on H. The self-adjoint part of a C∗-algebra
AC is denoted by A; we denote the state space of AC by S(A) or S(AC), and its pure
state space by P(A) or P(AC). Here the ‘pure state space’ is the space of all pure
states, rather than its w∗-closure.

1.1. Algebraic aspects of mechanics

At face value, quantum mechanics (Hilbert space, linear operators) looks
completely different from classical mechanics (symplectic manifolds, smooth func-
tions). The structure of their respective algebras of observables, however, is
strikingly similar. In quantum mechanics, one may assume [46, 22] that the ob-
servables A form the self-adjoint part of some C∗-algebra AC. The associative
product does not map A into itself, but the anti-commutator A ◦B = 1

2 (AB+BA)
and the (scaled) commutator [A,B]! = i(AB − BA)/! do; in conjunction, they
give A the structure of a so-called Jordan–Lie algebra [26, 22]. This is a vector
space V equipped with two bilinear maps ◦ and [ , ] : V × V → V , such that ◦ is
symmetric, [ , ] is a Lie bracket (i.e., it is anti-symmetric and satisfies the Jacobi
identity), and the Leibniz property

[A,B ◦ C] = [A,B] ◦ C +B ◦ [A,C] (1.1)

holds; in other words, the commutator is a derivation of the Jordan product. More-
over, one requires the associator identity

(A ◦B) ◦ C −A ◦ (B ◦ C) = k[[A,C], B] (1.2)

for some k ∈ R. This implies the Jordan identity A2 ◦ (A ◦ B) = A ◦ (A2 ◦ B)
(where A2 = A ◦A), which makes (V, ◦) a Jordan algebra [22, 28]); accordingly, the
symmetric product ◦ is referred to as the Jordan product. Note that for V = A
and [A,B] = [A,B]! one has k = !2/4.
Conversely, a Jordan–Lie algebra A for which k > 0 (cf. [22] for comments on

the case k < 0), and which in addition is a so-called JB-algebra, is the self-adjoint
part of a C∗-algebra AC.
Here a JB-algebra [9, 28] is a Jordan algebra which is a Banach space, and

satisfies ‖ A ◦ B ‖≤ ‖ A ‖ ‖ B ‖, ‖ A2 ‖=‖ A ‖2, and ‖ A2 ‖≤ ‖ A2 + B2 ‖ for all
A,B ∈ A; the first axiom can actually be derived from the other two; alternatively,
the last two axioms may be replaced by ‖ A ‖2≤‖ A2 +B2 ‖.
The associative C∗-product is given by A·B = A◦B−i

√
k[A,B] (the · is usually

omitted); the associativity follows from the Leibniz property, (1.2), and the Jacobi
identity. For the construction of the norm and the verification of the axioms for a
C∗-algebra, see [58, 47] and Sec. 3.8 below.
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In classical mechanics, one takes the Jordan–Lie algebra to consist of all smooth
functions on the phase space, equipped with the operations of pointwise multipli-
cation f ◦ g = fg and Poisson bracket [f, g] = {f, g} (the latter coming from a
symplectic structure, or from a more general abstract Poisson structure [55, 39]).
The identity (1.2) is then satisfied with k = 0. A Jordan–Lie algebra for which
k = 0 in (1.2) is called a Poisson algebra.

Thus from an algebraic point of view the only difference between classical and
quantum mechanics is that in the former the Jordan product ◦ is associative,
whereas in the latter the more general identity (1.2) is satisfied for some k > 0.

From an axiomatic point of view, it is rather difficult to justify (1.2), and it is
hard to swallow that the non-associativity of ◦ should be the defining property of
quantum mechanics. Historically, the commutator hardly played a role in algebraic
quantum axiomatics, all attention being focused on the Jordan structure [43, 49, 9,
28, 22]. Whereas the Jordan identity may be justified by the need to have a spectral
theory, the step from the Jordan- to the full C∗-structure has had to be justified
algebraically by an appeal to the need to combine different physical systems using a
well-behaved tensor product [11, 27]. This gives the commutator a different status
from its classical counterpart (viz. the Poisson bracket), which describes the way
observables lead to flows (i.e., dynamics).

1.2. State spaces and the work of Alfsen, Shultz, and Hanche-Olsen

A transparent way of analyzing and justifying algebras of observables is the study
of their state spaces. A state on a JB-algebra A is defined as a linear functional
ω on A satisfying ω(A2) ≥ 0 for all A ∈ A and ‖ω‖ = 1; in case that A has an
identity I this implies that ω(I) = 1. The idea is that the algebraic structure of
A is encoded in certain (geometric) properties of its state space S(A), so that A
may be reconstructed from S(A), equipped with these properties. The most basic
property of S(A) is that it is a convex set, which is compact in the w∗-topology
if A is a JB-algebra with unit. The description of quantum mechanics in terms
of general compact convex state spaces is closely tied to the so-called operational
approach, and is invariably interpreted in terms of laboratory procedures such as
filtering measurements [48, 40, 41, 42, 37, 14, 35].

For C∗-algebras (which are special instances of complexified JB-algebras) this
type of study culminated in [5], where axioms were given which guarantee that a
given compact convex set K (assumed to be embedded in a locally convex Hausdorff
vector space) is the state space of a C∗-algebra with unit (also cf. [4, 12, 8]). In
order to motivate our own approach, we need to explain these axioms to some
extent.

Firstly, a face F is defined as a convex subset of K with the property that
ρ and σ are in F if λσ + (1 − λ)ρ ∈ F for some λ ∈ (0, 1). A face F is called
norm-exposed [7] if it equals F = {ρ ∈ K|〈f, ρ〉 = 0} for some f ∈ A+b (K). Here
Ab(K) is the space of all bounded affine functions on K, and A

+
b (K) its subspace

of positive functions. A(K) will stand for the space of continuous affine functions
on K [6, 12].
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A face F is said to be projective [6] if there exists another face F ! such that F
and F ! are norm-exposed and affinely independent [3], and there exists a map (a so-
called affine retraction) : K → K with image the convex sum of F and F !, leaving
its image pointwise invariant, and having the technical property of transversality
(cf. [6, 3.8] or [4]) (alternative definitions are possible [6]). The first axiom of [5] is

Axiom AHS1. Every norm-exposed face of K is projective.

A face consisting of one point is called a pure state, and the collection of pure states
forms the so-called extreme boundary ∂eK of K. The smallest face containing
a subset S ⊂ K is denoted by F (S), and we write F (ρ, σ) for F ({ρ, σ}). Two pure
states ρ, σ are called inequivalent if F (ρ, σ) is the line segment {λσ+(1−λ)ρ | λ ∈
[0, 1]}. Otherwise, they are called equivalent. The second axiom is

Axiom AHS2. If pure states ρ and σ -= ρ are equivalent, then F (ρ, σ) is norm-
exposed and affinely isomorphic to the state space of the C∗-algebra M2(C) of 2×2
matrices over C. Moreover, each pure state is norm-exposed.

The state space S(M2(C)) is affinely isomorphic to the unit ball B3 in R3.
Concretely, we identify a state on M2(C) with a density matrix on C2, which may
be parametrized as

1

2

(
1 + x y + iz
y − iz 1− x

)
(1.3)

where x, y, z ∈ R. The positivity of this matrix then corresponds to the constraint
x2 + y2 + z2 ≤ 1 (see [5]).
From the point of view of quantum logic (cf. e.g. [54, 14, 31]), Axiom AHS1

allows one to define an orthomodular lattice, whose elements are the projective
faces of K [6, §4]. Axiom AHS2 not only allows one to prove that this lattice has
the covering property [8, 6.15], but also eventually implies that the co-ordinatizing
field of the lattice is C (cf. Sec. 4.1). In the finite-dimensional case Axioms AHS1
and AHS2 are sufficient to construct a C∗-algebra AC whose state space is K; as
a Banach space A = A(K) with the sup-norm. To cover the general case, more
axioms are needed.

Axiom AHS3. The σ-convex hull of ∂eK is a split face of K.

Here the σ-convex hull in question consists of all sums
∑
i λiρi, where ρi ∈

∂eK, λi ∈ [0, 1],
∑
i λi = 1, and the sum converging in the norm topology (regarding

K as a subset of the dual of the Banach space A(K)). A face F of K is split if there
exists another face F ′ such that K = F ⊕c F ′ (direct convex sum). Let C ⊂ ∂eK
consist of all pure states in a given equivalence class, and let F (C) be the σ-convex
hull of C (this coincides with the smallest split face containing any member of C).
Then Ab(F (C))C can be made into a von Neumann algebra (with predual F (C)C)
on the basis of axioms 1–3 [8, §6], [5, §6]. Axiom AHS3 is used to show that this is
an atomic (type I) factor, i.e., B(HC) for some Hilbert space HC .
The remaining axioms serve to combine all the A(F (C)) into A(K) in such a

way that one obtains the self-adjoint part of a C∗-algebra. The Jordan product
A ◦ B (or, equivalently, A2) is constructed using the non-commutative spectral
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theory defined by K [6, 7]. This product then coincides with the anti-commutator
in Ab(F (C)) / B(HC). In principle this could map A ∈ A(K) into A2 ∈ Ab(K)
(that is, not necessarily in A(K)). Hence

Axiom AHS4. If A ∈ A(K) then A2 ∈ A(K).
This is not the formulation of the axiom given in [8, 5], but by [6, 9.6], [8, 7.2] it

is immediately equivalent to the version in the literature. Finally, the commutator,
already defined on each A(F (C)), needs to be well-defined on all of A(K). This is
guaranteed by

Axiom AHS5. K is orientable.

