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1.1 Eerste-orde taal (aanvulling op §2.2 in Moerdijk & van Oosten)

De propositielogica is te eenvoudig om bijv. rekenkunde te beschrijven, laat staan verzamelingenleer,
omdat in de syntax geen variabelen en geen kwantoren zoals ‘er is’ (∃) en ‘voor alle’ (∀) voorkomen.1

Die zijn er wel in de predikaatlogica, ook genoemd eerste-orde logica, waar dit hoofdstuk over gaat. We
bespreken zowel de rekenkunde als de verzamelingenleer als voorbeelden van een eerste-orde logische
taal L waarin een bepaald gebied van de wiskunde wordt geformaliseerd. Het gebruikelijke eerste-orde
systeem voor de rekenkunde heet Peano Aritmetiek en wordt afgekort als PA. Het gangbare eerste-orde
systeem voor de verzamelingenleer is genoemd naar Zermelo en Fraenkel en wordt afgekort als ZF. We
geven ook propositielogica als speciaal geval, afgekort PL.

• De notatie van een eerste-orde logisch systeem is opgebouwd uit symbolen in twee groepen.

1. De zuiver logische symbolen hangen niet af van het gebied van de wiskunde dat wordt
beschreven. Dit zijn de symbolen ¬,∧,∨,→,⊥ uit de propositielogica, in de meeste theorieën
(maar niet in PL, zie onder) aangevuld met het gelijkteken = en, indien er variabelen zijn
(wat ook vrijwel altijd zo is behalve in PL) met de kwantoren ∀ en ∃, voor resp. ‘voor alle’
en ‘er bestaat’. Ook nu bestaan er relaties tussen deze symbolen, waardoor het in principe
voldoende is om bijvoorbeeld slechts,→, ⊥, =, en ∀ te gebruiken. De eliminatie van ∨ en ∧
is hetzelfde als in de propositielogica en ∃x (zie onder) kan worden vervangen door ¬∀x¬.

2. De niet-logische symbolen hangen af van het gebied van de wiskunde dat je probeert te for-
maliseren door een eerste-orde taalL. Ze zijn in detail dus verschillend voor bijv. rekenkunde
en verzamelingenleer, maar vrijwel alle talen L (behalve dus PL) bevatten:
(a) Een aftelbare verzameling variabelen var(L) = {x1, x2, . . .} (of {. . . , x, y, z, . . .}).

Bij PA kun je bij deze variabelen denken aan de natuurlijke getallen, maar deze inter-
pretatie is geen onderdeel van het logische systeem en dient slechts ter motivatie.

In ZF kunnen de variabelen evenzo worden geı̈nterpreteerd als verzamelingen.
PLheeft zoals gezegd geen variabelen, i.e. var(PL) = ∅.

(b) Een (meestal eindige) verzameling constanten con(L), die je kunt noteren hoe je wilt.
In PA is er slechts één constante, genaamd 0, later te interpreteren als het getal nul.
Ook in ZF is er één constante, ∅, later te interpreteren als de lege verzameling.
PL heeft ook al geen constanten, dus con(PL) = ∅.

(c) Een (meestal eindige) verzameling functiesymbolen fun(L). Ieder functiesymbool f
heeft een zogenaamde ariteit a(f), een getal dat aangeeft hoeveel variabelen de des-
betreffende functie als input heeft.2 De ariteit is dus een afbeelding a : fun(L) →
{1, 2, 3, . . .}.

In PA zijn er drie functiesymbolen, namelijk S, +, en ×, met ariteiten resp. a(S) = 1,
a(+) = 2, en a(×) = 2. Ook hier geven we alvast de latere interpretatie als resp.
de successorfunctie k 7→ k + 1, optelling, en vermenigvuldiging, maar opnieuw is
deze interpretatie geen onderdeel van het formele logische systeem.

ZF heeft (verrassenderwijs) geen functiesymbolen.3

Ook PL heeft geen functiesymbolen.
(d) Een (meestal eindige) verzameling relatiesymbolen (of predikaatsymbolen) rel(L), even-

eens met bijbehorende ariteiten a, deze keer inclusief 0, dus a : rel(L)→ {0, 1, 2, . . .}. De
relatiesymbolen spelen een rol bij het definiëren van formules; zie onder. Voorbeelden:

1. Zoals we zullen zien zijn de atomaire proposities pi technisch gesproken geen variabelen maar zgn. relatiesymbolen.
2. Deze naam komt van het Engelse arity ; vgl. unary, binary, etc. Een functiesymbool f met a(f) = 0 is een constante.
3. We zullen later zien dat functies f : X → Y in de verzamelingenleer worden gedefinieerd als deelverzamelingen van X × Y .
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PA heeft geen relatiesymbolen.4

In ZF is het enige relatiesymbool ∈, met ariteit 2.
De relatiesymbolen van PL zijn de atomaire proposities, dus rel(PL) = {p0, p1, . . .},

alle met ariteit a(pi) = 0. Deze verzameling relatiesymbolen is soms oneindig.

• Uit deze symbolen worden eerst volgens bepaalde regels termen gemaakt, die op hun beurt aan-
leiding geven tot formules, meestal genoteerd als ϕ of ψ, etc. Speciale formules zijn vervolgens
uitspraken (sentences), die kandidaten zijn voor stellingen (dus al dan niet bewijsbaar zijn). Het
verschil tussen formules en uitspraken blijkt uit een eenvoudig voorbeeld: je kunt niet eisen dat
een uitdrukking als x2 = 1 wel of niet bewijsbaar is; dat is dan ook ‘slechts’ een formule. Dat kun
je wel eisen van ∃x(x2 = 1) of ∀x(x2 = 1); dat zijn dan ook uitspraken. We geven nu de algemene
formatieregels voor termen en formules, en de regel die bepaalt welke formules uitspraken zijn.

1. De iteratieve procedure om termen te produceren is als volgt:
(a) iedere variabele xi ∈ var(L) is een term;
(b) iedere constante c ∈ con(L) is een term;
(c) een functiesymbool f en a(f) = k termen (t1, . . . , tk) geven een term f(t1, . . . , tk).

In PA betekent dit dat S(t) een term is en dat t1 + t2 ≡ +(t1, t2) en t1 × t2 ≡ ×(t1, t2)
termen zijn, tenminste als t, t1, en t2 dat zijn. Dit is niet zo ingewikkeld als het lijkt! De
constante 0 is bijvoorbeeld een term, zodat S(0) dat ook is. Voor deze term voeren we
de naam 1 in. Dit kunnen we herhalen: Sn(0) is een term, die we afkorten als n (waarbij
bijv. S2(0) ≡ S(S(0)), etc.). Daaruit kunnen we de term n + m maken, of n × xi, en
vervolgens (n+m)× (n×xi), enz. Dit soort dingen doe je in de wiskunde de hele dag!
Wat je niet als term kunt maken is iets als S(+) of n× en dergelijke onzin.

In ZF zijn de enige termen ∅ en de variabelen (er zijn immers geen functiesymbolen).
PL heeft geen termen.

2. Uit de termen en ⊥maken we als volgt atomaire formules m.b.v. = en de relatiesymbolen:

(a) ⊥ is en atomaire formule.
(b) Als t1 en t2 termen zijn, is t1 = t2 een atomaire formule.

(c) Een relatiesymbool R met ariteit a(R) = k en k termen (t1, . . . , tk) bepalen samen een
atomaire formule R(t1, . . . , tk).

In PA is t1 = t2 een atomaire formule, als t1 en t2 termen zijn (en verder niets).

In ZF zijn t1 ∈ t2 en t1 = t2 atomaire formules, als t1 en t2 termen zijn (en verder niets).

In PL zijn de atomaire proposities pi atomaire formules (en verder niets).

3. Nu komen de andere zuiver logische symbolen aan bod en maken we (algemene) formules:
(a) Net als in de propositielogica geldt dat als ϕ en ψ formules zijn, de uitdrukkingen ¬ϕ,

ϕ∨ψ, ϕ∧ψ, en ϕ→ ψ dat ook zijn (in eerste instantie toegepast op atomaire formules).
(b) Bovendien zijn nu ook ∃xϕ en ∀xϕ formules, voor een willekeurige variabele x.

De variabele x hoeft niet in ϕ voor te komen om ∃xϕ en ∀xϕ correct te kunnen opschrijven.
Zo is de uitspraak ∃xS(0) + S(0) = S(S(0)) grammaticaal correct (en ook nog eens waar!).

