Eerste-orde logica (= Predikaatlogica)
Onderdeel van het college Logica (2017)

Klaas Landsman

1.1 Eerste-orde taal (aanvulling op §2.2 in Moerdijk & van Oosten)

De propositielogica is te eenvoudig om bijv. rekenkunde te beschrijven, laat staan verzamelingenleer,
omdat in de syntax geen variabelen en geen kwantoren zoals ‘er is’ (J) en ‘voor alle’ (V) voorkomen.!
Die zijn er wel in de predikaatlogica, ook genoemd eerste-orde logica, waar dit hoofdstuk over gaat. We
bespreken zowel de rekenkunde als de verzamelingenleer als voorbeelden van een eerste-orde logische
taal L waarin een bepaald gebied van de wiskunde wordt geformaliseerd. Het gebruikelijke eerste-orde
systeem voor de rekenkunde heet Peano Aritmetiek en wordt afgekort als PA. Het gangbare eerste-orde
systeem voor de verzamelingenleer is genoemd naar Zermelo en Fraenkel en wordt afgekort als ZF. We
geven ook propositielogica als speciaal geval, afgekort PL.

o De notatie van een eerste-orde logisch systeem is opgebouwd uit symbolen in twee groepen.

1. De zuiver logische symbolen hangen niet af van het gebied van de wiskunde dat wordt
beschreven. Dit zijn de symbolen —, A, V, —, L uit de propositielogica, in de meeste theorieén
(maar niet in PL, zie onder) aangevuld met het gelijkteken = en, indien er variabelen zijn
(wat ook vrijwel altijd zo is behalve in PL) met de kwantoren V en 3, voor resp. ‘voor alle’
en ‘er bestaat’. Ook nu bestaan er relaties tussen deze symbolen, waardoor het in principe
voldoende is om bijvoorbeeld slechts, —, L, =, en V te gebruiken. De eliminatie van vV en A
is hetzelfde als in de propositielogica en 3, (zie onder) kan worden vervangen door —V,—.

2. De niet-logische symbolen hangen af van het gebied van de wiskunde dat je probeert te for-
maliseren door een eerste-orde taal L. Ze zijn in detail dus verschillend voor bijv. rekenkunde
en verzamelingenleer, maar vrijwel alle talen L (behalve dus PL) bevatten:

(a) Een aftelbare verzameling variabelen var(L) = {1, z2,...} (of {...,z,y,2,...}).

Bij PA kun je bij deze variabelen denken aan de natuurlijke getallen, maar deze inter-
pretatie is geen onderdeel van het logische systeem en dient slechts ter motivatie.
In ZF kunnen de variabelen evenzo worden geinterpreteerd als verzamelingen.

PLheeft zoals gezegd geen variabelen, i.e. var(PL) = (.

(b) Een (meestal eindige) verzameling constanten con(L), die je kunt noteren hoe je wilt.
In PA is er slechts één constante, genaamd 0, later te interpreteren als het getal nul.
Ook in ZF is er één constante, (), later te interpreteren als de lege verzameling.
PL heeft ook al geen constanten, dus con(PL) = (.

(¢) Een (meestal eindige) verzameling functiesymbolen fun(L). Ieder functiesymbool f
heeft een zogenaamde ariteit a(f), een getal dat aangeeft hoeveel variabelen de des-
betreffende functie als input heeft.? De ariteit is dus een afbeelding a : fun(L) —
{1,2,3,...}.

In PA zijn er drie functiesymbolen, namelijk S, +, en x, met ariteiten resp. a(S) = 1,
a(+) = 2, en a(x) = 2. Ook hier geven we alvast de latere interpretatie als resp.
de successorfunctie k — k + 1, optelling, en vermenigvuldiging, maar opnieuw is
deze interpretatie geen onderdeel van het formele logische systeem.

ZF heeft (verrassenderwijs) geen functiesymbolen.’

Ook PL heeft geen functiesymbolen.

(d) Een (meestal eindige) verzameling relatiesymbolen (of predikaatsymbolen) rel(L), even-
eens met bijbehorende ariteiten a, deze keer inclusief 0, dus a : rel(L) — {0,1,2,...}. De
relatiesymbolen spelen een rol bij het definiéren van formules; zie onder. Voorbeelden:

1. Zoals we zullen zien zijn de atomaire proposities p; technisch gesproken geen variabelen maar zgn. relatiesymbolen.
2. Deze naam komt van het Engelse arity; vgl. unary, binary, etc. Een functiesymbool f met a(f) = 0 is een constante.
3. We zullen later zien dat functies f : X — Y in de verzamelingenleer worden gedefinieerd als deelverzamelingen van X x Y.
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PA heeft geen relatiesymbolen.*

In ZF is het enige relatiesymbool €, met ariteit 2.

De relatiesymbolen van PL zijn de atomaire proposities, dus rel(PL) = {po,p1,...},
alle met ariteit a(p;) = 0. Deze verzameling relatiesymbolen is soms oneindig.

Uit deze symbolen worden eerst volgens bepaalde regels termen gemaakt, die op hun beurt aan-
leiding geven tot formules, meestal genoteerd als ¢ of 1), etc. Speciale formules zijn vervolgens
uitspraken (sentences), die kandidaten zijn voor stellingen (dus al dan niet bewijsbaar zijn). Het
verschil tussen formules en uitspraken blijkt uit een eenvoudig voorbeeld: je kunt niet eisen dat
een uitdrukking als 22 = 1 wel of niet bewijsbaar is; dat is dan ook “slechts” een formule. Dat kun
je wel eisen van 3, (2% = 1) of V(2% = 1); dat zijn dan ook uitspraken. We geven nu de algemene
formatieregels voor termen en formules, en de regel die bepaalt welke formules uitspraken zijn.

1. Deiteratieve procedure om termen te produceren is als volgt:
(a) iedere variabele z; € var(L) is een term;
(b) iedere constante ¢ € con(L) is een term;
(c) een functiesymbool f en a(f) = k termen (¢1,...,t;) geven een term f(t1,..., ).

In PA betekent dit dat S(¢) een term is en dat t; + to = +(¢1,t2) en t; X ta = X(t1,12)
termen zijn, tenminste als ¢, ¢1, en t; dat zijn. Dit is niet zo ingewikkeld als het lijkt! De
constante 0 is bijvoorbeeld een term, zodat S(0) dat ook is. Voor deze term voeren we
de naam 1 in. Dit kunnen we herhalen: 5" (0) is een term, die we afkorten als n (waarbij
bijv. $2(0) = S(S(0)), etc.). Daaruit kunnen we de term n + m maken, of n x z;, en
vervolgens (n+m) X (n x z;), enz. Dit soort dingen doe je in de wiskunde de hele dag!
Wat je niet als term kunt maken is iets als S(+) of nx en dergelijke onzin.

In ZF zijn de enige termen () en de variabelen (er zijn immers geen functiesymbolen).

PL heeft geen termen.

2. Uit de termen en | maken we als volgt atomaire formules m.b.v. = en de relatiesymbolen:

(a) L is en atomaire formule.
(b) Alst; en ty termen zijn, is ¢; = t» een atomaire formule.

(c) Een relatiesymbool R met ariteit a(R) = k en k termen (1, ..., tx) bepalen samen een
atomaire formule R(t1,...,tx).

In PA is t; = t; een atomaire formule, als ¢; en ¢, termen zijn (en verder niets).
In ZF zijn t; € t3 ent; =ty atomaire formules, als ¢; en ¢, termen zijn (en verder niets).

In PL zijn de atomaire proposities p; atomaire formules (en verder niets).

3. Nu komen de andere zuiver logische symbolen aan bod en maken we (algemene) formules:
(@) Net als in de propositielogica geldt dat als ¢ en ¢ formules zijn, de uitdrukkingen —¢,
© V), p Ap, en ¢ — 1 dat ook zijn (in eerste instantie toegepast op atomaire formules).

