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1 Introduction
The aim of these notes (and the associated course of seven lectures) is to bring readers with el-
ementary knowledge of Riemannian geometry and PDEs to a level where they can start reading
serious books and articles about Hamilton’s Ricci Flow and Perelman’s proof of the Poincaré
and Geometrization Conjectures based on this technique (see Literature). There will, of course,
be some overlap with the introductory parts of such literature, for example with Chow & Knopf
(2004), Topping (2006), and Andrews & Hopper (2011), but we aim to give more background
and discuss some basic concepts and examples in a bit more detail. Our aim will have been
achieved if those familiar with the material below would go and study e.g. Tao (2008) and/or
Morgan and Fong (2010). However, even short of this, the material we present is interesting by
itself as an example of what is called Geometric Analysis, a modern mathematical discipline in
which the 2019 Abel Prize was awarded to Karen Uhlenbeck on March 19th, 2019.

Let (M,g) be an n-dimensional Riemannian manifold, which throughout these notes we
assume to be connected, orientable, and without boundary (unless explicitly stated otherwise).

• Ricci Flow on M is a solution to the PDE (Hamilton, 1982)

∂tg(t) =−2Ric(g(t)), (1.1)
g(0) = g, (1.2)

where Ric(g) is the Ricci tensor defined by g and we have suppressed the x-dependence
of g and Ric (x ∈M). Oe often writes Ric for Ric(g), so that in local coordinates we have

∂gi j

∂ t
=−2Rici j. (1.3)

So the idea is that the metric becomes a dynamical object, hoping that it will ‘flow’ to
some particularly desirable metric from more or less arbitrary initial data g (see below).

It is interesting to compare Ricci Flow with two other flows on a Riemannian manifold:

• Yamabe Flow is the arguably even simpler equation (now suppressing the (t) as well)

∂tg =−R(g) ·g, (1.4)

i.e., ∂tgi j =−Rgi j, where R is the Ricci scalar derived from g;
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• Einstein Flow is the more complicated pair of equations

∂tg =−2k, (1.5)

∂tk = Ric+Tr(k) · k−2k2, (1.6)

where k is some symmetric 2-tensor of the same type as the metric (to be interpreted as the
second fundamental form), and Tr(k) = gi jki j and k2

i j = kl
ikl j = glmkilkm j. The initial values

(g,k) at t = 0 are subject to the following constraints (where ∇ is the Levi-Civita connection):

R+Tr(k)2−Tr(k2) = 0; (1.7)

∇ jk
j
i −∇iTr(k) = 0. (1.8)

We will return to the Einstein equations only at the very end of the course, but note that where
Ricci Flow and Yamabe Flow are parabolic (at least in suitable coordinates), Einstein Flow is
hyperbolic. Nonetheless, in all cases the solution may and often will become singular after
some finite time, and in this light it is useful to compare especially the first case (where thanks
to Perelman one has very good control over the singularities) with the last (where despite the
brilliant work of Hawking and Penrose many questions about singularities remain).

Let us now give some motivation for studying Ricci Flow and Yamabe Flow, which, as we
shall prove next week, coincide in dimension 2. The Uniformization Theorem for Riemann
surfaces was a notable achievement of pure mathematics in the early 20th Century;1 it seems
no accident that Poincaré gave one of the proofs of this theorem and is the man behind the
conjecture named after him, since conceptually the two are closely related (although technically
this relationship only became clear with the invention of Ricci Flow in 1982). We will avoid
complex analysis, but for historical reasons we first give (more or less) the original version of
this theorem.2 In what follows, a simply connected space is also connected by definition.

Theorem 1.1 (Uniformization Theorem, version 1) Every simply connected Riemann surface
is (biholomorphically) isomorphic to exactly one of the following three possibilities:

• The Riemann sphere S;

• The complex plane C;

• The upper half plane H in C (or, equivalently, the open unit disk D in C).

It turns out that this is equivalent to a simple statement purely in the language of Riemannian
geometry, where we say that two Riemannian metrics g1 and g2 (defined on the same manifold
M) are conformally equivalent if g2 =C ·g1 for some strictly positive function C ∈C∞(M).

Theorem 1.2 (Uniformization Theorem, version 2) Every complete Riemannian metric on a
simply connected 2d manifold is conformally equivalent to a metric with constant curvature.3

1For a nice and exhaustive historical survey of the uniformization theorem see de Saint-Gervais (2010).
2A Riemann surface is defined through its complex structure, whereas a Riemannian manifold is defined by

its metric. Roughly speaking (in dimension 2), complex structures up to biholomorphic equivalence bijectively
correspond to Riemannian metrics up to the equivalence relation defined by isometry and conformal equivalence.

3A Riemannian metric is called complete if either one (and hence both) of the following conditions is satisfied
(whose equivalence follows from the fundamental Hopf-Rinow Theorem of Riemannian Geometry):

1. The underlying topological space is complete in the metric d derived from the Riemannian metric g;

2. Each geodesic defined by g is defined for all time (i.e. can be infinitely extended in both directions).

As we shall see, in d = 2 all notions of curvature (Gauss curvature, Ricci scalar, Ricci tensor, Riemann tensor,
sectional curvature) are essentially the same, so it does not matter which particular one is used here.
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The reason that these two formulations of the Uniformization Theorem are equivalent is this:

Theorem 1.3 In any dimension n≥ 2, every Riemannian manifold (M,g) for which M is simply
connected and g is complete and has constant sectional curvature, is isometrically isomorphic
to exactly one of the following possibilities:

• The n-dimensional sphere Sn
k in Rn+1 with radius ρ (and metric inherited from Rn+1);

• Rn with flat (i.e. Euclidean) metric;

• The upper hyperplane Hn
ρ in Rn with a “hyperbolic” metric parametrized by ρ .4

Moreover, in cases 2 and 3 the metric can be rescaled by a positive constant to achieve ρ = 1.

For n = 2 these are the three cases in Theorem 1.1, but now seen as Riemannian geometries.5

As such, they were of historic importance in the 19th Century in providing the first examples of
non-Euclidean geometries, subsequently generalized into Riemannian geometry.

The conceptual importance of this result can hardly be overstated, since it shows that the
possibility of equipping a manifold with a metric with constant curvature classifies that mani-
fold. This is precisely the philosophy behind Ricci Flow: starting with an arbitrary (Rieman-
nian) metric g on some manifold M, the flow drives it to a metric with constant curvature (albeit
at the expense of huge complications in d = 3). This is seen more clearly from the induced flow
of the Ricci scalar R, which, under Ricci Flow, satisfies the reaction-diffusion equation

∂tR = ∆gR+2Tr(Ric2), (1.9)

where ∆g is the (scalar) Laplacian defined by g. As in the heat equation, the diffusion term ∆gR
tends to spread the ‘heat’, that is, homogenize the curvature. The picture is relatively clean in
d = 2, where, still assuming that M is simply connected (see below for the general case), for an
arbitrary initial metric g = g(0) there are, once again, our familiar three possibilities in disguise:

• The solution breaks down at some finite time 0 < T < ∞, where det(g(T )) = 0, but

g̃(T ) = lim
t→T

g(t)
T − t

(1.10)

exists. Then M must be diffeomorphic to S2 and g̃(T ) is its usual (“round”) metric.

• The solution exists for all times t and has a limit g(∞) for t → ∞. In that case, M is
diffeomorphic to R2 and the limit metric g(∞) is simply the flat one.

• The solution exists for all t but does not have a limit for t→∞ since det(g(t))→∞. Then
M is again diffeomorphic to R2, hence to H, and

ĝ(∞) = lim
t→∞

g(t)
t

(1.11)

exists and equals its hyperbolic metric (perhaps up to scaling by a constant).

4This is not the metric induced by the one on Rn; we will describe it in detail later on. The upper half-plane
Hn ⊂ Rn is defined by xn > 0 and (x1, . . . ,xn−1) ∈ Rn−1 arbitrary. One may also take the open unit ball in Rn.

5So S= S2 as a space, but S is seen as a complex curve whereas S2 is seen as a 2d Riemannian manifold, etc.
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In particular, in all cases the limit metrics have constant curvature, confirming the intuition that
any room (with an initial temperature gradient) eventually reaches thermal equilibrium; just
replace temperature by curvature. These cases can be told apart by the Gauss-Bonnet Theorem∫

M
R = 4πχ, (1.12)

where χ is the Euler characteristic of M seen as a topological space, and hence is necessarily
an integer.6 If χ > 0 one has the first case, χ = 0 gives the second, and χ < 0 yields the third.

The above scenario can easily and explicitly (albeit somewhat circularly) be demonstrated
if we assume that the initial metric g is a so-called Einstein metric,7 that is, satisfies

Ric(g) = λ ·g, (1.13)

or Rici j = λgi j, for some constant λ ∈R. In that case, the Ricci Flow with g(0) = g is given by

g(t) = (1−2λ t)g, (1.14)

as follows by checking that this is a solution to (1.1) - (1.2), and anticipating uniqueness of
solutions for short time (as we will prove later), which makes (1.14) the solution.8 Once again:

• If λ > 0, then det(g) for t = T = 1/2λ , but the rescaled limit metric (1.10) exists:

lim
t→T

g(t)
T − t

= 2λg. (1.15)

• If λ = 0, then g(t) is g for all time, including the limit t→ ∞.

• If λ < 0, then g exists for all time but blows up in the limit; the rescaled limit (1.11) is

lim
t→∞

g(t)
t

=−2λg. (1.16)

Using some topology, Theorem 1.1 gives rise to a complete classification of compact (ori-
entable) Riemann surfaces, which we briefly mention because a similar (but vastly more com-
plicated) construction applies in d = 3 and motivates Thurston’s Geometrization Conjecture:

Corollary 1.4 Any compact Riemann surface Σ is (biholomorphically) isomorphic to Γ\U,
where U is S, C, or H, and Γ is a discrete subgroup of the group of biholomorphic bijections of
U acting freely and discontinuously on U (i.e., no Γ-orbit has an accumulation point).9

• For U= S only the trivial group Γ is possible (this gives genus g = 0);

• For U=C, Γ can only be the lattice Z2 in R2 ∼=C, yielding the donut Z2\C∼=T2 (g = 1);

• For U=H, Γ must be a discrete subgroup of PSL(2,R) (giving all genera g > 1).

6For an arbitrary triangulation of M one has χ = v− e+ f , where v is the number of vertices, e is the number
of edges, and f is the number of faces of the triangulation. This is a topological invariant.

7This term originates in Einstein’s equations for the gravtitational field with cosmologcal constant, and is also
used in mathematics. Metrics of constant curvature are Einstein metrics, but the converse is false in d > 3.

8For constant C > 0 one has Ric(C ·g) = Ric(g), to be used with C = 1−2λ t, where 0≤ t < 1/2λ .
9Equivalently, each x ∈ U has a nbhd U such that U ∩ γ ·U = /0 for all γ 6= e.
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If we switch from Riemann surfaces to 2d Riemannian manifolds and hence start from Theorem
1.2 instead of Theorem 1.1, the corresponding version of this corollary reads as follows:10

Corollary 1.5 Any metric on a compact 2d Riemannian manifold is conformally equivalent to
a metric with constant curvature (and may be realized analogously to the list in Corollary 1.4).

The Yamabe Problem is inspired by Corollary 1.5 and asks if in arbitrary dimension any com-
plete Riemannian metric on a simply connected manifold is conformally equivalent to a metric
with constant Ricci scalar.11 The Yamabe Problem has been solved in the positive for compact
manifolds (which are automatically complete), using the following strategy, going back to Yam-
abe himself (see Lee & Parker, 1987, and Bär, 2007/08, for a complete treatment): parametrize

g(x) = ϕ
p−2(x)g(x), (1.17)

where p = 2n/(n−2) and n = dim(M) as usual (e.g. n = 3⇒ p = 6). Defining

∆̃g =−4 · n−1
n−2

·∆g +R(g), (1.18)

a straightforward computation gives

R(g) = ϕ
1−p

∆̃gϕ. (1.19)

so that the Ricci scalar R(g) in the conformally transformed metric is constant, say R(g) = λ , if

∆̃gϕ = λϕ
p−1. (1.20)

This is a complicated nonlinear elliptic PDE, which took about 30 years to be treated correctly.
Alternatively, one could use Yamabe Flow (1.4), albeit in the so-called normalized form

∂tg =−(R(g)−〈R(g)〉) ·g, (1.21)

where 〈R(g)〉, the average Ricci scalar, is a (g-dependent) constant function on M given by

〈R(g)〉=
∫

M R(g)
Vol(M)

, (1.22)

taken with respect to the Riemannian volume form, so that in any coordinate system one has

Vol(M) =
∫

M
dnx
√

det(g(x)); (1.23)∫
M

R =
∫

M
dnx
√

det(g(x))R(x). (1.24)

Eq. (1.21) may be solved from the Ansatz

g(x, t) = ϕ(x, t)p−2g(x), (1.25)

cf. (1.17), which gives

∂t(ϕ
1−p) =

n+2
4

(−∆̃gϕ + 〈R(g)〉ϕ p−1). (1.26)

This is a nonlinear parabolic PDE, which turns out to be easier to analyze than (1.20); the
corresponding metric g(x, t) converges to one with constant curvature as t → ∞ (cf. Brendle,
2011)! Hence the Yamabe Problem can be solved (anew) using the Ricci Flow philosophy.

10Corollary 1.4 may be found in any book on Riemann surfaces, cf. G.A. Jones and D. Singerman, Complex
Functions (CUP, 1987). For Corollary 1.5 see Vinberg (1983).

11Continuing footnote 3, his is the only choice among the many equivalent notions of curvature which all coin-
cide in d = 2 for which there is any hope for the problem to have a solution.

6



The Poincaré Conjecture and Thurston’s Geometrization Conjecture
The most spectacular use of Ricci Flow to date has been Perelman’s proof of the Poincaré Con-
jecture,12 and the ensuing proof of Thurston’s Geometrization Conjecture,13 which implies the
Poincaré Conjecture. We now briefly review these conjectures (which have become theorems).

Theorem 1.6 (Poincaré Conjecture, 1904) Any compact simply connected 3d manifold is dif-
feomorphic to the three-sphere S3.

It does not matter whether this is stated for topological manifolds or for smooth manifolds, since
in d = 2 and d = 3 these notions coincide. The situation is as follows (Scorpan, 2005, p. vii):

• In dimension d ≤ 3 there is exactly one smooth structure on any topological manifold;

• In d = 4 there are examples of uncountably many smooth structures on a given topological
manifold (even on R4, as shown by Donaldson) and there isn’t even a single known
example of a topological manifold admitting only finitely many smooth structures.

• In d > 4 any compact topological manifold has only finitely many smooth structures.

So the Poincaré Conjecture is a purely topological problem, which makes it all the more remark-
able that it was eventually solved using geometric analysis.14 It is also true in d = 2, where it
follows from the Uniformization Theorem.15 It is false in any dimension d > 3.16

The first step towards proving the Poincaré Conjecture using Ricci Flow was the following:

Theorem 1.7 (Hamilton, 1982) If some compact 3d manifold M admits a Riemannian metric
with strictly positive Ricci curvature Ric(g)> 0 (i.e., Rici j(x)X i

xX j
x > 0 for all points x ∈M and

all nonzero vectors Xx ∈ TxM), then M also has a metric with constant (sectional) curvature.

Here and in what follows, we use the Einstein summation convention: repeated indices in diag-
onal position are summed over. Combined with Theorem 1.3, this clearly implies:

Corollary 1.8 Any compact simply connected 3d manifold M that admits a Riemannian metric
with strictly positive Ricci curvature is diffeomorphic to S3.

So what was lacking towards the Poincaré Conjecture is the implication: Any compact simply
connected 3d manifold supports a Riemannian metric with strictly positive Ricci curvature.
This followed from the work of Perelman, which was general enough to settle the Geometriza-
tion Conjecture (also called Program) due to Thurston (1982), which we now briefly describe.17

12The original papers are Perelman (2002, 2003ab). For elaborations on his proof see e.g. Kleiner & Lott (2006),
Morgan & Tang (2007) and Tao (2008), which is summarized in Tao (2006).

13See Cao & Zho (2006), Bessières et al (2010), and Morgan & Fong (2010) for detailed treatments.
14The relationship between topology and Riemannian geometry arguably started with the Gauss–Bonnet The-

orem. Examples of topological results proved using Riemannian geometry that predate Hamilton (1982) include
Myer’s Theorem, which states that if M is a connected n-dimensional manifold admitting a Riemannian metric g
for which Ric(g) ≥ (n− 1) ·C · g, for some constant C > 0, then M is compact with finite π1(M), as well as the
Sphere Theorem, which states that if 1

4 < C(x) ≤ 1 for all sectional curvatures C(x), then M ∼= Sn, see Brendle
(2010) for a proof using Ricci Flow. Analogous results are described in the ‘panoramic survey’ Berger (2003).

15One may equip any smooth 2d manifold with either a complex structure or a Riemannian metric; the other
two simply connected cases allowed by the Uniformization Theorem are not compact and hence only S2 remains.

16However, the assumptions may be strengthened to requiring πk(M)∼= πk(Sd) for all homotopy groups πk(M),
in which case the corresponding conjecture is sometimes true. For example, under these stronger assumptions
Smale proved the claim in the topological case for all d > 4, and Freedman accomplished the same in d = 4, so
that it holds for all d ≥ 2, whereas in the smooth case it is true for d = 1,2,3,5, and 6 (and hence false in d = 4).

17For extensive background see Scott (1983) and, much more briefly, Anderson (2004).
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‘Thurstons great insight was to see how geometry could be used to understand the
topology of three-manifolds.’ (Jackson, 2006)

Thurston’s ideas on (compact) three-dimensional manifolds are best understood in the light of
Corollaries 1.4 and 1.5, in one dimension lower, to which there are both analogies and contrasts:

• Instead of the three spaces S2, R2, and H2, from which all compact 2d manifolds M can
be produced as quotients by suitable discrete groups Γ (for example, by endowing M with
a Riemannian metric and using Corollary 1.5), in d = 3 there are eight basic spaces, called

S3, R3, H3, S2×R, H2×R, S̃L2(R), Nil, Sol. (1.27)

The first three might have been expected as straightforward extensions from d = 2. The
last three are specific three-dimensional Lie groups discussed in some detail in Appen-
dices A and B. In fact, also S3∼= SU(2) and R3 are three-dimensional Lie groups, whereas
the remaining three cases, viz. H3, S2×R, and H2×R, are at least homogeneous spaces
of Lie groups (as will be explained later). Each of these eight spaces is endowed with a
specific Riemannian metric, and as such is simply called a geometry by Thurston.

• It is no longer the case that any compact 2d manifolds M is a quotient of one of these eight
spaces by some discrete group. Instead, M first has to be decomposed into “irreducible”
spaces Mi,18 from which M can be recovered (up to homeomorphism) as their connected
sum over either S2 or T2; see Scott (1983) or Anderson (2004)–this notion is also very
well explained in Wikipedia, see https://en.wikipedia.org/wiki/Connected_sum.

Thurston’s Geometrization Conjecture (now a theorem) may be then stated as follows:

Theorem 1.9 Each compact three-manifold M can be obtained (up to diffeomorphism, or,
equivalently, homeomorphism), as a connected sum of finitely many irreducible components
Mi. Each Mi is a quotient Mi = Γ\V, where V is a Riemannian manifold in the list (1.27) and Γ

is a discrete subgroup of the isometry group of V acting freely and discontinuously on V.

Equivalently, the decomposition of M into irreducible components Mi has finitely many terms
and each Mi takes the form stated in the theorem (again, up to diffeomorphism). In fact, this is
the way the theorem is proved using Ricci Flow, and it is remarkable that this technique gives
both the decomposition of M and the identification of the ensuing components Mi. Roughly
speaking, the singularities of the flow split M up into the Mi, on each of which the Ricci Flow
then has to be manipulated so as to obtain asymptotic metrics that allow the identification of
Mi. Alas, this identification is not simply made in terms of constant curvature, for in that case
only the first three spaces in (1.27) would have been involved, but nonetheless it turns out that,
just as in 2d, the “majority” of possibilities arises from the hyperbolic geometry H3. Finally,
let us note that the Geometrization Conjecture implies the Poincaré Conjecture, similarly to the
Unformization Theorem implying its 2d analogue, namely by an explicit inspection of cases
and excluding all other possibilities (the proof by Perelman predated this strategy, though).

Those who wish to read about this in a leisurely way are referred to the beautiful surveys
by Milnor (1982, 2003, 2014) and Anderson (2004); see also Morgan (2006) on the Poincaré
Conjecture.19 Details in Cao & Zhu (2006), Morgan & Fong (2010), Bessières et al (2010), etc.

