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Abstract

Semiclassical analysis deals with the relationship between classical dynamics and the behaviour
of solutions to pseudodifferential operators depending on a small parameter h > 0. Let a : R2n → C
be a function, then we can associate it with an operator aW (x, hD). In the context of quantum
mechanics, taking the limit h→ 0 is a way to study the classical limit of quantum mechanics. In the
first part of this thesis, we will follow [8] and prove the Agmon-Lithner estimate and the Carleman
inequality.

The second part of this thesis deals with double well potentials. We will study the behaviour of
eigenfunctions of the Schrödinger operator P (h) = −h2∂2

x + V (x) where the double well potential V
is symmetric. Following Jona-Lasinio et al. [9], Helffer and Sjöstrand [3] and [4], and Simon [7], we
will study the consequences of a small perturbation ∆V that breaks the symmetry of V .
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1 Introduction

Two topics will be discussed in this thesis. In the first part, we will discuss semiclassical analysis as
presented by Zworski [8]. We will consider certain classes of functions a : R2n → C, (x, ξ) 7→ a(x, ξ), and
associate such functions with semiclassical pseudodifferential operators, i.e. pseudodifferential operators
that are scaled with a small parameter h > 0. We will study the behaviour of such operators in the
semiclassical limit h→ 0.

In the context of quantum mechanics, we interpret R2n as the phase space. Then x is the position
variable and ξ is the momentum variable, and a function a : R2n → C is called a symbol. Then the
corresponding operator aW (x, hD) is a quantum observable, and the semiclassical limit h→ 0 is actually
the classical limit of quantum mechanics.

An important example is the total energy function p(x, ξ) := |ξ|2 + V (x), where |ξ|2 is the kinetic
energy and V is the potential. This symbol gives rise to the Schrödinger operator P (h) := −h2∆+V . We
will prove the Agmon-Lithner estimate and the Carleman inequality for eigenfunctions of this operator
in the limit h→ 0.

We will need some preliminary definitions, which we will give in section 2. In section 3, we will give
an overview of semiclassical Fourier analysis, which is just a rescaling of standard Fourier analysis by a
parameter h > 0. The Fourier transformation will first be defined on the Schwartz space S (Rn). We
will then generalise the Fourier transformation to the dual space S ′(Rn).

Section 4 deals with semiclassical quantisation. We will again start with symbols in S (R2n), which
give rise to bounded operators L2(Rn) → L2(Rn). We will then discuss larger classes of symbols
Sδ(m) where 0 ≤ δ ≤ 1/2 and m is a so-called order function. Such symbols give rise to opera-
tors S ′(Rn) → S ′(Rn). We will prove that symbols in S = S0(1) give rise to bounded operators
L2(Rn)→ L2(Rn).

In section 5, we will prove several important inequalities. We will first prove the G̊arding inequality
for symbols a ∈ S. Then we will prove the Agmon-Lither estimate and the Carleman estimate for eigen-
functions of P (h).

In the second part, we will apply these results to a potential V that has multiple wells, following
several papers from the 1980s. The main goal of this part is to provide a focused and detailed approach
to the ideas presented by B. Helffer and J. Sjöstrand in [3] and [4] and by B. Simon in [7]. Two other
important papers are Jona-Lasinio et al. [9] and Graffi et al. [10].

In section 6, we will consider the symmetric double-well potential, following Helffer [2]. The splitting
of the lowest two eigenvalues of P (h) is of order Õ(e−δ0/h), and the eigenfunctions corresponding to these
eigenvalues are symmetric. In section 7, we will consider a slightly perturbed potential Ṽ = V + t∆V
where t ∈ [−1, 1]. Surprisingly, even a very small perturbation has drastic consequences for the eigen-
functions. If ∆V is supported close to one of the wells, the eigenfunctions will be localised in just one
of the wells, even if t = e−γ/h for some sufficiently small constant γ > 0. As a result, the perturbed
eigenfunctions are not even approximately symmetric.

1.1 acknowledgment

I would like to thank my supervisor Klaas Landsman for his advice and patience.
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2 Introduction to the Schrödinger equation

In this section, we will introduce the position and momentum operators, as well as the Schrödinger
operator P (h) and its eigenfunctions.

2.1 Wave functions

In classical physics, a particle’s state is just its position x and its momentum p := mẋ. These develop
over time according to the differential equation F = m∂2

t x, where ∂t := d
dt . In quantum mechanics, a

particle’s position and momentum are not localised as points in phase-space. Instead, a particle’s state
is given by its so-called wave function u : R× Rn → C, (t, x) 7→ u(t, x).

This wave function u is a probability amplitude in the sense that |u(x)|2 = u(x)u(x) is a probability
density function, i.e. the probability of finding the particle in U ⊆ Rn is given by ‖u‖L2(U). For this
reason, we have u ∈ L2(Rn) and ‖u‖L2(Rn) = 1. Moreover, wave functions solve the Schrödinger equation

i~∂tu(t, x) = − ~2

2m
∆u(t, x) + V (x)u(t, x) (2.1)

where ~ is the Planck constant, m the particle’s mass, and the map V : Rn → R is the potential.

We will simplify this equation by setting m = 1/2 and replacing ~ with a dimensionless constant
h > 0. Moreover, we will consider stationairy states, i.e. functions u such that ih∂tu ≡ 0.

Definition 2.1. (Schrödinger operator) Let h > 0 and let V : Rn → R be a smooth function not
depending on h, then the Schrödinger operator P (h) is defined by

P (h)u = −h2∆u+ V u, (2.2)

In subsections 2.3 and 2.4, we will define the appropriate domain of P (h) as well as what it means
for a function u to solve the time-independent Schrödinger equation P (h)u = E(h)u.

2.2 Position and momentum operators

We will now consider the position operator Xj and the momentum operator Pj , where 1 ≤ j ≤ n. For
any wave function u ∈ L2(Rn), ‖u‖ = 1, the expectation values are 〈u,Xju〉 and 〈u, Pju〉. We will use
the convention that

Dxj :=
1

i

∂

∂xj
.

Then

〈u,Xju〉 = Eu(Xj) =

∫
Rn
dx
[
xj |u(x)|2

]
= 〈u, xju〉L2 ,

〈u, Pju〉 = Eu(Pj) =
1

2
∂tEu(Xj)

=

∫
Rn
dx

[
1

2
xj∂t(u(x)u(x))

]
=

∫
Rn
dx

[
1

2
xj

(
(∂tu(x))u(x) + u(x)(∂tu(x))

)]
=

∫
Rn
dx

[
1

2
xj

( 1

−ih
(−h2∆u(x) + V (x)u(x))u(x) + u(x)

1

ih
(−h2∆u(x) + V (x)u(x))

)]
=

∫
Rn
dx

[
h

2i
xj

(
∆u(x)u(x)− u(x)∆u(x)

)]
=

∫
Rn
dx

[
h

2
xjiD ·

(
u(x)Du(x)− u(x)Du(x)

)]
= −

∫
Rn
dx

[
h

2
ej ·

(
u(x)Du(x)− u(x)Du(x)

)]
=

∫
Rn
dx
[
u(x)hDxju(x)

]
= 〈u, hDxju〉L2 .

Hence Xju = xju and Pju = hDu. In order to avoid confusion, we will always denote the momentum
operator by hD.
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2.3 Sobolev spaces

We have seen that wave functions u are quadratically integrable, i.e. u ∈ L2(Rn), and that they need to
satisfy the Schrödinger equation (equation 2.1). However, most functions in L2(Rn) are not differentiable.
To overcome this problem, we will recall the notion of weak derivative and the Sobolev function space
Hk(Rn).

Definition 2.2. (Test functions) Let U ⊆ Rn be open, then a function ϕ : U → C is called a test function
if it is smooth and compactly supported. The space of such functions is denoted by C∞c (U).

Note that test functions vanish at the boundary ∂U . This follows from the fact that they are sup-
ported on a compact subset of U and the fact that U is open.

Now let ϕ ∈ C∞c (U) and let α := (α1, . . . , αn) be a multi-index (i.e. α ∈ Nn) such that |α| :=
α1 + . . .+ αn ≤ k. If we assume that u ∈ Ck(U), then the partial derivative

Dαu :=
1

i|α|
∂α1

∂xα1
1

. . .
∂αn

∂xαnn
u (2.3)

exists, and we can obtain the equality∫
U

dx[u(x)Dαϕ(x)] = (−1)|α|
∫
U

dx[Dαu(x)ϕ(x)]

by integrating by parts |α| times. In case u /∈ Ck(U), we will use this equation to define generalise Dαu.
Let v be some function. We want∫

U

dx[u(x)Dαϕ(x)] = (−1)|α|
∫
U

dx[v(x)ϕ(x)],

because then we can set Dαu := v. Clearly, these integrals can only exist if the functions u and v are
integrable on Supp(ϕ) for all ϕ ∈ C∞c (U). This motives the following two definitions.

Definition 2.3. (Locally integrable functions) Let U ⊆ Rn be open and let u : U → C be a function.
Then u is called locally integrable if

u|V ∈ L1(V )

for all open V ⊂⊂ U , i.e. for all open V ⊆ U such that V is compact and V ⊂ U . The set of locally
integrable functions is denoted L1

loc(U).

Definition 2.4. (Weak derivatives) Let u, v ∈ L1
loc(U) and let α be a multi-index, then Dαu := v is

called the weak αth partial derivative of u if∫
U

dx[u(x)Dαϕ(x)] = (−1)|α|
∫
U

dx[v(x)ϕ(x)]

for all ϕ ∈ C∞c (U).

Lemma 2.5. (Uniqueness of weak derivatives) Weak derivatives are unique up to sets of Lebesgue-
measure zero.

Proof. Let u, v, v′ ∈ L1
loc(U) and let α := (α1, . . . , αn) be a multi-index. Assume that v and v′ are weak

αth partial derivatives of u. Then we have for all test functions ϕ ∈ C∞c (U) that

(−1)|α|
∫
U

dx[v(x)ϕ(x)] =

∫
U

dx[u(x)Dαϕ(x)] = (−1)|α|
∫
U

dx[v′(x)ϕ(x)].

But then we have ∫
U

dx[(v(x)− v′(x))ϕ(x)] = 0

for all ϕ ∈ C∞c (U), hence v = v′ almost everywhere.
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Of course, weak derivatives need not exist in general. We will consider spaces of square integrable
functions that have weak derivatives up to some degree k ∈ N.

Definition 2.6. (Sobolev spaces) Let U ∈ Rn be open and let k ∈ N, then the Sobolev space Hk(U)
consists of all functions u ∈ L2(U) have weak derivatives Dαu ∈ L2(U) for all multi-indices α such that
|α| ≤ k.

We can define an inner product on Hk(U) by

〈u, v〉Hk(U) :=
∑
|α|≤k

〈Dαu,Dαv〉L2(U), (2.4)

making Hk(U) into a Hilbert space.

2.4 Weak solutions

The definition of weak solutions u of P (h)u = E(h)u is analogous to the definition of the weak derivative.
Let u such that P (h)u = E(h)u and let v be some function. Then

0 = 〈v, (P (h)− E(h))u〉

=

∫
Rn
dx
[
v(x)

(
−h2∆u(x) + V (x)u(x)− E(h)u(x)

)]
= −h2

n∑
j=1

∫
Rn
dx
[
v(x)∂2

j u(x)
]

+

∫
Rn
dx
[
v(x)(V (x)− E(h))u(x)

]
= h2

n∑
j=1

∫
Rn
dx
[
∂jv(x)∂ju(x)

]
+

∫
Rn
dx
[
v(x)(V (x)− E(h))u(x)

]
= 〈v, (V − E(h))u〉+

n∑
j=1

〈hDjv, hDju〉.

Definition 2.7. (Weak solutions of the Schrödinger equation) A function u ∈ H1(Rn) possibly depending
on h is called a weak solution of P (h)u = E(h)u if

〈v, (V − E)u〉+

n∑
j=1

〈hDjv, hDju〉 = 0 (2.5)

for all v ∈ C∞c (Rn). A function u ∈ H1(Rn) is called a solution to the Schrödinger equation if it is a
weak solution of P (h)u = E(h)u and ‖u‖L2(Rn) = 1.

Since we mostly deal with the momentum operator hD instead of the differential operator D, it makes
sense to scale the Sobolev norm accordingly.

Definition 2.8. (Semiclassical Sobolev norm) Let U ⊆ Rn be open. The semiclassical Sobolev norm on
the space Hk(U) is given by

‖u‖Hkh(U) :=

∑
|α|≤k

‖hDαu‖2L2(U)

1/2

. (2.6)
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3 Semiclassical Fourier analysis

In this section, we will discuss semiclassical Fourier theory. The semiclassical Fourier transform Fh is a
rescaling of the standard Fourier transform using the parameter h > 0. Then Fh maps ϕ(x) into ϕ̂h(ξ)
such that (hD)αϕ 7→ ξαϕ̂h and (−x)αϕ 7→ (hD)αϕ̂h.

3.1 Schwartz space S (Rn)

Our goal is to define the semiclassical Fourier transform on a large class of functions, but we will start
with just the so-called Schwartz functions. Schwartz functions behave very nicely in the sense that all
their derivatives decrease rapidly as |x| → ∞, as does the function itself. An example of such a function

is the Gaussian function ϕ(x) := e−π|x|
2

.

Definition 3.1. (Schwartz space) The Schwartz space S (Rn) consists of all functions ϕ ∈ C∞(Rn) such
that

sup
x∈Rn

|xα∂βϕ(x)| <∞

for all multi-indices α, β.

Note that ‖ϕ‖α,β := supx∈Rn |xα∂βϕ(x)| is a seminorm on S (Rn) for each pair of multi-indices α, β.
This collection of seminorms defines a topology on S as follows. Consider

V (α, β, k) := {ϕ ∈ S (Rn) | ‖ϕ‖α,β <
1

k
}.

The collection of finite intersections of such sets is a convex, balanced local base of a topology in S (Rn)
turning it into a locally convex space such that all seminorms are continuous.

A subset U ⊂ S (Rn) is bounded if and only if {‖ϕ‖α,β | ϕ ∈ U} is bounded for all multi-indices α, β.
It should be noted that all ‖ · ‖α,β are actually norms, and that the spaces S (Rn) with this norm is a
Fréchet space.

It is easy to see that C∞c (Rn) ⊂ S (Rn) ⊂ L2(Rn). Recall that C∞c (Rn) is dense in L2(Rn), then it
follows trivially that S (Rn) is dense in L2(Rn) in the L2-norm.

Definition 3.2. (Semiclassical Fourier transform) Let ϕ ∈ S , then its semiclassical Fourier transform
ϕ̂h is defined by

ϕ̂h(ξ) := Fh(ϕ)(ξ) :=

∫
Rn
dx
[
ϕ(x)e−

i
h 〈x,ξ〉

]
(3.1)

where ξ ∈ Rn.

Remark 3.3. In case h = 1, we also write F := F1 and ϕ̂ := ϕ̂1, which is the standard Fourier
transform. Note that some authors define the Fourier transform with a normalisation factor 1/(2πh)n/2.

Proposition 3.4. (Properties of the semiclassical Fourier transform) The semiclassical Fourier trans-
form Fh : S → S is an isomorphism, whose inverse is given by

ϕ(x) =
1

(2πh)n

∫
Rn
dξ
[
ϕ̂h(ξ)e

i
h 〈x,ξ〉

]
for all x ∈ Rn. Furthermore, we have the following equalities:

(i) Fh((hDx)αϕ) = ξαFh(ϕ),

(ii) Fh((−x)αϕ) = (hDξ)
α(Fh(ϕ)).
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Proof. We will only show that equalities (i) and (ii) hold. The other statements are well-known facts
from standard Fourier theory. Let ξ ∈ Rn, then we have

Fh((hDx)αϕ)(ξ) =

∫
Rn
dx
[
(hDx)αϕ(x)e−

i
h 〈x,ξ〉

]
= (−1)|α|

∫
Rn
dx
[
ϕ(x)(hDx)αe−

i
h 〈x,ξ〉

]
= (−1)|α|

∫
Rn
dx

[
ϕ(x)

(
h

i

)α(
− i
h
ξ

)α
e−

i
h 〈x,ξ〉

]
= ξα

∫
Rn
dx
[
ϕ(x)e−

i
h 〈x,ξ〉

]
= ξαFh(ϕ)(ξ),

(hDξ)
α(Fh(ϕ))(ξ) = (hDξ)

α

∫
Rn
dx
[
ϕ(x)e−

i
h 〈x,ξ〉

]
=

∫
Rn
dx
[
ϕ(x)(hDξ)

αe−
i
h 〈x,ξ〉

]
=

∫
Rn
dx
[
ϕ(x)(−x)αe−

i
h 〈x,ξ〉

]
= Fh((−x)αϕ)(ξ).

Lemma 3.5. (More properties) Let ϕ,ψ ∈ S , then we have∫
Rn
dx [Fh(ϕ)(x)ψ(x)] =

∫
Rn
dx [ϕ(x)Fh(ψ)(x)] (3.2)

and ∫
Rn
dx
[
ϕ(x)ψ(x)

]
=

1

(2πh)n

∫
Rn
dx
[
Fh(ϕ)(x)Fh(ψ)(x)

]
. (3.3)

Proof. ∫
Rn
dx [Fh(ϕ)(x)ψ(x)] =

∫
Rn
dx

[∫
Rn
dy
[
ϕ(y)e−

i
h 〈y,x〉

]
ψ(x)

]
=

∫
Rn
dy

[∫
Rn
dx
[
ψ(x)e−

i
h 〈x,y〉

]
ϕ(y)

]
=

∫
Rn
dx [ϕ(x)Fh(ψ)(x)]

This proves equation (3.2). Now we can substitute ϕ with Fh(ϕ) to obtain∫
Rn
dx
[
Fh(ϕ)(x)Fh(ψ)(x)

]
=

∫
Rn
dx
[
Fh(Fh(ϕ))(x)ψ(x)

]
.

Note that Fh(ϕ)(ξ) =
∫

Rn dy
[
ϕ(x)e

i
h 〈y,ξ〉

]
= (2πh)nF−1

h (ϕ)(ξ), so

Fh(Fh(ϕ))(x) = (2πh)nϕ(x).

Hence ‖ϕ̂h‖ = (2πh)n/2‖ϕ‖. We will now prove a few norm estimates that will prove useful later.
The notation 〈x〉 := (1 + |x|2)1/2 will be convenient. Note that

∫
Rn dx[〈x〉−(n+1)] < ∞ and there is a

constant C > 0 such that 〈x〉k ≤ C max|α|≤k |xα| for all x ∈ Rn, k ∈ N.

Lemma 3.6. (norm estimates) Let u ∈ S and h > 0, then there is some constant C > 0 such that

‖ûh‖L∞ ≤ ‖u‖L1 (3.4)

‖u‖L∞ ≤
1

(2πh)n
‖ûh‖L1 (3.5)

‖ûh‖L1 ≤ C max
|α|≤n+1

‖∂αu‖L1 (3.6)
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Proof.

‖ûh‖L∞ = sup
ξ∈Rn

|ûh(ξ)| = sup
ξ∈Rn

∣∣∣∣∫
Rn
dx
[
u(x)e

i
h 〈x,ξ〉

]∣∣∣∣
≤ sup
ξ∈Rn

∫
Rn
dx
∣∣∣u(x)e

i
h 〈x,ξ〉

∣∣∣ = sup
ξ∈Rn

∫
Rn
dx|u(x)|

= ‖u‖L1

‖u‖L∞ = sup
x∈Rn

|u(x)| = sup
x∈Rn

∣∣∣∣ 1

(2πh)n

∫
Rn
dξ
[
ûh(ξ)e

i
h 〈x,ξ〉

]∣∣∣∣
≤ 1

(2πh)n

∫
Rn
dξ
∣∣∣ûh(ξ)e

i
h 〈x,ξ〉

∣∣∣
=

1

(2πh)n

∫
Rn
dξ|ûh(ξ)| = 1

(2πh)n
‖ûh‖L1

‖ûh‖L1 =

∫
Rn
dξ|ûh(ξ)| =

∫
Rn
dξ
[
|ûh(ξ)|〈ξ〉n+1〈ξ〉−(n+1)

]
≤ C

∫
Rn
dξ

[
〈ξ〉−(n+1) max

|α|≤n+1
|ûh(ξ)ξα|

]
≤ C max

|α|≤n+1
‖ûhξα‖L∞

∫
Rn
dξ
[
〈ξ〉−(n+1)

]
≤ C max

|α|≤n+1
‖ûhξα‖L∞ ≤ C max

|α|≤n+1
‖∂αu‖L1

3.2 Tempered distributions S ′(Rn)

The Schwartz space is very small class of functions, so our goal is to extend the Fourier transform to a
wider class of functions. Let u : Rn → C be a quadratically integrable function. Then we can define a
continuous linear map u : S → C by u(ϕ) :=

∫
Rn dx [u(x)ϕ(x)]. This will serve as motivation for the

following definition.

Definition 3.7. (Tempered distributions) The set

S ′(Rn) := {u : S → C | u is linear and continuous } (3.7)

is the dual space of S (Rn) and maps u ∈ S ′ are called tempered distributions.
A sequence {uj}j∈N ⊂ S ′ is said to converge in S ′ if there is a map u ∈ S ′ such that {uj(ϕ)}j∈N ⊂ C
converges to u(ϕ) for all ϕ ∈ S .

For u ∈ S ′, we will sometimes write∫
Rn
dx [u(x)ϕ(x)] := u(ϕ)

even though such a locally integrable function u : Rn → C does not exist in general.

Definition 3.8. (More on tempered distributions) Let u ∈ S ′ and ϕ ∈ S . Let α be a multi-index and
let x ∈ Rn, then we define:

(i) Dαu(ϕ) := (−1)|α|u(Dαϕ), in the same spirit as the weak derivative. Note that Dαϕ and hence
Dαu is guaranteed to exist.

(ii) (xαu)(ϕ) := u(xαϕ)

(iii) We take equation (3.2) as a definition for the semiclassical Fourier transform on tempered distri-
butions, i.e. (Fhu)(ϕ) := u(Fhϕ).

Example 3.9. (Dirac delta function) Let x0 ∈ Rn, then we define the Dirac delta function δx0
at x0 by

δx0
(ϕ) := ϕ(x0) for all ϕ ∈ S . One can think of the Dirac delta function as a function that is infinite
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at x0 and zero everywhere else, such that its integral is
∫

Rn dx[δx0
(x)] = 1. Then we have for any ϕ ∈ S

that
∫

Rn dx[δx0
(x)ϕ(x)] = ϕ(x0).

We can calculate its Fourier transform by

(Fhδx0)(ϕ) := δx0(Fhϕ) = Fhϕ(x0) =

∫
Rn
dx[ϕ(x)e−

i
h 〈x,x0〉].

In other words, Fhδx0
(x) := e−

i
h 〈x,x0〉. In particular, Fh(δ0) ≡ 1.

Many of the properties of Fh : S (Rn)→ S (Rn) hold more generally.

Remark 3.10. (Semiclassical Fourier transform on L2) Let u ∈ L2(Rn), then we can interpret u as a
tempered distribution defined by

ϕ 7→
∫

Rn
dx [u(x)ϕ(x)]

where ϕ ∈ S . Then we have for the semiclassical Fourier transform ûh of u ∈ L2 that∫
Rn
dξ [ûh(ξ)ϕ(ξ)] :=

∫
Rn
dx [u(x)ϕ̂h(x)] =

∫
Rn
dx

∫
Rn
dξ
[
u(x)ϕ(ξ)e−

i
h 〈x,ξ〉

]
=

∫
Rn
dξ

[∫
Rn
dx
(
u(x)e−

i
h 〈x,ξ〉

)
ϕ(ξ)

]
for all ϕ ∈ S . So equation (3.1) is still valid for L2-functions. The same is true for the inverse
semiclassical Fourier transform. As a result, lemma 3.5 holds for L2-functions as well.

Proposition 3.11. (Properties of the semiclassical Fourier transform on tempered distributions) Let
u ∈ S ′, x, ξ ∈ Rn, and let α be a multi-index. Then we have

(i) Fh((hDx)αu) = ξαFh(u), and

(ii) Fh((−x)αu) = (hDξ)
αFh(u).

Proof. For all ϕ ∈ S , we have

Fh((hD)αu) = (hD)αu(Fh(ϕ)) = (−1)|α|u((hD)αFh(ϕ))

= (−1)|α|u(Fh((−x)αϕ))) = Fh(u)(ξαϕ)

= ξαFh(u)(ϕ)

Fh((−x)αu)(ϕ) = (−ξ)αu(Fh(ϕ)) = u((−ξ)αFh(ϕ))

= (−1)αu(Fh((hD)αϕ)) = (−1)αFh(u)((hD)αϕ)

= (hD)αFh(u)(ϕ)

3.3 Uncertainty principle

In this subsection, we will prove Heisenberg’s uncertainty principle. Let u ∈ S (Rn) such that ‖u‖ = 1
and let 1 ≤ j ≤ N . Consider the standard deviation of position σxj and the standard deviation of
momentum σhDj . Note that

σ2
xj = 〈u, x2

ju〉 − 〈u, xju〉2,

σ2
hDj = 〈u, (hDj)

2u〉 − 〈u, hDju〉2.