• In de volgende sectie definiëren we precies de vrije (i.e. niet gebonden) variabelen in een term t
of formule ϕ. Kort: een variabele x in ϕ heet gebonden als er deelformules ∀xψi(x) of ∃ψi(x) van
ϕ bestaan met de eigenschap dat x uitsluitend in deze deelformules voorkomt.5 Een variabele x ϕ
heet vrij als deze niet gebonden is. Om aan te geven dat t of ϕ de variabele x vrij bevat schrijven
we soms t(x) resp. ϕ(x) i.p.v. t of ϕ, en ϕ(x1, . . . , xn) als ϕ tenminste de variabelen (x1, . . . , xn) vrij
bevat, etc. In een open formule komt minstens één vrije variabele voor. In een gesloten formule
zijn alle variabelen gebonden, of zijn er geen variabelen. Een gesloten formule heet een uitspraak.

4. Soms wordt in PA echter < als predikaat met ariteit 2 gebruikt. Sommige auteurs rekenen = tot de relatiesymbolen.
5. Een deelformule van een formule ϕ is een (ook op zichzelf zinvolle) term of formule die in ϕ voorkomt (inclusief ϕ zelf).
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1.2 Variabelen en substituties (aanvulling op §2.2 in Moerdijk & van Oosten)

Definitie 1.1 1. De verzameling FV (t) van vrije variabelen in een term t is recursief gedefinieerd:

FV (x) = {x} (x ∈ var(L)); (1.1)
FV (c) = ∅ (c ∈ con(L)); (1.2)

FV (f(t1, . . . , tn)) = FV (t1) ∪ · · · ∪ FV (tn) (f ∈ fun(L), a(f) = n). (1.3)

2. De verzameling FV (ϕ) van vrije variabelen in een formule ϕ is recursief gedefinieerd:

FV (⊥) = ∅; (1.4)
FV (R) = ∅ (R ∈ rel(L), a(R) = 0); (1.5)

FV (R(t1, . . . , tn) = FV (t1) ∪ · · · ∪ FV (tn) (R ∈ rel(L), a(R) = n > 0); (1.6)
FV (t1 = t2) = FV (t1) ∪ FV (t2); (1.7)

FV (¬ψ) = FV (ψ); (1.8)
FV (ψ → ϕ) = FV (ψ) ∪ FV (ϕ); (1.9)
FV (ψ ∨ ϕ) = FV (ψ) ∪ FV (ϕ); (1.10)
FV (ψ ∧ ϕ) = FV (ψ) ∪ FV (ϕ); (1.11)
FV (∀xψ) = FV (ψ)− {x} (x ∈ FV (ψ)); (1.12)
FV (∃xψ) = FV (ψ)− {x} (x ∈ FV (ψ)). (1.13)

Een formule ϕ heet gesloten als FV (ϕ) = ∅. Een gesloten formule heet ook wel een uitspraak.

Definitie 1.2 1. Voor iedere term t en formule ϕ is de substitutie ϕ[t/x] toegestaan als:
(a) x ∈ FV (ϕ), en:
(b) “t vrij is voor x in ϕ”, waarbij dit begrip als volgt recursief is gedefinieerd. t is vrij voor x:

i. in iedere atomaire formule;6

ii. in formules ϕ = ¬ψ waarbij t vrij is voor x in ψ;
iii. in formules ϕ = ψ1 → ψ2 waarbij t vrij is voor x in zowel ψ1 als ψ2 (analoog met ∨,∧);
iv. in formules ϕ = ∀yψ of ϕ = ∃yψ waarbij y /∈ FV (t) en y 6= x en t is vrij voor x in ψ.
Informeel: t vrij is voor x in ϕ desda geen van de vrije variabelen y in t binnen het bereik van
een kwantor ∀y of ∃y in ϕ komen te staan.7

2. Als de substitutie ϕ[t/x] is toegestaan, dan is de formule ϕ[t/x] recursief gedefinieerd door:
(a) als y ∈ var(L) dan y[t/x] = y als y 6= x en y[t/x] = t als y = x;
(b) als c ∈ con(L) dan c[t/x] = c, en analoog ⊥[t/x] = ⊥ en R[t/x] = R als R ∈ rel(L), a(R) = 0.
(c) als f ∈ fun(L) met a(f) = n en t1, . . . , tn zijn termen, dan is f(t1, . . . , tn)[t/x] gelijk aan

f(t1[t/x], . . . , tn[t/x]). Analoog met R i.p.v. f , met R ∈ rel(L), a(R) = n > 0;
(d) Voor termen t1, t2 is (t1 = t2)[t/x] gelijk aan t1[t/x] = t2[t/x].
(e) (¬ψ)[t/x] is gelijk aan ¬(ψ[t/x]), analoog is (ψ → ϕ)[t/x] gelijk aan ψ[t/x]→ ϕ[t/x] etc.
(f) (∀yψ)[t/x] is gelijk aan ∀y(ψ[t/x]) als y 6= x (analoog met ∃y); als y = x dan is x niet vrij en is

∀xψ[t/x] niet gedefinieerd (en is dan gelijk aan ∀xψ zelf).
Informeel: in ϕ[t/x] wordt de vrije variabele x overal vervangen door de term t (zie voetnoot 2).

6. Dit begrip komt niet voor in Moerdijk & van Oosten. Atomaire formules zijn van de vorm ⊥, of s = t met s en t termen, of R
met R ∈ rel(L) en a(R) = 0, of R(t1, . . . , tn) met R ∈ rel(L) en a(R) = n > 0.
7. Dit is exact als de CONVENTION ON VARIABLES onderaan p. 45 van Moerdijk & van Oosten wordt aangehouden: variabe-
len komen ofwel gebonden ofwel vrij ofwel niet voor in een formule, en als ze gebonden zijn gebeurt dat slecht één keer.
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1.3 Natuurlijke deductie (aanvulling op §3.1 in Moerdijk & van Oosten)

Naast de regels van ND voor propositielogica (die onverkort blijven gelden) komen er bij:8

1. Substitutie :
ϕ[t/x] t = s

ϕ[s/x]
, mits x ∈ FV (ϕ) en de substituties ϕ[t/x] en ϕ[s/x] zijn toegestaan;

2. ∀-Introductie:
ϕ[y/x]
∀xϕ(x)

, onder de voorwaarden dat:

(a) x ∈ FV (ϕ) en de substitutie ϕ[y/x] is toegestaan;
(b) y niet voorkomt in ϕ(x);
(c) y niet voorkomt in enige open (i.e. nog niet opgeheven) aanname [ψ] die is gebruikt in de

afleiding van ϕ.

3. ∀-Eliminatie :
∀xϕ(x)
ϕ[t/x]

, voor een term t, mits x ∈ FV (ϕ) en de substitutie ϕ[t/x] is toegestaan.

We nemen hierbij aan dat de tweede kwantor ∃ is gedefinieerd via ∃xϕ ≡ ¬∀x¬ϕ; zie opgave. Als we ∃
apart gebruiken gelden daarvoor in ND de volgende regels:

1. ∃-Introductie :
ϕ[t/x]
∃xϕ(x)

, mits x ∈ FV (ϕ) en de substitutie ϕ[t/x] is toegestaan;

2. ∃-Eliminatie :9
[ϕ[y/x]]

∃xϕ(x) ψ
ψ

, mits:

(a) x ∈ FV (ϕ) en de substitutie ϕ[y/x] is toegestaan;
(b) de variabele y niet voorkomt in ϕ of ψ;
(c) de open aannames in de afleiding van ψ waarin y voorkomt de vorm ϕ[y/x] hebben;
(d) de formule ∃xϕ(x) niet uit de aanname ϕ[y/x] is afgeleid.
Deze regel is dus equivalent met de mogelijk duidelijkere versie (waar ϕ(y) ≡ ϕ[y/x]):

ϕ(y)→ ψ ∃xϕ(x)
ψ

Als ∃xϕ(x) als aanname is ingevoerd, i.e.[∃xϕ(x)], dan hebben we via→-Introductie dus
ϕ(y)→ ψ
∃xϕ(x)→ ψ

Met ψ ≡ ⊥ geeft dit het speciale geval
¬ϕ(y)
¬∃xϕ(x)

. Met ϕ  ϕ, RAA, en ∀x ≡ ¬∃x¬ geeft dit

∀-Introductie terug. Als illustratie bewijzen we ` ∃xϕ(x) → ∃yϕ(y), waar (zoals altijd) ϕ(y) ≡
ϕ[y/x]:

[ϕ(y)]
[∃xϕ(x)] ∃yϕy

∃yϕy

∃xϕ(x)→ ∃yϕ(y)

Uitleg: uit de aanname [ϕ(y)] volgt met ∃-Introductie met x y de formule ∃yϕy op de volgende
regel. De derde regel volgt uit ∃-Eliminatie met ψ ≡ ∃yϕy , waardoor de aanname [ϕ(y)] vervalt.
De laatste regel is→-Introductie, waardoor ook de aanname [∃xϕ(x)] vervalt.

Op soortgelijke wijze bewijs je ` ∀xϕ(x)→ ∀xϕ(y): eerst ∀-Introductie, dan ∀-Eliminatie (opgave).