18Technically, by “irreducible” we mean both sphere-irreducible and torus-irreducible.
19Supplemented by the Georgi Perelman documentary on YouTube (link in the references), the book Gessen

(2009) about Perelman, and the article Jackson (2006) on the politics involved. Interestingly, Perelman not only
refused the Fields Medal in 2006 and the Clay Millennium Prize of 1M$ in 2010, but in 1996 he had already
declined a prestigious prize from the European Mathematical Society for outstanding young mathematicians.
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2 Curvature in various guises and dimensions
If only to settle our notation.e start with a quick review of some material that should be famil-
iar. In what follows, M is a connected and orientable manifold without boundary (as already
agreed). Its tangent bundle is denoted by T M and the space of smooth sections of T M, i.e. the
space of smooth vector fields on M, is called X(M), so that X ∈ X(M) is a map x 7→ Xx ∈ TxM.
The space of smooth sections of the cotangent bundle T ∗M is called Rn(M), and we define a
tensor of type (k, l) as a map T : X(M)k×Ω(M)l →C∞(M) that is C∞(M)-linear in all entries:

T ( f1X1, . . . , fkXk,g1θ
1, . . . ,glθ

l) = f1 · · · fk ·g1 · · ·gl ·T (X1, . . . ,Xk;θ
1, . . . ,θ l). (2.1)

2.1 Levi–Civita connection and Riemann tensor
A linear connection on M, or, equivalently, a covariant derivative on X(M), associates to each
vector field X ∈ X(M) a linear map ∇X : X(M)→ X(M), such that:

1. The map X 7→ ∇X is R-linear as well as C∞(M)-linear, i.e.

∇ f XY = f ∇XY ( f ∈C∞(M)); (2.2)

2. The map Y 7→ ∇XY is R-linear but not C∞(M)-linear: it satisfies the Leibniz rule

∇X( fY ) = (X f )Y + f ∇XY ( f ∈C∞(M)). (2.3)

This definition also makes sense on any open U ∈ O(M), and in fact if x ∈ U , then ∇XY (x)
only depends on the value of X at x and the restriction of Y to U (this follows from (2.2) - (2.3)
and the definition of a manifold). Hence we may compute covariant derivatives locally: for any
local frame (ea) for X(M) on U (which consists of maps ea : U→ T M, a = 1, . . . ,n, such that at
each x ∈U the vectors ea(x) ∈ TxM form a basis of TxM), the connection ∇ is then completely
characterized by its connection coefficients ωc

ab, defined (at each x) by

∇eaeb = ω
c
abec. (2.4)

Indeed, to compute ∇XY from (2.4), we write X = Xaea etc.,and from (2.2) - (2.3) obtain

∇XY = ∇Xaea(Y
beb) = Xa

∇ea(Y
beb) = Xa(ea(Y b) · eb +Y b

∇eaeb)

= Xa(ea(Y c)+Y b
ω

c
ab)ec. (2.5)

We write ∇XY a for (∇XY )a, so that ∇XY = (∇XY a)ea. We therefore have

∇XY a = XY a +ω
a
bcXbY c, (2.6)

where XY a is the (defining) action of the vector field X on the function Y a ∈C∞(U). In terms
of the canonical coordinate basis (ei = ∂i = ∂/∂xi), abbreviating ∇i = ∇∂i , we therefore have

ω
k
i j = dxk(∇i∂ j); (2.7)

∇XY k = X i(∂iY k +ω
k
i jY

j); (2.8)

∇iY k = ∂iY k +ω
k
i jY

j. (2.9)

The torsion T∇ of a given linear connection ∇ is a tensor of type (2,1), defined by

T∇(X ,Y,θ) = θ(∇XY −∇Y X− [X ,Y ]); (2.10)

a simple computation shows that this expression is indeed C∞(M)-linear in each entry.
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Theorem 2.1 (Levi-Civita) Any Riemannian manifold (M,g) admits a unique linear connec-
tion ∇, called the Levi-Civita connection, such that:

1. The torsion T∇ associated to ∇ vanishes;

2. The connection ∇ and the metric g are related by

X(g(Y,Z)) = g(∇XY,Z)+g(Y,∇X Z) (X ,Y,Z ∈ X(M)). (2.11)

Proof: using torsion-freeness in the form ∇XY −∇Y X = [X ,Y ], eq. (2.11) may be rewritten as

g(∇XY,Z) = 1
2(Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y )−g(X , [Y,Z])+g([X ,Y ],Z)+g(Y, [Z,X ])),

(2.12)
often called the Koszul formula. which shows both existence and uniqueness of ∇. �

The connection coefficients of ∇ are called Christoffel symbols, which are usually denoted by
Γk

i j (= ω k
i j). In a coordinate basis, where all commutators vanish, eq. (2.12) immediately gives

Γ
k
i j =

1
2gkl(∂ jgli +∂igl j−∂lgi j). (2.13)

The following map, labeled by X ,Y ∈ X(M), to be distinguished from its argument Z,

Ω(X ,Y ) : X(M)→ X(M); (2.14)
Ω(X ,Y )Z = ([∇X ,∇Y ]−∇[X ,Y ])Z, (2.15)

where X ,Y,Z ∈ X(M), and (2.15) is C∞(M)-linear in each of the three separately. Hence

Riem(θ ,Z,X ,Y ) = θ(Ω(X ,Y )Z) (2.16)

defines a tensor of type (3,1) called the Riemann (curvature) tensor.20 Equivalently,

Riem(W,Z,X ,Y ) = g(W,(Ω(X ,Y )Z)). (2.17)

makes Riem of type (4,0). In coordinates, the Riemann tensor is (re)defined and expressed by

[∇i,∇ j]Zk = Rk
li jZ

l; (2.18)

Rk
li j = ∂iΓ

k
l j−∂ jΓ

k
li +Γ

k
imΓ

m
jl−Γ

k
jmΓ

m
il ; (2.19)

Rkli j = gkmRm
li j, (2.20)

where Rk
li j ≡ Riemk

li j. The Bianchi identities read, first abstractly and then in coordinates:21

Ω(X ,Y )Z +Ω(Y,Z)X +Ω(Z,X)Y = 0; (2.21)
(∇X Riem)(Y,Z)+(∇Y Riem)(Z,X)+(∇ZRiem)(X ,Y ) = 0; (2.22)

Rk
li j +Rk

i jl +Rk
jli = 0; (2.23)

∇mRk
li j +∇ jRk

lmi +∇iRk
l jm = 0. (2.24)

20Bernhard Georg Friedrich Riemann (1826–1866) was one of the greatest and most influential mathematicians
in recent history. His Habilitationsschrift from 1854 entitled Über die Hypothesen, welche der Geometrie zu
Grunde liegen is a blueprint for modern differential geometry, especially from a metric point of view. You can find
it for example on https://www.maths.tcd.ie/pub/HistMath/People/Riemann/Geom/Geom.pdf.

21These identities follow from the property ψ∗t (Riem(g)) = Riem(ψ∗t g)/dt under any one-paramter group of
diffeomorphisms ψt by taking d/dt at t = 0, see Kazdan (1981). The contracted Bianchi’s identities used in
general relativity state this same property for the Ricci tensor.
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2.2 Sectional curvature
Some more identities satisfied by R, which are crucial for what follows, are:

Rkl ji =−Rkli j; Rlki j =−Rkli j; Ri jkl = Rkli j, (2.25)

of which the first is trivial from (2.18), the second states that each map Ω(X ,Y ) is an isometry
of TxM, and the third is conceptually bizarre. In any case, these symmetries lead to a useful
reinterpretation of the Riemann tensor. One may regard Riemx ∈ (T ∗x M)⊗4 as a linear map

R̃iemx : TxM⊗TxM→ TxM⊗TxM, (2.26)

obtained by first noting that Ωx(X ,Y )∈Hom(TxM,TxM), second that for any finite-dimensional
vector space V one has Hom(V,V ) ∼= V ∗⊗V through the map V ∗⊗V → Hom(V,V ) given by
linear extension of θ ⊗v 7→ (w 7→ θ(w)v), third that V ∗ ∼=V in the presence of an inner product
on V , so that Hom(V,V )∼=V ⊗V . Explicitly, the map (2.26) is given by linear extension of

∂i⊗∂ j 7→ glmRk
li j∂k∂m, (2.27)

so that by (2.25),22 the map R̃iemx in (2.26) - (2.26) restricts to a symmetric linear map

R̂iemx : ∧2TxM→∧2TxM. (2.28)

By (2.25), the map (2.26) is symmetric (i.e. self-adjoint) with respect to the inner product

〈X1⊗X2,Y1⊗Y2〉x = gx(X1,Y1)gx(X2,Y2) (2.29)

on TxM⊗TxM, and hence R̃iemx is entirely specified by the associated quadratic form23

Q̃x : TxM⊗TxM 7→ R; (2.30)
(X ,Y ) 7→ R(X ,Y,X ,Y ), (2.31)

Consequently, writing X ∧Y = 1
2(X⊗Y −Y ⊗X), also (2.28) is determined by a quadratic form

Qx : ∧2TxM→ R; (2.32)

X ∧Y 7→ 〈X ∧Y, R̂iemx(X ∧Y )〉x = Riemx(X ,Y,X ,Y ). (2.33)

It is easy to show that X ,Y ∈ TxM are linearly independent iff Px(X ,Y ) 6= 0, where

Px(X ∧Y ) := gx(X ∧Y,X ∧Y ) = gx(X ,X)gx(Y,Y )−gx(X ,Y )2, (2.34)

is the square of the (metric) area of the parallelogram in TxM with sides X and Y , up to a sign.
Assuming this is nonzero, the sectional curvature Cx(X ,Y ) of the pair (X ,Y ) is defined by

Cx(X ,Y ) :=
Qx(X ∧Y )
Px(X ∧Y )

=
Riemx(X ,Y,X ,Y )

gx(X ,X)gx(Y,Y )−gx(X ,Y )2 . (2.35)

The specific combination in (2.35) makes Cx(X ,Y ) independent of the choice of X and Y within
the plane (in TxM) they span,24 and hence makes Cx a function of that plane only. Thus we may
as well use an orthonormal pair X = ea, Y = eb, so that at the end of the day we simply have

Cx(ea,eb) = Riemx(ea,eb,ea,eb). (2.36)
22Let V be a (real) vector space. Defining τ : V ⊗V → V ⊗V by linear extension of v⊗w 7→ w⊗ v, the space

∧2V ≡V ⊗A V ⊂V ⊗V is the antisymmetric part of V ⊗V , defined as the eigenspace of τ with eigenvalue -1.
23If T : V →V is linear and symmetric with respect to some inner product 〈·, ·〉 on V , i.e., 〈X ,TY 〉= 〈T X ,Y 〉 for

all X ,Y ∈V , then the associated quadratic form Q : V →R is defined by Q(X) = 〈X ,T X〉. The map T may be then
be recovered from Q (and the inner product) via the polarization formula 〈X ,TY 〉= 1

4 (Q(X +Y )−Q(X−Y )).
24See Kobayashi & Nomizu, 1963, p. 200, Prop. 1.3.
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2.3 Ricci tensor and Ricci scalar
The Riemann tensor contains al possible information about curvature (in Riemannian geometry,
this is more or less true by definition). In particular, a key motivation for Riemann himself was:

Proposition 2.2 A Riemannian manifold is flat iff Riem = 0.

Here ‘flat’ means that the metric is Euclidean (i.e., g = diag(1, . . . ,1)) in a suitable coordinate
system (which does not imply that M∼=Rn, think of the cylinder, which is flat). This proposition
is almost trivial from left to right, but the converse implication is actually quite hard to prove.25

Short of the Riemann tensor, there also exist weaker measures of curvature. The main actor in
Ricci Flow is, of course, the Ricci tensor,26 which like the metric has type (2,0); it is defined
by

Ric(X ,Y ) =
n

∑
a=1

Riem(ea,X ,ea,Y ), (2.37)

where (ea) is any orthonormal frame. Equivalently,27 in coordinates its components are

Rici j ≡ Ri j = Rl
il j = gklRkil j. (2.38)

Note that Ric is symmetric by (2.25). From Ric, we define the the scalar curvature by

R =
n

∑
a=1

Ric(ea,ea) =
n

∑
a,b=1

C(ea,eb) = gi jRi j, (2.39)

where of course in the second sum the terms a 6= b do not contribute and hence due to symmetry
the sum just has (n2− n)/2 terms. For example, in n = 3 the Ricci scalar (at a point x) is the
average of the sectional curvatures of the x-y, x-z, and y-z planes (within the tangent space TxM).

Furthermore, the Ricci tensor defines two Einstein tensors, most easily by their components

Gi j = Ri j− 1
2gi jR; (2.40)

Ei j = Ri j−
1
n

gi jR. (2.41)

Physicists use Gi j because, as will be explained later, it emerges from the calculus of variations
applied to the functional g 7→

∫
M R(g). Mathematicians, on the other hand, use Ei j because it is

simply the traceless part of Ric (note that gi jEi j = 0). Moreover, to explain the name, suppose

Ric = λg (2.42)

for some constant λ ∈ R, in which case we say that (M,g) is an Einstein manifold, and that g
is an Einstein metric. Then R = λ · n is constant and λ = R/n, so that (2.42) implies Ei j = 0.
In d > 2, also the converse is true;28 prove this yourself from the Bianchi identity (2.24). Thus:

Proposition 2.3 In d > 2, a metric satisfies (2.42) iff its Einstein tensor (2.41) vanishes.

25For a relatively elementary proof (that avoids the Frobenius Theorem) see Heckman (2019), p. 46.
26J.R. Goodstein, Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the birth of General Relativity

(AMS, 2018) IS A joint biography of Gregorio Ricci-Curbastro (1853-1925) and Tullio Levi-Civita (1873-1941).
27Authors use various sign conventions for the Riemann tensor, but all Ricci tensors and scalars coincide.
28We will shortly see that Ei j = 0 in d = 2, where we know since Gauß that non-constant R is certainly possible.
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The symmetries (2.25) enable one to count the number of independent components of the
Riemann tensor in various dimensions n, namely n2(n2−1)/12 (check!). Therefore:

1. In n = 2 the Riemann tensor has just one independent component R1212, and also

g−1 =

(
g11 g12

g21 g22

)
=

1
det(g)

(
g22 −g12
−g12 g11

)
, (2.43)

so that the Ricci tensor Ri j = gklRkil j must equal Ri j = gi jR1212/det(g), whence

Ri j = 1
2gi jR, (2.44)

and R1212 = 1
2 det(g) ·R = det(g) ·K, where the Gaussian curvature K is given (either as a

definition or as a theorem29) by K =C(∂1,∂2) = R1212/det(g), cf. (2.35), so that K = 1
2R.

2. In n = 3 the Riemann tensor has 6 independent components, as does the Ricci tensor! So
these two must carry the same information.30 This can be understood as follows from
linear algebra. If V has an inner product, any symmetric bilinear map T : V ⊗V → R is
equivalent to a self-adjoint linear map T̃ : V → V via T (v⊗w) = 〈v, T̃ w〉. In particular
the Ricci tensor Ricx : TxM⊗TxM→ R at a point x ∈M is equivalent to a linear map

R̃icx : TxM→ TxM; (2.45)

gx(X , R̃icxY ) = Ricx(X ,Y ). (2.46)

In n = 3 (only!),31 one has ∧2TxM ∼= T ∗x M ∼= TxM, which isomorphism also makes linear
maps ∧2TxM→∧2TxM and TxM→ TxM equivalent. As a case in point, if the Ricci tensor
as in (2.45) is diagonalized by an orthonormal basis (e1,e2,e3) of TxM with eigenvalues
(λ1,λ2,λ3), then the Riemann tensor as in (2.28) is diagonal with respect to the basis
(e1∧ e2,e2∧ e3,e3∧ e1) of ∧2TxM with corresponding eigenvalues

(λ1 +λ2−λ3,λ2 +λ3−λ1,λ1−λ2 +λ3).

Trivially, the Ricci scalar is then given by the trace of either R̃icx or R̂x, i.e.

Rx = λ1 +λ2 +λ3. (2.47)

3. In n = 4 (the case of interest to physics) the Riemann tensor has 20 independent compo-
nents, whereas the Ricci tensor only has 10. The geometric information in the Riemann
tensor that is not passed on to the Ricci tensor is contained in the Weyl tensor, defined by

Wkli j = Rkli j +(gk[ jRi]l +gl[iR j]k)+
1
3(R ·gk[ig j]l), (2.48)

where [· · · ] denotes antisymmetrization in the enclosed indices, much as (· · ·) denotes
symmetrization in the enclosed indices (for example, gk[ jRi]l = gk jRil−Rkig jl). The sym-
metries of W , namely W(kl) ji = Wlk(i j) = 0 and Wi jkl = Wkli j, then also give W 10 inde-
pendent components. According to Roger Penrose, W is the key to the Universe!

29See e.g. Heckman (2019), Theorem 3.14, p. 49.
30One way to see the equivalence of the Riemann and Ricci tensors is through the Einstein tensor (2.41): in

terms of the notation (P�Q)i jkl := PilQ jk +PjkQil−PikQ jl−PjlQik, one finds Riem = 1
4 R(g�g)+E�g.

31If V is a 3d vector space with basis (e1,e2,e3), then every element of ∧2V is proportional to ω = e1∧ e2∧ e3
and hence A ∈ ∧2V defines Â ∈ V ∗ by A∧ v = Â(v)ω . Since ∧2V has a basis (e1 ∧ e2,e2 ∧ e3,e3 ∧ e1), counting
dimensions shows that A 7→ Â gives a bijection ∧2V ∼=V ∗. If εi jk is the totally antisymmetric (Levi-Civita) symbol,
v= viei ∈V , A=Ai jei∧e j ∈∧2V , and Â= Âiθ

i ∈∧2V with θ i(e j)= δ i
j, then Âi = εi jkA jk, or Â1 =A23, Â2 =−A13,

and Â3 = A12. Dually, V ∼= (∧2V )∗ = ∧2V ∗ under v 7→ v̂, where v̂i j = εi jkvk (this applies e.g. to the magnetic field).
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3 Spaces of constant curvature
We now turn the the Riemannian manifolds that are of greatest interest to Ricci Flow:32

Definition 3.1 We say that a Riemannian manifold (M,g) has constant curvature if all sec-
tional curvatures Cx(X ,Y ) coincide (where x ∈M and X ,Y ∈ TxM).

In d = 2 this simply means that the scalar curvature is constant, and the condition becomes
increasingly stringent in higher dimension, as TxM contains an increasing number of plane
whose sectional curvatures is to be constant. This exactly compensates for the larger variety of
possible Riemannian manifolds in high dimension, since Theorem 1.3 gives exactly the same
classification in d = 2 and d > 2. An interesting difference between these cases, however, is:33

Proposition 3.2 Let dim(M) ≥ 3. If for all x ∈M the sectional curvatures Cx(X ,Y ) are inde-
pendent of X and Y , then they are also independent of x, i.e. (M,g) has constant curvature.

We sketch the proof and leave it as an exercise to fill in the details. Let Cx(X ,Y ) = k(x) for all
X ,Y ∈ TxM and some k ∈C∞(M). In terms of the auxiliary tensor S of type (4,0) defined by

Sx(V,W,X ,Y ) = gx(V,X)gx(W,Y )−gx(V,Y )gx(W,X), (3.1)

eq. (2.35) then gives Riemx(X ,Y,X ,Y ) = k(x)S(X ,Y,X ,Y ), but since the Riemann tensor is
completely defined by its sectional curvatures, this implies Riemx = k(x)S. Taking the covariant
derivative with respect to an arbitrary vector-field U ∈ X(M) gives ∇U Riem = (Uk) · S, since
∇U S = 0 by definition of the Levi-Civita connection (which gives ∇U g = 0). Eq. (2.22) gives

(Uk) · (g(Z,Y )X−g(Z,X)Y )+(Xk) · (g(Z,U)Y −g(Z,Y )U)

+(Y k) · (g(Z,X)U−g(Z,U)X) = 0, (3.2)

for arbitrary X ,Y,Z ∈ X(M). Now in d ≥ 3 we may take Z =U to be unit vectors and (X ,Y,Z)
mutually perpendicular, so that (3.2) yields (Xk) ·Y − (Y k) ·X = 0. Since this is true for all
X ⊥ Y , it follows that Xk = Y k = 0 and hence k is constant. �

This proof gives a useful formula for the Riemann tensor in case of constant curvature, viz.

Ri jkl = k(gikg jl−gilg jk), (3.3)

where k is the common value of all sectional curvatures, called the curvature of (M,g). It is
easy to show from (3.3) that a constant curvature metric must be Einstein (exercise). We have
already seen that an Einstein metric has constant scalar curvature. In d = 3, this can be boosted
to constant sectional curvature (exercise), so that in our dimension of interest, we have:

Proposition 3.3 In d = 3, a metric has constant curvature iff it is an Einstein metric.

We now turn to the classification of (complete) Riemannian manifolds with constant curvature.
This given by Theorem 1.3 in the simply connected case, from which the general case follows
analogously to Corollary 1.4, that is, by taking quotients with respect to certain discrete isometry
groups.34 We start with an elementary description of the case n = 2, which will not be used in
the sequel, but is useful for developing intuition and for its historical value. This is followed by
a restatement Theorem 1.3 in terms of group theory, on the basis of which it will also be proved.

32Those with constant scalar curvature, in which the Ricci scalar R is constant, are of less interest.
33Recall that we assume that M is connected.
34We will treat some easy cases; the general case is a subject by itself. See Vinberg (1993) and Wolf (2010).
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• Let S2
ρ be the two-sphere with radius ρ > 0, with metric induced from the flat one on R3,

S2
ρ = {(x,y,z) ∈ R3 | x2 + y2 + z2 = ρ

2}. (3.4)

Riemann’s point of view was to use the stereographic projection from the north pole onto
the z = 0 plane in R3, which is given by the formulae

(x,y,z) 7→ (u,v,0); u =
ρx

ρ− z
; v =

ρy
ρ− z

, (3.5)

where (x,y,z) 6= (0,0,ρ) ≡ N (which point is sent to infinity) so that we obtain a diffeo-
morphism from S2

ρ\N to R2. A straightforward computation then gives the metric

ds2 = 4 · du2 +dv2

1+ k(u2 + v2)
, (3.6)

where k = 1/ρ2 > 0 is the value of the constant curvature that appears in (3.3).

• Riemann then identified the metric carrying hyperbolic geometry as the open disc

D2
ρ = {(u,v) ∈ R2 | u2 + v2 < ρ}, (3.7)

equipped with formally the same metric (3.6), but this time with k =−1/ρ2 < 0.

Circle Limit III by M.C. Escher, showing geodesics of the hyperbolic metric on the disc

In 1906, Hilbert proved that it is impossible to isometrically embed D2
ρ with its hyperbolic

metric in R3, equipped with its usual (Euclidean) metric g = diag(−1,1,1). However, an
embedded model of hyperbolic geometry is given by the relativistic mass shell in R3,

M2
ρ = {(x,y,z) ∈ R3 | x2 + y2− z2 =−ρ

2,z > 0}, (3.8)

where R3 is equipped with the Minkowski metric η = diag(−1,1,1).
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3.1 Homogeneous manifolds
These models have group-theoretical descriptions, which play a fundamental role in their clas-
sification. In preparation, we quote the following basic technical result without proof:35

Proposition 3.4 Let G be a Lie group and K ⊂ G a closed subgroup.36 Then K is itself a Lie
group and there exists a smooth structure on the homogeneous space G/K such that:

1. dim(G/K) = dim(G) = dim(K);

2. The canonical projection G→ G/K, γ 7→ γK, is smooth;

3. The canonical G-action G× (G/K)→ G/K, (γ1,γ2K) 7→ (γ1γ2)K, is smooth.

We write such group actions as γ1(γ2K) = (γ1γ2)K. It is clear that G acts transitively on G/K
(for any x ∈ G/K and y ∈ G/K there is γ ∈ G such that y = γx). Without loss of generality,37

we may also assume that G acts effectively on G/K (if γx = x for all x ∈ G/K, then x = e).
The following isomorphism will be very useful in the proof of Theorem 1.3:

TK(G/K)∼= g/k, (3.9)

where g and k are the Lie algebras of the Lie groups G and K, respectively. To see this, let us
consider a more general situation, where a Lie group G acts smoothly on a manifold M, that is,
ϕ : G×M→M is a smooth G-action on M. We will write ϕγ(x) (or simply γ ·x) for ϕ(γ,x), so
that each map ϕγ : M→M is a diffeomorphism. For each A ∈ g we define a map

AM : C∞(M)→C∞(M); (3.10)

AM f (x) =
d
dt

f (etA · x)|t=0. (3.11)

This defines a derivation on C∞(M) and hence a vector field on M, so that AM ∈ X(M), and we
have a map A 7→ AM from g to X(M). It can be shown that our map has good properties:38

Proposition 3.5 The map A 7→ AM is linear and for all A,B ∈ g satisfies

[AM,BM] =−[A,B]M. (3.12)

In other words, our map is an anti-homomorphisms of Lie algebras (with respect to the usual
commutator bracket of vector fields). Clearly, at any x ∈ M we obtain a map g→ TxM by
regarding AM(x) as an element of TxM. In the case at hand, where M = G/K, we take x = K and
note that the map g 7→ TK(G/K) has kernel k; indeed, if A ∈ k, then exp(tA) ∈ K by definition
of a Lie algebra (see Appendix B), but kK = K for any k ∈ K, whence the right-hand side of
(3.11) vanishes. This proves that k lies in the kernel. Conversely, γK = K iff γ ∈ K, and k ∈ K
lies near the identity iff k = exp(tA) for some A ∈ k. Surjectivity of g 7→ TK(G/K) follows from
a dimension count based on Proposition 3.4.1, so that finally (3.9) follows from linear algebra.