Then Heisenberg’s uncertainty principle states that σxjσhDj ≥ h/2. We interpret that the position and
the momentum of a physical state cannot be localised simultaneously.
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The relation between a wave function u(x) and its semiclassical Fourier transform ûh(ξ) is charac-
terised by equation (3.3), i.e. for u ∈ S (Rn), the expectation values for the position and momentum
operators in direction 1 ≤ j ≤ n are given by

〈u, xju〉 =

∫
Rn
dx
[
u(x)xju(x)

]
=

1

(2πh)n

∫
Rn
dξ
[
Fh(u)(ξ)Fh(xju)(ξ)

]
=

1

(2πh)n

∫
Rn
dξ
[
ûh(ξ)(−hDj)ûh(ξ)

]
=

1

(2πh)n
〈ûh,−hDj ûh〉,

〈u, hDju〉 =

∫
Rn
dx
[
u(x)hDju(x)

]
=

1

(2πh)n

∫
Rn
dξ
[
Fh(u)(ξ)Fh(hDju)(ξ)

]
=

1

(2πh)n

∫
Rn
dξ
[
ûh(ξ)ξj ûh(ξ)

]
=

1

(2πh)n
〈ûh, ξj ûh〉.

For this reason, u(x) is said to be the wave function in position coordinates, and ûh(ξ) the wave function
in momentum coordinates.

Lemma 3.12. (Shifting the position coordinates) Let u ∈ S (Rn) such that ‖u‖L2(Rn) = 1 and let a ∈ Rn,
then we can shift the coordinates by setting x  y := x − a and v(y) := u(y + a). The shifted wave
function v satisfies 〈v, yv〉 = 〈u, xu〉 − a and 〈v, hDv〉 = 〈u, hDu〉.

Proof. This is a fairly straightforward computation. Let 1 ≤ j ≤ n, then

〈v, yjv〉 =

∫
Rn
dy
[
v(y)yjv(y)

]
=

∫
Rn
dy
[
u(y + a)yju(y + a)

]
=

∫
Rn
dx
[
u(x)(xj − aj)u(x)

]
= 〈u, xju〉 − aj ,

v̂h(ξ) =

∫
Rn
dy
[
v(y)e−

i
h 〈y,ξ〉

]
=

∫
Rn
dy
[
u(y + a)e−

i
h 〈y,ξ〉

]
=

∫
Rn
dx
[
u(x)e−

i
h 〈x−a,ξ〉

]
= e

i
h 〈a,ξ〉ûh(ξ),

〈v̂h, ξj v̂h〉 =

∫
Rn
dξ
[
v̂h(ξ)ξj v̂h(ξ)

]
=

∫
Rn
dξ
[
e
i
h 〈a,ξ〉ûh(ξ)ξje

i
h 〈a,ξ〉ûh(ξ)

]
=

∫
Rn
dξ
[
ûh(ξ)ξj ûh(ξ)

]
= 〈ûh, ξj ûh〉.

Lemma 3.13. (Shifting the momentum coordinates) Let u ∈ S (Rn) such that ‖u‖L2(Rn) and let b ∈ Rn,
then we can shift the coordinates by setting ξ  η := ξ − b and v̂h(η) := ûh(η + b). The shifted wave
function v satisfies 〈v, xv〉 = 〈u, xu〉 and 〈v, hDv〉 = 〈u, hDu〉 − b.

Proof. This is analogous to the previous lemma.

Corollary 3.14. By setting a := 〈u, xu〉 and b := 〈u, hDu〉, we obtain a shifted wave function v such
that 〈v, xv〉 = 〈v, hDv〉 = 0. So for any u ∈ S (Rn) such that ‖u‖L2(Rn), we can assume without loss of
generality that

σ2
xj = 〈u, x2

ju〉 = ‖xju‖2,

σ2
hDj = 〈u, (hDj)

2u〉 = ‖hDju‖2.

From now on, we will write ‖xju‖ and ‖hDju‖ = (2πh)−n/2‖ξj ûh‖ instead of σxj and σhDj . Only
one more lemma is needed before the uncertainty principle can be proved.

Lemma 3.15. (Commutation relation of position and momentum) The commutation relation of the
position and momentum operators xj and hDj as operators S (Rn)→ S (Rn) is given by

[xj , hDj ] := xjhDj − hDjxj = ih.

Proof. Let u ∈ S (Rn). Then we can simply compute that

[xj , hDj ]u = xjhDju− hDj(xju) =
h

i
(xj∂xju− ∂xj (xju)) = −h

i
u = ihu.
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Proposition 3.16. (Heisenberg uncertainty principle) Let u ∈ S (Rn), then

‖xju‖‖ξj ûh‖ ≥
h

2
‖u‖‖ûh‖. (3.8)

In particular, if ‖u‖L2(Rn) = 1, then

‖xju‖‖hDju‖ ≥
h

2
. (3.9)

Proof. Let u ∈ S (Rn). Using the Cauchy-Schwarz inequality and the previous lemma we obtain

‖xju‖‖hDju‖ ≥ |〈hDju, xju〉| ≥ |=〈hDju, xju〉|

=
1

2
|〈hDju, xju〉 − 〈xju, hDju〉|

=
1

2
|〈(xjhDj − hDjx)u, u〉|

=
1

2
|〈[xj , hDj ]u, u〉| =

h

2
‖u‖2,

hence

‖xhu‖‖ξj ûh‖ = ‖xju‖(2πh)n/2‖hDju‖ ≥
h

2
(2πh)n/2‖u‖2 =

h

2
‖u‖‖ûh‖.
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4 Semiclassical quantisation

In classical mechanics, the state of a system is completely determined by the position and momentum
variables, and all dynamical quantities are a function of said variables. In the context of semiclassical
quantisation, such a function is called a symbol. Examples are: the kinetic energy T := ξ2 or the angular
momentum L := x× ξ (where × is the outer product on R3).

In quantum mechanics, the operators associated with the position and momentum are x and hD,
respectively. This raises the question what operators are associated with the other symbols. In this
section, we will discuss this for various classes of symbols.

Definition 4.1. (Symbols) A function a : R2n → R, (x, ξ) 7→ a(x, ξ) is called a symbol.

Since x and hD do not commute, we can immediately see that there is no canonical way to quantise
symbols that are linear in both arguments, such as a(x, ξ) := 〈x, ξ〉. We could pick any linear combination

a(x, ξ) = t〈x, ξ〉+ (1− t)〈ξ, x〉.

This motivates the following definition.

Definition 4.2. (Semiclassical quantisation) Let t ∈ [0, 1] and let a(x, ξ) be a symbol, then the semi-
classical pseudodifferential operator Opt(a) is defined by

Opt(a)u(x) :=
1

(2πh)n

∫
Rn
dξ

∫
Rn
dy
[
a(tx+ (1− t)y, ξ)u(y)e

i
h 〈x−y,ξ〉

]
. (4.1)

In particular, we will be interested in the standard quantisation a(x, hD) := Op1(a) and the Weyl quan-
tisation aW (x, hD) := Op 1

2
(a).

Remark 4.3. In subsections 4.1, we will show that Opt(a) : L2(Rn)→ L2(Rn) is indeed well-defined for
symbols a ∈ S (R2n). In subsection 4.3, we will show that Opt(a) : S ′(Rn)→ S ′(Rn) is well-defind for
symbols a ∈ Sδ(m).

The Weyl quantisation is the most important quantisation formula because it gives rise to a self-
adjoint operator if the symbol a is real-valued. The standard quantisation is important because

a(x, hD)u(x) =
1

(2πh)n

∫
Rn
dξ

∫
Rn
dy
[
a(x, ξ)u(y)e

i
h 〈x−y,ξ〉

]
=

1

(2πh)n

∫
Rn
dξ
[
a(x, ξ)Fhu(ξ)e

i
h 〈x,ξ〉

]
= F−1

h (a(x, ·)Fhu(·))(x),

for a ∈ S (R2n) and u ∈ S (Rn). This makes that standard quantisation easier to compute. The other
Opt are useful because they allow us to transfer computations from the standard quantisation to the
Weyl quantisation, as we will see in the proof of lemma 4.38.

4.1 Semiclassical quantisation for a ∈ S (R2n)

The following defintion gives a very convenient way to abbreviate the formula for Opt(a).

Definition 4.4. (Kernel of Opt) Let t ∈ [0, 1], then we define the kernel Kt of Opt by

Kt(x, y) :=
1

(2πh)n

∫
Rn
dξ
[
a(tx+ (1− t)y, ξ)e ih 〈x−y,ξ〉

]
= F−1

h (a(tx+ (1− t)y, ·))(x− y).

Note that Opt(a)u(x) =
∫

Rn dy [Kt(x, y)u(y)].

Now assume that a ∈ S (R2n). Since F−1
h : S (Rn) → S (Rn), we also have Kt(x, ·) ∈ S (Rn). So

for u ∈ S ′(Rn) we can define Opt(a)u ∈ S (Rn) by Opt(a)u(x) := u(Kt(x, ·)).
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Lemma 4.5. Let a ∈ S (R2n) be a symbol, t ∈ [0, 1], then Opt(a) : S ′ → S is continuous.

Proof. Consider a sequence uj → u converging in S ′(Rn) and let α, β be multi-indices. Then

xα∂β(u(Kt(x, ·))− uj(Kt(x, ·))) = u(xα∂βKt(x, ·))− uj(xα∂βKt(x, ·))→ 0,

hence Opt(a)uj → Opt(a)u in S (Rn) and Opt(a) is indeed continuous.

Proposition 4.6. Let a ∈ S (R2n) and let h > 0, then the operator

aW (x, hD) : L2(Rn)→ L2(Rn)

is bounded uniformly in h, i.e. there is some constant C > 0 not depending on h such that we have
‖aW (x, hD)u‖ ≤ C‖u‖ for all u ∈ L2(Rn).

Proof. We have a ∈ S (R2n), and so K1/2 ∈ S (R2n). Define the two constants

C1 := sup
x∈Rn

∫
Rn
dy
[
|K1/2(x, y)|

]
<∞,

C2 := sup
y∈Rn

∫
Rn
dx
[
|K1/2(x, y)|

]
<∞,

then the L2-norm of aW (x, hD)u is

‖aW (x, hD)u‖2 = 〈aW (x, hD)u, aW (x, hD)u〉

≤
∫

Rn
dx

∫
Rn
dy

∫
Rn
dz
[
|K1/2(x, y)||u(y)||K1/2(x, z)||u(z)|

]
≤
∫

Rn
dx

∫
Rn
dy

∫
Rn
dz

[
|K1/2(x, y)||K1/2(x, z)|1

2

(
|u(y)|2 + |u(z)|2

)]
=

∫
Rn
dx

∫
Rn
dy

∫
Rn
dz
[
|K1/2(x, y)||K1/2(x, z)||u(y)|2

]
≤ C1C2

∫
Rn
dy
[
|u(y)|2

]
= C1C2‖u‖2

Theorem 4.7. Let a ∈ S (R2n), then the operator aW (x, hD) : L2 → L2 is compact.

Proof. Recall the definition of a compact operator (see C.1). The operator aW (x, hD) is compact if
for any bounded sequence {uk}k∈N ⊂ L2(Rn), the sequence {aW (x, hD)uk}k∈N ⊂ L2(R2n) has some
converging subsequence.

Let {uk}k∈N ⊂ L2(Rn) be a bounded sequence and let k, l ∈ N. We want to find a subsequence {u′k}
of {uk} such that the sequence {aW (x, hD)u′k} converges. Let N ∈ N be some fixed constant (we will
later choose N > n/2), then we have for some sufficiently large constant C > 0 that

‖aW (x, hD)uk − aW (x, hD)ul‖L2

=

∫
Rn
dx
[
|aW (x, hD)uk(x)− aW (x, hD)ul|2

]
=

∫
Rn
dx
[
〈x〉−2N |〈x〉N (aW (x, hD)uk(x)− aW (x, hD)ul(x))|2

]
≤ C‖〈x〉N (aW (x, hD)uk − aW (x, hD)ul)‖L∞ .

So it suffices to show that the sequence {〈x〉NaW (x, hD)u′k} converges in the sup-norm. We will first
construct a candidate subsequence {u′k} and then prove that 〈x〉NaW (x, hD)u′k indeed converges uni-
formly.

For any x ∈ Rn, the sequence {〈x〉NaW (x, hD)uk(x)}k∈N ⊂ C is bounded and therefore admits a
converging subsequence. Consider some countable dense subset of Rn, such as Qn. Enumerate these
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s.t. Qn =
⋃
p∈N{qp}. We inductively define subsequences {u(j)

k }k∈N, j ∈ N, such that {u(j)
k }k∈N ⊂

{u(j−1)
k }k∈N such that {〈qj〉NaW (x, hD)u

(j)
k (qj)}k∈N converges. Define {u′k}k∈N by u′k := u

(k)
k , then

{〈q〉NaW (x, hD)u′k(q)}k∈N converges for all q ∈ Qn.

Let ε > 0. Our goal is to show that there is some K ∈ N such that for all k, l ≥ K and all x ∈ Rn,
|〈x〉NaW (x, hD)u′k(x)− 〈x〉NaW (x, hD)u′l(x)| < ε. Choose N > n/2, and let α, β be multi-indices. Due
to a ∈ S (R2n) there exists some C > 0 s.t.

sup
x∈Rn

|xα∂β(aW (x, hD)u)| ≤ sup
(x,y)∈R2n

|xα∂βx 〈y〉NK(x, y)|
∫

Rn
dy
[
〈y〉−N |u(y)|

]
≤ C‖u‖L2 ,

where we used the Cauchy-Schwartz inequality. The sequence {u′k}k∈N is bounded in the L2-norm, so
there is some M > 0 such that for all k ∈ N, x ∈ Rn,

|∂〈x〉NaW (x, hD)u′k(x)| < M/3, 〈x〉N+1|aW (x, hD)u′k(x)| < M/2.

We will consider two cases: where x is inside some open neighbourhood of 0, and where x is far away
from 0. Let R > 0 be large enough such that M/R ≤ ε. Then

sup
|x|≥R

|〈x〉NaW (x, hD)u′k(x)− 〈x〉NaW (x, hD)u′l(x)|

≤ R−1 sup
|x|≥R

|〈x〉N+1aW (x, hD)u′k(x)|+R−1 sup
|x|≥R

|〈x〉N+1aW (x, hD)u′l(x)|

< M/R < ε.

Finally, {B(q, ε/M)}q∈Qn is an open cover ofB(0, R), and so there is a finite subcover {B(qp, ε/M)}1≤p≤P .
For all 1 ≤ p ≤ P , {〈qp〉NaW (x, hD)u′k(qp)}k∈N converges. So there is some K ∈ N such that for all
k, l ≥ K, 1 ≤ p ≤ P ,

|〈qp〉NaW (x, hD)u′k(qp)− 〈qp〉NaW (x, hD)u′l(qp)| < ε/3.

For any x ∈ B(0, R), choose 1 ≤ p ≤ P such that x− qp < ε/M , then for all k, l ≥ K;

|〈x〉NaW (x, hD)u′k(x)− 〈x〉NaW (x, hD)u′l(x)|
≤ |〈x〉NaW (x, hD)u′k(x)− 〈qp〉NaW (x, hD)u′k(qp)|

+ |〈qp〉NaW (x, hD)u′k(qp)− 〈qp〉NaW (x, hD)u′l(qp)

+ |〈x〉NaW (x, hD)u′l(x)− 〈qp〉NaW (x, hD)u′l(qp)|
< ε/3 + |x− qp|(sup

x
|∂〈x〉NaW (x, hD)u′k(x)|+ sup

x
|∂〈x〉NaW (x, hD)u′l(x)|)

< ε.

Proposition 4.8. (Formal adjoint) Let t ∈ [0, 1] and let a ∈ S (R2n). Then the formal adjoint of Opt(a)
is Op1−t(a), i.e. for all u, v ∈ L2(Rn),

〈u,Opt(a)v〉 =

∫
Rn
dx
[
u(x)Opt(a)v(x)

]
=

∫
Rn
dx
[
Op1−t(a)u(x)v(x)

]
= 〈Op1−t(a)u, v〉.

Proof. Let Kt be the kernel of Opt(a), then its complex conjugate is

Kt(x, y) =
1

(2πh)n

∫
Rn
dξ
[
a(tx+ (1− t)y, ξ)e− i

h 〈x−y,ξ〉
]

=
1

(2πh)n

∫
Rn
dξ
[
a((1− t)y + (1− (1− t))x, ξ)e ih 〈y−x,ξ〉

]
,
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which is precisely the kernel of Op1−t(a). Hence

〈u,Opt(a)v〉 =

∫
Rn
dx
[
u(x)Opt(a)v(x)

]
=

∫
Rn
dx

∫
Rn
dy
[
u(x)Kt(x, y)v(y)

]
=

∫
Rn
dx

∫
Rn
dy
[
Kt(x, y)u(x)v(y)

]
=

∫
Rn
dy
[
Op1−t(a)u(y)v(y)

]
= 〈Op1−t(a)u, v〉.

Lemma 4.9. Let a ∈ S ′(Rn × Rn), then Opt(a) : S → S ′.

Proof. If a ∈ S ′(Rn×Rn), then Kt ∈ S ′(Rn×Rn). Now let u, v ∈ S (Rn) and define v⊗u ∈ S (Rn×Rn)
by v ⊗ u(x, y) := v(x)u(y). Then we can define Opt(a)u ∈ S ′(Rn) by Opt(a)u(v) := Kt(v ⊗ u).

4.2 Composition of the Weyl quantisation

Let a, b be symbols, then we can ask what should be the symbol c such that cW (x, hD) = aW (x, hD)bW (x, hD).
We will denote this symbol by a#b := c. In this subsection, we will prove that

a#b(z) = e
i
2hσ(hDz,hDw)(a(z)b(w))|z=w.

In order to prove this, we will decompose symbols into Fourier components. The following lemmas will
be useful.

Definition 4.10. (Linear symbols) A symbol l of the form l(z) := 〈z∗, z〉 = 〈x∗, x〉 + 〈ξ∗, ξ〉 for some
z∗ = (x∗, ξ∗) ∈ R2n is called a linear symbol. We will identify linear symbols l with their point z∗ ∈ R2n.

Now let a ∈ S (R2n), then its semiclassical Fourier transform and its inverse are

âh(l) =

∫
R2n

dz
[
a(z)e−

i
h l(z)

]
, a(z) =

1

(2πh)2n

∫
R2n

dl
[
âh(l)e

i
h l(z)

]
,

and so the quantisation is

Opt(a) =
1

(2πh)2n

∫
R2n

dl
[
âh(l)Opt

(
e
i
h l(·)

)]
.

for all t ∈ [0, 1]. The following lemmas deal with the quantisation and composition of such exponentials.

Lemma 4.11. (Quantisation of linear symbols) Consider the linear symbol l(x, ξ) := 〈x∗, x〉 + 〈ξ∗, ξ〉,
then we have for all t ∈ [0, 1] that

Opt(l)u(x) = (〈x∗, x〉+ 〈ξ∗, hD〉)u(x) (4.2)

Proof. This is just a simple calculation.

Opt(l)u(x) =
1

(2πh)n

∫
Rn
dξ

∫
Rn
dy
[
e
i
h 〈x−y,ξ〉l(tx+ (1− t)y, ξ)u(y)

]
= t〈x∗, x〉u(x) + (1− t)F−1

h ◦Fh(〈x∗, ·〉u(·))(x) + F−1
h (〈ξ∗, ·〉ûh(·))(x)

= 〈x∗, x〉u(x) + 〈ξ∗, hDx〉u(x).

Lemma 4.12. (Quantisation of exponentials of linear symbols) Let l be a linear symbol, and define the

symbol a(z) := e
i
h l(z). Then we have

Opt(a)u(x) := e
i
h 〈x
∗,x〉+ i

h (1−t)〈x∗,ξ∗〉u(x+ ξ∗). (4.3)

for all t ∈ [0, 1].
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Proof. Again, we can simply calculate

Opt(a)u(x) =
1

(2πh)n

∫
Rn
dξ

∫
Rn
dy
[
e
i
h 〈x−y,ξ〉e

i
h l(tx+(1−t)y,ξ)u(y)

]
=

1

(2πh)n

∫
Rn
dξ

∫
Rn
dy
[
e
i
h 〈x−y,ξ〉e

i
h 〈x
∗,tx+(1−t)y〉+ i

h 〈ξ
∗,ξ〉u(y)

]
= e

i
h t〈x

∗,x〉 1

(2πh)n

∫
Rn
dξ

∫
Rn
dy
[
e
i
h 〈x+ξ∗−y,ξ〉e

i
h (1−t)〈x∗,y〉u(y)

]
= e

i
h t〈x

∗,x〉e
i
h (1−t)〈x∗,x+ξ∗〉u(x+ ξ∗)

= e
i
h 〈x
∗,x〉+ i

h (1−t)〈x∗,ξ∗〉u(x+ ξ∗).

Remark 4.13. We can write

e
i
h l(x,hD)u(x) = e

i
h (〈x∗,x〉+ 1

2 〈x
∗,ξ∗〉)u(x+ ξ∗),

so that (
e
i
h l(·)

)W
(x, hD) = e

i
h l(x,hD) (4.4)

Proof. Let u ∈ S (Rn) and t ∈ R. The partial differential equation h
i ∂tv(x, t) = l(x, hD)v(x, t) with

boundary condition v(x, 0) = u(x) has a unique solution, but it is solved by

v(x, t) = e
it
h l(x,hD)u(x)

as well as by

v(x, t) = e
i
h (t〈x∗,x〉+ t2

2 〈x
∗,ξ∗〉)u(x+ tξ∗),

hence these expressions must coincide.

We will now find a#b for exponentials of linear symbols. Then we can generalise this to arbitrary
a, b ∈ S (R2n) by using the Fourier decomposition of a and b.

Lemma 4.14. (Composition of exponentials of linear symbols) Let l,m ∈ S (R2n) be linear, i.e. l =
(x∗1, ξ

∗
1) and m = (x∗2, ξ

∗
2) for some (x∗1, ξ

∗
1), (x∗2, ξ

∗
2) ∈ R2n, then

e
i
h l(x,hD)e

i
hm(x,hD) = e

i
2hσ(l,m)e

i
h (l+m)(x,hD), (4.5)

where σ(l,m) := 〈x∗2, ξ∗1〉 − 〈x∗1, ξ∗2〉 is the standard symplectic product on R2n.

Proof.

e
i
h l(x,hD)e

i
hm(x,hD)u(x) = e

i
h l(x,hD)e

i
h 〈x
∗
2 ,x+ 1

2 ξ
∗
2 〉u(x+ ξ∗2)

= e
i
h 〈x
∗
1 ,x+ 1

2 ξ
∗
1 〉e

i
h 〈x
∗
2 ,x+ξ∗1+ 1

2 ξ
∗
2 〉u(x+ ξ∗2 + ξ∗1)

= e
i
2h (〈x∗2 ,ξ

∗
1 〉−〈x

∗
1 ,ξ
∗
2 〉)e

i
h 〈x
∗
1+x∗2 ,x+ 1

2 ξ
∗
1+ 1

2 ξ
∗
2 〉u(x+ ξ∗1 + ξ∗2)b

= e
i
2hσ(l,m)e

i
h (l+m)(x,hD).

Theorem 4.15. (Fourier decomposition of aW ) Let a ∈ S (R2n) and l ∈ R2n, then

aW (x, hD) =
1

(2πh)2n

∫
R2n

dl
[
âh(l)e

i
h l(x,hD)

]
. (4.6)

Moreover, if a ∈ S ′(R2n) and u, v ∈ S (Rn), then we can view e
i
h l(x,hD)u as a tempered distribution by

setting

e
i
h l(x,hD)u(v) :=

∫
Rn
dx
[
e
i
h l(x,hD)u(x)v(x)

]
,

which is itself in S (R2n) as a function of l, so

aW (x, hD)(u)(v) =
1

(2πh)2n
âh

(
l 7→ e

i
h l(x,hD)u(v

)
. (4.7)
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Theorem 4.16. (Composition) Let a, b ∈ S (R2n), then the symbol a#b defined by

a#b(z) := e
i
2hσ(hDz,hDw)(a(z)b(w))|z=w (4.8)

satisfies
(a#b)W (x, hD) = aW (x, hD)bW (x, hD). (4.9)

Proof. Recall that σ(hDz, hDw) = 〈hDξ, hDy〉 − 〈hDη, hDx〉, so

e
i
2hσ(hDz,hDw)e

i
h (l(z)+m(w))

=

∞∑
k=0

[
1

k!

(
i

2h

)k
σ(hDz, hDw)ke

i
h (l(z)+m(w))

]

=

∞∑
k=0

[
1

k!

(
i

2h

)k
(〈hDξ, hDy〉 − 〈hDη, hDx〉)ke

i
h (l(z)+m(w))

]

=

∞∑
k=0

[
1

k!