Roughly speaking, this means that one cannot transport a given face F (ρ, σ) /
B3 (cf. Axiom AHS2) in a continuous way around a closed loop so that it changes
its orientation (cf. [5, §7] for more detail; also Sec. 4.3 below). It is remarkable that
A(K) is automatically closed under the commutator, given the axioms. It is proved
in [5] that a compact convex set is the state space of a unital C∗-algebra iff Axioms
AHS1–AHS5 are satisfied.
Even if one is happy describing quantum mechanics with superselection rules

in terms of C∗-algebras, from a physical perspective one should not necessarily
regard the above axioms as unique, or as the best ones possible. The notion of
a projective face (or, equivalently, a P -projection [6]) is a complicated one (but
cf. [11] for a certain simplification in the finite-dimensional case, and [35] for an
analogous interpretation in terms of filters in the general case). One would like to
replace the concept of orientability by some statement of physical appeal. Most
importantly, the comparison of classical and quantum mechanics seems facilitated
if one could start from the space of pure states ∂eK as the basic object. Moreover,
from an ontological rather than an epistemological point of view one would prefer a
formulation in terms of pure states as well, and the same comment applies if one is
interested in an individual (as opposed to a statistical) interpretation of quantum
mechanics.

1.3. Transition probability spaces

Clearly, the extreme boundary ∂eK of a given compact convex set K as a topo-
logical space does not contain enough information to reconstruct K. However, one
can equip ∂eK with the additional structure of a so-called transition probability,
as first indicated by Mielnik [41] (also cf. [50]). Namely, given ρ, σ ∈ ∂eK one can
define p by

p(ρ, σ) = inf{f(ρ)|f ∈ Ab(K), 0 ≤ f ≤ 1, f(σ) = 1} . (1.4)

For later use, we notice that it follows that

p(σ, ρ) = 1− sup{f(σ)|f ∈ Ab(K), 0 ≤ f ≤ 1, f(ρ) = 0} . (1.5)

For the moment we denote ∂eK by P . By construction,

p : P × P → [0, 1] (1.6)
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satisfies ρ = σ ⇒ p(ρ, σ) = 1. Moreover, we infer from (1.5) that

p(ρ, σ) = 0 ⇐⇒ p(σ, ρ) = 0 . (1.7)

If K has the property that every pure state is norm-exposed, then, as is easily
verified, p(ρ, σ) = 1⇒ ρ = σ, so that

p(ρ, σ) = 1 ⇐⇒ ρ = σ . (1.8)

Any function p on a set P with the properties (1.6), (1.7), and (1.8) is called a
transition probability, and (P , p) is accordingly called a transition probability space.
(In its abstract form these concepts are due to von Neumann [44], who in addi-
tion required p to satisfy (1.9) below; also cf. [40, 59, 13, 14, 45]). A transition
probability is called symmetric if

p(ρ, σ) = p(σ, ρ)∀ρ, σ ∈ P . (1.9)

A subset S ⊂ P is called orthogonal if p(ρ, σ) = 0 for all pairs ρ -= σ in S. A
basis B of P is an orthogonal subset for which

∑
ρ∈B p(ρ, σ) = 1 for all σ ∈ P (here

the sum is defined as the supremum of all finite partial sums). A basic theorem
is that all bases of a given symmetric transition probability space have the same
cardinality [40]; this cardinality is the dimension of P .
One imposes the requirement

Every maximal orthogonal subset of P is a basis. (1.10)

A transition probability space is called irreducible if it is not the union of two
(nonempty) orthogonal subsets. A component C is a subset of P with the property
that p(ρ, σ) = 0 for all ρ ∈ C and all σ ∈ P\C. Thus a transition probability space
is the disjoint union of its irreducible components [13]. An irreducible component
of P is called a sector. This agrees with the terminology in algebraic quantum
mechanics, where P is the pure state space of a C∗-algebra (of observables) [46]. If
one defines a topology on P through the metric d(σ, ρ) = l.u.b.{|p(ρ, τ)−p(σ, τ)|, τ ∈
P} [13], then the topological components coincide with the components just defined.
However, a different topology may be defined on P , and therefore we shall use the
term ‘sector’ as referring to ‘component’ in the first (probabilistic) sense. Two
points lying in the same sector of P are called equivalent (and inequivalent in
the opposite case).
Any subset Q ⊂ P has an orthoplement Q⊥ = {σ ∈ P | p(ρ, σ) = 0 ∀ρ ∈ Q}.

One always has Q ⊆ Q⊥⊥; a subset Q is called orthoclosed if Q = Q⊥⊥. Any set of
the type Q⊥ (hence in particularQ⊥⊥) is orthoclosed. In particular, one may choose
an orthogonal subset S, in which case [40, 59] S⊥⊥ = {ρ ∈ P|

∑
σ∈S p(ρ, σ) = 1}.

(Clearly, if S = B is a basis then B⊥⊥ = P .) Not every orthoclosed subset is
necessarily of this form, however there exist examples of orthoclosed subsets which
do not have any basis [59, 14]. To exclude pathological cases, one therefore adds
the axiom [59, 14]:

If Q ⊆ P is orthoclosed then every maximal orthogonal subset of
Q is a basis of Q. (1.11)
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Definition 1. A well-behaved transition probability space is a pair (P , p)
satisfying (1.6)–(1.11).

Of course, (1.7) and (1.10) follow from (1.9) and (1.11), respectively.
The simplest example of a well-behaved transition probability space is given by

putting the ‘classical’ transition probabilities

p(ρ, σ) = δρσ (1.12)

on any set P .
One can associate a certain function space A(P) with any transition probability

space P . Firstly, for each ρ ∈ P define pρ ∈ (∞(P) by

pρ(σ) = p(ρ, σ). (1.13)

Secondly, the normed vector space A00(P), regarded as a subspace of (∞(P) (with
sup-norm), consists of all finite linear combinations of the type

∑N
i=1 cipρi , where

ci ∈ R and ρi ∈ P . The closure of A00(P) is called A0(P). Thirdly, the double dual
of A0(P) will play a central role in what follows, so that we use a special symbol:

A(P) = A0(P)∗∗. (1.14)

Since A0(P) ⊆ (0(P), one has A(P) ⊆ (0(P)∗∗ = (∞(P). The space A(P) is the
function space intrinsically related to a transition probability space P . In the case
(1.12) one immediately finds A(P) = (∞(P).
(Following a seminar the author gave in Göttingen, 1995, A. Uhlmann informed

him that in his lectures on quantum mechanics A00(P) had long been employed as
the space of observables.)

1.4. Transition probabilities on pure state spaces

Using the results in [8] (in particular, the so-called ‘pure state properties’) as
well as Theorem 2.17 in [6], it is not difficult to show that the pure state space of a
unital JB-algebra (where every pure state is indeed norm-exposed) is a symmetric
transition probability space.
If one further specializes to the pure state space P(A) of a unital C∗-algebra

AC, from (1.4) one may derive the explicit expression

p(ρ, σ) = 1− 1
4‖ρ− σ‖

2 , (1.15)

which coincides with

p(ρ, σ) = |(Ωρ,Ωσ)|2 (1.16)

if ρ and σ are equivalent (where Ωρ is a unit vector implementing ρ in the corre-
sponding GNS representation, etc.), and equals 0 if they are not; cf. [25, 46, 50].
This will be proved in Sec. 4.2.
The notion of equivalence between pure states used here may refer either to the

one defined between Eqs. (1.10) and (1.11) in the context of transition probability
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spaces, or to the unitary equivalence of the GNS-representations defined by the
states in question in the context of C∗-algebras; these notions coincide. In fact,
P(A) has the following decomposition into sectors (see [46], which on this point
relies on [25]):

P(A) = ∪αPHα , (1.17)

whereHα is isomorphic to the irreducible GNS-respresentation space of an arbitrary
state in the projective Hilbert space PHα. All states in a given subspace PHα are
equivalent, and any two states lying in different such subspaces are inequivalent.

We regard the self-adjoint part A of AC as a subspace of C(P(A)) (where P(A)
is equipped with the w∗-topology inherited from S(A)) through the Gel’fand trans-
form Â(ρ) = ρ(A), for arbitrary A ∈ A and ρ ∈ P(A). Similarly, an operator
A ∈ B(H) is identified with a function Â ∈ C(PH) through the canonical inclu-
sion PH ⊂ S(B(H)) (where PH carries the w∗-topology relative to this inclusion).
Under these identifications, for each ρ ∈ P(A) the irreducible representation πρ(A)
is unitarily equivalent to the restriction of A to the sector containing ρ; every
irreducible representation of A is therefore given (up to unitary equivalence) by the
restriction of A to one of its sectors.

In any case, one recovers the usual transition probabilities of quantum mecha-
nics. If AC = K(H) (or MN (C) = B(CN )), the pure state space P(K(H)) is the
projective Hilbert space PH (or PCN ). One may then equally well interpret Ωρ
(etc.) in (1.16) as a lift of ρ ∈ PH to the unit sphere SH in H.
In particular, it follows that the pure state space of a unital C∗-algebra is a

well-behaved transition probability space. The space A(P(A)) can be explicitly
identified. Let πra be the reduced atomic representation of AC [30]; recall that
πra is the direct sum over irreducible respresentations πra = ⊕ρπρ (on the Hilbert
space Hra = ⊕ρHρ), where one includes one representative of each equivalence class
in P(A). For the weak closure one obtains πra(AC)− = ⊕ρB(Hρ). The Gel’fand
transform maps πra(A)− into a subspace of (∞(P(A)). It will be shown in Sec. 3.4
that this subspace is precisely A(P(A)); we write this as

A(P(A)) = π̂ra(A)− . (1.18)

The isomorphism between πra(A)− and A(P(A)) thus obtained is isometric and
preserves positivity (since the Gel’fand transform does).