35See e.g. Goodman & Wallach (2009),Theorem D.2.10, or Kobayashi & Nomizu (1963), Proposition 4.2.
36Anticipating the fact that K will be compact in our applications, we use K instead of the traditional letter H.
37If G does not act effectively on G/K, take the largest normal subgroup K0 ⊂ K that is also normal in G, and

define G∗ = G/K0 and K∗ = K/K0. Then G/K ∼= G∗/K∗ and G∗ acts effectively on G∗/K∗. An example where
this is necessary occurs if K ⊂ Z(G), in which case all of K acts trivially on G/K. Although the isometry group of
a Riemannian manifold always acts effectively on M, we still need some care, as in the case S3 in §3.4.

38See e.g. J.E. Marsden & T.S. Ratiu, Introduction to Mechanics and Symmetry, Second edition (Springer, 1999).
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The isomorphism (3.9) gets more body of we combine it with the residual K-action on
TK(G/K). For any diffeomorphism ϕ of a manifold M, the derivative ϕ ′x maps TxM linearly to
Tϕ(x)M (and the pullback ϕ∗x linearly maps T ∗

ϕ(x)M to T ∗x M).39 If ϕ(x)= x, then ϕ ′x ∈Hom(TxM).
If the diffeomorphisms ϕ come from a G-action on M, we may define the stabilizer of x by

Gx = {γ ∈ G | γ · x = x}. (3.13)

The maps ϕ ′γ : TxM→ TxM, where γ ∈ Gx, then combine into a representation

πx : Gx→ GL(TxM); (3.14)
γ 7→ ϕ

′
γ , (3.15)

called the isotropy representation of Gx in TxM (here GL(TxM) consists of all invertible linear
maps from TxM to TxM). This applies in particular to M = G/K and x = K, so that we obtain

πK : K→ GL(TK(G/K)); (3.16)
k 7→ ϕ

′
k. (3.17)

We will now explicitly find πK under the isomorphism (3.9). We know that any group G acts
on itself by the adjoint action Adγ(δ ) = γδγ−1. If G is a Lie group,40 this action defines a
representation Ad′ of G on its Lie algebra g, defined by Ad′γ(X) = γXγ−1. This action may, of
course, be restricted to K ⊂ G, and it is easy to see that this restriction quotients to g/k. In our
application to spaces with constant curvature, g will have a canonical decomposition

g= k⊕p, (3.18)

where (trivially) not only k, but also p is invariant under Ad′k for any k ∈ K (if K is connected,
this is equivalent to [k,p]⊆ p). In that case, we may evidently replace the isomorphism (3.9) by

TK(G/K)∼= p, (3.19)

Proposition 3.6 1. Under the isomorphism (3.9), the isotropy representation (3.16) - (3.17)
of K on TK(G/K) is mapped to the adjoint action of K on g/k (still denoted by Ad′), i.e.,

πK(k)[A] = [Ad′k(A)], (3.20)

where A ∈ g and [A] ∈ g/k, seen as an element of TK(G/K) via the isomorphism (3.9).

2. Consequently, under the isomorphism (3.19), assuming that p is Ad′(K)-invariant, the
same isotropy representation of K is mapped to the adjoint action of K on p.

Indeed, for any A ∈ g, k ∈ K, and f ∈C∞(G/K) we have, cf. (3.11) and (3.17),

(πK(k)AG/K) f (K) =
d
dt

f (ketA ·K)|t=0 =
d
dt

f (ketAk−1 ·K)|t=0

=
d
dt

f (etkAk−1
·K)|t=0 = (Ad′kA)G/K f (K). �

39If we regard Xx ∈ TxM as a point derivation, i.e., as a map Xx : C∞(M)→R that satisfies Xx( f g) = Xx( f )g(x)+
f (x)Xx(g), then (ϕ ′xXx) f (ϕ(x)) = Xx( f ◦ϕ)(x), and dually (ϕ∗x θϕ(x))(Xx) = θϕ(x)(ϕ

′
xX) for θϕ(x) ∈ T ∗

ϕ(x)M.
40It follows from our definition of a Lie algebra in Appendix B that Ad′ is well defined as well as linear.

17



Homogeneous spaces arise if a Lie group G acts smoothly and transitively on a manifold M
(in which case M is called a homogeneous G-space). Then M ∼= G/K with K = Gx0 (i.e. the
stability group of some fixed x0 ∈ M), under the diffeomorphism M → G/K, x 7→ γK, where
γ ∈ G satisfies γx0 = x; the inverse map G/K→M is γK 7→ γx0 (both maps are independent of
the choice of γ ∈ γK), and this identification M↔ G/K is G-equivariant. Thus our trio is:

S2 ∼= SO(3)/SO(2); (3.21)

R2 ∼= E(2)0/SO(2); (3.22)

M2 ∼= SO(2,1)0/SO(2), (3.23)

where the Lie groups in question are defined in Appendix A and we denote the component of
G that contains the identity by G0. For simplicity we put S2 = S2

1 and M2 = M2
1 ; the story for

general ρ > 0 is similar. To verify (3.21), let SO(3) act on S2 by restricting its defining action
on R3, and take x0 ∈ S2 to be the north pole, in which case the SO(2) in (3.21) consists of
rotations around the z-axis. For (3.22), let E(2)0 act on R2 in the defining representation and
take x0 = (0,0), so that the SO(2) in (3.22) is rotations of the plane. Finally, (3.23) is obtained
from x0 = (0,0,1) in (3.8), so that also here the SO(2) consists of rotations around the z-axis.

Writing (3.21) - (3.23) generically as V∼= G/K, where K = SO(2) is the same in all cases,
the Ad′(K)-invariant decomposition (3.18) applies to each G in the list. In all three cases we
have g∼=R3, k∼=R, and p∼=R2, and it follows from (B.8), (B.19), and (B.10), respectively, that

the SO(2)-action on p is just its defining action on R2.

It is worth spelling this out in some detail, explaining a few useful techniques along the way.
Let u : G→GL(V ) be a representation of a Lie group G on a finite-dimensional vector space V .
Then the following is unproblematic: for A ∈ g we define a (linear) map du(A) : V →V by

du(A)v =
d
dt

u
(

etA
)

v|t=0. (3.24)

This construction gives a linear map du : g→ Hom(V ), which satisfies

[du(A),du(B)] = du([A,B]); (3.25)

edu(A) = u
(

eA
)
. (3.26)

In particular, if G is connected, then u can be recovered from du via (3.26).41

For example, the adjoint representation Ad′ : G→ GL(g) defines a Lie algebra homomor-
phism ad : g→ Hom(g),42 where ad≡ dAd′, given by

ad(A)B = [A,B]. (3.27)

For G = SO(3), the commutation relations (B.8) show that ad(e3)e1 = e2 and ad(e3)e2 =−e1,
where e3 is the generator of the subgroup SO(2) of SO(3) that consists of rotations around the
z-axis. This means that as a matrix relative to the basis (e1,e2) of R2, the restriction of the linear
map ad(e3) : so(3)→ so(3) to p = span(e1,e2) ∼= R2 (which restriction is well defined, as the
above relations show) is just the usual generator of so(2), see (B.18), which is obtained from the
defining action id of G = O(2) on V = R2 by the procedure (3.24). By exponentiation, we then
conclude that the corresponding Ad-action of SO(2) on p is the defining action, too. It follows
from (B.19) and (B.10) that the same is true for the cases (3.22) and (3.23), respectively.

41If G is simply connected, this gives an equivalence between finite-dimensional Lie group and Lie algebra
representations. This fails for infinite-dimensional representations, where (3.24) leads to unbounded operators.

42Each map ad(A) is even a derivation of g as a Lie algebra, as follows from the Jacobi identity.
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3.2 Homogeneous Riemannian manifolds and symmetric spaces
So far, this was an exercise in Lie group theory and differential geometry; we now bring in a
metric. The relationship between homogeneous spaces and Riemannian geometry is twofold:

1. Given M = G/K, one may study possible G-invariant Riemannian metrics g on M.

2. Given (M,g), one may find out if the isometry group of g possibly acts transitively on M.

In general, a metric g on M is invariant under a diffeomorphism ϕ of M if

ϕ
∗g = g ⇔ gϕ(x)(ϕ

′
x(X),ϕ ′x(Y )) = gx(X ,Y ) ∀x ∈M,X ,Y ∈ TxM. (3.28)

The set of all such diffeomorphisms ϕ is the isometry group of (M,g), denoted by Iso(M,g).
If M is a G-space, we say that g is G-invariant if ϕ∗γ g = g for all γ ∈ G. If this is the case, then
G ⊆ Iso(M,g) by definition (typically without equality),43 If in addition G acts transitively on
M, we say that (M,g) is a homogeneous Riemannian manifold, so that M ∼= G/K.

We return to the second point in the next section. The first is settled as follows:44

Proposition 3.7 1. There is a bijective correspondence between G-invariant metrics on
G/K and Ad′(K)-invariant inner products on g/k, and hence, if (3.18) applies, on p.

2. There is a unique G-invariant metric on G/K (up to scaling by a positive constant) iff the
Ad′(K)-action on g/k (or, if applicable, p) is irreducible.

Proof. To prove the first claim, just use (3.9) or (3.19): any inner product on g/k or p defines a
metric g on TK(G/K), which the G-action then pushes to any other point. Invariance under G
clearly requires ϕ∗k gK = gK for any k ∈ K, so that Proposition 3.6 shows that Ad′(K)-invariance
of the inner product is necessary. It is a simple exercise to show that it is also sufficient.

The second claim follows from two facts. First, any inner product on a vector space V can
be written in terms of some fiducial inner product 〈·, ·,〉 and a positive operator A ∈ Hom(V )
(where positive means: 〈v,Av〉 ≥ 0 for all v ∈ V ). This follows by regarding an inner product
as a special quadratic form. Second, Schur’s Lemma from group theory states that the Ad′(K)-
action on g/k (or p) is irreducible iff any operator commuting with all operators Ad′k (k ∈ K) is
necessarily a multiple of the unit operator idV . So this leaves A = λ · idV , for some λ > 0. �

Proposition 3.8 For any Riemannian manifold (M,g) and G ⊆ Iso(M,g), the isotropy repre-
sentation πx(Gx) defined in (3.14) - (3.15) is injective and has closed range.

If M is complete, any isometry ϕ of M is determined by its tangent map ϕ ′x at some fixed x ∈M:
to find ϕ(y), by Hopf–Rinow there is a geodesic γ from x to y, so that y = expx(Y ) for some
Y ∈ TxM, and if ϕ is an isometry, then ϕ(expx(Y )) = expx(ϕ

′
x(Y )).

45 Injectivity of πx then
immediately follows from (3.15). For closedness see Cheeger & Ebin, 1975, p. 61 and 37.

43If M is orientable, as we assume, then Iso(M,g) has at least two components (and for spaces of constant
curvature it has exactly two): one is the identity component Iso(M,g)0, and the other is obtained from this by
composition with an orientation-preserving isometry. For example, Iso(S2,g) (with round metric g) is O(3), with
O(3)0 = SO(3) and an orientation-preserving isometry is given by diag(−1,−1,−1). Thus S2 ∼= SO(3)/SO(2)∼=
O(3)/O(2). Next, Iso(R2,g) (with flat metric g) is E(2) and R2 ∼= E(2)/O(2) ∼= E(2)0/SO(2). In the third case,
Iso(M2,g) (with hyperbolic metric g) consists of the group O(2,1)+ of all elements of O(2,1) with λ00 > 0, see
(A.5), and then Iso(M2,g)0 = SO(2,1)+ = SO(2,1)0, so that M2 ∼= O(2,1)+/O(2)∼= SO(2,1)+/SO(2).

44See e.g. Prop. 3.16 in Cheeger & Ebin (1975), or corresponding results in Vinberg (1993), Part I, Chapter 1.
45Here expx(X) = γX (1), where γX is the unique geodesic satisfying γX (0) = x and γ̇X (0) = X .
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Corollary 3.9 If G/K carries a G-invariant Riemannian metric, then K is compact.

Proof. If O(V ) is the subgroup of GL(V ) that preserves a given inner product on V , then any
orthonormal basis of V will produce an isomorphism V ∼= Rn and hence O(V ) ∼= O(n), which
is compact. Thus O(g/k) and O(p) are compact (cf. Proposition 3.7). The previous proposition
makes K isomorphic to a closed subgroup of O(g/k) or O(p), so that K is compact. �

It is clear from these results that, up to scaling, our three spaces (3.21) - (3.23) have unique
G-invariant metrics (where G = SO(3),E(2)0, and SO(2,1)0).46 This uniqueness is true for all
spaces of constant curvature, as should be clear from the following restatement of Theorem 1.3:

Theorem 3.10 If n = dim(M)≥ 2, M is simply connected, and g is complete and has constant
curvature, then up to a rescaling of the metric by a positive constant, (M,g) is isometrically
isomorphic to G/K with its unique G-invariant metric, where K = SO(n) and G is one of:

• G = SO(n+1), so that M ∼= SO(n+1)/SO(n)∼= Sn with round metric,47 and k = 1;

• G = E(n)0 = SO(n)nRn, whence M ∼= E(n)0/SO(n)∼= Rn with flat metric, and k = 0;

• G = SO(n,1), where M ∼= SO(n,1)/SO(n)∼= Mn with hyperbolic metric,48 and k =−1.

Our proof of this theorem is based on the concept of a symmetric (Riemannian) space.49

Definition 3.11 1. A Riemannian manifold (M,g) is locally symmetric if each x ∈M has a
normal neighbourhood Ux and an isometry lx : Ux→Ux with the following properties:50

lx(x) = x (lx)′x =−idTxM, (3.29)

or, equivalently:51

lx(expx(X)) = expx(−X), X ∈ exp−1
x (Ux)⊂ TxM. (3.30)

2. A Riemannian manifold (M,g) is symmetric if the above holds for Ux = M (∀x ∈M).

Eq. (3.30), and hence also (3.29), gives l2
x = idUx . Eq. (3.30) easily implies (3.29), and the

converse implication follows from the fact that, as already mentioned, a (local) isometry ϕ is
determined by its tangent ϕ ′x at an arbitrary point x ∈M (for which, in case that ϕ = lx, we take
x). Furthermore, as an example of the idea that local constructions in Riemannian geometry can
often be made global if (M,g) is complete and simply connected,52 we mention that if (M,g)
has these properties (as it does in Theorem 3.10) and is locally symmetric, then it is symmetric.

46In fact these metrics are invariant under the full (disconnected) isometry groups O(3), E(2), and SO(2,1).
47This is the metric induced by the embedding Sn ⊂ Rn+1 with flat metric.
48Here Mn = {x ∈ Rn+1 | x2

1 + · · ·+ x2
n− x2

0 = −1,x0 > 0}, where (as in physics) we label x = (x0,x1, . . . ,xn),
with metric induced by the embedding Mn ⊂Rn+1 with Minkowski metric diag(−1,1, . . . ,1). This space may also
be realized as the open unit ball in Rn or as the upper half plane in Rn, but in those realizations the metric looks
more artificial (at least to the author). See e.g. Vinberg (1993) for an extensive treatment of hyperbolic geometry.

49A full treatise is Helgason (1978). See also Kobayashi & Nomizu (1969), Ch. IX, and Joos (2002), Ch. 5.
50A nbhd Ux of x is normal if there exists a star-shaped nbhd Ux of 0 ∈ TxM such that expx : Ux → Ux is a

diffeomorphism (where a subset V ⊂W of a vector space is called star-shaped if v ∈ V implies tv ∈ V for all
t ∈ [−1,1]). In that case, the tangent vector X ∈ TxM in (3.30) should of course be restricted to Ux.

51Therefore, lx is often called a geodesic reflection, generalizing reflection symmetry in Euclidean geometry.
52This ideology is the subject of Chapter VI of Kobayaski & Nomizu, 1969; see especially Corollary 7.9.
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3.3 Proof of the classification theorem
Our proof of Theorem 3.10 consists of three steps, of which we state the first two as a lemma:

Lemma 3.12 1. If (M,g) has constant curvature, then it is locally symmetric. Consequently,
if (M,g) is simply connected, complete, and has constant curvature, then it is symmetric.

2. If (M,g) is symmetric, then it is a homogeneous Riemannian manifold.

Therefore, among Riemannian manifolds we have the following implications:

constant curvature (= homogeneous and isotropic)⇒ symmetric⇒ homogeneous.

This lemma reduces the classification problem to a straightforward problem in Lie groups and
Lie algebras; reinserting the constant curvature condition then leads to the list in Theorem 3.10.

We first note that the proof of Proposition 3.2 shows that if (M,g) has constant curvature,
then ∇Riem = 0. Lemma 3.12.1 then follows from a key fact about locally symmetric spaces:

Lemma 3.13 A space (M,g) is locally symmetric iff ∇Riem = 0.

The easy implication is “⇒”, which is a simple exercise. Unfortunately, we need the converse
implication, whose proof rests on the following technique (going back to Cartan) for extending
pointwise isometries to local isometries. Suppose x,y ∈ M and F : TxM → TyM is a linear
isomorphism. Let Ux and Uy be normal nbhds of x and y, respectively, so that we obtain a map

f : Ux→Uy; (3.31)

f = expy ◦F ◦ exp−1
x . (3.32)

The point (for us) is that if F preserves both the metric (i.e. gy(F(X),F(Y )) = gx(X ,Y ) for all
X ,Y ∈TxM) and the Riemann tensor (i.e., Riemy(F(W ),F(Z),F(X),F(Y ))=Riemx(W,Z,X ,Y )
for all X ,Y,W,Z ∈ TxM), and in addition ∇Riem = 0, then f is an isometry.53 Now take x = y
and F = −idTxM. This clearly satisfies the assumptions, simply because both g and Riem have
even rank (namely 2 and 4, respectively). The ensuing map f is our local isometry lx. �

Part 2 of Lemma 3.12 has two components. One is purely technical and stated without proof:54

Proposition 3.14 The isometry group Iso(M,g) of any Riemannian manifold is a (finite-dimen-
sional) Lie group in the compact-open topology.

Proposition 3.15 The isometry group Iso(M,g) of a symmetric space acts transitively on M.

This relies on the fact that a symmetric space is complete; we leave this as an exercise, since in
Theorem 3.10 we assume completeness. The Hopf–Rinow Theorem then states, among other
things, that any two points y,z of M may be connected by a geodesic γ . So let y = γ(0) and
z = γ(T ). Then y = lx for x = γ(T/2)(y), and we recall that lx is an isometry. �

53See Kobayaski & Nomizu (1963), Theorem 7.4, which in turn goes back to the Cartan–Ambrose–Hicks
Theorem of Riemannian geometry. This states that f is a (local) isometry iff F preserves g and Riem, and for all
Y ∈ TxM such that expx(Y ) ∈Ux one has Riemexpx(F(Y ))(PY (U),PY (V ),PY (W ),PY (X)) = Riemexpx(Y )(U,V,W,X)
for all U,V,W,X ∈ Texpx(Y ), where PY : Texpx(Y )M→ TxM→ Texpx(F(Y ))M is the composition of parallel transport
along the geodesics γY (traversed backward) and γF(Y ). This condition is automatically satisfied when ∇Riem = 0.

54See e.g. Helgason (1978), §IV.2. The compact-open topology on a space of maps F : X → Y is generated by
open sets of the form CK,U = {F | F(K)⊂U}, where K is compact in X and U is open in Y .
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It can be shown for any Riemannian space that if Iso(M,g) acts transitively on M, then
already its identity component Iso(M,g)0 does so.55 For symmetric spaces this is an easy ex-
ercise. We conclude that under the assumptions of Theorem 3.10 we have M ∼= G/K, with
G = Iso(M,g)0 and K = Gx0 for some x0 ∈M. By Proposition 3.7, the given G-invariant (con-
stant curvature) metric g on M is entirely determined by some suitable inner product 〈·, ·〉 on
g/k, and by Proposition 3.6 the K-action on Tx0M is mapped to the Ad′(K)-action on g/k (which
by implication preserves 〈·, ·〉). By Proposition 3.8 the representation Ad′ is injective on K.
Therefore, if we choose an orthonormal basis of g/k with respect to 〈·, ·〉, and hence obtain an
identification g/k∼= Rn, we may also identify K ∼= Ad′(K) with a certain subgroup of SO(n).

Lemma 3.16 If, in the situation just described, (M,g) has constant curvature, then K = SO(n).

