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Abstract

We take a look at categorical aspects of von Neumann algebras, constructing products,
coproducts, and more general limits, and colimits. We shall see that exponentials and
coexponentials do not exist, but there is an adjoint to the spatial tensor product, which
takes the role of coexponent. We then introduce the class of AW*-algebras and try to
see to what extend these categorical constructions are still valid.

Introduction

The Gelfand duality between commutative unital C∗-algebras and compact Hausdorff
spaces (see Proposition 2.16) has led to the idea that we can interpret general C∗-
algebras as generalized (non commutative) topological spaces. A simialar theorem is
valid for von Neumann algebras; every commutative von Neumann algebra is isomorphic
to the continuous functions on some hyperstonean space. This leads one to the idea
that one can interpret von Neumann algebras as generalized (non commutative) measure
spaces. In [5], A. Kornell studies the category of von Neumann algebras and interprets
the dual category as a set-like category whose objects he calls quantum collections,
in which quantum-mechanical computations can be made. This is inspired by the
embedding of sets (seen as topological spaces with discrete topology) in the opposite
of the category of von Neumann algebras via X 7→ ◦`∞(X). First, the category W∗ of
von Neumann algebras and unital normal ∗-homomorphims is studied and this category
has nice properties. It has products, coproducts, equalizers, coequalizers, and general
limits and colimits. It does, however, not have exponents and coexponents. The non
existence of coexponents in W∗ is the same as the non existence of exponentials in the
opposite category, so this cuts ties with Set, the category of sets and functions. To
remedy this, it is shown that instead of coexponents (which are left adjoints to the
coproduct) there does exist a construction mimicing that of a coexponent, and this is
a left adjoint to the spatial tensor product, making W∗ a closed monoidal category. A
special case of this adjunction is the following formula:

Hom(M∗N ,C) ∼= Hom(M,N ),

which shows that any normal unital ∗-homomorphism between von Neumann algebras
M and N comes from some homomorphic state on the free exponentials M∗N . Kornell
then procedes to the category of von Neumann algebras and unital completely positive
maps and shows that in this category there is a surjective natural transformation

Hom(M∗N ,C)→ Hom(M,N ).

This shows that any quantum operation is induced by a state on the free exonential.

It becomes a natural question to ask if these constructions are special to von Neu-
mann algebras, or if there is some larger class of operator algebras in which we can
perform the same categorical constructions. In this paper, we try to do this for the
catgory of AW ∗-algebras and AW ∗ morphisms.
In the first chapter, we explain the basics of category theory and introduce the construc-
tions we wish to study. We follow, in the second chapter, with the basics of operator
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algebras, leading to the conclusion that von Neumann algebras and W ∗-algebras are
equivalent. Any reader familiar with category theory and/or operator algebras may
freely skip (any of) these chapters. Any reader who wishes to learn more on these
subjects can study [1] and [7] for more on category theory, and [6], [8], [?] and [?] for
more on operator algebras.
The third chapter focuses on Kornell’s arguments regarding the category of von Neu-
mann algebras. We follow Kornell’s reasoning and give proofs and constructions of the
basic categorical constructions seen in the first chapter. We shall indeed see that von
Neumann do not have coexponentials, but that it is possible to find a left adjoint with
respect to the spatial tensor product, making von Neumann algebras a closed monoidal
category.
In the fourth chapter, we take a look at AW ∗-algebras. This is a class of algebras
which closely resemble von Neumann algebras. They play a role in quantum logic, see
for example [3]. Our original hope was to extend the categorical constructions valid for
von Neumann algebras to these AW ∗-algebras. However, since we do not have a notion
of spatial theory or of tensor products for AW ∗-algebras, we cannot obtain the desired
results.
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1 Category Theory

1.1 Categories

Category theory is in a certain sense a way to formalize mathematics. Many construc-
tion in different areas of mathematics, like taking direct products of sets or groups, are
actually instances of a universal construction. In this chapter we shall take a look at
the most regularly encountered constructions, which are also the ones we wish to obtain
for von Neumann algebras later on. We begin with the very basics:

Definition 1.1. A category C consists of

• a collection objects of C,

• for every pair of objects A,B ∈ C a collection HomC(A,B) of arrows (or morph-
isms) from A to B such that

– if f ∈ HomC(A,B) and g ∈ HomC(B,C), then there exists an arrow g ◦ f ∈
HomC(A,C),

– (f ◦ g) ◦ h = f ◦ (g ◦ h),

– for each object A ∈ C, there exists a unique arrow idA ∈ HomC(A,A) such
that if f ∈ HomC(A,B), then f ◦ idA = f = idB ◦ f .