For any well-behaved transition probability space P one can define a lattice
L(P), whose elements are the orthoclosed subsets of P (including the empty set ∅,
and P itself). The lattice operations are: Q ≤ R means Q ⊆ R, Q ∧ R = Q ∩ R,
and Q∨R = (Q∪R)⊥⊥. The zero element 0 is ∅. Note that the dimension of L(P)
as a lattice equals the dimension [31] of P as a transition probability space. It is
orthocomplemented by⊥, and is easily shown to be a complete atomic orthomodular
lattice [59, 13, 14] (cf. [31] for the general theory of orthomodular lattices). In our
approach, this lattice plays a somewhat similar role to the lattice F(K) of projective
faces of K (or, equivalently, of P -projections [6]; note that for C∗-algebras L(∂eK)
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is not necessarily isomorphic to F(K)). However, it seems to us that both the
definition and the physical significance of L(P) are more direct.
If P is a classical transition probability space (see 1.12) then L(P) is the dis-

tributive (Boolean) lattice of subsets of P . If P = P(A) is the pure state space
of a C∗-algebra AC then L(P(A)) may be shown to be isomorphic (as an ortho-
complemented lattice) to the lattice of all projections in the von Neumann algebra
πra(AC)−.
For general compact convex sets it is not clear to what extent ∂eK as a transition

probability space equipped with the w∗-topology determines K. If, however, K =
S(A) is the state space of a unital C∗-algebra AC (with self-adjoint part A), then one
can reconstruct A as a JB-algebra, and hence the state space S(A), from the pure
state space P(A) as a transition probability space (with transition probabilities
given by (1.15)), equipped with the w∗-uniformity (this is the uniformity [33] U
generated by sets of the form {(ρ, σ) ∈ P × P| |〈ρ− σ,A〉| < ε} for some ε > 0 and
A ∈ A; the physical interpretation of such uniformities has been discussed by Haag,
Kastler, and Ludwig, cf. [57] for a very clear discussion).
The essential step in this reconstruction is the following reformulation of a result

of Shultz [50] (whose formulation involved πra(AC)− rather than A(P(A))) and
Brown [16]: if A is the self-adjoint part of a unital C∗-algebra then

A = A(P(A)) ∩ Cu(P(A)) , (1.19)

where Cu(P(A)) is the space of uniformly continuous functions on P(A), and, as
before, A has been identified with a subspace of C(P(A)) through the Gel’fand
transform. Note that to recover AC as a C∗-algebra from the pure state space
P(A), one in addition needs an orientation of P(A), see [5,50] and Sec. 4.3.
For certain C∗-algebras (called perfect, cf. [50, 2]) one can replace Cu(P(A))

by C(P(A)) (with respect to the w∗-topology). These include B(H) and K(H), for
any Hilbert space H.

1.5. Poisson spaces with a transition probability

Our goal, then, is to give axioms on a well-behaved transition probability space
P which enable one to construct, by a unified procedure, a C∗-algebra or a Poisson
algebra, which has P as its space of pure states, and reproduces the original transi-
tion probabilities. Moreover, even if one is not interested in these axioms and takes
quantum mechanics (with superselection rules) at face value, the structure laid out
in this paper provides a transparent reformulation of quantum mechanics, which
may prove useful in the discussion of the classical limit [36].
We first have to define a number of concepts, which play a foundational role in

both classical and quantum mechanics. Apart from transition probabilities, Poisson
brackets play a central role in dynamical theories. Recall that a Poisson manifold
[55, 39] is a manifold P with a Lie bracket { , } : C∞(P )×C∞(P )→ C∞(P ), such
that C∞(P ) equipped with this Lie bracket, and pointwise multiplication as the
Jordan product ◦, is a Poisson algebra. Symplectic manifolds are special instances
of Poisson manifolds; in the symplectic case the Hamiltonian vector fields span the
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tangent space at every point of P . Recall from classical mechanics [39] that any H ∈
C∞(P ) defines a so-called Hamiltonian vector field XH by XHf = {H, f}; the
flow of XH is called a Hamiltonian flow; similarly, one speaks of a Hamiltonian
curve.
The most important result in the theory of Poisson manifolds states that a

Poisson manifold P admits a decomposition into symplectic leaves [55, 39]. This
means that there exists a family Sα of symplectic manifolds, as well as continuous
injections ια : Sα → P , such that P = ∪αια(Sα) (disjoint union), and

{f, g}(ια(σ)) = {ι∗αf, ι∗αg}α(σ) , (1.20)

for all α and all σ ∈ Sα. Here { , }α is the Poisson bracket associated to the
symplectic structure on Sα [39], and (ι∗αf)(σ) = f(ια(σ)), etc.
We will need a generalization of the notion of a Poisson manifold, which is

inspired by the above decomposition.

Definition 2. A Poisson space P is a Hausdorff topological space together
with a linear subspace A ⊂ C(P ) and a collection Sα of symplectic manifolds, as
well as continuous injections ια : Sα → P, such that:

• P = ∪αια(Sα) (disjoint union);
• A separates points;
• A ⊆ C∞L (P ), where C∞L (P ) consists of all f ∈ C(P ) for which ι∗αf ∈ C∞(Sα)
for each α;
• A is closed under Poisson brackets.

The last requirement means, of course, that the Poisson bracket, computed from the
symplectic structure on the Sα and the above decomposition of P through (1.20),
maps A×A into A. In the context of Poisson spaces, each subspace ια(Sα) of P is
called a symplectic leaf of P . This terminology is sometimes applied to the Sα
themselves as well.
In general, this decomposition falls under neither foliation theory nor (Whitney)

stratification theory (cf. [51] for this theory in a symplectic context).
If the ambient space P carries additional structure, such as a uniformity, or

a smooth structure, one can refine the above definition in the obvious way; such
refinements will play an important role in what follows.

Definition 3. A uniform Poisson space is a Poisson space P in which the
topology is defined by a uniformity on P, and which satisfies Definition 2 with C(P )
replaced by Cu(P ).

Here Cu(P ) is the space of uniformly continuous functions on P ; it follows that
elements of C∞L (P ) are now required to be uniformly continuous.
Similarly, a smooth Poisson space is a Poisson space for which P is a manifold,

and C(P ) in Definition 2 is replaced by C∞(P ). Hence C∞L (P ) = C
∞(P ). By the

symplectic decomposition theorem, a smooth Poisson space with A = C∞(P ) is
nothing but a Poisson manifold.
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In any case, C∞L (P ) is the function space intrinsically related to a (general,
uniform, or smooth) Poisson space P .
The pure state space P(A) of a C∗-algebra AC is a uniform Poisson space in the

following way. We refer to (1.17) and subsequent text.
Firstly, it follows directly from the definition of the w∗-uniformity on P(A) that

each Â, A ∈ A, is in Cu(P(A)); hence A ⊂ Cu(P(A)), as required. As is well known,
a C∗-algebra separates the points of its pure state space (cf. [30]).
Secondly, it is not difficult to show that the natural manifold topology on a

projective Hilbert space PH coincides with the w∗-topology it inherits from the
canonical inclusion PH ⊂ S(B(H))∗. It follows that the inclusion map of any sector
PHα (equipped with the manifold topology) into P(A) (with the w∗-topology) is
continuous.
Thirdly, there is a unique Poisson structure { , } on P(A) such that

{Â, B̂} = i ̂(AB −BA) . (1.21)

This Poisson bracket is defined by letting the sectors PHα of P(A) coincide with its
symplectic leaves, and making each PHα into a symplectic manifold by endowing
it with the (suitably normalized) Fubini–Study symplectic form [53, 38, 18, 19, 20,
39]. The reason that this structure is uniquely determined by (1.21) is that in an
irreducible representation π(AC) on a Hilbert space H the collection of differentials
{dπ̂(A), A ∈ A} is dense in the cotangent space at each point of PH. Note that the
precise choice of Hα in its unitary equivalence class does not affect the definition
of this Poisson structure, since it is invariant under unitary transformations. Since
AC is a C∗-algebra, A is closed under the right-hand side of (1.21), and therefore
under the Poisson bracket on the left-hand side as well.
We now return to general Poisson spaces.
If P is simultaneously a (general, uniform, or smooth) Poisson space and a

transition probability space, two function spaces are intrinsically associated with it:
C∞L (P) and A(P), respectively. The space naturally tied with both structures in
concert is therefore

AL(P) = A(P) ∩ C∞L (P) . (1.22)

Since elements of AL(P) are smooth on each symplectic leaf of P , they generate
a well-defined Hamiltonian flow, which, of course, stays inside a given leaf.

Definition 4. A (general, uniform, or smooth) Poisson space which is simulta-
neously a transition probability space is called unitary if the Hamiltonian flow on P
defined by each element of AL(P) preserves the transition probabilities. That is, if
ρ(t) and σ(t) are Hamiltonian curves (with respect to a given H ∈ AL(P)) through
ρ(0) = ρ and σ(0) = σ, respectively, then

p(ρ(t), σ(t)) = p(ρ, σ) (1.23)

for each t for which both flows are defined.