This follows by the argument in the proof of Lemma 3.13, which is applicable because constant
curvature implies Riem = k · S, see the proof of Proposition (3.2) and especially eq. (3.1). By
definition, any element R∈ SO(n) preserves the inner product, and hence, the metric, and hence,
by the above formula, the Riemann tensor. Thus R comes from an isometry, i.e. R ∈ K. �

Therefore, we now know that M ∼= G/K as a homogeneous Riemannian manifold, where

G = Iso(M,g)0; (3.33)
K = SO(n). (3.34)

Since SO(n) acts irreducibly on Rn, so that Ad′(K) is irreducible on g/k, there is exactly one
possible metric g on M (up to scaling by a positive constant), cf. Proposition 3.7. We now
transfer the involutions lx on M to G. Since for all x ∈M and γ ∈ Iso(M,g) one has (exercise)

γlxγ
−1 = lγx, (3.35)

it is sufficient to consider a single lx0 : M→M, where x0 ∈M is arbitrary. For (3.33), define

l : G→ G; (3.36)
γ 7→ lx0γlx0 . (3.37)

Using (3.35) and the definition of the maps lx, it is easy to show that l has the properties

l 6= idG; l2 = idG; l(γδ ) = l(γ)l(δ ). (3.38)

We defined l by (3.37) for (3.33) - (3.34), in which context (3.38) follow from the definition.
Conversely, for any Lie group G one may start with a nontrivial smooth involutive automor-
phism (3.36), i.e. a map (3.36) satisfying (3.38), called a Cartan involution on G, and define

K = Gl ≡ {γ ∈ G | l(γ) = γ} (3.39)

as the fixed-point set of l. Then construct a family (lx)x∈G/K of diffeomorphisms of G/K by

lK(γK) = l(γ)K; (3.40)

lγK(x) = γ · lK(γ−1 · x). (3.41)

55 The following analysis could have been performed with Iso(M,g), too, in which case O(n) replaces SO(n).
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If K is connected (as is the case in our application), these procedures are equivalent,56 so that
one may start either with a symmetric Riemannian manifold (M,g) or with the corresponding
group-theoretical data (G, l). It is striking how many interesting Riemannian manifolds are
obtained in this way (including all those on which serious harmonic analysis is possible).57

Three important classes of examples, which are also very easy to state, are:58

G = SLn(R), l(A) = (AT )−1, K = SO(n); (3.42)

G = SO(n+m), l(A) = Γ(AT )−1
Γ, K = SO(n)×SO(m); (3.43)

G = SO(n,m)+, l(A) = (AT )−1, K = SO(n)×SO(m). (3.44)

where Γ = diag(1, n times. . . . . .,1,−1,m times. . . . . .,−1). The first line is irrelevant to Theorem 3.10 (expect
for n = 2, for which it yields the same quotient as the third line for n = 2, m = 1), but the second
line produces Sn for m = 1, which very choice in the third line gives the hyperbolic spaces Mn.

The classification problem is much easier at the level of Lie algebras, to which we now turn.
Since l : G→ G is smooth, it has a derivative l′ : g→ g, defined by, cf. (B.2),

l′(A) =
d
dt

l
(

etA
)

t=0
. (3.45)

As in (3.26), this map satisfies exp(l′(A)) = l(exp(A)). From this, and l2 = idG, we compute

l′ ◦ l′(A) =
d
dt

l
(

etl′(A)
)

t=0
=

d
dt

l (l(exp(tA)))t=0 =
d
dt

(
etA
)

t=0
= A, (3.46)

so that (l′)2 = idg. We therefore have our promised canonical decomposition (3.18), in which k
and p are the eigenspaces of l′ with eigenvalue 1 and −1, respectively. Furthermore, it follows
from the last entry in (3.38) that l′ is a Lie algebra automorphism, i.e., l′ is linear and (exercise)

l′([A,B]) = [l′(A), l′(B)]. (3.47)

This implies the following properties (of which the first one is trivial since K⊂G is a subgroup):

[k,k]⊂ k; [k,p]⊂ p; [p,p]⊂ k. (3.48)

We now return to our classification problem (i.e., the proof of Theorem 3.10), so that Proposition
3.7 and 3.33 - (3.34) apply, as well as the remarks preceding Lemma 3.16. Consequently, p∼=Rn

and the Ad′(K)-action on p is the defining action of SO(n) on Rn. By (3.27), the derivative of
the Ad′(K)-action is the ad(k)-action, that is, for A ∈ k= so(n) and v ∈ p we have

[A,v] = A · v, (3.49)

where A · v is the derivative of the defining action of SO(n), see (3.24). Since the Lie bracket
[A,B] for A,B ∈ k is also known (because k= so(n)), all we need to find out to determine g as a
Lie algebra (and hence, by Lie’s Third Theorem in Appendix C, to determine G as a Lie group)
is the commutator [u,v] ∈ k of u,v ∈ p (identified with Rn). To start, for n = 2 we must have

[u,v]w = ρ(〈u,w〉v−〈v,w〉u), (3.50)

56If K is disconnected, then Gl
0 ⊆ K ⊆ Gl . See Helgason (1978) or even wikipedia, symmetric space.

57See Jost (2002) and Terras (2016) for examples and Helgason (1978) and wikipedia for a classification.
58In Cartan’s classification these correspond to types AI (noncompact), BDI (compact), and BDI (noncompact),

respectively. See Helgason (1978), Table V, p. 518 or Terras (2016), Table 2.1, p. 357 for a summary.
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for some constant ρ ∈ R. This is easily shown by taking the usual basis (e1,e2) of R2 as well
as the generator j3 ≡ e3 of so(2), see (B.18). The only possibility is [e1,e2] = ρe3, which by
linear extension gives (3.50). Rescaling of the metric by a positive constant then leads to the
three possibilities ρ = 1,0,−1. This leads to the following three possibilities:

ρ = 1 : [e1,e2] = e3; [e3,e1] = e2; [e3,e2] =−e1; (3.51)
ρ = 0 : [e1,e2] = 0; [e3,e1] = e2; [e3,e2] =−e1; (3.52)
ρ =−1 : [e1,e2] =−e3; [e3,e1] = e2; [e3,e2] =−e1. (3.53)

These are the Lie algebras of SO(3), E(2), and SO(2,1), respectively, see (B.8), (B.19), and
(B.10). It follows from Theorem C.1 that G (assumed connected) must be:

ρ = 1 : G = SO(3); (3.54)
ρ = 0 : G = E(2)0; (3.55)

ρ =−1 : G = SO(2,1)+, (3.56)

or any other Lie group differing only in its topology (as made precise by Theorem C.1). How-
ever, the candidates just listed are the only ones whose quotients with SO(2) give simply con-
nected spaces (as may be checked case by case). This proves Theorem 3.10 for n = 2.

The general proof just needs one additional argument (plus some Lie algebra bookkeeping).
Namely, (3.50) holds in any dimension! To see this, we recall that the adjoint action of K =
SO(n) on g consists of Lie algebra automorphisms (indeed this is true for all of G). Hence

[Ru,Rv] = Ad(R)([u,v]) = R[u,v]R−1, (3.57)

for any R ∈ SO(n) and u,v ∈ p∼= Rn, with [u,v] ∈ so(n). If n > 2, we may take three mutually
orthogonal vectors u,v,w and take R to be the reflection in the (hyper)plane orthogonal to w.59

Then Ru = u, Rv = v, and R−1w = Rw =−w by construction, so that (3.57) gives

[u,v]w =−R([u,v]w). (3.58)

By definition of R (which implies that Rx =−x is only true if x is a multiple of w), this implies
that [u,v]w is a multiple of w, which is impossible for (infinitesimal) rotations unless [u,v]w= 0.
Therefore, [u,v] maps any vector orthogonal to u and v to zero, which yields (3.50) for any n.

The finishing touch is to note that the covariance property (3.57) has not only delivered the
conclusion just given, but also implies that the constant ρ in (3.50) is independent of the u-v
plane (since one can rotate any plane into any other plane). This means that the Lie algebra g is
now entirely known, and it is a straightforward exercise (which we spare the reader) to find the
right basis of g for the three cases ρ = 1,0,−1 and hence reproduce the known Lie algebras of
SO(n+1), E(n), and SO(n,1), again with respect to a suitable basis.60 The final identification

ρ = 1 : G = SO(n); (3.59)
ρ = 0 : G = E(n)0; (3.60)

ρ =−1 : G = SO(n,1)+, (3.61)

also uses practically the same (topological) case by case arguments as for n = 2. �

59We are cheating, since this reflection does not lie in SO(n) but in the other component of O(n), where det(R) =
−1. However, the entire argument can be carried through using G = Iso(M,g) and K = O(n), cf. footnote 55.

60This basis is provided by the root space decomposition of semi-simple Lie algebras and requires more back-
ground than is offered in our appendices. Helgason (1978) is a complete reference for this background.
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3.4 The Thurston classification
We close this chapter with the result of Thurston’s classification in d = 3, which generalizes
the case n = 3 of Theorem 3.10. This classification lists (up to isometry) all simply connected
homogeneous Riemannian 3-manifolds M = G/K (where K ⊆ SO(3)) for which:

1. the metric on M has a maximal isometry group;

2. G has a discrete subgroup Γ acting freely and discontinuously on M with Γ\M compact.

Since the aim of the classification is to produce all compact 3-manifolds, the second condition
should be clear; the difference with d = 2 lies in the fact that constant curvature is replaced by
the more general requirement of homogeneity (and it is only clear with hindsight that this was
the right point to stop, rather than, say, the less general symmetric spaces or some more general
class of Riemannian manifolds than homogeneous ones). We now rearrange the solution (1.27)
according to K, which makes the special case of constant curvature stand out as the first line:

K = SO(3) : M = S3; M = R3; M = M3;

K = SO(2) : M = S2×R; M = M2×R; M = S̃L2(R); M = Nil;
K = {e} : M = Sol. (3.62)

By Proposition 3.7, only the spaces in the top line have unique G-invariant Riemannian metrics
(up to scaling); for the others there is a choice, which is made by enforcing condition 1. Of the
eight spaces listed in (3.62), the following five are simply connected 3d Lie groups:

S3 ∼= SU(2), R3, S̃L2(R), Nil = Heis3(R), Sol = E(1,1)0. (3.63)

are 3d Lie groups, see Appendix A for the definition of these groups.61 On a different note, all
spaces except S3 and S2×R are diffeomorphic (but not isometric!) to R3. We now give brief
descriptions of the metrics on the spaces (3.62) and their associated isometry groups.

1. M = S3 with round metric (i.e. obtained from the embedding S3 ↪→R4). We already know
that S3 ∼= SO(4)/SO(3), with unique SO(4)-invariant metric (up to scaling), but there is
another group-theoretic description coming from an “accident” in d = 3, namely

S3 ∼= SU(2); (3.64)

see (C.1). Now any group G carries a transitive G×G action defined by (x,y) ·z = xzy−1),
whose stabilizer at the identity e ∈ G is K = Gd = {(γ,γ) | γ ∈ G}, so that K ∼= G.

61These are precisely the 3d simply connected unimodular Lie groups, which had previously been classified by
Milnor (1976). A Lie group (and more generally a locally compact group) is called unimodular if it has a nonzero
measure that is both left- and right-invariant under the G-action (any locally compact group has a left-invariant
measure called the Haar measure, so what is at stake is whether this measure is also right-invariant). It can be
shown that a Lie group is unimodular iff Tr(ad(A)) = 0 for all A ∈ g, so that, using Theorem C.1, the list (3.63)
may be proved by classifying all 3d unimodular Lie algebras. This is done in Milnor (1976), whose basic lemma
states that any 3d unimodular Lie algebra has a basis (n1,n2,n3) with Lie bracket (B.26) in our Appendix B. This
leads to the table at the end of Appendix B. Note that E(2) occurs in this table but not in (3.63); this is because
E(2)∼=R3 as manifolds and the Riemannian metric on R3 used in Thurston’s classification does not use the group
structure of E(2). The so-called Bianchi classification predates and generalizes this, since it classifies all 3d Lie
algebras. The relevance of the unimodularity condition for Thurston’s program is that G has a discrete subgroup Γ

whose left-action on G has a compact quotient iff G is unimodular.
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On any (real) Lie algebra g, the Cartan–Killing form B : g×g→ R is defined by

B(X ,Y ) = 1
2Tr(adX adY ). (3.65)

This bilinear form is always Ad(G)-invariant, is nondegerenate iff g is semi-simple (i.e.,
the direct sum of simple Lie algebras), and is negative definite iff G is compact. Therefore,
if G is a compact semi-simple Lie group, like SU(2), we have an Ad(G)-invariant inner
product on g, given by minus B. As a case in point, it follows from (B.13), (B.14), and
(B.7) that under the identification su(2)∼= R3 we obtain ad(hi) = ei, i = 1,2,3, and since
Tr(eie j) =−2δi j, i.e., B(hih j) = δi j, minus B is just the usual inner product on R3.

Let G be a compact semi-simple Lie group. Under the identification (3.64), we put the
inner product −B on TeG∼= g, and move this to any other point by the left G-action. This
gives a G×G-invariant metric g on G. Hence for G = SU(2) it is tempting to write

S3 ∼= (SU(2)×SU(2))/SU(2), (3.66)

which is true, but for the analysis of §3.1 to apply, one must assume that the G-action on
M is effective. This is not the case for the SU(2)×SU(2) action on itself (and hence on
S3), and more generally, is not the case whenever G has a nontrivial center Z(G), which
for SU(2) consists of Z(SU(2)) = {12,−12}. So we should rewrite (3.66) as

S3 ∼= ((SU(2)×SU(2))/Z2)/(SU(2)/Z2)∼= ((SU(2)×SU(2))/Z2)/SO(3), (3.67)

where the first Z2 is the subgroup of SU(2)×SU(2) consisting of (12,12) and (−12,−12),
and the second one is the subgroup {12,−12} of SU(2) just mentioned. We also used

SO(3)∼= SU(2)/Z2, (3.68)

and to make the story complete we mention a third (related) “accident” in d = 3, namely

SO(4)∼= (SU(2)×SU(2))/Z2, (3.69)

which is most easily proved at the Lie algebra level and then noting that SO(4) is doubly
connected whereas SU(2)×SU(2) is simply connected, because S3 is, cf. (3.64). Hence
(3.67) recovers our original description S3 ∼= SO(4)/SO(3), and under all these isomor-
phisms, the SU(2)× SU(2)-invariant metric g on S3 that is ultimately given by (minus)
the Cartan–Killing form is the same as the round metric, whose (connected) isometry
group Iso(S3,g)0 may be written as either side of (3.69), depending on the choice of
either G = SO(4) or G = (SU(2)×SU(2))/Z2, respectively, in writing S3 ∼= G/SO(3).

2. M =R3 with flat metric, M =M3 with hyperbolic metric, M = S2×R with product metric
(of the round metric on S2 and the flat metric on R), and M = M2×R with product metric
(of the hyperbolic metric on M2 and the flat metric on R) are easy and have:

Iso(R3,g)0 = E(3)0; (3.70)

Iso(M3,g)0 = SO(3,1)+; (3.71)

Iso(S2×R,g)0 = SO(3)×R; (3.72)

Iso(M2×R,g)0 = SO(2,1)×R; (3.73)

3. The remaining three (group) cases are more complicated, see Scott (1983) for the explicit
metrics. The isometry groups of the metrics on S̃L2(R) and M = Nil are (by construction)
certain extensions of these groups by SO(2), and finally Iso(Sol,g)0 is simply Sol itself.
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4 Ricci Flow
At last, we now return to the Ricci Flow equation (1.1) or (1.3). Much of the analysis is done
through derived equations for the various curvature tensors, of which the one for the curvature
scalar R , viz. (1.9), even has a clearer intuitive meaning than the Ricci Flow equation itself. We
first state and derive these equations, and then return to the Ricci Flow equation itself, proving
existence (al least for short time) and uniqueness (this order is pedagogical rather than logical).

4.1 Derived equations
The following theorem states the flow of the curvature tensors and some other relevant objects.

Theorem 4.1 If the metric g satisfies the Ricci Flow equation (1.1), then the associated curva-
ture quantities, i.e. the scalar curvature and the Ricci and Riemann tensors, satisfy:

∂tR = ∆gR+2Ri jRi j; (4.1)

∂tRi j = ∆gRi j−2Rk
i Rk j +2Rik jlRkl; (4.2)

∂tRi jkl = ∆gRi jkl +Rm
l Ri jmk−Rm

k Ri jml−Rm
j Rimkl−Rm

i Rm jkl

+2(Bi jkl−Bi jlk +Bik jl−Bil jk), (4.3)

where ∆g = gi j∇i∇ j is the covariant Laplacian and Bi jkl = Rm
i jnRn

lkm. Moreover, if M is compact,

∂tVol(M) =−
∫

M
R; (4.4)

∂t

∫
M

R =
∫

M
(−R2 +2Ri jRi j); (4.5)

∂t〈R〉= 〈R〉2−〈R2〉+2〈Ri jRi j〉. (4.6)

See also (1.22) - (1.24). In any coordinate system,
∫

M f means
∫

M dnx
√

det(g(x)) f (x), for say
f ∈ C(M).62 One sees that Ricci Flow is a reaction-diffusion equation, with a diffusion (or
‘heat’) term ∆g · · · and, typically nonlinear, reaction terms involving higher curvature tensors,
expect for Riem, where the buck stops. The Ricci Flow equation (1.1) for the metric is of the
same type, but it will take us some effort to show this (see the next section). Also, one sees from
(4.4) that positive/negative curvature decreases/increases the volume under Ricci Flow.63

62 We recall our standing assumption that M is orientable. Recall that this means that there exists an atlas
(Uα ,ϕα), where the Uα form an open cover of M and each ϕα : Uα → Rn is injective and open, whose transition
functions ϕβ ◦ϕ−1

α : Vαβ → Rn, where Vαβ = ϕα(Uα ∩Uβ ) ⊂ Rn) all have positive Jacobian. An orientation of
an orientable manifold, then, is an atlas satisfying this condition. It can be shown that M is orientable iff it admits
a nowhere vanishing n-form ω ∈ Ωn(M); one then only accepts charts ϕ whose coordinates (x1, . . . ,xn) satisfy
ω(∂1, . . . ,∂n)> 0. In the presence of a metric there is a canonical normalization of ω , given by the condition

ω(∂1, . . . ,∂n) =
√

det(g) ⇔ ωx =
√

det(g(x))dx1∧·· ·∧dxn.

This condition is well defined, since ω keeps this form under coordinate transformations: indeed, by elementary
calculus one has

√
det(g(xβ )) = J−1

αβ

√
det(g(xα)), where Jαβ = det |∂xi

β
/∂x j

α | is the Jacobian of the coordinate

transformation from xα to xβ ). For any reasonable f : M→R one then has
∫

M f ≡
∫

M f ω =
∫

M dnx
√

det(g(x)) f (x).
63In particular, in d = 2, by (2.44) we have ∂tR = ∆gR+R2 and ∂t

∫
M R = 0, as follows also from the Gauss–

Bonnet Theorem (1.12). This also turns (4.4) into ∂tVol(M) =−4πχ , and hence Vol(M)(t) = Vol(M)(0)−4πχt.
It follows that if χ > 0, then Vol(M) becomes zero in finite time, whereas χ < 0 gives eternal expansion.
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Proof. We will not prove all equations above, but illustrate the method and leave horrific cases
like (4.3) as exercises to the reader. It is instructive to first consider general flows

∂tgi j(t,x) = hi j(t,x), (4.7)

and then put h =−2Ric or hi j =−2Ri j at the end of the computation. The simplest result is

∂tgi j =−gikg jlhkl =−hi j, (4.8)

which follows from the defining property gi jg jk = δ i
k, and also illustrates the convention that

indices are raised and lowered with g(t), as usual (we often omit the t-dependence). Next,

∂tΓ
k
i j =

1
2gkl(∇ih jl +∇ jhil−∇lhi j), (4.9)

where the Christoffel symbol Γ was defined in (2.13). This may be proved either by direct
computation, or the following instructive trick, which can often be used.

First note that although the coefficients Γk
i j (for fixed g(t)) do not form the components of

a tensor, their derivatives ∂tΓ
k
i j do. This is because the difference between two connections is a

tensor. Let ∇ and ∇̃ be connections on T M. Then the difference (∇X − ∇̃X)Y is C∞(M)-linear
in Y ∈X(M), unlike ∇XY and ∇̃XY , since the spoiler (X f )Y in the Leibniz rule (2.3) drops out.
For example, let ∇ be the Levi-Civita connection for a given metric g and let ∇̃ be the one for
some other metric g̃. We then have a tensor Γ̂, defined by Γ̂(X ,Y,θ) = θ(∇XY − ∇̃XY ), whose
connection coefficients are Γk

i j − Γ̃k
i j, cf. (2.7). In particular, take g = g(t + s) and g̃ = g(t).

Since ∂tΓ
k
i j(g) = lims→0(Γ

k
i j(g)−Γk

i j(g̃))/s, the ∂tΓ
k
i j form the components of a tensor ∂tΓ.

This is useful, because if σ and τ are tensors of the same type, say (1,1), then σ = τ is true
iff for each x ∈M one has σ

j
i (x) = τ

j
i (x) in just one specific coordinate system (xi) defined on

some nbhd U of x, which system may even depend on x. For in that case we have σx(∂i,dx j) =
τx(∂i,dx j), and so, by C∞(M)-linearity of σ and τ in its arguments, σ(X ,θ) = τ(X ,θ), where
we write X = X i∂i and θ = θ jdx j as usual, for some X i ∈C∞(U) and θ j ∈C∞(U). Similarly for
tensors of any type (k, l). It therefore suffices to verify (4.9) in geodesic normal coordinates,64

where at x = x0 we have ∇ = ∂ , and hence (4.9) is very easy to check.
Similarly, we compute ∂tRi j from its definition (2.38) with (2.19), viz.

Ri j = ∂kΓ
k
i j−∂ jΓ

k
ik +Γ

k
klΓ

l
i j−Γ

l
jkΓ

k
il. (4.10)

Since only the first two terms contain second-order derivaties of gi j, in computing ∂tRi j in GNC

only these are nonzero, and can be computed from (4.9). This gives the tensor equality

∂tRi j = 1
2(∇k∇ihk

j +∇k∇ jhk
i −∇i∇ jhk

k−∇
k
∇khi j), (4.11)

in which the substitution h = −2Ric and by some rearrangements involving (2.18) give (4.2).
From this and (4.8), which gives ∂tgi j = 2Ri j, one easily finds (4.1).
With more work, the technique we used for (4.2) also yields (4.3). For (4.4) - (4.6) we use

∂ det(g)
∂gi j

= gi j det(g), (4.12)

64Geodesic normal coordinates (GNC) are defined on a normal nbhd Ux0 of some fixed x0 ∈ M, relative to an
orthonormal basis (ei) of Tx0M: the coordinates of x = expx0

(X) ∈Ux0 , where X = X iei, are just xi = X i. It is a
simple exercise to show that in these coordinates xi

0 = 0, gi j(x0) = δi j, and ∂kgi j(x0) = 0, so that also Γk
i j(x0) = 0.
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which follows from straightforward linear algebra (exercise).65 This relation implies

∂t
√

det(g) =
∂
√

det(g)
∂gi j

hi j =
1

2
√

det(g)
∂g

∂gi j
hi j = 1

2

√
det(g)gi jhi j = 1

2

√
det(g)h, (4.13)

from which (4.4) is immediate. To prove (4.5), we show that under (4.7) we have

∂t

∫
M

R =
∫

M
hi j( 1

2gi jR−Ri j), (4.14)

where we recall that in coordinates we integrate with respect to the measure dnx
√

det(g(x)).
Consequently, we have to compute ∂t(

√
det(g)gi jRi j), which is the sum of three terms:

(∂t
√

det(g))gi jRi j =
√

det(g)hi j · 1
2gi jR; (4.15)√

det(g)(∂tgi j)Ri j =−
√

det(g)hi j ·Ri j; (4.16)√
det(g)gi j(∂tRi j) =

√
det(g)∇iX i, (4.17)

where X i = ∇ jhi j−∇ih j
j is a vector field on M whose explicit form does not matter, since∫

M
∇iX i = 0 (4.18)

for any vector field on M (recalling that M is compact without boundary).66 This follows from√
det(g) ∇iX i = ∂i(

√
det(g)X i), (4.19)

and Gauss’s Theorem (calculus) or Stokes’s Theorem (geometry). Eq. (4.19) follows from

∂i
√

det(g) =
√

det(g)Γ
j
i j, (4.20)

whose proof is an exercise.67 Thus we are finally in a position to compute:

∂t

∫
M

R = ∂t

∫
M

dnx
√

det(g)gi jRi j =
∫

M
dnx
√

det(g)hi j( 1
2gi jR−Ri j), (4.21)

which is (4.14); putting hi j = −2Ri j as usual then gives (4.5). Eq. (4.6) immediately follows
from (4.4) and (4.5). Using these equations, it is easy to show that the normalized Ricci Flow

∂gi j

∂ t
=−2Ri j +

2
n

gi j〈R(g)〉 (4.22)

preserves volume; that is, if g(t) solves (4.22), then Vol(M), which through its dependence on√
det(g(t)) is a function of t, is independent of t. Normalized Ricci Flow is often better behaved

than Ricci Flow and we will return to it often. One sees at once that its fixed points (∂tg = 0)
must be Einstein metrics, and in d = 3 therefore have constant curvature (cf. Proposition 3.3).