8. De regels voor = komen volgende week!
9. Dit ziet er circulair uit, maar de eerste ψ is afgeleid uit de aanname [ϕ[y/x]] en mogelijke andere onderdelen van het bewijs.
De conclusie ψ heft deze aanname dan op.
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Ten slotte zijn er drie (voor de hand liggende) regels voor =, met t(y) ≡ t[y/x] en ϕ(y) ≡ ϕ[y/x]:

· · ·
x = x

x = y y = z
x = z

x = y
t(x) = t(y)

Met behulp van de substitutieregel volgen hieruit soortgelijke regels voor termen s, r, t:

· · ·
t = t

r = s s = t
r = t

De eerste volgt bijvoorbeeld uit ∀-Introductie gevolgd door ∀-Eliminatie (vul de details zelf aan):

x = x
∀x(x = x)
t = t

Hieruit volgt ` (t = s)→ (s = t) oftewel, bij gebruik in ND,
t = s
s = t. Bewijs:

t = t [t=s]
s = t

(t = s)→ (s = t)

Let op: hier wordt t = t gelezen als (x = t)[t/x] en dan pas je Substitutie toe op ϕ(x) ≡ (x = t), zodat
ϕ[t/x] ≡ (t = t) en ϕ[s/x] ≡ (s = t). De laatste regel volgt uit→-Introductie, waarbij de aanname [t = s]
wordt opgeheven. Nog een voorbeeld: we bewijzen de stelling

` (∀x(ϕ(x)→ ψ))→ ((∃xϕ(x))→ ψ). (1.14)

oftewel in ND:
∀x(ϕ(x)→ ψ)
(∃xϕ(x))→ ψ

. We bewijzen deze laatste versie; voor de eerste begin je met de aanname

[∀x(ϕ(x)→ ψ)] en hef je die in de laatste regel op middels→-Introductie.

∀x(ϕ(x)→ ψ)
ϕ(x)→ ψ [ϕ(x)]

ψ [∃xϕ(x)]
ψ

(∃xϕ(x))→ ψ

1. ∀-Eliminatie en invoering aanname [ϕ(x)].
2. →-Eliminatie (Modus Ponens) en invoering aanname [∃xϕ(x)].
3. ∃-Eliminatie en opheffing van aanname [ϕ(x)].
4. →-Introductie en opheffing van aanname [∃xϕ(x)]

Nu komt een lastiger bewijs, en wel van de later belangrijke stelling

` ∃x∀y(¬ϕ(y) ∨ ϕ(x)). (1.15)

Hierbij maken we gebruik van de ∨-Introductieregel; voor de volledigheid geven we alle regels voor ∨
en ∧ (die wij in principe niet nodig hebben omdat ze afgeleide tekens zijn uit→ en ⊥):

1. ∧-Introductie :
ϕ ψ
ϕ ∧ ψ ∧-Eliminatie :

ϕ ∧ ψ
ϕ

∧-Symmetrie :
ϕ ∧ ψ
ψ ∧ ϕ

2. ∨-Introductie :
ϕ

ϕ ∨ ψ ∨-Eliminatie :
ϕ ∨ ψ ¬ψ

ϕ
∨-Symmetrie :

ϕ ∨ ψ
ψ ∨ ϕ

Nu komt het bewijs van (1.15), wat op het eerste gezicht een nogal vreemde indruk maakt!

5
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[ϕ(x)]
¬ϕ(y) ∨ ϕ(x)
∀y(¬ϕ(y) ∨ ϕ(x))
∃x∀y(¬ϕ(y) ∨ ϕ(x)) [¬∃x∀y(¬ϕ(y) ∨ ϕ(x))]

⊥
ϕ(x)→ ⊥
¬ϕ(x)

¬ϕ(x) ∨ ϕ(y)
∀x(¬ϕ(x) ∨ ϕ(y))
∃y∀x(¬ϕ(x) ∨ ϕ(y))
∃x∀y(¬ϕ(y) ∨ ϕ(x)) ¬∃x∀y(¬ϕ(y) ∨ ϕ(x))

⊥
∃x∀y(¬ϕ(y) ∨ ϕ(x))

Hier moet de stap van ∃y∀x(¬ϕ(x)∨ϕ(y)) naar ∃x∀y(¬ϕ(y)∨ϕ(x)) ook worden bewezen, maar dit soort
verandering van variabelen mag je verder zonder bewijs uitvoeren (als je het maar duidelijk opschrijft).
Het is een goede oefening om per stap na te gaan wat de rechtvaardiging is: de laatste is bijvoorbeeld
RAA op de aanname [¬∃x∀y(¬ϕ(y) ∨ ϕ(x))].

1.4 Peano Arithmetic (Rekenkunde)

Als voorbeeld van een wiskundige theorie bekijken we nu PA. Deze eenvoudige theorie (bekend van de
lagere school) is van niet te overschatten belang voor de logica, met name omdat de Onvolledigheids-
stelling van Gödel (die we helaas in dit college niet kunnen behandelen) er op is gebaseerd. We weten al
dat: fun(PA) = {+,×, S}met a(+) = a(×) = 2 en a(S) = 1, en dat : rel(PA) = ∅. Hier zijn de axioma’s:

PA1 ∀x(¬(S(x) = 0));
PA2 ∀x∀y(S(x) = S(y)→ x = y);
PA3 ∀x(x+ 0 = x);
PA4 ∀x∀y(x+ S(y) = S(x+ y));
PA5 ∀x(x× 0 = 0);
PA6 ∀x∀y(x× S(y) = (x× y) + x);
PA7 (ϕ(0) ∧ (∀x(ϕ(x)→ ϕ(S(x))))→ ∀xϕ(x).

Axioma PA7 geldt voor alle formules ϕ(x) met vrije variabele (tenminste) x. Dit axioma is het inductie-
axioma; het is eigenlijk een zogenaamd axioma-schema, omdat het voor willekeurige formules ϕ(x)
geldt. De axioma’s PA1 t/m PA6 zijn dan wel echte axioma’s. We korten af S(0) ≡ 1, S(S(0)) ≡ 2, etc.

Als we een uitspraak ϕ bewijzen uit deze axioma’s en de algemene regels van ND schrijven we PA ` ϕ.
De eenvoudigste stelling uit PA is

PA ` 0 + 0 = 0. (1.16)

Deze volgt uit PA3 door ∀-Eliminatie met t ≡ 0 (ga na). Iets lastiger is al 1 + 1 = 2, oftewel

PA ` 1 + S(0) = S(1). (1.17)

∀x∀y(x+ S(y) = S(x+ y))
∀y(1 + S(y) = S(1 + y))

1 + S(0) = S(1 + 0) ∀x(x+ 0 = x)
1 + 0 = 1

1 + S(0) = S(1) ∀x∀y(x+ S(y) = S(x+ y))

In de voorlaatste stap gebruiken we Substitutie op ϕ(x) ≡ (1 + S(0) = S(x)), t ≡ 1 + 0 en s ≡ 1.

Ten slotte bewijzen we om PA7 te illustreren,

PA ` ∀x(0 + x = x). (1.18)

6
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Neem ϕ(x) ≡ (0 + x = x). Dan volgt PA ` ϕ(0) direct uit PA3 met ∀-Eliminatie naar t ≡ 0. Vervolgens

bewijzen we PA ` ∀x(ϕ(x) → ϕ(S(x))). In ND volgt dit door ∀-Introductie uit
ϕ(x)

ϕ(S(x))
oftewel

0 + x = x
0 + S(x) = S(x)

. Bewijs

0 + x = x ∀x∀y(x+ S(y) = S(x+ y))
0 + y = y 0 + S(y) = S(0 + y)

0 + S(y) = S(y)

De eerste regel is PA4. De tweede regel ontstaat door de aanname te 0 +x = x vervangen door 0 + y = y
(via ∀-Introductie en daarna ∀-Eliminatie), en op de tweede formule twee keer ∀-Eliminatie toe te passen.
De laatste regel volgt foor Substitutie op de formule ϕ(x) ≡ (0 + S(y) = S(x)), met t ≡ 0 + y en s ≡ y.

Opgaven voor Week 8 (Inleveropgaven: 1, 3, 4)

1. De theorie van de reële getallen heeft constanten 0 en 1, functiesymbolen + en× beiden van ariteit
a(+) = a(×) = 2, daarnaast een functiesymbool − van ariteit a(−) = 1, en een relatiesymbool <
van ariteit a(<) = 2. Je kunt dan eigenschappen die individuele reële getallen mogelijk hebben
uitdrukken door open formules, bijvoorbeeld: (0 < x)∨(x = 0) betekent “x is positief”. Algemene
eigenschappen worden gegeven door gesloten formules, bijvoorbeeld: ∀x((0 < x×x)∨(0 = x×x))
betekent: ieder kwadraat is positief. Geef formules voor de eigenschappen:
(a) Het polynoom x2 + x+ 1 heeft een wortel;
(b) Ieder derdegraads polynoom heeft een wortel.