We now come to the central concept of this work.
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Definition 5. A (general, uniform, or smooth) Poisson space with a
transition probability is a set P which is a well-behaved transition probability
space and a unitary (general, uniform, or smooth) Poisson space, for which A =
AL(P).

This definition imposes two closely related compatibility conditions between the
Poisson structure and the transition probabilities: firstly, it makes a definite choice
for the space A appearing in the definition of a Poisson space, and secondly it
imposes the unitarity requirement.

If (P , p) is a classical transition probability space (that is, p is given by (1.12)),
then any Poisson structure is unitary. This is, indeed, the situation in classical
mechanics, where P is the phase space of a physical system. The best-known
example is, of course, P = R2n with canonical symplectic structure.
The pure state space P(A) of a C∗-algebra is a uniform Poisson space with a

transition probability. Indeed, we infer from (1.18) that A(P) ⊂ C∞L (P(A)), so
that AL(P(A)) as defined in (1.22) coincides with A as given in (1.19). Moreover,
the flow of each A ∈ A on a given symplectic leaf (= sector) PHα of P(A) is the
projection of the flow Ψ(t) = exp(−itA)Ψ on Hα. Since A is self-adjoint, exp(−itA)
is a unitary operator, and the transition probabilities (1.16) are clearly invariant
under such flows.

2. Axioms for Pure State Spaces

As remarked above, a direct translation of the Axioms AHS1–AHS5 for compact
convex sets to axioms on their extreme boundaries is difficult. Nevertheless, we can
work with a set of axioms on a set P , some of which are similar to AHS1–AHS5.
In particular, AHS2 can be directly translated:

Definition 6. A well-behaved transition probability space P is said to have the
two-sphere property if for any two points ρ, σ (with ρ -= σ) lying in the same
sector of P , the space {ρ, σ}⊥⊥ is isomorphic as a transition probability space to
the two-sphere S2, with transition probabilities given by p(z, w) = 1

2 (1+ cos θ(z, w))
(where θ(z, w) is the angular distance between z and w, measured along a great
circle).

Here the orthoclosed space {ρ, σ}⊥⊥ = ρ ∨ σ may be regarded as an element of
the lattice L(P). If ρ and σ lie in different sectors of P , then ρ ∨ σ = {ρ, σ}; this
follows from repeated application of De Morgan’s laws [31] and ρ⊥⊥ = ρ (etc.).

To understand the nature of the two-sphere property, note that a two-sphere S2

with radius 1 may be regarded as the extreme boundary of the unit ball B3 ⊂ R3,
seen as a compact convex set. As we saw in Sec. 1.2, B3 / S(M2(C)). Restricted
to the extreme boundary, the parametrization (1.3) leads to a bijection between
P(M2(C)) / PC2 and S2. Under this bijection the transition probabilities (1.16)
on PC2 are mapped into the ones stated in Definition 6.
In other words, the two-sphere property states that there exists a fixed reference

two-sphere S2ref / PC2, equipped with the standard Hilbert space transition pro-
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babilities p = pC2 given by (1.16), and a collection of bijections Tρ∨σ : ρ∨σ → S2ref ,
defined for each orthoclosed subspace of the type ρ∨ σ ⊂ P (where ρ and σ -= ρ lie
in the same sector of P), such that

pC2(Tρ∨σ(ρ
′), Tρ∨σ(σ

′)) = p(ρ′, σ′) (2.1)

for all ρ′, σ′ ∈ ρ ∨ σ.
Now consider the following axioms on a set P :
Axiom 1. P is a uniform Poisson space with a transition probability;
Axiom 2. P has the two-sphere property;
Axiom 3. The sectors of P as a transition probability space coincide with the

symplectic leaves of P as a Poisson space;
Axiom 4. The space A (defined through Axiom 1 by (1.22)) is closed under the

Jordan product constructed from the transition probabilities;

Axiom 5. The pure state space P(A) of A coincides with P .
The meaning of Axiom 4 will become clear as soon as we have explained how

to construct a Jordan product on A(P), for certain transition probability spaces P .
This axiom turns A into a JB-algebra, which is contained in C(P). Hence each
element of P defines a pure state on A by evaluation; Axiom 5 requires that all pure
states of A be of this form (note that, by Axiom 1, A already separates points).
Axioms 2 and 4 are direct analogues of Axioms AHS2 and AHS4, respectively

(also cf. the end of Sec. 4.2). The ‘bootstrap’ Axiom 5 restricts the possible unifor-
mities on P ; it is somewhat analogous to Axiom AHS3.
In the previous section we have seen that the pure state space of a unital

C∗-algebra satisfies Axioms 1–5.
The remainder of this paper is devoted to the proof of the following

Theorem. If a set P satisfies Axioms 1–5 (with P as a transition probability
space containing no sector of dimension 3), then there exists a unital C∗-algebra
AC, whose self-adjoint part is A (defined through Axiom 1). This AC is unique up
to isomorphism, and can be explicitly reconstructed from P , such that

(1) P = P(A) (i.e., P is the pure state space of A);
(2) the transition probabilities (1.4) coincide with those initially given on P ;
(3) the Poisson structure on each symplectic leaf of P is proportional to the
Poisson structure imposed on the given leaf by (1.21);

(4) the w∗-uniformity on P(A) defined by A is contained in the initial uniformity
on P ;

(5) the C∗-norm on A ⊂ AC is equal to the sup-norm inherited from the inclu-
sion A ⊂ (∞(P).

The unfortunate restriction to transition probability spaces without 3-dimen-
sional sectors (where the notion of dimension is as defined after (1.10), i.e., as the
cardinality of a basis of P as a transition probability space) follows from our method
of proof, which uses the von Neumann co-ordinatization theorem for Hilbert lattices
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[23, 54, 32]. In view of the parallel between our axioms and those in [5], however,
we are confident that the theorem holds without this restriction. To make progress
in this direction one has to either follow our line of proof and exclude the possibility
of non-Desarguesian projective geometries (cf. [23, 24] in the present context), or
abandon the use of Hilbert lattices and develop a spectral theory of well-behaved
transition probability spaces, analogous to the spectral theory of compact convex
sets of Alfsen and Shultz [6, 7]. Despite considerable efforts in both directions the
author has failed to remove the restriction.
The theorem lays out a possible mathematical structure of quantum mechanics

with superselection rules. Like all other attempts to do so (cf. [43, 44, 49, 37, 14]),
the axioms appear to be contingent. This is particularly true of Axiom AHS2 and
of our Axiom 2, which lie at the heart of quantum mechanics. One advantage of
the axiom schemes in [5] and the present paper is that they identify the incidental
nature of quantum mechanics so clearly.
If P is merely assumed to be a Poisson space with a transition probability (i.e., no

uniformity is present), then the above still holds, with the obvious modifications.
In that way, however, only perfect C∗-algebras [50, 2] can be reconstructed (cf.
Sec. 1.4).

3. From Transition Probabilities to C∗-algebras

The proof of the theorem above essentially consists of the construction of a
C∗-algebra AC from the given set P . In summary, we can say that in passing from
pure states to algebras of observables one has the following correspondences.

Pure state space Algebra of observables

transition probabilities Jordan product
Poisson structure Poisson bracket
unitarity Leibniz rule

To avoid unnecessary interruptions of the argument, some of the more technical
arguments are delayed to Chapter 4.

3.1. Identification of P as a transition probability space
This identification follows from Axiom 1 (of which only the part stating that

P be a well-behaved transition probability space is needed) and Axiom 2, as a
consequence of the following result.

Proposition 1. Let a well-behaved transition probability space P (with asso-
ciated lattice L(P)) have the two-sphere property. If P has no sector of dimension 3,
then P / ∪αPHα as a transition probability space (for some family {Hα} of complex
Hilbert spaces), where each sector PHα is equipped with the transition probabilities
(1.16).
This statement is not necessarily false when P does have sectors of dimension 3

(in fact, we believe it to be always true in that case as well); unfortunately our
proof does not work in that special dimension.
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In any case, it is sufficient to prove the theorem for each sector separately, so
we may assume that P is irreducible (as a transition probability space). Even
so, the proof is quite involved, and will be given in Sec. 4.1.

3.2. Spectral theorem

For each orthoclosed subset Q of a well-behaved transition probability space P ,
define a function pQ on P by

pQ =

dim(Q)∑

i=1

pei ; (3.1)

here {ei} is a basis of Q; it is easily seen that pQ is independent of the choice of
this basis (cf. [59]).

Definition 7. Let P be a well-behaved transition probability space. A spectral
resolution of an element f ∈ (∞(P) is an expansion (in the topology of pointwise
convergence)

f =
∑

j

λjpQj , (3.2)

where λj ∈ R, and {Qj} is an orthogonal family of orthoclosed subsets of P (cf. (3.1))
for which

∑
j pQj equals the unit function on P .

Proposition 2. If P = ∪αPHα (with transition probabilities (1.16)) then any
f ∈ A00(P) has a unique spectral resolution.

By the previous section this applies, in particular, to a transition probability
space P satisfying Axioms 1 and 2.

