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Abstract

Semiclassical analysis deals with the relationship between classical dynamics and the behaviour
of solutions to pseudodifferential operators depending on a small parameter h > 0. Let a : R*" — C
be a function, then we can associate it with an operator aW(a:, hD). In the context of quantum
mechanics, taking the limit h — 0 is a way to study the classical limit of quantum mechanics. In the
first part of this thesis, we will follow [8] and prove the Agmon-Lithner estimate and the Carleman
inequality.

The second part of this thesis deals with double well potentials. We will study the behaviour of
eigenfunctions of the Schrédinger operator P(h) = —h?82 4 V (x) where the double well potential V/
is symmetric. Following Jona-Lasinio et al. [9], Helffer and Sjostrand [3] and [1], and Simon [7], we
will study the consequences of a small perturbation AV that breaks the symmetry of V.
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1 Introduction

Two topics will be discussed in this thesis. In the first part, we will discuss semiclassical analysis as
presented by Zworski [3]. We will consider certain classes of functions a : R*® — C, (x,€) — a(x, ), and
associate such functions with semiclassical pseudodifferential operators, i.e. pseudodifferential operators
that are scaled with a small parameter A > 0. We will study the behaviour of such operators in the
semiclassical limit h — 0.

In the context of quantum mechanics, we interpret R?” as the phase space. Then z is the position
variable and ¢ is the momentum variable, and a function a : R?® — C is called a symbol. Then the
corresponding operator @' (z, hD) is a quantum observable, and the semiclassical limit h — 0 is actually
the classical limit of quantum mechanics.

An important example is the total energy function p(x,€) := |£|> + V(z), where [£|? is the kinetic
energy and V is the potential. This symbol gives rise to the Schrédinger operator P(h) := —h?A+V. We
will prove the Agmon-Lithner estimate and the Carleman inequality for eigenfunctions of this operator
in the limit A~ — 0.

We will need some preliminary definitions, which we will give in section 2. In section 3, we will give
an overview of semiclassical Fourier analysis, which is just a rescaling of standard Fourier analysis by a
parameter h > 0. The Fourier transformation will first be defined on the Schwartz space (R™). We
will then generalise the Fourier transformation to the dual space ./ (R™).

Section 4 deals with semiclassical quantisation. We will again start with symbols in .#(R?"), which
give rise to bounded operators L?(R") — L?(R™). We will then discuss larger classes of symbols
Ss(m) where 0 < § < 1/2 and m is a so-called order function. Such symbols give rise to opera-
tors '(R™) — /(R™). We will prove that symbols in S = Sy(1) give rise to bounded operators
L?(R™) — L2(R™).

In section 5, we will prove several important inequalities. We will first prove the Garding inequality
for symbols a € S. Then we will prove the Agmon-Lither estimate and the Carleman estimate for eigen-
functions of P(h).

In the second part, we will apply these results to a potential V' that has multiple wells, following
several papers from the 1980s. The main goal of this part is to provide a focused and detailed approach
to the ideas presented by B. Helffer and J. Sjostrand in [3] and [4] and by B. Simon in [7]. Two other
important papers are Jona-Lasinio et al. [9] and Graffi et al. [10].

In section 6, we will consider the symmetric double-well potential, following Helffer [2]. The splitting
of the lowest two eigenvalues of P(h) is of order O(e=%/"), and the eigenfunctions corresponding to these
eigenvalues are symmetric. In section 7, we will consider a slightly perturbed potential V =V +tAV
where t € [—1,1]. Surprisingly, even a very small perturbation has drastic consequences for the eigen-
functions. If AV is supported close to one of the wells, the eigenfunctions will be localised in just one
of the wells, even if t = e~7/" for some sufficiently small constant v > 0. As a result, the perturbed
eigenfunctions are not even approximately symmetric.
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2 Introduction to the Schrodinger equation

In this section, we will introduce the position and momentum operators, as well as the Schrodinger
operator P(h) and its eigenfunctions.

2.1 Wave functions

In classical physics, a particle’s state is just its position z and its momentum p := mx. These develop
over time according to the differential equation F' = md?z, where 9; := %. In quantum mechanics, a
particle’s position and momentum are not localised as points in phase-space. Instead, a particle’s state
is given by its so-called wave function u : R x R™ — C, (¢, z) — u(t, x).

This wave function u is a probability amplitude in the sense that |u(z)|? = u(z)u(z) is a probability
density function, i.e. the probability of finding the particle in U C R™ is given by ||u||z2(yy. For this
reason, we have u € L*(R™) and ||u|| 2(rn) = 1. Moreover, wave functions solve the Schrédinger equation

ihowu(t,x) = —:—mAu(t,x) + V(z)u(t, z) (2.1)

where A is the Planck constant, m the particle’s mass, and the map V : R — R is the potential.

We will simplify this equation by setting m = 1/2 and replacing /i with a dimensionless constant
h > 0. Moreover, we will consider stationairy states, i.e. functions u such that ihd;u = 0.

Definition 2.1. (Schrédinger operator) Let h > 0 and let V : R® — R be a smooth function not
depending on h, then the Schridinger operator P(h) is defined by

P(h)u = —h*Au + Vu, (2.2)

In subsections 2.3 and 2.4, we will define the appropriate domain of P(h) as well as what it means
for a function u to solve the time-independent Schrodinger equation P(h)u = E(h)u.

2.2 Position and momentum operators

We will now consider the position operator X; and the momentum operator P;, where 1 < j < n. For
any wave function u € L*(R"), |lu| = 1, the expectation values are (u, X;u) and (u, Pju). We will use
the convention that
10
D:L’ o—

= -
i Oz

Hence X;u = zju and Pju = hDu. In order to avoid confusion, we will always denote the momentum
operator by hD.



2.3 Sobolev spaces

We have seen that wave functions u are quadratically integrable, i.e. u € L2(R"), and that they need to
satisfy the Schrédinger equation (equation 2.1). However, most functions in L?(R™) are not differentiable.
To overcome this problem, we will recall the notion of weak derivative and the Sobolev function space
H*(R™).

Definition 2.2. (Test functions) Let U C R™ be open, then a function ¢ : U — C is called a test function
if it is smooth and compactly supported. The space of such functions is denoted by C°(U).

Note that test functions vanish at the boundary QU. This follows from the fact that they are sup-
ported on a compact subset of U and the fact that U is open.

Now let ¢ € C*(U) and let a := (aq,...,q,) be a multi-index (i.e. a € N™) such that |o| :=
a1+ ...+ a, < k. If we assume that u € CF(U), then the partial derivative

1o oo

« — -
D% := 7Tl 92 ax%"“

(2.3)
exists, and we can obtain the equality
| detut@ppta)) = (0! [ delD"u(a)o(o)

by integrating by parts |a| times. In case u ¢ C*(U), we will use this equation to define generalise D%u.
Let v be some function. We want

[ dstu@pe@) = (-1 [ delu@yeto)

U U

because then we can set D%u := v. Clearly, these integrals can only exist if the functions v and v are
integrable on Supp(yp) for all ¢ € C°(U). This motives the following two definitions.

Definition 2.3. (Locally integrable functions) Let U C R™ be open and let uw : U — C be a function.
Then wu is called locally integrable if
uly € LY (V)

for all open V.CC U, i.e. for all open V. C U such that V is compact and V C U. The set of locally
integrable functions is denoted L}, (U).

loc

Definition 2.4. (Weak derivatives) Let u,v € L}, (U) and let o be a multi-index, then D*u := v is
called the weak ot partial derivative of u if

/ dafu(z) D ()] = (~1)!° / dafo(z) ()
U U

for all p € CX(U).

Lemma 2.5. (Uniqueness of weak derivatives) Weak derivatives are unique up to sets of Lebesgue-
measure zero.

Proof. Let u,v,v" € L}, (U) and let a := (..., ;) be a multi-index. Assume that v and v’ are weak
o partial derivatives of u. Then we have for all test functions ¢ € C°(U) that

(—1)el /U dfo(a) ()] = /U dafu(z) D ()] = (~1)I° /U dal () ().

But then we have

| delto@) ~ v/ @)ela)) =0
U

for all ¢ € C°(U), hence v = v' almost everywhere. O



Of course, weak derivatives need not exist in general. We will consider spaces of square integrable
functions that have weak derivatives up to some degree k£ € N.

Definition 2.6. (Sobolev spaces) Let U € R™ be open and let k € N, then the Sobolev space H*(U)
consists of all functions u € L*(U) have weak derivatives D%u € L?(U) for all multi-indices o such that
la] < k.

We can define an inner product on H*(U) by

(,0) ey = (Du, D*0) 21y), (2.4)
la|<k

making H*(U) into a Hilbert space.

2.4 Weak solutions

The definition of weak solutions u of P(h)u = E(h)u is analogous to the definition of the weak derivative.
Let u such that P(h)u = E(h)u and let v be some function. Then

0= (v,(P(h) — E(h))u)
_ / o [o@) (—H2Au(@) + V (2)ul@) - B(h)u())]

_ —hQi / da [@aj?u(m)] + / da [@(V(@-E(h))u(x)}
_hzz/ dz [D;0(@)0;u(z )}+/

= (v, (V —l—ZhDthu
Jj=1

dz [o(@)(V (@) = B(h))u(a)]

n

Definition 2.7. (Weak solutions of the Schrédinger equation) A function u € H'(R™) possibly depending
on h is called a weak solution of P(h)u = E(h)u if

(v,(V = E)u +ZhDthu>_() (2.5)

for all v € C°(R™). A function u € HY(R"™) is called a solution to the Schridinger equation if it is a
weak solution of P(h)u = E(h)u and |[ul|z2rn) = 1.

Since we mostly deal with the momentum operator A D instead of the differential operator D, it makes
sense to scale the Sobolev norm accordingly.

Definition 2.8. (Semiclassical Sobolev norm) Let U C R™ be open. The semiclassical Sobolev norm on
the space H*(U) is given by

1/2

lull ey = > IhDu) 3 . (2.6)
|| <k



3 Semiclassical Fourier analysis

In this section, we will discuss semiclassical Fourier theory. The semiclassical Fourier transform .%}, is a
rescaling of the standard Fourier transform using the parameter h > 0. Then %, maps ¢(x) into $p(§)
such that (hD)%p — £%¢p, and (—z)%p — (hD)*@p,.

3.1 Schwartz space .¥(R")

Our goal is to define the semiclassical Fourier transform on a large class of functions, but we will start
with just the so-called Schwartz functions. Schwartz functions behave very nicely in the sense that all

their derivatives decrease rapidly as || — oo, as does the function itself. An example of such a function

is the Gaussian function ¢(z) := e~ "=l

Definition 3.1. (Schwartz space) The Schwartz space . (R™) consists of all functions p € C*°(R™) such
that

sup |20 p(x)| < oo
TER™

for all multi-indices ., 3.

Note that ||¢]|la,s := supyern |720°p(z)| is a seminorm on .7(R™) for each pair of multi-indices a, 3.
This collection of seminorms defines a topology on . as follows. Consider

Via f k)= {p € #R) | [pllas < 7}

The collection of finite intersections of such sets is a convex, balanced local base of a topology in . (R™)
turning it into a locally convex space such that all seminorms are continuous.

A subset U C (R™) is bounded if and only if {||¢||a,5 | ¢ € U} is bounded for all multi-indices «, 5.
It should be noted that all || - ||, are actually norms, and that the spaces . (R™) with this norm is a
Fréchet space.

It is easy to see that C°(R") C .(R") C L?*(R™). Recall that C°(R™) is dense in L?(R™), then it
follows trivially that .%(R™) is dense in L*(R™) in the L?-norm.

Definition 3.2. (Semiclassical Fourier transform) Let ¢ € 7, then its semiclassical Fourier transform

P is defined by
onl€) = Fn()(©) = [ do[plo)e b (31)
where £ € R™.

Remark 3.3. In case h = 1, we also write F = %1 and ¢ = @1, which is the standard Fourier
transform. Note that some authors define the Fourier transform with a normalisation factor 1/(2wh)™/2.

Proposition 3.4. (Properties of the semiclassical Fourier transform) The semiclassical Fourier trans-
form Py« S — F is an isomorphism, whose inverse is given by

o) = e . a6 [Br©)cH =)
for all & € R™. Furthermore, we have the following equalities:
(i) Fn((hD2)*@) = £ Fn(),
(i) Za((—2)"0) = (hDe)* ().




Proof. We will only show that equalities (i) and (i) hold. The other statements are well-known facts
from standard Fourier theory. Let £ € R™, then we have

Fu((hD,)°9)(€) = / n
= (=)l /R dx [np(x)(th)o‘e—%(I»&)]

= (_1)\04 / dx [@(Jf) (i‘)a <_2§>aei<w7£>}

¢ /R e [p(a)e 79
— € F(9)(0),

(D) ()€ = (0D [ o [ea)et )]
— [z [planDee k9]
- / di [p(r) (—) e )]

= Zn((—2)%¢)(&). O
Lemma 3.5. (More properties) Let @, € ., then we have

d [(hD,)p(w)e o]

[ dslF@ie) = [ dele@)Faw)@) (32)

n

and

Proof.

I [ | o [wtaye b so(y)}

_ / dwlp(a) Z4(0) ()]

This proves equation (3.2). Now we can substitute ¢ with #,(p) to obtain

| & [F@AWE] = [ [AGED @)

Note that Z(@)(€) = Jan dy ()t )| = (2mh)" 7, (2)(©). so

Fn(Fn(p) (@) = (2mh)"p(x). H

Hence ||¢n]| = (27h)"/?||¢||. We will now prove a few norm estimates that will prove useful later.
The notation (z) := (1 + |z|?)!/? will be convenient. Note that [o, dz[(z)~("*V] < co and there is a
constant C' > 0 such that ()" < C'max, < 2| for all z € R", k € N.

Lemma 3.6. (norm estimates) Let u € . and h > 0, then there is some constant C > 0 such that

]z~ < lullze (3.4)
o < —— ||

s < Gy in o (35)

ln L < Ol max ||[0%ul| 1 (3.6)

al<n+1



Proof.

/n dx {u(x)e%“"@} '

< sup/ alac‘u(ac)e%@”’§> = Sup/ dx|u(x)]
geRn n é‘eRn n

ﬁ /R dg [ah@eiwﬂ

ﬂh(ﬁ)e%‘(z’g)’

||u||r = sup |u(z)| = sup
zER™ zERM

1
= @ah)y / &

1

N 1 R
= Gy [, Al (@) = Gl

lanllLs = /Rn délan(8)] = /Rn d¢ |:|ﬂh(£)‘<§>n+1<§>f(n+1)}

<cC | de [<s>—<"+” max |ah<s)s“|}

R || <n+1

< C max [[0p%| e /R" dg {<§>7(n+1)}

|a|<n+1
<C max [[Gp€Y||Le < C max ||0% 2 O
la]<nt1 ol <nt1

3.2 Tempered distributions .#’(R")

The Schwartz space is very small class of functions, so our goal is to extend the Fourier transform to a
wider class of functions. Let u : R™ — C be a quadratically integrable function. Then we can define a
continuous linear map u : . — C by u(yp) = [, dx [u(z)p(x)]. This will serve as motivation for the
following definition.

Definition 3.7. (Tempered distributions) The set
L' (R") :=={u:.¥ — C|u is linear and continuous } (3.7)

is the dual space of Z(R™) and maps w € %' are called tempered distributions.
A sequence {u;}jen C 7" is said to converge in /' if there is a map u € " such that {u;(p)}jen C C
converges to u(yp) for all ¢ € 7.

For u € .’, we will sometimes write

[ dslu@)e@)] = u(e)

even though such a locally integrable function u : R™ — C does not exist in general.

Definition 3.8. (More on tempered distributions) Let uw € %" and ¢ € 7. Let o be a multi-index and
let x € R™, then we define:

(i) Du(p) := (=1)!*lu(D*p), in the same spirit as the weak derivative. Note that D*¢ and hence
D%u is guaranteed to exist.

(i) (z7u)(p) == u(z%p)

(ii) We take equation (3.2) as a definition for the semiclassical Fourier transform on tempered distri-
butions, i.e. (Fru)(p) = u(Fry).

Example 3.9. (Dirac delta function) Let zo € R™, then we define the Dirac delta function 6., at xo by
320 () := @(xg) for all p € L. One can think of the Dirac delta function as a function that is infinite



at xo and zero everywhere else, such that its integral is [q,, dx[0q,(x)] = 1. Then we have for any ¢ €
that g, dz[dz, (x)p(z)] = @(x0).

We can calculate its Fourier transform by

(F1820)(9) 1= 80y (F) = Fuso(w) = | defplae )

In other words, Fdy,(x) = e~ #(%0)  In particular, Fp,(6) = 1.
Many of the properties of %, : Z(R™) — .%(R™) hold more generally.

Remark 3.10. (Semiclassical Fourier transform on L?) Let u € L*(R™), then we can interpret u as a
tempered distribution defined by

p | deu(z)p(r)]
Rn

where ¢ € 7. Then we have for the semiclassical Fourier transform 4y, of u € L? that

d¢ [un(E)¢(&)] := | drfu(z)pn(e)] = / Cde / e [u(x)go(f)e_%(z’f)}

_ /dg [ | (u(m)ew’@)w(@}

for all ¢ € . So equation (3.1) is still valid for L*-functions. The same is true for the inverse
semiclassical Fourier transform. As a result, lemma 3.5 holds for L?-functions as well.

Proposition 3.11. (Properties of the semiclassical Fourier transform on tempered distributions) Let
ue S x,& €R™, and let a be a multi-index. Then we have

(i) Fn((hDy)*u) = £*Fp(u), and
(ii) Fn((—=2)%u) = (hD¢)* Fn(u).
Proof. For all ¢ € ., we have

3.3 Uncertainty principle

In this subsection, we will prove Heisenberg’s uncertainty principle. Let u € .#(R™) such that |ju|| =1
and let 1 < j < N. Consider the standard deviation of position Oz, and the standard deviation of
momentum oyp,;. Note that

U?cj = <u,x?u> — (u,xju>2,

ohp, = (u, (hD;)*u) — (u, hD;u)?.

Then Heisenberg’s uncertainty principle states that o,,0np, > h/2. We interpret that the position and
the momentum of a physical state cannot be localised simultaneously.