2. Welke stap(pen) is (zijn) fout in het volgende bewijs (zeg in PA = Peano Rekenkunde) en waarom?

[y = 0]
∀x(x = 0)

(x = 0)→ ∀x(x = 0)
∀x((x = 0)→ ∀x(x = 0))

(0 = 0)→ ∀x(x = 0)

3. Leid de eerste (∃-Introductie) af uit de definitie ∃xϕ ≡ ¬∀x¬ϕ en de eerste drie regels in §1.2.

4. Omgekeerd: bewijs (met ND) uit de regels voor ∃ en de regels voor ∀ dat ∀x¬ϕ(x) ` ¬∃xϕ(x),
waarbij x ∈ FV (ϕ).

Opgaven voor Week 9 (Inleveropgaven: 3, 6)

1. Bewijs (met ND) dat ` ∀xϕ(x)→ ∀xϕ(y), waarbij x ∈ FV (ϕ).
2. Bewijs (met ND) dat ` ∀x∀yϕ(x, y)→ ∀y∀xϕ(x, y), waarbij {x, y} ⊂ FV (ϕ).
3. Bewijs (met ND) dat ` ∀x(ϕ→ ψ(x))→ (ϕ→ ∀xψ(x)), waarbij x ∈ FV (ψ).
4. We kunnen PA ook opzetten zonder de functie S maar met een extra constante 1, dus con(PA) =

{0, 1} en fun(PA) = {+,×}. Herschrijf de axioma’s van PA met deze symbolen.
5. Schrijf het bewijs van (1.18) netjes uit.
6. (a) Bewijs in PA dat voor alle termen s, t geldt PA ` S(t) + s = S(t+ s).

(b) Bewijs daaruit (en uit PA ` 0 + x = x) dat PA ` t+ s = s+ t.
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1.5 Semantiek en waarheid (aanvulling op §2.3 in Moerdijk & van Oosten)

In de propositielogica was een interpretatie van een taal L, die in dat geval wordt bepaald door de ver-
zameling van atomaire proposities (oftewel relatiesymbolen van ariteit nul) S ≡ rel(L) = {p1, p2, . . .},
hetzelfde als een afbeelding v : rel(L) → {0, 1}, die vervolgens werd opgewaardeerd tot een valuatie
V : BT (S) → {0, 1}. Hierbij is BT (S) de verzameling van alle formules over S (die in PL samenvallen
met de uitspraken). We zeggen dan dat een uitspraak waar is ten opzichte van een gegeven valuatie V
als V (ϕ) = 1, notatie V � ϕ, en (in absolute zin) waar als V � ϕ voor alle valuaties V . De absoluut
ware uitspraken van de propositielogica zijn dus de tautologieën, en die vallen volgens de Volledig-
heidsstelling van de propositielogica precies samen met de bewijsbare uitspraken. Als we uitgaan van
een theorie Σ ⊂ BT (S), dan heet een valuatie V een model van Σ als V (σ) = 1 voor alle σ ∈ Σ, en geldt
volgens de Volledigheidsstelling Σ ` ϕ, i.e. ϕ is afleidbaar uit Σ desda ϕ waar is in alle modellen van Σ.

Dit verhaal willen we nu uitbreiden tot predikaatlogica. Deze uitbreiding gaat er helaas van uit dat
de verzamelingen al gedefinieerd zijn; in een strict logische opbouw zouden we dus moeten beginnen
met axiomatische verzamelingenleer, maar dit is didactisch geen goed idee. Hoe dan ook wordt de ene
afbeelding v : rel(L)→ {0, 1} uit de propositielogica vervangen door een L-structuur, bestaande uit:

• Een niet-lege verzameling M (genaamd de drager van de L-structuur);
• Een afbeelding con(L)→M , genoteerd c 7→ cM (soms [[c]]L), dus cM ∈M ;
• Een afbeelding f 7→ fM (etc.) die f ∈ fun(L) afbeeldt op een ‘echte’ functie fM : Ma(f) → f ;
• Een afbeelding R 7→ RM (etc.) die R ∈ rel(L) afbeeldt op een deelverzameling RM ⊂Ma(R).

Als a(R) = 0, dan interpreteren we M0 als een singleton {∗}, en hebben we dus RM ⊂ {∗}. De enige
twee deelverzamelingen van {∗} zijn {∗} zelf en de lege verzameling ∅. AlsRM = ∅ noteren weRM = 0,
en als RM = {∗} schrijven we RM = 1. In dat geval is de afbeelding R 7→ RM dus feitelijk een valuatie
v, zodat in PL (waarin con(L) = fun(L) = ∅) een L-structuur niets anders is dan een valuatie. Het
eenvoudigste voorbeeld voor PA is uiteraard M = N, 0N = 0, en + en × worden geı̈nterpreteerd als
optelling en vermenigvuldiging (er zijn echter andere, ‘niet-standaard’ interpretaties van PA!).

We moeten nu de stap van v naar V in PL generaliseren, i.e., een interpretatie geven van willekeurige
formules. Het resultaat zal zijn dat uitspraken ook nu de waarde 0 of 1 krijgen. We beginnen met termen:

1. De interpretatie cM van een constante c ∈ con(L) is cM ∈M , zie boven.
2. De interpretatie xM van iedere variabele x ∈ var(L) is de identiteit id : M →M .
3. Uit deze twee regels en de volgende volgt dat de interpretatie tM van een term t een functie

tM : M l → M is, waarbij l het aantal (verschillende) vrije variabelen in t is (voor t ≡ c is dat dus
l = 0 en voor t ≡ x is het l = 1). Voor l = 0 lezen we tM : M0 → M als tM ∈ M (dit klopt qua
notatie, omdatM0 = {∗} en tM : {∗} →M kan worden geı̈dentificeerd met het beeld tM (∗) ∈M ).

4. De interpretatie van een term f(t1, . . . , tn), waar f ∈ fun(L) en a(f) = n, hangt af van het aantal
vrije variabelen in f(t1, . . . , tn); we weten uit (1.3) dat FV (f(t1, . . . , tn)) = FV (t1)∪ · · · ∪FV (tn).
Als FV (f(t1, . . . , tn)) = {x1, . . . , xl}, dan geldt dus FV (ti) ⊂ {x1, . . . , xl}.
We herinterpreteren nu iedere term ti als een functie t̃Mi : M l → M (terwijl i.h.a. tMi : M li → M
met li ≤ l) door t̃Mi onafhankelijk te maken van de variabelen waar tM niet van afhangt. Stel
bijvoorbeeld dat FV (t1) = {x2, x3} en FV (t2) = {x1, x2}, met interpretaties tM1 : M2 → M en
tM2 : M2 → M , dan is t̃M1 : M3 → M met t̃M1 (m1,m2,m3) = tM1 (m2,m3) en t̃M2 : M3 → M
met t̃M2 (m1,m2,m3) = tM1 (m1,m2). Als toevallig FV (t1) = · · · = FV (tn), dan geldt uiteraard
t̃Mi = tMi , ook als FV (ti) = ∅ voor alle i, in welk geval tMi ∈M .
Ten slotte is de interpretatie f(t1, . . . , tn)M : M l →M gedefinieerd als de compositie

M l (t̃M1 ,...,t̃Mn )−→ Mn fM

−→M ; (1.19)

f(t1, . . . , tn)M = fM ◦ (t̃M1 , . . . , t̃
M
n ), (1.20)

waarbij (t̃M1 , . . . , t̃
M
n ) : M l →Mn de functie is die ~m ∈M l afbeeldt op (t̃M1 (~m), . . . , t̃Mn (~m)) ∈Mn.

Een speciaal geval is ti ≡ xi; dan is n = l en is x̃Mi : Mn → M de projectie op de i’de coördinaat,
zodat (x̃1, . . . , x̃n) : Mn → Mn de identiteit is. Er volgt dus dat f(x1, . . . , xn)M : Mn → M
gelijk is aan fM . Of neem n = 1 (zodat fM : M → M ) en t1 = c; dan is f(c)M ∈ M gelijk aan
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fM (cM ). Als gemengd voorbeeld: de interpretatie f(c, x)M is de functie M → M gegeven door
f(c, x)M (m) = fM (cM ,m), ga na.

We interpreteren nu formules. Een formule ϕ(x1, . . . , xl) met l vrije variabelen FV (ϕ) = {x1, . . . , xl}
heeft als interpretatie een deelverzameling ϕM ⊂ M l; als l = 0, en ϕ dus een uitspraak is, beschouwen
we net als eerder ϕM ⊂ M0 als het getal 0 of 1; als ϕM = 0 (i.e. ϕ = ∅), dan is ϕ onwaar in de gegeven
interpretatie en noteren weM 2 ϕ, en als ϕM = 1 (i.e. ϕ = M0), dan is ϕwaar in de gegeven interpretatie
en noteren we M � ϕ (waarbij M staat voor de hele interpretatie, niet slechts voor de drager M ).