(
i

2h

)k
e
i
h (l(z)+m(w))(〈ξ∗1 , x∗2〉 − 〈ξ∗2 , x∗1〉)k

]

=

∞∑
k=0

[
1

k!

(
i

2h

)k
σ(l,m)ke

i
h (l(z)+m(w))

]
= e

i
2hσ(l,m)e

i
h (l(z)+m(w)).

Using the Fourier decomposition of a and b, a#b can be written as

a#b(z)

=
1

(2πh)4n

∫
R2n

dl

∫
R2n

dm
[
e
i
2hσ(hDz,hDw)e

i
h (l(z)+m(w))|z=wâh(l)b̂h(m)

]
=

1

(2πh)4n

∫
R2n

dl

∫
R2n

dm
[
e
i
2hσ(l,m)e

i
h (l+m)(z)âh(l)b̂h(m)

]
,

so its Weyl quantisation becomes

(a#b)W (x, hD)

=
1

(2πh)4n

∫
R2n

dl

∫
R2n

dm
[
e
i
2hσ(l,m)e

i
h (l+m)(x,hD)âh(l)b̂h(m)

]
=

1

(2πh)4n

∫
R2n

dl

∫
R2n

dm
[
e
i
h l(x,hD)e

i
hm(x,hD)âh(l)b̂h(m)

]
= aW (x, hD)bW (x, hD).

Symbols of the form a(x, ξ) = a(ξ) =
∑
α cαξ

α for certain constants cα have the property that

Opt(a)u(x) =
1

(2πh)n

∫
Rn
dξ

∫
Rn
dy

[∑
α

cαξ
αu(y)e

i
h 〈x−y,ξ〉

]

=
1

(2πh)n

∫
Rn
dξ

[∑
α

cαξ
αûh(ξ)e

i
h 〈x,ξ〉

]
=
∑
α

cα(hD)αu(x).

This allows us to write equation (4.8) in integral form.

Lemma 4.17. (Integral form of a#b) Let a, b ∈ S (R2n) and z ∈ R2n, then

a#b(z) =
1

(πh)2n

∫
R2n

dw1

∫
R2n

dw2

[
e−

2i
h σ(w1,w2)a(z + w1)b(z + w2)

]
(4.10)
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Proof. Let (w1, w2) = (y1, η1, y2, η2) ∈ R4n take the role of y, and let (z, w) = (x, ξ, y, η) ∈ R4n the role
of x, and (z′, w′) ∈ R4n take the role of ξ. Then

a#b(z) = e
i
2hσ(hDz,hDw)(a(z)b(w))|z=w

=
1

(2πh)4n

∫
R4n

d(w1, w2)

∫
R4n

d(z′, w′)
[
e
i
2hσ(z′,w′)e

i
h 〈(z,w)−(w1,w2),(z′,w′)〉a(w1)b(w2)

]∣∣∣
z=w

=

∫
R4n

d(w1, w2)
[
F−1
h

(
(z′, w′) 7→ e

i
2hσ(z′,w′)

)
(z − w1, z − w2)a(w1)b(w2)

]
=

∫
R4n

d(w1, w2)
[
F−1
h

(
(z′, w′) 7→ e

i
2hσ(z′,w′)

)
(−w1,−w2)a(z + w1)b(z + w2)

]
,

where the inverse Fourier transform is given by

F−1
h

(
(z, w) 7→ e

i
2hσ(z,w)

)
(w1, w2) =

1

(2πh)4n

∫
R4n

d(z, w)
[
e
i
2hσ(z,w)e

i
h 〈(w1,w2),(z,w)〉

]
=

1

(2πh)2n

∫
R2n

d(x, η)
[
e−

i
2h 〈x,η〉e

i
h 〈x,y1〉e

i
h 〈η,η2〉

]
· 1

(2πh)2n

∫
R2n

d(y, ξ)
[
e
i
2h 〈y,ξ〉e

i
h 〈y,y2〉e

i
h 〈ξ,η1〉

]
=

1

(2πh)2n

∫
Rn
dη

[
e
i
h 〈η,η2〉

∫
Rn
dx
[
e
i
h 〈

x
2 ,2y1〉e−

i
h 〈

x
2 ,η〉
]]

· 1

(2πh)2n

∫
Rn
dy

[
e
i
h 〈y,y2〉

∫
Rn
dξ
[
e
i
h 〈

ξ
2 ,2η1〉e

i
h 〈y,

ξ
2 〉
]]

=
1

(2πh)2n

∫
Rn
dη
[
2nFh

(
x 7→ e

i
h 〈x,2y1〉

)
(η)e

i
h 〈η,η2〉

]
· 1

(2πh)n

∫
Rn
dy
[
2nF−1

h

(
ξ 7→ e

i
h 〈ξ,2η1〉

)
(y)e−

i
h 〈y,−y2〉

]
=

1

(πh)n
e

2i
h 〈y2,η1〉 · 1

(πh)n
e−

2i
h 〈y2,η1〉 =

1

(πh)2n
e

2i
h σ(w1,w2).

Corollary 4.18. (# is associative) Let a, b, c ∈ S (R2n), then (a#b)#c = a#(b#c).

Proof. Using the integral form, we obtain:

(a#b)#c(z) =
1

(2πh)4n

∫
R8n

dw̃1dw̃2dw1dw2

[
e−

2i
h (σ(w̃1,w̃2)+σ(w1,w2))a(z + w̃1 + w1)b(z + w̃1 + w2)c(z + w̃2)

]
a#(b#c)(z) =

1

(2πh)4n

∫
R8n

dṽ1dṽ2dv1dv2

[
e−

2i
h (σ(ṽ1,ṽ2)+σ(v1,v2))a(z + ṽ1)b(z + ṽ2 + v1)c(z + ṽ2 + v2)

]
It is easy to see that these integrals are equal by using the substitution v1 = w̃1, v2 = w̃2 − w2, ṽ1 =
w̃1 + w1, ṽ2 = w2.

Definition 4.19. Let ϕ ∈ S (Rn), N ∈ N, then we say ϕ = OS (hN ) if for all multi-indices α, β, there
is a constant Cα,β > 0 such that

sup
x∈Rn

|xα∂βϕ(x)| ≤ Cα,βhN

as h→ 0.

Theorem 4.20. Let a, b ∈ S (R2n), and N ∈ N, then

a#b(z) =

N−1∑
k=0

[
1

k!

(
ih

2

)k
σ(Dz, Dw)k(a(z)b(w))

]∣∣∣∣∣
z=w

+OS (hN ) (4.11)

as h→ 0.
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Proof. First note that

F−1
(

(z, w) 7→ e−
2i
h σ(z,w)

)
(w1, w2) =

(
h

4π

)2n

e
ih
2 σ(w1,w2),

the proof of which is similar to the calculation in the previous lemma. Now we have for all z ∈ R2n,

a#b(z) =
1

(πh)2n

∫
R2n

dw1

∫
R2n

dw2

[
e−

2i
h σ(w1,w2)a(z + w1)b(z + w2)

]
=

1

(πh)2n

∫
R2n

dw1

∫
R2n

dw2

[
F−1

(
(z, w) 7→ e−

2i
h σ(z,w)

)
(w1, w2)ei〈z,w1+w2〉â(w1)b̂(w2)

]
=

1

(2π)4n

∫
R2n

dw1

∫
R2n

dw2

[
e
ih
2 σ(w1,w2)ei〈z,w1+w2〉â(w1)b̂(w2)

]
=

1

(2π)4n

∫
R2n

dw1

∫
R2n

dw2

[
ei(

h
2 σ(w1,w2)+〈z,w1+w2〉)F (a⊗ b)(w1, w2)

]
.

We will introduce the convenient notation Jz(h, a⊗ b) := a#b(z) as well as P := i
2σ(Dw′1

, Dw′2
). Then

∂hJz(h, a⊗ b)

=
1

(2π)4n

∫
R4n

d(w1, w2)

[
ei(

h
2 σ(w1,w2)+〈z,w1+w2〉) i

2
σ(w1, w2)F (a⊗ b)(w1, w2)

]
=

1

(2π)4n

∫
R4n

d(w1, w2)
[
ei(

h
2 σ(w1,w2)+〈z,w1+w2〉)F (Pa⊗ b)(w1, w2)

]
= Jz(h, Pa⊗ b)

Consequently, ∂khJz(h, a ⊗ b) = Jz(h, P
ka ⊗ b) for all k ∈ N. Taylor’s theorem around h = 0 now gives

for any N ∈ N that

a#b(z) =

N−1∑
k=0

[
hk

k!
Jz(0, P

ka⊗ b)
]

+
hN

N !
Rz,N (h, a⊗ b)

where Rz,N (h, a⊗ b) := N
∫ 1

0
dt[(1− t)N−1Jz(th, P

Na⊗ b)]. It is now left to show that Jz(0, P
ka⊗ b) is

indeed the required expression and that the rest term is indeed OS (hN ), i.e. |Rz,N (h, a⊗ b)| is bounded
independent of h.

• Jz(0, P
ka⊗ b)

=
1

(2π)4n

∫
R4n

d(w1, w2)

[
F

(
(w′1, w

′
2) 7→

(
i

2

)k
σ(Dw′1

, Dw′2
)ka(w′1)b(w′2)

)
(w1, w2)ei〈z,w1+w2〉

]

=

(
i

2

)k
σ(Dz, Dw)ka(z)b(w)

∣∣∣∣∣
z=w

• |Rz,N (h, a⊗ b)|

=

∣∣∣∣N ∫ 1

0

dt
[
(1− t)N1Jz(th, p

Na⊗ b)
]∣∣∣∣ ≤ CN‖F (PNa⊗ b)‖L1

≤ CN max
|α|≤n+1

‖∂αPNa⊗ b‖L1 ≤ CN max
|α|≤N+n+1

‖∂αa⊗ b‖L1 ,

by lemma 3.6.

Corollary 4.21. Let a, b ∈ S (R2n), then

a#b = ab+
h

2i
{a, b}+OS (h2) (4.12)

and

[aW (x, hD), bW (x, hD)] =
h

i
{a, b}W (x, hD) +OS (h3) (4.13)

where [A,B] := AB−BA is the commutator and {f, g} :=
∑n
j=1(fξjgxj − fxjgξj ) is the Poisson bracket

on C∞(R2n).
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Proof.

a#b(z)

= a(z)b(z) +
ih

2
σ(Dz, Dw)a(z)b(w)

∣∣∣∣
z=w

+OS (h2)

= a(z)b(z) +
h

2i
(∂y∂ξ − ∂x∂η)a(x, ξ)b(y, η)

∣∣∣∣
(x,ξ)=(y,η)

+OS (h2)

= a(z)b(z) +
h

2i
{a, b}(z) +OS (h2)

[aW (x, hD), bW (x, hD)]

= (a#b)W (x, hD)− (b#a)W (x, hD)

=
h

i
{a, b}W (x, hD)− h2

8
σ(Dz, Dw)2(a(z)b(w)− b(z)a(w))

∣∣∣∣
z=w

+OS (h3)

=
h

i
{a, b}W (x, hD) +OS (h3)

4.3 Symbol classes

In this subsection we will prove that aW (x, hD) : L2 → L2 is well-defined as a bounded operator for
certain symbol classes that are larger than S (R2n).

Definition 4.22. (Order functions) A measurable function m : R2n −→ (0,∞) is called an order function
if ∃C,N ∈ R such that ∀w, z ∈ R2n,

m(w) ≤ C〈z − w〉Nm(z),

where 〈z〉 :=
√

1 + |z|2.

Proposition 4.23. Let m, m1, and m2 be order functions and let a ∈ [0,∞), then ma, 1/m, m1 +m2,
and m1m2 are order functions as well. Moreover, mk,l defined by

mk,l(z) := 〈x〉k + 〈ξ〉l (4.14)

is an order function for all k, l ∈ R.

Proof. Since m is an order function, there are constants C,N ∈ R such that m(w) ≤ C〈z−w〉Nm(z) for
all w, z ∈ R2n. Then

ma(w) ≤ Ca〈z − w〉Nama(z), and

1

m(z)
≤ C〈z − w〉N 1

m(w)
.

Now let Cj , Nj ∈ R such that mj(w) ≤ Cj〈z − w〉Njmj(z) for j = 1, 2 and all w, z ∈ R2n, and assume
without loss of generality that N1 ≤ N2. Then

(m1 +m2)(w) = m1(w) +m2(w) ≤ C1〈z − w〉N1m1(z) + C2〈z − w〉N2m2(z)

= 〈z − w〉N2

(
C1〈z − w〉−(N2−N1)m1(z) + C2m2(z)

)
≤ 〈z − w〉N2 (C1m1(z) + C2m2(z))

≤ max(C1, C2)〈z − w〉N2(m1 +m2)(z),

(m1m2)(w) = m1(w)m2(w) ≤ C1C2〈z − w〉N1+N2(m1m2)(z).

Now it is only left to show that m(w) := 〈x〉 is an order function. Note that

m(w) = 〈y〉 =
√

1 + |y|2 ≤
√

1 + (|y − x|+ |x|)2

=
√

1 + |y − x|2 + |x|2 + 2|x||y − x|
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We will consider two cases: (a) |x||y − x| ≤ 1, and (b) |x||y − x| ≥ 1. Then

m(w)
(a)

≤
√

1 + |x− y|2 + |x|2 + 2 ≤
√

2
√

1 + |x− y|2 + 1 + |x|2

≤
√

2 (〈y − x〉+ 〈x〉) ≤ 2
√

2 max(〈y − x〉, 〈x〉)

≤ 2
√

2〈y − x〉〈x〉 = 2
√

2〈y − x〉m(z),

m(w)
(b)

≤
√

1 + |y − x|2 + |x|2 + 2|y − x|2|x|2 ≤
√

2
√

(1 + |y − x|2)(1 + |x|2)

=
√

2〈y − x〉〈x〉 =
√

2〈y − x〉m(z).

Definition 4.24. (Symbol classes) Let m : R2n → (0,∞) be an order function and let δ ≥ 0, then

Sδ(m) := {a ∈ C∞ | ∀α,∃Cα > 0; |∂αa| ≤ Cαh−δ|α|m}. (4.15)

We shall write S(m) := S0(m), Sδ := Sδ(1), and S := S0(1). Note that

sup
z,h

m <∞ =⇒ Sδ(m) ⊆ Sδ,

inf
z,h

m > 0 =⇒ Sδ ⊆ Sδ(m).

The constant δ ≥ 0 is relevant in case we want to study aW (x, hD) in the limit h→ 0. Of course, the

quantisation formula (4.1) itself already depends on h. By rescaling x̃ := h−
1
2x, ξ̃ := h−

1
2 ξ, ỹ := h−

1
2 y,

ũ(x̃) := u(x) = u(h
1
2 x̃), ã(x̃, ξ̃) := a(x, ξ) = a(h

1
2 x̃, h

1
2 ξ̃), we obtain

aW (x, hD)u(x) =
1

(2πh)n

∫
Rn
dξ

∫
Rn
dy

[
e
i
h 〈x−y,ξ〉a

(
x+ y

2
, ξ

)
u(y)

]
=

1

(2πh)n
hn
∫

Rn
dξ̃

∫
Rn
dỹ

[
ei〈x̃−ỹ,ξ̃〉a

(
h

1
2
x̃+ ỹ

2
, h

1
2 ξ

)
u(h

1
2 ỹ)

]
=

1

(2π)n

∫
Rn
dξ̃

∫
Rn
dỹ

[
ei〈x̃−ỹ,ξ̃〉ã

(
x̃+ ỹ

2
, ξ̃

)
ũ(ỹ)

]
= ãW (x̃, D)ũ(x̃).

Let δ ≥ 0, let m be an order function, and let a ∈ Sδ(m). Then for all multi-indices α, the rescaled

function ã satisfies |∂αã| = h
1
2 |α||∂αa| ≤ Cαh

|α|( 1
2−δ)m. This is unbounded as h→ 0 for δ > 1

2 , so from
now on we will always assume that 0 ≤ δ ≤ 1

2 .

Proposition 4.25. Let δ ≥ 0 and t ∈ [0, 1]. Let m be an order function, and let a ∈ Sδ(m). Then

Opt(a) : S (Rn)→ S (Rn)

is a continuous linear operator.

Proof. Let u ∈ S (Rn). We want to prove that x 7→ Opt(a)u(x) is again a Schwartz function. We
will first prove that supx∈Rn |Opt(a)u(x)| < ∞. Then, for 1 ≤ j ≤ n, we will apply this to the cases
xjOpt(a)u(x) and ∂jOpt(a)u(x) by writing these as the finite sum of functions of the form Opt(b)v(x)
for certain b ∈ Sδ(m), v ∈ S (Rn).

Let C,N > 0 such that m(w) ≤ C〈z − w〉Nm(z) for all w, z ∈ R2n. Then for all 1 ≤ j ≤ n,

hDyje
i
h 〈x−y,ξ〉 = −ξje

i
h 〈x−y,ξ〉, and

hDξje
i
h 〈x−y,ξ〉 = (xj − yj)e

i
h 〈x−y,ξ〉.

So for the operators L1 and L2 defined by

L1 :=
1− 〈ξ, hDy〉

1 + |ξ|2
=

1− 〈ξ, hDy〉
〈ξ〉2

,

L2 :=
1 + 〈x− y, hDξ〉

1 + |x− y|2
=

1 + 〈x− y, hDξ〉
〈x− y〉2

,
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the identities L1e
i
h 〈x−y,ξ〉 = L2e

i
h 〈x−y,ξ〉 = e

i
h 〈x−y,ξ〉 hold. Then we obtain

Opt(a)u(x) =
1

(2πh)n

∫
R2n

d(ξ, y)
[
e
i
h 〈x−y,ξ〉a (tx+ (1− t)y, ξ)u(y)

]
=

1

(2πh)n

∫
R2n

d(ξ, y)
[
LN+n+1

1

(
e
i
h 〈x−y,ξ〉

)
a (tx+ (1− t)y, ξ)u(y)

]
=

1

(2πh)n

∫
R2n

d(ξ, y)

[
e
i
h 〈x−y,ξ〉

N+n+1∑
k=0

〈ξ, hDy〉k

〈ξ〉2(N+n+1)
(a (tx+ (1− t)y, ξ)u(y))

]

by integration by parts, where the boundary term vanishes because u(y) is a Schwartz function,

=
1

(2πh)n

∫
R2n

d(ξ, y)

[
LN+n+1

2

(
e
i
h 〈x−y,ξ〉

)N+n+1∑
k=0

〈ξ, hDy〉k

〈ξ〉2(N+n+1)
(a (tx+ (1− t)y, ξ)u(y))

]

=
1

(2πh)n

∫
R2n

d(ξ, y)

[
e
i
h 〈x−y,ξ〉

·
N+n+1∑
l=0

(−1)l〈x− y, hDξ〉l

〈x− y〉2(N+n+1)

[
N+n+1∑
k=0

〈ξ, hDy〉k

〈ξ〉2(N+n+1)
(a (tx+ (1− t)y, ξ)u(y))

]]
by integration by parts where the boundary term vanishes because a and all its derivatives grow by at
most ∼ 〈ξ〉N .

All derivatives of a(tx+ (1− t)y, ξ)u(y) grow by at most ∼ 〈x− y〉N 〈ξ〉N , hence for some C > 0,

sup
x∈Rn

|Opt(a)u(x)| ≤ C
∫

Rn
dξ

∫
Rn
dy

[
1

〈x− y〉n+1

1

〈ξ〉n+1

]
<∞.

Now let 1 ≤ j ≤ n, then

(2πh)nxjOpt(a)u(x)

=

∫
R2n

d(ξ, y)

[
xje

i
h 〈x−y,ξ〉

N+n+1∑
k=0

〈ξ, hDy〉k

〈ξ〉2(N+n+1)
(a (tx+ (1− t)y, ξ)u(y))

]

=

∫
R2n

d(ξ, y)

[
(yj + hDξj )

(
e
i
h 〈x−y,ξ〉

)N+n+1∑
k=0

〈ξ, hDy〉k

〈ξ〉2(N+n+1)
(a (tx+ (1− t)y, ξ)u(y))

]

=

∫
R2n

d(ξ, y)

[
e
i
h 〈x−y,ξ〉(yj − hDξj )

N+n+1∑
k=0

〈ξ, hDy〉k

〈ξ〉2(N+n+1)
(a (tx+ (1− t)y, ξ)u(y))

]
,

(2πh)nhDxja
W (x, hD)u(x)

=

∫
R2n

d(ξ, y)
[
hDxj

(
e
i
h 〈x−y,ξ〉a (tx+ (1− t)y, ξ)

)
u(y)

]
=

∫
R2n

d(ξ, y)
[(
ξje

i
h 〈x−y,ξ〉a (tx+ (1− t)y, ξ) + e

i
h 〈x−y,ξ〉hDxja

(
x+ y

2
, ξ

))
u(y)

]

=

∫
R2n

d(ξ, y)

[
e
i
h 〈x−y,ξ〉

[
1 + 〈ξ, hDy〉
〈ξ〉2

(ξja (tx+ (1− t)y, ξ)u(y)) + hDxja

(
x+ y

2
, ξ

)
u(y)

]]
.

Now let {uj}j∈N ⊂ S (Rn) be a Cauchy sequence converging to 0, then it is clear from the above
expressions that the sequence Opt(a)uj also converges to 0 in S (Rn), hence Opt(a) is continuous.

Proposition 4.26. Let δ ≥ 0, t ∈ [0, 1]. Let m be an order function, and let a ∈ Sδ(m). Then

Opt(a) : S ′(Rn)→ S ′(Rn)

is a continuous linear operator.
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Proof. Let u, v ∈ S (Rn) and define ξ̃ := −ξ, ã(x, ξ̃) := a(x, ξ) = a(x,−ξ̃), then∫
Rn
dx [v(x)Opt(a)u(x)]

=
1

(2πh)n

∫
Rn
dx

∫
Rn
dξ

∫
Rn
dy
[
e
i
h 〈x−y,ξ〉a (tx+ (1− t)y, ξ)u(y)v(x)

]
=

∫
Rn
dy

[
u(y)

1

(2πh)n

∫
R2n

d(ξ, x)
[
e
i
h 〈y−x,−ξ〉a (tx+ (1− t)y,−(−ξ)) v(x)

]]
=

∫
Rn
dy

[
u(y)

1

(2πh)n

∫
R2n

d(ξ̃, x)
[
e
i
h 〈y−x,ξ̃〉a

(
tx+ (1− t)y,−ξ̃

)
v(x)

]]
=

∫
Rn
dy

[
u(y)

1

(2πh)n

∫
R2n

d(ξ̃, x)
[
e
i
h 〈y−x,ξ̃〉ã

(
tx+ (1− t)y, ξ̃

)
v(x)

]]
=

∫
Rn
dy [u(y)Opt(ã)v(y)] ,

so we can define for u ∈ S ′(Rn) and v ∈ S (Rn) that

(Opt(a)u)(v) := u(Opt(ã)v).

So far, we have considered quantisation for symbols in S (Rn) or in Sδ(m). We will now try to
construct such a symbol for a given operator A : S ′ → S ′. It turns out that for all t ∈ [0, 1] and all
a ∈ Sδ(m), the identity

a(x, ξ) = e
i
h (t−1)〈hDx,hDξ〉

(
e−

i
h 〈x,ξ〉Opt(a)

(
x 7→ e

i
h 〈x,ξ〉

))
(x) (4.16)

holds. We will first prove this for standard quantisation, i.e. t = 1.

Lemma 4.27. Let 0 ≤ δ ≤ 1
2 and let m be an order function. Let a ∈ Sδ(m), then

a(x, ξ) = e−
i
h 〈x,ξ〉a(x, hD)

(
x 7→ e

i
h 〈x,ξ〉

)
(x). (4.17)

Proof. Using example 3.9, we obtain

e−
i
h 〈x,ξ〉a(x, hD)

(
x 7→ e

i
h 〈x,ξ〉

)
(x)

= e−
i
h 〈x,ξ〉

1

(2πh)n

∫
Rn
dη

∫
Rn
dy
[
e
i
h 〈x−y,η〉a(x, η)e

i
h 〈y,ξ〉

]
=

∫
Rn
dη

[
a(x, η)e

i
h 〈x,η−ξ〉

1

(2πh)n

∫
Rn
dy
[
e
i
h 〈y,η−ξ〉

]]
=

∫
Rn
dη
[
a(x, η)e

i
h 〈x,η−ξ〉δ0(η − ξ)

]
= a(x, ξ).

Proposition 4.28. Let 0 ≤ δ ≤ 1
2 and let m be an order function. Let b ∈ Sδ(m) and define for t ∈ [0, 1];

a(x, ξ) := e−
i
h (1−t)〈hDx,hDξ〉b(x, ξ).

Then a ∈ Sδ(m) and Opt(a) = Op1(b) = b(x, hD). Moreover, if b ∈ S (R2n), then also a ∈ S (R2n).