(b) Bovendien zijn nu ook 3, en V¢ formules, voor een willekeurige variabele x.

De variabele z hoeft niet in ¢ voor te komen om 3,¢ en V,¢ correct te kunnen opschrijven.
Zo is de uitspraak 3,5(0) + S(0) = S(5(0)) grammaticaal correct (en ook nog eens waar').

In de volgende sectie definiéren we precies de vrije (i.e. niet gebonden) variabelen in een term ¢
of formule . Kort: een variabele = in ¢ heet gebonden als er deelformules V,.¢;(x) of 3;(x) van
¢ bestaan met de eigenschap dat z uitsluitend in deze deelformules voorkomt.” Een variabele z ¢
heet vrij als deze niet gebonden is. Om aan te geven dat ¢ of ¢ de variabele z vrij bevat schrijven
we soms t(z) resp. p(x) i.p.v.t of ¢, en p(z1, ..., x,) als ¢ tenminste de variabelen (z1, . .., x,) vrij
bevat, etc. In een open formule komt minstens één vrije variabele voor. In een gesloten formule
zijn alle variabelen gebonden, of zijn er geen variabelen. Een gesloten formule heet een uitspraak.

4. Soms wordt in PA echter < als predikaat met ariteit 2 gebruikt. Sommige auteurs rekenen = tot de relatiesymbolen.

5. Een

deelformule van een formule ¢ is een (ook op zichzelf zinvolle) term of formule die in ¢ voorkomt (inclusief ¢ zelf).



Concept: 13 juni 2017

1.2 Variabelen en substituties (aanvulling op §2.2 in Moerdijk & van Oosten)

Definitie 1.1 1. De verzameling F'V (t) van vrije variabelen in een term t is recursief gedefinieerd:

FV(z) ={z} (x € var(L));
FV(c)=0 (c € con(L));
FV(f(t1,...,tn)) =FV(t1)U---UFV(t,) (f € fun(L),a(f)=mn).

2. De verzameling F'V () van vrije variabelen in een formule  is recursief gedefinieerd:
FV(L)=0;
FV(R)=0 (Rerel(L),a(R)=0);
FV(R(t1,...,tn) =FV(t1)U---UFV(t,) (Rerel(L),a(R)=n>0);
FV(ti =t2) = FV(t1) UFV (t2);
FV(~¢) = FV(¢);
FV(§ = @) = FV(¢) UFV(p);
FV($ V) = FV(§) U FV(p);
FV(§ne) = FV() UEV(p);
FV(vo9) = FV(¢) —{z} (z € FV());
FV(3:¢) = FV(¢) = {z} (x € FV(¥)).

Een formule ¢ heet gesloten als F'V () = (). Een gesloten formule heet ook wel een uitspraak.

Definitie 1.2 1. Voor iedere term t en formule ¢ is de substitutie ¢[t/x] toegestaan als:
(a) x € FV(p),en:

(1.1)
(1.2)
(1.3)

(1.4)
(1.5)
(1.6)
(1.7)
(1.8)
(1.9)
(1.10)
(1.11)
(1.12)
(1.13)

(b) “t vrijis voor x in ¢”, waarbij dit begrip als volgt recursief is gedefinieerd.  is vrij voor x:

1. in iedere atomaire formule}®
ii.  in formules ¢ = —) waarbijt vrij is voor x in 1);

iii. in formules ¢ = 11 — 1y waarbijt vrij is voor x in zowel i, als ¢, (analoog met V, A\);
iv.  in formules ¢ =V, of ¢ = 3,3 waarbijy ¢ FV (t) eny # x ent is vrij voor z in 1.

Informeel: t vrij is voor x in ¢ desda geen van de vrije variabelen y in t binnen het bereik van

een kwantor V,, of 3, in ¢ komen te staan.”

2. Als de substitutie o[t /z] is toegestaan, dan is de formule [t/ x| recursief gedefinieerd door:

(@) alsy e var(L)dany[t/x] =yalsy # zenyt/z] =t alsy =z,

(b) alsc € con(L) dan c[t/x] = ¢, en analoog L[t/x] = L en R[t/z] = R als R € rel(L), a(R) = 0.
(¢) als f € fun(L) met a(f) = n enty,...,t, zijn termen, dan is f(t1,...,t,)[t/x] gelijk aan

f(talt/x], ... tn[t/x]). Analoog met R ip.v. f, met R € rel(L), a(R) =n > 0;
(d) Voor termenty,ts is (t1 = t2)[t/x] gelijk aan t;[t/x] = t2[t/x].

(e) (—y)[t/x] is gelijk aan —~(y[t/x]), analoog is (1 — ¢)[t/x] gelijk aan ¢ [t/x] — ¢[t/x] etc.

)  (Vy)[t/z] is gelijk aan ¥, (¢[t/x]) als y # « (analoog met 3,)); als y = x dan is x niet vrij en is

V. ¥[t/z] niet gedefinieerd (en is dan gelijk aan V1 zelf).

Informeel: in [t/x] wordt de vrije variabele x overal vervangen door de term t (zie voetnoot 2).

6. Dit begrip komt niet voor in Moerdijk & van Oosten. Atomaire formules zijn van de vorm L, of s = ¢ met s en ¢ termen, of R

met R € rel(L) en a(R) = 0, of R(t1,...,tn) met R € rel(L) ena(R) =n > 0.

7. Ditis exact als de CONVENTION ON VARIABLES onderaan p. 45 van Moerdijk & van Oosten wordt aangehouden: variabe-

len komen ofwel gebonden ofwel vrij ofwel niet voor in een formule, en als ze gebonden zijn gebeurt dat slecht één keer.
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1.3
Naast

1.

Natuurlijke deductie (aanvulling op §3.1 in Moerdijk & van Oosten)

de regels van ND voor propositielogica (die onverkort blijven gelden) komen er bij:®

Substitutie: —21t/ ﬂ[s /x]t % mitsz € FV(y) en de substituties o[t /z] en ¢[s/] zijn toegestaan;
V-Introductie: %, onder de voorwaarden dat:

(@) z € FV(p)en de substitutie ¢[y/z] is toegestaan;

(b) y niet voorkomt in p(x);

(¢) y niet voorkomt in enige open (i.e. nog niet opgeheven) aanname [¢] die is gebruikt in de
afleiding van ¢.

V-Eliminatie: M, voor een term ¢, mits x € FV(y) en de substitutie o[t/z] is toegestaan.

o[t/

We nemen hierbij aan dat de tweede kwantor 3 is gedefinieerd via 3, = =V, —¢; zie opgave. Als we 3
apart gebruiken gelden daarvoor in ND de volgende regels:

1.

3-Introductie: %, mits z € FV (p) en de substitutie ¢[t/x] is toegestaan;
[oly/x]]
3-Eliminatie:* 3,¢(x) P , mits:

Y
(@) z € FV(p)en de substitutie ¢[y/z] is toegestaan;
(b) de variabele y niet voorkomt in ¢ of 1);
(c) de open aannames in de afleiding van ¢ waarin y voorkomt de vorm ¢[y/x] hebben;
(d) de formule 3,¢(x) niet uit de aanname ¢|y/z] is afgeleid.
Deze regel is dus equivalent met de mogelijk duidelijkere versie (waar ¢(y) = ly/x]):

oy) =9 Jo0()
p

Als 3,¢(z) als aanname is ingevoerd, i.e.[3,¢(z)], dan hebben we via —-Introductie dus

ply) = ¢
Jop(x) =9
—o(y)
=3z p(z)
V-Introductie terug. Als illustratie bewijzen we F J,¢(z) — 3,p(y), waar (zoals altijd) ¢(y) =
ely/x:

Met ¢ = L geeft dit het speciale geval . Met ¢ ~» ¢, RAA, en V, = -3, geeft dit

Bﬂp(%)] 3y Py
3y ey
Fap(@) = Jy(y)

Uitleg: uit de aanname [p(y)] volgt met 3-Introductie met = ~» y de formule 3¢, op de volgende
regel. De derde regel volgt uit 3-Eliminatie met ¢ = 3,¢,, waardoor de aanname [¢(y)] vervalt.
De laatste regel is —-Introductie, waardoor ook de aanname [3,¢(z)] vervalt.