65HInt:, ∂ det(g)/∂gi j = mi j, i.e. the minor = cofactor of gi j, and gi j = m ji/det(g).
66Continuing footnote 62, a more abstract proof of (4.18) is as follows. Eq. (4.19) is a coordinate version

of the geometric formula LX ω = ω ∇ ·X . Cartan’s formula for the Lie derivative of exterior forms states that
LX = diX + iX d, where X ∈ X(M), i.e., for any p-form α ∈ Ωp(M), p > 0, we have LX α = d(iX α)+ i(dα),
where d : Ωp(M)→ Ωp+1(M) is the exterior derivative (defined in coordinates by (dα)µ1···µp+1 = ∂µ1αµ2···µp+1 )
and iX : Ωp(M)→ Ωp−1(M) is the insertion operation, defined in coordinates by (iX α)µ2···µp = X µ1αµ1µ2···µp .
Since ω ∈Ωn(M) we must have dω = 0, so that Cartan’s formula gives LX ω = d(iX ω), and hence, with the first
equation in this footnote, ω ∇ ·X = d(iX ω). The geometric version of Stokes’s Theorem states that

∫
M dα =

∫
∂M α ,

for any α ∈Ωn(M), so that
∫

M ω ∇ ·X =
∫

∂M iX ω . If M has no boundary, this gives (4.18).
67Answer. Since the first term in (2.13) cancels the last if j = k, we have Γ

j
i j =

1
2 g jk∂ig jk. Diagonalizing the

symmetric invertible matrix (g jk), yielding nonzero eigenvalues (λ1, . . . ,λn) and realizing that (g jk) is its inverse

gives g jk∂ig jk =
∂iλ1
λ1

+ · · ·+ ∂iλn
λn

, But also 2 ∂i
√

det(g)√
det(g)

= g−1∂ig = ∂i(λ1···λn)
λ1···λn

= ∂iλ1
λ1

+ · · ·+ ∂iλn
λn

.
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4.2 Ricci Flow as a parabolic PDE
In contrast to the derived equations (4.1) - (4.3) for the curvature tensors, the original Ricci
Flow equation (1.1) for the metric itself looks quite opaque. We will now show that in suitable
coordinates (1.1) is a mildly nonlinear (“quasilinear”) version of the heat equation; later, this
will also be the key to the proof of (short-time) existence and uniqueness of its solutions.68

The simplest approach is to introduce harmonic ccordinates xi, which by definition satisfy

∆gxi = 0, (4.23)

where ∆g = gkl∇k∇l as before, and the index i is not treated as a vector index: the xi are seen as
n functions of given coordinates (y1, . . . ,yn), in terms of which the metric is given. Since

∆g f = gkl
∇k∇l f = gkl(∂k∂l−Γ

j
kl∂ j) f ≡ (∆−Γ

j
∂ j) f , (4.24)

for any function f ∈C∞(M), or locally f ∈C∞(U) on a chart domain U ⊂M, where

∆ = gkl
∂k∂l; (4.25)

Γ
j = gkl

Γ
j
kl, (4.26)

eq. (4.23) is a nonlinear elliptic PDE for the n functions xi. For this, local existence and unique-
ness can be proved,69 subject to initial conditions such as xi(p) = 0 and ∂xi/∂y j(p) = δ i

j for
some p ∈U , where U ⊂M is the patch on which the original y-coordinates are defined. Having
switched to harmonic coordinates, we of course have ∂ jxi = δ i

j, so that (4.24) reads

∆gxi =−Γ
i, (4.27)

and (4.23) is therefore equivalent to the condition

Γ
i = 0. (4.28)

The point of using harmonic ccordinates is that in arbitrary coordinates one has (exercise)

−2Ri j = ∆gg−gik∂ jΓ
k−g jk∂iΓ

k +O(g,∂g), (4.29)

where the remainder O(g,∂g) contains only first or no derivatives of the metric g; note that
(4.10) has 24 terms! The right-hand side starts like a heat equation, but the next two terms,
which also contain second-order derivatives of the metric, ruin its parabolic nature. However,
in view of (4.28), in harmonic ccordinates the Ricci Flow equation (1.1) reads

∂tgi j = ∆gi j +O′(g,∂g), (4.30)

where again the remainder only contains derivatives of lower order than two; it differs from
O(g,∂g) in (4.29) by ∆gg−∆g, which contains no second-order derivatives.

68What we are now going to explain is called the DeTurck trick in the literature, after DeTurck (1983). This
method originates in the work of Y. Choquet-Bruhat on the initial value problem in General Relativity (GR), which
in terms was motivated by harmonic maps in Riemannian geometry, see e.g. Jost (2002), Chapter 8. Despite a clear
formal analogy, the situation in GR is quite different, however: applying a diffeomeorphism that fixes the initial
data to a solution of the Einstein equations gives another solution, which is therefore underdetermined, and hence
the Choquet-Bruhat trick picks a convenient solution within its diffeomorphism class. For Ricci Flow, the DeTurck
trick maps a solution to a convenient non solution, which has to be transformed back so as to find the solution.

69See DeTurck & Kazdan (1981), which relies on standard elliptic regularity theorems.
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Our gain is that, unlike (1.1), eq. (4.30) is a quasilinear second-order parabolic PDE:

• It is quasilinear because the highest (in this case, second) order derivates of the unknown
(i.e. gi j) occur linearly (but don’t be fooled: even the truncated equation is highly nonlin-
ear, since the coefficients gkl in ∆0 = gkl∂k∂l contain gi j);

• It is second order because the highest derivatives are order two;

• It is parabolic because it takes the form

∂tu = akl(x, t,u,∂u)∂k∂lu+O(u,∂u), (4.31)

where for any fixed v (in the class of functions where one looks for solutions) one has

a(t,x,v,∂v)≥ λ ·1n, (4.32)

for some λ > 0, where a = (akl) is seen as an n×n matrix and 1n is the n×n unit matrix.

This is very good, and if we can solve it, the metric in arbitrary coordinates is obtained by
undoing the transformation from these coordinates to harmonic coordinates. The transformation
to harmonic coordinates is time-dependent, as is its undoing, since it is done with respect to the
metric g(t) defining ∆g in (4.23). This is no problem, but it is sometimes problematic that the
method is restricted to a single coordinate patch, with no easy transition to other patches (this
is because of the ugly property that the i in xi is not treated as a vector index, like the i in Γi).

To remedy this, one may start from a fixed background metric ĝ on M, and replace (4.28) by

Γ̃
i ≡ gkl

Γ̃
i
jk = 0, (Γ̃i

jk = Γ
i
kl− Γ̂

i
kl), (4.33)

where Γ̂i
kl are the Christoffel symbols for the metric ĝ. The crucial difference compared to (4.27)

- (4.28) is that the Γ̃i
jk are the components of a tensor (cf. §4.1), so that (4.33) is coordinate-

independent. It is, therefore, not a condition on the coordinates but a condition on the metric
(called a gauge in the physics literature).70 Without any conditions, eq. (4.30) is replaced by

−2Ri j = ∆gg−gik∂ jΓ̃
k−g jk∂iΓ̃

k + Õ(g,∂g)

= ∆gg−∇iΓ̃ j−∇ jΓ̃i + Õ′(g,∂g), (4.34)

where Γ̃i = gi jΓ̃
j (recall that Γ̃ is a vector). This follows from (4.29), since ∂ jΓ̃

k and ∂iΓ̃
k in the

first line involve second derivatives of ĝ but not of g, and the terms ∇iΓ̃ j and ∇ jΓ̃i in the second
line (to be used shortly) differ from those just mentioned in the first line by first derivatives of g
only. Therefore, for metrics g satisfying (4.33), the Ricci Flow equation (1.1) becomes

∂tg = ∆gg+ Õ′(g,∂g), (4.35)

with g(0) = g0. Of course, as in (4.30), one may also replace the covariant Laplacian ∆g by the
coordinate Laplacian ∆, since the two differ by first derivatives of the metric, which enter the
O(g,∂g) terms. Either way, one again obtains a quasilinear second-order parabolic PDE.

Compared to the original use of harmonic coordinates, coordinate dependence has now been
traded for background metric (i.e. ĝ) dependence; if in the second approach one makes a choice
of coordinates and of ĝ such that ĝ is the flat (Euclidean) metric, the first approach is recovered.

70A gauge condition selects a unique metric g from the set of metrics ψ∗g, where ψ ranges among all diffeo-
morphisms of M. Cf. Choquet-Bruhat (2009), §VI.7.4.
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To complete this coordinate-free approach, we proceed to show how a metric g that solves
(4.35) can be transformed into a metric g that solves (1.1) with the same initial condition.71

To this end, let g(t) solve (4.35) and define g(t) by

g(t) = ψ
∗
t g(t), (4.36)

where ψt is a time-dependent diffeomorphism to be constructed in such a way that g(t) solves
(1.1), with the same initial condition. First, eq. (4.36) implies, using some differential geometry,

∂tgi j(t) = ψ
∗
t (∂tgi j(t)+Lξ (t)gi j(t)) = ψ

∗
t (∂tgi j(t)+∇iξ j +∇ jξi), (4.37)

where ∇ is the Levi-Civita connection for the metric g(t), and Lξ (t) is the Lie derivative with
respect to the time-dependent vector field

ξ (t) = dψt/dt, (4.38)

again to be chosen so that g(t) solves (1.1), which we rewrite in terms of g(t) via (4.36). Thus

∂tg(t) =−2Ric(g(t)) =−2Ric(ψ∗t g) =−2ψ
∗
t Ric(g)≡−2ψ

∗
t Ric. (4.39)

Comparing (4.37) and (4.39), we see that g(t) solves (1.1) iff the metric g(t) solves

∂tgi j =−2Ri j−∇iξ j−∇ jξi. (4.40)

To relate this to (4.35), we use the identity (4.34) for g instead of g, so that Ri j = Ric(g)i j is
replaced by Ri j = Ric(g)i j and Γ̃i is replaced by Γ̃′i = Γ

i− Γ̂i. Thus (4.34) rewrites (4.40) as

∂tgi j = ∆ggi j−∇i(Γ̃
′
j +ξ j)−∇ j(Γ̃

′
i +ξi)+ Õ′(g,∂g), (4.41)

Clearly, eqs. (4.35) and (4.41) coincide (as they must for this whole approach to make sense) iff

ξi =−Γ̃
′
i, (4.42)

from which ψt is determined by solving (4.38) with initial condition ψ0 = idM. Thus the Ricci
Flow g(t) may be found, in principle, by first solving (4.35) and then following the above steps.

The point is not to carry out any of this in practice; it is rather that the quasilinear second-
order parabolic PDE (4.35) is of a type for which short-time existence and uniqueness of the
solution are known,72 whereas (1.1) is a weakly parabolic PDE, for which such results were,
initially, not available.73 In conclusion, short-time existence and uniqueness of the solution
of (1.1) now follow either locally from the corresponding results in harmonic coordinates, or
globally from the same results for g(t), from which g(t) can be constructed by (4.36).

71The subsequent argument is taken from Topping (2006), §5.2 and Brendle (2010), Chapter 2. An alternative
way to complete the argument is to show that any metric can be brought into a metric satisfying the gauge condition
(4.33) through a suitable coordinate transformation. This is done through the introduction of generalized harmonic
coordinates, which by definition satisfy ∆gxi = gklΓ̂i

jk∂kx j∂lxk. The relationship between these different ways of
completing the argument lies in the fact that a diffeomorphism may at least locally be described as a change of
coordinates: if (U,ϕ) is a chart, consisting of open set U ⊂M and coordinates ϕ :→ Rn, and ψ : U →U is a local
diffeomorphism, then (U, ϕ̃ = ϕ ◦ψ) is a new chart and hence ϕ̃ :→Rn are new coordinates on U . And vice versa.

72Though there is still at least a pedagogical gap in the literature, which we shall try to close later in these notes.
73Hence Hamilton’s (1982)’s proof of this without DeTurck’s trick was heroic, but very complicated.
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4.3 Normalized Ricci Flow
We now show that existence and uniqueness results for Ricci Flow transfer to normalized Ricci
Flow, defined by (4.22). As in the literature we write r or r(g) for 〈R(g)〉, so that (4.22) reads

∂tgi j =
2
n

r(g)gi j−2Ri j, (4.43)

or, in d = 2, as already stated in (1.21) in connection with Yamabe flow,

∂tgi j = (r(g)−R(g)) ·gi j. (4.44)

We have already mentioned that, as an immediate consequence of (4.4) - (4.6):

Proposition 4.2 Normalized Ricci Flow preserves volume (evolving under Ricci Flow).

Another, even more immediate fact is that:

Proposition 4.3 The stationary points of normalized Ricci Flow are Einstein metrics.74

Indeed, one obtains λ = r(g)/n in (1.13). Yet another perspective on (4.43) is given by:

Proposition 4.4 Assume M compact. For any t ∈ [0,T ] for which Ricci Flow exists, define

C(t) =
(

Vol(M)(0)
Vol(M)(t)

)2/n

; (4.45)

τ(t) =
∫ t

0
dsC(s), (4.46)

so that dτ/dt =C(t). Then the rescaled and reparametrized metric

ĝ(τ) =C(t(τ))g(t(τ)) (4.47)

satisfies normalized Ricci Flow (in τ) iff g(t) satisfies Ricci Flow (in t).

Proof. We write g̃(t) =C(t)g(t), so that ĝ(τ) = g̃(t(τ)). The key step is the computation

dC(t)
dt

=
2
n

r(g(t))C(t) =
2
n

r(g̃(t))C(t)2, (4.48)

which follows from (4.4) - (4.6) and the fact that under x-invariant conformal rescalings of the
metric the scalar curvature scales as R(Cg) =C−1R(g).75 In particular, R(g̃) =C−1R(g). Then:

dg̃(t)
dt

=
d
dt
(C(t)g(t)) =

2
n

r(g̃(t))C(t)2g(t)+C(t)
dg(t)

dt

=C(t)
(

2
n

r(g̃(t))g̃(t)−2Ric(g̃(t))
)
, (4.49)

where in the last step we used (1.1) as well as the property Ric(g(t)) = Ric(g̃(t)). Finally,

dĝ(τ)
dτ

=
dt
dτ

dg̃(t)
dt

=
2
n

r(g̃(t))g̃(t)−2Ric(g̃(t)) =
2
n

r(ĝ(τ))ĝ(τ)−2Ric(ĝ(τ)). �

74This suggests that general relativity emerges from some diffusion process ruled by normalized Ricci Flow.
75Since Ric(Cg) = Ric(g), R = gi jRi j, and gi j is the inverse to gi j, the scalar curvature R picks up C−1.
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4.4 Ricci solitons
Ricci solitons form a special and historically important class of solutions of Ricci Flow. The
motivation comes from Einstein metrics as initial data, i.e., Ric(g) = λg, cf. (1.13), in which
case (1.1) can be solved immediately by (1.14). More generally, suppose that g = g(0) satisfies

Ric(g) = λg− 1
2LY g, (4.50)

where Y is some vector field on M. This time, the solution to (1.1) - (1.2) is

g(t) = (1−2λ t)ψ∗t g, (4.51)

where ψt is the flow of the time-dependent vector field

X(t) =
Y

1−2λ t
. (4.52)

This is even simpler in d = 2, where Ri j = 1
2gi jR, and hence (4.50) becomes

LY g = (2λ −R)g. (4.53)

An example of a metric satisfying this equation is in M = R2, with

g(x,y) =
dx2 +dy2

1+ x2 + y2 =
dr2 + r2dθ 2

1+ r2 , (4.54)

where x = r cosθ and y = r sinθ as usual. Simple computations (exercise) show that:76

Ric(g)(x,y) =
2g

1+ x2 + y2 = 2
dx2 +dy2

(1+ x2 + y2)2 ; R(g)(x,y) =
4

1+ x2 + y2 ; (4.55)

Y (x,y) =−2(x∂x + y∂y), Y (r,θ) =−2r∂r; (4.56)
LY g =−R(g)g, λ = 0, (4.57)

which of course is consistent with (2.44). Hence X(t) = Y is t-independent, and its flow ψt is
given by solving dψt(x,y)/dt = Y (ψt(x,y)) with initial condition ψ0(x,y) = (x,y). This gives

ψt(x,y) = (e−2tx,e−2ty); ψt(r,θ) = (e−2tr,θ). (4.58)

Finally, the Ricci Flow of the metric (4.54) is given by (4.51) with λ = 0, i.e. g(t) = ψ∗t g, viz.

g(t,x,y) =
dx2 +dy2

e4t + x2 + y2 g(t,r,θ) =
dr2 + r2dθ 2

e4t + r2 . (4.59)

This Ricci soliton is called Hamilton’s cigar. It exists for all t ∈ R; for t→−∞ it converges to
a singular metric that blows up at (0,0), and for t→ ∞ it becomes singular in being zero.

76One should use the following formulae for the Lie derivative of the metric w.r.t. Y and its pullback under ψ:

LY gi j = Y k
∂kgi j +(∂iY k)g jk +(∂ jXk)gik;

ψ
∗gi j(x) =

(
∂ψk

∂xi
∂ψ l

∂x j gkl

)
(ψ(x)).
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5 Maximum and minimum principles
The maximum and minimum principles originate in elliptic PDEs of the kind

Pu = 0; (5.1)

P = ai j(x)∂i∂ j +bi(x)∂ j, (5.2)

where u : Ω→ R, Ω ⊂ Rn is bounded, open, and connected, and the matrix a(x) is strictly
positive at each x ∈Ω.77 The weak max and min ‘principles’ (which are theorems) state that

Pu≥ 0 ⇒ max
x∈Ω

u(x)≤ max
x∈∂Ω

u(x); (5.3)

Pu≤ 0 ⇒ min
x∈∂Ω

u(x)≤min
x∈Ω

u(x). (5.4)

In particular, both the weak minimum and the maximum principles apply to the PDE (5.1), so
that any solution of (5.1) assumes both its minimum and its maximum on the boundary.78 We
only prove (5.3), from which (5.4) follows by changing u to −u and reverting inequalities.

We know from calculus that the condition for u to assume a local maximum at x0 ∈Ω is

∂iu(x0) = 0; (5.5)
∂i∂ ju(x0)≤ 0, (5.6)

where the second condition regards ∂i∂ ju(x0)≡ D as a matrix and the inequality means D≤ 0.
The proof would be easy if the assumption had been Pu > 0 instead of Pu ≥ 0, since, writing
A = a(x0), the former implies Tr(AD)> 0 at, contradicting the ellipticity assumption A > 0 and
the condition D≤ 0 for a local maximum. Hence (5.6) must fail and so u cannot have any local
maximum within Ω. Since it must take a maximum somewhere on the compact space Ω∪∂Ω,
(5.3) follows. However, our starting point is Pu≥ 0 rather than Pu > 0. Take ε > 0 and define

uε(x) = u(x)+ ε f (x), (5.7)

where f is a function such that P f (x)> 0 for all x ∈Ω.79 Therefore, if u satisfies Pu≥ 0, then
by linearity, Puε = Pu+ εP f > 0, and hence by the above argument, (5.3) holds for uε . Since
limε→0 uε(x) = u(x) pointwise and (5.3) is an inequality, it also holds for u = u0.
Similar principles apply to parabolic PDEs. We keep (5.2) with a > and modify (5.1) to

Pu = ∂tu. (5.8)

The parabolic boundary PΩ of Ω× (0,T ), where Ω⊂ Rn as above and T > 0, is defined by

PΩ = (∂Ω× [0,T ])∪ (Ω×{0}); (5.9)

here [0,T ] is the time interval on which we study solutions of (5.8). It lacks the part Ω×{T}
that would make it the boundary of Ω× (0,T ), but one has the following max-min ‘principle’:

77That is, a(x)≥ λ (x) ·1n for some λ (x)> 0, where c≥ 0 for some c ∈Mn(C) iff ci jviv j ≥ 0 for all v ∈ Rn.
78 Though we will not need this, it is worth stating that strong maximum or minimum principle states that we

have strict inequalities in (5.3) and (5.4) unless u is constant. Every PDE book discusses these things, for example
Renardy & Rogers (2004).

79For example, f (x) = exp(cx1) gives P f (x) = (c2a11(x)+ cb1(x))exp(cx1). Since a11(x) > 0 by ellipticity of
P, this choice of f indeed gives P f (x)> 0 for sufficiently large c > 0.
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Proposition 5.1 If ∂tu ≤ Pu (∂tu ≥ Pu), then u assumes its maximum (minimum) on PΩ.
Hence if ∂tu = Pu, then u assumes both its minimum and its maximum on PΩ.