Proof. The operator e−
i
h (1−t)〈hDx,hDξ〉 arises by quantisation from the symbol A(z, z′) = e−

i
h (1−t)〈x′,ξ′〉,

where z = (x, ξ) takes the role of x, z′ = (x′, ξ′) takes the role of ξ, and w = (y, η) takes the role of y,
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i.e.

e−
i
h (1−t)〈hDx,hDξ〉b(x, ξ)

=
1

(2πh)2n

∫
R2n

dz′
∫

R2n

dw
[
e
i
h 〈z−w,z

′〉e−
i
h (1−t)〈x′,ξ′〉b(w)

]
=

1

(2πh)2n

∫
R2n

d(ξ′, η)

∫
R2n

d(x′, y)
[
e
i
h 〈x−y,x

′〉e
i
h 〈ξ−η,ξ

′〉e−
i
h (1−t)〈x′,ξ′〉b(y, η)

]
=

1

(2πh)n

∫
R2n

d(ξ′, η)

[
1

(2πh)n

∫
R2n

d(x′, y)
[
e
i
h 〈x−(1−t)ξ′−y,x′〉e

i
h 〈ξ−η,ξ

′〉b(y, η)
]]

=
1

(2πh)n

∫
R2n

d(ξ′, η)
[
e
i
h 〈ξ−η,ξ

′〉b(x− (1− t)ξ′, η)
]
.

Now we can define

L1 :=
1− 〈ξ′, hDη〉

1 + |ξ′|2
=

1− 〈ξ′, hDη〉
〈ξ′〉2

,

L2 :=
1 + 〈ξ − η, hDξ′〉

1 + |ξ − η|2
=

1 + 〈ξ − η, hDξ′〉
〈ξ − η〉2

,

so that L1e
i
h 〈ξ−η,ξ

′〉 = L2e
i
h 〈ξ−η,ξ

′〉 = e
i
h 〈ξ−η,ξ

′〉. Now we can use arguments similar to those in the proof
of proposition 4.25 to show that b ∈ S (R2n) =⇒ a ∈ S (R2n) and b ∈ Sδ(m) =⇒ a ∈ Sδ(m).

Now let b ∈ S (R2n) and u ∈ S (Rn), then

Opt(a)u(x)

=
1

(2πh)n

∫
R2n

dl
[
âh(l) Opt

(
e
i
h l(·)

)
u(x)

]
=

1

(2πh)n

∫
R2n

dl
[
Fh

(
e−

i
h (1− t)〈hDx, hDξ〉b(x, ξ)

)
(l) Opt

(
e
i
h l(·)

)
u(x)

]
=

1

(2πh)n

∫
R2n

dl
[
e−

i
h (1−t)〈x∗,ξ∗〉b̂h(l)e

i
h 〈x
∗,x〉+ i

h (1−t)〈x∗,ξ∗〉u(x+ ξ∗)
]

=
1

(2πh)n

∫
R2n

dl
[
b̂h(l)e

i
h 〈x
∗,x〉u(x+ ξ∗)

]
=

1

(2πh)n

∫
R2n

dl
[
b̂h(l)Op1

(
e
i
h l(·)

)
u(x)

]
= Op1(b)u(x).

Using the fact that S (R2n) ⊂ Sδ(m) is dense, we obtain Opt(a) = Op1(b) for all b ∈ Sδ(m).

Definition 4.29. (Order of vanishing) Let 0 ≤ δ ≤ 1
2 and let m be an order function. Then a function

a ∈ Sδ(m) is said to vanish with order N as h → 0 if for each multi-index α there is a constant C > 0
such that |∂αa| ≤ ChN−δ|α|m. If this is the case, we write a = OSδ(m)(h

N ).

Proposition 4.30. (Composition) Let 0 ≤ δ < 1
2 and let m1 and m2 be order functions. Let a ∈

Sδ(m1), b ∈ Sδ(m2), then a#b ∈ Sδ(m1m2) and aW (x, hD)bW (x, hD) = (a#b)W (x, hD). Moreover, for
all n ∈ N we have

a#b(z) =

N−1∑
k=0

[
1

k!

(
ih

2

)k
σ(Dz, Dw)k(a(z)b(w))

]∣∣∣∣∣
z=w

+OSδ(m1m2)(h
k(1−2δ)). (4.18)

Proof. Clearly, (z, w) 7→ a(z)b(w) ∈ Sδ((z, w) 7→ m1(z)m2(w). Now we need to prove that e
i
2hσ(hDz,hDw) :

Sδ((z, w) 7→ a(z)b(w))→ Sδ((z, w) 7→ a(z)b(w)). The proof of this is very similar to the previous proof,

so it will be omitted. Then a#b := e
i
2hσ(hDz,hDw)(a(z)b(w))

∣∣∣
z=w
∈ Sδ(m1m2).
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Let α be a multi-index, then

∂αz

(
1

k!

(
ih

2

)k
σ(Dz, Dw)k(a(z)b(w))

∣∣∣∣∣
z=w

)
≤ hkCh−(2k+|α|)δm1m2 = Chk(1−2δ)−δ|α|m1m2,

hence
1

k!

(
ih

2

)k
σ(Dz, Dw)k(a(z)b(w))

∣∣∣∣∣
z=w

= OSδ(m1m2)(h
k(1−2δ)).

Corollary 4.31. If a ∈ Sδ(m1) and b ∈ Sδ(m2), then

a#b = ab+
h

2i
{a, b}+OSδ(m1m2)(h

2(1−2δ)) (4.19)

and

[aW (x, hD), bW (x, hD)] =
h

i
{a, b}W (x, hD) +OS ′(Rn)→S ′(Rn)(h

3(1−2δ)). (4.20)

Remark 4.32. Let a, b be symbols, then a#b = b#a and a#a is real-valued.

Proof. We have for all z ∈ R2n that

a#b(z) = e
i
2hσ(hDz,hDw)(a(z)b(w))

∣∣∣
z=w

= e−
i
2hσ(hDz,hDw)(a(z)b(w))

∣∣∣
z=w

= e
i
2hσ(hDw,hDz)(b(w)a(z))

∣∣∣
z=w

= b#a(z).

Now let a = b+ ic where b, c : R2n → R. Then

a(z)a(w) = b(z)b(w) + c(z)c(w) + i(b(z)c(w)− b(w)c(z)) =: A(z, w) + iB(z, w)

where A(z, w) = A(w, z) and B(z, w) = −B(w, z) for all z, w ∈ R2n. Then for all k ∈ N,

σ(Dz, Dw)2k+1A(z, w)
∣∣
z=w

= −σ(Dw, Dz)
2k+1A(w, z)

∣∣
z=w

σ(Dz, Dw)2kB(z, w)
∣∣
z=w

= −σ(Dw, Dz)
2kB(w, z)

∣∣
z=w

.

Hence σ(Dz, Dw)2k+1A(z, w)|z=w = σ(Dz, Dw)2kB(z, w)|z=w = 0. From formula (4.18) it is clear that
a#a is indeed real-valued.

Next, we want to prove that aW (x, hD) : L2(Rn) → L2(Rn) for symbols a ∈ Sδ(m). This is true for
all order functions m such that supm <∞. We will prove this using the Cotlar-Stein theorem.

Theorem 4.33. (Cotlar-Stein theorem) Let H1, H2 be Hilbert spaces and let Aj : H1 → H2 be linear
operators for all j ∈ N. If there is a constant C > 0 such that

sup
j∈N

∞∑
k=1

‖A∗jAk‖
1
2 ≤ C, sup

j∈N

∞∑
k=1

‖AjA∗k‖
1
2 ≤ C, (4.21)

then
∑∞
j=1Aj converges in the strong topology, i.e.

∑∞
j=1Aju ∈ H2 for all u ∈ H1, and ‖

∑∞
j=1Aj‖ ≤ C.

So our goal is to construct a sequence {Aj : L2(Rn) → L2(Rn)}j∈N that satisfies the conditions of
the Cotlar-Stein theorem and converges to aW (x, hD). We will use the following contruction to cut the
symbol a ∈ Sδ(m) into compactly supported symbols aα for α ∈ Z2n.

Let χ ∈ C∞c (R2n) such that 0 ≤ χ ≤ 1 and
∑
α∈Z2n χ(z−α) = 1 for all z ∈ R2n. Such a function can

be constructed as follows: define for 0 ≤ j ≤ 2n, χj(z) := 1
2 cos(πzj) + 1

2 if zj ∈ [−1, 1], and χj(z) := 0
otherwise. Then the function χ := Π2n

j=1χj satisfies the required properties.
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Now define the function aα ∈ S (R2n) for all α ∈ Z2n by aα(z) := χ(z−α)a(z). Then
∑
α∈Z2n aα ≡ 1.

Now let Aα := aWα (x, hD). Our goal is to show that there is a constant C > 0 such that

C ≥ sup
α∈Z2n

∑
β∈Z2n

‖A∗jAk‖
1
2 = sup

α∈Z2n

∑
β∈Z2n

‖aWα (x, hD)∗aWβ (x, hD)‖ 1
2

= sup
α∈Z2n

∑
β∈Z2n

‖aWα (x, hD)aWβ (x, hD)‖ 1
2 = sup

α∈Z2n

∑
β∈Z2n

‖(aα#aβ)W (x, hD)‖ 1
2 ,

C ≥ sup
α∈Z2n

∑
β∈Z2n

‖AjA∗k‖
1
2 = sup

α∈Z2n

∑
β∈Z2n

‖aWα (x, hD)aWβ (x, hD)∗‖ 1
2

= sup
α∈Z2n

∑
β∈Z2n

‖aWα (x, hD)aWβ (x, hD)‖ 1
2 = sup

α∈Z2n

∑
β∈Z2n

‖(aα#aβ)W (x, hD)‖ 1
2 .

The following lemma shows that aα#aβ and its derivatives vanish rapidly if α and β or if z and (α+β)/2
are far apart.

Lemma 4.34. (Mixed term decay) Let 0 ≤ δ ≤ 1/2 and let m be a bounded order function. Let
a ∈ Sδ(m) and define aα as above. For all α, β ∈ Z2n, N ∈ N, and multi-indices γ ∈ N2n there is a
constant Cγ,N > 0, such that for all z ∈ R2n;

|∂γaα#aβ(z)| ≤ Cγ,N 〈α− β〉−N 〈z −
α+ β

2
〉−N . (4.22)

Moreover, there is a constant Cγ,N > 0 not depending on a or h, and a K ∈ N depending linearly on n,
such that for all z ∈ R2n;

|∂γaα#aβ(z)| ≤ Cγ,N

 ∑
|κ|≤K

h|κ|/2| sup ∂κa|

2

〈α− β〉−N 〈z − α+ β

2
〉−N . (4.23)

and there is a constant Cγ,N > 0 possibly depending on h, such that for all z ∈ R2n;

|∂γaα#aβ(z)| ≤ Cγ,Nm(α)m(β)〈α− β〉−N 〈z − α+ β

2
〉−N . (4.24)

Proof. Recall that

aα#aβ(z) =
1

(πh)2n

∫
R2n

dw1

∫
R2n

dw2

[
e−

2i
h σ(w1,w2)aα(z + w1)aβ(z + w2)

]
=

1

π2n

∫
R2n

dw̃1

∫
R2n

dw̃2

[
e−2iσ(w̃1,w̃2)aα(h1/2(z̃ + w̃1))aβ(h1/2(z̃ + w̃2))

]
=

1

π2n

∫
R2n

dw̃1

∫
R2n

dw̃2

[
e−2iσ(w̃1,w̃2)ãα(z̃ + w̃1)ãβ(z̃ + w̃2)

]
,

where we put w̃1 := h−1/2w1, w̃2 := h−1/2w2, z̃ := h−1/2z, and ãα(z̃) := aα(z) = aα(h1/2z̃). For the
sake of readability, all tildes will be omitted for now. For any multi-index γ we have

∂γaα#aβ(z) =
1

π2n

∫
R2n

dw1

∫
R2n

dw2

[
e−2iσ(w1,w2)∂γz

(
aα(z + w1)aβ(z + w2)

)]
.

Note that the support of our choice of χ lies in B(0, n), so the integrand is just zero unless z + w1 −
α, z + w2 − β ∈ B(0, n). We obtain

|α− β| = |(z − β + w2)− (z − α+ w1)− w2 + w1| ≤ 2n+ |w1|+ |w2|,∣∣∣∣z − a+ b

2

∣∣∣∣ =
1

2
|(z − α+ w1)− w1 + (z − β + w2)− w2| ≤ 2n+ |w1|+ |w2|,
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hence for some constant C > 0 such that 〈α−β〉 ≤ C〈w〉 and 〈z−(α+β)/2〉 ≤ C〈w〉 where w := (w1, w2).
So for any N ∈ N, 〈w〉−2N ≤ C〈α− β〉−N 〈z − (α+ β)/2〉−N for some constant C > 0.

We will obtain a factor 〈w〉−2N by integrating by parts. As will be clear shortly, integration by parts
is only possible if w := (w1, w2) lies outside an open neighbourhood of 0. We will cut the integral in two
parts: one in a bounded neighbourhood of 0, and one outside of it. Let ζ : R4n → [0, 1] be a smooth
function such that ζ ≡ 1 on B(0, 1) and Supp(ζ) ⊂ B(0, 2). Define for each multi-index γ:

Aγ(z) :=
1

π2n

∫
R2n

dw1

∫
R2n

dw2

[
e−2iσ(w1,w2)ζ(w1, w2)∂γz (aα(z + w1)aβ(z + w2))

]
,

Bγ(z) :=
1

π2n

∫
R2n

dw1

∫
R2n

dw2

[
e−2iσ(w1,w2)(1− ζ(w1, w2))∂γz (aα(z + w1)aβ(z + w2))

]
,

so that ∂γaα#aβ(z) = Aγ(z) +Bγ(z) for all z ∈ R2n.

(Proof of (4.22).) We will first estimate |∂γz (aα(z + w1)aβ(z + w2))|, and then |Aγ(z)| and |Bγ(z)|.

• Since supm <∞, we have∣∣∣∂γz (aα(z + w1)aβ(z + w2))
∣∣∣ ≤ C ∑

|κ|≤|γ|

∣∣∣∂κz (aα(z + w1))
∣∣∣ ∣∣∂γ−κz (aβ(z + w2))

∣∣
≤ Cγ

∑
|κ|≤|γ|

(supm)2 ≤ Cγ .

• Since the support of ζ is bounded, clearly there is some constant Cγ,0 > 0 such that |Aγ(z)| ≤ Cγ,0
for all z ∈ R2n. Furthermore, due to |w| ≤ 2 we have 〈w〉−2N ≥ 〈2〉−2N . So we can define for any
N ∈ N, Cγ,N := 〈2〉2NCγ,0, then

|Aγ(z)| ≤ Cγ,0 = Cγ,N 〈2〉−2N ≤ Cγ,N 〈w〉−2N ≤ Cγ,N 〈α− β〉−N 〈z −
α+ β

2
〉−N .

• Now for Bγ(z): it is convenient to write ϕ(w) := −2σ(w1, w2) = −2(x2ξ1 − x1ξ2). It’s derivatives
are ∂x1

ϕ(w) = 2ξ2, ∂ξ1ϕ(w) = −2x2, ∂x2
ϕ(w) = −2ξ1, and ∂ξ2ϕ(w) = 2x1, so |∂ϕ(w)| = 2|w|.

Then we can define the operator

L :=
〈∂ϕ,Dw〉
|∂ϕ|2

=
〈∂ϕ,Dw〉
|w|2

and this operator satisfies Le−2iσ(w1,w2) = e−2iσ(w1,w2). Now we can integrate Bγ(z) by parts.
Note that the integrand vanishes in B(0, 1), so there are no problems with w = 0.

Bγ(z)

=
1

π2n

∫
R2n

dw1

∫
R2n

dw2

[
L2N+4n+1

(
e−2iσ(w1,w2)

)
(1− ζ(w1, w2))∂γz (aα(z + w1)aβ(z + w2))

]
=

1

π2n

∫
R4n

dw

[
e−2iσ(w1,w2)

|w|4N+8n+2
(−〈∂ϕ,Dw〉)2N+4n+1

(
(1− ζ(w1, w2))∂γz (aα(z + w1)aβ(z + w2))

)]
,

|Bγ(z)| ≤ Cγ,N
∫

R4n

dw
[
〈w〉−(2N+4n+1)

]
≤ Cγ,N 〈α− β〉−N 〈z −

α+ β

2
〉−N .

(Proof of (4.23).)

• Recall that for any two positive real numbers a and b, ab ≤ 1
2 (a2 + b2) and a2 + b2 ≤ (a+ b)2. So

we obtain ∣∣∣∂γz (aα(z + w1)aβ(z + w2))
∣∣∣ ≤ C ∑

|κ|≤|γ|

∣∣∣∂κz (aα(z + w1))
∣∣∣ ∣∣∂γ−κz (aβ(z + w2))

∣∣
≤ Cγ

 ∑
|κ|≤|γ|

| sup ∂κa|

2

.
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• The rest of the proof is analogous to the previous proof. Putting the tildes back in, we obtain
∂κz̃ ã(z̃) = ∂κz̃ a(h1/2z̃) = h|κ|/2∂κz a(z), hence | sup ∂κã| = h|κ|/2| sup ∂κa|.

(Proof of (4.24).)

• Note that m is an order function, so for some M ∈ N, we have m(w) ≤ C〈z − w〉Mm(z) for all
w, z ∈ R2n. Then we obtain

|∂γz aα(w1 + z)| = |∂γz (χ(w1 + z − α)a(w1 + z))| ≤ C sup
|κ|≤|γ|

|∂κz χ(w1 + z − α)|m(w1 + z)

≤ C sup
|κ|≤|γ|

|∂κz χ(w1 + z − α)|〈w1 + z − α〉Mm(α) ≤ Cγm(α),

where we used that |w1 + z − α| ≤ n. Hence |∂γz (aα(z + w1)aβ(z + w2))| ≤ Cm(α)m(β).

• The rest of the proof is again analogous to the first proof.

Lemma 4.35. (More on mixed term decay) For sufficiently large N ∈ N, there is a constant CN > 0
such that

‖(aα#aβ)W (x, hD)‖ ≤ CN 〈α− β〉−N . (4.25)

Moreover, there is a constant CN > 0 not depending on a or h, and a K ∈ N depending linearly on n,
such that

‖(aα#aβ)W (x, hD)‖ ≤ CN

 ∑
|κ|≤K

h|κ|/2| sup ∂κa|

2

〈α− β〉−N , (4.26)

and there is a constant CN > 0 possibly depending on h, such that

‖(aα#aβ)W (x, hD)‖ ≤ CNm(α)m(β)〈α− β〉−N . (4.27)

Proof. Recall that for any a ∈ S (R2n), we have

aW (x, hD) =
1

(2πh)2n

∫
R2n

dl
[
âh(l)e

i
h l(x,hD)

]
.

Using lemma 3.6, we obtain

‖(aα#aβ)W (x, hD)‖L2(Rn)→L2(Rn) ≤ C
∫

R2n

dl [|Fh(aα#aβ)|] = C‖Fh(aα#aβ)‖L1(R2n)

≤ C max
|γ|≤2n+1

‖∂γaα#aβ‖L1(R2n)

= C max
|γ|≤2n+1

∫
R2n

dz
[
∂γaα#aβ(z)〈z〉2n+1〈z〉−(2n+1)

]
≤ C sup

z∈R2n

max
|γ|≤2n+1

〈z〉2n+1∂γaα#aβ(z)

≤ CN sup
z∈R2n

〈z〉2n+1〈z − α+ β

2
〉−N 〈α− β〉−N

for all N ∈ N according to (4.22) in the previous lemma. If N is sufficiently large, this supremum is
finite and we obtain

‖(aα#aβ)W (x, hD)‖L2(Rn)→L2(Rn) ≤ CN 〈α− β〉−N ,

proving (4.25). Finally, (4.26) and (4.27) follow similarly from (4.23) and (4.24), respectively.
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Theorem 4.36. Let m be a bounded order function and let 0 ≤ δ ≤ 1/2. Let a ∈ Sδ(m), then

aW (x, hD) : L2(Rn)→ L2(Rn), (4.28)

and we can estimate its norm by

‖aW (x, hD)‖ ≤ C
∑
|κ|≤K

h|κ|/2 sup |∂κa| (4.29)

where C > 0, and K ∈ N does not depends on a and depends linearly on the dimension n.

Proof. By the previous lemma we have ‖(aα#aβ)W (x, hD)‖ ≤ CN 〈α− β〉−N for all α, β ∈ Z2n if N ∈ N
is sufficiently large. Then

sup
α∈Z2n

∑
β∈Z2n

‖(aα#aβ)W (x, hD)‖1/2 ≤ CN sup
α∈Z2n

∑
β∈Z2n

〈α− β〉−N/2 = CN
∑
β∈Z2n

〈β〉−N/2 <∞

if N is large enough. Similarly, supα∈Z2n

∑
β∈Z2n ‖(aα#aβ)W (x, hD)‖1/2 is finite as well. Now by

the Cotlar-Stein theorem,
∑
α∈Z2n aWα (x, hD) converges in the strong topology. And aW (x, hD) =∑

α a
W
α (x, hD) due to a =

∑
α aα.

The estimate follows immediately from (4.26).

Theorem 4.37. Let 0 ≤ δ ≤ 1/2 and let m be an order function such that limz→∞m(z) = 0. Let
a ∈ Sδ(m), then aW (x, hD) : L2(Rn)→ L2(Rn) is a compact operator.

Proof. Note that each aα is a Schwartz function, so aWα (x, hD) is a compact operator for all α ∈ Z2n.
Let 0 < M1 < M2. The compact operators are closed in the norm topology, so it suffices to show that∑
|α|<M1

aWα (x, hD) converges in norm to aW (x, hD) as M1 →∞. Consider∑
α<M2

aWα (x, hD)−
∑
|α|<M1

aWα (x, hD) =
∑

M1≤|α|<M2

aWα (x, hD),

and note that there is some M > 0 such that m(β) ≤ C〈α−β〉Mm(α) because m is an order function.
Now we can use (4.27) to obtain for sufficiently large N that

sup
|α|>M1

∑
β>M1

‖(aα#aβ)W (x, hD)‖1/2 ≤ CN sup
|α|>M1

∑
β>M1

√
m(α)m(β)〈α− β〉−N/2

≤ CN sup
|α|>M1

m(α)
∑
β>M1

〈α− β〉(M−N)/2

= C sup
|α|>M1

m(α)

if N is sufficiently large. Analogously, we obtain the same estimate for aα#aβ . By the Cotlar-Stein
theorem,

∑
M1<|α|<M2

aWα (x, hD) converges in the strong topology to
∑
|α|>M1

aWα (x, hD) and it satisfies

‖
∑
|α|>M1

aWα (x, hD)‖ ≤ C sup|α|>M1
m(α). This indeed converges to 0 as M1 →∞.

4.4 Computing the quantisation of various symbols

We will now compute aW (x, hD) for various symbols. Recall that mk,l(x, ξ) := 〈x〉k+〈ξ〉l, where k, l ∈ R.

Lemma 4.38. (Symbols depending only on x) Let a ∈ Sδ(mk,0) such that a does not depend on ξ, then
Opt(a)u(x) = a(x)u(x) for all t ∈ [0, 1].

Proof. Let u ∈ S (Rn), then

a(x, hD)u(x) =
1

(2πh)n

∫
Rn
dξ

∫
Rn
dy
[
e
i
h 〈x−y,ξ〉a(x)u(y)

]
= a(x)u(x).

29



But we also have

∂tOpt(a)u(x) =
1

(2πh)n

∫
Rn
dξ

∫
Rn
dy
[
e
i
h 〈x−y,ξ〉∂ta(tx+ (1− t)y)u(y)

]
=

1

(2πh)n

∫
Rn
dξ

∫
Rn
dy

e ih 〈x−y,ξ〉 n∑
j=1

(∂ja)(tx+ (1− t)y)(xj − yj)u(y)


=

1

(2πh)n

∫
Rn
dξ

∫
Rn
dy

 n∑
j=1

hDξje
i
h 〈x−y,ξ〉(∂ja)(tx+ (1− t)y)u(y)


=

1

(2πh)n

∫
Rn
dξ

[
h

i
∇ξe

i
h 〈x,ξ〉b̂h(ξ)

]
where b : Rn → Cn, y 7→ ∂a(x+(1−t)y)u(y). Note that bj ∈ S (Rn) for all 1 ≤ j ≤ n, so Fh(bj) ∈ S (Rn)

and so b̂h(ξ)→ 0 as |ξ| → ∞. So ∂tOpt(a)u(x) = 0 for all t ∈ [0, 1], hence

Opt(a)u(x) = a(x, hD)u(x) = a(x)u(x)

as desired.