The relation between a wave function u(z) and its semiclassical Fourier transform @y (€) is charac-
terised by equation (3.3), i.e. for u € #(R™), the expectation values for the position and momentum
operators in direction 1 < j < n are given by

() = [ o [i@@)ejuta)] = s [ de (B 2ule,0(6)]

— (2711h)71/Rn d{ [ﬂh(f)(*hl)])ﬂh(g)} = ;@lh,*hDjﬂh%

(2wh)™
(u, hDju) = /n dx {thju(z)] = (27r1h)n /n d¢ {mjh(hDju)(g)}
) ﬁ /R" * {mgjﬁh(g)] - ﬁ@h,ﬁjﬁh)

For this reason, u(z) is said to be the wave function in position coordinates, and 4y, (§) the wave function
in momentum coordinates.

Lemma 3.12. (Shifting the position coordinates) Let u € 7 (R™) such that |lu||p2rny = 1 and let a € R™,
then we can shift the coordinates by setting x ~» y := x — a and v(y) := u(y + a). The shifted wave
function v satisfies {(v,yv) = (u,xu) — a and (v, hDv) = (u, hDu).

Proof. This is a fairly straightforward computation. Let 1 < j < n, then
(v,y;0) = / dy _v(y)ij(y)} = /n dy [myjuw + a)]
= /Rn dx :m(ﬂfj - aj)u(f)] = (u, zju) — aj,
(@) = [ dy[otwe 0] = [ ay [uly + a)e#09)
:/ de [u(w)e” 7 =09 | = eF O ),

(0n: &) = / de [n(©)g;mn(©)] = / dg [eF iy (€)g;et D (©)]
— [ e [@@5n )] = (i ). =

Lemma 3.13. (Shifting the momentum coordinates) Let u € /(R™) such that ||ul|p2rny and let b € R™,
then we can shift the coordinates by setting & ~ n := £ — b and Op(n) := Gp(n +b). The shifted wave
function v satisfies (v, zv) = (u,zu) and (v,hDv) = (u, hDu) — b.

Proof. This is analogous to the previous lemma. O

Corollary 3.14. By setting a := (u,zu) and b := (u,hDu), we obtain a shifted wave function v such
that (v, zv) = (v,hDv) = 0. So for any u € S/ (R"™) such that ||ul|L2rn~), we can assume without loss of
generality that
Ui]v = (u, a:?u> = ||xju||27
ip, = (u; (hD;)*u) = ||ADjul/*.

From now on, we will write ||z;u| and |hDju| = (2rh)~"/?||¢;ay|| instead of oy, and ojp,. Only
one more lemma is needed before the uncertainty principle can be proved.

Lemma 3.15. (Commutation relation of position and momentum) The commutation relation of the
position and momentum operators x; and hD; as operators . (R"™) — #(R™) is given by

[Jij, ]’LDJ] = .’Ethj - hDjZ‘j =ih.

Proof. Let u € (R™). Then we can simply compute that

h h
[j,hDjlu = xjhDju — hDj(z;u) = ;(:rjax].u — O, (zju)) = —Tu= ihu. O

10



Proposition 3.16. (Heisenberg uncertainty principle) Let u € .7 (R™), then

N h .
lzjulllé;anll = S llulllan]. (3.8)

In particular, if ||u||2grny = 1, then

lesull[ADsu] > = (39)
Proof. Let u € (R™). Using the Cauchy-Schwarz inequality and the previous lemma we obtain
|z;ull|hDju| > [(hDju, zju)| > |S(hDju, zu)]
= %|<hDj’U,,J?j’U/> — (xju, hDju)|
= SH{(ashD; — hDjz)u,u)
- %K[a:j,hDj]u,uH = gllulla

hence b b
lznulll€;an]l = l|lzjull(2rh)™?||hDjul > 5(27Th)”/2lluH2 = 5 llullllan]- O

11



4 Semiclassical quantisation

In classical mechanics, the state of a system is completely determined by the position and momentum
variables, and all dynamical quantities are a function of said variables. In the context of semiclassical
quantisation, such a function is called a symbol. Examples are: the kinetic energy T := £2 or the angular
momentum L := x x £ (where x is the outer product on R3).

In quantum mechanics, the operators associated with the position and momentum are x and hD,
respectively. This raises the question what operators are associated with the other symbols. In this
section, we will discuss this for various classes of symbols.

Definition 4.1. (Symbols) A function a : R?® — R, (z,£) — a(z,£) is called a symbol.

Since x and hD do not commute, we can immediately see that there is no canonical way to quantise
symbols that are linear in both arguments, such as a(z, ) := (x,£). We could pick any linear combination

This motivates the following definition.

Definition 4.2. (Semiclassical quantisation) Let t € [0,1] and let a(x,&) be a symbol, then the semi-
classical pseudodifferential operator Op;(a) is defined by

Opauti) = e [ e [ dufats + 1w, Ouiy)e 9], (a.1)

In particular, we will be interested in the standard quantisation a(x, hD) := Opi(a) and the Weyl quan-
tisation a"V (z,hD) := Opy(a).

Remark 4.3. In subsections 4.1, we will show that Op,(a) : L>(R™) — L?(R") is indeed well-defined for
symbols a € S (R*). In subsection 4.3, we will show that Op;(a) : ' (R") — &'(R") is well-defind for
symbols a € Ss(m).

The Weyl quantisation is the most important quantisation formula because it gives rise to a self-
adjoint operator if the symbol a is real-valued. The standard quantisation is important because

1 i
a(x,hD)u(x) = 7/ d§ dy [a z,&)u(y eﬂx_y’a}
(@ hD)u(w) = e [t [ dy[ate.uty)
1 i
=— [ 4 [ O.F ﬂx@}
T [l 4 o0 Fu(e)e
= 7, a(z, ) Fru()) (@),
for a € .Z(R?") and u € .(R"™). This makes that standard quantisation easier to compute. The other
Op; are useful because they allow us to transfer computations from the standard quantisation to the
Weyl quantisation, as we will see in the proof of lemma 4.38.

4.1 Semiclassical quantisation for a € .7(R*")
The following defintion gives a very convenient way to abbreviate the formula for Op;(a).

Definition 4.4. (Kernel of Op;) Let t € [0,1], then we define the kernel Ky of Op; by

Kila) = s [, € [alta + (1= 0. et )]
=7, Haltz + (1 = t)y,))(z - y).
Note that Opy(a)u(z) = [n. dy [Ki(z,y)u(y)].
Now assume that a € .#(R?"). Since #, ' : Z(R") — Z(R"), we also have K,(z,-) € .#(R"). So
for u € .#'(R"™) we can define Op;(a)u € .#(R™) by Op;(a)u(x) := u(K,(z,-)).
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Lemma 4.5. Let a € .7 (R*") be a symbol, t € [0,1], then Opy(a) : &' — 7 is continuous.
Proof. Consider a sequence u; — u converging in .#/(R™) and let «, 8 be multi-indices. Then
220P (u(Ky(2, ) — uj(Ki(z,-))) = u(z*0° Ky(x,-)) — u;(2*0° Ky(2,-)) — 0,
hence Op¢(a)u; — Opi(a)u in #(R™) and Op(a) is indeed continuous. O
Proposition 4.6. Let a € .7 (R?") and let h > 0, then the operator
W(z,hD) : L*(R") — L*(R™)

is bounded uniformly in h, i.e. there is some constant C > 0 not depending on h such that we have
la¥ (z, hD)u| < C||lu| for all u € L*(R™).

Proof. We have a € .#(R*"), and so K /5 € .7(R*"). Define the two constants

C1 = sup / dy [|Kyp2(2,y)l] < o0

rER™

Cy == sup / da [|K1/2(w, y)]] < o0

yER™

then the L2-norm of a" (z, hD)u is

|a" (z, hD)u)® = (" (2, hD)u, a" (x, hD)u)
n (11 I ol ) o))

<[ K2 el (o ) ()]
<[
/

\A

= C1Csul? O

o ] o

o [y [z |1yl )l () + )P
//

ancs [ vl

Theorem 4.7. Let a € .7(R?"), then the operator aVV (z, hD) : L? — L? is compact.

Proof. Recall the definition of a compact operator (see C.1). The operator a" (x, hD) is compact if
for any bounded sequence {ug}ren C L%(R™), the sequence {a"V (z,hD)uy}ren € L?(R*") has some
converging subsequence.

Let {ugtren C L*(R™) be a bounded sequence and let k,I € N. We want to find a subsequence {u}}
of {ux} such that the sequence {a"(z,hD)u}} converges. Let N € N be some fixed constant (we will
later choose N > n/2), then we have for some sufficiently large constant C > 0 that

lla™ (z, hD)uy — a"V (z, hD)w|| 1>
= / dz [|aw(m, hD)uy(z) — a" (z, hD)u|?]
= /n dx [(x>72N|<x>N(aW(x, hD)uy(z) — a" (z, hD)u(z))|]
< @)V (@ (z, hD)uy, — a"V (z, hD)w)|| oo -

So it suffices to show that the sequence {(x)™a" (x, hD)u}} converges in the sup-norm. We will first
construct a candidate subsequence {u}} and then prove that (z)Va" (x, hD)u}, indeed converges uni-
formly.

For any = € R", the sequence {(z)"a" (z,hD)ui(z)}ren C C is bounded and therefore admits a
converging subsequence. Consider some countable dense subset of R™, such as Q™. Enumerate these

13



st. Q" = Uyenidp}. We inductively define subsequences {u(j)}keN, j € N, such that {u;cj)}keN C

{u(J D1,en such that {(g NNaW (xz, hD)u (J)(qj)}keN converges. Define {u} }ren by u}, = ugf), then
Na" (z, hD)u, ren converges for all g € Q.
k

Let € > 0. Our goal is to show that there is some K € N such that for all £,/ > K and all x € R",
()N aW (z, hD)u} (x) — (x)Na" (z,hD)uj(z)| < €. Choose N > n/2, and let a, 8 be multi-indices. Due
to a € .7(R?") there exists some C > 0 s.t.

sup |220°(a" (z,hD)u)| < sup |20 (y)V K (z,y)| | dy [(y) "V |u(y)[]
zERn (z,y)ER2n Rn
< C”uHLza

where we used the Cauchy-Schwartz inequality. The sequence {u} }ren is bounded in the L?-norm, so
there is some M > 0 such that for all £k € N, x € R™,

(a)Na" (2, hD)ud ()| < M/3, (@) 11" (&, hD)uj(x)| < Mj2.

We will consider two cases: where z is inside some open neighbourhood of 0, and where z is far away
from 0. Let R > 0 be large enough such that M/R < e. Then

sup |(z)"a" (2, AD)uj(z) — (x)"a" (z, hD)uj(x)|

lz|>R

< R sup [(@)" e (2, hD)uj ()| + R™Y sup (@)Y e (x, hD)ui(x)]
|z|>R |z|>R

< M/R < e.

Finally, {B(q,€/M)}qecqn is an open cover of B(0, R), and so there is a finite subcover { B(gp, /M) }1<p<p.
For all 1 < p < P, {{g,)"a" (x, hD)u},(q,)}ken converges. So there is some K € N such that for all
kl>K,1<p<P,

[{ap)™ @™ (2, hD)uj(gp) — {ap)™ @' (, hD)uj (gp)| < €/3.
For any x € B(0, R), choose 1 < p < P such that z — g, < ¢/M, then for all k,! > K;
(@)Y a" (x, AD)uj,(x) — () o' (2, hD)uj(z))|
< [(2)Na" (x, hD)uj,(x) — (gp)™ @™ (z, hD)uj,(gp))|
+ |<qp>NaW(x’ hD)uj,(qp) — <QP>N W(x’ hD)u;(gp)
+ (@)Y a" (, hD)uj(x) — (gp)~ a" (z, hD)ui(gp)|
<e¢/3+ |v = gpl(sup|0(a) " a™ (, hD)uj ()] + sup |9(x) V" (z, hD)ui(x)])

< €. ]

Proposition 4.8. (Formal adjoint) Lett € [0,1] and let a € .7 (R*"). Then the formal adjoint of Op;(a)
is Op1_¢(@), i.e. for all u,v € L*(R"),

(wOpla)o) = [ da [s@Op(a)o(o)] = [ do [Opi@uteiets)]
= (Op1—¢(@)u,v).

Proof. Let K; be the kernel of Op;(a), then its complex conjugate is

Kt(l’

atr + (1 — )y, E)e i~ yﬂ

dg (A —ty+ (1= (1 —t)z, et - m}
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= (Op1—(@)u, v). O
Lemma 4.9. Let a € ' (R™ x R"), then Op,(a) : & — .
Proof. If a € /(R™ xR™), then K; € ./(R" xR™). Now let u,v € .(R™) and define v@u € ¥ (R" xR")
by v ® u(z,y) := v(x)u(y). Then we can define Op;(a)u € ' (R™) by Op:(a)u(v) := K¢(v ® u). O

4.2 Composition of the Weyl quantisation

Let a, b be symbols, then we can ask what should be the symbol ¢ such that ¢V (z, hD) = a"V (x, hD)bW (x, hD).
We will denote this symbol by a#b := c. In this subsection, we will prove that

a#tb(z) = eFTODD) (0 (2)b(w)) s

In order to prove this, we will decompose symbols into Fourier components. The following lemmas will
be useful.

Definition 4.10. (Linear symbols) A symbol I of the form l(z) := (z*,z) = (x*,x) + (£*,&) for some
2* = (z*,£%) € R®™ is called a linear symbol. We will identify linear symbols | with their point z* € R*™.

Now let a € .(R*"), then its semiclassical Fourier transform and its inverse are

an(l) Z/R% dz |a(z)e” 1] a(z) = W/R dt [ (Det!)] |

and so the quantisation is

Opi(a) = W /RM dl [&h(l)Opt (e%“')ﬂ :

for all t € [0,1]. The following lemmas deal with the quantisation and composition of such exponentials.

Lemma 4.11. (Quantisation of linear symbols) Consider the linear symbol l(x, &) = (x*,z) + (£, &),
then we have for all t € [0,1] that

Opi(Du(x) = ({z%, ) + (€ hD))u(z) (4.2)

Proof. This is just a simple calculation.

On(u(w) = s [ e [y et r9tta+ (1= ). €)uty)|
 tla" o) + (L~ 07 0 Fulla®, JuO)@) + (€ Y ) )
= (@ #)ula) + (€, hD:Ju(x). =

Lemma 4.12. (Quantisation of exponentials of linear symbols) Let | be a linear symbol, and define the
symbol a(z) := ). Then we have

Ope(a)u(z) = e @@+ EA=0GETE) y ( 4 £%), (4.3)

for allt € [0,1].
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Proof. Again, we can simply calculate
Opt(a)u(x) = #/ de [ dy [e%(I*%E)e%l(tzﬂlft)yé)u(y)}
27h)" Jrn " Jre

_ / de | dy [ewfy,o (" da (1)) + i<€*v’5>u(y)}
n Rn R’Vl

) 5 1h) / i [ ay {ehwg 1.6) o (1=t) (2" ) (y)}
T n R

_ e%ﬁw*7$>e%(1_t)<”*"”+5*>u(x +£%)
Y S -

Remark 4.13. We can write
e#l(x,hD) u(z) = e%(<w*7w>+%<w*7£*>)u(x + &%),

so that

i

(ehl()) (z,hD) = etl(@:hD) (4.4)

Proof. Let u € .#(R") and t € R. The partial differential equation 28,v(z,t) = I(2, hD)v(z,t) with
boundary condition v(z,0) = u(z) has a unique solution, but it is solved by

v(z,t) =en Wi, hD)yy ()

as well as by
i * 2 * *
v(gj7t) == e%(t@ 7$>+%<$ N3 >)U($ + tg*% O
hence these expressions must coincide.

We will now find a#b for exponentials of linear symbols. Then we can generalise this to arbitrary
a,b € .7 (R?") by using the Fourier decomposition of a and b.

Lemma 4.14. (Composition of exponentials of linear symbols) Let I,m € . (R*™) be linear, i.e. | =
(1,€1) and m = (x5,£3) for some (x7,£7), (¢5,63) € R*™, then

ehl@hD) o fm(whD) _ o go(lm) o (1+m)(@,hD) (4.5)

where o(l,m) = (x3,£5) — (x%,£3) is the standard symplectic product on R?".
Proof.
e%l(I/hD)e%m(xwhD)u(x) e e% (m hD) (:E2,:E+ §2> (x + g*)

:eh<$1aﬂﬂ+ '51> (@) z+Ei+3 52>u(z+§2 +£1)
— eﬁ(<$2a51>_<w1v§2>)eﬁ<$1 +I2vl+§51+§52>u(x + é‘ik + é‘;)b

— e2h0(l m) (l+m)(r,hD). O

Theorem 4.15. (Fourier decomposition of a"') Let a € .#(R?*") and | € R®", then

W(z,hD) = W /R% dl [dh(l)enl(fr hD)} (4.6)

Moreover, if a € .'(R*) and u,v € .7 (R"), then we can view en!@hD)y a5 o tempered distribution by
setting

e%l(x’hD)u(v) ::/ dx {e%l(x’hD)u(x)v(x)} ,
which is itself in .7 (R?*™) as a function of I, so

W (2, hD)(u)(v) = (%2) an (1 @) (4.7)
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Theorem 4.16. (Composition) Let a,b € .7 (R?"), then the symbol a#b defined by

a#b(z) = e2n (D= Dw) (g(2)b(w))] s (4.8)

satisfies
(a#b)V (z,hD) = o' (x, hD)bW (z, hD). (4.9)

Proof. Recall that o(hD.,hD,,) = (hD¢,hDy) — (hD,, hD), so

e37 0 (hD2,hDw) o (1(z)+m(w))

1
k!

tnqg

-\ Kk
Z) U(th7 th)ke;L(l(Z)+m(11;))‘|

x>~
Il
=]

(<hD§7 hDy> — <th7 th>) er (l(z)+m(w))‘|

b
Il
o

I
NE
==

Il
[
=
N e
g/~

x>
Il
o

= =

k .
2h> 6%(z(z)+m(w))(<§;,z;> — <§;,x’{>)’“]

o(l, m)kei(l(z)'*‘m(w))]

I
- I0e

= e2h
Using the Fourier decomposition of a and b, a#b can be written as
a#b(z)

]. i i ~
= Gyt o A, [eE PP )]

1 i i )
= 5 7yan ar o (Lm) o3 (LHm)(2) 4
o o @[ 3O O 0 )

so its Weyl quantisation becomes

(a#tb)"V (x hD)
27Th /2 dl AQ iho(l m)eh(l-i-m)(:z hD)a (Z)I;h(m)}
= G Jon @ | eﬁ“““’)e%m“”%h<l>6h<m>}
Wz, hD)bY (z, hD). O

Symbols of the form a(z,§) = a(§) =), ca&® for certain constants c, have the property that

Op(a)u(z) = ﬁ/ . dy lz calu(y)en =18 ]

(27rh / [ZC“"C an(O)er ]
=> ca(hD)*

This allows us to write equation (4.8) in integral form.