Proof. Firstly, the case of reducible P may be reduced to the irreducible one
by grouping the ρi in f =

∑N
i=1 cipρi into mutually orthogonal groups, with the

property that (∪ρ)⊥⊥ is irreducible if the union is over all ρi in a given group. Thus
we henceforth assume that P is irreducible, hence of the form P = PH with the
transition probabilities (1.16).
If P is finite-dimensional the proposition is simply a restatement of the spectral

theorem for Hermitian matrices. In the general case, let f be as above, and Q :=
{ρ1, . . . , ρN}⊥⊥. If σ ∈ Q then f(σ) =

∑
j λjpQj (σ) for some λj and mutually

orthogonal Qj ⊂ Q, as in the previous paragraph. If σ ∈ Q⊥ this equation trivially
holds, as both sides vanish.
Let us assume, therefore, that σ lies neither in Q nor in Q⊥. Define ϕQ(σ) by

the following procedure: lift σ to a unit vector Σ in H, project Σ onto the subspace
defined by Q, normalize the resulting vector to unity, and project back to PH (this
is a Sasaki projection in the sense of lattice theory [14,31]). In the Hilbert space
case relevant to us, the transition probabilities satisfy

p(σ, ρ) = p(σ, ϕQ(σ))p(ϕQ(σ), ρ) (3.3)
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for ρ ∈ Q and σ /∈ Q⊥. We now compute f(σ) by using this equation, followed by
the use of the spectral theorem in Q, and subsequently we recycle the same equation
in the opposite direction. This calculation establishes the proposition for σ /∈ Q⊥.

!

If P is a classical transition probability space (see (1.12)) then a spectral theorem
obviously holds as well; it simply states that a function f with finite support {σi}
is given by f =

∑
i f(σi)pσi .

3.3. Jordan structure

Proposition 3. If P = ∪αPHα (with transition probabilities (1.16)),
f =

∑
j λjpQj is the spectral resolution of f ∈ A00(P), and f2 is defined by f2 =∑

j λ
2
jpQj , then the product ◦ defined by

f ◦ g = 1
4 ((f + g)

2 − (f − g)2) (3.4)

turns A00(P) into a Jordan algebra. Moreover, this Jordan product ◦ can be extended
to A0(P) by (norm-) continuity, which thereby becomes a JB-algebra (with the sup-
norm inherited from (∞(P)). Finally, the bidual A(P) is turned into a JB-algebra
by extending ◦ by w∗-continuity.

The bilinearity of (3.4) is not obvious, and would not necessarily hold for
arbitrary well-behaved transition probability spaces in which a spectral theorem
(in the sense of Proposition 2) is valid. In the present case, it follows, as a point of
principle, from the explicit form of the transition probabilities in PH. The quickest
way to establish bilinearity, of course, is to look at a function pQ (where Q lies in
a sector PH of P) as the Gel’fand transform of a projection operator on H.
Given bilinearity, the claims of the proposition follow from the literature. The

extension to A0(P) by continuity, turning it into a JB-algebra, is in [6, Thm. 12.12]
or [8, Prop. 6.11]. For the the extension to A(P) see Sec. 3 of [9] and Sec. 2 and
Prop. 6.13 of [8]. (There is a spectral theorem in A(P), which is a so-called JBW -
algebra, as well, cf. [6, 7, 9], but we will not need this.)
The norm in A(P) is the sup-norm inherited from (∞(P) as well; this establishes

item 5 of the Theorem. !

If P is classical, A(P) = (∞(P), and the Jordan product constructed above is
given by pointwise multiplication. This explains why the latter is used in classical
mechanics.

3.4. Explicit description of A(P)

Proposition 4. Let P = ∪αPHα (with transition probabilities (1.16)), and re-
gard self-adjoint elements A = ⊕αAα of the von Neumann algebraMC = ⊕αB(Hα)
as functions Â on P in the obvious way: if ρ ∈ PHα then Â(ρ) = ρ(Aα). Denote
the subspace of (∞(P) consisting of all such Â, A ∈M, by M̂. Then

A(P) = M̂ . (3.5)
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Note that the identification of A ∈M with Â ∈ (∞(P) is norm-preserving relative
to the operator norm and the sup-norm, respectively. Also, it is clear that this
proposition proves (1.18).

Proof. Inspired by [1, 19], we define a (locally non-trivial) fiber bundle B(P),
whose base space B is the space of sectors, equipped with the discrete topology,
and whose fiber above a given base point α is B(Hα)sa; here Hα is such that the
sector α is PHα. Moreover, P itself may be seen as a fiber bundle over the same
base space; now the fiber above α is PHα. We will denote the projection of the
latter bundle by pr. A cross-section s of B(P) then defines a function ŝ on P by
ŝ(ρ) = [s(pr(ρ))](ρ). The correspondence s ↔ ŝ is isometric if we define the norm
of a cross-section of B(P) by ‖s‖ = supα∈B ‖s(α)‖ (where the right-hand side of
course contains the operator norm in B(Hα)), and the norm of ŝ as the sup-norm
in (∞(P).
It follows directly from its definition that the space A00(P) consists of section s

of B(P) with finite support, and such that s(α) has finite rank for each α. Its closure
A0(P) contains all sections such that the function α→ ‖s(α)‖ vanishes at infinity,
and s(α) is a compact operator. It follows from elementary operator algebra theory
that the dual A0(P)∗ may be realized as the space of sections for which s(α) is of
trace-class and α→ ‖s(α)‖1 (the norm here being the trace-norm) is in (1(B). The
bidual A(P) then consists of all sections of B(P) for which α→ ‖s(α)‖ is in (∞(B)
(here the crucial point is that K(H)∗∗ = B(H)). Eq. (3.5) is then obvious. !

For later use, we note that A0(P) and even A00(P) are dense in A(P) in the
topology of pointwise convergence. This is because firstly K(H) is dense in B(H)
in the weak operator topology [30] (as is the set of operators of finite rank), hence
certainly in the coarser topology of pointwise convergence on P , and secondly the
topology of pointwise convergence on (∞(B) is contained in the w∗-topology ((∞(B)
being the dual of (1(B), which in turn is the dual of (0(B)); recall that any (pre-)
Banach space is w∗-dense in its double dual (e.g., [30]).
Under the correspondence A(P) = M̂ ↔ M the Jordan product constructed

in the previous section is then simply given by the anti-commutator of operators in
M.

3.5. Algebra of observables

By Axiom 1, the space of observables A is defined by (1.22). We now use
Axiom 3, which implies that each symplectic leaf of P is a projective Hilbert space
PHα. For the moment we assume that each leaf PHα has a manifold structure
relative to which all functions Â, where A ∈ B(Hα)sa, are smooth (such as its usual
manifold structure). Then A(P) ∩ Cu(P) ⊂ C∞L (P) by the explicit description of
A(P) just obtained. It then follows from (1.22) that

A = A(P) ∩ Cu(P) . (3.6)

It is easily shown that A is closed (in the sup-norm). This follows from the fact
that A(P) is closed, plus the observation that the subspace of functions in (∞(P)
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which are uniformly continuous with respect to any uniformity on P , is closed; this
generalizes the well-known fact that the subspace of continuous functions relative
to any topology on P is sup-norm closed (the proof of this observation proceeds by
the same ε/3-argument).

Note that A0(P) is not necessarily a subspace of A; it never is if the C∗-algebra
AC to be constructed in what follows is antiliminal [21].
We can construct a Jordan product in A by the procedure in Sec. 3.3. By

Proposition 3 and Axiom 4, this turns A into a JB-algebra. At this stage we can
already construct the pure state space P(A); the first claim of the Theorem then
holds by Axiom 5.

We may regard the restriction of A to a given sector PHα as the Gel’fand trans-
form of a Jordan subalgebra of B(Hα)sa. This subalgebra must be weakly dense in
B(Hα)sa, for otherwise Axiom 5 cannot hold.
Let us now assume that some PHα have an exotic manifold structure such that

A(P)∩Cu(P) is not contained in C∞L (P), so that A ⊂ A(P)∩Cu(P) is a proper in-
clusion (rather than the equality (3.6)). It follows from Axiom 5 that the statement
in the previous paragraph must still hold. This weak density suffices for the results
in Secs. 3.7 and 3.8 to hold, and we can construct a C∗-algebra AC with pure state
space P . The proper inclusion above would then contradict (1.19). Hence such
exotic manifold structures are excluded by the axioms.

3.6. Unitarity, Leibniz rule, and Jordan homomorphisms

It is instructive to discuss a slightly more general context than is strictly neces-
sary for our purposes.

Proposition 5. Let P be a Poisson space with a transition probability in which
every f ∈ A00(P) has a unique spectral resolution (in the sense of Definition 7).
Assume that for each H ∈ AL(P) (cf. (1.22)) the map f → {H, f} is bounded
on AL(P) ⊂ (∞(P) (with sup-norm). If a Jordan product ◦ is defined on AL(P)
through the transition probabilities, in the manner of Proposition 3, then ◦ and the
Poisson bracket satisfy the Leibniz rule (1.1).

The boundedness assumption holds in the case at hand (cf. the next section); it
is mainly made to simplify the proof. The proposition evidently holds when AL(P)
is a Poisson algebra, for which the assumption is violated.