Lemma 4.39. (Symbols depending linearly on ξ) Let a(x, ξ) = 〈c(x), ξ〉Rn for some continuously differ-
entiable map c : Rn → Cn, then

aW (x, hD)u =
1

2

n∑
j=1

(
hDxj (cju) + cjhDxj (u)

)
(4.30)

=
h

i

n∑
j=1

[
1

2
∂j(cj)u+ cj∂ju

]
. (4.31)

Proof. We have a(x, ξ) =
∑n
j=1 cj(x)ξj , so for all u ∈ S (Rn),

aW (x, hD)u(x) =
1

(2πh)n

∫
Rn
dξ

∫
Rn
dy

e ih 〈x−y,ξ〉 n∑
j=1

cj

(
x+ y

2

)
ξju(y)


=

n∑
j=1

1

(2πh)n

∫
Rn
dξ

∫
Rn
dy

[
−hDyj

(
e
i
h 〈x−y,ξ〉

)
cj

(
x+ y

2

)
u(y)

]

=

n∑
j=1

1

(2πh)n

∫
Rn
dξ

∫
Rn
dy

[
e
i
h 〈x−y,ξ〉hDyj

(
cj

(
x+ y

2

)
u(y)

)]

=

n∑
j=1

1

(2πh)n

∫
Rn
dξ

∫
Rn
dy

[
e
i
h 〈x−y,ξ〉

(
1

2
(hDxjcj)

(
x+ y

2

)
u(y) + cj

(
x+ y

2

)
(hDxju)(y)

)]

=

n∑
j=1

[(
1

2
hDxjcj

)W
(x, hD)u(x) + cWj (x, hD)(hDxju)(x)

]

=

n∑
j=1

[(
1

2
hDxjcj

)
(x)u(x) + cj(x)(hDxju)(x)

]

=
h

i

n∑
j=1

[
1

2
∂j(cj)(x)u(x) + cj(x)∂ju(x)

]
.
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Lemma 4.40. (Symbols depending quadratically on ξ) Let a(x, ξ) =
∑n
i,j=1 c

ij(x)ξiξj, then

aW (x, hD)u =
1

4

n∑
i,j=1

(
hDxihDxj (c

iju) + hDxi(c
ijhDxju) + hDxj (c

ijhDxiu) + cijhDxihDxju
)

(4.32)

= −h2
n∑

i,j=1

[
1

4
∂i∂j(c

ij)u+
1

2
∂ic

ij∂ju+
1

2
∂jc

ij∂iu+ cij∂i∂ju

]
(4.33)

Proof. The proof is very similar to the previous proof and will be omitted.

In particular, if p(x, ξ) = |ξ|2 + V (x), then pW (x, hD) := −h2
∑n
i=1 ∂

2
xi + V (x) = −h2∆ + V (x).
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5 Tunneling

In classical physics, the total energy of a system is given by p(x, ξ) := |ξ|2 + V (x), the sum of kinetic
energy and potential energy. Let E ∈ R be some energy level, i.e. p(x, ξ) = E. Since the kinetic energy
|ξ|2 is nonnegative, it follows that the domain

{x ∈ Rn | V (x) > E}

is not available to such a system. As a result, the connected components of {x ∈ Rn | V (x) ≤ E} are
separated from one another by a ’hard’ potential barrier that cannot be crossed.

The goal of this section is to explore the behaviour of an eigenfunction u of the Schrödinger operator

P (h) := pW (x, hD) = −h2∆ + V

with eigenvalue E on the classically forbidden domain {x ∈ Rn | V (x) > E} in the semiclassical limit
h→ 0. We will find for any U ⊂⊂ {x ∈ Rn | V (x) > 0} that there are constants 0 < δ < γ such that

e−γ/h ≤ ‖u‖L2(U) ≤ e−δ/h

as h → 0. These two inequalities are called the Carleman inequality and the Agmon-Lithner estimate,
respectively. As a result, the wave function u is exponentially small on the classical forbidden domain as
h→ 0, but it does not vanish. This stands in stark contrast with the classical case, since the connected
components of {x ∈ Rn | V (x) ≤ E} are only separated by a ’soft’ barrier that can be ’tunneled’ through.

Even though P (h) is not a bounded operator L2(Rn) → L2(Rn), it will still prove useful to prepare
a few results on symbols in S.

5.1 G̊arding inequality

In this subsection, we will study real-valued symbols in greater detail and prove the G̊arding inequality.
First, we need a useful lemma that proves that the operator aW (x, hD) : L2(Rn)→ L2(Rn) is invertible
under certain conditions on the symbol a.

Definition 5.1. (Elliptic symbols) A symbol a ∈ Sδ(m) is called elliptic if |a| ≥ γm for some constant
γ > 0 that does not depend on h.

Proposition 5.2. (Elliptic symbols give rise to invertible operators) Let 0 ≤ δ < 1
2 , let m be an order

function such that infz,hm(z) > 0, and let a ∈ Sδ(m) be elliptic. Then there exist h0, C > 0 such that

‖aW (x, hD)u‖L2 ≥ C‖u‖L2 (5.1)

for all u ∈ S (Rn) and all 0 < h ≤ h0.

If, in addition, supz,hm(z) < ∞, then there is a constant h0 > 0 such that aW (x, hD) : L2(Rn) →
L2(Rn) is invertible as a bounded linear operator on L2(Rn) for all 0 < h ≤ h0.

Remark 5.3. The condition that infz,hm(z) > 0 and supz,h <∞ implies that Sδ(m) = Sδ.

Proof. Since a is elliptic and inf m(z) > 0, we have inf |a(z)| > 0 and so a−1 : Rn → C, z 7→ 1/a(z) is
well-defined. We have a ∈ Sδ(m), i.e. for all multi-indices α, |∂αa| ≤ Cαh

−δ|α|m. Moreover, since a is
elliptic, there is some constant C > 0 such that 1

a ≤ C
1
m . It is easy to verify that for any multi-index α,

there is some constant Cα > 0 such that |∂α 1
a | ≤ Cαh

−δ|α| 1
m , hence 1/a ∈ Sδ(1/m).

By proposition 4.30 we obtain

a#a−1 = 1 +OSδ(h
1−2δ),

a−1#a = 1 +OSδ(h
1−2δ).
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Let r1, r2 ∈ h1−2δSδ such that a#a−1 = 1 + r1 and a−1#a = 1 + r2, then by theorem 4.36 we have
(a−1)W (x, hD), rW1 (x, hD), rW2 (x, hD) : L2(Rn)→ L2(Rn). Furthermore, we have

aW (x, hD)(a−1)W (x, hD) = I + rW1 (x, hD)

and
(a−1)W (x, hD)aW (x, hD) = I + rW2 (x, hD)

where ‖rW1 (x, hD)‖, ‖rW2 (x, hD)‖ = O(h1−2δ). Let h0 > 0 be small enough so that ‖rW2 (x, hD)‖ < 1 for
all 0 < h ≤ h0, then I + rW2 (x, hD) is invertible by lemma C.4. Hence for all u ∈ L2(Rn),

‖u‖ = ‖(I + rW2 (x, hD))−1(a−1)W (x, hD)aW (x, hD)u‖ ≤ C‖aW (x, hD)u‖.

Now assume that supm(z) < ∞. Note that in this case, Sδ(m) = Sδ(1/m) = Sδ. Now, we also
have aW (x, hD) : L2(Rn) → L2(Rn). Let h0 > 0 be small enough such that ‖rW1 (x, hD)‖ < 1 as well
as ‖rW2 (x, hD)‖ < 1, then (a−1)W (x, hD) is an approximate inverse for aW (x, hD) and so aW (x, hD) is
invertible by proposition C.5.

Lemma 5.4. (Weak G̊arding inequality) Let a ∈ S be real-valued, define a∧ := inf a, and let ε > 0, then
there is a h0 > 0 such that for all 0 < h ≤ h0 and all u ∈ L2(Rn), we have

〈u, aW (x, hD)u〉 ≥ (a∧ − ε)‖u‖2. (5.2)

Proof. Let λ ≤ a∧ − ε, then a − λ ≥ ε > 0 and so a − λ is elliptic. So there is a h0(λ) > 0 such that
aW (x, hD) − λI is invertible for all 0 < h ≤ h0(λ). We want to show that we can in fact pick h0 > 0
independent of λ.

As in the proof of the previous lemma, we can write

(a− λ)#(a− λ)−1 = 1 + r1(λ),

(a− λ)−1#(a− λ) = 1 + r2(λ),

where r1(λ), r2(λ) ∈ hS. Since r1(λ) and r2(λ) are given by formula (4.18), it is clear they only de-
pend on powers of derivatives of a and on powers of (a − λ)−1. Hence we have for all λ ≤ a∧ − ε that
r1(λ) ≤ r1(a∧ − ε) and r2(λ) ≤ r2(a∧ − ε).

Now let h0 := h0(a∧−ε) > 0, then for all λ ≤ a∧−ε and all 0 < h ≤ h0, the operator aW (x, hD)−λI
is invertible. Hence σ(aW (x, hD)) ⊂ [a∧ − ε,∞). So, by proposition C.9, we obtain

〈u, aW (x, hD)u〉 ≥ (a∧ − ε)‖u‖2

for all u ∈ L2(Rn).

Theorem 5.5. (G̊arding inequality) Let a ∈ S be real-valued, define a∧ := inf a. Then there is a
sufficiently small constant h0 > 0 and a sufficiently large constant γ > 0 such that for all 0 < h ≤ h0

and all u ∈ L2(Rn), we have
〈u, aW (x, hD)u〉 ≥ (a∧ − hγ)‖u‖2. (5.3)

Proof. Let γ > 0 and let λ ≤ a∧ − hγ. Then a− λ ≥ hγ > 0. Note that this does not imply that a− λ
is elliptic since the lower bound hγ depends on h. But (a− λ)−1 is well-defined still. Recall that

(a− λ)#(a− λ)−1 = e
i
2hσ(hDz,hDw)

(
(a(z)− λ)(a(w)− λ)−1

)
|z=w.

Now we can define f(t) := e
it
2hσ(hDz,hDw)

(
(a(z)− λ)(a(w)− λ)−1

)
|z=w and apply Taylor’s theorem

around t = 0 to obtain

(a− λ)#(a− λ)−1

= 1 +

∫ 1

0

dt

[
(1− t)e it2hσ(hDz,hDw)

(
i

2h
σ(hDz, hDw)

)2 (
(a(z)− λ)(a(w)− λ)−1

)
|z=w

]
=: 1 + rλ(z),
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where we used that f(1) = (a− λ)#(a− λ)−1, f(0) = 1, and ∂tf(0) = 0. Assume for the moment that
hγ(a− a∧+ hγ)−1 ∈ S 1

2
for all 0 < h ≤ h0(γ) for some sufficiently small h0(γ) > 0 and sufficiently large

γ > 0. Here we assume that the bounds do not depend on h or γ, i.e. |∂αhγ(a−a∧+hγ)−1| ≤ Cαh−|α|/2
for all multi-indices α and constants Cα > 0 not depending on h or γ.

Then we have for multi-indices α s.t. |α| = 2 that h2γ∂α(a− a∧ + hγ)−1 ∈ S 1
2
, hence γra∧−hγ ∈ S 1

2

due to a ∈ S ⊂ S 1
2

and e
it
2hσ(hDz,hDw) : Sδ → Sδ. But |∂αrλ| ≤ |∂αra∧−hγ | for all multi-indices α, so for

all λ ≤ a∧ − hγ we have γrλ ∈ S 1
2
. Hence rWλ (x, hD) : L2(Rn)→ L2(Rn) and

‖rWλ (x, hD)‖ ≤ ‖rWa∧−hγ(x, hD)‖ ≤ C/γ,

where C > 0 does not depend on γ. Note that C also does not depend on h due to δ = 1/2.

Now if γ is sufficiently large, we obtain ‖rWλ (x, hD)‖ < 1. We can obtain a similar estimate for
(a−λ)−1#(a−λ), so aW (x, hD)−λI is invertible for all λ ≤ a∧−hγ. So σ(aW (x, hD)) ⊂ [a∧−hγ,∞)
and hence 〈u, aW (x, hD)u〉 ≥ (a∧ − hγ)‖u‖2 for all u ∈ L2(Rn).

It is only left to show that hγ(a− a∧ + hγ)−1 ∈ S 1
2

is indeed true. Let α be a multi-index, then

∂α(a− a∧ + hγ)−1 = (a− a∧ + hγ)−1

|α|∑
k=1

∑
α=β1+···+βk,
|βj |≥1

Cβ1,··· ,βk

k∏
j=1

(
(a− a∧ + hγ)−1∂βja

)
,

for certain constants Cβ1,··· ,βk ∈ R for each partition of α. This is easy to show by induction to |α| and
the product rule and chain rule. Since a ∈ S, we have for all multi-indices β that |∂βa| ≤ Cβ . We can
apply inequality B.3 to obtain |∂ja| ≤ C(a− a∧)1/2 for all 1 ≤ j ≤ n. But then

(a− a∧ + hγ)−1|∂ja| ≤ C(a− a∧ + hγ)−1(a− a∧)1/2(hγ)1/2(hγ)−1/2

≤ C(a− a∧ + hγ)−1(a− a∧ + hγ)(hγ)−1/2

= C(hγ)−1/2,

where we used the Cauchy-Schwarz inequality. For higher order derivatives |β| ≥ 2 we simply have
(a − a∧ + hγ)−1|∂βa| ≤ Cβ(a − a∧ + hγ)−1 ≤ Cβ(hγ)−1. Assume h0(γ) > 0 is small enough so that
h0γ ≤ 1, then for all 0 < h ≤ h0 and all multi-indices |β| ≥ 1, (a−a∧+hγ)|∂βa| ≤ C(hγ)−|β|/2. Finally,
we obtain for all multi-indices α that

|∂α(a− a∧ + hγ)−1| ≤ Cα(a− a∧ + hγ)−1(hγ)−|α|/2 ≤ Cα(hγ)−1h−|α|/2.

Hence hγ|∂α(a− a∧ + hγ)−1| ≤ Cαh−|α|/2 for all 0 < h ≤ h(γ) as desired.

5.2 Agmon-Lithner inequality

We will now consider the Schrödinger operator P (h) := −h2∆ + V where V : Rn → R is a potential
function not depending on h. The symbol associated with this operator is p(x, ξ) := |ξ|2 +V (x), the sum
of the kinetic and the potential energy. Consider the eigenvalue equation

P (h)u = E(h)u (5.4)

where E(h) ∈ R. In this subsection, we want to prove that for each U ⊂⊂ {x ∈ Rn | V (x) > E} there is
some sufficiently small δ > 0 such that ‖u‖L2(U) ≤ e−δ/h as h→ 0.
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It will be convenient to consider the operator Pϕ(h)u := eϕ/hP (h)
(
e−ϕ/hu

)
for some smooth function

ϕ : Rn → C. Assume for the moment that u ∈ S (Rn), then

• ∆(ϕu) =

n∑
j=1

∂2
j (ϕu) =

n∑
j=1

∂j((∂jϕ)u+ ϕ(∂ju)) =

n∑
j−1

((∂2
jϕ)u+ 2(∂jϕ)(∂ju) + ϕ(∂2

j u))

= (∆ϕ)u+ 2〈∂ϕ, ∂u〉Rn + ϕ∆u,

• ∆e−ϕ/h =

n∑
j=1

∂2
j e
−ϕ/h =

n∑
j=1

∂j

(
− 1

h
e−ϕ/h∂jϕ

)
=

n∑
j=1

(
1

h2
e−ϕ/h(∂jϕ)2 − 1

h
e−ϕ/h∂2

jϕ

)
=

1

h2
e−ϕ/h|∂ϕ|2 − 1

h
e−ϕ/h∆ϕ,

• ∆
(
e−ϕ/hu

)
=
(

∆e−ϕ/h
)
u+ 2〈∂e−ϕ/h, ∂u〉Rn + e−ϕ/h∆u

=
1

h2
e−ϕ/h|∂ϕ|2u− 1

h
e−ϕ/h(∆ϕ)u− 2

h
e−ϕ/h〈∂ϕ, ∂u〉Rn + e−ϕ/h∆u,

• Pϕ(h)u = −|∂ϕ|2u+ h(∆ϕ)u+ 2h〈∂ϕ, ∂u〉Rn − h2∆u+ V u.

Now define pϕ : Rn → C by

pϕ(x, ξ) := 〈ξ + i∂ϕ(x), ξ + i∂ϕ(x)〉Rn + V (x)

= |ξ|2 + 2i〈∂ϕ(x), ξ〉Rn − |∂ϕ(x)|2 + V (x).

Let u ∈ S (Rn), then we obtain for pW (x, hD) that

pW (x, hD)u(x) = −h2∆u(x) + 2h

n∑
j=1

[
1

2
∂2
jϕ(x)u(x) + ∂jϕ(x)∂ju(x)

]
− |∂ϕ(x)|2u(x) + V (x)u(x)

= −h2∆u(x) + h∆ϕ(x)u(x) + 2h〈∂ϕ(x), ∂u(x)〉Rn − |∂ϕ(x)|2u(x) + V (x)u(x)

= Pϕ(h)u(x).

Hence Pϕ(h) = pWϕ (x, hD) as operators S (Rn)→ S (Rn). Now we want to do the same for u ∈ S ′(Rn).

Lemma 5.6. (Conjugation by ϕ) Let ϕ : Rn → C be smooth and define the symbol pϕ by

pϕ(x, ξ) := 〈ξ + i∂ϕ(x), ξ + i∂ϕ(x)〉Rn + V (x).

Then we have for all u ∈ S ′(Rn) that

pWϕ (x, hD)u(x) = eϕ(x)/hP (h)
(
e−ϕ/hu

)
(x) =: Pϕu(x).

We need one more proposition before we can estimate ‖u‖L2(U). Consider the second order differential
operator of the form Q(h)u := −h2∆u + 〈a, hDu〉+ bu where a, b : Rn → C. Then we can estimate the
semiclassical Sobolev norm ‖u‖H2

h(U).

Proposition 5.7. (H2
h estimate) Let a, b : Rn → C be smooth, define Q(h) by

Q(h)u := −h2∆u+ 〈a, hDu〉+ bu

for all u ∈ S (Rn). Let U ⊂⊂W ⊂ Rn be open Then there is a constant C > 0 such that

‖u‖H2
h(U) ≤ C

(
‖Q(h)u‖L2(W ) + ‖u‖L2(W )

)
for all u ∈ S (Rn).

Proof. Let u ∈ S (Rn) and let U ⊂⊂W ⊂ Rn be open, and recall that

‖u‖2H2
h(U) = ‖u‖2L2(U) + h2

n∑
j=1

‖∂ju‖2L2(U) + h4
n∑

k,l=1

‖∂k∂lu‖2L2(U).
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We will first estimate the term involving h2‖∂ju‖2L2(U). Let χ ∈ C∞c (W ) such that 0 ≤ χ ≤ 1 and χ ≡ 1

on U . (This will allow integration by parts later.) Note that(
<〈χu, χQ(h)u〉L2(W )

)2 ≤ ∣∣〈χu, χQ(h)u〉L2(W )

∣∣2 ≤ ‖χu‖2L2(W )‖χQ(h)u‖2L2(W ),

by the Cauchy-Schwarz inequality. Hence

<〈χu, χQ(h)u〉L2(W ) ≤
1

2

(
‖χu‖2L2(W ) + ‖χQ(h)u‖2L2(W )

)
≤ 1

2

(
‖u‖2L2(W ) + ‖Q(h)u‖2L2(W )

)
where

<〈χu, χQ(h)u〉L2(W )

= <
(∫

W

dx
[
χ2(x)u(x)

(
−h2∆u(x) + 〈a(x), hDu(x)〉+ b(x)u(x)

)])
=

∫
W

dx
[
〈hD(χ2u)(x), hDu(x)〉+ χ2(x)<

(
u(x)〈a(x), hDu(x)〉

)
+ χ2(x)|u(x)|2<(b(x))

]
.

Using the fact that χ is compactly supported, we can estimate each of the three terms of <〈χu, χQ(h)u〉L2(W )

from below:

•
∫
W

dx
[
〈hD(χ2u)(x), hDu(x)〉

]
=

∫
W

dx
[
χ2(x)|hDu(x)|2 + 2χ(x)u(x)〈hDχ(x), hDu(x)〉

]
≥
∫
W

dx
[
χ2(x)|hDu(x)|2

]
− C

∫
W

dx [χ(x)|u(x)||hDu(x)|]

≥ 2

3

∫
W

dx
[
χ2(x)|hDu(x)|2

]
− C

∫
W

dx
[
|u(x)|2

]
,

•
∫
W

dx
[
χ2(x)<

(
u(x)〈a(x), hDu(x)〉

)]
≥ −C

∫
W

dx
[
χ2(x)|u(x)||hDu(x)|

]
≥ −1

3

∫
W

dx
[
χ2(x)|hDu(x)|2

]
− C

∫
W

dx
[
|u(x)|2

]
,

•
∫
W

dx
[
χ2(x)|u(x)|2<(b(x))

]
≥ −C

∫
W

dx
[
|u(x)|2

]
.

Hence <〈χu, χQ(h)u〉L2(W ) ≥ 1
3

∫
W
dx
[
χ2(x)|hDu(x)|2

]
− C

∫
W
dx
[
|u(x)|2

]
. Finally, we obtain:

h2
n∑
j=1

‖∂ju‖2L2(U) =

∫
U

dx
[
|hDu(x)2|

]
=

∫
U

dx
[
χ2(x)|hDu(x)|2

]
≤
∫
W

dx
[
χ2(x)|hDu(x)|2

]
≤ C<〈χu, χQ(h)u〉L2(W ) + C

∫
W

dx
[
|u(x)|2

]
≤ C‖u‖2L2(W ) + C‖Q(h)u‖2L2(W ).

Next, we will estimate the terms involving h4‖∂k∂lu‖2L2(U). Again, let χ ∈ C∞c (W ) such that 0 ≤
χ ≤ 1 and χ ≡ 1 on U . Note that

n∑
k,l=1

‖∂k∂l(χu)‖2L2(W ) =

n∑
k,l=1

∫
W

dx [∂k∂l(χu)(x)∂k∂l(χu)(x)] =

n∑
k,l=1

∫
W

dx
[
∂2
k(χu)(x)∂2

l (χu)(x)
]

=

∫
W

dx [∆(χu)(x)∆(χu)(x)] = ‖∆(χu)‖2L2(W ).

Then we have <〈χh2∆u, χQ(h)u〉L2(W ) ≤ 1
2 (‖h2∆u‖2L2(W ) + ‖Q(h)u‖2L2(W )) and the rest follows as

before.
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Theorem 5.8. (Agmon-Lithner estimate) Let λ ∈ R and let U ⊂ Rn open such that

U ⊂⊂ {x ∈ Rn | V (x) > λ}.

Then for all open W ∈ Rn such that U ⊂⊂W , there are constants h0, δ, C > 0 such that

‖u‖L2(U) ≤ Ce−δ/h‖u‖L2(W ) + C‖(P (h)− λ)u‖L2(W )

for all u ∈ H1(Rn) and all 0 < h ≤ h0.

Proof. We can assume without loss of generality that W ⊂⊂ {x ∈ Rn | V (x) > λ}. We can choose
functions ϕ,ψ, χ ∈ C∞c (Rn) such that 0 ≤ ϕ,ψ, χ ≤ 1 and

ψ ≡ 1 on U,

ϕ ≡ 1 on Supp(ψ),

χ ≡ 1 on Supp(ϕ), and

Supp(χ) ⊂⊂W.

Observe that V (x) − λ > 0 and |∂ψ(x)| < C for all x ∈ W and some C > 0. Then we can pick δ > 0
small enough such that V (x)− λ− δ2|∂ψ(x)|2 > 0 for all x ∈W . Hence for all x ∈W ,

|pδψ(x, ξ)− λ|2 =
∣∣|ξ|2 + 2δi〈∂ψ(x), ξ〉+ V (x)− λ− δ2|∂ψ(x)|2

∣∣2 ≥ V (x)− λ− δ2|∂ψ(x)|2 > 0.

Choose σ > 0 such that |pδψ(x, ξ) − λ|2 ≥ σ2 and let mk,l(x, ξ) := 〈x〉k〈ξ〉l. Since χ is compactly
supported, we have (pδψ − λ)#χ ∈ S(m0,2), and so ((pδψ − λ)#χ)#m0,−2 ∈ S. Then we can define

b := ((pδψ − λ)#χ)#m0,−2# [((pδψ − λ)#χ)#m0,−2]− σ2χ#m0,−2#[χ#m0,−2]

=
[
m0,−2#(χ#pδψ − λ)

]
# [((pδψ − λ)#χ)#m0,−2]− σ2[m0,−2#χ]#[χ#m0,−2].