Lemma 4.17. (Integral form of a#b) Let a,b € #(R®*") and z € R*™, then

a#b }ja(wl,wz)a(z+w1)b(z+w2) (410)

dw1
R27 R2n
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Proof. Let (wy,ws) = (y1,71,y2,72) € R take the role of y, and let (z,w) = (z,&,y,n) € R*™ the role
of z, and (2/,w’) € R*" take the role of £&. Then

a#tb(z) = e3P (a(2)b(w)) =

_ ; ro 3702 w) o 1 ((z,0) = (w1, w2), (2" ")) }
~ (2rh)in /R% d(w17w2)/R4n d(z',w") [e R a(w: )b(ws)

= / d(wy, ws) [L%jl ((z',w ) = e (< w )) (z —wy,z — wg)a(wl)b(wg)}
R4n
= / d(wyws) [ F (2 w) o T ) (cwy, —wg)a(z +w)b(z +wa)
R n
where the inverse Fourier transform is given by
ffhl(( w) s 3o >) (wl,m)_w/w d(z,w) [e% (z00) g ((wnw2) (34 >>}
— d(Ln) [e*ﬁ<Iaﬂ>6ﬁ<w:y1>ei<7lmz>}
(27Th)2n /Rzn
]. i
. @i / d(y, €) [ 57 (U:E) o 7 (Wy2) o 1 (€, 771)}
R2n
-5 2)2 / d {e;;wm/ do [eF (52~ h@mH
Th)=™ Jgn n
. (27%)2” / dy {euy,yw/ i [e,z<g,2m>e,i<y,§>H
Rn n
1 i i
& 1h) / dy [Qng‘h—l (f s e%(é?m)) (y)e‘ﬁy’_yﬂ
Th)™ Jgn
1 2i 1 2i 1
_ o y2,m) | — 5 y2,m) — 2z U(w1,w2) O
(wh)"© (wh)© (wh)>

Corollary 4.18. (# is associative) Let a,b,c € .7 (R?"), then (a#tb)#c = a#t(b#c).

Proof. Using the integral form, we obtain:

1 21 5 5,

(o#0)e(2) = o | dirdiadundy [e*r<f’<w1’w2>+f’<whw2>>a(z iy + w)b(z + 6y + wa)e(z + wg)]
1 2 - -

aft(b#c)(z) = Bl e dvydvaduy dos {677("(”1’”2)+U(”1’1’2))a(z + 01)b(z + U2 + v1)c(z + U2 + ’02):|

It is easy to see that these integrals are equal by using the substitution vy = wi,vs = Wy — we, V7 =
w1 + wy, U2 = Wa. =

Definition 4.19. Let p € .#(R"), N € N, then we say ¢ = O (h) if for all multi-indices o, 3, there
is a constant Cy,g > 0 such that

sup |2°0%p(z)| < Ca sh™
rERM

as h — 0.

Theorem 4.20. Let a,b € . (R*), and N € N, then

N-1
afb(z) = D [kl, <Zh> (Dz,Dw)k(a(z)b(w))H + 04 () (4.11)

k=0 —

as h — 0.
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Proof. First note that

h

2n
7 ((zyw) = e OB (w0, wn) = (4) eFolumws),
/I

the proof of which is similar to the calculation in the previous lemma. Now we have for all z € R?",

a#b(z

dw1
R2n

dwg ;fa(wl,wz)a(z+w1)b(2+w2)}
R271

dw1
R2n

dws ﬁ_l ((z,w) s e—%o(z,w)) (whwz) i(z,w1+w2) ~ ( )[A)( )]
R2n

= 1 dw1

dws e%o(wl ,wz)ei(z7w1+w2)&(wl)g(wz)]
R2n

R2n
1 (h
_ d d |: z(fa(wl,wg)—i-(z,wl—i-wg))y b , :| )
We will introduce the convenient notation J,(h,a ® b) := a#b(z) as well as P := %O'(lel s Dy ). Then
onJ, (h, a® b)

_ . /4 d(wl, w2) |:ei(’;a(w1,w2)+(z,w1+w2));g(wl, w2)y(a ® b)(wl, 1U2):|
R n

- - d(wl,w2) {ei(%o(uu,w2)+<z,w1+w2>)j(pa ® b)(w17w2):|
(27T)4n R4n

= J.(h, Pa®b)

Consequently, 0%.J,(h,a ® b) = J,(h, P*a ® b) for all k € N. Taylor’s theorem around h = 0 now gives
for any V € N that

N-1 k X hN
a#b(z Z[H OPa®b)] Ni e (ha®b)
=0

where R, n(h,a®Db) Nfo dt[(1 —t)N=1J,(th, PNa ®b)]. Tt is now left to show that J,(0, P*a®b) is
indeed the required expression and that the rest term is indeed O (hYY), i.e. |R. y(h,a®Db)]| is bounded
independent of h.

e J.(0,P*a®b)

K
- (2771)4"/R4n d(wy,ws) [ﬁ ((w/pw/z) — <;) (D, 1,Dw2)ka(wi)b(w’2)> (wl’wz)ei(z,wl+w2>‘|

_ <;>ka(Dz,Dw)ka(z)b(w)

o |R,n(h,a®D)

zZ=w

1
= ‘N dt[(1 =)™ J.(th,p"a ® b)]‘ < CN||F(PYa @) 11

<Cn max Hao‘PNa@ bl < C’N max ||0% ®b||L,
lal< al|<N+n+1

by lemma 3.6. O
Corollary 4.21. Let a,b € 7 (R?"), then

a#tb = ab + %{a, b} + O (h?) (4.12)

and
[ (z,hD),b" (2, hD)] = %{a, bW (z, hD) + O.»(h®) (4.13)

where [A, B] := AB — BA is the commutator and {f,g} := Z?Zl(fgjgg;j — fz,;9¢,) is the Poisson bracket
on C*>(R?*).
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Proof.
a#b(z)
ih

= a(2)b(z) + —0(D., Dy)a(z)b(w)

2
5 + O (h)

Z=w

= a(2)b(z) + (0,9 — 0,0, )al, bly. ) + 0

(z,£)=(y,n)

= A=) + 50, b)) + O (1)
(@ (2, D), ¥ (2, hD)]

= (a#b)w(l‘, hD) - (b#a)w(l‘, hD)
2
P 0B (2, 0D) — (D2 Dy a(2)b(w) — b(z)alu)

= 240, b} (@, hD) + 0 (1) -

4.3 Symbol classes

In this subsection we will prove that " (z,hD) : L? — L? is well-defined as a bounded operator for
certain symbol classes that are larger than .7 (R*").

Definition 4.22. (Order functions) A measurable function m : R*™ — (0, 00) is called an order function
if 3C, N € R such that Yw, z € R*",

m(w) < C(z —w)N¥m(z),

where (z) := /1 + |z|2.

Proposition 4.23. Let m, my, and my be order functions and let a € [0,00), then m®, 1/m, mi + ma,
and mimg are order functions as well. Moreover, my,; defined by

ma(z) = (@)* + (€)' (4.14)
is an order function for all k,l € R.

Proof. Since m is an order function, there are constants C, N € R such that m(w) < C(z —w)¥m(z) for
all w, z € R?™. Then

m®(w) < Cz — w)N*m?(z), and
1 < Clz—w)N ! .
m(z) ~ m(w)

Now let Cj, N; € R such that m;(w) < C;(z — w)Nim;(z) for j = 1,2 and all w,z € R?", and assume
without loss of generality that N; < Ns. Then

(m1 4 ma)(w) = mi(w) + ma(w) < C1{z —w)Nmy(2) + Co(z — w)N2my(2)
(z — w)™2 (C1<z —w)~WNmN (2) + C’ng(z))
< (z = w)™ (Crma(2) + Cama(2))

< max(Cy, Co){(z — w)N2 (my + ma)(2),
N1+N2(

(mimg)(w) = my(w)ma(w) < C1C2{z — w) mima)(z).

Now it is only left to show that m(w) := (z) is an order function. Note that

m(w) = {y) =1+ yI* < V1 +(y — 2| +[a])?
= V1+ly— P+ [z +2zlly - 2]

20



We will consider two cases: (a) |z|ly — x| <1, and (b) |z|ly — 2| > 1. Then

m(w) € VT =y T RE+2 < V3yTT ]z =g+ 1+ o]
<V ({y - ) + () < 2vZmax((y - @), («))
< 2v3(y - 2)(x) = 2v2(y — 2)m(2),

(b)
m(w) < V1+]y =2+ [z + 2y — 2Pz < V2y/ (1 + [y — 2P) (L + [2]?)

= V2(y — a)(z) = V2{y — 2)m(z2). H
Definition 4.24. (Symbol classes) Let m : R*™ — (0,00) be an order function and let 6 > 0, then
Ss(m) := {a € C® | Va,3C, > 0;]0%| < Coh™%1%Im}. (4.15)

We shall write S(m) := So(m), Ss := S5(1), and S := Sy(1). Note that

supm < oo = Ss5(m) C Ss,
z,h

in}{m > 0= S5 C Ss(m).
Z,

The constant § > 0 is relevant in case we want to study a"V (x, hD) in the limit & — 0. Of course, the
quantisation formula (4.1) itself already depends on h. By rescaling & := h=zx, &= h_%g, g = h_%y,
(%) = u(z) = u(h2@), a(z,€) == a(z, &) = a(h2 &, h2§), we obtain

a" (z, hD)u(z) = ;/ d¢ dy {e“zy’@a <x ry §) u(y)}
n RTL

(2mh)™ 2 7
1 - N Y 124y 1 1.
= n 7,(1‘ yv&) 2 2 2
(27rh)"h /n d¢ . dy [e a (h 5 Jh f) u(h y)]

1 ~ N its—s e (THY 2\ -
— d dii | HE=1:8)
v [ an|ee 9 (T a)
= a"(z, D)u(%).
Let 6 > 0, let m be an order function, and let a € Ss(m). Then for all multi-indices «, the rescaled

function @ satisfies |0%a| = hz!*|9%a| < C,h1*!(2=9)m. This is unbounded as h — 0 for § > 3, so from
now on we will always assume that 0 < § < %

Proposition 4.25. Let § > 0 and t € [0,1]. Let m be an order function, and let a € Ss(m). Then
Opi(a) : L (R") —» .Z(R")
is a continuous linear operator.

Proof. Let v € #(R™). We want to prove that z — Op:(a)u(z) is again a Schwartz function. We
will first prove that sup,cgrn |Opt(a)u(z)| < co. Then, for 1 < j < n, we will apply this to the cases
z;Op(a)u(x) and 0;0p.(a)u(x) by writing these as the finite sum of functions of the form Op;(b)v(x)
for certain b € S5(m), v € S (R™).

Let C, N > 0 such that m(w) < C{z — w)m(z) for all w, z € R*". Then for all 1 < j <,
hD,, et @8 — _¢eh (=8 and
hDg, et @8 = (z; — y;)en @98,
So for the operators Li and Lo defined by

L= 1- <€7hDy> _ 1- <£,hDy>
1-—= - )

1+ [¢? (€)?
I 1+ (x—y,hD¢) 14 (x—y,hDg)
2T Tt —yP @—y?
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the identities Ll(ﬁ(’:_y’f> = Loen{®=¥:8) = ¢ex i (@=:€) hold. Then we obtain

Op@u(e) = s [ dlew) [eF Ot + (1 - ) uly)]

- /R dn) [ (eHer9 Y ato + (1= O ()]

1 —
= Grh) /Rm7 d(g, )[eh &)

by integration by parts, where the boundary term vanishes because u(y) is a Schwartz function,

) N+n+1 k
_ (2ﬂ1h>n /R _dle.y) lL2N+n+1 (cheve) S W(a(thr(lt)y,f)u(y))]

k=0
1 i
= i o 1€ y>l e

N+n+1

k
D e (@ e+ (100, “’”]

k=0

N+n+1 ;v— N+n+1 k
oy Gl [Z &%(a(twu—wy,f)u(y»H
=0 k=0

by integration by parts where the boundary term vanishes because a and all its derivatives grow by at
most ~ (£)N.

All derivatives of a(tx + (1 — t)y, &)u(y) grow by at most ~ (x — y)™V (£)V, hence for some C > 0,

1 1
sup |Ops(a)u(z)| < C d d [
N N

Now let 1 < 5 <n, then

<o

(2mh)"z;Opi(a)u(x)

N+n+1 b
:/R% d(&,y) [x ot (r—v.8) Z M(a(txwL(lt)y,ﬁ)u(y))]

k=0
) N+n+1 k
- / A&, y) | (g + hDg,) (eFe7r9) 3 mw(m(l—wy,@u(y))]
R2n k=0
N+n+1 k
[ e wl Feno)(y, —hpg) S M(ﬂtm(l—t)y@u(y»],
R2n k=0

(27h)"hDy,a" (z, hD)u(x)
= / d(&,y) [thj (e'%“”*y’@a(tz +(1— t)y,i)) U(y)]
R2n

= / d(&,y) Kfje’%@*y’@a (tx + (1 —t)y, &) + efib(x*y’E)thva (w,§> )u(y)]
R2n i )

i &, hD, T4y
RG y>[ e [P Galte + (1= D)+ hDsya (T3 26 ulo) ||
Now let {u;j}jen C (R™) be a Cauchy sequence converging to 0, then it is clear from the above
expressions that the sequence Op;(a)u; also converges to 0 in .(R™), hence Op;(a) is continuous. [

Proposition 4.26. Let § >0, t € [0,1]. Let m be an order function, and let a € Ss(m). Then
Opi(a) : &' (R") = Z'(R™)

is a continuous linear operator.
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Proof. Let u,v € .#(R") and define £ := —¢, a(z,€) := a(x, &) = a(z, =€), then

dz [v(x)Ops(a)u(x))

R”

dxr

dg | dy et 9a (w4 (1 - )y, € u(y)o(a)]
-

n

dy |u(y)

N 2rh)n d,x) :e%<y—m7—£>a (tz + (1 —t)y, —(=¢)) U(x)H

R

R2n

dy

\
\\
£
N
—
¥
SH
3
T
HQ.
—
X!
]
S~—

:eri(yfm’@a (ta: + (1 —t)y, —5) v(x)H

n

= dy |u(y) d(¢, ) :e%@*x’g)é (tx +(1- t)y,g) v(x)H

Rn L (27Th)n R2n

S

dy [u(y)Op:(a)

<
—~
<
=

so we can define for u € ./(R™) and v € .#(R™) that

(Opi(a)u)(v) := u(Op(a)v). O

So far, we have considered quantisation for symbols in .#(R™) or in Ss(m). We will now try to
construct such a symbol for a given operator A : " — %’. Tt turns out that for all ¢ € [0, 1] and all
a € Ss(m), the identity

a(z,§&) = e (t=1)(hDq ,hDe) (e_%@’g)Opt(a) (x — e%@’f))) (x) (4.16)

holds. We will first prove this for standard quantisation, i.e. ¢t = 1.

Lemma 4.27. Let 0 < < % and let m be an order function. Let a € Ss(m), then
a(z,§) = e_%<I’5>a(x7hD) (x s eh (7 ’@) (z). (4.17)
Proof. Using example 3.9, we obtain
e~ h (@:8) a(x,hD) (m»—>eh<”“§>) (x)

k3

dy et (T=vma(z, ek W q

n

{a(m,n)ei@m &) (27rh)" /Rn dy [eﬂyn £>H
(,m)

[a @, m)et @18 5y (1 — 5)]

n

/Rn o
- /R dy
o, €).

O
Proposition 4.28. Let 0 < § < % and let m be an order function. Let b € Ss(m) and define fort € [0,1];
a(,€) = e FUTIDAD (g, ).

Then a € Ss(m) and Op;(a) = Op1(b) = b(x, hD). Moreover, if b € .#(R?"), then also a € .7 (R*").

Proof. The operator ¢~ (:=8(hDx.hDe) arises by quantisation from the symbol A(z, 2') = e~ (1=0{"€")
where z = (z,¢) takes the role of z, 2/ = (2/,¢’) takes the role of £, and w = (y,n) takes the role of y,
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ie.

e 7= t)<hD£’hD£ (CC 5

27Th \/RQn dz /RZn dw eh Z o >67%(17t)<x,’5/>b(w):|

B [ [ d ) [t e 1m0 gy )

1 [ ’ ’ 7 ’
d(¢ d(z’' #le—(1-t)¢' —y.a’) 3 (€-n.€')y
o {2 DR /R (@) e “ (v.1)]

ei &ng! b(x — (1 — t)ﬁ’,n)} )

R2n
Now we can define
. 1-(¢.hDy) 1 (¢\hD,)
TP @2
[y LT &= mhDe)  1+({E—n,hDe)
L+1[6—n? €=m2

so that Lye#€=1€) = Loew(€n&) = e (€=1¢") | Now we can use arguments similar to those in the proof
of proposition 4.25 to show that b € . (R?") = a € .(R?") and b € S5(m) = a € Ss(m).

Now let b € .(R?") and u € .%(R™), then

Ops(a)u(x)
= i fon [0 (T = D ADYN.©)) @) Opi (410)) u(a)]
_ 5 1h)n / dl [e L(1—t)(x*,&* >bh(l)eh<T )+ E (1—t) (2™ ,6") (x+¢ )]
T R2n
_ (27r1h)n /R i [bn ()t u(z + )]
= Opy(b)u(z)
Using the fact that . (R*") C S5(m) is dense, we obtain Opy(a) = Op:(b) for all b € S5(m). U

Definition 4.29. (Order of vanishing) Let 0 < § < % and let m be an order function. Then a function
a € Ss(m) is said to vanish with order N as h — 0 if for each multi-index « there is a constant C > 0
such that |0%a| < CRN=%1%lm. If this is the case, we write a = Ogj () (hY).