Op soortgelijke wijze bewijs je - V¢ (z) — V4 (y): eerst V-Introductie, dan V-Eliminatie (opgave).

8. De regels voor = komen volgende week!

9. Dit

ziet er circulair uit, maar de eerste 1 is afgeleid uit de aanname [p[y/z]] en mogelijke andere onderdelen van het bewijs.

De conclusie 1) heft deze aanname dan op.
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Ten slotte zijn er drie (voor de hand liggende) regels voor =, met t(y) = t[y/z] en ¢(y) = ¢[y/z]:

=1y Y=z r=1y
xT=zx x=z t(x) = t(y)

Met behulp van de substitutieregel volgen hieruit soortgelijke regels voor termen s, , ¢:

t=t r=1

De eerste volgt bijvoorbeeld uit V-Introductie gevolgd door V-Eliminatie (vul de details zelf aan):

r=ux
Ve(z = x)
t=1
Hieruit volgt F (¢ = s) — (s = t) oftewel, bij gebruik in ND, z i f Bewijs:
t=t [t=s]

s=t
(t=s)—(s=t)

Let op: hier wordt ¢t = t gelezen als (z = t)[t/z] en dan pas je Substitutie toe op ¢(x) = (z = ¢), zodat
pft/z] = (t =1t) en ¢[s/x] = (s = t). De laatste regel volgt uit —-Introductie, waarbij de aanname [t = s]
wordt opgeheven. Nog een voorbeeld: we bewijzen de stelling

F (Vae(p() = ¢¥) = ((Fep(@)) = 9). (1.14)

Vo (p(2) = ¢)
Cep(@)) = ¢
[Vz(p(x) — 1)] en hef je die in de laatste regel op middels —-Introductie.

oftewel in ND:

. We bewijzen deze laatste versie; voor de eerste begin je met de aanname

Va(p(2) = )
plz) = ¢ [p(2)]
Y Bap(z)]
Y
(Fap()) = ¢

V-Eliminatie en invoering aanname [¢(z)].

—-Eliminatie (Modus Ponens) en invoering aanname [3,¢(x)].
3-Eliminatie en opheffing van aanname [p(x)].

—-Introductie en opheffing van aanname [3,¢(z)]

Ll

Nu komt een lastiger bewijs, en wel van de later belangrijke stelling

F 3y (e (y) V o(2)). (1.15)

Hierbij maken we gebruik van de V-Introductieregel; voor de volledigheid geven we alle regels voor Vv
en A (die wij in principe niet nodig hebben omdat ze afgeleide tekens zijn uit — en L):

. w P . .. e ANY . P AY
1. A-Introductie: ———— A-Eliminatie: ——— A-Symmetrie: —/———
oA ® 4 YA
. %) . e . wVY Y . eV
2. V-Introductie: —-—— V-Eliminatie: ———— V-Symmetrie.:———
VY ® Y YV

Nu komt het bewijs van (1.15), wat op het eerste gezicht een nogal vreemde indruk maakt!
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[p(z)]
—p(y) Vo(z)
ACEORIE)
5,2V @) By (p )V ol@)]
1
olx) = L
—p(z)
() V o(y)
Vﬁw() ©(y))
3y (—(2) V o(y))
Yy (0 1) p(x)) Ty (oe(y) Ve(z))

3Vy (mp(y) V p(z))

Hier moet de stap van 3,V (—¢(x) V ¢(y)) naar 3,V (—¢(y) V ¢(x)) ook worden bewezen, maar dit soort
verandering van variabelen mag je verder zonder bewijs uitvoeren (als je het maar duidelijk opschrijft).
Het is een goede oefening om per stap na te gaan wat de rechtvaardiging is: de laatste is bijvoorbeeld
RAA op de aanname [-3,V, (—¢(y) V ¢(z))].

1.4 Peano Arithmetic (Rekenkunde)

Als voorbeeld van een wiskundige theorie bekijken we nu PA. Deze eenvoudige theorie (bekend van de
lagere school) is van niet te overschatten belang voor de logica, met name omdat de Onvolledigheids-
stelling van Godel (die we helaas in dit college niet kunnen behandelen) er op is gebaseerd. We weten al
dat: fun(PA) = {+, x, S} met a(+) = a(x) =2ena(S) =1, en dat: rel(PA) = (. Hier zijn de axioma'’s:
PA1 ¥, (=(S(z) = 0));

PA2 V.V, (S(z) =S(y) >z =1y);

PA3 V,(z+ 0 =xz);

PA4 V.,V (z+ S(y) = S(xz +y));

PA5 V. (z x 0 =0);

PA6 V.V, (z x S(y) = (z x y) + x);

PA7 ((0) A (Va(p(@) = ¢(S(2)))) = Vaip(2).

Axioma PA7 geldt voor alle formules ¢(x) met vrije variabele (tenminste) z. Dit axioma is het inductie-

axioma; het is eigenlijk een zogenaamd axioma-schema, omdat het voor willekeurige formules ¢(x)
geldt. De axioma’s PA1 t/m PA6 zijn dan wel echte axioma’s. We korten af S(0) =1, S(S(0)) = 2, etc.

Als we een uitspraak ¢ bewijzen uit deze axioma’s en de algemene regels van ND schrijven we PA F ¢.
De eenvoudigste stelling uit PA is
PAF04+0=0. (1.16)

Deze volgt uit PA3 door V-Eliminatie met ¢ = 0 (ga na). lets lastiger isal 1 4+ 1 = 2, oftewel
PAF1+5(0)=5(1). (1.17)

Vo Vy(z +S(y) = S(z +y))
Vy(1+S(y) =501 +y))
1+

5(0) = S(1 1 0) Vo +0=2)
1+0=1
1+ 5(0) = S(1) VaVy(x + S(y) = S(z +y))

In de voorlaatste stap gebruiken we Substitutie op ¢(z) = (1+ 5(0) = S(z)),t=1+0ens=1.

Ten slotte bewijzen we om PA7 te illustreren,

PAFVY,(0+ 2 =x). (1.18)



Concept: 13 juni 2017

Neem ¢(z) = (0 + z = z). Dan volgt PA I ¢(0) direct uit PA3 met V-Eliminatie naar ¢t = 0. Vervolgens

bewijzen we PA F V,(p(z) — ¢(S(z))). In ND volgt dit door V-Introductie uit % oftewel
O+z==2x Bewii
0+ S(x) = S(z) WIS

O+ax=a VY,V (x+S(y) =Sx+y))
0+y=y 0+ S(y) =5S(0+y)
0+ S(y) = S(y)

De eerste regel is PA4. De tweede regel ontstaat door de aanname te 0 + = = z vervangen door 0+y =y
(via V-Introductie en daarna V-Eliminatie), en op de tweede formule twee keer V-Eliminatie toe te passen.
De laatste regel volgt foor Substitutie op de formule p(z) = (0+ S(y) = S(z)), mett =0+ yens = y.

Opgaven voor Week 8 (Inleveropgaven: 1, 3, 4)

1. De theorie van de reéle getallen heeft constanten 0 en 1, functiesymbolen + en x beiden van ariteit
a(+) = a(x) = 2, daarnaast een functiesymbool — van ariteit a(—) = 1, en een relatiesymbool <
van ariteit a(<) = 2. Je kunt dan eigenschappen die individuele reéle getallen mogelijk hebben
uitdrukken door open formules, bijvoorbeeld: (0 < z)V(z = 0) betekent “z is positief”. Algemene
eigenschappen worden gegeven door gesloten formules, bijvoorbeeld: V, (0 < zxz)V (0 = x xx))
betekent: ieder kwadraat is positief. Geef formules voor de eigenschappen:

(a) Het polynoom 22 + z + 1 heeft een wortel;
(b) Ieder derdegraads polynoom heeft een wortel.