Then b ∈ S, b is real-valued by remark 4.32, and

b(x, ξ) = 〈ξ〉−4χ(x)2|pδψ − λ|2 − σ2〈ξ〉−4χ(x)2 +OS(h) ≥ −hγ

for some constant γ > 0. Hence by the G̊arding inequality, we obtain 〈u, bW (x, hD)u〉L2(Rn) ≥ −hγ‖u‖2L2(Rn)

for all u ∈ L2(Rn). Let u := (1 + h2∆)(ϕv) for some v ∈ S (Rn), then m0,−2(x, hD)u(x) = ϕ(x)v(x) (as
can be shown with an easy computation), and so

−hγ‖(1 + h2∆)(ϕv)‖2L2(Rn) ≤ 〈(p
W
δφ(x, hD)− λ)(χϕv), (pWδφ(x, hD)− λ)(χϕv)〉 − σ2〈χϕv, χϕv〉

= ‖(pWδψ(x, hD)− λ)(ϕv)‖2L2(Rn) − σ
2‖ϕv‖2L2(Rn),

where we used that aW (x, hD) = aW (x, hD)∗ and χ ≡ 1 on Supp(ϕ). Now by proposition 5.7 we can
estimate

‖(1 + h2∆)(ϕv)‖L2(Rn) ≤ C‖ϕv‖H2
h(Rn) = C‖ϕv‖H2

h(Supp(ϕ))

≤ C
(
‖ϕv‖(W ) + ‖(pWδϕ(x, hD)− λ)(ϕv)‖L2(W )

)
= C

(
‖ϕv‖L2(Rn) + ‖(pWδϕ(x, hD)− λ)(ϕv)‖L2(Rn)

)
,

and so
‖(1 + h2∆)(ϕv)‖2L2(Rn) ≤ C

(
‖ϕv‖2L2(Rn) + ‖(pWδϕ(x, hD)− λ)(ϕv)‖2L2(Rn)

)
.

Combining this with the previous estimate we obtain

‖(pWδψ(x, hD)− λ)(ϕv)‖2L2(Rn) ≥
σ2 − hC
1 + hC

‖ϕv‖2L2(Rn) ≥
σ2

4
‖ϕv‖2L2(Rn)

for all 0 < h ≤ h0 for some sufficiently small h0 > 0. Let w ∈ S (Rn), then v := eδψ/hw ∈ S (Rn) since
ψ is compactly supported. Then the previous estimate becomes

‖eδψ/hϕw‖L2(Rn) ≤ C‖(pWδψ(x, hD)− λ)(eδψ/hϕw)‖L2(Rn) = C‖eδψ/h(pW (x, hD)− λ)(ϕw)‖L2(Rn)

≤ C
(
‖eδψ/hϕ(pW (x, hD)− λ)w‖L2(Rn) + ‖eδψ/h[pW (x, hD), ϕ]w‖L2(Rn)

)
,
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where
[pW (x, hD), ϕ]w := pW (x, hD)(ϕw)− ϕpW (x, hD)w

is the commutator. Due to ϕ ≡ 1 on Supp(ψ), we have ψ ≡ 0 on Supp([pW (x, hD), ϕ]w). Then

‖eδψ/h[pW (x, hD), ϕ]w‖L2(Rn) = ‖[pW (x, hD), ϕ]w‖L2(Rn)

= ‖ − h2∆(ϕw) + ϕh2∆w‖L2(Rn)

= ‖|hD|2(ϕ)w + 2〈hDϕ, hDw〉‖L2(Rn)

≤ ‖w‖H2
h(Supp(ϕ))

≤ C‖w‖L2(W ) + C‖(pW (x, hD)− λ)w‖L2(W ).

Hence for all w ∈ S (Rn), using that ϕ ≡ ψ ≡ 1 on U ,

‖w‖L2(U) = e−δ/h‖eδ/hw‖L2(U) = e−δ/h‖eδψ/hϕw‖L2(U)

≤ e−δ/h‖eδψ/hϕw‖L2(Rn)

≤ e−δ/hC‖w‖L2(W ) + (e−δ/h + 1)C‖(pW (x, hD)− λ)w‖L2(W )

≤ e−δ/hC‖w‖L2(W ) + C‖(pW (x, hD)− λ)w‖L2(W ).

for all 0 < h ≤ h0 for some h0 > 0.

In the proof of the Agmon-Lithner estimate, we assumed that δ > 0 is small enough so that we have
V (x)− λ− δ2|∂ψ(x)|2 > 0 for all x ∈ W ⊂⊂ {x ∈ Rn | V (x) > λ} where ψ ∈ C∞c (Rn) is some function
so that ψ ≡ 1 on U and Supp(ψ) ⊂W . We can rewrite this condition to

δ|∂ψ(x)| <
√
V (x)− λ

for all x ∈W .

We will now consider smooth curves γ : [0.1] → W such that γ(0) ∈ U and γ(1) ∈ ∂W . Integrating
both sides along γ gives

δ

∫
γ

dx [|∂ψ(x)|] <
∫
γ

dx
[√

V (x)− λ
]
.

This motivates the following definition.

Definition 5.9. (Agmon metric) Let W ⊂ Rn and let V : W → [0,∞) be a smooth function. Then the
Agmon-metric dV is defined by

dV (x, y) := inf

{∫
γ

dx
[√

V (x)
]
| γ ∈ C∞([0, 1],W ), γ(0) = x, γ(1) = y

}
(5.5)

for all x, y ∈W . Furthermore, we define

dV (x, U) := inf
y∈Y

dV (x, y) (5.6)

where x ∈W and U ⊆W , and

dV (U1, U2) := inf
x∈U1

dV (x, U2) (5.7)

= inf{
∫
γ

dx
[√

V
]
| γ ∈ C∞([0, 1],W ), γ(0) ∈ U1, γ(1) ∈ U2} (5.8)

for all U1, U2 ⊆W .

Lemma 5.10. Let U ⊂⊂W ⊂⊂ {x ∈ Rn | V (x) > λ} and let δ > 0. Then the following two statements
are equivalent:

(i) ∃ψ ∈ C∞c (Rn) such that 0 ≤ ψ ≤ 1, ψ ≡ 1 on U , Supp(ψ) ⊆W , and

δ|∂ψ(x)| <
√
V (x)− λ

for all x ∈W .
(ii) δ < dV−λ(U, ∂W )
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Proof. ((i) =⇒ (ii)) We have for all x ∈ W that δ|∂ψ(x)| <
√
V (x)− λ. But W is compact, so there is

some ε > 0 such that
δ|∂ψ(x)| <

√
V (x)− λ− ε

d(U, ∂W )

for all x ∈W , where d(U, ∂W ) > 0 is the distance between U and ∂W in the Euclidean metric.

Let γ : [0, 1] → {x ∈ Rn | V (x) > λ} be a smooth curve such that γ(0) ∈ U, γ(1) ∈ ∂W . Since
ψ(γ(0)) = 1 and ψ(γ(1)) = 0, we have

∫
γ
dx [|∂ψ(x)] ≥ 1. Hence

δ ≤ δ
∫
γ

[|∂ψ(x)|] <
∫
γ

dx
[√

V (x)− λ
]
− ε

d(U, ∂W )

∫
γ

dx [1] <

∫
γ

dx
[√

V (x)− λ
]
− ε.

So δ ≤ dV−λ(U, ∂W )− ε < dV−λ(U, ∂W ).

((ii) =⇒ (i)) Let δ < dV−λ(U, ∂W ). We need to find a suitable function ψ such that for all x ∈ W ,
δ|∂ψ(x)| <

√
V (x)− λ. We would like to take

ψ̃(x) := max

(
0, 1− dV−λ(x, U)

dV−λ(U, ∂W )

)
,

but this function is certainly not smooth. Since δ < dV−λ(U, ∂W ), there are 0 < ε̃ < ε such that
(1 + ε̃)δ < dV−λ(U, ∂W )− ε. Then we can define the function ψ̃ε by

ψ̃ε(x) = max

(
0, 1− dV−λ(x, U)− ε/2

dV−λ(U, ∂W )− ε

)
.

Finally, we can smoothen this by mollification to obtain ψ ∈ C∞c (Rn) such that ψ(x) ≡ 1 on U ,
Supp(ψ) ⊆W , 0 ≤ ψ ≤ 1, and

|∂ψ(x)| < (1 + ε̃)

dV−λ(U, ∂W )− ε
√
V (x)− λ

for all x ∈W . Then

δ|∂ψ(x)| < δ(1 + ε̃)

dV−λ(U, ∂W )− ε
√
V (x)− λ <

√
V (x)− λ

as desired.

Theorem 5.11. (Exponential decay) Let u ∈ H1(Rn) such that P (h)u = E(h)u. Let E = limh→0E(h)
and U ⊂⊂ {x ∈ Rn | V (x) > E}. Let

δ0 := dV−E(U, {x ∈ Rn | V (x) = E}).

Then for all δ < δ0 we have
‖u‖L2(U) ≤ e−δ/h (5.9)

as h→ 0.

Proof. Let δ < δ′ < δ0. Since U is compact, we have infx∈U V (x)− E > 0. Then

U ⊂⊂ {x ∈ Rn | V (x) > E(h)}

if h > 0 is sufficiently small. By the Agmon-Lithner estimate, we have ‖u‖L2(Rn) ≤ Ce−δ
′/h ≤ e−δ/h as

h→ 0.
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5.3 Carleman inequality

We will now estimate ‖u‖L2(U) from below, where u is again a solution to the Schrödinger equation and

U ⊂⊂ {x ∈ Rn | V (x) > E} for some energy level E. Our goal is to show that ‖u‖L2(U) ≥ e−γ/h for
some sufficiently large γ > 0.

As we have seen in the proof of the Agmon-Lithner estimate, it makes sense to consider symbols of
the form a#a, because they satisfy 〈u, (a#a)W (x, hD)u〉 = ‖aW (x, hD)u‖2. We will now combine this
with the first-order approximation from corollary 4.31, i.e.

a#a = |a|2 +
h

2i
{a, a}+OS(m2)(h

2) = |a|2 +
1

2
hi{a, a}+OS(m2)(h

2)

≥ h

2

(
2

h0
|a|2 + i{a, a}

)
+OS(m2)(h

2).

We want to set a = pϕ and apply the G̊arding inequality to the symbol 2
h0
|pϕ|2 + i{pϕ, pϕ}. (Note that

this symbol is real-valued.) Since we already know that 〈u, (pϕ#pϕ)W (x, hD)u〉 = ‖pWϕ (x, hD)u‖2 ≥ 0,
this approach only yields a stronger result if

inf

(
2

h0
|pϕ|2 + i{pϕ, pϕ}

)
> 0.

As before, we will have to work around the fact that pϕ is unbounded. Let W ⊂⊂ Rn and let χ̃, χ ∈
C∞c (Rn) such that 0 ≤, χ̃, χ ≤ 1 and χ̃ ≡ 1 on W , χ ≡ 1 on Supp(χ̃), and define qϕ := pϕ#χ#m0,−2.
Then qϕ ∈ S, and

|qϕ(x, ξ)|2 = |pϕ(x, ξ)|2χ(x)2〈ξ〉−4 +OS(h).

Combining the previous equations, we obtain

qϕ#qϕ ≥
h

2

(
2

h0
|qϕ|2 + i{qϕ, qϕ}

)
+OS(h2)

=
h

2

(
2

h0
|pϕ|2χ2m2

0,−2 + i{qϕ, qϕ}
)

+OS(h2). (5.10)

We will now consider the symbol 2
h0
|pϕ|2χ2m2

0,−2 + i{qϕ, qϕ} ∈ S, and prove that there is a constant
σ > 0 such that

2

h0
|pϕ|2χ2m2

0,−2 − σ2χ2m2
0,−2 + i{qϕ, qϕ} ≥ 0

under the additional assumption that i{pϕ, pϕ}(x, ξ) > 0 whenever pϕ(x, ξ) = 0.

(i) Since |pϕ| is quadratic in |ξ|, there is for each x ∈ R2n a sufficiently small constant σx > 0 such

that |pϕ(x, ξ)|2〈ξ〉−4 > σ2
x if |ξ| is sufficiently large. But Supp(χ) is compact, so there are a

sufficiently small σ > 0 and a sufficiently large R such that |p(x, ξ)|2〈ξ〉−4 > σ2 for all (x, ξ) ∈
Supp(χ)× Rn\B(0, R).

Then |pϕ(x, ξ)|2χ(x)2〈ξ〉−4 − σ2χ(x)2〈ξ〉−4 ≥ 0 for all x ∈ Rn, and so there is a sufficiently small
constant h0 > 0 such that

2

h0
|pϕ(x, ξ)|2χ(x)2〈ξ〉−4 − σ2χ(x)2〈ξ〉−4 + i{qϕ, qϕ}(x, ξ) ≥ 0

for all (x, ξ) ∈ Rn × Rn\B(0, R), where we used that i{qϕ, qϕ} is bounded and supported on

Supp(χ)× Rn.

(ii) If ξ ∈ B(0, R), it may happen that |pϕ(x, ξ)| = 0. In the case, we need i{qϕ, qϕ} > 0. We have

{qϕ, qϕ} = |χ#m0,−2|2{pϕ, pϕ}+ (χ#m0,−2)pϕ{pϕ, χ#m0,−2}
+ χ#m0,−2pϕ{χ#m0,−2, pϕ}+ |pϕ|2{χ#m0,−2, χ#m0,−2}+OS(h).
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So if assume that p(x, ξ) = 0 =⇒ i{pϕ, pϕ} > 0 for all (x, ξ) ∈W ×Rn, then we have i{qϕ, qϕ} > 0
for all 0 < h ≤ h0 where h0 > 0 is sufficiently small. Define N := {(x, ξ) ∈W×Rn | |pϕ(x, ξ)| = 0}.
Note that N ⊂ Supp(χ)×B(0, R) ⊂⊂ R2n. Let ε > 0 and define

Nε :=
⋃
z∈N

B(z, ε).

Since {qϕ, qϕ} is continuous and N is compact, there is ε0 > 0 such that i{qϕ, qϕ} > 0 on Nε0 .
Then there is a σ > 0 such that for all (x, ξ) ∈ Nε0 ,

2

h0
|pϕ(x, ξ)|2χ(x)2〈ξ〉−4 + i{qϕ, qϕ}(x, ξ)− σ2χ(x)2〈ξ〉−4 ≥ i{qϕ, qϕ}(x, ξ)− σ2χ(x)2〈ξ〉−4 ≥ 0.

(iii) Finally, Supp(χ)×B(0, R)\Nε0 is compact and |pϕ| > 0 on this domain. So again, there is a
constant σ > 0 such that for all (x, ξ) ∈ (Rn ×B(0, R))\Nε0 ,

2

h0
|pϕ(x, ξ)|2χ(x)2〈ξ〉−4 − σ2χ(x)2〈ξ〉−4 + i{qϕ, qϕ}(x, ξ) ≥ 0

where h0 > 0 is sufficiently small.

Hence
2

h0
|pϕ(x, ξ)|2χ(x)2〈ξ〉−4 + i{qϕ, qϕ}(x, ξ)− σ2χ(x)2〈ξ〉−4 ≥ 0 (5.11)

on all of R2n. So if h0 > 0 is sufficiently small, then for all 0 < h ≤ h0 we have

2

h0
|pϕ(x, ξ)|2χ(x)2〈ξ〉−4 + i{qϕ, qϕ}(x, ξ)− σ2χ#m0,−2#χ#m0,−2 ≥ 0. (5.12)

We will now repeat the last steps of the proof of the Agmon-Lithner estimate. We apply the G̊arding-
inequality, set u := (1 + h2∆)(χ̃v) for v ∈ S , and apply proposition 5.7. Then

〈u,
(

2

h0
|qϕ|2 + i{qϕ, qϕ}

)W
(x, hD)u〉 ≥ σ2‖χmW

0,−2(x, hD)u‖2 − hγ‖u‖2,

‖qWϕ (x, hD)u‖2 = 〈u, (qϕ#qϕ)W (x, hD)u〉

= 〈u, (|qϕ|2)W (x, hD)u〉+ h〈u, 1

2
i{qϕ, qϕ}W (x, hD)u〉+O(h2)‖u‖

≥ h

2
〈u,
(

2

h0
|qϕ|2 + i{qϕ, qϕ}

)W
(x, hD)u〉 − h2C‖u‖2

≥ hσ
2

2
‖χmW

0,−2(x, hD)u‖2 − h2C‖u‖2,

‖pWϕ (x, hD)(χ̃v)‖2 = ‖pWϕ (x, hD)(χχ̃v)‖2

≥ hσ
2

2
‖χχ̃v‖2 − h2C‖(1 + h2∆)(χ̃v)‖2

≥ hσ
2

2
‖χ̃v‖2 − h2C

(
‖χ̃v‖2 + ‖pWϕ (x, hD)(χ̃v)‖2

)
≥ hσ

2

4
‖χ̃v‖2

for all 0 < h ≤ h0 if h0 > 0 is sufficiently small. Then
√
h‖v‖L2(W ) ≤ C‖pWϕ (x, hD)(χ̃v)‖L2(Rn).

Since this holds for any χ̃ such that W ⊂ Supp(χ̃), we obtain

√
h‖v‖L2(W ) ≤ C‖pWϕ (x, hD)v‖L2(W ).

This motivates the following definition and proves the following proposition.
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Definition 5.12. (Hörmander’s hypoellipticity condition) Let ϕ : Rn → C be smooth and let W ⊂ Rn.
Then pϕ is said to satisfy Hörmander’s hypoellipticity condition within W if

pϕ(x, ξ) = 0 =⇒ i{pϕ, pϕ}(x, ξ) > 0 (5.13)

for all (x, ξ) ∈W × Rn.

Proposition 5.13. Let W ⊂⊂ Rn and assume that pϕ satisfies Hörmander’s hypoellipticitiy condition
within W . Then there exists a sufficiently large constant C > 0 and a sufficiently small constants h0 > 0
such that

h1/2‖u‖L2(W ) ≤ C‖pWϕ (x, hD)u‖L2(W )

for all u ∈ S (Rn) and all 0 < h ≤ h0.

As it turns out, for any W ⊂⊂ Rn, we can pick a suitable function ϕ such that pϕ satisfies Hörmander’s
hypoellipticity condition within W .

Proposition 5.14. For all 0 < r < R there is a positive, nonincreasing, radial function ϕ ∈ C∞(Rn)
such that pϕ satisfies Hörmander’s hypoellipticity condition within B(0, R)\B(0, r).

Theorem 5.15. (Carleman estimate) Let a < b and let U ⊂⊂ Rn. Let V ∈ S(mk,0). Let u be a solution
of the Schrödinger equation such that a < E(h) < b for all 0 < h ≤ h0 for some h0 > 0. Assume further
that p − b ∈ S(mk,2) is elliptic for |x| ≥ R for some sufficiently large R > 0. Then there is a constant
γ > 0 such that for all 0 < h ≤ h0;

‖u‖L2(U) ≥ e−γ/h. (5.14)

Remark 5.16. The ellipticity condition means that there is are constants γ,R > 0 such that V (x) ≥
γ〈x〉k for all |x| ≥ R in case k > 0, or V (x)− b ≥ γ for all |x| ≥ R in case k = 0.

Proof. Without loss of generality we may assume that 0 ∈ U . (If not, we can pick x0 ∈ U and shift the
entire problem, i.e. set x̃ := x− x0.) Then there is a sufficiently small r > 0 such that B(0, 3r) ⊂ U . It
sufficies to prove the theorem for U = B(0, 3r). We may also assume without loss of generality that R
is large enough such that 3r < R− 5.

Let V0 ∈ C∞c (Rn) be some dummy potential such that Supp(V0) ⊂ B(0, R) and p(x, ξ)−b+V0(x) 6= 0
for all (x, ξ) ∈ R2n. Then p− b+ V0 is elliptic on all of R2n, and hence also p− E + V0. By proposition
5.2 there are h0, C > 0 such that for all v ∈ L2(Rn), for all 0 < h ≤ h0;

‖v‖L2(Rn) ≤ C‖(pW (x, hD) + V0 − E)v‖L2(Rn).

If we assume that Supp(v) ⊂ Rn\B(0, R), this reduces to

‖v‖L2(Rn) ≤ C‖(pW (x, hD)− E)v‖L2(Rn). (5.15)

Now define χ1, χ2 ∈ C∞c (Rn) such that 0 ≤ χ1, χ2 ≤ 1 and

χ1 ≡ 0 on B(0, r) ∪ Rn\B(0, R),

χ1 ≡ 1 on B(0, R− 1)\B(0, 2r),

χ2 ≡ 0 on B(0, R− 4),

χ2 ≡ 1 on Rn\B(0, R− 3).

The functions χ1 and χ2 were picked so that for all x0 ∈ Rn\U , we have χj ≡ 1 on B(x0, 1/2) for at
least one of the two. Hence ‖u‖L2(Rn) ≤ ‖u‖L2(U) +‖u‖L2(Rn\U) ≤ ‖u‖L2(U) +‖χ1u‖L2(Rn) +‖χ2u‖L2(Rn).
Our goal is to estimate the sum ‖χ1u‖L2(Rn) + ‖χ2u‖L2(Rn) from above in terms of ‖u‖L2(U).

Note that for any χ ∈ C∞c (Rn), we have

(pW (x, hD)− E)(χu) = χ(pW (x, hD)− E)u+ [pW (x, hD)− E,χ]u

= [pW (x, hD), χ]u

= −h2∆(χu) + h2χ∆u

= −h2u∆χ− 2h2〈∂χ, ∂u〉,
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and so
‖(pW (x, hD)− E)(χu)‖L2(Rn) ≤ Ch‖u‖H1

h(Supp(χ)). (5.16)

Then we can apply (5.15) to v := χ2u to obtain

‖χ2u‖L2(Rn) ≤ C‖(pW (x, hD)− E)(χ2u)‖L2(Rn)

≤ Ch‖u‖H1
h(B(0,R−3)\B(0,R−4))

≤ Ch‖u‖H2
h(B(0,R−3)\B(0,R−4))

≤ Ch
(
‖(pW (x, hD)− E)u‖L2(B(0,R−2)\B(0,R−5)) + ‖u‖L2(B(0,R−2)\B(0,R−5))

)
= Ch‖u‖L2(B(0,R−2)\B(0,R−5))

= Ch‖χ1u‖L2(B(0,R−2)\B(0,R−5))

≤ Ch‖χ1u‖L2(Rn)

where we used proposition 5.7 and the fact that (pW (x, hD)− E)u = 0.
By proposition 5.14, there is a positive, nonincreasing radial function ϕ ∈ C∞(Rn) such that pϕ −E

satisfies Hörmander’s hypoellipticity condition within W := B(0, R)\B(0, r). Then, by proposition 5.13,
we have

h1/2‖eϕ/hχ1u‖L2(Rn) = h1/2‖eϕ/hχ1u‖L2(W )

≤ C‖(pWϕ (x, hD)− E)(eϕ/hχ1u)‖L2(W )

= C‖eϕ/h(pW (x, hD)− E)(χ1u)‖L2(W )

≤ Ch‖eϕ/hu‖H1
h(Supp(χ1))

= Ch
(
‖eϕ/hu‖H1

h(B(0,2r)\B(0,r)) + ‖eϕ/hu‖H1
h(B(0,R)\B(0,R−1))

)
≤ Ch

(
eϕ(r)/h‖u‖H1

h(B(0,2r)\B(0,r)) + eϕ(R−1)/h‖u‖H1
h(B(0,R)\B(0,R−1))

)
≤ Ch

(
eϕ(r)/h‖u‖H2

h(B(0,2r)\B(0,r)) + eϕ(R−1)/h‖u‖H2
h(B(0,R)\B(0,R−1))

)
≤ Ch

(
eϕ(r)/h‖u‖L2(U) + eϕ(R−1)/h‖u‖L2(B(0,R+1)\B(0,R−2))

)
≤ Ch

(
eϕ(r)/h‖u‖L2(U) + eϕ(R−1)/h‖χ2u‖L2(Rn)

)
,

so we obtain
‖eϕ/hχ1u‖L2(Rn) ≤ Ch1/2

(
eϕ(r)/h‖u‖L2(U) + eϕ(R−1)/h‖χ2u‖L2(Rn)

)
(5.17)

But ϕ is non-increasing, so eϕ(R−1)/h‖χ1u‖L2(Rn) ≤ ‖eϕ/hχ1u‖L2(Rn) + eϕ(R−1)/h‖χ2u‖L2(Rn). So

eϕ(R−1)/h‖χ2u‖L2(Rn) ≤ Cheϕ(R−1)/h‖χ1u‖L2(Rn) ≤ Ch‖eϕ/hχ1u‖L2(Rn) + Cheϕ(R−1)/h‖χ2u‖L2(Rn).

Combining everything, we finally get

‖eϕ/hχ1u‖L2(Rn) + eϕ(R−1)/h‖χ2u‖L2(Rn)

≤ Ch1/2eϕ(r)/h‖u‖L2(U) + Ch1/2eϕ(R−1)/h‖χ2u‖L2(Rn) + Ch‖eϕ/hχ1u‖L2(Rn) + Cheϕ(R−1)/h‖χ2u‖L2(Rn)

≤ Ch1/2eϕ(r)/h‖u‖L2(U)

for all 0 < h ≤ h0 if h0 > 0 is sufficiently small. Hence

‖u‖L2(Rn) ≤ ‖u‖L2(U) + ‖χ1u‖L2(Rn) + ‖χ2u‖L2(Rn)

≤ ‖u‖L2(U) + ‖eϕ/hχ1u‖L2(Rn) + eϕ(R−1)/h‖χ2u‖L2(Rn)

≤
(

1 + Ceϕ(r)/h
)
‖u‖L2(U),

and therefore there are constants h0 > 0, γ > 0 such that for all 0 < h ≤ h0, we have

‖u‖L2(U) ≥ e−γ/h‖u‖L2(Rn) = e−γ/h. (5.18)
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6 Multiple potential wells

In this section we shall consider the Schrödinger operator P (h) := −h2∂2
x + V (x) for the potential

V (x) := (x2 − 1)2.