We beginnen met de atomaire formules:

• De interpretatie van ⊥ (als formule zonder vrije variabelen i.e. uitspraak) is 0, dus

M 2 ⊥. (1.21)

• De interpretatie (s = t)M ⊂Mn van s = t (met FV (s = t) = FV (s) ∪ FV (t)) is de verzameling

(s = t)M = {~m ∈Mn | s̃M (~m) = t̃M (~m)}. (1.22)

Als n = 0, i.e. FV (s) = FV (t) = ∅, geldt (als elementen van M ):

M � (s = t) desda sM = tM . (1.23)

• De interpretatie van R(t1, . . . , tn), met FV (R(t1, . . . , tn)) = FV (t1) ∪ · · · ∪ FV (tn), is

R(t1, . . . , tn)M = {~m ∈M l | (t̃M1 (~m), . . . , t̃Mn (~m)) ∈ RM}, (1.24)

waarbij RM ⊂Mn en we dezelfde notatie als boven gebruiken. Als l = 0 en dus tMi ∈M , dan is

M � R(t1, . . . , tn) desda (tM1 , . . . , t
M
n ) ∈ RM . (1.25)

Nu de algemene formules:

• De interpretatie van ϕ → ψ berust op een soortgelijke notatie als voor termen: we weten dat
FV (ϕ→ ψ) = FV (ϕ) ∪ FV (ψ). Als ϕM ∈ M l1 en ψM ∈ M l2 , en FV (ϕ→ ψ) = {x1, . . . , xl}, dan
definiëren we ϕ̃M ⊂M l = M l1 ×M l−l2 als ϕM ×M l−l1 , en analoog ψ̃M ⊂M l.
Als bijvoorbeeldϕ = ϕ(x1) enψ = ψ(x1, x2), zodat FV (ϕ→ ψ) = {x1, x2}, dan is ϕ̃M ⊂M2 gelijk
aan ϕ̃M = {(m1,m2) ∈ M2 | m1 ∈ ϕM} terwijl ψ̃M = ψM ⊂ M2. Dit is letterlijk dezelfde notatie
als voor termen als we in plaats van deelverzamelingen ϕM ⊂ M l1 werken met de bijbehorende
karakteristieke functies 1ϕM : M l1 → {0, 1} (i.e. 1ϕM (~m) = 1 desda ~m ∈ ϕM ). In dat geval is
1ϕ̃M : Mn → {0, 1} de uitbreiding van 1ϕM van M l1 naar M l die niet van de l − l1 variabelen
afhangt waar 1ϕM niet van afhing (dus in het voorbeeld is 1ϕ̃M (m1,m2) = 1ϕM (m1)).
De verzameling (ϕ→ ψ)M ⊂M l is dan gedefinieerd als

(ϕ→ ψ)M = {~m ∈M l | ~m ∈ ϕ̃M ⇒ ~m ∈ ψ̃M} = (M l\ϕ̃M ) ∪ ψ̃M . (1.26)

Voor l = 0 hebben we dus

M � (ϕ→ ψ) desda (M � ϕ)⇒ (M � ψ), (1.27)

aangezien het rechterlid is: ϕM = 1⇒ ψM = 1 en dit is precies het middendeel van (1.26).
• Met ψ ≡ ⊥ en dus ϕ→ ⊥ ≡ ¬ϕ volgt uit (1.26)

(¬ϕ)M = M l\ϕM , (1.28)

met opnieuw als speciaal geval l = 0, dat ook direct uit (1.27) volgt:

M � ¬ϕ desda M 2 ϕ, (1.29)

aangezien de implicatie “(M � ϕ)⇒ onwaar” alleen juist is als M � ϕ onwaar is. Analoog:

M � (ϕ ∨ ψ) desda (M � ϕ) of (M � ψ); (1.30)
M � (ϕ ∧ ψ) desda (M � ϕ) en (M � ψ). (1.31)
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• De interpretatie van ∀xϕ(x) en ∃xϕ(x): stel dat FV (ϕ) = {x1, . . . , xl}, dan is

(∀x1ϕ)M = {(m2, . . . ,ml) ∈M l−1 | ∀m1 ∈M : (m1,m2, . . . ,ml) ∈ ϕM}; (1.32)

(∃x1ϕ)M = {(m2, . . . ,ml) ∈M l−1 | ∃m1 ∈M : (m1,m2, . . . ,ml) ∈ ϕM}. (1.33)

Als FV (ϕ) = {x}, dan geldt dus M � ∀xϕ(x) desda ∀m∈M : m ∈ ϕM , en analoog M � ∃ϕ(x)
desda ∃m∈M : m ∈ ϕM , zodat

M � ∀xϕ(x) desda ϕM = M ; (1.34)

M � ∃xϕ(x) desda ϕM 6= ∅. (1.35)

Dit kan ook meer fancy worden opgeschreven als (zie syllabus)

M � ∀xϕ(x) desda voor alle m ∈M geldt M � ϕ[m/x]; (1.36)
M � ∃xϕ(x) desda er bestaat m ∈M geldt M � ϕ[m/x], (1.37)

waarbij m ∈ M formeel als een constante wordt beschouwd die aan con(L) is toegevoegd (met
als interpretatie mM = m), zodat de substitutie ϕ[m/x] is gedefinieerd (N.B. FV (ϕ[m/x]) = ∅).

Stel nu dat we, net als in de propositielogica, een theorie Σ hebben in de taal L, i.e., een verzameling
uitspraken (denk aan de lijst axioma’s van PA). Dan heet de gegeven L-structuur op M een model
van Σ als M � σ voor alle σ ∈ Σ, i.e. alle axioma’s van Σ zijn waar in de gegeven interpretatie. Dat
is bijvoorbeeld het geval voor de gebruikelijke interpretatie van PA in N, waarin M = N, 0N = 0,
SN(m) = m + 1, +N(n,m) = n + m, en ×N(n,m) = n × m. Er bestaan ook andere modellen van PA,
maar die kom je in de praktijk niet tegen, en dit is een groot verschil met bijvoorbeeld groepentheorie:
een model van de axioma’s van een groep is niets anders dan een groep in de gebruikelijke zin van het
woord, i.e. een verzameling met een groepsstructuur (en daar zijn in de praktijk vele voorbeelden van).

Als M � ϕ in alle modellen M van een gegeven theorie Σ, dan noteren we Σ � ϕ; we zullen later zien
dat Σ � ϕ desda Σ ` ϕ. Met Σ = ∅ hebben we als speciaal geval � ϕ; dit zijn als het ware de tauologieën
van de eerste-orde logica, die in alle L-structuren (i.e. interpretaties van een gegeven taal L) gelden.

Opgaven voor Week 10 (Inleveropgaven: 1, 3)

1. Voor willekeurige L-structuren M en N definiëren we een homomorfisme tussen deze structuren
als een functie α : M → N die voldoet aan α(cM ) = cN en α(fM (~m)) = fN (αn(~m)), met ~m =
(m1, . . . ,mn), en αn : Mn → Nn is gedefinieerd als αn(m1, . . . ,mn) = (α(m1), . . . , α(mn)); als er
relatiesymbolen zijn, moet tevens gelden αn(RM ) ⊂ RN .
Stel dat rel(L) = ∅ (in welk geval L een algebraı̈sche theorie heet). Dan heeft L een canonieke
L-structuur waarin M bestaat uit alle termen van L. Bedenk wat deze is. Deze L-structuur komt
met een gratis afbeelding ι : var(L)→M (welke?). Laat zien dat deze L-structuur universeel is in
de zin dat voor iedere L-structuur op een verzameling N met een afbeelding α : var(L) → N , er
een uniek homomorfisme α′ : M → N bestaat met de eigenschap α′ ◦ ι = α.

2. Bekijk de volgende vreemde interpretatie van PA: M = Q+ (i.e. de positieve rationale getallen
inclusief nul): 0Q

+

= 0, SQ+

(m) = m + 1, +Q+

(n,m) = n + m, en ×Q+

(n,m) = n ×m. Is dit een
model van PA? Zo nee, waarom niet?

3. Laat voor atomaire formules ϕ van de vorm s = t en R(t1, . . . , tn) met één vrije variabele x zien
dat ϕM = M desda voor alle m ∈ M geldt M � ϕ[m/x] (zie uitleg onder (1.37)). Begin met de
eenvoudigste termen en bouw het bewijs zo op. Bewijs onderweg zaken als t[m/x]M = tM (m).