Proof. Writing δH(f) for {H, f}, the boundedness of δH implies that the series
αt(f) =

∑∞
n=0 t

nδnH(f)/n! converges uniformly, and defines a uniformly continuous
one-parameter group of maps on AL(P) (cf. [15]). On the other hand, if σ(t) is
the Hamiltonian flow of H on P (with σ(0) = σ), then αt as defined by αt(f) :
σ → f(σ(t)) must coincide with the definition above, for they each satisfy the
same differential equation with the same initial condition. In particular, the flow
in question must be complete. Moreover, it follows that the Leibniz rule (yet to be
established) is equivalent to the property that αt is a Jordan morphism for each t;
this, in turn, can be rephrased by saying that αt(f2) = αt(f)2 for all f ∈ AL(P).
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Let f ∈ A00(P) ∩ AL(P), so that f =
∑
k λkpek , where all ek are orthogonal

(cf. Sec. 3.2). Unitarity implies firstly that αt(f) =
∑
k λkpek(−t), and secondly

that the ek(−t) are orthogonal. Hence αt(f) is given in its spectral resolution, so
that αt(f)2 =

∑
k λ
2
kpek(−t). Repeating the first use of unitarity, we find that this

equals αt(f2). Hence the property holds on A00(P).
Now A00(P) is dense in A(P) in the topology of pointwise convergence in (∞(P).

But fλ → f pointwise clearly implies αt(fλ) → αt(f) pointwise. This, plus the
w∗-continuity of the Jordan product [9] proves the desired result. !

3.7. Poisson structure

Item 3 of the Theorem follows from Axiom 3, the penultimate paragraph of
Sec. 3.5, and the following

Proposition 6. Let PH, equipped with the transition probabilities (1.16), be a
unitary Poisson space for which the Poisson structure is symplectic, and for which
A is the Gel’fand transform of a weakly dense subspace of B(Hα)sa.
Then the Poisson structure is determined up to a multiplicative constant, and

given by (1.21) times some !−1 ∈ R.

Proof. Axiom 3 implies that each sector PH (for some H) is a symplectic
space. Unitarity (in our sense) and Wigner’s theorem (cf. [54, 14, 50] for the latter)
imply that each Â ∈ A generates a Hamiltonian flow on PH which is the projection
of a unitary flow on H. Therefore, {Â, B̂}(ψ) = d

dt B̂(exp(itĈ(A))ψ)t=0 for some
self-adjoint operator C, depending on A (here exp(itĈ(A))ψ is by definition the
projection of exp(itC(A))ψ to PH, where ψ is some unit vector in H which projects
to ψ ∈ PH). The right-hand side equals i ̂(CB −BC)(ψ). Anti-symmetry of the
left-hand side implies that C = !−1A for some !−1 ∈ R. By the weak density
assumption, the collection of all differentials dÂ spans the fiber of the cotangent
bundle at each point of PH. Thus the Poisson structure is completely determined.

!
This shows that the symplectic structure on each leaf is !ωFS, where ωFS is

the Fubini–Study structure [53, 38, 18, 19, 20, 39]. (A closely related fact is that
the Kähler metric associated to ωFS is determined, up to a multiplicative constant,
by its invariance under the induced action of all unitary operators on H, cf. [1,
39].) The multiplicative constant is Planck’s constant !, which, as we see, may
depend on the sector. To satisfy Axiom 4, !−1 must be nonzero in every sector
whose dimension is greater than 1. In one-dimensional sectors the Poisson bracket
identically vanishes, so that the value of ! is irrelevant.
The Poisson structure on P is determined by the collection of symplectic struc-

tures on the sectors of P , for the Poisson bracket {f, g}(ρ) is determined by the
restrictions of f and g to the leaf through ρ; cf. (1.20).
The choice (1.21) for the Poisson bracket on A corresponds to taking ! a sector-

independent constant (put equal to 1). In general, we may regard ! as a function on
P(A), which is constant on each sector. If Â denotes an element of A, the restriction
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of Â to a sector PHα corresponds to an operator Aα ∈ B(Hα)sa (cf. Sec. 3.5). The
sector in which ρ ∈ P(A) lies is called α(ρ). With this notation, and denoting
AB − BA by [[A,B]] (recall that [A,B] denotes the Lie bracket in a Jordan–Lie
algebra) the Poisson bracket on A is then given by

{Â, B̂}(ρ) = i

!(ρ)
̂[[Aα(ρ), Bα(ρ)]](ρ). (3.7)

The sector-dependence of ! cannot be completely arbitrary, however; Axiom 1
implies that ! must be a uniformly continuous function on P . For suppose ! is
not uniformly continuous. We then take Â, B̂ ∈ A in such a way that Aα and
Bα are independent of α in a neighbourhood of a point σ of discontinuity of !,
with [[Aα(σ), Bα(σ)]] -= 0. Then the real-valued function on P(A) defined by ρ →
!(ρ){Â, B̂}(ρ) is certainly uniformly continuous near σ, since its value at ρ is equal
to i ̂[[Aα(ρ), Bα(ρ)]](ρ). But, by assumption, {Â, B̂} is uniformly continuous as well.
Because of the factor !, the product !{Â, B̂} cannot be uniformly continuous. This
leads to a contradiction.

3.8. C∗-structure

We now turn A into a Jordan–Lie algebra, and thence into the self-adjoint part
of a C∗-algebra AC (cf. Sec. 1.1).
On each leaf, the associator equation (1.2) is identically satisfied by the Poisson

bracket (3.7). However, the ‘constant’ k ≡ !2/4 may depend on the leaf. Therefore,
we have to rescale the Poisson bracket so as to undo its !-dependence. From (3.7)
this is obviously accomplished by putting [f, g](ρ) = !(ρ){f, g}(ρ). With the Jordan
product ◦ defined in Sec. 3.3, Eq. (1.2) is now satisfied. Hence we define a product
· : A× A→ AC by

f · g = f ◦ g − 1
2
i[f, g] , (3.8)

and extend this to AC × AC by complex linearity.
As explained in Sec. 1.1, this product is associative. Indeed, in the notation

introduced in the previous section one simply has

Â · B̂(ρ) = ̂Aα(ρ)Bα(ρ)(ρ) , (3.9)

where the multiplication on the right-hand side is in B(Hα(ρ)).
By Axiom 1 (in particular, closure of A under the Poisson bracket), Axiom 4,

and the uniform continuity of !(·), AC is closed under this associative product.
Let A be a JB-algebra, and AC = A ⊕ iA its complexification. As shown in

[58], one may construct a norm on AC, which turns it into a so-called JB∗-algebra
[28]; the involution is the natural one, i.e., (f + ig)∗ = f − ig for f, g ∈ A. Now
given a JB∗-algebra AC whose Jordan product ◦ is the anti-commutator of some
associative product ·, it is shown in [47] that (AC, ·) is a C∗-algebra iff (AC, ◦) is
JB∗-algebra.
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Hence one can find a norm on AC (whose restriction to its self-adjoint part A,
realized as in (1.19), is the sup-norm) such that it becomes a C∗-algebra equipped
with the associative product (3.8). Since the unit function evidently lies in A(P)
(cf. (3.5)) as well as in Cu(P), it lies in A (cf. (3.6)). In conclusion, the unital
C∗-algebra mentioned in the theorem has been constructed.
An alternative argument showing that A is closed under the commutator

(Poisson bracket) is to combine the results of section 4.3 below and [5, §7]. This
avoids the rescaling of the Poisson bracket by !(·), but relies on the deep analysis
of [5].
It is also possible to have + instead of − in (3.8). This choice produces a

C∗-algebra A(+)C which is canonically anti-isomorphic to AC ≡ A(−)C . Moreover, in
some cases A(+)C is isomorphic to A(−)C in a non-canonical fashion. Choose a faithful
representation π(AC) on some Hilbert space H, and choose a basis {ei} in H. Then
define an anti-linear map J : H → H by J

∑
i ciei =

∑
i ciei, and subsequently a

linear map j on π(AC) by j(A) = Jπ(A)∗J . If j maps π(AC) into itself, it defines
an isomorphism between A(−)C and A(+)C .
In [5] (or [50]) this sign change would correspond to reversing the orientation of

K (or P).

3.9. Transition probabilities and uniform structure

Recall Mielnik’s definition (1.4) of the transition probability in the extreme
boundary ∂eK of a compact convex set [41].
By Axiom 5, the extreme boundary of the state space K = S(A) of A is P .

Hence P acquires transition probabilities by (1.4), which are to be compared with
those originally defined on it. In Sec. 4.2 we show that these transition probabilities
coincide, and this proves item 2 of the Theorem.
It is immediate from the previous paragraph that A(P(A)) = A(P). The

w∗-uniformity appearing in (1.19) is the weakest uniformity relative to which all
elements of A are uniformly continuous. It then follows from (1.19) and (3.6) (in
which the uniformity is the initially given one) that the initial uniformity on P must
contain the w∗-uniformity it acquires as the space of pure states of AC. This proves
item 4.
This completes our construction, as well as the proof of the theorem. !

4. Proofs
4.1. Proof of Proposition 1

The strategy of the proof is to characterize the lattice L(P) (cf. Sec. 1.4), and
then use the so-called co-ordinatization theorem in lattice theory [14, 32] to show
that L(P) is isomorphic to the lattice L(H) of closed subspaces of some complex
Hilbert space H (see [54, 14, 31, 32] for extensive information on this lattice; an
equivalent description is in terms of the projections in the von Neumann algebra
B(H)).
It is known that L(P) is complete, atomic, and orthomodular [59, 13, 14] if P is

a well-behaved transition probability space; hence it is also atomistic [14, 31]. Using
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the connection between the center of an orthomodular lattice and its reducibility
[31], it is routine to show that the irreducibility of P as a transition probability space
(which we assume for the purpose of this proof) is equivalent to the irreducibility
of L(P) as a lattice. Hence L(P) is also irreducible.