For eigenvalues E(h) < 1, the classically permitted domain {x ∈ R | V (x) < E(h)} is split into two
connected components, the so-called potential wells.

By the Agmon-Lithner inequality, the eigenfunctions associated with such eigenvalues are exponen-
tially small outside these wells. This means that the wells are separated from one another, and therefore
we can consider the eigenvalues and eigenfunctions in each well separately, up to an exponentially small
error. We will do this in greater generality in subsection 6.1.

By the Carleman estimate, the eigenfunctions do not vanish in between the wells. In subsection 6.2,
we will consider the interaction between the wells. In subsection 6.3, we will return to the one-dimensional
symmetric double-well potential.

6.1 Multiple single-well potentials

We will consider a potential V with N wells, and approximate its low-lying eigenvalues and their
corresponding eigenfunctions with the eigenvalues and eigenfunctions of multiple single-well potentials
Vj(ν, b

∗) where ν > 0 and b∗ > 0 are small.

Definition 6.1. (Potential with multiple wells) A potential V ∈ S(mk,0) is said to have N potential
wells if:

(i) There are b > 0, R > 0 such that the symbol p− b ∈ S(mk,2) is elliptic for all |x| ≥ R,

(ii) V : Rn → [0,∞),

(iii) There are distinct x1, . . . , xN ∈ Rn such that V (x) = 0⇐⇒ x = xj for some 1 ≤ j ≤ N ,

(iv) ∂2V (xj) is nonsingular for all 1 ≤ j ≤ N .

Now consider Rn equiped with the Agmon-metric dV . Let ν > 0 be small enough such that the sets
BV (xj , 2ν), 1 ≤ j ≤ N are all disjoint. Let b∗ > 0 be small enough such that {x ∈ Rn | V (x) ≤ b∗} has
N connected components, each of which is contained in some BV (xj , ν).

For all 1 ≤ j ≤ N , we can define ϑj ∈ C∞c (Rn) such that 0 ≤ ϑj ≤ 1, ϑj ≡ 1 on {x ∈ Rn | V (x) ≤
b∗} ∩BV (xj , ν), and Supp(ϑj) ⊆ BV (xj , ν). Then we can define the single-well potentials Vj by

Vj(x) := V (x)

1−
∑
k 6=j

ϑk(x)

+ b∗
∑
k 6=j

ϑk(x). (6.1)

It should be noted that for all 1 ≤ j ≤ N , we have Vj(x) = 0 ⇐⇒ x = xj , and Vj > b∗ outside of
BV (xj , ν).

The number of eigenvalues of P (h) = −h2∆ + V (x) and Pj(h) := −h2∆ + Vj(x) in the interval [a, b]
is estimated by Weyl’s law.

Theorem 6.2. (Weyl’s law) Let a < b and let V ∈ S(mk,0) for some k ∈ N. If p − b ∈ S(mk,2) is
elliptic for |x| ≥ R for some sufficiently large R > 0, then the number of eigenvalues between a and b is

#{E(h) | a ≤ E(h) ≤ b} =
1

(2πh)n
(∣∣{(x, ξ) ∈ R2n | a ≤ p(x, ξ) ≤ b}

∣∣+ o(1)
)

as h→ 0, where
∣∣{(x, ξ) ∈ R2n | a ≤ p(x, ξ) ≤ b}

∣∣ is the volume in R2n.
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Remark 6.3. The notation o(1) means that, for every ε > 0, there is a h0(ε) > 0 such that for all
0 < h ≤ h0(ε), we have∣∣∣∣#{E(h) | a ≤ E(h) ≤ b} − 1

(2πh)n
∣∣{(x, ξ) ∈ R2n | a ≤ p(x, ξ) ≤ b}

∣∣∣∣∣∣ ≤ ε.
We are interested in the lowest lying eigenvalues, so we will consider the case a = 0 and 0 < b(h) < b∗

such that b(h) → 0 as h → 0. Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λM < b be the eigenvalues of P (h) in the
interval [0, b] and let 0 < µj,1 ≤ µj,2 ≤ . . . ≤ µj,mj < b be the eigenvalues of Pj(h) in the interval [0, b],
where 1 ≤ j ≤ N . Let Ωk be eigenfunction corresponding to λk, 1 ≤ k ≤M , and ηj,k the eigenfunction
corresponding to µj,k, 1 ≤ k ≤ mj . In case an eigenvalue is degenerate, we will count it multiple times
and take the eigenfunctions to be orthonormal.

Let for all 1 ≤ j ≤ N , ρj ∈ C∞c (Rn) such that 0 ≤ ρj ≤ 1, ρj ≡ 1 on BV (xj , ν), and Supp(ρj) ⊆
BV (xj , 2ν). Define χj by χj(x) := 1−

∑
k 6=j ρk(x). Then we can define for all 1 ≤ j ≤ N , 1 ≤ k ≤ mj ,

ψj,k := χjηj,k. (6.2)

Let Ej be the space spanned by the ψj,k, and let E :=
⊕

j Ej be their direct sum. Let F be the
space spanned by the Ωj . We want to show that E and F are exponentially close as h→ 0.

Definition 6.4. (Distance between subspaces) Let H be a Hilbert space and let E,F be subspaces. Let
πE and πF be the projections onto E and F , respectively. Then the non-symmetric distance between E
and F is defined as

~d(E,F ) := ‖πE − πEπF ‖ = ‖πE − πFπE‖. (6.3)

Lemma 6.5. (Properties of ~d(·, ·)) Let H be a Hilbert space, and let E,F,G be closed subspaces. Then

(i) ~d(E,F ) = 0⇐⇒ E ⊆ F .

(ii) ~d(E,G) ≤ ~d(E,F ) + ~d(F,G).

(iii) If ~d(E,F ) < 1, then πF |E : E → F is injective and πE |F : F → E is surjective.

(iv) If ~d(E,F ) < 1 and ~d(F,E) < 1, then ~d(E,F ) = ~d(F,E).

The following proposition will help us estimate the distance between two subspaces of L2(Rn), one
of which is the span of eigenfunctions of some operator.

Proposition 6.6. Let H be a Hilbert space, D(A) ⊆ H, A : D(A)→ H a self-adjoint operator. Let a < b
and ε > 0, and let ψ1, . . . , ψM ∈ D(A) be linearly independent such that there are λ1, . . . , λM ∈ [a, b] and
r1, . . . , rM with ‖rk‖ ≤ ε such that

Aψk = λkψk + rk (6.4)

for all 1 ≤ k ≤M . Assume also that there is some α > 0 such that

Spectrum(A) ∩ ((a− 2α, a) ∪ (b, b+ 2α)) = ∅.

Finally, let E be the span of the ψk, let F be the span of the eigenvectors of A with their corresponding
eigenvalue in [a, b], and let λmin

S be the lowest eigenvalue of the matrix S := (〈ψj , ψk〉). Then

~d(E,F ) ≤ M1/2ε

α(λmin
S )1/2

. (6.5)

Proof. It is a well-known result from spectral theory that

πF =
1

2πi

∫
γ

dλ
[
(A− λ)−1

]
,
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where γ is some contour around of spectrum(A) ∩ [a, b] that does not intersect spectrum(A). We have
for all λ /∈ spectrum(A) that

ψk = (A− λ)−1(A− λ)ψk = (A− λ)−1((λk − λ)ψk + rk)

= (λk − λ)(A− λ)−1ψk + (A− λ)−1rk,

hence (A− λ)−1ψk = (λk − λ)−1ψk − (λk − λ)−1(A− λ)−1rk. Let R > 0 and let γ = γR be the oriented
boundary of [a − α, b + α] × i[−R,R]. By assumption, this boundary does not contain any elements of
the spectrum of A. Then

πFψk =
1

2πi

∫
γR

dλ
[
(λk − λ)−1ψk − (λk − λ)−1(A− λ)−1rk

]
= ψk −

1

2πi

∫
γR

dλ
[
(λk − λ)−1(A− λ)−1rk

]
This last integral tends to

1

2πi

∫ b+α+iR

b+α−iR
dλ
[
(λk − λ)−1(A− λ)−1rk

]
− 1

2πi

∫ a−α+iR

a−α−iR
dλ
[
(λk − λ)−1(A− λ)−1rk

]
as R→∞. Setting λ = a− α+ ti or λ = b+ α+ ti we obtain

‖(λk − λ)−1(A− λ)−1rk‖ ≤
ε

α2 + t2
.

Hence ‖πFψk − ψk‖ ≤ ε
π

∫
R dt

[
1

α2+t2

]
= ε

α . Now let u ∈ E, then there is some µ ∈ CM such that

u =
∑M
k=1 µkψk. Then ‖u‖2 = 〈µ, Sµ〉 ≥ λmin

S ‖µ‖2 and ‖µ‖2 =
∑M
k,l=1 |µk||µl| ≤ M

∑M
k=1 |µk|2.

Combining everything, we obtain

‖πFu− u‖ =

M∑
k=1

|µk|‖πFψk − ψk‖ ≤M1/2‖µ‖ ε
α
≤ M1/2ε

α(λmin
S )1/2

‖u‖.

In light of theorem 5.11, we can expect the constant δ to be smaller than the Agmon-distance between
the wells. Define for all 0 < b ≤ b∗

δb := min
j,k

dV−b(xj , xk). (6.6)

Theorem 6.7. Let Ej be the space spanned by ψj,k, 1 ≤ k ≤ mj, let E =
⊕

j Ej, and let F be the space
spanned by Ωk, 1 ≤ k ≤ M . Then there is a sufficiently small h0 > 0 such that for all 0 < h ≤ h0 and
all δ < δ0 − 3ν that

~d(E,F ) = ~d(F,E) = O(e−δ/h) (6.7)

as h→ 0. Moreover, there is a bijection B : {λk}1≤j≤M −→ {µj,k}1≤j≤N,1≤k≤mj such that

B(λk)− λk = O(e−δ/h) (6.8)

as h→ 0 for all 1 ≤ k ≤M .

Proof. We have

P (h)ψj,k = Pj(h)ψj,k + (V − Vj)ψj,k
= Pj(h)ψj,k

= χjPj(h)ηj,k + [Pj(h), χj ]ηj,k

= µj,kψj,k − h2 (ηj,k∆χj + 2〈∂χj , ∂ηj,k〉Rn)

Now let δ < δ0 − 3ν and define for ε > 0 and a sufficiently large R > 0 the sets

U :=
⋃
k 6=j

BV (xk, 2ν),

Uε := BV (U, ε),

W :=
(

Rn\BV (xj , ν)
)
∩BV (0, R).
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Note that Supp(∂χj) ⊂ U ⊂⊂ Uε ⊂⊂ W ⊂⊂ {x ∈ Rn | V (x) > µj,k}. If ε is sufficiently small, we have
δ < δ0 − 3ν − ε ≤ dV (Uε, ∂W ). Then if h is sufficiently small, we obtain δ < dV−µj,k(Uε, ∂W ). Hence by
the Agmon-Lithner estimate, we obtain that

‖ηj,k‖L2(Supp(∂χj)) ≤ ‖ηj,k‖L2(Uε) = O(e−δ/h)

and
‖∂ηj,k‖L2(Supp(∂χj)) ≤ ‖ηj,k‖H2

h(U) ≤ ‖ηj,k‖L2(Uε) = O(e−δ/h)

as h→ 0, where we used proposition 5.7.

Hence P (h)ψj,k = µj,kψj,k + O(e−δ/h) as h → 0. Similarly, we obtain 〈ψj,k, ψj′,k′〉 = δ(j,k),(j′,k′) +

O(e−δ/h) as h→ 0.

Now we want to use proposition 6.6. We set A = P (h), ψk = ψj,k, a = 0, b = b, λk = µj,k. Let

ε′ > 0 be small enough so that δ + 2ε′ < δ0 − 3ν and set ε = O(e−(δ+2ε′)/h), α = e−ε
′/h. By Weyl’s

law we have Spectrum(P (h)) ∩ (b, b + 2α) = ∅ and M1/2 = O(eε
′/h) if h is sufficiently small. Since,

〈ψj,k, ψj′,k′〉 = δ(j,k),(j′,k′) +O(e−δ/h), we have λmin
S > 1/2. Then ~d(E,F ) = O(e−δ/h).

Now we need to show that ~d(F,E) < 1, because then we have ~d(F,E) = ~d(E,F ). Recall that ρj ≡ 1
on BV (xj , ν) and that Supp(ρj) ⊂ BV (xj , 2ν). Note in particular, that V ≡ Vj on Supp(ρj). Define also

ρ0 := 1−
N∑
j=1

ρj , (6.9)

and note that ρ0Ωk = OL2(Rn)(e
−ε/h) as h → 0 for some ε > 0. Claim: for all 1 ≤ j ≤ N there are

aj,l ∈ C, 1 ≤ l ≤ mj , such that

ρjΩk =

mj∑
l=1

aj,lηj,l +OL2(Rn)(e
−ε/h) (6.10)

as h→ 0 for some constant ε > 0. If this claim holds, then we also have

ρjΩk =

mj∑
l=1

aj,lψj,l +OL2(Rn)(e
−ε/h) (6.11)

as h→ 0 for some constant ε > 0. Then we obtain

Ωk =

N∑
j=0

ρjΩk =

N∑
j=1

mj∑
l=1

aj,lψj,l +OL2(Rn)(e
−ε/h). (6.12)

But the {Ωk}1≤k≤M is a basis of F . So ~d(F,E) = ‖ (I − πE)πF ‖ = O(e−ε/h) as h → 0. So if h is

sufficiently small, we obtain ~d(F,E) < 1 as desired.

Now, to prove the claim, note that

Pj(h)(ρjΩk) = P (h)(ρjΩk) (6.13)

= λkρjΩk + [P (h), ρj ]Ωk (6.14)

= λkρjΩk +OL2(Rn)(e
−4ε/h) (6.15)

as h → 0 for some ε > 0. Define the following subspaces of L2(Rn): let Fj,k be the span of ρjΩk, and

let Ẽj be the span of ηj,l, 1 ≤ l ≤ mj . We may assume without loss of generality that ‖ρjΩk‖ > e−ε/h

(otherwise we could pick aj,l := 0). Now we will apply proposition 6.6 with A = Pj(h), α = e−ε/h,

λmin
S = ‖ρjΩk‖ > e−ε/h, and m

1/2
j = O(eε/h). Then we obtain

~d(Fj,l, Ẽj) ≤ C
eε/he−4ε/h

e−ε/he−ε/h
= O(e−ε/h). (6.16)
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But then ρjΩk = πẼj (ρjΩk) +OL2(Rn)(e
−ε/h) as desired.

Finally, we need to show there is a bijection B : {λk}1≤j≤M −→ {µj,k}1≤j≤N,1≤k≤mj such that for

all δ < δ0 − 3ν, 1 ≤ k ≤M , we have B(λk)− λk = O(e−δ/h) as h→ 0. Since ~d(E,F ) = ~d(F,E) < 1 if h

is sufficiently small, there is a homeomorphism between E and F , and so M =
∑N
j=1mj .

Now let δ′ < δ < δ0 − 3ν and divide the interval [0, b] in smaller intervals of width 2e−δ
′/h, i.e. we

define for i ∈ N the interval Ii := [2ie−δ
′/h, 2(i + 1)e−δ

′/h]. Without loss of generality, we may assume
that if h is sufficiently small, we have

Ii ∩ {λk}1≤k≤M 6= ∅ =⇒ Ii+1 ∩ {λk}1≤k≤M = ∅.

Then we can again apply proposition 6.6 similar to the proof of ~d(E,F ) = O(e−δ/h), but now with

the interval Ii instead of [0, b]. In this case, since α = e−δ
′/h, we obtain ~d(E,F ) = O(e−(δ−δ′)/h). Since

δ′ < δ, we have ~d(E,F ) < 1 if h is sufficiently small. Then πF |E : E → F is injective, so the interval Ii
contains at least as many λk as µj,l. But we already have M = m1 + . . .mN , hence the interval Ii must

in fact contain as many λk as µj,l. So we can define a bijection B such that B(λk)− λk = O(e−δ
′/h) as

h→ 0.

Notation 6.8. (Õ-notation) Let δ0 > 0, then the notation

A(ν) = Õ(e−δ0/h)

means that for all δ < δ0, there is a sufficiently small ν > 0 such that A(ν) = O(e−δ/h) as h→ 0.

6.2 The matrix representation of the Schrödinger operator

As theorem 6.7 shows, we can consider each well separately up to some exponentially small error. How-
ever, due to quantum tunneling, there will still be some interaction between the wells. In this subsection,
we will discuss this interaction. But first, we will prove a few facts about the projection πF .

Proposition 6.9. The following statements hold:

(i) πFψj,k = ψj,k + Õ(e−δ0/h),

(ii) πF commutes with P (h),

(iii) 〈πFψj,k, πFψj′,k′〉 = 〈ψj,k, ψj′,k′〉 − 〈πFψj,k − ψj,k, πFψj′,k′ − ψj′,k′〉,

(iv) 〈πFψj,k, P (h)πFψj′,k′〉 = 〈ψj,k, P (h)ψj′,k′〉 − 〈πFψj,k − ψj,k, P (h)(πFψj′,k′ − ψj′,k′)〉.

Proof. (i) Let δ < δ0, then there is a sufficiently small ν > 0 such that δ < δ0 − 3ν. By theorem 6.7,

we have ‖(πF − I)πE‖ = ~d(E,F ) = O(e−δ/h). But then

‖πFψj,k − ψj,k‖L2(Rn) = ‖(πF − I)πEψj,k‖L2(Rn) = O(e−δ/h).

(ii) The eigenfunctions {Ωk}k∈N of P (h) form an orthonormal basis of L2(Rn). If 1 ≤ k ≤M , we have
πFΩk = Ωk. Otherwhise, we have πFΩk = 0. Hence πF commutes with P (h).

(iii) Note that I − πF is an orthogonal projection onto F⊥. So I − πF is idempotent and self-adjoint.
Now we can calculate:

〈(πF − I)ψj,k, (πF − I)ψj′,k′〉 = 〈(I − πF )ψj,k, (I − πF )ψj′,k′〉
= 〈(I − πF )ψj,k, ψj′,k′〉
= 〈ψj,k, ψj′,k′〉 − 〈πFψj,k, πFψj′,k′〉.

(iv) This follows trivially from (ii) and (iii).
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Define for 1 ≤ j ≤ N , 1 ≤ j ≤ mj ,
ϕj,k := πFψj,k. (6.17)

By theorem 6.7 and proposition 6.9, we obtain that {ϕj,k} is a basis of F , and the interaction between
the wells is characterised by the M ×M -matrix (〈ϕj,k, P (h)ϕj′,k′〉). Recall that

ϕj,k − ψj,k = Õ(e−δ0/h)

and that
P (h)ψj,k = µj,kψj,k + rj,k,

where
rj,k := [P (h), χj ]ηj,k = Õ(e−δ0/h).

Then we have

P (h)(ϕj,k − ψj,k) = (πF − I)P (h)ψj,k

= (πF − I)(µj,kψj,k + rj,k)

= µj,k(ϕj,k − ψj,k) + (πF − I)rj,k.

So P (h)(ϕj,k − ψj,k) = O(e−δ/h), and so 〈ϕj,k − ψj,k, P (h)(ϕj,k − ψj,k)〉 = Õ(e−2δ0/h). Moreover, we
have

〈ψj,k, P (h)ψj′,k′〉 =
1

2
(〈ψj,k, P (h)ψj′,k′〉+ 〈P (h)ψj,k, ψj′,k′〉)

=
1

2
(〈ψj,k, µj′,k′ψj′,k′ + rj′,k′〉+ 〈µj,kψj,k + rj,k, ψj′,k′〉)

=
µj,k + µj′,k′

2
〈ψj,k, ψj′,k′〉+

1

2
(〈ψj,k, rj′,k′〉+ 〈rj,k, ψj′,k′〉) ,

and

〈ψj,k, rj′,k′〉 = 〈χjηj,k, [P (h), χj′ ]ηj′,k′〉

= h2
n∑
i=1

[
−〈χjηj,k, ∂2

i (χj′)ηj′,k′〉 − 2〈χjηj,k, (∂iχj′)∂iηj′,k′〉
]

= h2
n∑
i=1

∫
Rn
dx
[
−χj(x)ηj,k(x)(∂2

i χj′)(x)ηj′,k′(x)− 2χj(x)ηj,k(x)(∂iχj′)(x)(∂iηj′,k′)(x)
]

= h2
n∑
i=1

∫
Rn
dx
[
∂i(χjηj,kηj′,k′)(x)(∂iχj′)(x)− 2χj(x)ηj,k(x)(∂iχj′)(x)(∂iηj′,k′)(x)

]
= h2

n∑
i=1

∫
Rn
dx
[
∂i(χjηj,kηj′,k′)(x)(∂iχj′)(x)− 2χj(x)ηj,k(x)(∂iχj′)(x)(∂iηj′,k′)(x)

]
= h2

n∑
i=1

∫
Rn
dx
[
χj(x)

(
∂iηj,k(x)ηj′,k′(x)− ηj,k(x)(∂iηj′,k′)(x)

)
(∂iχj′)(x)

]
+ h2

n∑
i=1

∫
Rn
dx
[
(∂iχj)(x)ηj,k(x)ηj′,k′(x)(∂iχj′)(x)

]
.

But ηj,k = Õ(e−δ0/h) on Supp(∂iχj), hence the second term is Õ(e−2δ0/h). Now define

w(j,k),(j′,k′) := h2
n∑
i=1

∫
Rn
dx
[
χj(x)

(
∂iηj,k(x)ηj′,k′(x)− ηj,k(x)(∂iηj′,k′)(x)

)
(∂iχj′)(x)

]
, (6.18)

W(j,k),(j′,k′) :=
1

2

(
w(j,k),(j′,k′) + w(j′,k′),(j,k)

)
. (6.19)
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Putting everything together, we obtain

〈ϕj,k, P (h)ϕj′,k′〉 =
1

2
(µj,k + µj′,k′) 〈ψj,k, ψj′,k′〉+W(j,k),(j′,k′) + Õ(e−2δ0/h), (6.20)

the matrix of P |F (h) : F → F in the basis {ϕj,k}. Note that we have W(j,k),(j′,k′) = Õ(e−δ0/h). However,

we also have 〈ψj,k, ψj′,k′〉 = δ(j,k),(j′,k′) + Õ(e−δ0/h), so this term contributes to the matrix of P |F (h) in
the same order as W(j,k),(j′,k′).

This owes to the fact that {ϕj,k} is not orthonormal. Therefore, it is more convenient to write the
matrix of P |F (h) in an orthonormal basis. Define

N := (〈ϕj,k, ϕj′,k′〉) = (ϕ1,1 . . . ϕN,mN )T (ϕ1,1 . . . ϕN,mN ). (6.21)

We have 〈ϕj,k, ϕj′,k′〉 = 〈ψj,k, ψj′,k′〉−〈ϕj,k−ψj,k, ϕj′,k′−ψj′,k′〉 = δ(j,k),(j′,k′) + Õ(e−δ0/h)+ Õ(e−2δ0/h),
so

N = I + Õ(e−δ0/h), and (6.22)

N−1/2 = I + Õ(e−δ0/h). (6.23)

Then we can define the functions ej,k by

(e1,1 . . . eN,mN ) := (ϕ1,1 . . . ϕN,mN )N−1/2. (6.24)

Then

(e1,1 . . . eN,mN )T (e1,1 . . . eN,mN ) = N−1/2(ϕ1,1 . . . ϕN,mN )T (ϕ1,1 . . . ϕN,mN )N−1/2

= N−1/2NN−1/2 = I,

so the basis {ej,k} is indeed orthonormal. Calculating the matrix of P |F (h) in this basis gives

(e1,1 . . . eN,mN )TP (h)(e1,1 . . . eN,mN )

= N−1/2(ϕ1,1 . . . ϕN,mN )TP (h)(ϕ1,1 . . . ϕN,mN )N−1/2

= diag(µ1,1, . . . , µN,mN ) + (I +O(e−δ/h))(W(j,k),(j′,k′))(I +O(e−δ/h)) + Õ(e−2δ0/h)

= diag(µ1,1, . . . , µN,mN ) + (W(j,k),(j′,k′)) + Õ(e−2δ0/h).

6.3 The one-dimensional symmetric double-well potential

We will now apply the results of the previous subsection to a one-dimensional symmetric double-well
potential, i.e. n = 1, V (x) = V (−x) for all x ∈ R, and V has two wells xA, xB ∈ R.