If u is to have a maximum at (t0,x0) ∈Ω× (0,T ), then the spatial condition (5.6) of course still
stands, but because of the boundaries at t = 0 and t = T , in time the conditions are:

∂tu(0,x0)≤ 0; (5.10)
∂tu(t0,x0) = 0, ∀t0 ∈ (0,T ); (5.11)
∂tu(T,x0)≥ 0. (5.12)

If t0 ∈ (0,T ], then we obtain a contradiction: if ∂tu < Pu, then (5.6) yields ∂tu(t0,x0)< 0, which
excludes maxima inside Ω× (0,T ) as well as on Ω×{T}. If ∂tu ≤ Pu, a simple ε-argument
uses uε(t,x) = u(t,x)+ ε f (t), as in (5.7), this time with f (t,x) = exp(−t), so that

∂tuε = ∂tu− ε exp(−t)≤ Pu− ε exp(−t) = Puε − ε exp(−t)< Puε ,

hence ∂tuε <Puε , and one finishes the argument exactly as in the elliptic case. For the minimum
principle the inequalities in (5.6), (5.10), and (5.12) are reverted, but the argument is the same.

Without proof, we mention that for geometric PDEs this argument also works for manifolds,
including the case where Ω has no boundary (e.g. when it is compact, or rather closed). Then u
assumes both its minimum and its maximum on Ω×{0} and Proposition 5.1 comes down to

u(0,x)≤ u(t,x)≤ u(0,x), (5.13)

so that u(t,x) = u(0,x) for all t. Fortunately, this dull result applies neither to Ricci Flow itself
(where P = ∆g is such that the matrix ai j = gi j depends on the unknown u, viz. the gi j), nor to
its derived equations (see §4.1), which are more general nonlinear reaction-diffusion equations

∂tu = Pu+F(u), (5.14)

and/or associated inequalities

∂tu≥ Pu+F(u); (5.15)
∂tu≤ Pu+F(u). (5.16)

Our paradigmatic example will be the elliptic geometric differential operator

Pu = ∆g +g(X ,∇u), (5.17)

where X is some vector field on M (which is often zero); as will be clear from its proof, the
fundamental Theorem 5.2 below even applies to the case where u is some curvature invariant
(seen as a complicated function of the metric g, like the differential operator ∆g, which exceeds
the setting of Proposition 5.1, where P is independent of u). The simplest cases are

∂tR = ∆gR+R2 (n = 2); (5.18)

∂tR≥ ∆gR+
2
n

R2 (n≥ 2). (5.19)

Eq. (5.18) is eq. (4.1) in 2d, cf. (2.44), whereas (5.19) follows from (4.1) and the inequality

Ri jRi j = Ei jE i j +R2/n≥ R2/n, (5.20)

where Ei j is the Einstein tensor (2.41), so that Ri j = Ei j +gi jR/n, and Ei jE i j = Tr(E2)≥ 0.
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Theorem 5.2 • Minimum principle: Let α(t) solve ∂tα = F(α) with α(0) = α0. If (5.15)
holds with u(0,x)≥ α0 for all x ∈Ω, then u(t,x)≥ α(t) for all x ∈Ω and t ∈ [0,T ].

• Maximum principle: Let β (t) solve ∂tβ = F(β ) with β (0) = β0. If (5.16) holds with
u(0,x)≤ β0 for all x ∈Ω, then u(t,x)≤ β (t) for all x ∈Ω and t ∈ [0,T ].

• In particular, if u(t,x) solves (5.14), if α0 ≤ β0, and if u(0,x) for all x ∈Ω satisfies

α0 ≤ u(0,x)≤ β0, (5.21)

then the solution u(t, ·) satisfies, for all x ∈Ω and all t ∈ [0,T ],

α(t)≤ u(t,x)≤ β (t). (5.22)

Once again, here [0,T ] is some time interval where all solutions α , β , and u exist. Of course,
the earlier min and max principles follows from this by taking F = 0, for in that case, α(t) and
β (t) are constant and the boring eq. (5.13) is recovered. Before proving this theorem, let us
apply it to (5.19), from which the 2d case (5.18) will also be obvious. For (5.19) we evidently
obtain a minimum principle. The function α(t) satisfies ∂tα = 2α2/n, and hence,

α(t) =
α0

1−2α0 t/n
. (5.23)

The minimum principle therefore gives

∀x∈MR(t,x)≥ α0 ⇒ ∀x∈MR(t,x)≥ α0

1−2α0 t/n
. (5.24)

In particular, if α0 > 0 (positive curvature), then R(t,x) will blow up at t = T , T ≤ n/2α0.
Proof of Theorem 5.2. We just prove the maximum principle, from which the minimum princi-
ple follows by reversing all inequalities. As in the easier cases above, we initially assume

∂tu < Pu+F(u), (5.25)

and later move from < to ≤ with an ε-argument. We claim that if also u(0,x) < β0 for all x,
then u(t,x) < β (t) for all x. Proof by contradiction: suppose there is x0 ∈ m and t0 ∈ (0,T ]
where u(t0,x0) = β (t0). We may assume that t0 is the earliest time where this is the case, so that
u(t,x)≤ β (t) for all t ∈ [0, t0], and for (small) h > 0 we have u(t0−h,x0)< β (t0−h). Hence

u(t0,x0)> u(t0−h,x0)−β (t0−h)+β (t0), (5.26)

in which the limit h→ 0 gives, on our reductio ad absurdum assumption u(t0,x0) = β (t0),

∂tu(t0,x0)≥ ∂tβ (t0) = F(β (t0)) = F(u(t0,x0)). (5.27)

We are now back to the simpler cases treated earlier: at a maximum we have (5.5) - (5.6), so that
Pu(t0,x0) ≤ 0, from which (5.25) leads to ∂tu(t0,x0) < F(u(t0,x0)), which contradicts (5.27).
We leave the straightforward ε-argument that finishes the proof as an exercise. �

Let us give the simplest application of the minimum principle to (normalized) Ricci Flow that
is actually used. In d = 2 (and M compact) we have (5.18) under Ricci Flow, and

∂tR = ∆gR+R(R− r) (5.28)
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under normalized Ricci Flow. Note in d = 2, by the Gauss–Bonnet Theorem (which makes∫
M R constant and equal to the topological invariant 4πχ) and the time-independence of Vol(M)

under Ricci Flow in any dimension (exercise) the average scalar curvature r(g) is constant (in
time) and hence equal to its initial value where Vol(M) is computed from g(0), i.e.,

r =
4πχ

Vol(M)
. (5.29)

The Uniformization Theorem (version 2, Theorem 1.2) therefore follows if we can prove that:80

1. The solution g(t) of (5.28) exists for all t and has a limit as t→ ∞;

2. The curvature scalar R(x, t) becomes constant in this limit (and converges to r).

This program is relatively easy to carry out for χ < 0 and hence r < 0, in which case the bound

|R(x, t)− r| ≤Cert (5.30)

immediately gives the result.81 This bound (which is true for any χ) consists of two parts,

R(x, t)≤ r+Cert ; R(x, t)≥ r−Cert , (5.31)

where C > 0, of which the last one, which for r < 0 takes the simpler form

R(x, t)≥−Cert , (5.32)

will now be proved. By (5.28) and the obvious property ∆gr = 0, the quantity ρ = R−r satisfies

∂tρ = ∆gρ +ρ
2 + rρ ≥ ∆gρ + rρ, (5.33)

so that the minimum principle can be applied. Thus we solve ∂tα(t) = rα(t) by

α(t) = α0 exp(rt), (5.34)

and just note that because M is compact, we have ρ(0) ≥ −C for some C > 0. The minimum
principle then immediately gives (5.32). Alas, the first bound in (5.31) is far more difficult.82

Finally, Theorem 5.2 can be extended to tensorial quantities, for which Hamilton proved:83

Theorem 5.3 Let u be a tensor satisfying (5.14), where u(t,x)∈Vx = (T ∗x M)⊗k⊗(TxM)⊗l , and
suppose Vx ∼=V canonically. Let the V -valued function v(t) solve ∂tv = F(v), and let K ⊂V be
convex. If u(0,x)∈K for all x ∈M, then u(t,x)∈K(t) for all x, where K(t) = {v(t) | v(0)∈K}.

Theorem 5.2 is then the special case where V = R and K = [α0,β0] is an interval. This general
result can often be avoided, since estimates for the curvature tensors can usually be derived
from estimates for associated scalars, such as R, Ri jRi j, or Ri jklRi jkl , etc., which in turn give
information about the underlying metric. However, it will be useful in the next chapter.

80In d = 2 any solution g(t) to (5.28) is conformal to g(0). This follows from the fact that the conformal Ansatz
(1.25) with p = 3 leads to a solution to (5.28), which, by uniqueness, must then be the solution.

81This relies on the nontrivial fact that if R(x, t) is uniformly bounded, then the solution g(t) exists for all t.
82This is true even for χ < 0, but the case χ > 0 is exceedingly difficult. See Chow & Knopf (2004), Chapter 5.
83We just state this for the case that T M and hence all other tensor bundles are trivial, as is the case in d = 3. For

good discussions see Brendle (2010), Chapter 5, Topping (2006), Chapter 9, Bennett & Chow (2004), Chapter 4.
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6 Before Perelman: Hamilton’s Theorem
Historically, an important step that gave confidence in the idea that Ricci Flow could lie at the
basis of a proof of the Poincaré and Geometrization Conjectures is Hamilton’s Theorem:84

Theorem 6.1 Let M be a compact 3-manifold that admits a Riemannian metric g for which
Ric(g)> 0. Then M also admits a metric with positive constant curvature.

Here the assumption Ric(g)> 0, called strictly positive Ricci curvature, means that there exists
ε > 0 for which Ric ≥ εg, which in turns means that for each x ∈ M and Xx ∈ TxM we have
Ricx(Xx,Xx)≥ εgx(Xx,Xx). If M is also simply connected, then M ∼= S3 by Theorem 3.10 (since
the other two cases are not compact), so the Poincaré Conjecture follows if we can prove that
any compact simply connected 3-manifold admits a Riemannian metric g for which Ric(g)> 0
(which Hamilton was unable to prove; it followed two decades later from the work of Perelman).

Unfortunately, it is beyond the scope of these notes to prove Theorem 6.1, but we will play
around it in a way that hopefully gives some insight into the Ricci Flow program.

6.1 Ricci Flow of SU(2)-invariant metrics on S3

Starting with M = S3 is somewhat circular in so far as applications of Ricci Flow to the Poincaré
Conjecture are concerned, especially if we start with a metric that already has a high degree of
symmetry, but it is instructive all the same. Our goal is to show that under normalized Ricci
Flow any left-invariant metric on S3 converges to the “round” (constant curvature) metric.85

The round metric on S3 has a group-theoretic description, which is explained in §3.4 and is
based on the identification (3.64) of S3 with the Lie group SU(2), which is given in detail by
(C.1). In sum, the round metric on G = SU(2) comes from (minus) the Cartan–Killing B form
of g ∼= TeG, which is translated to all of G by the left-action of G on itself, and which is also
right-invariant because B is Ad(G)-invariant. Moreover, it is the unique G×G-invariant metric
on G (up to rescaling by a positive constant, as usual). In the case at hand, we have g∼= R3 and
under this isomorphism −B is just the usual inner product on R3. However, any inner product
〈 , 〉 on g gives a left-invariant (but typically not right-invariant) metric on G by left translation
(i.e. gγ = L∗

γ−1ge, where Lγδ = γδ ), and it is such a more general metric on S3 that we start with.

Theorem 6.2 Under normalized Ricci Flow any left-invariant metric on SU(2) converges to a
(positive) multiple of the round metric as t→∞, and hence to a metric with constant curvature.

All computations are based on the following lemma (Milnor, 1976), which applies to su(2):

Lemma 6.3 If g is a 3d Lie algebra such that Tr(ad(X)) = 0 for each X ∈ g (that is, if g is
unimodular), then g has a basis (e1,e2,e3) with respect to which the Lie bracket is given by

[e1,e2] = λ3e3; [e2,e3] = λ1e1; [e3,e1] = λ2e2 (λ1,λ2,λ3 ∈ R), (6.1)

and this basis may be chosen to be orthonormal with respect to any given inner product on g.

84This theorem is due to Hamilton (1982), but his proof was simplified later. See Chow & Knopf (2004, Chapter
6), Brendle (2010, Chapters 5 and 6), and Sheridan (2006, Chapter 7) for complete and up-to-date treatments.

85See also Isenberg & Jackson (1992), Chow & Knopf (2004, Chapter 1), and Sheridan (2006, Chapter 7).
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For later use, we note that the case where G = SU(2) and λ1 = λ2 = λ3 = λ > 0 corresponds
to the round metric on S3 (up to rescaling; for simplicity we assume λ = 1, and otherwise one
rescales the basis vectors). For in that case, the relations (6.1) reproduce the Lie algebra of
SO(3), see (B.7) - (B.8). Using the basis (e1,e2,e3) to identify g= su(2) = so(3) with R3, the
adjoint action of SO(3) on its Lie algebra so(3) is the defining action on R3 and the given inner
product on this Lie algebra is the standard one on R3. This is invariant under the defining =
adjoint action of SO(3), and hence, by the general theory of §3.4, one obtains a left- and right
invariant metric on SU(2)∼= S3, and this metric is unique (up to scaling) by Proposition 3.7.
Proof. The proof is based on the isomorphism ∧2g ∼= g in d = 3, which turns the Lie bracket
[ , ] : ∧2g→ g into a map Λ : g→ g. In some initial basis (T1,T2,T3) of g one may take

[T2,T3] = Λ(T1); [T3,T1] = Λ(T2); [T1,T2] = Λ(T3). (6.2)

If the structure constants of g in the given basis are defined by [Ta,Tb] =Cc
abTc, then

Λ =

 C1
23 C1

31 C1
12

C2
23 C2

31 C2
12

C3
23 C3

31 C3
12

 , (6.3)

We now impose the unimodularity condition Tr(ad(X)) = 0 for each X ∈ g, with ad(Ta)
c
b =Cc

ab
in the given basis. This gives C1

a1 +C2
a2 +C3

a3 = 0 for a = 1,2,3, hence

C2
12 =−C3

13 =C3
31; C1

21 =−C3
23 =C3

32; C1
31 =−C2

23 =C2
32, (6.4)

which gives ΛT = Λ. Thus Λ is symmetric and hence diagonalizable. If (e1,e2,e3) is a basis in
which Λ= diag(λ1,λ2,λ3), then (6.1) follows at once. Finally, if the initial basis (T1,T2,T3) was
orthogonal with respect to the given inner product, then, by the spectral theorem for hermitian
matrices (which in this case are real, and hence symmetric), so is the final basis. �

The basis (e1,e2,e3) of g = TeG defines a basis of TxG at each x ∈ G by left translation on
G, and, by definition of a left-invariant metric, remains orthonormal. This means that, up to
isometry, the eigenvalues (λ1,λ2,λ3) contain all information about the metric and describe it.

Proposition 6.4 Let g(t) solve (normalized) Ricci Flow with initial condition g(0) = g. Then
any isometry of g is also an isometry of g(t), i.e. the isometry group of g(t) contains that of g.86

Proof. For Ricci Flow this follows from the covariance property ψ∗Ric(g) = Ric(ψ∗(g)) under
diffeomorphisms ψ , which implies that if g(t) solves (1.1) with initial condition g, then ψ∗g(t)
solves (1.1) with initial condition ψ∗g. Therefore, if ψ is an isometry of g, i.e. ψ∗g = g, then
both ψ∗g(t) and g(t) solve (1.1) with initial condition g. But since we have shown that solutions
to (1.1) - (1.2) are unique, we must have ψ∗g(t) = g(t). The normalized case is an exercise. �

As a significant application of this proposition (but an intermezzo in our story), we state:

Corollary 6.5 A bi-invariant (i.e. left- and right-invariant) Riemannian metric on a Lie group
is an Einstein metric (so in particular, in d = 3 it has constant curvature by Proposition 3.3).

The proof is an exercise. This result applies, for example, to the round metric on S3.

86Under boundedness assumptions on the curvature, the isometry groups of g and g(t) even coincide. See B.
Kotschwar, Backwards uniqueness for the Ricci flow, IMRN 21, 4064–4097 (2010) and arXiv:0906.4920.
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Returning to our main story, Proposition 6.4 implies that if g is a left-invariant metric on g, then
so is g(t), and hence we can still use the basis (e1,e2,e3) with associated eigenvalues (λ1,λ2λ3).
Because of the time-dependence of g, both the ea and the λa now become time-dependent as
well. It will simplify the computations if we replace (λ1,λ2,λ3) by (A,B,C) via

A = λ
2
1 λ2λ3; B = λ1λ

2
2 λ3; C = λ1λ2λ

2
3 ; (6.5)

λ1 =
A√
ABC

; λ2 =
B√
ABC

; λ3 =
C√
ABC

, (6.6)

where for SU(2) we assume all λ1,λ2,λ3 > 0 (see the table at the end of Appendix B), and
hence A,B,C > 0 also.87 In terms of the variables (A,B,C), the Lie brackets (6.1) become

[e1,e2] =
C√
ABC

e3; [e2,e3] =
A√
ABC

e1; [e3,e1] =
B√
ABC

e2, (6.7)

which of course remains time-dependent. To remove this, we define a new basis ( f1, f2, f3) by

f1 =
√

Ae1; f2 =
√

Be2; f3 =
√

Ce3, (6.8)

whose Lie bracket is time-independent, and time-dependence is transferred to the metric, viz.

[ f1, f2] = f3; [ f2, f3] = f1; [ f3, f1] = f2; (6.9)
g( f1, f1) = A; g( f2, f2) = B; g( f3, f3) =C; g( fa, fb) = 0 (a 6= b). (6.10)

Lemma 6.6 The Ricci tensor is diagonal in the orthonormal basis ( f1, f2, f3), with entries

R11 =
A2− (B−C)2

2BC
; R22 =

B2− (A−C)2

2AC
; R33 =

C2− (A−B)2

2AB
. (6.11)

Proof. This is a lengthy but straightforward computation, in which first ∇ fa fb is computed by
finding its coefficients g( fc,∇ fa fb) in the ( f1, f2, f3) basis from the Lie brackets in (6.9) and the
Koszul formula (2.12), in which just the commutators survive, so that we have

g(∇ fa fb, fc) =− 1
2(g( fa, [ fb, fc])−g([ fa, fb], fc)−g( fb, [ fc, fa])). (6.12)

Using (6.9), this makes g(∇ fa fb, fc) nonzero iff a,b,c are all different, in which case ∇ fa fb is
therefore proportional to fc. Using this fact in (2.17) easily gives the relations

R3132 = R2321 = R1312 = 0, (6.13)

where Rabcd = Riem( fa, fb, fc, fd), plus similar results for the components of the Riemann ten-
sor obtained by permutations, using (2.25). For the Ricci tensor (2.38) one then finds

R12 = R1
112 +R2

122 +R3
132 = A−1R1112 +B−1R2122 +C−1R3132 = 0, (6.14)

since gi j = δ i j in the e-basis and the only nontrivial part R3132 vanishes because of (6.13).
Similarly, R23 = 0 and R13 = 0. Eq. (6.11) follows from a simple computation (exercise). �

For the curvature scalar we have R = A−1R11 +B−1R22 +C−1R33, so that (6.11) gives

R =
− 1

2(A
2 +B2 +C2)+AB+AC+BC

ABC
. (6.15)

87For the other case one obviously needs to introduce some signs in (6.5) - (6.6), since always A,B,C > 0.
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Since R is independent of x, it equals r(g). Eq. (4.22) then takes the form, for a = 1,2,3,

∂tg( fa, fa) =−2(Ric( fa, fa)− 1
3g( fa, fa)R), (6.16)

where ∂tg( f1, f1) = dA/dt, ∂tg( f2, f2) = dB/dt, and ∂tg( f3, f3) = dC/dt, so that we obtain

dA
dt

= 2
3

(
−2A2 +(B−C)2 +A(B+C)

BC

)
; (6.17)

dB
dt

= 2
3

(
−2B2 +(A−C)2 +B(A+C)

AC

)
; (6.18)

dC
dt

= 2
3

(
−2C2 +(A−B)2 +C(A+B)

AB

)
, (6.19)

where A = A(t), B = B(t), C = C(t). It follows from these equations that d(ABC)/dt = 0,
which reflects the invariance of Vol(M) under normalized Ricci Flow.88 We may therefore set
ABC = 1. Since the round metric has λ1 = λ2 = λ3 = 1, our aim is to show that λa−λb→ 0,
i.e., |A−B| → 0, |B−C| → 0, and |A−C| → 0. To this end we rewrite (6.17) - (6.19) as

d
dt
(A−B) =− 2

3(A−B) · (2B2 +2AB+(A−C)(A+B)+(A2−C2)); (6.20)

d
dt
(B−C) =− 2

3(B−C) · (2A2 +2AC+(B−C)(B+A)+(B2−C2)); (6.21)

d
dt
(A−C) =− 2

3(A−C) · (2C2 +2AC+(A−B)(A+C)+(A2−B2)); (6.22)

These equations are symmetric in A, B, and C, and so without loss of generality we may assume
that A(0)≥B(0)≥C(0)> 0. Then (6.20) shows that A(t)≥B(t) for all t (for which the solution
is defined), for if A(t0) = B(t0) at some t0 ≥ 0, then all derivatives of A(t)−B(t) vanish at t0
and hence A(t) = B(t) for all t. Similarly, eq. (6.21) gives B(t)≥C(t). If we rewrite (6.19) as

d
dt

C = 2
3C · (C(A+B−2C)+(A−B)2), (6.23)

the previous two inequalities give (C(A+B−2C)+(A−B)2)≥ 0 at any t, whence dC/dt ≥ 0.
Hence C(t)≥C(0)> 0. Knowing, then, that A(t)≥ B(t)≥C(t)> 0 , in (6.22) we may estimate

(2C2 +2AC+(A−B)(A+C)+(A2−B2))≥ 2C(t)2 ≥ 2C(0)2 > 0, (6.24)

so that (6.22) gives d(A−C)/dt ≤− 4
3C(0)2(A−C), and hence

|A(t)−C(t)| ≤ |A(0)−C(0)| · e−
4
3C(0)2t . (6.25)

Since B(t) lies between A(t) and C(t), or equally well using (6.21) and (6.22), eq. (6.25) gives

lim
t→∞
|A(t)−C(t)|= lim

t→∞
|B(t)−C(t)|= lim

t→∞
|A(t)−B(t)|= 0, (6.26)

provided the solution exist for all t. But this is the case, for it follows from the constancy of
A(t)B(t)C(t) that the solutions A(t), B(t), and C(t) are bounded, so that (6.26) implies that A(t),
B(t), and C(t) must each converge to the same positive constant. Returning to (6.6), this means
that λa(t)→ λ for a = 1,2,3, where λ > 0. As explained after Lemma 6.3, this means that
normalized Ricci Flow converges to the round (= constant curvature) metric on S3 (this is true
even if the initial metric does not satisfy the assumptions of Hamilton’s Theorem 6.1). �

88This can also be shown directly, since in suitable coordinates adapted to the frame ( f1, f2, f3), the quantity
ABC is the determinant of the metric, which gives the volume of M.
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6.2 Ricci Flow on general compact 3-manifolds
In general, there is no group action to transport some suitable basis of TxM to other points.
Nonetheless, through a trick it is still possible to mimic some of the analysis in the previous
section.89 First, since since the Ricci tensor, seen, for each x ∈M, as a map R̃icx : TxM→ TxM
as in (2.45), is symmetric with respect to the inner product on TxM provided by the metric, at
t = 0 one can find a frame (ea(x)) that diagonalizes both gx and R̃icx. Find such a frame, where
in coordinates one has ea(x) = ei

a(x)∂i. Next, we time-evolve the frame by solving

d
dt

ei
a(x, t) = Ri

j(x, t)e
j
a(x, t); ei

a(0,x) = ei
a(x), (6.27)

where Ri
j(x, t) = gik(x, t)R jk(x, t) and R jk(x, t) and gik(x, t) evolve under Ricci Flow gi j(x, t). It

is easy to show (exercise) that the frame (ea(x, t)) is still orthonormal for g(x, t), that is,

g(t)x(ea(x, t),eb(x, t)) = δab. (6.28)

Furthermore, in d = 3 the evolution equation (4.2) for Ri j under Ricci Flow closes into

∂tRi j = ∆gRi j +3RRi j−6Rk
i Rk j +(2RklRkl−R2)gi j, (6.29)

where Ri j = R(∂i,∂ j), to be distinguished from Rab = R(ea,eb). Moreover, if we define

Rab(x, t) = ei
a(x, t)e

j
b(x, t)Ri j(x, t), (6.30)

then (6.29) becomes

∂tRab = ∆gRab +3RRab−4Rc
aRcb +(2RcdRcd−R2)δab, (6.31)

where in fact Rc
a = Rac and Rcd = Rcd , since we work in an orthonormal frame. This equation

has the feature that if a 6= b, then the right-hand side only contains diagonal terms that multiply
off-diagonal terms, and hence if Rab = 0 at t = 0 for a 6= b, then it remains zero at any time.90

Hence we just have three coupled PDEs for the diagonal components R11, R22, and R33, namely

∂tR11 = ∆gR11 +R11(R22 +R33)+(R22−R33)
2; (6.32)

∂tR22 = ∆gR22 +R22(R11 +R33)+(R11−R33)
2; (6.33)

∂tR33 = ∆gR33 +R33(R11 +R22)+(R11−R22)
2. (6.34)

Since these equations are coupled, we now need the minimum-maximum principle in the gen-
eral form of Theorem 5.2, where in this case V = R3. This causes no special difficulties. In
principle on should now introduce functions (α1(t),α2(t),α3(t)) and (β1(t),β2(t),β3(t)), but
is turns out to be more convenient to work with the variables

ρ1 = R22 +R33−R11, ρ2 = R11 +R33−R22, ρ3 = R11 +R22−R33; (6.35)
λ1 = α2 +α3−α1, λ2 = α1 +α3−α2, λ3 = α1 +α2−α3; (6.36)
α1 = 1

2(λ2 +λ3); α2 = 1
2(λ1 +λ3); α3 = 1

2(λ1 +λ2). (6.37)

89The following procedure is a special case of what is called Uhlenbeck’s trick in the Ricci Flow literature.
90This admittedly only shows that there is a solution with this feature, but uniqueness for given initial conditions

shows that the solution also has Rab(t) = 0 for a 6= b whenever this holds at t = 0.
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The ODEs for the minimum-maximum principle for the PDEs (6.32) - (6.34) are then given by

dtλ1 = λ
2
1 +λ2λ3; dtλ2 = λ

2
2 +λ1λ3; dtλ3 = λ

2
3 +λ1λ2, (6.38)

with dt = d/dt. These equations may be rewritten in the more useful form
d
dt
(λ1−λ2) = (λ1−λ2)(λ1 +λ2−λ3); (6.39)

d
dt
(λ2−λ3) = (λ2−λ3)(λ2 +λ3−λ1); (6.40)

d
dt
(λ1−λ3) = (λ1−λ3)(λ1 +λ3−λ2). (6.41)

So far, this analysis applies to any compact 3-manifold M. We now assume that M satisfies
the hypothesis of Theorem 6.1, in which case it makes sense, in applying the minimum or
maximum prinicple, to assume that λ1 ≥ λ2 ≥ λ3 > 0 for the initial metric g = g(0). Much as
in the previous section, one can now easily show that if λ1(0) ≥ λ2(0) ≥ λ3(0) > 0 to begin
with, then λ1(t) ≥ λ2(t) ≥ λ3(t) > 0 for all t where the solutions are defined (exercise). If we
then return to (6.38), we obtain dtλa ≥ λ 2

a for a = 1,2,3, from which it follows that each λa(t)
diverges in finite time, cf. the analysis leading from (5.19) to (5.24). However, normalized Ricci
Flow remains finite and converges to a metric with constant curvature. This is still very difficult
(20 pages) to prove, but one gets a feeling why this is true if one allows the following shortcut:91

Lemma 6.7 The projection of the flow (λ1(t),λ2(t),λ3(t)) onto the unit sphere S2 in R3 gives
a system of ODEs that is asymptotically equivalent to that for normalized Ricci Flow.

This means that we introduce new variables (x,y,z) by

x =
λ1√

λ 2
1 +λ 2

2 +λ 2
3

, y =
λ2√

λ 2
1 +λ 2

2 +λ 2
3

, z =
λ3√

λ 2
1 +λ 2

2 +λ 2
3

, (6.42)

which indeed lie on S2, and let them evolve via the λa(t). This gives the following flow on S2:
dx
dt

= x2 + yz− x(x3 + y3 + z3 +3xyz); (6.43)

dy
dt

= y2 + xz− y(x3 + y3 + z3 +3xyz); (6.44)

dz
dt

= z2 + xy− z(x3 + y3 + z3 +3xyz), (6.45)

which, on the notation f (x,y,x) = x(y2 + z2)+ y(x2 + z2)+ z(x2 + y2)+3xyz, is equivalent to
d
dt
(x− y) =−(x− y)(2z+ f (x,y,z)); (6.46)

d
dt
(x− z) =−(x− z)(2y+ f (x,y,z)); (6.47)

d
dt
(y− z) =−(y− z)(2x+ f (x,y,z)). (6.48)

Within the region where x ≥ y ≥ z > 0, this flow exists for all t and, by the same arguments
as in the previous section, converges to its fixed point (1,1,1)/

√
3. Using both the minimum

and the maximum principles, it follows that the components R11, R22, and R33 also converge to
the same constant value, which in turn implies that the underlying metric converges to a metric
with constant curvature. Given Lemma 6.7, this proves Theorem 6.1. �

91Unfortunately, as far as we can see this lemma can only be proved with hindsight from Theorem 6.1.
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7 Existence of solutions of quaslinear parabolic PDEs
In this chapter we sketch a proof of existence (for short times) and uniqueness of solutions
of PDEs of the kind we have studied so far, albeit just for a single variable.92 Thus we are
interested in second-order quaslinear parabolic PDEs equations of the type (5.14), with P given
by (5.2), but we allow the coefficients ai j in the second-order operator P to depend on both u
and its first derivatives ∂u, the vector field b may depend on u, and the function F may depend
on ∂u as well as on u; the key restriction is that the second-order terms ∂i∂ ju still occur linearly.
Indeed, this is the property that makes the equation quasilinear: the highest derivatives occur
linearly. It is this feature that makes linear methods available for the first step of the proof,
followed by a fixed-point argument (in Banach space) to deal with the nonlinear case.

7.1 Existence and uniqueness: linear case
Generalizing (5.2), we first consider linear elliptic operators taking the form

P = ai j(x, t)∂i∂ j +bi(x, t)∂ j + c(x, t), (7.1)

as well as at functions f (x, t), with associated parabolic PDE ∂tu = Pu+ f . We rewrite this as

u̇ = A(t)u+ f (t), (7.2)

where A(t) = P, but the point is to regard A(t) as a parametrized family of bounded linear maps

A(t) : V →V ∗, (7.3)

where t ∈ [0,T ] for some T > 0 (we will see that we can take T > 0 arbitrary), and V is some
Banach space such that f (t) ∈V ∗. For applications to (7.1) we will take

V = H1(M) ⇔ V ∗ = H−1(M), (7.4)

but in the general method the choice is not prescribed. The key assumptions on A(t) are:

1. The map t 7→ A(t) is continuous from [0,T ] to the space B(V,V ∗) of bounded linear maps
from V to V ∗ (with the norm topology, where ‖A‖B(V,V ∗)= sup{‖Av‖V ∗,v∈V,‖v‖V = 1}).

2. There is a constant C > 0 such that for any u ∈V one has a so-called coercivity estimate

−〈u,A(t)u〉 ≥C · ‖u‖2
V . (7.5)

It is a highly nontrivial fact, which we state without proof, that elliptic operators like (7.1)
satisfy this estimate,93 provided we choose (7.4) and take the coefficients ai j, bi, and c in (7.1)
to be sufficiently regular (e.g. smooth and bounded) so as to satisfy condition 1 above.

92The extension to the Ricci Flow equation (1.1), seems quite nontrivial, but is usually dealt with in the literature
by stating that DeTurck’s trick (see §4.2) reduces it to a standard situation. Dan Knopf, the co-author of the
fundamental textbook Chow & Knopf (2004), admitted in an email that this is indeed a weak point in the literature
on Ricci Flow. Our treatment is a mix of Renardy & Rogers (2004), §11.1, for the linear part, and Lieberman
(1998), Chapter VIII, for the non linear part, but in order to make these treatments compatible the functional-
analytic setting for Lieberman’s use of the Schauder Fixed Point Theorem, on which his proof is based, had to be
changed from Hölder spaces to Sobolev spaces, admittedly at the expense of an extra assumption, namely (7.14),
that makes the proof below less general than desirable (but sufficient for our purposes).

93This relies on the Gårding inequality, see Renardy & Rogers (2004), Example 11.5 in §11.1.3 and §9.2.3. One
may need to change A(t) to A(t)− c ·1H (and u(t) to u(t)exp(−ct)) to satisfy (7.5), e.g. for the Laplacian on Rn.
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As our last assumption, we assume V and V ∗ fit into a Gelfand triple (cf. Appendix D), viz.

V ⊂ H ⊂V ∗; (7.6)

for our choice (7.4) in the context of (7.1), this is the case for H = L2(M), cf. (D.19).

Theorem 7.1 On the assumptions just stated, for initial value u0 ∈H and f (t)∈ L2([0,T ],V ∗),
eq. (7.2) has a unique solution u that lies in L2([0,T ],V ), in H1([0,T ],V ∗), and in C([0,T ],H).

Proof. The proof starts from the following a priori estimate:94 any solution to (7.2) satisfies

‖u‖L2([0,T ],V ) ≤C2(‖ f‖L2([0,T ],V ∗)+‖u0‖H), (7.7)

where C2 > 0 depends on the family A(t) over [0,T ] but not on u. This follows by integrating
the PDE (7.2) from 0 to T and writing 〈u(t), u̇(t)〉= 1

2∂t‖u(t)‖2
H , which gives

1
2(‖u(T )‖

2
H−‖u0‖2

H)−
∫ T

0
dt 〈u(t),A(t)u(t)〉=

∫ T

0
dt 〈 f (t),u(t)〉, (7.8)

where both brackets denote the V -V ∗ pairing.95 Subsequently, estimate (we omit the t)

〈 f ,u〉 ≤ |〈 f ,u〉| ≤ ‖ f‖V ∗‖u‖V ≤ 1
2

(
ε‖u‖2

V +
1
ε
‖ f‖2

V ∗

)
, (7.9)

for any ε > 0, which follows from the inequality ε−1(a− εb)2 ≥ 0 for any ε > 0 and a,b ∈ R,
form which ab≤ 1

2(εb2 + ε−1a2). A smart choice of ε (exercise) then yields (7.7).
Since (7.2) is linear, this estimate immediately proves uniqueness of a solution, if any. It also

provides the basis of existence through what is called a Galerkin method,96 meaning that some
PDE is approximated by a finite number of ODEs, whose solution then converges to a solution
of the PDE. In the case at hand, this idea is executed as follows. Take some orthonormal basis
(en) of H that lies in V and, for any N < ∞, consider the system of N ODEs given by

〈en, u̇N〉H = 〈en,A(t)uN(t)〉H + 〈en, f (t)〉H , (n = 1, . . . ,N). (7.10)

This system can be solved for uN(t) ∈ PNH, where PN = ∑
N
n=1 |en〉〈en| is the projection on the

linear space of the first N basis vectors en, with initial condition uN(0) =PNu0. Then uN satisfies
(7.7), and since ‖PNu0‖ ≤ ‖u0‖, we have ‖uN‖L2([0,T ],V ) ≤ C3. Now a bounded sequence in a
Hilbert space has a weakly convergent subsequence, and so the sequence (uN) has a limit point
u ∈ H. It is an exercise to show that u = limN uN solves the original PDE (7.2) with initial
condition u0, upon which (7.7) shows both uniqueness (which was not clear from the previous
step) and the property u ∈ L2([0,T ],V ). Furthermore, since A(t) ∈ B(V,V ∗), the PDE (7.2)
shows that u̇∈ L2([0,T ],V ∗) and hence u∈H1([0,T ],V ∗). By Sobolev embedding for s= n= 1
and k = 0 (see Theorem D.1) the last point also gives u ∈C([0,T ],V ∗), from which the step to
u ∈C([0,T ],H) is unfortunately still quite difficult and technical (and will be omitted). �

Finally, under sharper assumptions on A(t) and f (t), improved regularity of u(t) in time follows
from the PDE (7.2) itself: if Ȧ(t) and ḟ (t) satisfy the same assumptions as A(t) and f (t), then
v = u̇ satisfies v̇ = Av+g with g = Ȧu+ ḟ , and hence u̇ = v ∈C([0,T ],H). If both A(t) and f (t)
are C∞, iterating this argument also makes u smooth in t. In cases like (7.1), also smoothness in
x can be achieved if A(t) and f (t) satisfy our assumptions for V = Hk(M) with arbitrary m ∈N.
This drives u into C∞([0,T ],C∞(M)) =C∞([0,T ]×M) and makes the solution classical.97

94A priori estimates are typically given before the existence of a solution has been proved.
95If u ∈ V , then also u ∈ H and u ∈ V ∗, but there is no ambiguity since 〈u,u〉 as given by the V -V ∗ pairing

coincides with 〈u,u〉H because the pairing is given through the inner product in H.
96For details in the context that follows see Renardy & Rogers (2004), §11.1.2 and Evans (2010), §7.1.2.
97This argument is given in detail by Evans (2010), §7.1.3, study it as an exercise!
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7.2 Existence for short times: quasilinear case
We now move to the nonlinear PDE ∂tu = Pu, where, as opposed to (7.1), we now have

P = ai j(x, t,u,∂u)∂i∂ j +bi(x, t,u)∂ j + c(x, t,u), (7.11)

and also f may depend on u and ∂u, as well as on x and t, as before.98 The idea of the existence
proof is to initially replace u in the coefficients ai j, bi, and c as well as in f (x, t,u,∂u) by an
arbitrary function v (in the class of functions where we search for solutions), so as to obtain
a linear PDE to which Theorem 7.1 applies. This gives existence and uniqueness of solutions
for the wrong equation, but a clever application of the Schauder fixed-point theorem (invoking
Rellich’s Theorem D.1 (d)) then gives the same result for (7.11). This theorem reads as follows:

Theorem 7.2 If K ⊂ B is a compact convex subset of a Banach space B and ϕ : K → K is
continuous, then ϕ has a fixed point.

This generalizes Brouwer’s fixed point theorem to certain infinite-dimensional spaces. In order
to apply it, we first agree to denote P in (7.11) by Pu, and likewise f by fu, so that our PDE is

∂tu = Puu+ fu. (7.12)

We label the version of P where its arguments u and ∂u are replaced by v and ∂v as Pv, and
likewise fv means f with u and ∂u replaced by v and ∂v. In particular, Pu = P and fu = f . Then

∂tw = Pvw+ fv (7.13)

is a linear version of (7.11), differing from the linearization of (7.11), which plays no role here.
We then need to find a Banach space B and a compact convex subset K ⊂ B such that the

map ϕ(v) = w, where w solves (7.13) with initial condition u0, continuously maps K to K (this
map is well defined by Theorem 7.1). If u is a fixed point of this map, then ∂tu = Puu and hence
u solves (7.12) with the right initial condition u0, since this is the same for (7.12) and (7.13).
We now assume that f has the following property: for each α > 0 there is C(α)> 0 such that:99

‖v‖L2([0,T ],V ) ≤ α ⇒ ‖ fv‖L2([0,T ],V ∗) ≤C(α)T. (7.14)

If this is the case, then our a priori estimate (7.7) gives, for solutions u of (7.13),

‖u‖L2([0,T ],V ) ≤C2(C(α)T +‖u0‖H). (7.15)

Now take α =C2(1+‖u0‖H) and T = 1/C(α). The assumption (7.14) then implies

‖v‖L2([0,T ],V ) ≤ α ⇒ ‖u‖L2([0,T ],V ) ≤ α. (7.16)

What is still lacking for the use of Theorem 7.2 is continuity of ϕ , which (since ϕ is nonlin-
ear) does not follow from (7.16) and should be proved on a case by case basis for each given
quasilinear elliptic operator P, and compactness of the closed ball in L2([0,T ],V ) with radius
α . However, taking V = H1(M) as before, at the expense of moving up the regularity assump-
tions on u0 and f by some arbitrary δ > 0 (in a sense that will be clear immediately), we can
perform the argument in the closed α-ball in Hδ ([0,T ],H1+δ (M)) but now taken in the norm
of L2([0,T ],H1(M)), in which, for any δ > 0, this ball is compact by Theorem D.1 (d).100

This gives existence of solutions; unlike in the linear case, uniqueness has to be proved
separately, for example from a minimum and maximum principle (exercise–tongue in cheek!).

98In view of this, we might as well omit the b and c terms in P, as they can be absorbed in this more general f .
99This is only known to be true for Hölder spaces instead of Sobolev spaces, see Lieberman (2005), Chapter

VIII. Lieberman forgets to prove continuity of ϕ in his Theorem 8.2, though he needs it just as much as we do!
100Combined with the fact that H1⊗H2 ↪→ H3⊗H4 is compact iff H1 ↪→ H3 and H2 ↪→ H4 are compact.
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A Lie groups
We only need linear Lie groups, which by definition are closed subgroups of GLn(K) for K=R
or K=C, i.e. the group of invertible n×n matrices with entries in K, with group multiplication
simply given by matrix multiplication.101 As a first and hopefully well-known example, SO(3)
is the subgroup of GL3(R) consisting of matrices R that satisfy

RT R = 13; (A.1)
det(R) = 1. (A.2)

More generally, for some given Γ ∈ GLn(K), the matrices g ∈ GLn(K) that for all x,y satisfy

〈gx,Γgy〉= 〈x,Γy〉, (A.3)

or, in other words, leave the bilinear (or sequilinear) form 〈x,y〉Γ = 〈x,Γy〉 invariant (where
〈·, ·〉) is the usual inner product on Kn), form a linear Lie group GΓ. In other words,

GΓ = {g ∈ GLn(K) | g∗Γg = Γ}. (A.4)

For K = R, n = 3, and Γ = 13 we obtain GΓ = O(3), which has has two components: the one
containing the identity is SO(3) ≡ O(3)+, singled out by the condition det(R) = 1, whereas
the other component O(3)− consists of those elements R ∈ O(3) with det(R) = −1. Note that
SO(3) is connected but not simply connected. Furthermore, O(3) and SO(3) are compact in
the topology inherited from M3(R)∼= R9: this follows from the Heine–Borel theorem. Indeed,
RT R = 13 implies ‖R‖= 1, so that SO(3) must be a bounded subset of R9, which is also closed,
since the condition (A.3) is closed by continuity of matrix multiplication, as is det(R) = 1.
Compactness also follows from the following parametrization of SO(3), with α,β ,γ ∈ [0,2π]:

Rz
γ =

 cosγ −sinγ 0
sinγ cosγ 0

0 0 1

 ,Ry
β
=

 cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

 ,Rx
α =

 1 0
0 cosα −sinα

0 sinα cosα

 .

Staying in n= 3 and K=R for the moment, instead of Γ= 13 we may take Γ= diag(−1,1,1).
Then GΓ ≡ O(2,1) is called the Lorentz group (in space-time dimension 3). It has four com-
ponents, singled out by the four combinations of the two independent conditions

det(λ ) =±1; ±λ00 > 0; (A.5)

for an indefinite Γ like this it is customary to label the entries λi j by i, j = 0,1,2 instead of 1,2,3.
In particular, the identity component O(2,1)0 satisfies det(λ )= 1 and λ00 > 0.102 Consequently,
even the subgroup SO(2,1) = {λ ∈O(2,1) | det(λ ) = 1} has two components. Another impor-
tant difference with SO(3) is that SO(2,1) is non-compact. This follows, for example, from the
following parametrization of O(2,1)0, where α ∈ [0,2π] and β ,γ ∈ R:

Bx
γ =

 coshγ sinhγ 0
sinhγ coshγ 0

0 0 1

 ,By
β
=

 coshβ 0 sinhβ

0 1 0
sinhβ 0 coshβ

 ,Rα =

 1 0
0 cosα −sinα

0 sinα cosα

 .

101Lie groups are not necessarily closed in Mn(K), since invertibility of matrices is an open condition (we call
a condition open if its solution set is open, and closed if its solution set is closed). For example, the sequence
gn = 1n/n in GLn(R) converges to zero, so the limit is not in GLn(R). The topology used may either be the usual
one or Kn2

or the matrix norm topology; these are equivalent.
102This follows from the fact that any matrix λ ∈ O(2,1) satisfies λ 2

00−∑k=1 23λ 2
k0 = 1, so that |λ00| ≥ 1, and

from the fact that sgn(λ00) and det(λ ) are continuous functions on O(2,1).

48



From these, one obtains the matrices λ with det(λ ) = 1 and λ00 < 0 by multiplication with
diag(−1,−1,1), those with det(λ ) =−1 and λ00 > 0 by multiplication with diag(1,−1,1), and
finally, those with det(λ ) =−1 and λ00 < 0 by multiplication with diag(−1,1,1).