For f ∈ HomC(A,B) we write f : A → B and say A = dom(f), the domain of f
and B = cod(f), the codomain of f . We call the arrow g ◦ f the composition of f and
g and the arrow idA the identity of A.
We note that, because of the bijection between objects and identity arrows we could
define a category in terms of arrows only, but we will not pursue this here.

Example 1.2. (i) One of the most basic examples of a category, is the category Set,
consisting of all sets as objects and functions between them as morphisms.

(ii) Another example is given by a set on its own. A set can be considered to be a
(discrete) category, where the objects are the elements of the set and only identity
arrows exists.

(iii) Our last example for now is given by a poset (= partially ordered set). For two
elements x, y of such a set (which are the objects of the category), there is a unique
arrow x→ y if and only if x ≤ y.

Note that in our first example there are (usually) many morphism (=functions)
between two sets, whereas in the second example there are no arrows between different
objects. In the third example, if there exists an arrow between two objects, it is unique,
but there does not have to be an arrow between any two objects (as is the case in Set
with a nonempty set and the empty set).
Also note that in the definition of a category, we explicitly not require for the objects
to form a set. This is because, for example in the category Set, the collection of all
sets is not a set (at least, not in the ZermeloFraenkel set theory).
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Definition 1.3. A category is called:

• small if the objects and morphism actually do form a set,

• locally small if for any two objects, the morphisms between them form a set,

• large otherwise.

We can also wish to define morphisms between categories. These are called functors.

Definition 1.4. A functor is map F : A → B satisfies the following:

• F sends objects of A to objects of B and arrows of A to arrows of B in such a
way that the domain of f is sent to the domain of F (f), and similarly for the
codomain.

• F respects composition and identity, i.e. F (f ◦ g) = F (f) ◦ F (g) and F (idA) =
idF (A).

Note that the composition f ◦ g in F (f ◦ g) is in the category A, whereas the com-
position F (f) ◦ F (g) is in B.

With these functors as morphisms we get yet another category Cat, consisting of
categories and functors.

Definition 1.5. Let C be a category. The opposite (or dual) category Cop has as its
objects the objects of C (we shall write ◦A for the object A in Cop), whilst the morphisms
of Cop are precisely the morphisms of C, only reversed.
So for the morphisms we have ◦f ∈ HomCop(A,B) if and only if f ∈ HomC(B,A).
We then have the relations id◦A = ◦(idA) and ◦(f ◦ g) = ◦g ◦ ◦f for the identity and
composition.

Of course, (Cop)op = C.

Definition 1.6. If two morphisms satisfy f ◦g = iddom(g), g ◦f = iddom(f), we call them
isomorphisms and write f = g−1 or g = f−1.

Note that the morphisms in question have to be part of the category. So for example,
in the category of groups and group homomorphisms, the map x 7→ bx for a fixed non-
identity element b is not an isomorphism, even though it is bijective.
In Set, this notion of an isomorphism is just that of a surjective and injective map (as
we expect), but in a general category (such as a poset), the notions of injectivity and
surjectivity do not make sense. There are, however, generalized such notions.

Definition 1.7.

• We call an arrow f : A → B a monomorphism, if for any g, h : C → A, the
condition f ◦ g = f ◦ h implies g = h. In this case we sometimes just say f is
mono or f is monic.
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• In a similar fashion we call an arrow f : A → B an epimorphism, if for any
g, h : B → C, the condition g ◦ f = h ◦ f implies g = h. We might also say f is
epi or f is epic.