Let δ < δ0 and let ν > 0 be small enough such that δ < δ0 − 3ν. Then we can choose b∗ > 0
small enough such that {x ∈ R | V (x) ≤ b∗} has two connected components and is contained in
BV (xA, ν) ∪ BV (xB , ν). Let θA ∈ C∞c (R) such that 0 ≤ θA ≤ 1, θA ≡ 1 on {x ∈ R | V (x) ≤
b∗} ∩BV (xA, ν), and Supp(θA) ⊆ BV (xA, ν). Define θB ∈ C∞c (R) by θB(x) := θA(−x).

Then we can define the single-well potentials VA and VB by

VA(x) := V (x)(1− θB(x)) + b∗θB(x), (6.25)

VB(x) := VA(−x). (6.26)

Let 0 < b(h) < b∗ such that P (h) := −h2∂2
x + V (x) has two eigenvalues in [0, b]. We will denote these

eigenvalues by E+ and E−, and their respective eigenfunctions Ω+ and Ω−. By symmetry, we know that
PA(h) and PB(h) each have one eigenvalue in [0, b], and that µA = µB =: µ with eigenfunctions ηA and
ηB such that ηB(x) := ηA(−x).
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Let ρA ∈ C∞c (R) such that 0 ≤ ρA ≤ 1, ρA ≡ 1 on BV (xA, ν), and Supp(ρA) ⊆ BV (xA, 2ν) and
define ρB ∈ C∞c (R) by ρB(x) := ρA(−x). Let

χA := 1− ρB , χB := 1− ρA, (6.27)

ψA := χAηA, ψB := χBηB . (6.28)

Let F := Span(Ω−,Ω+), and define

ϕA := πFψA, (6.29)

ϕB := πFψB . (6.30)

Let

N :=

(
ϕA
ϕB

)(
ϕA ϕB

)
=

(
〈ϕA, ϕA〉 〈ϕA, ϕB〉
〈ϕB , ϕA〉 〈ϕB , ϕB〉

)
, (6.31)

then we can finally define the orthonormal basis {eA, eB} of F by(
eA eB

)
=
(
ϕA ϕB

)
N−1/2. (6.32)

We have WA,A = WB,B = 0 and WA,B = WB,A =: β. Then the matrix of P |F (h) in the basis {eA, eB}
is (

eA
eB

)
P (h)

(
eA eB

)
=

(
µ 0
0 µ

)
+

(
0 β
β 0

)
+ Õ(e−2δ0/h) (6.33)

=

(
µ+ r1 β + r2

β + r2 µ+ r1

)
, (6.34)

where r1, r2 = Õ(e−2δ0/h). The eigenvalues of this matrix are

E± = µ+ r1 ± |β + r2|, (6.35)

= µ± sign(β)β + Õ(e−2δ0/h), (6.36)

and the eigenfunctions are

Ω± =
1√
2
eA ± sign(β)

1√
2
eB (6.37)

=
1√
2
ηA ± sign(β)

1√
2
ηB + Õ(e−δ0/h). (6.38)

So we have found that the lowest two eigenvalues are µ+ Õ(e−δ0/h) and |E+ −E−| = 2|β| = Õ(e−δ0/h).
Moreover, the eigenfunctions are not localised in one particular well. Both wells contribute equally.
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7 Breaking the symmetry

In this section we will again look at the one-dimensional double-well potential V . We will consider a
non-negative perturbation ∆V ∈ C∞c (R) such that Supp(∆V ) ∩ {xA, xB} = ∅. Then we can define the
perturbed potential Ṽ by

Ṽ := V + t∆V, (7.1)

where the parameter t ∈ [−1, 1] regulates the strength and the sign of the perturbation. We will consider
the case where ∆V is not symmetric, and look at the consequences for the lowest two eigenvalues Ẽ± of
P̃ (h) := −h2∆ + Ṽ and their respective eigenvectors Ω̃±.

7.1 Perturbation of the single-well potential

We will first consider the single-well potential Ṽj , j ∈ {A,B}. Since Supp(∆V ) ∩ {xA, xB} = ∅, we can

choose θ̃j = θj and χ̃j = χj when h is sufficiently small, so we can simply set Ṽj := Vj + t∆V . Define

P̃j(h) := −h2∆ + Ṽj , (7.2)

and let µ̃j be its lowest eigenvalue with eigenfunction η̃j . Let δj be the Agmon-distance between the well
xj and the support of the perturbation ∆V , i.e.

δj = dV (xj ,Supp(∆V )). (7.3)

Proposition 7.1. Let µ and ηj be the lowest eigenvalue and the corresponding eigenfunction of the
unperturbed potential, then we have

µ̃j = µ+ t〈ηj ,∆V ηj〉+ t2Õ(e−3δj/h), (7.4)

and
η̃j = ηj + tÕ(e−δj/h). (7.5)

Proof. Let rj := t∆V ηj . By the Agmon-Lithner estimate, we have rj = tÕ(e−δj/h). Then

P̃j(h)ηj = Pj(h)ηj + t∆V ηj

= µηj + rj .

Let Ej be the span of ηj and let Ẽj be the span of η̃j . Then we obtain by proposition 6.6 that
~d(πEj , πẼj ) = tÕ(e−δj/h). Then we have

1 = ‖ηj‖2 = ‖πẼjηj‖
2 + ‖(I − πẼj )ηj‖

2 = ‖πẼjηj‖
2 + t2Õ(e−2δj/h),

so we obtain ‖πẼjηj‖
−1 = 1 + t2Õ(e−2δj/h) by taking the Taylor expansion of the function f(x) = x−1/2

and applying it to ‖πẼjηj‖
2. But Ẽj is a one-dimensional space, so we have

η̃j = ‖πẼjηj‖
−1πẼjηj

= πẼjηj + t2Õ(e−2δj/h)

= ηj − (I − πẼj )ηj + t2Õ(e−2δj/h)

= ηj + tÕ(e−δj/h)
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and

µ̃j = 〈η̃j , P̃j(h)η̃j〉
= ‖πẼjηj‖

−2〈πẼjηj , P̃j(h)πẼjηj〉

= ‖πẼjηj‖
−2〈πẼjηj , πẼj P̃j(h)ηj〉

= ‖πẼjηj‖
−2〈πẼjηj , πẼj (µηj + t∆V ηj)〉

= µ+ ‖πẼjηj‖
−2〈πẼjηj , t∆V ηj〉

= µ+ ‖πẼjηj‖
−2〈ηj − (I − πẼj )ηj , t∆V ηj〉

= µ+
(

1 + t2Õ(e−2δj/h)
)(

t〈ηj ,∆V ηj〉+ t2Õ(e−3δj/h)
)

= µ+ t〈ηj ,∆V ηj〉+ t2Õ(e−3δj/h),

where we used that

|t〈ηj ,∆V ηj〉| ≤ |t|‖ηj‖L2(Supp(∆V ))‖∆V ηj‖
= tÕ(e−2δj/h)

and

|t〈(I − πẼj )ηj ,∆V ηj〉| ≤ |t|‖(I − πẼj )ηj‖L2(Supp(∆V ))‖∆V ηj‖

≤ |t|‖(I − πẼj )πEj‖‖ηj‖L2(Supp(∆V ))‖∆V ηj‖

= t2Õ(e−3δj/h).

7.2 Perturbation of the double-well potential

In this subsection, we will consider the two lowest eigenvalues Ẽ± and their corresponding eigenfunctions
Ω̃± of the perturbed one-dimensional symmetric double-well potential Ṽ = V + t∆V . Let F̃ be the space
spanned by Ω̃±. As before, there is an orthonormal basis {ẽA, ẽB} of F̃ such that(

ẽA
ẽB

)
P̃ (h)

(
ẽA ẽB

)
=

(
µ̃A β̃

β̃ µ̃B

)
+ Õ(e−2δ0/h),

where β̃ := W̃A,B . In the previous subsection, we found that

µ̃A = µ+ t〈ηA,∆V ηA〉+ t2Õ(e−3δA/h), (7.6)

µ̃B = µ+ t〈ηB ,∆V ηB〉+ t2Õ(e−3δB/h). (7.7)

Moreover, recall that ẽj = η̃j + Õ(e−δ0/h). Then we obtain

ẽA = ηA + tÕ(e−δA/h) + Õ(e−δ0/h), (7.8)

ẽB = ηB + tÕ(e−δB/h) + Õ(e−δ0/h). (7.9)

Now it is only left to estimate β̃ − β.

Proposition 7.2. We have

β̃ = β + t<(〈ηA,∆V ηB〉) + tÕ(e−(δ0+min(δA,δB))/h) (7.10)

Proof. We have

w̃A,B = h2

∫
R
dx
[
χA(x)

(
∂η̃A(x)η̃B(x)− η̃A(x)∂η̃B(x)

)
∂χB(x)

]
= h2〈χA∂η̃A, ∂χB η̃B〉 − h2〈χAη̃A, ∂χB∂η̃B〉
= h2〈χA∂ηA, ∂χBηB〉 − h2〈χAηA, ∂χB∂ηB〉

+ h2〈χA∂(η̃A − ηA), ∂χB η̃B〉 − h2〈χA(η̃A − ηA), ∂χB∂η̃B〉
+ h2〈χA∂ηA, ∂χB(η̃B − ηB)〉 − h2〈χAηA, ∂χB∂(η̃B − ηB)〉.
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We will estimate each of these terms separately. Since the terms involving η̃B − ηB cannot be estimated
directly, we will first rewrite them by integrating by parts.

• 〈χA∂ηA, ∂χB(η̃B − ηB)〉 =

∫
R
dx
[
χA(x)∂ηA(x)(η̃B − ηB)(x)∂χB(x)

]
= −

∫
R
dx
[
∂(χA∂ηA(η̃B − ηB))(x)χB(x)

]
= −〈∂χA∂ηA, χB(η̃B − ηB)〉

−
∫

R
dx
[
χA(x)

(
∂2ηA(x)(η̃B − ηB)(x) + ∂ηA(x)∂(η̃B − ηB)(x)

)
χB(x)

]
• −〈χAηA, ∂χB∂(η̃B − ηB)〉 = −

∫
R
dx
[
χA(x)ηA(x)∂(η̃B − ηB)(x)∂χB(x)

]
=

∫
R
dx [∂(χAηA∂(η̃B − ηB))(x)χB(x)]

= 〈∂χAηA, χB∂(η̃B − ηB)〉

+

∫
R
dx
[
χA(x)

(
∂ηA(x)∂(η̃B − ηB)(x) + ηA(x)∂2(η̃B − ηB)(x)

)
χB(x)

]
On Supp(χA) ∩ Supp(χB), we have V ≡ VA ≡ VB and Ṽ ≡ ṼA ≡ ṼB . Combined with −h2∂2 =
P (h)− V = P̃ (h)− Ṽ , we get for all x ∈ Supp(χA) ∩ Supp(χB) that

h2∂2(η̃B − ηB)(x) = h2∂2η̃B(x)− h2∂2ηB(x)

= −(P̃B(h)− ṼB)η̃B(x) + (PB(h)− VB)ηB(x)

= −µ̃B η̃B(x) + Ṽ (x)η̃B(x) + µηB(x)− V (x)ηB(x),

−h2∂2ηA(x) = (PA(h)− VA)ηA(x)

= µηA(x)− V (x)ηA(x).

Hence

h2
(
ηA(x)∂2(η̃B − ηB)(x)− ∂2ηA(x)(η̃B − ηB)(x)

)
= −(µ̃B − µ)ηA(x)η̃B(x) + (Ṽ − V )(x)ηA(x)η̃B(x).

Putting it all together, we obtain

w̃A,B = wA,B

+ h2〈χA∂(η̃A − ηA), ∂χB η̃B〉 − h2〈χA(η̃A − ηA), ∂χB∂η̃B〉
+ h2〈∂χAηA, χB∂(η̃B − ηB)〉 − h2〈∂χA∂ηA, χB(η̃B − ηB)〉
+ 〈χAηA, (Ṽ − V )χB η̃B〉 − (µ̃B − µ)〈χAηA, χB η̃B〉

= wA,B + t〈ηA,∆V ηB〉
+ h2〈χA∂(η̃A − ηA), ∂χB η̃B〉 − h2〈χA(η̃A − ηA), ∂χB∂η̃B〉
+ h2〈∂χAηA, χB∂(η̃B − ηB)〉 − h2〈∂χA∂ηA, χB(η̃B − ηB)〉
+ t〈ηA,∆V (η̃B − ηB)〉 − (µ̃B − µ)〈χAηA, χB η̃B〉.

Recall that ‖∂χjηj‖ = Õ(e−δ0/h), ‖∂χj η̃j‖ = Õ(e−δ0/h), and ‖η̃j − ηj‖ = tÕ(e−δj/h). We also have

(P̃j(h)− µ̃j)(η̃j − ηj) = −t∆V ηj + (µ̃j − µ)ηj . Then by proposition 5.7, we obtain

‖∂(η̃j − ηj)‖L2(U) ≤ ‖∂(η̃j − ηj)‖H2
h(U)

≤ C(‖(P̃j(h)− µ̃j)(η̃j − ηj)‖L2(W ) + ‖η̃j − ηj‖L2(W ))

≤ C(t‖∆V ηj‖+ |µ̃j − µ|+ ‖η̃j − ηj‖)
= tÕ(e−δj/h).

Finally, ‖η̃j − ηj‖L2(Supp(∆V )) = tÕ(e−2δj/h). Then

w̃A,B = wA,B + t〈ηA,∆V ηB〉+ tÕ(e−(δ0+min(δA,δB))/h).
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7.3 Perturbed eigenvalues and eigenfunctions

We will now combine the previous results to determine Ẽ± and Ω̃±. The eigenvalues of an arbitrary
symmetric 2× 2-matrix (

a c
c d

)
solve 0 = (λ− a)(λ− d)− c2 = λ2 − (a+ d)λ+ ad− c2. Hence

λ± =
1

2
(a+ d)± 1

2

√
(a+ d)2 − 4ad+ 4c2

=
1

2
(a+ d)±

√(1

2
(a− d)

)2

+ c2.

Let

y :=
1

2
(a− d),

and let the eigenvectors in the basis {ẽA, ẽB} be given by (λ1 λ2)T ∈ R2. Then we have(
aλ1 + cλ2

cλ1 + dλ2

)
=

(
a c
c d

)(
λ1

λ2

)
= λ±

(
λ1

λ2

)
=

(
1

2
(a+ d)±

√(1

2
(a− d)

)2

+ c2

)(
λ1

λ2

)
, hence

c

(
λ2

λ1

)
=

(
(−y ±

√
y2 + c2)λ1

(y ±
√
y2 + c2)λ2

)
.

So we obtain
λ1

λ2
=
y

c
± 1

c

√
y2 + c2. (7.11)

Substituting:

a = µ̃A + Õ(e−2δ0/h) = µ+ tÕ(e−2δA/h) + Õ(e−2δ0/h)

d = µ̃B + Õ(e−2δ0/h) = µ+ tÕ(e−2δB/h) + Õ(e−2δ0/h)

y =
1

2
(a− d) = tÕ(e−2δA/h) + tÕ(e−2δB/h) + Õ(e−2δ0/h)

c = β̃ + Õ(e−2δ0/h) = β + t<〈ηA,∆V ηB〉+ tÕ(e−(δ0+min(δA,δB))/h) + Õ(e−2δ0/h)

= Õ(e−δ0/h)

Since the interaction term β is of order Õ(e−δ0/h), we are interested in all terms of this order or lower.
Without loss of generality, we can assume that δA ≤ δB . Then we will consider the following two cases.

(a) 2δA > δ0, i.e. the perturbation is far away from both wells,

(b) 2δA < δ0, i.e. the perturbation is close to one of the wells.

We will treat each of these cases separately.

7.3.1 (a) 2δA > δ0

Setting |t| = 1, we obtain y = Õ(e−2δA/h) + Õ(e−2δ0/h) = Õ(e−2 min(δ0,δA)/h). But then we have

y/c = Õ(e−(2 min(δ0,δA)−δ0)/h)

where 2 min(δ0, δA)− δ0 > 0 due to 2δA > 0. Hence
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λ1

λ2
=
y

c
± 1

c

√
y2 + c2 =

y

c
±
√

1 +
(y
c

)2

=
y

c
±
(

1 +
1

2

(y
c

)2

+ . . .

)
= ±1 + Õ(e−(2 min(δ0,δA)−δ0)/h).

So these eigenfunctions are split evenly over the two wells, i.e.

Ω̃± =
1√
2
ẽA ± sign(β)

1√
2
ẽB + Õ(e−(2 min(δ0,δA)−δ0)/h)

=
1√
2
ηA ± sign(β)

1√
2
ηB + Õ(e−(δ0,2δA−δ0)/h).

So the perturbed eigenfunctions are the same as the unperturbed eigenfunctions, up to an exponentially
small error.

7.3.2 (b) 2δA < δ0

Let |t| > e−(δ0−2δA)/h as h→ 0. Then y = tÕ(e−2δA/h) and c = Õ(e−δ0/h). Then

√
y2 + c2 = |y|

√
1 +

(
c

y

)2

= |y|

(
1 +

1

2

(
c

y

)2

+ . . .

)
, hence

Ẽ± = µ+
1

2
t〈ηA,∆V ηA〉 ±

1

2
|t|〈ηA,∆V ηA〉+

1

t
Õ(e−(2δ0−2δA)/h), i.e.

|Ẽ+ − Ẽ−| = |t|〈ηA,∆V ηA〉+
1

t
Õ(e−(2δ0−2δA)/h).

Similarly, for the eigenfunction we can find that

λ1

λ2
=
y

c
± 1

c

√
y2 + c2 =

y

c
± |y|

c

√
1 +

(
c

y

)2

=
y

c
± |y|

c

(
1 +

1

2

(
c

y

)2

+ . . .

)
.

In case t > 0, we find for Ω̃+ that λ1/λ2 = 2y/c + . . . → ∞ as h → 0, i.e. Ω̃+ ≈ ηA, and for Ω̃− that
λ1/λ2 = c/(2y) + . . .→ 0 as h→ 0, i.e. Ω̃− ≈ ηB . Similarly, if t < 0, we get Ω̃+ ≈ ηB and Ω̃− ≈ ηA.

This means that an exponentially small perturbation can already ’tip over’ the eigenfunctions Ω± so
they are localised in just one well! In case the perturbation raises the potential close to xA, the lowest
energy eigenfunction Ω− is pushed away from xA into the other well. If however the perturbation lowers
the potential close to xA, then the lowest energy eigenfunction Ω− is pulled into xA.
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8 Outlook

We have looked at a one-dimensional symmetric double-well potential, and found that even an exponen-
tially small perturbation could upset the balance enough to break the symmetry of the lowest energy
eigenfunctions Ω± to the maximum extend. It makes sense to ask if the same holds for eigenfunctions with
higher energy than just the lowest two, or if we can obtain a similar result for a potential with more wells.

We obtained our result by explicitly calculating the eigenvalues and eigenfunctions of the relevant
2×2-matrices. In a more general setting, we would have to find the eigenvalues and eigenfunctions of an
M×M -matrix. Since there are known formulas that give the roots of an arbitrary cubic polynomial, our
technique can potentially be generalised to a potential with three wells. However, this is no longer possible
for M > 3. In that case, the error terms can potentially be simplified by using the WKB-approximation
to approximate the single-well eigenfunctions ηj,k.
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A Notation

Let X,Y be normed spaces, then the space of bounded linear operators X → Y is denoted B(X,Y ).

Definition A.1. proposition 6.6 (multi-indices) An element α ∈ Nn is called a multi-index.

Let n ∈ N be the dimension, α a multi-index, x ∈ Rn, u : Rn → C a map, 1 ≤ j ≤ n, then we write:

• α = (α1, . . . , αn)

• |α| = α1 + . . .+ αn

• xα := xα1
1 xα2

2 . . . xαnn

• Note in particular that (−1)α = (−1)|α|

• Du :=
1

i
∇u =

1

i

(
d

dx1
u, . . . ,

d

dxn
u

)
• Sometimes we clarify in which variable we take the derivative by Dx or Dξ.

• Dju := Dxju =
1

i

d

dxj
u

• Dαu :=

(
1

i

)|α|(
dα1

dxα1
1

u

)
. . .

(
dαn

dxαnn

)
• u, v : Rn → C, then u⊗ v : R2n → (C) is defined by u⊗ v(x, y) := u(x)v(y).

Elements of R2n are denoted z = (x, ξ), w = (y, η) where x, y, ξ, η ∈ Rn. The symplectic product on R2n

is denoted
σ(z, w) := 〈ξ, y〉 − 〈x, η〉.

The Poisson bracket on C∞(R2n) is denoted

{f, g} = 〈∂ξf, ∂xg〉 − 〈∂xf, ∂ξg〉.

B Basic inequalities

For reference, some basic inequalities will be collected here.

Lemma B.1. (Inequalities involving real numbers) Let a, b ∈ R, then

ab ≤ 1

2

(
a2 + b2

)
, (B.1)

a, b ≥ 0 =⇒ a2 + b2 ≤ (a+ b)2. (B.2)

Lemma B.2. (Inequalities involving 〈x〉 := (1 + |x|2)1/2 where x ∈ Rn)

x < y =⇒ 〈x〉 ≤ 〈y〉, (B.3)

∀a > 0,∃Ca > 0 such that 〈x〉2 ≤ Ca(a+ |x|2), (B.4)

∃C > 0 such that ∀M ∈ N,M ≥ n+ 1, we have

∫
Rn
dx
[
〈x〉−M

]
≤ C. (B.5)

Lemma B.3. (Gradient estimate) Let f : Rn → R be C2 and bounded from below. Write f∧ := inf f
and assume that there is some constant C > 0 such that |∂k∂lf | ≤ C for all 1 ≤ k, l ≤ n. Then there is
a constant C ′ > 0 such that |∂jf | ≤ C ′(f − f∧)1/2 for all 1 ≤ j ≤ n.
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C Functional analysis

Definition C.1. (compact operators) Let X,Y be normed spaces. A linear operator A : X → Y is called
compact if it satisfies the following two equivalent statements.

(i) The image of the unit ball is precompact, i.e. A(B(0, 1)) ⊂ Y is compact.

(ii) For any bounded sequence {xn}n∈N, the sequence {Axn}n∈N containts a converging subsequence.

The set of compact operators X → Y will be denoted K(X,Y ). If X = Y , we will write K(X) instead.
It is easy to see that compact operators are bounded. The space K(X,Y ) inherits the topology from
B(X,Y ).

Proposition C.2. (K(X,Y ) is a closed subspace) Let X be a normed space and let Y be a Banach
space, then K(X,Y ) is a closed subspace of B(X,Y ).

Definition C.3. (Inverse operator) Let X,Y be normed spaces, then an operator A ∈ B(X,Y ) is called
invertible if ∃B ∈ B(Y,X) such that BT = IX and TB = IY . The operator B is called the inverse of A
and is denoted A−1 := B.

Lemma C.4. Let X be a Banach space and let A ∈ B(X) be an operator such that ‖A‖ < 1. Then the
operator IX −A is invertible.

Proof. Define for all k ∈ N the operator Bk :=
∑k
n=0A

n. This sequence converges due to ‖A‖ < 1.
Then ‖(IX − A)Bk − IX‖ = ‖Bk(IX − A) − IX‖ = ‖ − Ak+1‖ ≤ ‖A‖k+1 → 0 as k → ∞. So IX − A is
indeed invertible with inverse (IX −A)−1 =

∑
n∈N A

n.

Proposition C.5. (Approximate inverse gives rise to an inverse) Let X,Y be Banach spaces and let
A ∈ B(X,Y ). If there are B1, B2 : Y → X and R1 ∈ B(Y ) and R2 ∈ B(X) such that AB1 = IY + R1,
B2A = IX +R2, and ‖R1‖ < 1, ‖R2‖ < 1, then A is invertible.

Proof. Per the previous lemma, IY + R1 and IX + R2 are invertible with inverses (IY + R1)−1 =∑
n∈N(−R1)n and (IX + R2)−1 =

∑
n∈N(−R2)n. Define the operators C1 := B1(IY + R1)−1 and

C2 := (IX +R2)−1B1. Then AC1 = IY and C2A = IX . For all y ∈ Y we obtain C1y = C2AC1y = C2y,
hence A−1 = C1 = C2,

Definition C.6. (Spectrum of an operator) Let H be a Hilbert space and let A : H → H be a bounded
linear operator, then its spectrum is σ(A) := {λ ∈ C | A− λI is not invertible}.

Proposition C.7. Let H be a Hilbert space, A : H → H a bounded linear operator, then the spectrum
σ(A) is compact.

Definition C.8. (Adjoint) Let H1, H2 be Hilbert spaces and let A : H1 → H2 be a bounded linear
operator. Then its adjoint A∗ is the unique bounded linear operator A∗ : H2 → H1 such that 〈v,Au〉H2

=
〈A∗v, u〉H1

for all u ∈ H1, v ∈ H2. An operator A : H → H is called self-adjoint if A = A∗.

Proposition C.9. Let H be a Hilbert space and let A : H → H be a self-adjoint bounded linear operator,
then σ(A) ⊂ R. Moreover, if A∧ := inf σ(A) and A∨ := supσ(A), then A∧‖u‖2 ≤ 〈u,Au〉 ≤ A∨‖u‖2 for
all u ∈ H.
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