Proposition 4.30. (Composition) Let 0 < § < % and let m1 and mo be order functions. Let a €

Ss(my),b € Ss(mz), then a#tb € Ss(mims) and o' (z, hD)bY (z,hD) = (a#b)V (x,hD). Moreover, for
all n € N we have

e z[kﬁ (h) <DZ,D><<>b<w>>]

+ Oy (myma) (RFE72). (4.18)

Z=w

Proof. Clearly, (z,w) — a(2)b(w) € Ss5((z,w) — my(z)ms(w). Now we need to prove that ez (hD=:hDuw) ;
Ss((z,w) — a(2)b(w)) — Ss((z,w) — a(2)b(w)). The proof of this is very similar to the previous proof,

so it will be omitted. Then a#b := efh”(th’th)(a(z)b(w))‘ € Ss(mama).
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Let a be a multi-index, then

> < hkch7(2k+‘a|)6m1m2 —_ thkr(1725)7(5\¢)z|,rn1,,n/27

. k
oe (; (;‘) o(D-, Dy)¥ (a(2)b(w))

hence
1 (in\" k k(1—25)
E 5 U(DZ’Dw) (a(z)b(w)) = OSa(mlmz)(h’ ) U
Corollary 4.31. Ifa € Ss(m1) and b € Ss(ms), then
h -
a#b = ab+ %{‘L b} + OSg(m1m2)(h2(1 26)) (419)
and b
[ (2, hD), b (w, hD)] = —{a, b}"" (2, hD) + O () s ey (B 720). (4.20)

Remark 4.32. Let a,b be symbols, then a#b = b#a and a#a is real-valued.

Proof. We have for all z € R?" that

— e~ D= D) (b))

zZ=w z=w

b#a(z).

2) = AP 0w

= AP D )

Z=w

Now let a = b+ ic where b, ¢ : R?* — R. Then
a(z)a(w) = b(2)b(w) + ¢(z)c(w) + i(b(2)c(w) — b(w)e(z)) =: A(z,w) + iB(z,w)
where A(z,w) = A(w, 2) and B(z,w) = —B(w, ) for all z,w € R?". Then for all k € N,

o(D,, D) 1Az, w)|
o(D., Dy)* B(z,w)|

= 70'(DU,,DZ)2k+1A(’LU,Z)|
= —0(Dw,D.)*B(w, z)|

Z=w Z=w

z=w z=w "

Hence o(D,, D,,)** 1 A(z,w)| .= = 0(D., Dy)?* B(2,w)|,= = 0. From formula (4.18) it is clear that
a#a is indeed real-valued. O

Next, we want to prove that o' (z,hD) : L*(R*) — L?(R") for symbols a € Ss(m). This is true for
all order functions m such that supm < co. We will prove this using the Cotlar-Stein theorem.

Theorem 4.33. (Cotlar-Stein theorem) Let Hy, Ho be Hilbert spaces and let A; : Hy — Hy be linear
operators for all j € N. If there is a constant C' > 0 such that

JEN =1 JEN =1

sup A5 AF < C, sup |4 4% < C, (421)

N i
then > 77, Aj converges in the strong topology, i.e. 3377 Aju € Hy for allu € Hy, and || 3272, A;|| < C.
So our goal is to construct a sequence {A; : L*(R") — L?*(R")},en that satisfies the conditions of

the Cotlar-Stein theorem and converges to a'V (z, hD). We will use the following contruction to cut the
symbol a € S5(m) into compactly supported symbols a,, for a € Z".

Let x € C2°(R?") such that 0 < x <1and ) .72 X(2 —a) =1 for all z € R*". Such a function can

be constructed as follows: define for 0 < j < 2n, x;(z) := % cos(mz;) + 3 if z; € [-1,1], and x;(z) :=0
otherwise. Then the function x := H?Zl X; satisfies the required properties.
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Now define the function a, € & (R®") for all a € Z*" by aq(2) := x(2—a)a(z). Then Y 720 aa = 1.
Now let A, := a?¥ (x,hD). Our goal is to show that there is a constant C' > 0 such that

C> sup > [lAA% = sup > Jla¥ (z,hD)*a} (x,hD)||?

agzZn ,3622" 6622"
_ 1
= sup Z Hazv(x,hD)aﬁ (z,hD) HZ = sup Z | (@a#tas)™ (z,hD)]|2,
a€Z ST, S
C > sup Z | A; AkHZ = sup Z la¥ (z hD)aﬁ (z,hD)* ||
agz?n BGZZ" [3622"
_ 1
= sup 3 ol (e D) (e D) = sup S (aats)" (2, D) .
a€Z" S, S

The following lemma shows that @,#ag and its derivatives vanish rapidly if o and S or if z and (a+5)/2
are far apart.

Lemma 4.34. (Mized term decay) Let 0 < § < 1/2 and let m be a bounded order function. Let
a € Ss(m) and define a, as above. For all o, € Z*>"*, N € N, and multi-indices v € N> there is a
constant C, v > 0, such that for all z € R*";

O Tatbas(:)] < Oyl — )N (z = T 0y, (4.22)

Moreover, there is a constant C, ny > 0 not depending on a or h, and a K € N depending linearly on n,
such that for all z € R?";

2

0" @attas(z)| < Con | D W2 supd©al | (a—B)"N(z - MWV. (4.23)

2
|| <K

and there is a constant C.y n > 0 possibly depending on h, such that for all z € R2";
_ _ a+p, _
0 Fatbas(2)] < Oy xm(a)m(B)la— )N ( — TEE)=N, (4.24)
Proof. Recall that

Aa#ap(z) = 7rh /Rm dw; /R% dwz et (Z w)as(z + w2)}

1 ) T st — L
= Jpa I /R2n a2 [e Hot ’wz)aa(hl/z(z+w1))aﬁ(h1/2(z+w2))]

™

1 o
- dwl/ diiio [e—2m(w1,w2)da(§+wl)aﬁ(g+w2)} ,
R2n R2n

™

where we put @ := h= 2wy, Wy := h= 2wy, 5 := h~'/2z, and (o (2) = an(z) = aa(hl/QE). For the
sake of readability, all tildes will be omitted for now. For any multi-index ~ we have

1 ) -
Odattan(z) = / duy / dwy e 007 (a0 (2 F wi)ag(z + wa)) |

Note that the support of our choice of x lies in B(0,n), so the integrand is just zero unless z + wy —
a,z+wy — f € B(0,n). We obtain

la =Bl =]z =B +ws) — (z —a+wy) —wy +wi| <2n+ |wy| + |wal,
a+b

5
2

1
‘ 2|(z—a+w1) wy + (2 — B+ wa) —wa] < 2n+ |wy| + |wel,
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hence for some constant C' > 0 such that (a— ) < C(w) and (z—(a+3)/2) < C{w) where w := (w1, w2).
So for any N € N, (w)™2Y < Cla— B)"N(z — (a+ B)/2)~" for some constant C > 0.

We will obtain a factor (w) =2V by integrating by parts. As will be clear shortly, integration by parts
is only possible if w := (w1, ws) lies outside an open neighbourhood of 0. We will cut the integral in two
parts: one in a bounded neighbourhood of 0, and one outside of it. Let ¢ : R* — [0,1] be a smooth
function such that C =1 on B(0,1) and Supp(¢) C B(0,2). Define for each multi-index ~:

Ay(2) = = o [ dun [ dua [, 0)00 @l o (s + wa))].

Bo(2)i= =g [ dwr [ dwa [ (1=, 12)) 07 @+ wnasls + wa))]
R2n R2n
so that avaa#ag(z) = A, (2) + By(z) for all z € R*".

(Proof of (4.22).) We will first estimate |9] (aq(z + w1)ag(z + w2))|, and then |A,(z)| and |B,(z)].
e Since supm < 0o, we have
Y (an(z + wi)as(z + ws) ‘ <c Y |
[l <[~

<Cy Z (supm)2 < C,.

[kl <[~

Y(an(z + wr) ‘|87 “(ap(z + w2))|

e Since the support of ¢ is bounded, clearly there is some constant C., o > 0 such that |A,(z)] < Cy 0
for all z € R?". Furthermore, due to |w| < 2 we have (w)™2" > (2)72N. So we can define for any
N eN, C%N = <2>2NC’%0, then

_ _ B atB.
[44(2)] S Cro = Crun (272 < Col) ™ < Cyvla— )Nz = 250,
e Now for B,(z): it is convenient to write p(w) := —20 (w1, ws) = —2(x2&1 — 21&2). It’s derivatives

are Oy, p(w) = 26, 0§1p(w) = —2x9, Opp(w) = —2&1, and Jg,o(w) = 221, so [Op(w)| = 2|w|.
Then we can define the operator

I = <8907Dw> _ <890a Dw>
|0¢]? w2

and this operator satisfies Le~20(w1,w2) — ¢=2ic(wi,w2)  Now we can integrate B, (z) by parts.
Note that the integrand vanishes in B(0,1), so there are no problems with w = 0.

B, (2)
1 ) -
= [ dw / duwy [LANHAE (2ol ) (1 - ¢(wn,w2))0] (aa(z + wi)ag(z + w2))|
™ R2n R2n
1 e 2ol wa) 2N +4n+1 S T
= o /R4 dw W(—@%Dw» ((1 — ((w1,w2))07 (aa (2 + wi)ag(z + w2))) )
~ . N +6.
By < o [ dw ()= V0] < 0, sl — )N (- )N,

R4n
(Proof of (4.23).)

e Recall that for any two positive real numbers a and b, ab < 1(a® + b?) and o +b* < (a + b)%. So
we obtain

f(aa(z +wr)) “(97 *(ag(z +ws))|

07 (an(z +wi)ag(z + wa)) ‘<C Z

[ <]Vl

2

<cy Z | sup 0% al

l&l<|vl
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e The rest of the proof is analogous to the previous proof. Putting the tildes back in, we obtain

0%a(2) = 9%a(h/?2) = hI®/20%a(2), hence |sup 0%a| = hl®I/2| sup 9%al.

(Proof of (4.24).)

e Note that m is an order function, so for some M € N, we have m(w) < C(z — w)™m(z) for all

w, z € R?®. Then we obtain

|02 aa (w1 + 2)| = 187 (x(w1 + 2 = a)a(w + 2))| < C sup [Ix (w1 + 2 — a)|m(w; + 2)

[l <|

<O sup [05x(wy + 2 — a)[(wy + 2 — a)Mm(a) < C m(a),
[kl <[~

where we used that |wy + z — o] < n. Hence |0) (aq(z + wi)ag(z + w2))| < Cm(a)m(B).

e The rest of the proof is again analogous to the first proof.

O

Lemma 4.35. (More on mized term decay) For sufficiently large N € N, there is a constant Cy > 0

such that

| @a#as)" (z, hD) | < Oxlo— ).

(4.25)

Moreover, there is a constant Cny > 0 not depending on a or h, and a K € N depending linearly on n,

such that

2

(@a#tap)” (z,hD)| < Cn | Y B*V2supdtal | (a—B)~",
|k|<K

and there is a constant Cy > 0 possibly depending on h, such that
[(@a#tap)" (z,hD)|| < Cym(a)m(B){a —B)~".

Proof. Recall that for any a € .7 (R*"), we have

1 . i1(z,hD)
@nh) ./R% dl [ah(l)eh .

a" (z,hD) =
Using lemma 3.6, we obtain

”(aa#aﬁ)w(-ﬁ,hD)HL?(R")HL?(R") < C/Rz dl [|yh(aa#a/3)|] = C||§h(6a#a5)||L1(Rzn)

< C max H@"’Ea#aﬁ;HLl(Rzn)
[v[<2n+1

=C dz |87a, 241/ .\ —(2n+1)
|7|1£2a2(+1 /R% Z[ aa#ag(z)(z) (2)

< (C su max (V2" 9Va,#as(z
SO suwp e () a#tas(2)

< Oy sup (5)2+1(s = 210
z€R2n 2

)" —p)"

(4.26)

(4.27)

for all N € N according to (4.22) in the previous lemma. If N is sufficiently large, this supremum is

finite and we obtain
||(6a#a5)w(x, hD)||L2(R")%L2(R") < CN<a — B>_N,
proving (4.25). Finally, (4.26) and (4.27) follow similarly from (4.23) and (4.24), respectively.
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Theorem 4.36. Let m be a bounded order function and let 0 < 6 < 1/2. Let a € Ss(m), then

aV(x,hD) : L*(R") — L*(R"), (4.28)
and we can estimate its norm by
|aV (x, hD)| < C Z RIEI/2 sup |07l (4.29)
k| <K

where C' > 0, and K € N does not depends on a and depends linearly on the dimension n.

Proof. By the previous lemma we have ||(@a#ag)" (2, hD)|| < Cn{a—B)~N for all o, 3 € Z>" if N € N
is sufficiently large. Then

sup Z |@a#tag)” (x,hD)||/? < Cy sup Z (a—p)yN2=Cy Z (BYN? < 0
A€Z%" pezan A€ZE" gezam gezzn

if N is large enough. Similarly, sup,cz2n D gez2n I (aa#as)"V (z,hD)||"/? is finite as well. Now by

the Cotlar-Stein theorem, Y 2. a¥ (¥,hD) converges in the strong topology. And " (z,hD) =
Y, a¥ (z,hD) due to a = 3" aq.

The estimate follows immediately from (4.26). O

Theorem 4.37. Let 0 < § < 1/2 and let m be an order function such that lim, .o m(z) = 0. Let
a € Ss(m), then a™ (z,hD) : L>(R™) — L?(R") is a compact operator.

Proof. Note that each a, is a Schwartz function, so a!’ (z,hD) is a compact operator for all a € Z2".
Let 0 < My < M. The compact operators are closed in the norm topology, so it suffices to show that
2 lal<M, a¥ (z,hD) converges in norm to a" (x, hD) as M; — oo. Consider

> a(x,hD)— > al(z,hD)= > al(x,hD),

a<Ms; || <My M <|a|<Ma

and note that there is some M > 0 such that m(83) < C{a—B)m(a) because m is an order function.
Now we can use (4.27) to obtain for sufficiently large N that

sup Y |[(@attap)” (z,hD)|? < Cx sup > /m(a)m(B){a — B)~ N2
lel>Ms g 3p) |l >My gy

<y swp m(a) 3 (a—BM-N2
‘Oé|>M1 B>M;

=C sup m(a)
|Dt|>M1

if N is sufficiently large. Analogously, we obtain the same estimate for a,#as. By the Cotlar-Stein
theorem, >y |a1< a¥ (x, hD) converges in the strong topology to 2lal> M, a¥ (x, hD) and it satisfies

(DN a¥(z,hD)| < C'sup|y(>pr, m(a). This indeed converges to 0 as My — oc. O

4.4 Computing the quantisation of various symbols
We will now compute o'V (x, hD) for various symbols. Recall that my (z,€) := (z)*+(£)!, where k,l € R.

Lemma 4.38. (Symbols depending only on x) Let a € Ss(my,0) such that a does not depend on &, then
Opi(a)u(z) = a(z)u(x) for allt € [0,1].

Proof. Let u € “(R™), then

1 #lz—y, —
a(z, hD)u(z) = @rhy /Rn dg . dy [eh< 5M(ac)u(y)} = a(z)u(z).
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But we also have

oy o 1€ [ v [eF 000t (1= iy

W/ d§/ dy |en (@99 ; Ytz + ( 1—t)y)(xj—yj)u(y)]

0 0pi(a)u(zx) =

27rh / 5/ dy szhDs e+ @708 (9;a) (ta + (1 — t)y)u (y)]

1 i .
= G [, [ivﬁe”x’%"(@}

where b : R" — C™,y — Oa(z+(1—t)y)u(y). Note that b; € /(R") forall 1 < j < n, so F(b;) € L (R™)
and so by, (€) = 0 as |¢] = 00. So 9:0py(a)u(x) = 0 for all ¢ € [0,1], hence

Opi(a)u(x) = ale, hD)u(x) = ae)u()
as desired. 0
Lemma 4.39. (Symbols depending linearly on &) Let a(x,£) = (c(x),&)rn for some continuously differ-

entiable map ¢ : R™ — C”, then

a" (z, hD)u = (hDy, (cju) + c;hDy, (u)) (4.30)

N |
NgE

1

J

[
s>
INgE

Baj(cj)u " cjaju} . (4.31)

1

J

Proof. We have a(z,§) = -7, ¢j(2)&;, so for all u € #(R™),

e hDhte) = /dg [ [ 03, (257 g ]

=Z(27fh)n fo f o [hn (c5 y@) ( )]

S L oo (o (52) o)

(lehn [ e [ ay|eremne (G (5 ) ut v (T3 02, 00) |

_ zn: l(;thjc]) («, AD)u(x) +c§V(x,hD)(thju)(x)]
(

%thj Cj) (z)u(x) + ¢;(x)(hDy, u)(m)]

=23 [J0e)@ue) + @) .
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Lemma 4.40. (Symbols depending quadratically on &) Let a(x,&) = szzl ()€€ , then

a" (z, hD)u = 1 Z (hDg,hDy, (cu) + hDy, (¢ hDy,u) + hDy, (¢ hDy,u) 4+ ¢ hDy,hDy u)  (4.32)

ij=1
2 v~ [1 ij Lo i Lo i ij
=-h*y" 10105 )u+ S0 05u+ S0;cY Oy + ¢ 0,D5u (4.33)
ij=1
Proof. The proof is very similar to the previous proof and will be omitted. O

In particular, if p(z,£) = |¢]* 4+ V(z), then p (x,hD) := —h% Y | 02 4+ V(z) = —h*A + V().
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5 Tunneling

In classical physics, the total energy of a system is given by p(z, &) := |£]2 + V(z), the sum of kinetic
energy and potential energy. Let E € R be some energy level, i.e. p(z,£) = E. Since the kinetic energy
|€|? is nonnegative, it follows that the domain

{r eR" | V(z) > E}

is not available to such a system. As a result, the connected components of {x € R | V(z) < E} are
separated from one another by a 'hard’ potential barrier that cannot be crossed.

The goal of this section is to explore the behaviour of an eigenfunction u of the Schrédinger operator
P(h) :=pW(x,hD) = —h*A +V

with eigenvalue E on the classically forbidden domain {x € R™ | V(z) > E} in the semiclassical limit
h — 0. We will find for any U cC {x € R" | V(z) > 0} that there are constants 0 < § < v such that

e <l g2y < e7/"

as h — 0. These two inequalities are called the Carleman inequality and the Agmon-Lithner estimate,
respectively. As a result, the wave function u is exponentially small on the classical forbidden domain as
h — 0, but it does not vanish. This stands in stark contrast with the classical case, since the connected
components of {x € R" | V(z) < E} are only separated by a ’soft’ barrier that can be *tunneled’ through.