2. Welke stap(pen) is (zijn) fout in het volgende bewijs (zeg in PA = Peano Rekenkunde) en waarom?
[y =0]
Ve(z = 0)
(x=0) = Yy (z=0)
Ve((z =0) = Vy(x =0))
(0=10) = Vyu(z =0)

3. Leid de eerste (3-Introductie) af uit de definitie 3, = -V, —~p en de eerste drie regels in §1.2.

4. Omgekeerd: bewijs (met ND) uit de regels voor 3 en de regels voor V dat V,—p(x) - —3,¢(x),
waarbij z € FV (p).

Opgaven voor Week 9 (Inleveropgaven: 3, 6)

Bewijs (met ND) dat - V,¢(x) — Va0(y), waarbij x € FV (p).

Bewijs (met ND) dat - V,Vy¢(z, y) = ¥, Vop(x,y), waarbij {z,y} C FV(p).

Bewijs (met ND) dat+ V(¢ — ¢¥(z)) = (¢ — V9(x)), waarbij z € FV (¢).

We kunnen PA ook opzetten zonder de functie S maar met een extra constante 1, dus con(PA) =
{0,1} en fun(PA) = {+, x}. Herschrijf de axioma’s van PA met deze symbolen.

Schrijf het bewijs van (1.18) netjes uit.

(a) Bewijsin PA dat voor alle termen s,t geldt PA - S(t) +s = S(t+ s).

(b) Bewijs daaruit (enuit PAF 0+ 2 =z)dat PAFt+s=s+t.

LY

oo
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1.5 Semantiek en waarheid (aanvulling op §2.3 in Moerdijk & van Oosten)

In de propositielogica was een interpretatie van een taal L, die in dat geval wordt bepaald door de ver-
zameling van atomaire proposities (oftewel relatiesymbolen van ariteit nul) S = rel(L) = {p1,p2,...},
hetzelfde als een afbeelding v : rel(L) — {0,1}, die vervolgens werd opgewaardeerd tot een valuatie
V : BT(S) — {0,1}. Hierbij is BT'(S) de verzameling van alle formules over S (die in PL samenvallen
met de uitspraken). We zeggen dan dat een uitspraak waar is ten opzichte van een gegeven valuatie V
als V(p) = 1, notatie V' E ¢, en (in absolute zin) waar als V' F ¢ voor alle valuaties V. De absoluut
ware uitspraken van de propositielogica zijn dus de tautologieén, en die vallen volgens de Volledig-
heidsstelling van de propositielogica precies samen met de bewijsbare uitspraken. Als we uitgaan van
een theorie ¥ C BT(S), dan heet een valuatie V' een model van ¥ als V(¢) = 1 voor alle o € ¥, en geldt
volgens de Volledigheidsstelling ¥ I~ ¢, i.e. ¢ is afleidbaar uit ¥ desda ¢ waar is in alle modellen van X.

Dit verhaal willen we nu uitbreiden tot predikaatlogica. Deze uitbreiding gaat er helaas van uit dat
de verzamelingen al gedefinieerd zijn; in een strict logische opbouw zouden we dus moeten beginnen
met axiomatische verzamelingenleer, maar dit is didactisch geen goed idee. Hoe dan ook wordt de ene
afbeelding v : rel(L) — {0, 1} uit de propositielogica vervangen door een L-structuur, bestaande uit:

Een niet-lege verzameling M (genaamd de drager van de L-structuur);

Een afbeelding con(L) — M, genoteerd ¢ — ¢™ (soms [[c]]1), dus M € M;

Een afbeelding f + fM (etc.) die f € fun(L) afbeeldt op een ‘echte’ functie f : M) — f;
Een afbeelding R — R (etc.) die R € rel(L) afbeeldt op een deelverzameling RM C M),

Als a(R) = 0, dan interpreteren we M? als een singleton {x}, en hebben we dus RM C {x}. De enige
twee deelverzamelingen van {*} zijn {x} zelf en de lege verzameling (). Als RM = () noteren we RM =0,
en als RM = {x} schrijven we RM = 1. In dat geval is de afbeelding R — R dus feitelijk een valuatie
v, zodat in PL (waarin con(L) = fun(L) = ) een L-structuur niets anders is dan een valuatie. Het
eenvoudigste voorbeeld voor PA is uiteraard M = N, 0N = 0, en + en x worden geinterpreteerd als
optelling en vermenigvuldiging (er zijn echter andere, ‘niet-standaard’ interpretaties van PA!).

We moeten nu de stap van v naar V in PL generaliseren, i.e., een interpretatie geven van willekeurige
formules. Het resultaat zal zijn dat uitspraken ook nu de waarde 0 of 1 krijgen. We beginnen met termen:

1. De interpretatie ¢ van een constante ¢ € con(L) is ¢™ € M, zie boven.
2. De interpretatie 2 van iedere variabele = € var(L) is de identiteit id : M — M.
3. Uit deze twee regels en de volgende volgt dat de interpretatie " van een term ¢ een functie

M . M! — M is, waarbij [ het aantal (verschillende) vrije variabelen in ¢ is (voor ¢ = c is dat dus
| =0envoort=xishetl = 1). Voor | = 0 lezen we t» : M° — M als t™ € M (dit klopt qua
notatie, omdat M° = {x} ent : {x} — M kan worden geidentificeerd met het beeld t (x) € M).

4. De interpretatie van een term f(t1,...,t,), waar f € fun(L) en a(f) = n, hangt af van het aantal
vrije variabelen in f(t1,...,t,); we weten uit (1.3) dat FV (f(t1,...,t,)) = FV(t1)U---UFV(t,).
Als FV(f(t1,...,tn)) = {x1,..., 21}, dan geldt dus FV(¢;) C {x1,..., 21}

We herinterpreteren nu iedere term ¢; als een functie tM : M! — M (terwijl i.h.a. tM : Ml — M
met [; < ) door tM onafhankelijk te maken van de variabelen waar ¢ niet van afthangt. Stel
bijvoorbeeld dat FV(tl) = {xg,xg} en FV(tQ) = {x1, 72}, met interpretaties t : M? — M en
M. M? — M,danis £} : M3 — M met t}* (ml,mg,mg,) = tM(mg,m3) en ) . M3 — M

met 37 (m1,ma, m3) = tM(m, ms). Als toevallig FV (t;) = --- = FV(t,), dan geldt uiteraard
tM =M ook als FV(t;) = 0 voor alle i, in welk geval tM € M.
Ten slotte is de interpretatie f(t1,...,t,)" : M! — M gedefinieerd als de compositie
it Bt 7Y (1.19)
Fltr, o)™ = o (0,8, (1.20)

waarbij (£, ... M) : M! — M™ de functie is die 7 € M' afbeeldt op (£} (111),...,tM (m)) € M™.

Een speciaal geval ist; = z;;danisn = lenis M : M™ — M de projectie op de i’de codrdinaat,
zodat (Z1,...,43,) : M™ — M™ de identiteit is. Er volgt dus dat f(z1,...,2,)" : M" — M
gelijk is aan fM. Of neem n = 1 (zodat fM : M — M)ent, = ¢; danis f(c)M € M gelijk aan
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M (cM). Als gemengd voorbeeld: de interpretatie f(c,z) is de functie M — M gegeven door
fle,2)M(m) = fM(c™,m), gana.