4. Stel FV (ϕ) = {x}, dus ϕ ≡ ϕ(x). Laat zien dat � ¬∀xϕ(x) desda � ∃x¬ϕ(x).
5. Laat zien dat � ∀x∃y(x = y).
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1.6 Volledigheidsstelling van Gödel

Eerste-orde logica is net als propositielogica zowel gezond als volledig, i.e. voor alle uitspraken ϕ geldt

Σ ` ϕ desda Σ � ϕ (1.38)

De implicatie van links naar rechts, i.e. de gezondheid van de logica, kan op analoge wijze worden be-
wezen als voor propositielogica,10 met de volgende nieuwe ingrediënten. Er zijn vier nieuwe axioma’s:

EOL1: (∀xϕ(x))→ ϕ[t/x] voor een willekeurige term t als x ∈ FV (ϕ) (en de substitutie is toegestaan);
EOL2: (∀x(ϕ→ ψ(x)))→ (ϕ→ ∀xψ(x)) als x /∈ FV (ϕ) en x ∈ FV (ψ);
EOL3: ∀x(x = x);
EOL4: ∀x∀y((x = y)→ (ϕ(x)→ ϕ[y/x])) als x ∈ FV (ϕ) (en de substitutie is toegestaan).

Daarnaast gelden de drie axioma’s van de propositielogica, i.e., voor alle (ook open) formules α, β, γ, δ,

PL1: β → (α→ β);
PL2: (β → (γ → δ))→ ((β → γ)→ (β → δ));
PL3: (¬α→ ¬β)→ ((¬α→ β)→ α).

De deductieregels voor formules ϕ,ψ zijn (de eerste herken je uit de propositielogica):

1. modus ponens : uit Γ ` ϕ→ ψ en Γ ` ϕ volgt Γ ` ψ, waar Γ een verzameling uitspraken is;
2. generalisatie : uit Γ ` ϕ(x) volgt Γ ` ∀xϕ(x) als x ∈ FV (ϕ) en de uitspraken in Γ die zijn gebruikt

in het bewijs van ϕ geen enkele aanname over de vrije variabele x bevatten.

De deductiestelling uit de propositielogica, i.e. Γ ` α → β desda Γ ∪ {α} ` β, geldt nu onder de
voorwaarde dat β open of α gesloten is. Om deze voorwaarde te illustreren nemen we een voorbeeld
waarin hier niet aan voldaan is, namelijk α ≡ ϕ(x) en β ≡ ∀xϕ(x). Dan geldt ϕ ` ∀xϕ(x), dit is immers
de generalisatieregel, maar niet ` (ϕ(x)→ ∀xϕ(x)). Stel dat dit altijd waar zou zijn, dan volgt uit (de nog
te bewijzen) eigenschap gezondheid dat M � (ϕ(x)→ ∀xϕ(x)), hetgeen niet altijd waar is (zie opgave).

Om gezondheid te bewijzen moeten we net als in de propositielogica eerst laten zien dat de axioma’s in
iedere interpretatie van een willekeurige taal L gelden. Voor PL1 vinden we voor l > 0:

(β → (α→ β))M = (M l\β̃M ) ∪ (α→ β)M = (M l\β̃M ) ∪ (M l\α̃M ) ∪ β̃M = M l, (1.39)

zodat M � β → (α→ β). Voor l = 0 is het bewijs nog eenvoudiger. De andere twee PL2 en PL3 gaan net
zo. Axioma’s EOL1 en EOL2 zijn opgaven, en EOL3 en EOL4 doen we nu (de eerste is al in het college
van vorige week voorgedaan). We hebben xM = id : M →M en volgens (1.22) dus

(x = x)M = {m ∈M | m = m} = M, (1.40)

zodat volgens (1.34) geldt M � ∀x(x = x). Vervolgens berekenen we uit (1.22) en (1.26):

(x = y)M = {(m1,m2) ∈M2 | x̃M (m1,m2) = ỹM (m1,m2)}
= {(m1,m2) ∈M2 | m1 = m2} ≡ ∆M ; (1.41)

(ϕ(x)→ ϕ[y/x])M = (M2\ϕ̃M ) ∪ ϕ̃[y/x]
M

= (M2\(ϕM ×M)) ∪ (M × ϕM ), (1.42)

waarbij voor het gemak aannemen dat FV (ϕ) = {x}, zodat ϕM ⊂ M (i.e. de interpretatie van ϕ(x)).
Met opnieuw (1.26) volgt hieruit

((x = y)→ (ϕ(x)→ ϕ[y/x]))M = (M2\∆M ) ∪ (M2\(ϕM ×M)) ∪ (M × ϕM )

= M2. (1.43)

Om het laatste gelijkteken te begrijpen merken we op dat als (m1,m2) ∈M2 voldoet aanm1 6= m2, volgt
(m1,m2) ∈ M2\∆M . Als (m,m) met m /∈ ϕM , dan geldt (m,m) ∈ M2\(ϕM ×M). Als ten slotte (m,m)
met m ∈ ϕM , dan geldt (m,m) ∈M × ϕM . Altijd raak. Uit (1.34) volgt dan uiteindelijk dat

M � ∀x∀y((x = y)→ (ϕ(x)→ ϕ[y/x])). (1.44)

10. In de syllabus van Moerdijk en van Oosten wordt dit bewezen vanuit ND, zie §3.2. ND is equivalent met EOL1 t/m PL3.
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Vervolgens moeten we aantonen dat de twee deductieregels behouden zijn in ieder model van Σ, dus:

• Als M � ϕ en M � ϕ → ψ, dan volgt M � ψ. Dat klopt, zie (1.26) - (1.27). Voor gesloten formules
volgt dit onmiddellijk uit (1.27), terwijl voor open formules geldt dat M � ϕ desda ϕ̃M = M l en
M � ϕ→ ψ desda (M l\ϕ̃M ) ∪ ψ̃M = M l. Als we beiden hebben volgt ψ̃M = M l en dus M � ψ.

• Als M � ϕ(x), dan volgt M � ∀xϕ(x). We hadden het symbool M � ϕ eerder alleen voor gesloten
formules ϕ gedefinieerd, en breiden deze definitie nu als volgt uit tot open formules: M � ϕ(x)
desda voor alle m ∈M geldt dat M � ϕ[m/x], oftewel (zie opgave 3 van vorige week) ϕM = M .

De gezondheid van eerste-orde logica volgt dan op dezelfde manier als voor propositielogica (inductief).

Opgaven voor Week 11 (Inleveropgaven: 1, 6)

1. Bewijs de deductiestelling: Γ ` α→ β desda Γ ∪ {α} ` β (als β open of α gesloten is).
2. Toon met behulp van de interpretatieregels aan dat M � (ϕ(x) → ∀xϕ(x)) desda ϕM = M of

ϕM = ∅ (zodat het in andere gevallen niet geldt en een tegenvoorbeeld tegen ` ϕ→ ∀xϕ(x) is).
3. Laat zien dat M � (β → (γ → δ))→ ((β → γ)→ (β → δ)).
4. Laat zien dat M � (¬α→ ¬β)→ ((¬α→ β)→ α).
5. Laat zien dat M � (∀xϕ(x))→ ϕ[t/x] voor een willekeurige term t als x ∈ FV (ϕ).
6. Laat zien dat M � (∀x(ϕ→ ψ(x)))→ (ϕ→ ∀xψ(x)) als x /∈ FV (ϕ) en x ∈ FV (ψ).
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1.7 Bewijs volledigheid (aanvulling op §3.2 in Moerdijk & van Oosten)

Nu de moeilijke richting: Σ � ϕ ⇒ Σ ` ϕ, i.e. volledigheid. Precies als in de propositielogica volgt dit
uit het speciale geval ϕ ≡ ⊥, hetgeen equivalent is met: Σ is consistent (i.e. Σ 0 ⊥)⇒ Σ heeft een model.

In het vervolg is Σ een theorie over een taal L. We werken onder de aanname dat L een aftelbare taal is,
in de zin dat var(L) aftelbaar is en con(L), fun(L) en rel(L) eindige of aftelbare verzamelingen zijn.

Lemma 1.1 Iedere consistente theorie Σ over L kan worden uitgebreid tot een theorie ΣW (over een
taal LW ⊃ L) met getuigen (witnesses), in de zin dat als ΣW ` ∃xϕ(x) voor een open formule ϕ met
{x} = FV (ϕ), er dan een constante c ∈ con(LW ) is zodat ΣW ` (∃xϕ(x))→ ϕ[c/x], en dus ΣW ` ϕ[c/x].

Bewijs. Definieer LW als L met aftelbaar veel extra constanten (c1, . . .) die niet al in con(L) voorkomen,
zodat con(LW ) = con(L)∪{c1, . . .}. Nu maken we een theorie Σ0 die formeel dezelfde axioma’s heeft als
Σ (i.e. Σ0 = Σ), maar voor zover deze axioma’s willekeurige formules bevatten mogen die formules nu
ook de nieuwe constanten bevatten, zodat de nieuwe (= de oude) axioma’s nu wel meer inhoud hebben.