Even though P(h) is not a bounded operator L?(R") — L?(R"), it will still prove useful to prepare
a few results on symbols in S.
5.1 Garding inequality

In this subsection, we will study real-valued symbols in greater detail and prove the Garding inequality.
First, we need a useful lemma that proves that the operator a"' (z, hD) : L?(R™) — L?(R") is invertible
under certain conditions on the symbol a.

Definition 5.1. (Elliptic symbols) A symbol a € Ss(m) is called elliptic if |a| > ym for some constant
v > 0 that does not depend on h.

Proposition 5.2. (Elliptic symbols give rise to invertible operators) Let 0 < § < %, let m be an order
function such that inf, , m(z) > 0, and let a € Ss(m) be elliptic. Then there exist hog, C > 0 such that

la" (2, hD)ull 2 > Cllul 2 (5.1)
for allu e L (R™) and all 0 < h < hg.

If, in addition, sup, , m(z) < co, then there is a constant hg > 0 such that o' (x,hD) : L*(R") —
L?(R™) is invertible as a bounded linear operator on L*(R™) for all 0 < h < hy.

Remark 5.3. The condition that inf, j, m(z) > 0 and sup, ;, < oo implies that Ss(m) = Ss.

Proof. Since a is elliptic and inf m(z) > 0, we have inf |a(z)| > 0 and so a=! : R® — C, 2 — 1/a(2) is
well-defined. We have a € Ss(m), i.e. for all multi-indices o, |0%a| < Cuh~%lm. Moreover, since a is
elliptic, there is some constant C' > 0 such that % <C % It is easy to verify that for any multi-index a,
there is some constant C,, > 0 such that [0%1| < C,h~°lIL hence 1/a € S5(1/m).

By proposition 4.30 we obtain

a#ta™l =1+ Og, (R 72,
a—l#a -1 +OS5(h1_26).
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Let r1,79 € h1=2985 such that a#a ' =1+ r; and a '#a = 1 + ry, then by theorem 4.36 we have
(a=HYW(x,hD),r¥V (x,hD),r¥ (z,hD) : L*(R") — L2(R"). Furthermore, we have

"V (x, hD)(a YW (2, hD) = I 4+ r}V (z,hD)

and
(a=HYW (2, hD)a" (x, hD) = I + ¥ (z, hD)

where ||}V (z, hD)||, ||rY (z,hD)| = O(h'=%?). Let ho > 0 be small enough so that ||ry (z, hD)| < 1 for
all 0 < h < hg, then I + ¥V (x, hD) is invertible by lemma C.4. Hence for all u € L?(R"),

lull = 1 + 73" (2, kD))" (a™ )" (&, AD)a" (2, hD)ul| < Clla* (x, hD)u].

Now assume that supm(z) < oco. Note that in this case, Ss(m) = Ss(1/m) = Ss. Now, we also
have " (z,hD) : L>(R") — L?(R™). Let hg > 0 be small enough such that ||7{V(z,hD)|| < 1 as well
as ||r¥ (x,hD)|| < 1, then (a=1)" (z,hD) is an approximate inverse for a" (z, hD) and so a" (z, hD) is
invertible by proposition C.5. O

Lemma 5.4. (Weak Garding inequality) Let a € S be real-valued, define an := inf a, and let € > 0, then
there is a hg > 0 such that for all 0 < h < hg and all u € L?*(R"™), we have

(u,a (x, hD)u) > (ap — €)|ul/®. (5.2)

Proof. Let A < an — €, then a — A > € > 0 and so a — X is elliptic. So there is a hg(A\) > 0 such that
a"(x,hD) — M is invertible for all 0 < h < hg()\). We want to show that we can in fact pick hg > 0
independent of A.

As in the proof of the previous lemma, we can write
(@a=N#a—N""=1+n),
(@ =N #(a =) =1+7m2(N),

where 71(A\),72(A) € hS. Since r1(A) and ro(X) are given by formula (4.18), it is clear they only de-
pend on powers of derivatives of a and on powers of (a — A)~!. Hence we have for all A\ < a, — € that
r1(A) < ri(an —€) and r9(A) < ro(an — €).

Now let hg := hg(ax —€) > 0, then for all A < a, —e and all 0 < h < hg, the operator "V (z, hD) — \I
is invertible. Hence o(a" (2, hD)) C [an — €,00). So, by proposition C.9, we obtain
(u,a" (@, hDyu) > (an — €)]|ul]®
for all u € L2(R™). O

Theorem 5.5. (Garding inequality) Let a € S be real-valued, define an := infa. Then there is a
sufficiently small constant hg > 0 and a sufficiently large constant v > 0 such that for all 0 < h < hgy
and all u € L?(R™), we have

(u,a™ (x, hD)u) > (an — hy)||ul?. (5.3)

Proof. Let v > 0 and let A < ax — hy. Then a — A > hy > 0. Note that this does not imply that a — A
is elliptic since the lower bound hy depends on h. But (a — A\)™! is well-defined still. Recall that

(a = N#(a = V)" = ez BP0 ((a(2) = W) (a(w) = X)) =

Now we can define f(t) := e2r(hD=:hDw) ((a(z) = N)(a(w) = A)™!) |.=. and apply Taylor’s theorem
around ¢ = 0 to obtain

(= N#(a—1""
=1 —|—/0 dt [(1 — t)ez%a(th’th) <2iho(hDZ, th)) ((a(z) = M (a(w) = A7) |o=w

=:14ry\(2),
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where we used that f(1) = (a — A)#(a — \)71, £(0) = 1, and 9;f(0) = 0. Assume for the moment that
hy(a—an+hy)~t e Syforall0 <h < ho(7) for some sufficiently small ho(y) > 0 and sufficiently large

v > 0. Here we assume that the bounds do not depend on h or 7, i.e. |0%hy(a—an+hy)~ ! < Coyh~lol/2
for all multi-indices v and constants C,, > 0 not depending on h or ~.

Then we have for multi-indices « s.t. |a| = 2 that h2y9%(a — an + hy)~! € S1, hence Yrq,—ny € S1
due toa €5 C Sy and e2io(hD=hDw) . Go s G5 But |0%| < |0%"q, —h| for all multi-indices ¢, so for
all A < ap — hy we have yry € S1. Hence r{V(z,hD) : L?(R™) — L?(R") and

Y (&, hD)|| < |r¥ _p. (2, hD)| < C/,

an—hy

where C' > 0 does not depend on «. Note that C' also does not depend on h due to § = 1/2.

Now if v is sufficiently large, we obtain ||r}’ (xz,hD)| < 1. We can obtain a similar estimate for
(a—AN)"#(a—N), so aV (z,hD) — X is invertible for all A < ax — hy. So a(a" (z,hD)) C [ax — hy, 00)
and hence (u,a"V (x, hD)u) > (an — hy)||ul|? for all u € L?(R™).

It is only left to show that hy(a —an + hy)~t € S% is indeed true. Let o be a multi-index, then

|| k
0*(a—an+hy) ' =(a—an+m) D Y Cpp [] ((a—an+hy)"r0%a),
k=1 Oézﬂllﬁ-‘rl';-i-ﬁky j=1

for certain constants Cg, ... g, € R for each partition of .. This is easy to show by induction to || and
the product rule and chain rule. Since a € S, we have for all multi-indices 3 that |0%a|] < Cj5. We can
apply inequality B.3 to obtain |0;a| < C(a — an)'/? for all 1 < j < n. But then
(a—an +hy) 050 < Cla—an +hy) " (a = ap)2(hy) 2 (hy) /2

< Cla—an+hy)"Ha —an + ) (hy) "1/

= C(hy) 712,
where we used the Cauchy-Schwarz inequality. For higher order derivatives || > 2 we simply have
(a —an + hy)"10Pa] < Cgla — an + hy)~! < Cg(hy)~t. Assume ho(y) > 0 is small enough so that

hoy < 1, then for all 0 < h < hg and all multi-indices |3| > 1, (a — ax +hy)|0%a| < C(hy)~!81/2. Finally,
we obtain for all multi-indices a that

10%(a — ap + hy) "' < Cala — an + hy) " (hy) 712 < Ch (hy) TR 10172,
ence a—ap + < Ch™ or a <h< as desired.
H hy]0°( hy)~Y| < Cuh 19172 for all 0 < h < h(y) as desired O

5.2 Agmon-Lithner inequality

We will now consider the Schrodinger operator P(h) := —h?A + V where V : R® — R is a potential
function not depending on h. The symbol associated with this operator is p(z, £) := |£]? +V (x), the sum
of the kinetic and the potential energy. Consider the eigenvalue equation

P(h)u= E(h)u (5.4)

where E(h) € R. In this subsection, we want to prove that for each U CC {z € R™ | V(z) > E} there is
some sufficiently small § > 0 such that [|u| 2y < e7%/" as h — 0.
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It will be convenient to consider the operator P (h)u := e?/"P(h) (e=#/"u) for some smooth function
¢ : R™ = C. Assume for the moment that u € .#(R™), then

M:

o Apu) =Z<9f(s0u Za djp)u+ @(05u)) = ) _((Fp)u+ 2(059)(9u) + (05 u))

<.
|
—

= (Ap)u+ 2(8(,0, Ourn + pAu,

3 n 3 B n B 1 3
o Ae¥/h :Z@?e o/h — Za (—e Wha ) Z( “o/h )2_Ee Wh@?@)
j=1

=1

<.

= e Mgl — T A
h )
e A (e_“"/hu) = (Ae“”/h> u+ 2<8e_¢/h, du)pn + ¥/ M Ay
1 _ 1 _ 2 _ _
=72¢ ¢/h|op|u — 7€ eI Ap)u — 7€ #I (D, Ou)rn + e ¢/ A,
e P,(h)u = —0¢*u + h(A@)u + 2h(Dp, Ou)rn — h*Au + Vu.
Now define p,, : R" — C by
Po(,8) i= (§ +i0p(x), & + i0p(x))rn + V (2)
= |67 + 2i(0p(x), )re — |0p(2)[* + V (2).

Let u € .Z(R™), then we obtain for p" (z, hD) that

n

Y (@, hD)u(w) = —h* Au(z) + 2hz [2 ) + 0jp(x)dju(x) | — 0p(z)Pu(e) + V (z)u(w)
= —h*Au(z) + hASO(x)u(ff) +2h(9p(x), Ou(x))rn — |0p()*u(2) + V(2)u()
= P,(h)u(z).
Hence P,(h) = p}) (x, hD) as operators .#(R") — .(R™). Now we want to do the same for u € .%(R").
Lemma 5.6. (Conjugation by ¢) Let ¢ : R» — C be smooth and define the symbol p, by
Po(,8) := (§ +i0p(x), § +i0p(x))rn + V().
Then we have for all uw € ' (R™) that

pzv(x,hD)u(m) = e?@/hp(p) (e_“’/hu) (x) =: Pyou(x).

We need one more proposition before we can estimate |[u| z2(yy. Consider the second order differential
operator of the form Q(h)u := —h?Au + (a, hDu) + bu where a,b: R® — C. Then we can estimate the
semiclassical Sobolev norm |[ul| g2 ).

Proposition 5.7. (H} estimate) Let a,b: R™ — C be smooth, define Q(h) by
Q(h)u := —h?*Au+ {a, hDu) + bu
for allu € S (R™). Let U CC W C R™ be open Then there is a constant C > 0 such that
lull g2y < C (1QR)ull 2wy + llull2(w))
for allu e S (R™).
Proof. Let u € (R™) and let U CC W C R™ be open, and recall that

sz 0y = 2oy + 12 3 1050l + 03 1ondrulages.
7j=1 k,=1
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We will first estimate the term involving h2||8ju||%2(U). Let x € C*(W) such that 0 < x <land x =1
on U. (This will allow integration by parts later.) Note that

2 2
(ROxu, xQ(h)u) 2awy) ™ < [(xu, xQ(R)w) 2wy | < Ixull 22 IXQR)ull72 (v
by the Cauchy-Schwarz inequality. Hence

N

R x@()u) 2wy < 3 (IvulBaqr + IXQUuIRqr,)

(Il vy + QW) )

IN
DN = N =

where
R{xu, xQ(h)u)L2(w)
=R (/W dz [;@(@@ (=h*Au(z) + (a(z), hDu(z)) + b(a:)u(:c))})
/W dz [(hD(x*u)(@), hDu(x)) + x*(@)R (u(e)(a(2), hDu(x)) ) +x*(@)|u(@) *R(b(x))]

Using the fact that x is compactly supported, we can estimate each of the three terms of R (xu, xQ(h)u) 12 (w)
from below:

o [ dr[D0eut), mDue))] = / da [x2<x>|hDu< )1+ 23(a)u(@) (hDx (), hDu(@))]
w
z/wdx[ 2 () [hDu(z c/ dz [x(2)[u(z)|[hDu(z)]]
zg/wda:[ 2(z)|hDu(x C/ dz [|u(z
. /W do [ (@) (u x)(a(x),hDu(z»)] > _C /W dz [x*(@)|u(@)||hDu(z)]
1 2 2] — z [Ju(z)[?
>3 | o [V@ihDu@P] - ¢ [ do (@],
. / dz [x*(2)|u(z)*R(b(z))] > fC/ dz [Ju(z)[?] .
w w

Hence R(xu, xQ(h)u) 2wy > 5 [y do [x*(z)|hDu(z)|?] — C [;;, dx [|u(z)|?]. Finally, we obtain:
hQZ 10512 ) = / dz [|hDu(z / dz [ (2)|hDu(x)|’]

/ dz [x*(z)|hDu(x)|’]

< OR(xu, xQ(R)u) 2wy + C / dz [Ju(z) ]
w
< Cllull7zqwy + ClQA) 72w

Next, we will estimate the terms involving h4H8k8lu||2L2(U). Again, let x € C°(W) such that 0 <
x <1land x =1 on U. Note that

> It = 3 [ dr B @aa @)= Y [ e BEa@o o)

k=1 k=1 k=1
= /W dz [A (@) (2) A(xu) ()] = AW 72 w)-

Then we have R(xh*>Au, xQ(h)u) 2wy < %(HhQAuHLz(W + ||Q(h)uH%2(W)) and the rest follows as
before. O
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Theorem 5.8. (Agmon-Lithner estimate) Let A € R and let U C R™ open such that
Ucc{zeR"|V(z)> A}
Then for all open W € R™ such that U CC W, there are constants hg,d,C > 0 such that
[l 2y < Ce™*M|ull 2wy + CI(P(R) — Aull 2w
for alluw € HY(R™) and all 0 < h < hy.

Proof. We can assume without loss of generality that W CcC {z € R" | V(z) > A}. We can choose
functions ¢, ¥, x € C°(R™) such that 0 < ¢, 9, x <1 and

Y =1onU,

¢ =1 on Supp(v),
x = 1 on Supp(yp), and
Supp(x) CC W.

Observe that V(z) — A > 0 and |0y(z)| < C for all x € W and some C' > 0. Then we can pick § > 0
small enough such that V(z) — A — 62|0(x)|? > 0 for all z € W. Hence for all z € W,

D5 (2, €) — A? = |[€]% + 26i(00(x), &) + V(z) — A — 82|90 (2)*|* > V(2) — A — 62|90 (z) 2 > 0.

Choose o > 0 such that |psy(z,&) — A2 > 02 and let my (x, &) := (x)*(€)!. Since x is compactly
supported, we have (psy — A\)#x € S(mo,2), and so ((psy — A)FX)Fmo,—2 € S. Then we can define

b= ((psy — NF#X)#mo,—2# [((Dsy — N #X)Fmo,—2) — o°XxFmo,_2#[x#mo, 2]
= [mo,—2#(xH#psy — )] # (P — N#x)#mo,—2] — 0 [mo,—2#X]#[x#m0,—2].
Then b € S, b is real-valued by remark 4.32, and
bz, €) = (&) x(@)*Ipsy — A* = 0*(€) "X (2)* + Os(h) = —hy
for some constant v > 0. Hence by the Garding inequality, we obtain (u, b (z, AD)u) 12(rn) = —h'y||u||%2(Rn)
for all u € L*(R™). Let u:= (1 + h?A)(ypv) for some v € #(R™), then mg _2(x, hD)u(z) = p(z)v(z) (as
can be shown with an easy computation), and so
—h[[(1+ B2 A) () [ Z2rny < ((P55(x, BD) = N)(xepv), (psy (2, hD) — A) (xpv)) — 0% (xv, xpv)
= ||(p(%(x7hD) - )\)(W’)H%z(m) - 02||90U||%2(Rn)a

where we used that @V (z, hD) = a" (2, hD)* and x = 1 on Supp(y). Now by proposition 5.7 we can
estimate
(1 + h?A)(pv) |l 2rmy < Cllpvllaz ey = Cllevll a2 supp(e))
< C (llpvllgw) + (3 (@, hD) = N (0)[| 2(w))
= C (llpvllL2wn) + (P55 (@, hD) = A)(00) || 2(Rm))
and so
11+ R2A) (o) Fagn) < € (Ilevl2aqgny + 1282 D) = X)) [Bagan) ) -
Combining this with the previous estimate we obtain

2

o —hC o?
(D5 (2, D) — \)(9v) |12 (mn) > m”@vﬂiz(m) Z T

||801)||%2(Rn)

for all 0 < h < hg for some sufficiently small hg > 0. Let w € .(R™), then v := e?¥/"w € .#(R™) since
1) is compactly supported. Then the previous estimate becomes

€%/ |y < CUP, (@, hD) = (e )20y = Cle™ " Y (2,hD) = M) (@)l (g
< (/oo (2, hD) = Nwllzaqgey + €/ " (2, hD), glulaary )
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where
[pW(x, hD), plw = pW(x, hD)(pw) — <ppW(x, hD)w

is the commutator. Due to ¢ = 1 on Supp(%), we have ¥ = 0 on Supp([p"V (z, kD), ¢]w). Then
124/ [p" (2, hD), glw|z2rey = |[p" (z, hD), @lw]| 2 ey
= || = K2 A(pw) + ph® Aw|| L2 rm)
= [||hD*(p)w + 2(hDyp, hDw)|

< lwll

L2(R™)

(Supp(¢))
< Cllwl 2wy + Cll(P" (z, D) — Nw|| 2(w).-

Hence for all w € #(R™), using that ¢ =¢ =1 on U,

w2y = e_‘s/h||€5/thL2(U) = e /| elv/h
< efé/h”e&[;/h

pwl| 2o
wl|p2(rn)
< e " Cllwl 2wy + (7" + )CI(PY (w, hD) = Nw|| 2w
< e " Cllw| 2wy + Cll (" (2, kD) = Nw| 2.
for all 0 < h < hg for some hg > 0. O

In the proof of the Agmon-Lithner estimate, we assumed that § > 0 is small enough so that we have
V(z) — A= 8%10¢(z)]> >0 for all z € W CC {z € R" | V(z) > A} where ¢ € C2°(R™) is some function
so that ¥ =1 on U and Supp(t)) C W. We can rewrite this condition to

0|0y (z)| < A/ V(x)— A

for all z € W.