Lemma 1. L(P) has the covering property (i.e., satisfies the exchange axiom).

See [14, 31, 32] for the relevant definitions and context.

Proof. Consistent with previous notation, we denote atoms of L(P) (hence
points of P) by ρ, σ, and arbitrary elements by Q,Qi, R, S.
Let n = dim(Q) (as a transition probability space); for the moment we assume

n <∞. We will first use induction to prove that if ρ /∈ Q, the element (ρ∨Q)∧Q⊥
is an atom.

To start, note that if Q1 ≤ Q2 for orthoclosed Q1, Q2 of the same finite dimen-
sion, then Q1 = Q2, for an orthoclosed set in P is determined by a basis of it, which
in turn determines its dimension. This implies that dim(ρ ∨Q) > dim(Q) if ρ /∈ Q
(take Q1 = Q and Q2 = ρ∨Q). Accordingly, it must be that (ρ∨Q)∧Q⊥ > ∅, for
equality would imply that dim(ρ ∨Q) = dim(Q).
For n = 1, Q is an atom. By assumption, ρ ∨ Q is S2, hence (ρ ∨ Q) ∧ Q⊥

is the anti-podal point to Q in ρ ∨ Q, which is an atom, as desired. Now assume
n > 1. Choose a basis {ei}i=1,...,dim(Q) of Q; then Q = ∨ni=1ei. Put R = ∨n−1i=1 ei;
then R < Q hence Q⊥ < R⊥, so that (ρ∨Q)∧Q⊥ ≤ (ρ∨Q)∧R⊥. The assumption
(ρ∨Q)∧Q⊥ = (ρ∨Q)∧R⊥ is equivalent, on use of Q = R∨ en, De Morgan’s laws
[31], and the associativity of ∧, to ((ρ∨Q)∧R⊥)∧e⊥n = (ρ∨Q)∧R⊥, which implies
that (ρ ∨Q) ∧ R⊥ ≤ e⊥n . This is not possible, since the left-hand side contains en.
Hence

∅ < (ρ ∨Q) ∧Q⊥ < (ρ ∨Q) ∧R⊥ . (4.1)

It follows from the orthomodularity of L(P) that if R ≤ S and R ≤ Q, then

(S ∨Q) ∧R⊥ = (S ∧R⊥) ∨ (Q ∧R⊥). (4.2)

Since R < Q and R ≤ ρ ∨ R, one has ρ ∨ Q = (ρ ∨ R) ∨ Q. Now use (4.2) with
S = ρ ∨R to find

(ρ ∨Q) ∧R⊥ = ((ρ ∨R) ∨Q) ∧R⊥ = ((ρ ∨R) ∧R⊥) ∨ (Q ∧R⊥) .

By the induction hypothesis (ρ ∨R) ∧R⊥ is an atom (call it σ), so the right-hand
side equals σ ∨ en. The equality σ = en would imply that ρ ∈ Q, hence σ -= en.
But then (4.1) and the S2-assumption imply 0 < dim((ρ ∨ Q) ∧ Q⊥) < 2, so that
(ρ ∨Q) ∧Q⊥ must indeed be an atom.
It follows that dim(ρ ∨Q) = dim(Q) + 1. Hence any S ⊂ P satisfying Q ≤ S ≤

ρ ∨Q must have dim(S) equal to dim(Q) or to dim(Q) + 1. In the former case, it
must be that S = Q by the dimension argument earlier. Similarly, in the latter case
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the only possibility is S = ρ ∨Q. All in all, we have proved the covering property
for finite-dimensional sublattices.
A complicated technical argument involving the dimension theory of lattices

then shows that the covering property holds for all x ∈ L(P); see Sec. 13 in [31]
and Sec. 8 in [32]. !

We have, therefore, shown that L(P) is a complete atomistic irreducible
orthomodular lattice with the covering property. If L(P) is in addition infinite-
dimensional, one speaks of a Hilbert lattice (recently, there has been a major break-
through in the theory of such lattices [52, 29], but since the infinite-dimensionality
is used explicitly in this work we derive no direct benefit from this). In any case, we
are in a position to apply the standard co-ordinatization theorem of lattice theory;
see [23, 54, 14, 32 29]. For this to apply, the dimension of L(P) as a lattice [31]
(which is easily seen to coincide with the dimension of P as a transition proba-
bility space) must be ≥ 4, so that we must now assume that dim(P) -= 3; the case
dim(P) = 2 is covered directly by Axiom 2. (The fact that dimension 3 is excluded
is caused by the existence of so-called non-Desarguesian projective geometries; see
[24] for a certain analogue of the co-ordinatization procedure in that case.)
Accordingly, for dim(P) -= 3 there exists a vector space V over a division ring

D (both unique up to isomorphism), equipped with an anisotropic Hermitian form
θ (defined relative to an involution of D, and unique up to scaling), such that
L(P) / L(V ) as orthocomplemented lattices. Here L(V ) is the lattice of orthoclosed
subspaces of V (where the orthoclosure is meant with respect to the orthogonality
relation defined by θ).
We shall now show that we can use Axiom 2 once again to prove that D = C

as division rings. While this may seem obvious from the fact [23, 54] that for any
irreducible projection lattice one has D / (ρ ∨ σ)\σ (for arbitrary atoms ρ -= σ),
which is C by Axiom 2, this argument does not prove that D = C as division rings.
The following insight (due to [34], and used in exactly the same way in [60] and

[17]) is clear from the explicit construction of addition and mutliplication in D [54,
23]. Let V be 3-dimensional, and let L(V ) carry a topology for which the lattice
operations ∨ and ∧ are jointly continuous. Then D (regarded as a subset of the
collection of atoms in L(V )), equipped with the topology inherited from L(V ), is a
topological division ring (i.e., addition and multiplication are jointly continuous).
Let F ∈ L(P) be finite-dimensional. We can define a topology on [∅, F ] (i.e.,

the set of all Q ∈ L(P) for which Q ⊆ F ) through a specification of convergence.
Given a net {Qλ} in F , we say that Qλ → Q when eventually dim(Qλ) =

dim(Q), and if there exists a family of bases {eλi } for {Qλ}, and a basis {ej}
of Q, such that

∑
i,j p(e

λ
i , ej) → dim(Q). This notion is actually independent of

the choice of all bases involved, since
∑
j p(ρ, ej) is independent of the choice of the

basis in Q for any ρ ∈ P , and similarly for the bases of Qλ (to see this, extend
{ej}dim(Q)j=1 to a basis {ej}dim(P)j=1 , and use the property

∑dim(P)
j=1 p(ej , ρ) = 1 for all

ρ ∈ P).
An equivalent definition of this convergence is that Qλ → Q if p(ρλ, σ)→ 0 for

all σ ∈ F ∧Q⊥ and all {ρλ} such that ρλ ∈ Qλ.
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Using the criteria in [33], it is easily verified that this defines a topology on
F . Moreover, this topology is Hausdorff. For let Qλ → Q and Qλ → R. Then
p(ρλ, σ)→ 0 for all σ ∈ Q⊥ ∨R⊥ = (Q∧R)⊥, and {ρλ} as specified above. Choose
a basis {ej} of Q which extends a basis of Q ∧ R. Then

∑dim(Q∧R)
j=1 p(ρλ, ej) = 1,

but also
∑dim(Q)
j=1 p(ρλ, ej) = 1 since Qλ → Q. Hence p(ρλ, σ) → 0 for all σ ∈

Q ∧ (Q ∧R)⊥. This leads to a contradiction unless Q = R.

Lemma 2. The restriction of this topology to any two-sphere ρ ∨ σ / S2 in F
induces the usual topology on S2. Moreover, ∨ and ∧ are jointly continuous on any
[∅, F ], where F is a 3-dimensional subspace of L(P).

Proof. If we restrict this topology to the atoms in F , then ρλ → ρ if p(ρλ, ρ)→
1. This induces the usual topology on F = σ ∨ τ / S2, since one can easily show
that, in F = σ ∨ τ , p(ρλ, ρ)→ 1 is equivalent to p(ρλ, ν)→ p(ρ, ν) for all ν ∈ σ ∨ τ
(cf. [17]).
We now take F to be a 3-dimensional subspace. We firstly show that ρλ → ρ and

σλ → σ, where ρ and σ are atoms, imply ρλ ∨σλ → ρ∨σ. Let τλ = (ρλ ∨σλ)⊥ ∧F ,
and τ = (ρ ∨ σ)⊥ ∧ F ; these are atoms. Let ρ′λ be the anti-podal point to ρλ in
ρλ ∨ σλ (i.e., ρ′λ = ρ⊥λ ∧ (ρλ ∨ σλ)), and let σ′λ be the anti-podal to σλ in ρλ ∨ σλ.
Then {ρλ, ρ′λ, τλ} is a basis of F , and so is {σλ, σ′λ, τλ}. The definition of a basis and
of ρλ → ρ, σλ → σ imply that p(ρ, τλ)→ 0 and p(σ, τλ)→ 0. Hence p(τ, τλ)→ 1.
Now take an arbitrary atom αλ ∈ τ⊥λ ∧F , and complete to a basis {αλ, α′λ, τλ},

where α′λ ∈ ρλ ∨ σλ. Again, the definition of a basis implies that p(αλ, τ) → 0.
Hence by our second definition of convergence ρλ ∨ σλ → ρ ∨ σ.
Secondly, we show that Qλ → Q and Rλ → R, where Q and R are two-

dimensional subspaces of F , implies Qλ ∧ Rλ → Q ∧ R (we assume Q -= R, so
eventuallyQλ -= Rλ). Let α = Q⊥∧F , β = R⊥∧F , γ = Q∧R, and γλ = Qλ∧Rλ; as
a simple dimension count shows, these are all atoms. By assumption, p(γλ, α)→ 0
and p(γλ, β) → 0. Since (α ∪ β)⊥ = (α ∨ β)⊥ by definition of ∨, and (α ∨ β) is
two-dimensional, γ is the only point in F which is orthogonal to α and β. Hence
p(γλ, γ) → 1; if not, the assumption would be contradicted. But this is precisely
the definition of Qλ ∧Rλ → Q ∧R. !