De nieuwe theorie (Σ0, LW ) is nog steeds consistent. Stel van niet, dan hebben we Σ0 ` ⊥ en dus
Σ0 ` (β ∧ ¬β) voor een willekeurige formule β; iedere propositie volgt namelijk uit ⊥. Dan bevat β
eindig veel nieuwe constanten ci (zo niet, dan was β ∧ ¬β al afleidbaar in (Σ, L) maar die was per
aanname consistent). Vervang deze constanten door variabelen yi die niet voorkomen in een bepaald
bewijs van β ∧ ¬β en gebruik Gen: dan krijg je ∀y1

· · · ∀yn
β[yi/ci] ∧ ¬β[yi/ci]. Dan is dat bewijs nog

steeds geldig: in de regels om termen en formules te maken spelen variabelen en constanten precies
dezelfde rol, en in de regels voor bewijzen ligt het enige verschil in het gebruik van ∀x. Het bewijs (met
de ci) bevatte echter nergens ∀yi

en blijft dus geldig als ci  yi. De formule ∀y1
· · · ∀yn

β[yi/ci]∧¬β[yi/ci]
is dus bewijsbaar in (Σ, L), maar die theorie was consistent. Tegenspraak. Dus (Σ0, LW ) is consistent.

Omdat L en daarmee ook LW aftelbaar is, is de verzameling van alle formules in LW aftelbaar (ga na) en
kunnen we deze opsommen. Dit geldt ook voor de formules met één vrije variabele: (ϕ1(xi1), ϕ2(xi2), . . .).
We nemen aan dat xin niet ook nog ergens gebonden voorkomt in ϕi. Hernummer nu de nieuwe con-
stanten als (cj1 , cj2 , . . .), zodanig dat cjk niet voorkomt in de formules ϕ1 t/m ϕk. Dan maken we

σk ≡ (∃xik
ϕ(xik))→ ϕk[cjk/xik ]. (1.45)

Definieer nu Σn = Σ ∪ {σ1, . . . , σn} and ΣW = ∪∞n=1Σn. Het is duidelijk dat ΣW getuigen heeft en we
bewijzen nu dat iedere Σn consistent is, waaruit volgt dat ook ΣW consistent is. Waarom? Omdat een
bewijs van inconsistentie ΣW ` ⊥ slechts eindig veel stappen heeft, daarmee eindig veel σi bevat, en
dus feitelijk een bewijs van Σn ` ⊥ is. Maar Σn was consistent, zoals we nu gaan bewijzen met inductie
in n. Het geval n = 0 is net gedaan. De inductiestap gaat met tegenspraak. Stel Σn−1 is consistent maar
Σn is dat niet. Dan is er een bewijs van Σn ` ⊥ en dus van iedere formule β, dus ook van Σn ` ¬σn.
Maar Σ = Σn−1 ∪ {σn} en σn is gesloten, zodat we de deductiestelling mogen toepassen:

Σn−1 ∪ {σn} ` ¬σn ⇒ Σn−1 ` (σn → ¬σn). (1.46)

In propositielogica en daarmee in predikaatlogica geldt de tautologie (opgave)

` (α→ ¬α)→ ¬α. (1.47)

MP op (1.46) en (1.47) geeft Σn−1 ` ¬σn. Met de definitie (1.45) is dit:

Σn−1 ` ¬((∃xin
ϕn(xin))→ ϕn[cjn/xin ]). (1.48)

Nu volgt uit Σ ` ¬(α→ β) zowel Σ ` α als Σ ` ¬β (opgave), zodat

Σn−1 ` ∃xin
ϕ(xin); (1.49)

Σn−1 ` ¬ϕn[cjn/xin ]. (1.50)

Merk nu op dat Σn−1 de variabele cjn niet bevat (omdat noch Σ, noch σ1 t/m σn−1 deze bevat). Door
overal cjn door een variabele yn te vervangen die nergens in het bewijs van ¬ϕn[cjn/xin ] uit Σn−1 voor-
kwam, wordt dit bewijs een bewijs van ¬ϕn[yn/xin ] uit Σn−1, zodat

Σn−1 ` ¬ϕn[yn/xin ]. (1.51)
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Generalisatie geeft Σn−1 ` ∀yn
¬ϕn[yn/xin ], en omdat xin alleen open voorkomt (zie boven) geeft dat

Σn−1 ` ∀xin
¬ϕn(xin). (1.52)

Met ∃ ≡ ¬∀¬ impliceert (1.49) - (1.50) dus de tegenspraak

Σn−1 `¬∀xin
¬ϕn(xin); (1.53)

Σn−1 ` ∀xin
¬ϕn(xin). (1.54)

Hieruit volgt dat de aanname dat Σn inconsistent is tot een tegenspraak leidt, zodat Σn consistent is.
Daarmee is Lemma 1.1 bewezen. Q.E.D.

Vervolgens kan iedere consistente theorie worden uitgebreid tot een complete theorie ΣC , die per defi-
nitie de eigenschap heeft dat voor iedere uitspraak ϕ geldt dat ofwel ΣC ` ϕ ofwel ΣC ` ¬ϕ. Het bewijs
hiervan is precies hetzelfde als in propositielogica (zie bewijs Lemma 1.2 op p. 8). Kort samengevat: we
zetten Σ0 = Σ. Als α1 consistent is met Σ0, dan is Σ1 = Σ0 ∪ {α1}. Zo niet, dan is Σ1 = Σ0 ∪ {¬α1}. Als
α2 consistent is met Σ1, dan is Σ2 = Σ1 ∪{α2}. Zo niet, dan is Σ2 = Σ1 ∪{¬α2}. Enzovoort: we gaan alle
αi af, en krijgen een theorie Σ∞ = ∪nΣn ⊂ BT (S) die Σ bevat. De theorie Σ∞ is consistent.

Hierbij blijft de taal L van Σ hetzelfde. Als we deze twee uitbreidingsconstructies in de juiste volgorde
combineren, namelijk door eerst Σ uit te breiden tot ΣW en vervolgens tot (ΣW )C ≡ ΣWC , volgt dat
iedere consistente theorie Σ een uitbreiding ΣWC heeft die zowel getuigen heeft als volledig is.

Lemma 1.2 Iedere complete consistente theorie ΣWC met getuigen heeft een model.

Het bewijs is eenvoudiger en beter te begrijpen als we eerst een eerste-orde theorie zonder gelijkteken =
bekijken. Daarna zullen we de constructie aanpassen om ook formules van de soort s = t mee te nemen.

We nemen als drager M van het model de verzameling van alle gesloten termen over L (i.e. termen
zonder vrije variabelen). De interpretatie is dan

cM = c (c ∈ con(L)); (1.55)

xM = id : M →M (x ∈ var(L)); (1.56)

fM (t1, . . . , tn) = f(t1, . . . , tn) (f ∈ fun(L), n = a(f)); (1.57)

(t1, . . . , tn) ∈ RM desda ΣWC ` R(t1, . . . , tn) (R ∈ rel(L), n = a(R) > 0); (1.58)
M � R desda ΣWC ` R (R ∈ rel(L), a(R) = 0). (1.59)

waarbij we in herinnering brengen dat c zelf een gesloten term is, (1.56) waar is in ieder model, en in
(1.57) geldt dat als (t1, . . . , tn) (gesloten) termen zijn, dan ook f(t1, . . . , tn) weer een (gesloten) term is.

Om enig gevoel voor dit model te krijgen merken we op dat voor alle t ∈M geldt:

tM = t. (1.60)

Let op: als een term t gesloten is, is de interpretatie tM per definitie een element van M . Vgl. (1.60) volgt
uit (1.55) - (1.57) en inductie in het aantal (N ) functiesymbolen in t. Voor N = 0 is (1.60) duidelijk uit
(1.55) - (1.57), en voor N > 0 hebben we, met t = f(t1, . . . , tn):

f(t1, . . . , tn)M = fM (tM1 , . . . , t
M
n ) = fM (t1, . . . , tn) = f(t1, . . . , tn), (1.61)

Hier is het eerste = teken een speciaal geval van (1.20), waarbij t̃i = ti ∈ M (omdat de ti geen vrije
variabelen bevatten), is de tweede = de inductiehypothese, en volgt de derde = uit (1.57).