We will now consider smooth curves v : [0.1] — W such that v(0) € U and (1) € OW. Integrating

both sides along v gives
5/dx[|81/)(x)|] < /dx[ V() —A}.
¥ ¥

This motivates the following definition.

Definition 5.9. (Agmon metric) Let W C R™ and let V : W — [0,00) be a smooth function. Then the
Agmon-metric dy is defined by

dvta) = int { [ o [VT@] 19 C¥([0.00.9)20) = 2.7(1) = o} 5.5
2l

for all x,y € W. Furthermore, we define

dy(z,U) = Jnf dv (z,y) (5.6)
where x € W and U C W, and
dy (Uy,Us) := wiélgl dy (z,Us) (5.7)
_ inf{/ dx [VV] |5 € C(0.1],W).7(0) € Uy, (1) € Un) (5.8)
¥

for allUy,Uy CW.

Lemma 5.10. Let U CC W CC {z € R" | V(z) > A} and let § > 0. Then the following two statements
are equivalent:

(i) 3 € C(R™) such that 0 < ¢ <1, =1 on U, Supp(yp) CW, and

0|0y (z)| < /V(x)— A

forallz e W.
(i1) 6 < dy_x(U,0W)
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Proof. ((i) = (ii)) We have for all x € W that 6|0¢(z)| < /V(z . But W is compact, so there is

some € > 0 such that ¢
4]0 V)= A= %=
00 (@) < VY@ A - 357
for all x € W, where d(U,0W) > 0 is the distance between U and OW in the Euclidean metric.

Let v : [0,1] — {# € R™ | V(z) > A} be a smooth curve such that v(0) € U,v(1) € OW. Since
»(v(0)) =1 and ¢ (y(1)) = 0, we have f7 dz [|0v¥(z)] > 1. Hence

5S5L[|a¢(x)|]<de[ V(x)—A}—Wde[1}<de[ V@) A e

So 8 < dy_x(U,0W) — € < dy_»(U, OW).

((il) = )) Let 5 < dy_x(U,0W). We need to find a suitable function ¢ such that for all x € W,
5|oyY(x)| < /V . We would like to take

~ L Cl{/,,\(m7 U)
¥(x) := max (0, 1- dV—A(W) )

but this function is certainly not smooth. Since § < dy_\(U,0W), there are 0 < € < e such that
(14€)6 < dy_x(U,0W) — €. Then we can define the function . by

dV,,\({E,U) — 6/2)
dV_,\(U, 8W) —€)’

Ye(x) = max (07 1-

Finally, we can smoothen this by mollification to obtain ¢ € C°(R™) such that ¢¥(xr) = 1 on U,
Supp(y)) C W, 0 <9 <1, and

(1+¢)
dy_A\(U,0W) — €

|0y (x)] < Viz) — A

for all x € W. Then

31001 < G iV V) A < VT -

as desired. O]

Theorem 5.11. (Exponential decay) Let u € HY(R™) such that P(h)u = E(h)u. Let E = limj,_,o E(h)
and U CC{zx € R" | V(z) > E}. Let

do := dV,E(U, {x e R" | V(l‘) = E})

Then for all § < §yg we have
lull L2y < e /" (5.9)

as h — 0.
Proof. Let § < §' < &. Since U is compact, we have inf e V(x) — E > 0. Then
Ucc{zeR"|V(z)>E(h)}

if h > 0 is sufficiently small. By the Agmon-Lithner estimate, we have [|ul|z2Rrn) < Ce /M < =0/ a5
h—0. O
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5.3 Carleman inequality

We will now estimate ||ul[2(r) from below, where u is again a solution to the Schrodinger equation and
U ccC {z € R" | V(z) > E} for some energy level E. Our goal is to show that |ul|p2() > e™/" for
some sufficiently large v > 0.

As we have seen in the proof of the Agmon-Lithner estimate, it makes sense to consider symbols of
the form @#a, because they satisfy (u, (@#a)" (z,hD)u) = ||aV (z, hD)ul|?>. We will now combine this
with the first-order approximation from corollary 4.31, i.e.

h 1
a#a = |a? + 27-{57 a} + Og(m2) (h*) = |a* + §hi{a’5} + Og(m2) (h?)
h 2 2 . — 2
> — h—|a\ +i{a,a} | + Ogim2y(h).
0

We want to set a = p, and apply the Garding inequality to the symbol h%|p¢|2 + i{py, Dy }. (Note that
this symbol is real-valued.) Since we already know that (u, (Py#py)" (z, hD)u) = ||pzv(x, hD)u||* > 0,
this approach only yields a stronger result if

. 2 ) .
inf (hops(,|2 + z{pip,p@}) > 0.

As before, we will have to work around the fact that p, is unbounded. Let W CC R™ and let x, x €
C(R™) such that 0 <,x,x < 1land x =1 on W, x =1 on Supp(x), and define g, := p,#x#mo,—2.
Then g, € S, and

g0 (2,€)> = Ipy (2, &) *x(2)*(€) ™ + Os(h).

Combining the previous equations, we obtain

h/2 L
To#aq, > B (holqgal2 +Z{Q<pa(I<p}) + Os(h?)
h

2 . __
=5 (ol s + e 75) ) + Os(h?) (5.10)

We will now consider the symbol %\pw|2x2m8’72 +i{qy, G} € S, and prove that there is a constant
o > 0 such that 5
hfolp¢l2x2m3,_2 —o®x*mg o +i{q,,q5} > 0

under the additional assumption that i{p,,pg}(x,&) > 0 whenever p,(z,§) = 0.

(i) Since |py| is quadratic in [£], there is for each x € R?" a sufficiently small constant o, > 0 such

that |py(z,£)[2(€)™* > o2 if ] is sufficiently large. But Supp(x) is compact, so there are a
sufficiently small ¢ > 0 and a sufficiently large R such that |p(z,&)[?(¢)=* > o2 for all (z,€) €
Supp(x) x R™\B(0, R).

Then [py(z,€)2x(2)2(€) =% — o2x(2)2(€)=* > 0 for all z € R™, and so there is a sufficiently small
constant hg > 0 such that

h%\p<p(x,€)|2x(x)2<€>*4 — o?x(@)*(€) ™" + i{gp, (2, €) 2 0

for all (z,§) € R™ x R"\B(0, R), where we used that ¢{q,,q,} is bounded and supported on
Supp(x) x R™.

(ii) If £ € B(0, R), it may happen that |p,(z,£)| = 0. In the case, we need i{q,,q,} > 0. We have

{00, T} = |X#m0,—2|2{P¢,m} + (X#mo,—2) PPy, XFHMo,—2}
+ X#Mo,—2p{XF#Mo,—2, D} + P {xF#Hmo,—2, x#mo,—2} + Os(h).
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So if assume that p(z, &) = 0 = i{p,,p,} > 0 for all (x,&) € W x R™, then we have i{g,,q,} > 0
for all 0 < h < hg where hg > 0 is sufficiently small. Define N := {(z,£) € W xR" | |py(x,§)| = 0}.
Note that N C Supp(x) x B(0, R) CC R?". Let € > 0 and define

N = U B(z,€).

z€EN

Since {gy,,q,} is continuous and N is compact, there is g > 0 such that i{g,, gy} > 0 on N,.
Then there is a o > 0 such that for all (z,£) € N,

%Im(%&)IQX(fC)Z(@“‘ +i{qp, G} (@, €) — o x(2)*(€) ™! = i{gy, T} (2, €) — o x(2)*(€)~* > 0.

(iii) Finally, Supp(x) x B(0, R)\N,, is compact and |p,| > 0 on this domain. So again, there is a
constant o > 0 such that for all (x,£) € (R™ x B(0, R))\N¢,,

h%\psa(w7€)|2x(x)2<€>_4 — (@O i T €) > 0

where hg > 0 is sufficiently small.

Hence
h%lpga(x,f)\Qx(xf@)‘“ +i{gp, G} (2, 6) — o?x(2)%(€) ™" > 0 (5.11)

on all of R?". So if hg > 0 is sufficiently small, then for all 0 < h < hy we have
2 _ . - -
h—0|p<p(x,§)l2x(x)2<§> o+ i{de, T} (@, €) — o xFFmo,—2#xH#mo,—2 > 0. (5.12)

We will now repeat the last steps of the proof of the Agmon-Lithner estimate. We apply the Garding-
inequality, set u := (1 + h2A)(xv) for v € ., and apply proposition 5.7. Then

2 A\
(u, <ho|q“"|2 + i{qp, qw}) (z,hD)u) > o*||xmp,_o(z, AD)u|* — hry|lull?,
lqy (z, hD)ul| (@p#a,)" (x, hD)u)

= (u,
= (u, (as)" (2, kDY) + hlu, Siap, 721 (2, hD)u) + O()|u]

Y

h 2 9 . A\ 2 2
St (laoP + e} ) (n.hD)) — W2Cu]

2
o
> h?”Xm(‘)/[,/—Q(xv hD)ul|* = B*C||ul|?,
Ipy (. hD)(x0)|1> = Py (2, hD)(xxv)|?
2
o . .
> h [xwl|* = R2CI( + h2A) (ko)
2
0% - .
> he[xoll* = h2C ([xoll” + [P} (@, hD) (X))
2
> hZ- ol
for all 0 < h < hg if hg > 0 is sufficiently small. Then
Vhloll 2wy < CllpY (2, hD)(X0) | L2Rr)-
Since this holds for any ¥ such that W C Supp(¥), we obtain
Vh|vll 2wy < ClipY (z, D)ol p2w)-

This motivates the following definition and proves the following proposition.
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Definition 5.12. (Hérmander’s hypoellipticity condition) Let ¢ : R — C be smooth and let W C R™.
Then p, is said to satisfy Hormander’s hypoellipticity condition within W if

p¢($,§) :Oﬁi{pw,m}(a@f) >0 (5'13)
for all (z,£§) € W x R".

Proposition 5.13. Let W CC R™ and assume that p, satisfies Hormander’s hypoellipticitiy condition
within W. Then there exists a sufficiently large constant C > 0 and a sufficiently small constants hg > 0
such that

h2||ul 2wy < CllpY (2, hD)ul 2w

for allu € L (R™) and all 0 < h < hyg.

As it turns out, for any W CC R"™, we can pick a suitable function ¢ such that p,, satisfies Hormander’s
hypoellipticity condition within W.

Proposition 5.14. For all 0 < r < R there is a positive, nonincreasing, radial function ¢ € C*°(R™)
such that p, satisfies Hormander’s hypoellipticity condition within B(0, R)\B(0,r).

Theorem 5.15. (Carleman estimate) Let a < b and let U CC R™. Let V € S(my ). Let u be a solution
of the Schrddinger equation such that a < E(h) < b for all0 < h < hgy for some hy > 0. Assume further
that p — b € S(mg,2) is elliptic for |x| > R for some sufficiently large R > 0. Then there is a constant
~v > 0 such that for all 0 < h < hy;

lull 2y = e/ (5.14)

Remark 5.16. The ellipticity condition means that there is are constants v, R > 0 such that V(z) >
yx)k for all |x| > R in case k > 0, or V(x) —b >~ for all |x| > R in case k = 0.

Proof. Without loss of generality we may assume that 0 € U. (If not, we can pick z¢o € U and shift the
entire problem, i.e. set & := x — x(.) Then there is a sufficiently small » > 0 such that B(0,3r) C U. It
sufficies to prove the theorem for U = B(0,3r). We may also assume without loss of generality that R
is large enough such that 3r < R — 5.

Let Vp € C°(R™) be some dummy potential such that Supp(Vy) C B(0, R) and p(z, &) —b+Vy(z) #0
for all (x,&) € R?™. Then p — b+ Vj is elliptic on all of R?", and hence also p — E + V. By proposition
5.2 there are hg, C' > 0 such that for all v € L?(R™), for all 0 < h < hg;

[0l 2rey < Cll(p" (2, hD) + Vo — E)l| 2 (rn).
If we assume that Supp(v) C R™\B(0, R), this reduces to
[v]|2rny < Cll(P" (2, hD) = E)v| 2 gen).- (5.15)
Now define x1, x2 € C°(R™) such that 0 < x1,x2 <1 and

x1 =0 on B(0,r) UR™\B(0, R),
x1 =1 on B(0,R— 1)\B(0,2r),
X2 =0 on B(0,R —4),
x2 =1 on R"\B(0,R — 3).
The functions x; and x2 were picked so that for all zp € R"\U, we have x; = 1 on B(x¢, 1/2) for at
least one of the two. Hence |lu|p2wny < |ullz2@) +llull L2 @evey < lullzz@y + IxaullL2rey +Ix2ull 2 (Re)-

Our goal is to estimate the sum [|x1ul|z2®rn) + [|X2u|/£2(rRn) from above in terms of [jul| 2y
Note that for any x € C°(R™), we have

(»" (2, hD) = B)(xu) = x(p"" (2, hD) — E)u + [p" (x,hD) — E, x]u
= [pW(x’ hD), x]u
= —h*A(xu) + h?xAu
= —h%ulx — 2h*(0x, Ou),
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and so
1(p" (z,hD) — E)(xu)ll L2 ey < Chllull 13 suppo)- (5.16)

Then we can apply (5.15) to v := x2u to obtain

Ix2ullz2®ey < Cl(P"Y (x,hD) — E)(x2u)|| £2rn)
< Chllullg; (B(0,R—3)\B(0,R—1))
< Chllull g2 (B0, R-3)\B(0,R-1))
< Ch (||(p" (z, hD) — E)ul12(B(0,R—2)\B(0,R—5)) + ||t L2(B(0,R—2)\ B(0,R—5)))
= Ch”“”L2(B(o,R—2)\B(0,R—5))
= Chllx1ull£2(B(0,R—2)\B(0,R—5))
< Ch[x1ullp2(rn)
where we used proposition 5.7 and the fact that (pV(x,hD) — E)u = 0.
By proposition 5.14, there is a positive, nonincreasing radial function ¢ € C*>°(R™) such that p, — E

satisfies Hormander’s hypoellipticity condition within W := B(0, R)\B(0,r). Then, by proposition 5.13,
we have

h1/2||e<p/h ) :h1/2||e<p/h

X1l L2 ow)
< C|l(pY (x,hD) — E)(e?/"x1u)| 2w
= C||e?/"(p" (x,hD) — E)(xau) | 2(w)

< Chlle/ul

X1U||L2(Rn

(Supp(x1))

=Ch (||e“a/h“HH;(B(O,zr)\B(Ow)) + ”ew/huHH}l(B(O,R)\B(O,R—l)))

< Ch (6“’“’)/"|IUI|H;(B<0,QT)\B(0,T)) n etp(Ril)/h”uHH}L(B(O,R)\B(07R_1)))
< Ch (699(’“)/’1|IUI|H,3<B<0,2T)\B(0,T)) n 6¢(R—1>/hHUHH§(3(07R)\B(07R_1)))
< Ch (e¢<r>/h||u||Lz(U) i e«p(mn/h||u||L2(B(O7R+1)\B(O7R_2)))

< Ch (e@(r)/h”“”LQ(U) + 690<Ril)/h||X2u||L2(Rn)) )

so we obtain
le?/ " X1 L2 (rey < ChY/2 (ew(r)/hHuHLz(U) + 6“°(R_1)/h||X2u||L2(Rn)) (5.17)

But ¢ is non-increasing, so e? U/ xqul|p2rey < [[e?/ " x1ul| p2rey + €2 ETD/ R xoul p2(rny. So
ePEDM | L2 rey < Che?F=D 1| L2 mey < Chle? "X 11l p2(rny + Che? B/ xoul| 12 Rn).
Combining everything, we finally get
e/ " xaull L2 gmy + € F DM xoul| L2 )
< O M |u| 2y + CRY 2P B0 xou| L2 gy + Che?/ " x1ul r2rny + Che? T/ Ixqul| L2 (rny
< Chl/Qe‘P(T)/hHu||L2(U)
for all 0 < h < hg if hg > 0 is sufficiently small. Hence
[ull 2rey < llullp2@) + Ixaullz2re) + IX2ull 2R

< ullz2@y + lle? " xaull L2gny + e?F D Ixoul 2 rey

< (1 + Ce“o(r)/h) lull L2y
and therefore there are constants hg > 0,7 > 0 such that for all 0 < h < hg, we have

lull 2y > €™ |ul| L2rmy = €777 (5.18)
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6 Multiple potential wells

In this section we shall consider the Schrédinger operator P(h) := —h292 + V() for the potential
V(z) = (z* — 1)%

For eigenvalues E(h) < 1, the classically permitted domain {z € R | V(z) < E(h)} is split into two

connected components, the so-called potential wells.

By the Agmon-Lithner inequality, the eigenfunctions associated with such eigenvalues are exponen-
tially small outside these wells. This means that the wells are separated from one another, and therefore
we can consider the eigenvalues and eigenfunctions in each well separately, up to an exponentially small
error. We will do this in greater generality in subsection 6.1.

By the Carleman estimate, the eigenfunctions do not vanish in between the wells. In subsection 6.2,
we will consider the interaction between the wells. In subsection 6.3, we will return to the one-dimensional
symmetric double-well potential.

6.1 Multiple single-well potentials

We will consider a potential V' with N wells, and approximate its low-lying eigenvalues and their
corresponding eigenfunctions with the eigenvalues and eigenfunctions of multiple single-well potentials
V;(v,b*) where v > 0 and b* > 0 are small.

Definition 6.1. (Potential with multiple wells) A potential V € S(myyo) is said to have N potential
wells if:

(i) There are b >0, R > 0 such that the symbol p — b € S(my,2) is elliptic for all |x| > R,
(i1) V : R™ —= [0, 00),
(i11) There are distinct x1,...,xx € R™ such that V(z) =0 <=z = z; for some1 < j <N,
(iv) 9%V (z;) is nonsingular for all 1 < j < N.

Now consider R™ equiped with the Agmon-metric dy. Let v > 0 be small enough such that the sets
By (z;,2v), 1 < j < N are all disjoint. Let b* > 0 be small enough such that {x € R™ | V(z) < b*} has
N connected components, each of which is contained in some By (x;, V).