We interpreteren nu formules. Een formule (1, ..., ;) met [ vrije variabelen F'V (¢) = {z1,..., 2}
heeft als interpretatie een deelverzameling oM c MY alsl =0, en o dus een uitspraak is, beschouwen
we net als eerder ™ C MY als het getal 0 of 1; als ™ = 0 (i.e. ¢ = (), dan is p onwaar in de gegeven
interpretatie en noteren we M ¥ ¢, enals o =1 (i.e. ¢ = M"), dan is ¢ waar in de gegeven interpretatie
en noteren we M F ¢ (waarbij M staat voor de hele interpretatie, niet slechts voor de drager 1/).

We beginnen met de atomaire formules:
. De interpretatie van L (als formule zonder vrije variabelen i.e. uitspraak) is 0, dus
MEL. (1.21)
. De interpretatie (s = t) C M" van s =t (met FV (s =t) = FV(s) U FV(t)) is de verzameling
(s =)™ = {m e M™| s (m) = t" (m)}. (1.22)
Alsn =0,ie. FV(s) = FV(t) = 0, geldt (als elementen van M):
M E (s =t) desda s™ = M, (1.23)
° De interpretatie van R(t1,...,t,), met FV(R(t1,...,t,)) = FV(t1)U--- U FV(t,),is
R(t1,...,to))M = {m e M' | #M(m),...,tM(m)) € RM}, (1.24)

waarbij RM C M™ en we dezelfde notatie als boven gebruiken. Als | = 0 en dus ¢t} € M, dan is

M E R(ty,...,t,) desda (t}1,... t}) € RM. (1.25)
Nu de algemene formules:
o De interpretatie van ¢ — 1 berust op een soortgelijke notatie als voor termen: we weten dat

FV(p =) =FV(p) UFV(¢). Als o™ € M en ™ € M'2,en FV(p — ¢) = {x1,...,1;}, dan

definiéren we g™ C M! = MU x M=% als pM x M=l en analoog v c M!.

Alsbijvoorbeeld ¢ = ¢(z1) ent = 1(z1,x2), zodat FV (o — 1) = {x1, 22}, danis g C M? gelijk
aan oM = {(my,mg) € M? | m; € M} terwijl M = ™ < M?2. Dit is letterlijk dezelfde notatie
als voor termen als we in plaats van deelverzamelingen ¢™ C M" werken met de bijbehorende
karakteristieke functies 1,0 : M — {0,1} (i.e. 1,m () = 1 desda m € ¢™). In dat geval is
1zm : M™ — {0,1} de uitbreiding van 1,u van M" naar M' die niet van de [ — [; variabelen
afhangt waar 1,x niet van athing (dus in het voorbeeld is 1;m (m1,m2) = 1, m (m1)).

De verzameling (¢ — 1) C M!is dan gedefinieerd als
(p = )M = {m e M' |7 € g =7 € M} = (M"\G") UM, (1.26)
Voor [ = 0 hebben we dus
ME (p — 1) desda (M F ¢) = (M E 1), (1.27)

aangezien het rechterlid is: o™ = 1 = ™ = 1 en dit is precies het middendeel van (1.26).
° Met ¢ = 1 endus ¢ — L = —p volgt uit (1.26)

(=)™ = M\, (1.28)
met opnieuw als speciaal geval [ = 0, dat ook direct uit (1.27) volgt:
M E —p desda M ¥ ¢, (1.29)
aangezien de implicatie “(M F ¢) = onwaar” alleen juist is als M F ¢ onwaar is. Analoog:

M E (p V) desda (M E ¢) of (M E v); (1.30)
ME (pANyp) desda (M E @) en (M E ). (1.31)
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o De interpretatie van V,(z) en 3,¢(z): stel dat FV () = {x1,..., 2}, danis

( 1190) {(m27 "7ml) € Mlil |Vm1 € M : (mlamQa"'aml) € QDM}a (132)
(3 mlap) ={(ma,...,my) € Mt | I3mq € M : (m1,ma,...,my) € goM}. (1.33)

Als FV(p) = {r}, dan geldt dus M F V,p(z) desda V,,ens : m € M, en analoog M F Jp(x)
desda 3,,,cs : m € M, zodat

M E VY, p(z) desda o™ = M; (1.34)
M E 3,¢(x) desda ™ # (). (1.35)

Dit kan ook meer fancy worden opgeschreven als (zie syllabus)

M EV,p(x) desda voor alle m € M geldt M F ¢[m/x]; (1.36)
M F 3,¢(x) desda er bestaat m € M geldt M = p[m/z], (1.37)

waarbij m € M formeel als een constante wordt beschouwd die aan con(L) is toegevoegd (met
als interpretatie m* = m), zodat de substitutie ¢[m/z] is gedefinieerd (N.B. F'V (¢[m/z]) = 0).

Stel nu dat we, net als in de propositielogica, een theorie > hebben in de taal L, i.e., een verzameling
uitspraken (denk aan de lijst axioma’s van PA). Dan heet de gegeven L-structuur op M een model
van ¥ als M E o voor alle o € %, i.e. alle axioma’s van ¥ zijn waar in de gegeven interpretatie. Dat
is bijvoorbeeld het geval voor de gebruikelijke interpretatie van PA in N, waarin M = N, 0N = 0,
SN(m) = m+ 1, +N(n,m) = n +m, en x¥(n,m) = n x m. Er bestaan ook andere modellen van PA,
maar die kom je in de praktijk niet tegen, en dit is een groot verschil met bijvoorbeeld groepentheorie:
een model van de axioma’s van een groep is niets anders dan een groep in de gebruikelijke zin van het
woord, i.e. een verzameling met een groepsstructuur (en daar zijn in de praktijk vele voorbeelden van).

Als M F ¢ in alle modellen M van een gegeven theorie X, dan noteren we ¥ F ¢; we zullen later zien
dat ¥ F ¢ desda X I ¢. Met X = () hebben we als speciaal geval F ¢; dit zijn als het ware de tauologieén
van de eerste-orde logica, die in alle L-structuren (i.e. interpretaties van een gegeven taal L) gelden.

Opgaven voor Week 10 (Inleveropgaven: 1, 3)

1. Voor willekeurige L-structuren M en N definiéren we een homomorfisme tussen deze structuren

als een functie o : M — N die voldoet aan a(cM) = ¢V en a(fM(m)) = fN(a"(m)), met m =
(mi1,...,my), ena”™ : M™ — N™ is gedefinieerd als o™ (mq,...,my,) = (a(m1),...,a(m,)); als er
relatiesymbolen zijn, moet tevens gelden o (RM) C RY.
Stel dat rel(L) = 0 (in welk geval L een algebraische theorie heet). Dan heeft L een canonieke
L-structuur waarin M bestaat uit alle termen van L. Bedenk wat deze is. Deze L-structuur komt
met een gratis afbeelding ¢ : var(L) — M (welke?). Laat zien dat deze L-structuur universeel is in
de zin dat voor iedere L-structuur op een verzameling N met een afbeelding « : var(L) — N, er
een uniek homomorfisme o’ : M — N bestaat met de eigenschap o/ o = cv.

2. Bekijk de volgende vreemde interpretatie van PA: M = Q% (i.e. de positieve rationale getallen
inclusief nul): 027 = 0, 2" (m) = m 41, 42" (n,m) = n +m, en x¢" (n,m) = n x m. Is dit een
model van PA? Zo nee, waarom niet?

3. Laat voor atomaire formules ¢ van de vorm s = ¢t en R(t1,...,t,) met één vrije variabele = zien
dat o™ = M desda voor alle m € M geldt M F ¢[m/z] (zie uitleg onder (1.37)). Begin met de
eenvoudigste termen en bouw het bewijs zo op. Bewijs onderweg zaken als t[m/z]™ =t (m).