From the classification of locally compact connected division rings [56] we con-
clude that D = C as division rings; the ring structure is entirely determined by
the topology. Moreover, Lemma 2 implies that the orthocomplementation is con-
tinuous on 3-dimensional subspaces. If one inspects the way the involution of D is
constructed in the proof of the lattice co-ordinatization theorem, one immediately
infers that this involution (of C in our case) must then be continuous as well. It can
be shown that C only possesses two continuous involutions: complex conjugation
and the identity map [54]. The latter cannot define a non-degenerate sesquilinear
form (so that, in particular, the lattice L(V ) could not be orthomodular). Hence
one is left with complex conjugation, and V must be a complex pre-Hilbert space.
The fact that V is actually complete follows from the orthomodularity of L(P)

(hence of L(V )). The proof of this statement is due to [10]; see (also cf. [32, Thm.
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11.9], or [14, Thm. 21.4.1]). We will therefore write V = H.
We conclude that L(P) is isomorphic to the lattice L(H) of closed subspaces of

some complex Hilbert space H. Therefore, their respective collections of atoms P
and PH must be isomorphic. Accordingly, we may identify P and PH as sets. De-
note the standard transition probabilities (1.16) on PH by pH. With p the transition
probabilities in P , we will show that p = pH.
Refer to the text following Definition 6. We may embed S2ref isometrically in

PH; one then simply has p = pH on S2ref . Equation (2.1) now reads

pH(Tρ∨σ(ρ
′), Tρ∨σ(σ

′)) = p(ρ′, σ′); (4.3)

in particular, pH(Tρ∨σ(ρ′), Tρ∨σ(σ′)) = 0 iff p(ρ′, σ′) = 0. On the other hand, we
know that p and pH generate isomorphic lattices, which implies that pH(ρ′, σ′) = 0
iff p(ρ′, σ′) = 0. Putting this together, we see that pH(Tρ∨σ(ρ′), Tρ∨σ(σ′)) = 0 iff
pH(ρ′, σ′) = 0. A fairly deep generalization ofWigner’s theorem (see [54, Thm. 4.29];
here the theorem is stated for infinite-dimensional H, but it is valid in finite di-
mensions as well, for one can isometrically embed any finite-dimensional Hilbert
space in an infinite-dimensional separable Hilbert space) states that a bijection
T : PH1 → PH2 (where the Hi are separable) which merely preserves orthogonality
(i.e., pH2(T (ρ

′), T (σ′)) = 0 iff pH1(ρ
′, σ′) = 0) is induced by a unitary or an anti-

unitary operator U : H1 → H2. We use this with H1 = ρ ∨ σ, H2 = S2ref , and
T = Tρ∨σ. Since Tρ∨σ is induced by a(n) (anti-) unitary map, which preserves pH,
we conclude from (4.3) that pH(ρ′, σ′) = p(ρ′, σ′). Since ρ and σ (and ρ′, σ′ ∈ ρ∨σ)
were arbitrary, the proof of Theorem 1 is finished. !

4.2. Transition probabilities

Our aim is to show that the transition probabilities defined by (1.4) on the pure
state space P(A) of the C∗-algebra AC (i.e., K = S(A); recall that AC is unital)
coincide with those originally defined on P = P(A) = ∂eK (cf. Axiom 5); from
Proposition 1 we know that these are given by (1.16).
Firstly, A as a Banach space (and as an order-unit space) is isomorphic to the

space A(K) of continuous affine functions on K, equipped with the sup-norm. The
double dual A∗∗ is isomorphic to Ab(K) (with sup-norm), and the w∗-topology on
Ab(K) as the dual of A(K)∗ is the topology of pointwise convergence, cf. [12, 6].
Since A(K) is w∗-dense in Ab(K), one may take the infimum in (1.4) over all relevant
f in A(K). Since A ⊆M ⊆ A∗∗ (where M was defined in Proposition 4), by (3.5)
one may certainly take the infimum over A(P). But, as we saw in Sec. 3.4, A00(P)
is dense in A(P) when both are seen as subspaces of (∞(P) with the topology of
pointwise convergence. Hence we may take the infimum in (1.4) over all relevant f
in A00(P).
Let Q be an orthoclosed subspace of P , and recall that pQ was defined in (3.1).

We now show that an equation similar to Eq. (2.19) in [6] holds, viz.

pQ = inf {g ∈ A00(P)| 0 ≤ g ≤ 1, g " Q = 1} . (4.4)

For suppose there exists a 0 ≤ h < pQ for which the infimum is reached. We must
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have h = 1 on Q and h = 0 on Q⊥, since pQ = 0 on Q⊥. Then the function pQ − h
is ≥ 0, and vanishes on Q and Q⊥. But such functions must vanish identically:
let pQ − h =

∑
i λi pρi . Choose a basis {ej} in Q ∪ Q⊥. For every point ρ ∈ P ,

one must have
∑
j p(ρ, ei) = 1. Hence

∑
j(pQ − h)(ej) =

∑
i λi = 0. Suppose that

pQ − h > 0. Then there will exist another basis {uj} such that f(uj) > 0 for at
least one j. This implies

∑
i λi > 0, which contradicts the previous condition. We

conclude that pQ = h, and (4.4) has been proved.
The desired result now follows immediately from (4.4) and the observation that

by definition pρ(σ) = p(ρ, σ) for atoms Q = ρ. !
We close this section with a technical comment. If F ⊂ K ⊂ A∗ (again with

K = SA) is a w∗-closed face, then ∂eF ⊆ ∂eK may be equipped with transition
probabilities defined by (1.4), in which Ab(K) is replaced by Ab(F ). These coincide
with the transition probabilities inherited from ∂eK. For F = K ∩ H for some
w∗-closed hyperplane H ⊂ A∗ (see, e.g., [3, II.5], [6, Sec. 1]), so that Ab(F ) / H∗.
By Hahn–Banach, each element of H∗ can be extended to an element of A∗, so that
any element of Ab(F ) extends to some element of Ab(K). The converse is obvious.
The claim then follows from the definition (1.4). This shows, in particular, that
Axiom AHS2 is equivalent to our Axiom 2.

4.3. Poisson structure and orientability

While not necessary for the main argument in this paper, it is enlightening to
see that (given the other axioms) the existence of a Poisson structure on P implies
Axiom AHS5, i.e., orientability in the sense of Alfsen et al. [5] (also cf. [50]). We
still write K for S(A).
These authors define the object B(K) as the space of all affine isomorphisms from

B3 onto a face ofK (which in our setting is the state space of A(P) as a JB-algebra),
equipped with the topology of pointwise convergence. It follows from Axiom 5 and
the argument in [50, p. 499] (or section 3 of [18]) that one can work equally well with
the space B(P) of all injective maps from S2 = PC2 into P which preserve transition
probabilities, topologized by pointwise convergence. If ϕ, ψ ∈ B(P) have the same
image, then by Axiom 2 and Wigner’s theorem the map ψ−1 ◦ ϕ : S2 → S2 lies in
O(3) (acting on S2 ∈ R3 in the obvious way). The maps ψ and ϕ are said to be
equivalent if ψ−1 ◦ϕ ∈ SO(3); the space of such equivalence classes is B(P)/SO(3).
The space P is said to be orientable if the Z2-bundle B(P)/SO(3)→ B(P)/O(3) is
globally trivial (cf. [5 Sec. 7]). This notion of orientability is equivalent to the one
used in [5], cf. [50].
Given ϕ ∈ B(P) and f ∈ A, we form f ◦ ϕ : S2 → R. We infer from the explicit

description of A in Chapter 3 that f ◦ ϕ is smooth. If f, g ∈ A then by (3.7)

{f, g} ◦ ϕ(z) = sgn(ϕ)!−1(ϕ(z)){f ◦ ϕ, g ◦ ϕ}S2(z), (4.5)

where { , }S2 is the Fubini–Study Poisson bracket on S2, and sgn(ϕ) is ±1, depen-
ding on the orientation of ϕ.
Now suppose that K (hence P) were not orientable. Then there exists a con-

tinuous family {ϕt}t∈[0,1] in B(P), for which ϕ0 and ϕ1 have the same image, but
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opposite orientations (cf. the proof of Lemma 7.1 in [5], also for the idea of the
present proof). We replace ϕ by ϕt in (4.5). Since {f, g} is continuous, the left-
hand side is continuous in t (pointwise in z). On the right-hand side, {f◦ϕt, g◦ϕt}S2
is continuous in t, and so is !−1◦ϕt. But sgn(ϕt) must jump from ±1 to ∓1 between
0 and 1, and we arrive at a contradiction.
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