For all 1 < j < N, we can define ¥; € C°(R") such that 0 < 9¥; < 1,9, =1on {z € R" | V(z) <
b*} N By (zj,v), and Supp(¥;) € By (z;,v). Then we can define the single-well potentials V; by

Vi(z) =V(z)[1- Zﬁk(m) +b" Zﬁk(az) (6.1)

k£ =
It should be noted that for all 1 < 57 < N, we have Vj(ac) =0 < v = z;, and V; > b* outside of
Bv(l‘]’,ll).

The number of eigenvalues of P(h) = —h?A + V(z) and Pj(h) := —h?A + V;(z) in the interval [a, b]
is estimated by Weyl’s law.

Theorem 6.2. (Weyl’s law) Let a < b and let V € S(my) for some k € N. If p—b € S(my2) is
elliptic for |x| > R for some sufficiently large R > 0, then the number of eigenvalues between a and b is
1

#{B() |0 < E() <0} = o

({(z,6) € R*" | a < p(x,€) < b}| +0(1))

as h — 0, where |{(z,£) € R* | a < p(z,¢) < b}’ is the volume in R?".
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Remark 6.3. The notation o(1) means that, for every € > 0, there is a ho(e) > 0 such that for all
0 < h < ho(e), we have

HLEW) [ < () < b) = s {0, € R Ja < pl§) <1} <
We are interested in the lowest lying eigenvalues, so we will consider the case a = 0 and 0 < b(h) < b*
such that b(h) — 0 as h — 0. Let 0 < Ay < Ay < ... < Ay < b be the eigenvalues of P(h) in the
interval [0,b] and let 0 < g1 < pj2 < ... < pjm; < b be the eigenvalues of P;j(h) in the interval [0, b],
where 1 < j < N. Let €, be eigenfunction corresponding to A, 1 < k < M, and 7; ; the eigenfunction
corresponding to p;x, 1 <k < m;. In case an eigenvalue is degenerate, we will count it multiple times
and take the eigenfunctions to be orthonormal.

Let for all 1 < j < N, p; € C*(R™) such that 0 < p; <1, p; = 1 on By(xj,v), and Supp(p;) C
By (xj,2v). Define x; by x;(z) :=1—32;; pr(x). Then we can define for all 1 < j < N, 1 <k <my,

Vjk = XjMj,k- (6.2)

Let E; be the space spanned by the v, and let E := @j E; be their direct sum. Let F' be the
space spanned by the §2;. We want to show that £ and F are exponentially close as h — 0.

Definition 6.4. (Distance between subspaces) Let H be a Hilbert space and let E, F be subspaces. Let
mg and g be the projections onto E and F', respectively. Then the non-symmetric distance between E
and F is defined as .

d(E,F) = ||rg —mgmp| = ||tg — 7r7E|. (6.3)

-

Lemma 6.5. (Properties of d(-,-)) Let H be a Hilbert space, and let E, F,G be closed subspaces. Then

-

(i) d(E,F)=0<= ECF.

- - -

(ii) d(E,G) < d(E, F) + d(F,G).

-

(iti) If d(E,F) < 1, then np|g : E — F is injective and wg|p : F — E is surjective.

= - = =

(iv) If d(E,F) <1 and d(F,E) < 1, then d(E, F) = d(F, E).

The following proposition will help us estimate the distance between two subspaces of L?(R™), one
of which is the span of eigenfunctions of some operator.

Proposition 6.6. Let H be a Hilbert space, D(A) C H, A: D(A) — H a self-adjoint operator. Let a < b
and € > 0, and let Y, ...,y € D(A) be linearly independent such that there are Ay, ..., Ay € [a,b] and
r1,..., o with |7l < € such that

A = Mg + 1k (6.4)

for all 1 < k < M. Assume also that there is some a > 0 such that
Spectrum(A) N ((a — 2a,a) U (b, b+ 2a)) = 0.

Finally, let E be the span of the ¥y, let F' be the span of the eigenvectors of A with their corresponding
eigenvalue in [a,b], and let XT'™ be the lowest eigenvalue of the matriz S := ((¢j,vy)). Then

- M*/2¢

d(E,F) < SOF T (6.5)

Proof. Tt is a well-known result from spectral theory that

o ;r,[ydA [(A—n1],

7
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where « is some contour around of spectrum(A) N [a,b] that does not intersect spectrum(A4). We have
for all A ¢ spectrum(A) that

= (A=) A= N = (A=) (A = Nog +75)
=M= NA=XN"TP+ (A=A
AT

hence (A /\) 17,/}k = ()\k -
boundary of [a — a, b+ o] x
the spectrum of A. Then

Y — (A = A)7HA = A)"1rp. Let R > 0 and let v = vz be the oriented
i[-R, R]. By assumption, this boundary does not contain any elements of

mrv = 5 /A [ — A" — O — A) (A — 2) 1]

1
Vg — 3 / [k = A)HA =Ny
YR
This last integral tends to

1 b+a+iR 1 a—a+iR
— dA[(Ae = N)HA=N) "] = —/

_ -1 _ —1
o iR i d\ [()\k )\) (A )\) rk]

—a—iR
as R — oco. Setting A =a — a+ti or A = b+ a + ti we obtain
€

-1 —1
(A = A) (A= X)) e || < PORTR

Now let u € E, then there is some p € CM such that
NFul|? and [lpl® = SRy luwllul < M RE Tl

Hence ||mpthr — ¢l < £ 5 dt[ 2+t2} =

M
u = 32 itk Then [lul* = (u, Sp)
Combining everything, we obtain

IV 2l

M1/2¢

M
_ull = _ 2,6 « M4
[mru —ul| = Z |kl mre — il < M ||H||a < a(AZm)1/2

k=1

[l O

In light of theorem 5.11, we can expect the constant § to be smaller than the Agmon-distance between
the wells. Define for all 0 < b < b*
(Sb = miknd\/,b(l'j,l‘k). (66)
J,

Theorem 6.7. Let E; be the space spanned by ¥, 1 <k <mj, let E = @j E;, and let F' be the space
spanned by Qp, 1 < k < M. Then there is a sufficiently small hg > 0 such that for all 0 < h < hg and
all § < 6y — 3v that

B, F) = &R.E) = 0 (6.7)

B(\g) — M\ = O(e—é/h) (6.8)
ash —0 foralll <k <M.
Proof. We have
P(h)je = Pj(R)Yj .+ (V = Vi) x

= Pj(h)Yjk

= X; P (h)nj i + [Py (h), x;j]n;.x

= pj k5 — 1 (16X + 2(0x5, Onj k)R
Now let § < §p — 3v and define for € > 0 and a sufficiently large R > 0 the sets

U := U Bv(a?k,2l/),
k£
Ue:= BV(Ua 6)7

W= (R"\W) N By (0,R).
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Note that Supp(dx;) CU cC U CC W CC {z € R" | V(x) > p;r}. If € is sufficiently small, we have
6 <69 —3v —e < dy(Us,OW). Then if h is sufficiently small, we obtain 6 < dy_,, , (U, 0W). Hence by
the Agmon-Lithner estimate, we obtain that

5.kl L2 (Supp(ox, ) < Imjkllz2 @ = O(e™™)
and
10m;.kll L2 suppiox,) < Iikllaz @y < Injkllc2w.) = Oe™*/™)

as h — 0, where we used proposition 5.7.

Hence P(h)j 1, = pj 16 + O(e™%/") as h — 0. Similarly, we obtain (1; 5, x) = 8(i.k), (7 k) +
O(e=%/") as h — 0.

Now we want to use proposition 6.6. We set A = P(h), Y5 = ¥jk, a =0, b = b, Ay = ;. Let
€ > 0 be small enough so that § + 2¢’ < dy — 3v and set € = O(e*(‘;”e/)/h), a = e /" By Weyls
law we have Spectrum(P(h)) N (b,b + 2a) = @ and M/2 = O(ef' /") if h is sufficiently small. Since,
(Wi s Vit k) = Oy ey + O(e70/M), we have N§™ > 1/2. Then d(E, F) = O(e~%/").

- - -

Now we need to show that d(F, E) < 1, because then we have d(F, E) = d(E, F). Recall that p; =1
on By (z;,v) and that Supp(p;) C By (z;,2v). Note in particular, that V' = V; on Supp(p;). Define also

N
po:=1- ijv (6.9)
=1

and note that ppQy = OLz(Rn)(e_e/h) as h — 0 for some ¢ > 0. Claim: for all 1 < j < N there are
aj; € C, 1 <1< my, such that

m;
P = Z a;imjiL+ OL?(R'!L)(G_e/h) (6.10)
=1

as h — 0 for some constant ¢ > 0. If this claim holds, then we also have

P = Zaj,l%‘,z + OLQ(R”)(eie/h) (6.11)
=1

as h — 0 for some constant ¢ > 0. Then we obtain

N N mj
Q) = Z P&l = Z Z a; i1+ OLz(Rn)(efe/h). (6.12)
=0 J=11=1

But the {Qx}i<k<nr is a basis of F. So d(F,E) = |(I —7g)7p|| = O(e=</") as h — 0. So if h is

-

sufficiently small, we obtain d(F, F) < 1 as desired.

Now, to prove the claim, note that

Pj(h)(pju) = P(h)(p; ) (6.13)
= Mep € + [P(h), p;]Q (6.14)
= A\epi QU + OLQ(Rn)(e_ALE/h) (6.15)

as h — 0 for some € > 0. Define the following subspaces of L*(R"): let F} be the span of p;jQ, and

let E'j be the span of n;;, 1 <1 < m;. We may assume without loss of generality that |p; Qx| > e—</h
(otherwise we could pick aj; := 0). Now we will apply proposition 6.6 with A = P;j(h), a = e=</h
AR = || p,; Q|| > e~ /", and m}/2 = O(e*/™). Then we obtain

. 5 e/h,—4e/h

d(F;y, B;) < 0S—° = O(e=/M). (6.16)

e—e/he—e/h
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But then p;Q, =7z (pi%) + Orz(rny(e=/") as desired.
Finally, we need to show there is a bijection B : {Ax}1<j<nm — {j,k}1<j<N,1<k<m, such that for

I L

all § < 8y —3v, 1 < k < M, we have B(Ax) — Ax = O(e=%/") as h — 0. Since d(E,F) = d(F,E) < 1if h
is sufficiently small, there is a homeomorphism between E and F, and so M = Zjvzl m;.

Now let §' < § < &y — 3v and divide the interval [0,b] in smaller intervals of width 29/, i.e. we
define for i € N the interval I; := [2ie=%"/" 2(i 4+ 1)e~%/"]. Without loss of generality, we may assume
that if A is sufficiently small, we have

Ln{ti<w<m #0 = Liyi N { e hi<k<mr = 0.

Then we can again apply proposition 6.6 similar to the proof of J(E, F) = O(e‘é/h), but now with
the interval I; instead of [0,b]. In this case, since o = e~%/%, we obtain d(E, F) = O(e~®=9)/). Since

—

8’ < 8, we have d(E, F) < 1if h is sufficiently small. Then 7p |g: E — F' is injective, so the interval I;
contains at least as many Ay as p;;. But we already have M = m; +...my, hence the interval I; must

in fact contain as many Ay, as p1j;. So we can define a bijection B such that B(\z) — A\ = O(e=9/") as
h—0. O

Notation 6.8. (O-notation) Let 8y > 0, then the notation
A(v) = O(e™%/M)

means that for all § < &, there is a sufficiently small v > 0 such that A(v) = O(e=%/") as h — 0.

6.2 The matrix representation of the Schrodinger operator

As theorem 6.7 shows, we can consider each well separately up to some exponentially small error. How-
ever, due to quantum tunneling, there will still be some interaction between the wells. In this subsection,
we will discuss this interaction. But first, we will prove a few facts about the projection mp.

Proposition 6.9. The following statements hold:

(i) Tpjn =i + O(e=%/M),

(i) T commutes with P(h),

(i) (wpthj e, Ty k) = (Vik, Vi k) = (TEQjk = Vi TR ke — Vg ),

() (Tejk, P(M)mrYy ) = (bjk, PNV k) = (Tpdj e — ik, P(R) (TR 1 = o ar))-
Proof. (i) Let ¢ < o, then there is a sufficiently small v > 0 such that § < §yp — 3v. By theorem 6.7,

we have ||(7p — I)7g| = d(E, F) = O(e~%/"). But then
I7es e = Yinll2ge) = | (tF — DrptjplL2@e) = Oe™™).

(ii) The eigenfunctions {Q }ren of P(h) form an orthonormal basis of L?(R™). If 1 < k < M, we have
7w, = Q. Otherwhise, we have mp, = 0. Hence mp commutes with P(h).

(iii) Note that I — 7 is an orthogonal projection onto F*. So I — 7 is idempotent and self-adjoint.
Now we can calculate:

((mp = D)Yj ik, (mp — Dy ) = (I — 7R )jp, (I — 7)Y pr)
(I =7 )ik ¥y )
= (i, Vi k1) — ATFYj ke, TRV 1)

(iv) This follows trivially from (i) and (ii). O
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Define for 1 <j < N, 1 <57 <m;y,
ik = TFEYj k- (6.17)

By theorem 6.7 and proposition 6.9, we obtain that {¢; 1} is a basis of F, and the interaction between
the wells is characterised by the M x M-matrix ({¢;x, P(h)p; &)). Recall that

’(/}] k= ( _60/h)

and that
P(h)Yj = pjrtbin + 7k,

where ~
ik = [P(h), x;j]nje = O(e~%/M).

Then we have

P(R)(0jr —bjx) = = 1)P(h)k

(mp
= (mr — 1) (1) k¥jk + 75 k)
ik (Pik — Yjk) + (mp — Drjk.

So P(h)(@jk —Yjk) = O(e_‘s/h)7 and so (¢ — Ve P(h)(@je — k) = ( _Qéﬂ/h). Moreover, we
have

1
(Wi P(W)jr ) = 5 (g, P(R) Y1) + (P (R0, ¥ 1)
= % (ke e krtbgr ke + g0 k) + (g sk + T ks Vo k)

ik T Mgk 1
= %@pj,k,wjr’k/) + 3 (<'¢j,k77'j’,k’> + <rj,k7¢j’,k’>) ,

and
(Vi Tjr k) = <Xj?7j ks [P(R), X 1m0 i)

= h? Z (M5 07 ()7 k) — 20xMj.k (Dix57) 0imjr )|

[
da [0
= 12 Z / da [0 Oy ) (@) (D) () — 2 ()51 () (05 ) (@) Drmyr o) ()]
da x5 (@) (T @y () = (@) Oy ) (@) ) (O ) ()]
2 Z / [0 @) AT 0 ) @i ) ()]
But 7, = O(e=%/") on Supp(d;x;), hence the second term is O(e~2%/"). Now define
Wi k) = 1 Z / dz |x; (@) (B @y (@) = @ @my)(@)) Gx) @) (6.18)

1
Wi .G 3= 5 (WGR)Gr R + 0G0, G1R)) - (6.19)
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Putting everything together, we obtain
1 =,
(it PPy 1) = 5 (g 4 by ) (e Ve o)+ Wiy ) + OLe 200/hy, (6.20)

the matrix of P|p(h) : I' — F' in the basis {¢; 1 }. Note that we have W(; 1y /1) = O(e~%/"). However,
we also have (1 1,V 1) = 0k, (jr.kr) + O(e=%/M), so this term contributes to the matrix of P|z(h) in
the same order as W(; ry, (j* ,k/)-

This owes to the fact that {¢;x} is not orthonormal. Therefore, it is more convenient to write the
matrix of P|p(h) in an orthonormal basis. Define

N = ((@j s 05 )) = (P11 - - ONmn ) (P11 ONmy)- (6.21)

We have (@i, @50 k) = (V)0 Vi k) = (@sk = Liks Pk — Vg kr) = 0(5.0), (57 k") +0(e=%/h) 4 O(e=20%0/h),
SO

N =1+0(e %) and (6.22)
N7Y2 =14 O(e~%/M). (6.23)

Then we can define the functions e; ; by

(€11 eNmy) = (911 PN.mx) N2 (6.24)
Then
(6171 L. eN,mN)T(6171 L. eN,mN) = N71/2(g01)1 L (PN,mN)T(QOl,l . SDN,mN)Nil/Q
= N Y2NN"YV2 =7,

so the basis {e; 1} is indeed orthonormal. Calculating the matrix of P|r(h) in this basis gives

(€11 -+ eNmn) P(R)(e11 -+ eNmn)
= N_l/z(sﬁl,l .. sDN,mN)TP(h)(apl,l o S0]\]’77LN)N—1/2
= diag(u11s - i)+ (I + O M) (Wi (4L + O(e™/")) + Ofe /)
= diag(u1,1, - iNan ) + (Wi, ) + Ole™20/).

6.3 The one-dimensional symmetric double-well potential

We will now apply the results of the previous subsection to a one-dimensional symmetric double-well
potential, i.e. n =1, V(z) = V(—x) for all z € R, and V has two wells z4,z5 € R.

Let § < §p and let v > 0 be small enough such that § < §y — 3v. Then we can choose b* > 0
small enough such that {z € R | V(z) < b*} has two connected components and is contained in
By(xz4,v) U By(xzp,v). Let 84 € C®°(R) such that 0 < 04 < 1,04 = 1on {z € R | V(z) <
b*} N By (x4,v), and Supp(04) C By (za,v). Define 05 € C°(R) by 0p(x) := 04(—x).