4. Stel FV (p) = {x}, dus ¢ = ¢(z). Laat zien dat F =V, ¢(x) desda F 3,—¢(x).

5. Laat zien dat = V3, (z = y).
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1.6 Volledigheidsstelling van Godel

Eerste-orde logica is net als propositielogica zowel gezond als volledig, i.e. voor alle uitspraken ¢ geldt
Y pdesdaX F ¢ (1.38)

De implicatie van links naar rechts, i.e. de gezondheid van de logica, kan op analoge wijze worden be-
wezen als voor propositielogica,'” met de volgende nieuwe ingrediénten. Er zijn vier nieuwe axioma’s:
EOL1: (V,p(z)) — ¢[t/z] voor een willekeurige term ¢ als © € F'V(p) (en de substitutie is toegestaan);

EOL2: (V,(p — ¥(x))) = (¢ — Vo(x)) alsx ¢ FV(p)enx € FV(3);

EOL3: V. (xz = z);

EOL4: V.V, ((z = y) = (¢(z) = ¢[y/z])) als x € FV(¢) (en de substitutie is toegestaan).

Daarnaast gelden de drie axioma’s van de propositielogica, i.e., voor alle (ook open) formules «, /3,7, 6,

PL1: 8 — (o — B);
PL2: (6= (v = 0)) = (B =) = (B—=19))
PL3: (—ma — —f) = ((ma — 8) = ).

De deductieregels voor formules ¢, 1 zijn (de eerste herken je uit de propositielogica):

1. modus ponens: uitI' - ¢ — ¢ en ' F ¢ volgt I' - 9, waar I een verzameling uitspraken is;

2. generalisatie: uitT' - p(x) volgt I’ F V,p(z) als x € FV () en de uitspraken in I' die zijn gebruikt
in het bewijs van ¢ geen enkele aanname over de vrije variabele = bevatten.

De deductiestelling uit de propositielogica, i.e. I' - @ — 5 desda I' U {a} F 3, geldt nu onder de
voorwaarde dat 3 open of o gesloten is. Om deze voorwaarde te illustreren nemen we een voorbeeld
waarin hier niet aan voldaan is, namelijk a = ¢(z) en § = V,¢(z). Dan geldt ¢ F V,¢(z), dit is immers
de generalisatieregel, maar niet - (¢(z) — V,(z)). Stel dat dit altijd waar zou zijn, dan volgt uit (de nog
te bewijzen) eigenschap gezondheid dat M F (p(z) — V,¢(z)), hetgeen niet altijd waar is (zie opgave).

Om gezondheid te bewijzen moeten we net als in de propositielogica eerst laten zien dat de axioma’s in
iedere interpretatie van een willekeurige taal L gelden. Voor PL1 vinden we voor [ > 0:

(5 (0= B = MV U /Y = (NG U (NG UM = M, (1.39)

zodat M E f — (a — ). Voor I = 0 is het bewijs nog eenvoudiger. De andere twee PL2 en PL3 gaan net
zo. Axioma’s EOL1 en EOL2 zijn opgaven, en EOL3 en EOL4 doen we nu (de eerste is al in het college
van vorige week voorgedaan). We hebben 2™ = id : M — M en volgens (1.22) dus

(z=2)M={meM|m=m}=M, (1.40)
zodat volgens (1.34) geldt M F V,(z = x). Vervolgens berekenen we uit (1.22) en (1.26):
M = {(m1,ma) € M? | 2 (m1,m2) = 5™ (m1,m2)}
{(m1,ma) € M? [ my = ma} = Aws; (1.41)

—~— M

(p(x) = ply/a)™ = (M*\GM) U gly/z]
= (M*\ (™ x M)) U (M x ™), (1.42)

(r=y

waarbij voor het gemak aannemen dat F'V () = {z}, zodat » C M (i.e. de interpretatie van ¢(z)).
Met opnieuw (1.26) volgt hieruit

((z =y) = (p(x) = @ly/z])™ = (M*\Ap) U (M*\ (™ x M)) U (M x o)
= M2 (1.43)

Om het laatste gelijkteken te begrijpen merken we op dat als (m1, m2) € M? voldoet aan my # my, volgt
(m1,m2) € M2\Apr. Als (m,m) met m ¢ o™, dan geldt (m,m) € M?\(¢™ x M). Als ten slotte (m,m)
met m € o™, dan geldt (m,m) € M x oM. Altijd raak. Uit (1.34) volgt dan uiteindelijk dat

M E VY, ((z = y) = (p(z) = ¢ly/z])). (1.44)

10. In de syllabus van Moerdijk en van Oosten wordt dit bewezen vanuit ND, zie §3.2. ND is equivalent met EOL1 t/m PL3.

11
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Vervolgens moeten we aantonen dat de twee deductieregels behouden zijn in ieder model van 3, dus:

Als M F pen M E ¢ — 1, dan volgt M E . Dat klopt, zie (1.26) - (1.27). Voor gesloten formules
volgt dit onmiddellijk uit (1.27), terwijl voor open formules geldt dat M F ¢ desda g™ = M' en
M E ¢ — ¢ desda (MY\@M) UM = M. Als we beiden hebben volgt 1™ = M en dus M k .
Als M E ¢(x), dan volgt M F V,¢(z). We hadden het symbool M F ¢ eerder alleen voor gesloten
formules ¢ gedefinieerd, en breiden deze definitie nu als volgt uit tot open formules: M F ¢(x)
desda voor alle m € M geldt dat M F ¢[m/z], oftewel (zie opgave 3 van vorige week) o™ = M.

De gezondheid van eerste-orde logica volgt dan op dezelfde manier als voor propositielogica (inductief).

Opgaven voor Week 11 (Inleveropgaven: 1, 6)

N

AN AN

Bewijs de deductiestelling: T' - o — 8 desda I' U {a} F S (als 8 open of « gesloten is).

Toon met behulp van de interpretatieregels aan dat M F (p(z) — V.p(z)) desda o = M of
©™ = ) (zodat het in andere gevallen niet geldt en een tegenvoorbeeld tegen - ¢ — V,p(z) is).
Laatziendat M F (8 — (y = 9)) = (B — ) — (8 = 9)).

Laat zien dat M F (~a — =f) = ((-~a — B) — «).

Laat zien dat M E (V,¢(x)) — ¢[t/z] voor een willekeurige term ¢ als x € FV (y).

Laat zien dat M E (V. (¢ — ¢¥(x))) = (¢ = Vot0(x)) alsz ¢ FV(p)enax € FV ().
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1.7 Bewijs volledigheid (aanvulling op §3.2 in Moerdijk & van Oosten)

Nu de moeilijke richting: ¥ F ¢ = X F ¢, i.e. volledigheid. Precies als in de propositielogica volgt dit
uit het speciale geval ¢ = L, hetgeen equivalent is met: ¥ is consistent (i.e. ¥ ¥ 1) = ¥ heeft een model.

In het vervolg is 3 een theorie over een taal L. We werken onder de aanname dat L een aftelbare taal is,
in de zin dat var(L) aftelbaar is en con(L), fun(L) en rel(L) eindige of aftelbare verzamelingen zijn.

Lemma 1.1 ledere consistente theorie ¥ over L kan worden uitgebreid tot een theorie Xy (over een
taal Ly D L) met getuigen (witnesses), in de zin dat als Ly + 3,¢(x) voor een open formule ¢ met
{z} = FV(p), er dan een constante ¢ € con(Ly ) is zodat Xy  (Ip¢(x)) — ¢lc/z], en dus Ty F ¢[c/x].

Bewijs. Definieer Ly als L met aftelbaar veel extra constanten (c1, .. .) die niet al in con(L) voorkomen,
zodat con(Lw ) = con(L)U{eq, . ..}. Numaken we een theorie ¥ die formeel dezelfde axioma'’s heeft als
Y (i.e. ¥¢ = X), maar voor zover deze axioma’s willekeurige formules bevatten mogen die formules nu
ook de nieuwe constanten bevatten, zodat de nieuwe (= de oude) axioma’s nu wel meer inhoud hebben.