The additive (and hence abelian) groups Rn also fall under our definition of linear Lie
groups, since one may identify a ∈ Rn with the 2n×2n-matrix

a≡
(

1n diag(a)
0 1n

)
, (A.6)

where diag(a) is the diaginal n× n matrix with entries (a1, . . . ,an) on the diagonal. Indeed,
matrix multiplication reproduces addition. On the other hand, we simply put the n-torus G =
Tn =U(1)n (where T≡{z∈C : |z|= 1}), which is the compact sister of Rn, with multiplication
as group operation, into the diagonal of GLn(C).

An intermediate case (between abelian and non-abelian) is the 3d Heisenberg group

Nil = Heis3(R)⊂ GL3(R), (A.7)

called Nil by Thurston since it is nilpotent, which consists of all real matrices 1 x z
0 1 y
0 0 1

 , (x,y,z) ∈ R3. (A.8)

Another three-dimensional Lie groups of interest is SL2(R), which is the (non-compact) sub-
group of GL2(R) consisting of all matrices with unit determinant, which is doubly connected,

along with its universal cover S̃L2(R) (which is no longer a Linear Lie group, however). Finally,

E(2) = O(2)nR2; (A.9)

E(1,1) = O(1,1)nR2, (A.10)

are the Euclidean group and the Poincaré group in dimension 2 and 1+ 1, where O(1,1) is
defined as the subgroup of GL2(R) that leaves Γ= diag(−1,1) invariant, with the additive group
R2, on which O(1,1) acts in its defining representation.103 The identity component of E(2) is

Sol = E(1,1)0 = O(1,1)0 nR2, (A.11)

where Sol is Thurston’s name for it since it is solvable. Here O(1,1)0 is the identity component
of O(1,1) (which has four connected components, like O(2,1)), consisting of all matrices(

coshα sinhα

sinhα coshα

)
, α ∈ R.

Note that Nil, Sol, and S̃L2(R) are all diffeomorphic to R3, but have different group structures.
All this can be generalized to any dimension in an obvious way; we have focused on some
three-dimensional examples, since these play a role in Thurston’s Geometrization Conjecture.

103Let some group L act linearly on a vector space V . Then the operation (λ ,v) · (λ ′,v′) = (λλ ′,v+ λ · v′),
with inverse (λ ,v)−1 = (λ−1,−λ−1 · v), turns LnV into a group, called the semi-direct product of L and V . If
L⊂GLn(K) is a linear Lie group and V =Kn, then LnV is a linear Lie group in GL2n(K), realized by the matrices(

L v
0 1n

)
, where v ∈ GLn(K) is the matrix with v ∈V in every column.
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B Lie algebras
Abstractly, a Lie algebra over K is a vector space over K equipped with an antisymmetric
bilinear map [·, ·] : A×A→ A (i.e., [a,b] =−[b,a]) that satisfies the Jacobi identity

[a, [b,c]]+ [c, [a,b]]+ [b, [c,a]] = 0 (a,b,c ∈ A). (B.1)

Concretely, the Lie algebra of a linear Lie group G⊂ GLn(K), where K= R or K= C, is

g= {A ∈Mn(K) | etA ∈ G∀t ∈ R}, (B.2)

where the exponential map exp : g→ G is just given by its usual (norm-convergent) power
series. Even if K= C, we often regard g as a real vector space. Eq. (B.2) defines a Lie algebra
in the above abstract sense, where the Lie bracket is simply defined as the commutator

[A,B] = AB−BA. (B.3)

It is a nontrivial fact that this concrete Lie algebra is also an abstract one, notably that g is a
vector space and that the bracket (B.3) indeed maps g× g to g (on the other hand, the Jacobi
identity is easily verified). The former property follows from the Lie product formula

eA+B = lim
m→∞

(
eA/meB/m

)m
, (B.4)

combined with the axiom that G be closed in GLn(K), whereas the latter property derives from

[A,B] =
d
dt

etABe−tA, (B.5)

combined with a lemma about matrices showing that if g∈G and A∈ g, then gAg−1 ∈ g (which
in turn follows from the definition of the exponential, implying exp(gAg−1) = gexp(A)g−1.)

If G = GΓ is defined by (A.4), then its Lie algebra is

gΓ = {A ∈Mn(K) | A∗Γ =−ΓA}. (B.6)

For example, taking Γ = diag(1,1,1), the Lie algebra so(3) of SO(3) consists of all real 3×3
matrices X that satisfy XT =−X . As a vector space so(3)∼= R3, since so(3) has a basis

e1 =

 0 −1 0
1 0 0
0 0 0

 , e2 =

 0 0 −1
0 0 0
1 0 0

 , e3 =

 0 0 0
0 0 −1
0 1 0

 ; (B.7)

whose linear span gives all 3× 3 real antisymmeric matrices.104 A vector space isomorphism
R
∼=→ so(3) is then given by (x,y,z) 7→ xe1 + ye2 + ze3. The commutators of these elements are

[e1,e2] = e3; [e2,e3] = e1; [e3,e1] = e2, (B.8)

and by linearity these determine the Lie bracket of arbitrary elements of so(3).

104This is not the usual basis (J1,J2,J3) of so(3), which is defined by J1 = e3, J2 =−e2, J3 = J1.
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Similarly, according to (B.6) the Lie algebra of SO(2,1) consists of all real 3×3 matrices A
that satisfy AT diag(−1,1,1) =−diag(−1,1,1)A. There are good reasons for taking the basis

f1 =

 0 1 0
1 0 0
0 0 0

 , f2 =

 0 0 1
0 0 0
1 0 0

 , f3 =

 0 0 0
0 0 −1
0 1 0

 , (B.9)

with commutation relations

[ f1, f2] =− f3; [ f2, f3] = f1; [ f3, f1] = f2. (B.10)

For SL(2,R), whose Lie algebra consist of all real 2×2 traceless matrices, we may take

g1 = 1
2

(
0 1
1 0

)
, g2 = 1

2

(
1 0
0 −1

)
, g3 = 1

2

(
0 1
−1 0

)
, (B.11)

with commutation relations

[g1,g2] =−g3; [g2,g3] = g1; [g3,g1] = g2. (B.12)

It follows that the Lie algebras of SO(2,1) and SL2(R) are isomorphic, namely by linear exten-
sion of the map fi 7→ gi, i = 1,2,3. Nonetheless, the groups in question are not isomorphic.

Similarly, consider the Lie group SU(2), defined as the set of unitary 2× 2 complex matrices
with unit determinant. Its Lie algebra then consists of all traceless matrices A ∈M2(C) (this is
the “S” in SU(2)) for which A∗ =−A (which is the “U”). If we take the following basis

h1 = 1
2

(
−i 0
0 i

)
, h2 = 1

2

(
0 1
−1 0

)
, h3 = 1

2

(
0 −i
−i 0

)
, (B.13)

of the vector space of such matrices, with commutation relations

[h1,h2] = h3; [h2,h3] = h1; [h3,h1] = h2, (B.14)

we see that the Lie algebras of SO(3) and SU(2) are isomorphic by linear extension of the map
ei 7→ hi, i = 1,2,3, although, once again, the groups are not isomorphic. See the next section.

The next interesting three-dimensional case is the Euclidean group (A.9), which has two
connected components, of which the identity component is

E(2)0 = SO(2)nR2. (B.15)

To find its Lie algebra, we note that in general the Lie algebra g of a semidirect product LnRn

is l⊕Rn as a vector space, with commutators for A,B ∈ l and v,w ∈V given by

[(A,v),(B,w)] = ([A,B],Aw−Bv). (B.16)

Since SO(2) consists of all matrices(
cosα −sinα

sinα cosα

)
, α ∈ [0,2π], (B.17)

we make take the basis

j1 =
(

1
0

)
, j2 =

(
0
1

)
, j3 =

(
0 −1
1 0

)
, (B.18)
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the former forming a basis of R2, and find the commutation relations from (B.16) to be

[ j1, j2] = 0; [ j2, j3] = j1; [ j3, j1] = j2. (B.19)

For E(1,1), on the other hand, we take

k1 =

(
1
0

)
, k2 =

(
0
1

)
, k3 =

(
0 −1
−1 0

)
, (B.20)

to obtain

[k1,k2] = 0; [k2,k3] = k1; [k3,k1] =−k2. (B.21)

For the Lie algebra of the Heisenberg group, which consists of all matrices 0 x z
0 0 y
0 0 0

 ,

again with (x,y,z) ∈ R3, we take the natural basis

l1 =

 0 0 1
0 0 0
0 0 0

 , l2 =

 0 1 0
0 0 0
0 0 0

 , l3 =

 0 0 0
0 0 1
0 0 0

 , (B.22)

with commutation relations

[l1, l2] = 0; [l2, l3] = l1; [l3, l1] = 0. (B.23)

The last three-dimensional Lie algebra of interest is simply R3, with the usual basis

m1 =

 1
0
0

 , m2 =

 0
1
0

 , m3 =

 0
0
1

 , (B.24)

and commutation relations

[m1,m2] = 0; [m2,m3] = 0; [m3,m1] = 0. (B.25)

Due to our particular choices of a basis, we can summarize all cases so far by the relations

[n1,n2] = λ3n3; [n2,n3] = λ1n1; [n3,n1] = λ2n2, (B.26)

where the λi are equal to ±1 or 0 and are given by the following table (Milnor, 1976):105

(λ1,λ2,λ3) group

(1,1,1) SO(3) or SU(2)
(1,1,−1) SO(2,1) or SL2(R)
(1,1,0) E(2)
(1,−1,0) E(1,1)
(1,0,0) Heis3(R)
(0,0,0) R3

105This table gets more body in connection with Lemma 6.3. If we refrain from the requirement of orthonormality
of the basis, we are free to rescale the λi by recsaling one or more basis vectors. This gives the table.

52



C Lie’s Third Theorem
We saw how (linear) Lie groups lead to Lie algebras. We now briefly discuss the converse
passage from Lie algebras to Lie groups. Given any Lie algebra g ⊂Mn(K) realized in matrix
form, one may define the group G0 generated within GLn(K) by all one-paramteter subgroups
t 7→ exp(tA), where A ∈ g and t ∈ R. This group is connected by construction, but it is not
the most general Lie group with Lie algebra (isomorphic to) g. For example, let us take g= R
with zero Lie bracket. Suppose we realize this inside M1(C) = C as the set of all iA, A ∈ R.
Exponentiation gives G0 = T ≡ {z ∈ C : |z| = 1}, with multiplication as the group operation;
this one-dimensional Lie group is the torus (and analogously for Rn, giving the n-torus Tn).

Now, however, realize g = R as the set of all matrices
(

0 A
0 0

)
within GL2(R), where again

A ∈ R. This time, exponentiation gives, perhaps surprisingly, exp
(

0 A
0 0

)
=

(
1 A
0 1

)
.

Since
(

1 A
0 1

)(
1 B
0 1

)
=

(
1 A+B
0 1

)
, this time, from the same Lie algebra we obtain

the Lie group G0 = R (as an additive group), which is simply connected (and similar for Rn).
Other examples we have already encountered are SO(3) and SU(2), which have isomorphic

Lie algebras but are not isomorphic as Lie groups, and similarly SO(2,1) and SL2(R) or S̃L2(R).
So, depending on its specific realization, the “same” Lie algebra may give rise to very different
Lie groups. Lie’s Third Theorem (proved by É. Cartan) settles the matter completely:106

Theorem C.1 Let g be a Lie algebra. There exists a simply connected Lie group G̃, unique up
to isomorphism, such that the Lie algebra of G̃ is g (and any Lie group isomorophic to G̃ has
a Lie algebra ismomorphic to g). Furthermore, if G is a connected Lie group with Lie algebra
isomorphic to g, then G∼= G̃/D, where D is a discrete normal subgroup of the center of G̃.

In the first example above, i.e. g= R, we have G̃ = R and T∼= R/Z (so D = Z). In the second,
SU(2) is simply connected: this follows from the fact that it consist of all matrices of the form(

α β

−β α

)
, α,β ∈ C, |α|2 + |β |2 = 1. (C.1)

This implies that SU(2)∼= S3, whose simple connectedness we take for granted. By Lie’s Third
Theorem, we must therefore have SO(3) ∼= SU(2)/D, where D is a discrete subgroup of the
center of SU(2). The center of SU(2) is {12,−12}, and to prove that D equals the center it
only remains to prove that SU(2) and SO(3) are not isomorphic; this follows by finding a non-
contractible loop in SO(3) (almost any rotation around 2π will do), whence π1(SO(3)) = Z2.

A more difficult analysis (Carter et al, 1995, pp. 56–58) shows that SL2(R) is homeomor-
phic to an open sausage S1×D, where S1 is the circle and D is the open disk in R2, so that
π1(SL2(R)) = Z2 and its universal cover S̃L2(R) is homeomorphic to an infinite open cylinder
R×D, which of course is homeomorphic to R3. Finally, SO(2,1)0 is homeomorphic to S1×R2

and hence π1(SO(2,1)0) = Z; it is a quotient of S̃L2(R) by Z, so at the end of the day we have

SO(3)∼= SU(2)/Z2; SL2(R)∼= S̃L2(R)/Z2; SO(2,1)0 ∼= S̃L2(R)/Z. (C.2)
106We say that two Lie algebras g1 and g2 are isomorphic, written g1 ∼= g2, if there is a vector space isomorphism

ϕ : g1→ g2 such that [ϕ(A),ϕ(B)]g2 = ϕ([A,B]g1) for all A,B ∈ g1.
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D Distributions and Sobolev spaces on manifolds
This is an introduction to the topics in the title, containing just what we need for chapter 7.107

1. Notation. Let n > 0 and x ∈ Rn. It will convenient to write x = (x1, . . . ,xn) rather than
our usual (x1, . . . ,xn). Let α = (α1, . . .αn), with αi ∈ N (where 0 ∈ N), and write

|α|=
n

∑
i=1

αi; xα = xα1

1 · · ·xαn

n ; (D.1)

Dα =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

≡ ∂
α1
1 · · ·∂

αn
n ≡

∂ |α|

∂xα1
1 · · ·∂xαn

n
. (D.2)

2. Test functions. Let D(Rn) be C∞
c (Rn) as a set, equipped with the topology in which

fλ → f iff there is a compact set K ⊂ Rn such that supp( fλ ) ⊆ K for all λ as well as
supp( f )⊆ K, and for all multi-indices α one has ‖Dα( fλ − f )‖∞→ 0.

This may be generalized to manifolds M, as follows: for some given atlas (Ui,ϕi), where
the Ui form an open cover of M and each ϕi : Ui→ Rn is injective and open (so that Ui is
homeomorphic to ϕi(Ui)≡Vi ⊂ Rn), we say that fλ → f in D(M) =C∞

c (M) iff for each
ψi ∈C∞

c (Ui) one has ‖Dα(ψi( fλ − f )◦ϕ
−1
i )‖∞→ 0, which is defined on Rn. This turns

out to be independent of the choice of the atlas (within the equivalence class defining the
smooth structure on M). Elements of D(Rn) or D(M) are called test functions.

The rapidly decreasing (test) functions S (Rn) consists of those f ∈C∞(Rn) for which
the function x 7→ xαDβ f is bounded for all multi-indices α and β . One often writes

〈x〉= (1+‖x‖2)1/2, (D.3)

and uses x 7→ 〈x〉αDβ f , which of course gives the same space. The topology on S (Rn) is
such that ϕλ → ϕ iff for all l,m ∈N and multi-indices α and β with |α| ≤ l and |β | ≤m,

‖xαDβ (ϕλ −ϕ)‖∞→ 0. (D.4)

3. A distribution on Rn (or M) is a continuous linear map u : D(Rn)→C (or u : D(M)→C).
The space D ′(Rn) of distributions on Rn carries the weak topology, in which uλ → u
iff uλ ( f )→ u( f ) for each f ∈ D(Rn). Similarly for D ′(M) and for the space S ′(Rn)
of tempered distributions on Rn. In this topology, D(Rn) is dense in D ′(Rn), where
u ∈ D(Rn) defines u ∈ D ′(Rn) through the L2 inner product u( f ) = 〈u, f 〉L2(Rn), and
similarly for S (Rn)⊂S ′(Rn). Adding a middle man gives so-called Gelfand triples

D(Rn)⊂ L2(Rn)⊂D ′(Rn); (D.5)

S (Rn)⊂ L2(Rn)⊂S ′(Rn), (D.6)

in which each embedding is continuous and dense. Likewise for D(M), provided we
equip M with a measure that in coordinates has the same null sets as Lebesgue measure.
For example, any (background) Riemannian metric on M provides such a measure, viz.
dµ(x) = dnx

√
det(g(x), see §4.1.108 Also in that case we obtain a Gelfand triple

D(M)⊂ L2(M)⊂D ′(M). (D.7)
107 For details see Hörmander (1990), §6.3, Taylor (1996), §4.3, Grubb (2009), §8.2, Aubin (1998), Chapter 2, or

E. van den Ban & M. Crainic (2013), Chapter 2.
108Hörmander’s definition of a distribution on M coincides with the one above if we choose such a measure.
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4. Weak derivatives. It will be convenient from now on to write 〈u, f 〉 for u( f ). For each
multi-index α , the weak derivative Dαu of u ∈D ′(Rn) is defined by

〈Dαu, f 〉= (−1)|α|〈u,Dα f 〉. (D.8)

This definition comes from the fake formula 〈u, f 〉=
∫
Rn dnxu(x) f (x), which on repeated

partial integration gives (D.8). Any linear partial differential operator may therefore be
regarded as a map L : D ′(Rn)→D ′(Rn), with adjoint L∗ : D(Rn)→D(Rn), i.e.,

〈Lu, f 〉= 〈u,L∗ f 〉. (D.9)

For example, if L = Dα , then L∗ = (−1)|α|Dα . The derivatives in Lu are called weak,
those in L∗ f being classical. Similarly, a solution u ∈ D ′(Rn) of a linear PDE Lu = F
(with initial conditions), i.e. 〈Lu, f 〉= 〈u,L∗ f 〉 for all f ∈D(Rn), is called weak.

5. Sobolev spaces. For any s ∈ N, based on (D.5), define the Sobolev space

Hs(Rn) = {u ∈ L2(Rn) | Dαu ∈ L2(Rn)∀α : |α| ≤ s}, (D.10)

where accordingly the derivatives inherent in Dα are weak. Clearly, H0(Rn) = L2(Rn),
but it can be shown that all Hs(Rn) are Hilbert spaces with respect to the inner product

〈u,v〉s = ∑
|α|≤s
〈Dαu,Dαv〉L2. (D.11)

A different perspective on Sobolev spaces comes from the Fourier transform

f̂ (ξ ) = (2π)−n/2
∫
Rn

dnx f (x)e−iξ x; (D.12)

f̌ (x) = (2π)−n/2
∫
Rn

dn
ξ f (ξ )eiξ x, (D.13)

which make sense as Lebesgue integrals for f ∈ L1(Rn). If one also has f̂ ∈ L1(Rn), then

ˇ̂f = f . (D.14)

The scope of these formulae may be extended in at least three different ways:

(a) Eq. (D.12) yields a unitary isomorphism L2(Rn)
∼=→ L2(Rn) of Hilbert spaces.

(b) The Fourier transform also defines a linear homeomorphism S (Rn)
∼=→S (Rn).

(c) Defining f̂ for f ∈S ′(Rn) by 〈 f̂ ,ϕ〉 = 〈 f , ϕ̌〉, the Fourier transform (D.12) even
defines a linear homeomorphism S ′(Rn)

∼=→S ′(Rn) of tempered distributions.

Using the notation (D.3) for ξ , we may then (re)define, for any s ∈ R,

Hs(Rn) = {u ∈S ′(Rn) | ξ 7→ 〈ξ 〉sû(ξ ) ∈ L2(Rn)}, (D.15)

with inner product

〈u,v〉s =
∫
Rn

dn
ξ 〈ξ 〉2s û(ξ )v̂(ξ ) =

∫
Rn

dn
ξ (1+‖ξ‖2)s û(ξ )v̂(ξ ) (D.16)
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For s ∈N this reproduces (D.10) as a vector space. Though the inner products (D.11) and
(D.16) are different (one has to specify which one is used), they induce equivalent norms.

Sobolev spaces can also be defined on manifolds: for u ∈D ′(M) de define u ∈H2(M) iff
for each chart (Ui,ϕi) and χi ∈C∞

c (Vi), where Vi = ϕi(Ui)⊂Rn, the distribution u◦ϕ
−1
i χi

on D(Rn), defined on f ∈D(Rn) by 〈u◦ϕ
−1
i χi, f 〉= 〈u,(χi f )◦ϕi〉, is in Hs(Rn).

Theorem D.1 Let M be a compact manifold (with a complete Riemannian metric) or Rn.

(a) For each s ∈ R the space D(M) is dense in H2(M).

(b) For each s ∈ R we have an isometric (Banach space) isomorphism

Hs(M)∗ ∼= H−s(M), (D.17)

understood in the following way:109 any continuous functional Λ ∈ Hs(M)∗ corre-
sponds linearly, bijectively, and isometrically to f ∈ H−s(M) via

Λ(u) = 〈 f ,u〉L2(M). (D.18)

(c) If s > 1
2n+k, then Hs(M)⊂Ck

b(M), where the embedding is continuous with respect
to the norm ‖u‖m,∞ = ∑|α|≤m ‖Dαu‖∞ on Ck(M) (Sobolev embedding theorem).

(d) For any s ∈ R and δ > 0 the injection Hs+δ (M) ↪→ Hs(M) is compact (Rellich).

(e) For s > 0 we have our fourth Gelfand triple

Hs(M)⊂ L2(M)⊂ H−s(M). (D.19)

6. For PDE’s, for fixed T > 0 one considers Banach spaces like C([0,T ],Hs(M)), with norm

‖u‖∞ = sup
t∈[0,T ]

‖u(t)‖s, (D.20)

or C1([0,T ],Hs(M)) with analogous norm, or Lp([0,T ],Hs(M)), 1≤ p < ∞, normed by

‖u‖p =

(∫ T

0
dt (‖u(t)‖s)

p
)1/p

, (D.21)

or L∞([0,T ],Hs(M)), with norm

‖u‖∞ = esssupt∈[0,T ]‖u(t)‖s. (D.22)

Here we define Lp([0,T ],Hs(M)), 1 ≤ p < ∞, as the completion of C([0,T ],Hs(M)) in
the norm (D.21), and also (avoiding Banach space-valued measurable functions), define
L∞([0,T ],Hs(M)) as the (Banach) dual of L1([0,T ],H−s(M)), in that we identify f ∈
L∞([0,T ],Hs(M)) with the functional Λ f ∈ (L1([0,T ],H−s(M)))∗ given by

Λ f (g) =
∫ T

0
dt 〈 f (t),g(t)〉L2(M). (D.23)

109Also, Hs(M)∗ ∼= Hs(M) through its own inner product; the pairing in (D.18) is through the L2 inner product.
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