Then we can define the single-well potentials V4 and Vg by

Va(z) =V (z)(1 —0p(z)) + b*0p(x), (6.25)
Vi (x) := Va(—2). (6.26)
Let 0 < b(h) < b* such that P(h) := —h%29? + V() has two eigenvalues in [0,b]. We will denote these
eigenvalues by F and E_, and their respective eigenfunctions 2, and 2_. By symmetry, we know that

P4(h) and Pp(h) each have one eigenvalue in [0,b], and that pa4 = pup =: p with eigenfunctions n4 and
np such that np(z) :=na(—z).
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Let pga € C°(R) such that 0 < pg < 1, p4a = 1 on By(x4,v), and Supp(pa) C By (x4,2v) and
define pp € C°(R) by pp(z) := pa(—x). Let

xa:=1-pp, XB:=1—pa, (6.27)
Pa = XANA, VB = XBNB- (6.28)

Let F := Span(Q_, ), and define

Y = TFa, (6.29)
YB = TFYB. (6.30)
Let
_ [Pa _ ({pa.pa) (pa,eB)
V= (‘PB) (b4 wn) = (<803790A> <<PBv<PB>> ’ (6:31)

then we can finally define the orthonormal basis {e4,ep} of F by
(EA eB) = ((pA (pB) N_1/2. (6.32)

We have Wy 4 = Wp p =0 and Wy p = Wp 4 =: 8. Then the matrix of P|p(h) in the basis {e4,ep}
is

e _(n O 0 B 50 —980/h
(€B> P(h) (ea ep) = (0 ﬂ) + (ﬂ o) + O(e=2%0/M) (6.33)
([ pFT B+
B (5+7‘2 M+7‘1) ’ (6.34)
where 71,75 = O(e2%/"), The eigenvalues of this matrix are
Ei:u+r1i|6+r2|, (635)
= p £ sign(B)B + O(e /M), (6.36)

and the eigenfunctions are

Oy = %6,4 + sign(ﬁ)%elg (6.37)
= s Esign(9) s + O/, (6.39)

So we have found that the lowest two eigenvalues are y + O(e=%/") and |E, — E_| = 2|B| = O(e~%/M).
Moreover, the eigenfunctions are not localised in one particular well. Both wells contribute equally.
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7 Breaking the symmetry

In this section we will again look at the one-dimensional double-well potential V. We will consider a
non-negative perturbation AV € C°(R) such that Supp(AV) N {za,zp} = 0. Then we can define the
perturbed potential V by

V=V 4+1tAV, (7.1)

where the parameter ¢ € [—1, 1] regulates the strength and the sign of the perturbation. We will consider

the case where AV is not symmetric, and look at the consequences for the lowest two eigenvalues F of

P(h) := —h?A +V and their respective eigenvectors ().

7.1 Perturbation of the single-well potential

We will first consider the single-well potential V;, j € {A, B}. Since Supp(AV) N {za,z5} = 0, we can

choose §; = 0; and x; = x; when h is sufficiently small, so we can simply set V; := V; +tAV. Define
Pj(h) == —h?A 4+ V}, (7.2)

and let fi; be its lowest eigenvalue with eigenfunction 7);. Let §; be the Agmon-distance between the well
x; and the support of the perturbation AV, i.e.

5; = dy (z;, Supp(AV)). (7.3)

Proposition 7.1. Let i and 1; be the lowest eigenvalue and the corresponding eigenfunction of the
unperturbed potential, then we have

fij = ot AViy) +20(e=*/"), (7-4)
and R
iy = n; + tO(e%/M). (7.5)

Proof. Let rj := tAV7;. By the Agmon-Lithner estimate, we have r; = tO(e~%/"). Then

Pj(h)n; = Pj(h)n; + tAVn;
= un; + 7.

Let E; be the span of n; and let Ej be the span of 7j;. Then we obtain by proposition 6.6 that
cf(ijmEj) = tO(e%/"). Then we have

1= (011 = llmg, s> + 1 = 75, 5112 = s ms 2 + 120 (e 200/,

—26J/h)

so we obtain ||7TEj nill =t = 14+#20(e by taking the Taylor expansion of the function f(z) = 2~/2

and applying it to ||77Ej n;|%. But E’j is a one-dimensional space, so we have
iy = llmg,mill = 7 g, m5
= mg,n; +70(e”*/")
=1y — (I —mp ) +20(e=2/7)
= +t0(e~%/M)
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and
iy = (i1, By (h)7;)
= ||, sl 7,y By (h)m g, g
= llmg,mi |l =2, 7, B ()
= llmg,nill (g, i, 7, (unj + tAVn;))
= p+ llmg,mill~(m g, m5, tAV )
= ptllmgnill =2y — (I = 7, )ng, tAV ;)
= it (14 £20(e725/m)) (th;, AVagy) + £20(e=25/M))
= pu+ t(n;, AVy) + 20(e” /"),
where we used that
[t(n;, AVn;)| < [tllIns] L2 supp(avy) 1AV n; |l
— t0(e~25/M)
and
[t =7, )i, AV | < (L = 7g,)n5ll 2 (suppcavy) [AV |
< I = 7g,)mE, ;]| L2 (suppavy) [ AV ;]|
= t20(e=3% /M), O

7.2 Perturbation of the double-well potential

In this subsection, we will consider the two lowest eigenvalues E4 and their corresponding eigenfunctions
4 of the perturbed one-dimensional symmetric double-well potential V' = V +tAV. Let F' be the space
spanned by 1. As before, there is an orthonormal basis {€4,€p} of F' such that

<§g) P(h)(éa éB) = (ﬂBA ﬂﬁB) + O(e= 20/,
where B = WA . In the previous subsection, we found that
fia = fi 4 t(na, AVna) + t20(e=304/m), (7.6)
i =+ tnp, AVng) + t20(e~308/M),
Moreover, recall that &; = 7j; + O(e=%/"). Then we obtain
éa=na+1t0(e 24" 4 O(e™/M), (7.8)
ép =np +1t0(e708/") + O(e=%/h), (7.9)
Now it is only left to estimate 3 — .
Proposition 7.2. We have
B =B +tR((na, AVp)) +t0(e CotmnCatm/hy (7.10)
Proof. We have

wap =1 [ do [xae) (0aleiin(a) ~ ia(@)04in()) 05 (o)

= h*(xa074,0xB7B) — h*(xafla, OxBOTB)

= h*(xa0na,0xBNB) — h*(xAn4, OXBONE)
+ h*(xa0(71a —na), OxB7B) — h*(xa(7la — 14), OxBO7B)
+ h*(xa0na, x5 (7B — nB)) — h*(xan4,xO(71B — 1B))-
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We will estimate each of these terms separately. Since the terms involving 75 — g cannot be estimated
directly, we will first rewrite them by integrating by parts.

o (Xxa0na,0xB(NB —NB)) = /Rdw [XA(af)é’nA(m)(ﬁB - nB)(w)axB(x)}

- [ o [D0xadmalin = 1)) ) (o)
—(0xa0na, xB(1B —nB))
= [ e [xate) (FraC@ i = 5) ) + Dua@)ois — 16)(@)) ()]

o (s Oxpdlin —1s) = = [ do [xal@Pma(@0Gis —np)(0)oxn @)

= [ de 00caTr0Gin = 1)) ()
= (Oxana, xp0(is — 1))
+ [ do [xao) (Fmat@(ie ~ na) (@) + ma@0 iz — 1)) ()|
R

V4 = Vg. Combined with —h28? =
h

On Supp( N Supp(xp), we have V. = V4 = Vp and V =
p) that

A)
P(h) — P(h) V', we get for all € Supp(xa) N Supp(x
W29 (s —ng)(z) = K*0°fp(x) — K*0*np(x)
—(Pg(h) = Va)is(x) + (Ps(h) = VB)ns(z)
= —fipfip(z) + V(2)iip(z) + pnp(x) — V(z)ns(z),
—h?8*na(x) = (Pa(h) — Va)na(z)
= una(z) — V(z)na(x).
Hence
n2 (14 (2)0% i — ) (@) — Pa(@) it — np)(2))
—(iip — wna(@)iip(x) + (V = V)(@)na()is ().
Putting it all together, we obtain
WA, B = WA,B
+ h*(xa0(i1a —na), OxBiiB) — h*(xa(ila —na), OxBONB)
+ B*(0xana, xB0(fis — ng)) — h*(Oxa0na, x5(7 —nB))

+ (xana, (V = V)xpig) — (ig — p){xana, X5i5)
=wa,B + t(na, AVnp)

+ h2(xa0(iia —na), 0xBiB) — h*(xa(fia —na), OXBOiEB)
+ h*(Oxana, x0(ip — np)) — K*(0xa0na, x5(7B — 1B))
+t(na, AV (is —nB)) — (ip — n){XxAN4, XB7B)-

Recall that ||0x;n;] = O(e=%/"), |0x;7;|| = O(e=%/"), and ||7; — n;|| = tO(e~%/"). We also have
(Pj(h) — fij)(n; —nj) = —tAVn; + (fi; — p)nj. Then by proposition 5.7, we obtain

100 = ni)ll 2wy < 1000 — nj) 2wy

< C(I(P;(h) — i) (7 — ni)l 2wy + 175 = nsllz2owry)
S CEIAVnll + g — pl + N5 — n51)
=10(e %M.

Fina11Y7 ||77]] - njHLQ(Supp(AV)) = tO(e—QJ_j/h). Then
Wap =wap +tna, AVng) + tO(e” o tmin(@atn))/h), [
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7.3 Perturbed eigenvalues and eigenfunctions

We will now combine the previous results to determine E4 and Q4. The eigenvalues of an arbitrary
symmetric 2 X 2-matrix

a c

c d

solve 0 = (A —a)(A —d) — c® = A2 — (a + d)\ + ad — c. Hence
1
A=sla+d)t 5 \/a—i-d — dad + 4c?
1 1 2
- - 2o — 2
2(a+d)ﬂ:\/<2(a d)) +c2.
Let
~3a—a)
yi=5(a—d),

and let the eigenvectors in the basis {€4,€p} be given by (A1 A2)” € R%. Then we have

ali + ¢ _[a c A1 — A1

A +dr) " \e da)\X2) ~=E ),
1 1 2 A
- 2 2

(2(a+d) + \/(2(a d)) +c ) ()\2> , hence
A2
(%)

<(—y £y + 02)>\1) .
(Y £ VY2 +c?)Ae
)\1 Yy 1

24z 2 2’ 7.11
N o TVt (7.11)

So we obtain

Substituting:
a=jia+ 0(6—250/h) =+ té(e—zaA/h) + O(e—2éo/h)
d=jip +O0(e7 20/ = 4 tO(e=208/M) 4 O (e 200/
1 ~ ~ ~
Yy = §(a _ d) _ t0<e—26A/h) + to(e—QéB/h) + 0(6_260/h)
c=B+0(e 2%/ = B+ tR(na, AVng) + tO(e~ Cotminad))/hy 4 §(e=200/h)
= 0(67‘5"/}1)

Since the interaction term § is of order O(e=%/"), we are interested in all terms of this order or lower.
Without loss of generality, we can assume that 4 < dp. Then we will consider the following two cases.

(a) 204 > do, i.e. the perturbation is far away from both wells,
(b) 254 < do, i.e. the perturbation is close to one of the wells.

We will treat each of these cases separately.

7.3.1 (a) 204 > &
Setting || = 1, we obtain y = O(e=204/") 4 O(e=2%/") = O(e=2min(%0,04)/h)  But then we have

/C_ ( —(2min(dp,04)— 50)/h)

where 2min(dg,d4) — do > 0 due to 254 > 0. Hence
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Mo

+ - \/m +4/1+
<1+;(‘Z)2+...)

— 41 +O( (2min(69,04)— 50)/h)'

ol ol

So these eigenfunctions are split evenly over the two wells, i.e.

~ 1 1
QL = &4 =+ sien é +O —(2min(d0,64)—00)/h
1 1 .
= ——na +sign(8)—=ng + O(e(%0:20a=00)/h)
ﬁnA gn(f) ﬂﬁB ( )

So the perturbed eigenfunctions are the same as the unperturbed eigenfunctions, up to an exponentially
small error.

7.3.2 (b) 204 < dg
Let [t| > e~ (00=204)/n a5 b, — 0. Then y = tO(e=2%4/") and ¢ = O(e=%/"). Then

ViR = Iym Iyl< ) hence

- 1 .
Er=p+ 5’5(77A,AV77A> It\<77A,AVnA> D(em=204)/1) e,

w\»—t

|E+ — E_| = |t‘<77A7AVT]A> + gO(E*(250*25A)/h).

Similarly, for the eigenfunction we can find that
A1 yil\/ﬁ yi\yl 1+02
A _Jd 2 =24 9 b
A ¢ ¢ 4 c c Y

_v, b <1+2(;)2+...>.

In case t > 0, we find for Q. that Ai/Ay =2y/c+... —o0as h— 0, ie. (:2+ ~ 14, and for Q_ that
M/ Ae=¢/2y)+... > 0as h —0,ie Q_ ~mnpg. Similarly, if t < 0, we get Q4 ~np and Q_ ~ n4.

This means that an exponentially small perturbation can already ’tip over’ the eigenfunctions {24 so
they are localised in just one well! In case the perturbation raises the potential close to x4, the lowest
energy eigenfunction 2_ is pushed away from x 4 into the other well. If however the perturbation lowers
the potential close to x 4, then the lowest energy eigenfunction _ is pulled into z 4.
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8 Outlook

We have looked at a one-dimensional symmetric double-well potential, and found that even an exponen-
tially small perturbation could upset the balance enough to break the symmetry of the lowest energy
eigenfunctions €24 to the maximum extend. It makes sense to ask if the same holds for eigenfunctions with
higher energy than just the lowest two, or if we can obtain a similar result for a potential with more wells.

We obtained our result by explicitly calculating the eigenvalues and eigenfunctions of the relevant
2 x 2-matrices. In a more general setting, we would have to find the eigenvalues and eigenfunctions of an
M x M-matrix. Since there are known formulas that give the roots of an arbitrary cubic polynomial, our
technique can potentially be generalised to a potential with three wells. However, this is no longer possible
for M > 3. In that case, the error terms can potentially be simplified by using the WKB-approximation
to approximate the single-well eigenfunctions 7; .
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A Notation

Let X,Y be normed spaces, then the space of bounded linear operators X — Y is denoted B(X,Y).
Definition A.1. proposition 6.6 (multi-indices) An element o € N™ is called a multi-index.
Let n € N be the dimension, « a multi-index, z € R™, u : R — C a map, 1 < j < n, then we write:
e a=(ag,...,an)
e laj=a1+...+ta,

@ a1 02

o Y i=xxy ..

Note in particular that (—1)* = (—1)!l

1 1/ d d
Du := - =-|—u,...,—
b Z,Vu ) (dxl Ureees dx, u)

Sometimes we clarify in which variable we take the derivative by D, or De.

1 d
° D]’U, = iju = ZT%U

la] e «
1 dl dn
Dowi= (= LA DU (i
¢ <Z> <dl‘§”u> (dﬂ«“%”>

e u,v:R" — C, then u®wv : R?" — (C) is defined by u ® v(z,y) := u(x)v(y).

Elements of R?" are denoted z = (z, &), w = (y,n) where x,y,&,1n € R™. The symplectic product on R*"
is denoted

U(sz) = <§ay> - <‘T7T]>
The Poisson bracket on C°°(R?") is denoted

{f7g} = <8Efa 3xg> - <8:Cf’ a§g>'

B Basic inequalities

For reference, some basic inequalities will be collected here.

Lemma B.1. (Inequalities involving real numbers) Let a,b € R, then
1
ab < 3 (a2 + bQ) , (B.1)
a,b>0=a®>+b* < (a+0b)% (B.2)

Lemma B.2. (Inequalities involving (x) := (14 |x|?)'/? where x € R™)

r<y= (z) <(y), (B.3)
Ya > 0,3C, > 0 such that (z)* < Cy(a + |z|?), (B.4)
3C > 0 such that VM € N,M > n+ 1, we have / dx [<$>_M] <C. (B.5)

Lemma B.3. (Gradient estimate) Let f : R® — R be C? and bounded from below. Write fn := inf f
and assume that there is some constant C > 0 such that |0x0;f] < C for all 1 < k,1 < n. Then there is
a constant C' > 0 such that |0;f| < C'(f — fa)Y/? for all1 < j < n.
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C Functional analysis

Definition C.1. (compact operators) Let X, Y be normed spaces. A linear operator A : X =Y is called
compact if it satisfies the following two equivalent statements.

(i) The image of the unit ball is precompact, i.e. A(B(0,1)) CY is compact.
(i) For any bounded sequence {xy,}nen, the sequence {Axy,}nen containts a converging subsequence.

The set of compact operators X — Y will be denoted K(X,Y). If X =Y, we will write K(X) instead.
It is easy to see that compact operators are bounded. The space K(X,Y) inherits the topology from
B(X,Y).

Proposition C.2. (K(X,Y) is a closed subspace) Let X be a normed space and let Y be a Banach
space, then K(X,Y) is a closed subspace of B(X,Y).

Definition C.3. (Inverse operator) Let X,Y be normed spaces, then an operator A € B(X,Y) is called
invertible if 3B € B(Y, X) such that BT = Ix and TB = Iy. The operator B is called the inverse of A
and is denoted A~ := B.

Lemma C.4. Let X be a Banach space and let A € B(X) be an operator such that |A]| < 1. Then the
operator Ix — A is invertible.

Proof. Define for all k& € N the operator By := ZZ:O A™. This sequence converges due to | A < 1.
Then ||(Ix — A)By, — Ix|| = ||Bx(Ix — A) — Ix| = || — A*|| < |JA|I**! - 0as k — 00. So Ix — A is

indeed invertible with inverse (Ix — A)™' =3 A" O

Proposition C.5. (Approzimate inverse gives rise to an inverse) Let X,Y be Banach spaces and let
A€ B(X,Y). If there are B1,By : Y — X and Ry € B(Y) and Ry € B(X) such that ABy = Iy + Ry,
By A =1Ix + Ry, and ||R1|| <1, ||R2ll <1, then A is invertible.

Proof. Per the previous lemma, Iy + Ry and Ix + Ry are invertible with inverses (Iy + Ry)~! =
Y men(=R1)" and (Ix + Ry)~t = Y nen(—R2)". Define the operators Cy := Bi(Iy + Ry)~! and
Co := (Ix + R2)™'B;. Then AC; = Iy and C2A = Ix. For all y € Y we obtain Cry = CoAC 1y = Cay,
hence A=! = C; = C», O

Definition C.6. (Spectrum of an operator) Let H be a Hilbert space and let A : H — H be a bounded
linear operator, then its spectrum is o(A) := {\ € C| A — A is not invertible}.

Proposition C.7. Let H be a Hilbert space, A : H — H a bounded linear operator, then the spectrum
o(A) is compact.

Definition C.8. (Adjoint) Let Hy, Ho be Hilbert spaces and let A : Hy — Hy be a bounded linear
operator. Then its adjoint A* is the unique bounded linear operator A* : Hy — Hy such that (v, Au) g, =
(A*v,u) g, for allu € Hy,v € Hy. An operator A: H — H 1is called self-adjoint if A = A*.

Proposition C.9. Let H be a Hilbert space and let A : H — H be a self-adjoint bounded linear operator,
then o(A) C R. Moreover, if Ap :=info(A) and Ay :=supo(A), then Ax||ul* < (u, Au) < Ay||ul|? for
allue H.
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