De cruciale eigenschap van dit model is, voor alle uitspraken ϕ:

M � ϕ desda ΣWC ` ϕ. (1.62)

Hieruit volgt de volledigheidsstelling, want als σ ∈ Σ ⊂ ΣWC , dan triviaal ΣWC ` σ en volgens (1.62)
dus M � σ. Daarmee is M per definitie een model van Σ.
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Het bewijs van (1.62) gaat met inductie in het aantal (N ) logische symbolen van de vorm→ en ∀. Voor
N = 0 stellen we het geval s = t zoals gezegd uit (het is dan ook niet waar in dit model), en is ϕ ≡ ⊥
triviaal (contrapositief van (1.62)). We hoeven dus alleen te laten zien dat

M � R(t1, . . . , tn) desda ΣWC ` R(t1, . . . , tn). (1.63)

In een willekeurige interpretatie betekent het linkerlid per definitie: (tM1 , . . . , t
M
n ) ∈ RM . Dit klopt in het

huidige model vanwege (1.60) en (1.58). Voor n = 0 volgt (1.63) natuurlijk direct uit (1.59).

Neem nu N > 0. We moeten om de inductiestap te bewijzen aantonen dat:

1. Aangenomen dat (1.62) geldt voor ϕ α en ϕ β, dan ook geldt

M � (α→ β) desda ΣWC ` (α→ β). (1.64)

2. Aangenomen dat (1.62) geldt voor ϕ ψ (zie onder voor de precieze versie), dan ook geldt

M � ∀xψ(x) desda ΣWC ` ∀xψ(x). (1.65)

We behandelen de tweede en geven de eerste als (inlever) opgave.

Stel M � ∀xψ(x). Dan volgt uit opgave 5 van vorige week dat M � ψ[t/x] voor iedere gesloten term t.
We willen M ` ∀xψ(x); stel dat dit niet zo is. Omdat ΣWC volledig is, geldt dan M ` ¬∀xψ(x) en dus
M ` ∃x¬ψ(x). Omdat ΣWC getuigen heeft, geldt dan ook M ` ¬ψ[c/x] voor een zekere constante c.
Neem boven t c en we hebben een tegenspraak (N.B. we weten dat ΣWC consistent is).

De andere kant op: stel M ` ∀xψ(x). Dan geeft axioma EOL1 M ` ψ[t/x] voor een willekeurige gesloten
term t. De inductiehypothese geeft M � ψ[t/x] oftewel tM ∈ ψM ⊂ M voor alle gesloten termen t. In
het huidige model geldt (1.60) en bestaat M uit alle gesloten termen t, zodat tM ∈ ψM ⊂ M voor alle t
impliceert ψM = M . Dit is precies M � ∀xψ(x), zie (1.34).

Voor formules ϕ ≡ (s = t) gaat (1.62) echter fout: de eigenschap M � (s = t) is vanwege (1.60) en (1.23)
hetzelfde als s = t, maar dat is een veel sterkere eigenschap dan ΣWC(s = t). Dit is echter makkelijk op
te lossen: vervang M door M̃ = M/ ∼, waarbij s ∼ t desda ΣWC(s = t). De interpretatie (1.55) - (1.59)
wordt dan vervangen door

cM̃ = [c] (c ∈ con(L)); (1.66)

xM̃ = id : M̃ → M̃ (x ∈ var(L)); (1.67)

fM̃ ([t1], . . . , [tn]) = [f(t1, . . . , tn)] (f ∈ fun(L), n = a(f)); (1.68)

([t1], . . . , [tn]) ∈ RM̃ desda ΣWC ` R(t1, . . . , tn) (R ∈ rel(L), n = a(R) > 0); (1.69)

M̃ � R desda ΣWC ` R (R ∈ rel(L), a(R) = 0). (1.70)

Dit is allemaal welgedefinieerd. Nu geldt

M̃ � ϕ desda ΣWC ` ϕ. (1.71)

per constructie voor ϕ ≡ (s = t) en ook het vorige bewijs gaat helemaal door: M̃ geeft een model van
ΣWC en daarmee ook van de oorspronkelijke theorie Σ.

Opgaven voor Week 12 (Inleveropgave: 3)

1. Bewijs (1.47).
2. Bewijs dat uit Σ ` ¬(α→ β) zowel Σ ` α als Σ ` ¬β volgt.
3. Bewijs (1.64).
4. Laat zien dat (1.66) - (1.70) welgedefinieerd zijn.
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Uitwerkingen:

Uitwerkingen week 10:

1. Neem cM = c en fM = f , met ι(x) = x. Dan is de functie α′ : M → N inductief gedefinieerd door
α′(x) = α(x), α′(c) = cN , en α′(f(t1, . . . , tn)) = fN (α′(t1), . . . , α′(tn)). Uniek per constructie.

2. Geen model van PA, alleen het laatste axioma PA7 geldt niet in deze interpretatie.
3. Eerst bewijs dat t[m/x]M = tM (m). Voor t ≡ c is t[m/x] gelijk aan c omdat x niet voorkomt, dan

staat er dus cM = cM . Voor t ≡ x staat er mM = id(m) i.e. m = m en klopt het dus ook. Stel
nu dat t ≡ f(t1, . . . , tn); voor iedere ti is de gevraagde eigenschap al bewezen (inductie). Omdat
per aanname FV (t) = {x}, hangt iedere ti van x af of heeft geen vrije variabele en geldt dus
t̃i : M →M . Volgens de regels voor substitutie (zie mijn eigen syllabus) geldt dan voor m ∈M ,

tM (m) = f(t1, . . . , tn)M (m) = fM (t̃M1 (m), t̃Mn (m));

t[m/x]M = f(t1, . . . , tn)[m/x]M = f(t1[m/x], . . . , tn[m/x])M .

Er zijn nu twee gevallen. Als ti de vrije variabele x bevat, gebruiken we de inductiehypothese
ti[m/x]M = tMi (m). In dat geval geldt tevens t̃Mi = tMi . Zo niet, dan is er geen substitutie en is
ti[m/x] gelijk aan ti ∈M . Dan hangt t̃Mi (m) niet vanm af (dit is precies de tilde-notatie) en is even-
eens gelijk aan ti ∈ M . In beide gevallen is dus fM (t̃M1 (m), t̃Mn (m)) = f(t1[m/x], . . . , tn[m/x])M .

Stel nu dat ϕ ≡ (s = t). Dan geldt volgens (1.22) dat ϕM = M desda s̃M (m) = t̃M (m) voor alle
m ∈M , terwijl M � (s = t)[m/x] hetzelfde is als M � (s[m/x] = t[m/x]), i.e., s[m/x]M = t[m/x]M

(NB dit is een gelijkheid van elementen van M ). Volgens de vorige stap van het bewijs is dit
zo desda sM (m) = tM (m) indien s en t beide x bevatten, in welk geval tevens s̃M = sM en
t̃M = tM en zijn we klaar; de andere twee mogelijkheden (i.e. s hangt niet van x af maar t wel en
omgekeerd) gaan net als in de vorige stap.
Stel ten slotte dat ϕ ≡ R(t1, . . . , tn) voor een relatiesymbool R met ariteit a(R) = n > 0 (voor
n = 0 kan R geen vrije variabelen bevatten). We laten de tildes voor het gemak weg, de gevals-
onderscheidingen zijn hetzelfde als boven. De conditie ϕM = M betekent nu R(t1, . . . , tn)M = M
en dus volgens (1.24): (tM1 (m), . . . tMn (m)) ∈ RM ⊂ Mn voor alle m ∈ M . De conditie M �
R(t1, . . . , tn)[m/x] is per definitie van de substitutie hetzelfde als M � R(t1[m/x], . . . , tn[m/x]) en
betekent volgens (1.25): (t1[m/x]M , . . . , tn[m/x]M ) ∈ RM . Volgens het eerste deel van het bewijs
is dit hetzelfde als (tM1 (m), . . . , tMn (m)) ∈ RM . Het bewijs is dus rond.

4. We hebben per definitie � ¬∀xϕ(x) desda voor alle M geldt M � ¬∀xϕ(x); uit (1.29) volgt dat dit
zo is desda voor alle M geldt M 2 ∀xϕ(x); volgens (1.34) is dat het geval desda voor alle M geldt
ϕM 6= M . Aan de andere kant: volgens (1.35) geldt � ∃x¬ϕ(x) desda voor alleM geldt (¬ϕ)M 6= ∅,
volgens (1.28) met l = 1 is dit zo desda voor alle M geldt M\ϕM 6= ∅ i.e. ϕM 6= M .

5. Neem willekeurige interpretatie M . Op college behandeld: de interpretatie van de formule x = y
is de diagonaal in M2, i.e.

(x = y)M = {(m1,m2) ∈M2 | m1 = m2} = {(m,m) | m ∈M} ≡ ∆M ⊂M2.

Volgens (1.33) is (∃y(x = y))M ⊂ M gelijk aan de verzameling van alle m2 ∈ M waarvoor er
m1 ∈ M bestaat zodat (m1,m2) ∈ ∆M , zodat (∃y(x = y))M = M . Met ϕ  (∃y(x = y)) in (1.34)
volgt dus direct dat M � ∀x∃y(x = y). Hier is M willekeurig, zodat � ∀x∃y(x = y).
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