De nieuwe theorie (X9, Ly) is nog steeds consistent. Stel van niet, dan hebben we ¥y F L en dus
Yo F (8 A =B) voor een willekeurige formule (; iedere propositie volgt namelijk uit L. Dan bevat /3
eindig veel nieuwe constanten ¢; (zo niet, dan was § A -3 al afleidbaar in (¥, L) maar die was per
aanname consistent). Vervang deze constanten door variabelen y; die niet voorkomen in een bepaald
bewijs van 3 A = en gebruik Gen: dan krijg je V,, ---V,, Blyi/ci| A =Blyi/c;]. Dan is dat bewijs nog
steeds geldig: in de regels om termen en formules te maken spelen variabelen en constanten precies
dezelfde rol, en in de regels voor bewijzen ligt het enige verschil in het gebruik van V. Het bewijs (met
de ¢;) bevatte echter nergens V,, en blijft dus geldig als ¢; ~ y;. De formule V,, ---V,, Bly:/ci] A=B[yi/ci)
is dus bewijsbaar in (¥, L), maar die theorie was consistent. Tegenspraak. Dus (£, Ly ) is consistent.

Omdat L en daarmee ook Lyy aftelbaar is, is de verzameling van alle formules in Lyy aftelbaar (ga na) en

kunnen we deze opsommen. Dit geldt ook voor de formules met één vrije variabele: (¢1(x;, ), 2(24,), - - -)-

We nemen aan dat z;, niet ook nog ergens gebonden voorkomt in ;. Hernummer nu de nieuwe con-
stanten als (c;, , ¢j,, . . .), zodanig dat ¢;, niet voorkomt in de formules ¢; t/m ;. Dan maken we

o = (Ja,, p(@ir) = @rlej /i) (1.45)

Definieer nu 3,, = ¥ U {01,...,0,} and Zy = U2 %,,. Het is duidelijk dat Xy getuigen heeft en we
bewijzen nu dat iedere ¥,, consistent is, waaruit volgt dat ook Xy consistent is. Waarom? Omdat een
bewijs van inconsistentie ¥y - L slechts eindig veel stappen heeft, daarmee eindig veel o; bevat, en
dus feitelijk een bewijs van 3, |- L is. Maar ¥,, was consistent, zoals we nu gaan bewijzen met inductie
in n. Het geval n = 0 is net gedaan. De inductiestap gaat met tegenspraak. Stel 3,,_; is consistent maar
Y, is dat niet. Dan is er een bewijs van 3,, - L en dus van iedere formule /3, dus ook van ¥£,, - —o,,.
Maar ¥ = ¥,,_1 U {0, } en o, is gesloten, zodat we de deductiestelling mogen toepassen:

Y1 U{ont b —on = X1 b (0n = —op). (1.46)
In propositielogica en daarmee in predikaatlogica geldt de tautologie (opgave)
F(a — —a) = —a. (1.47)
MP op (1.46) en (1.47) geeft 3,,_; F —0,,. Met de definitie (1.45) is dit:

En-1 b 23z, n(@i,)) = enlej, /2i,])- (1.48)

Nu volgt uit ¥ - —(o — ) zowel T F a als ¥ + =5 (opgave), zodat
Yn-1 b 3e, (@i, ); (1.49)
n-1F —nlc, [2i,]- (1.50)

Merk nu op dat ¥,,_; de variabele ¢;, niet bevat (omdat noch ¥, noch o; t/m 0,1 deze bevat). Door
overal ¢;, door een variabele y,, te vervangen die nergens in het bewijs van -, [¢;, /x;, ] uit £,,_; voor-
kwam, wordt dit bewijs een bewijs van -, [y, /x;,] uit 3,,_1, zodat

13
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Generalisatie geeft X,,_; - V,,, =¢n[yn /i, ], en omdat x;,, alleen open voorkomt (zie boven) geeft dat
Enfl = vmin 2 (xin)- (152)
Met 3 = -V impliceert (1.49) - (1.50) dus de tegenspraak

En—l F_‘vrln _‘Son(xvn)7 (153)
Y1 F vxin ¥n (xin ) (154)

Hieruit volgt dat de aanname dat X,, inconsistent is tot een tegenspraak leidt, zodat X,, consistent is.
Daarmee is Lemma 1.1 bewezen. Q.E.D.

Vervolgens kan iedere consistente theorie worden uitgebreid tot een complete theorie ¥, die per defi-
nitie de eigenschap heeft dat voor iedere uitspraak ¢ geldt dat ofwel ¥¢ F ¢ ofwel ¢ - —p. Het bewijs
hiervan is precies hetzelfde als in propositielogica (zie bewijs Lemma 1.2 op p. 8). Kort samengevat: we
zetten Xy = X. Als «; consistent is met 3, dan is X1 = 3¢ U {aq }. Zo niet, dan is 31 = 3o U {—ay }. Als
ay consistent is met ¥4, dan is ¥y = X1 U{as}. Zo niet, danis X3 = £1 U {-az}. Enzovoort: we gaan alle
o af, en krijgen een theorie ¥, = U,%,, C BT(S) die X bevat. De theorie ¥, is consistent.

Hierbij blijft de taal L van X hetzelfde. Als we deze twee uitbreidingsconstructies in de juiste volgorde
combineren, namelijk door eerst ¥ uit te breiden tot Xy en vervolgens tot (X )c = Zw, volgt dat

iedere consistente theorie X een uitbreiding Xy ¢ heeft die zowel getuigen heeft als volledig is.

Lemma 1.2 Iedere complete consistente theorie Xy ¢ met getuigen heeft een model.

Het bewijs is eenvoudiger en beter te begrijpen als we eerst een eerste-orde theorie zonder gelijkteken =
bekijken. Daarna zullen we de constructie aanpassen om ook formules van de soort s = ¢ mee te nemen.

We nemen als drager M van het model de verzameling van alle gesloten termen over L (i.e. termen
zonder vrije variabelen). De interpretatie is dan

M =¢ (c€con(L)); (1.55)

M=id: M — M (x¢€var(L)); (1.56)

Mty tn) = f(try ..o tn) (f € fun(D),n = a(f)); (1.57)
(t1,...,tn) € RM desda Zwe F R(ty,...,t,) (R €rel(L),n=a(R) > 0); (1.58)
M F Rdesda Xy - R (R € rel(L) a(R) = 0). (1.59)

waarbij we in herinnering brengen dat ¢ zelf een gesloten term is, (1.56) waar is in ieder model, en in
(1.57) geldt dat als (1, .. . , t,,) (gesloten) termen zijn, dan ook f(¢1,...,t,) weer een (gesloten) term is.

Om enig gevoel voor dit model te krijgen merken we op dat voor alle t € M geldt:
tM =t (1.60)

Let op: als een term ¢ gesloten is, is de interpretatie " per definitie een element van M. Vgl. (1.60) volgt
uit (1.55) - (1.57) en inductie in het aantal (V) functiesymbolen in ¢. Voor N = 0 is (1.60) duidelijk uit
(1.55) - (1.57), en voor N > 0 hebben we, mett = f(t1,...,t,):

fltr, oot )M = fMEM My = My, ) = (b, t), (1.61)

Hier is het eerste = teken een speciaal geval van (1.20), waarbij ¢; = ¢, € M (omdat de t; geen vrije
variabelen bevatten), is de tweede = de inductiehypothese, en volgt de derde = uit (1.57).

De cruciale eigenschap van dit model is, voor alle uitspraken ¢:
M E ¢ desda Xyye b . (1.62)

Hieruit volgt de volledigheidsstelling, want als o € ¥ C Y ¢, dan triviaal Xy ¢ F o en volgens (1.62)
dus M E ¢. Daarmee is M per definitie een model van 3.
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Het bewijs van (1.62) gaat met inductie in het aantal (V) logische symbolen van de vorm — en V. Voor
N = 0 stellen we het geval s = ¢ zoals gezegd uit (het is dan ook niet waar in dit model), enis ¢ = L
triviaal (contrapositief van (1.62)). We hoeven dus alleen te laten zien dat

M E R(t1,...,t,) desda Sywe F R(ty,...,t,). (1.63)

In een willekeurige interpretatie betekent het linkerlid per definitie: (¢}, ..., tM) € RM. Dit klopt in het

huidige model vanwege (1.60) en (1.58). Voor n = 0 volgt (1.63) natuurlijk direct uit (1.59).

Neem nu N > 0. We moeten om de inductiestap te bewijzen aantonen dat:

1. Aangenomen dat (1.62) geldt voor ¢ ~» o en ¢ ~» 3, dan ook geldt

ME (o — B) desda Zwe b (o — S). (1.64)
2. Aangenomen dat (1.62) geldt voor ¢ ~» 1) (zie onder voor de precieze versie), dan ook geldt
M E V() desda Sywe F Vao(x). (1.65)

We behandelen de tweede en geven de eerste als (inlever) opgave.

Stel M E V¢ (z). Dan volgt uit opgave 5 van vorige week dat M E ¢[t/z] voor iedere gesloten term ¢.
We willen M + V,1(z); stel dat dit niet zo is. Omdat Zy ¢ volledig is, geldt dan M + -V, (z) en dus
M F 3;—¢(x). Omdat Zy ¢ getuigen heeft, geldt dan ook M + —i)[c/x] voor een zekere constante c.
Neem boven ¢ ~» ¢ en we hebben een tegenspraak (N.B. we weten dat Xy ¢ consistent is).

De andere kant op: stel M + V,1(z). Dan geeft axioma EOL1 M 4 [t/x] voor een willekeurige gesloten
term t. De inductiehypothese geeft M F ¢[t/z] oftewel t" € M < M voor alle gesloten termen ¢. In
het huidige model geldt (1.60) en bestaat M uit alle gesloten termen t, zodat t* € v C M voor alle
impliceert ¢ = M. Dit is precies M F V,1(x), zie (1.34).

Voor formules ¢ = (s = t) gaat (1.62) echter fout: de eigenschap M & (s = t) is vanwege (1.60) en (1.23)
hetzelfde als s = t, maar dat is een veel sterkere eigenschap dan Xy (s = t). Dit is echter makkelijk op
te lossen: vervang M door M = M/ ~, waarbij s ~ t desda Sy ¢ (s = t). De interpretatie (1.55) - (1.59)
wordt dan vervangen door

M =1 (c€con(L)); (1.66)

T —id: N[ — M (x € var(L)); (1.67)

fM([tl]ﬂ'“v[tn]) = [f(tlv"‘vtn)] (fE fun(L) n_a( ))7 (1'68)
([ta],- ., [tn]) € RM™ desda Swe b R(ta, ..., tn) (R € rel(L),n = a(R) > 0); (1.69)
M E Rdesda Xyc - R (R €rel(L),a(R) = 0). (1.70)

Dit is allemaal welgedefinieerd. Nu geldt
M E ¢ desda Sy F . (1.71)

per constructie voor ¢ = (s = t) en ook het vorige bewijs gaat helemaal door: M geeft een model van
Ywc en daarmee ook van de oorspronkelijke theorie .

Opgaven voor Week 12 (Inleveropgave: 3)

Bewijs (1.47).

Bewijs dat uit ¥ - —(a — () zowel X - avals ¥ F =3 volgt.
Bewijs (1.64).

Laat zien dat (1.66) - (1.70) welgedefinieerd zijn.

Ll
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Uitwerkingen:

Uitwerkingen week 10:

1.

Neem ¢™ = cen fM = f, met (z) = z. Danis de functie o/ : M — N inductief gedefinieerd door
o (z) =a(z), o (c) =N, en o (f(tr,...,tn)) = fN(a/(t1),...,0/(t,)). Uniek per constructie.
Geen model van PA, alleen het laatste axioma PA7 geldt niet in deze interpretatie.

Eerst bewijs dat t[m/z]M = tM(m). Voor t = c is t[m/z] gelijk aan ¢ omdat = niet voorkomt, dan
staat er dus ¢™ = ¢M. Voor t = x staat er m = id(m) i.e. m = m en klopt het dus ook. Stel
nudatt = f(ty,...,t,); voor iedere t; is de gevraagde eigenschap al bewezen (inductie). Omdat
per aanname FV(t) = {z}, hangt iedere ¢; van x af of heeft geen vrije variabele en geldt dus
t; : M — M. Volgens de regels voor substitutie (zie mijn eigen syllabus) geldt dan voor m € M,

tY(m) = f(tr,....t)" (m) = FY(E (m), £ (m));
tim/z]M = f(t1,... tn)[m/x)™ = f(t1[m/x], ... ta[m/z])M.

Er zijn nu twee gevallen. Als ¢; de vrije variabele x bevat, gebruiken we de inductiehypothese
tiim/x]™ = tM(m). In dat geval geldt tevens ¥ = tM. Zo niet, dan is er geen substitutie en is
tim/x] gelijk aant; € M. Dan hangt tM (m) niet van m af (dit is precies de tilde-notatie) en is even-
eens gelijk aan t; € M. In beide gevallen is dus fM (tM (m), M (m)) = f(tijm/z], ... ta[m/z])™.

Stel nu dat ¢ = (s = t). Dan geldt volgens (1.22) dat o™ = M desda §(m) = t*(m) voor alle
m € M, terwijl M F (s = t)[m/x] hetzelfde is als M F (s[m/z] = tjm/z]), i.e., s[m/x]™ = t[m/x]M
(NB dit is een gelijkheid van elementen van M). Volgens de vorige stap van het bewijs is dit
zo desda sM(m) = t™(m) indien s en t beide x bevatten, in welk geval tevens s = s en
tM = tM en zijn we klaar; de andere twee mogelijkheden (i.e. s hangt niet van z af maar ¢ wel en

omgekeerd) gaan net als in de vorige stap.

Stel ten slotte dat ¢ = R(t1,...,t,) voor een relatiesymbool R met ariteit a(R) = n > 0 (voor
n = 0 kan R geen vrije variabelen bevatten). We laten de tildes voor het gemak weg, de gevals-
onderscheidingen zijn hetzelfde als boven. De conditie ¢ = M betekent nu R(t1,...,t,)" = M
en dus volgens (1.24): (t}(m),...t¥(m)) € RM C M" voor alle m € M. De conditie M F
R(ty,...,tn)[m/x] is per definitie van de substitutie hetzelfde als M F R(t1[m/x], ..., ty[m/x]) en
betekent volgens (1.25): (t1[m/x]™, ... t,[m/x]*) € RM. Volgens het eerste deel van het bewijs
is dit hetzelfde als (t} (m),...,t»(m)) € RM. Het bewijs is dus rond.

We hebben per definitie F =V, (z) desda voor alle M geldt M E =V, p(x); uit (1.29) volgt dat dit
zo is desda voor alle M geldt M ¥ V,¢(z); volgens (1.34) is dat het geval desda voor alle M geldt
©™ = M. Aan de andere kant: volgens (1.35) geldt F 3, () desda voor alle M geldt (—¢)* # (),
volgens (1.28) met [ = 1 is dit zo desda voor alle M geldt M\p™ # 0 i.e. o™ # M.

Neem willekeurige interpretatie M/. Op college behandeld: de interpretatie van de formule © = y
is de diagonaal in M?, i.e.

(x = )M = {(m1,ma) € M? | my = my} = {(m,m) | m € M} = Ay C M>.

Volgens (1.33) is (3,(z = y)) C M gelijk aan de verzameling van alle my € M waarvoor er
my € M bestaat zodat (mq,m2) € Ay, zodat (3y(z = y))M = M. Met ¢ ~ (F,(x = y)) in (1.34)
volgt dus direct dat M F V,3,(z = y). Hier is M willekeurig, zodat F V,3,(z = v).