We need to check these really are generalizations, so suppose that f in Set is mono.
Let x, x′ be in A with x 6= x′ and let the set C be a singleton (i.e., a one-point set).
Define two functions from C to A, one sending the single point in C to x, the other
sending it to x′. Since f is monic, we cannot have f(x) = f(x′), so f is injective.
Now suppose f is injective and let g, h : C → A such that f ◦ g = f ◦ h. Then
f ◦ g(x) = f ◦ h(x), so g(x) = h(x) and g = h.
For the corresponding assertion on epimorphisms, first suppose f is surjective and sup-
pose we have g ◦ f = h ◦ f . Then for any x ∈ dom(g), there is an y ∈ dom(f) such that
x = f(y). Therefore we have g(x) = g(f(y)) = h(f(y)) = h(x), so f is epic.
The other way around, suppose f is not surjective, so there exists an x in B which is
not in the image of f . Let g, h : B → C be such that g(y) = h(y) for any y 6= x and
g(x) 6= h(x). Then we have g ◦ f = h ◦ f , but g 6= h, so f is not epic.

Looking at the notion of an epimorphism in the opposite category, we see that it
corresponds precisely to a monomorphism in the category itself and vice versa. So the
concept of a monomorphism is dual to that of an epimorphism.

Since an isomorphism is invertible, it is both epic and monic. The converse, however,
does not hold in general. To see this, we introduce the category Mon.

Definition 1.8. A monoid is a set M with an associative binary operation · : M×M →
M (often called multiplication) and an identity u for this multiplication. Explicitly,
(x · y) · z = x · (y · z) for all x, y, z ∈M , and u · x = x · u = x.

Instead of x · y one often encounters the notation x× y, x+ y (especially when the
monoid is commutative) or just xy.
Now Mon is the category with objects monoids and as morphisms the unity-preserving
homomorphisms. So for (M, ·M , uM) and (N, ·N , uN) monoids, a map f : M → N is a
monoid-morphism if f(uM) = uN and f(x ·M y) = f(x) ·N f(y).

We now see that N and Z are both monoids with addition as multiplication and 0
as unit. The inclusion map i : N ↪→ Z is obviously monic, but it is also epic, whereas
it is (clearly) no isomorphism. To see it is an epimorphism, let again g, h : Z → M
be monoid-morphisms such that g ◦ i = h ◦ i. It follows that g(x) = h(x) for all
x ∈ N. All we need to show now is g(−1) = h(−1) because then it will follow from the
homomorphim property that g = h. To show this, we calculate

g(−1)uM = g(−1)h(0)

= g(−1)h(1)h(−1)

= g(−1)g(1)h(−1)

= uMh(−1).

So indeed g(−1) = h(−1) and g = h.
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1.2 Products and Coproducts

In Set we have the notion of a (direct or Cartesian) product of two sets. This notion
can also be made categorical.

Definition 1.9. Suppose that for two objects A and B there exists a third object C and
two arrows p1 : C → A and p2 : C → B such that for each object D for which there are
arrows f : D → A and g : D → B, there exists a unique arrow h : D → C, such that
p1 ◦ h = f and p2 ◦ h = g. Then C is called a product of A and B.
We write C = A × B and call the functions p1 and p2 projections onto A and B, re-
spectively. The unique map h is written as < f, g > and called the pair or tuple of f
and g.

In terms of morphisms we can characterize the product by the following rules, each
of which is easily checked

• p1 < f, g >= f , p2 < f, g >= g,

• < f, g > h =< fh, gh >,

• < p1, p2 >= id.

At this point it will be very illustrative to draw a diagram. The dotted arrow
indicates it is the unique arrow making the diagram commute.

A A×Bp1oo p2 // B

D
f

cc

<f,g>

OO

g

;;

The possible existence of products depends on the category. For example, products in
Set exist (namely, the direct product) whereas they do not exist in a set when con-
sidered a discrete category.

Proposition 1.10. If a product exists is a certain category, it must be unique up to
isomorphism.

Proof. To see this, let D in the diagram be another product. By the universal property
of the product A × B, there is then a unique morphism D → A × B making the
diagram commute. However, since D is also a product, there also is a unique morphisms
A×B → D making the diagram commute. The composition of these morphisms, which
we shall call h, is then the unique morphism A×B → A×B such that pi = pih. However,
idA×B (or idD) also does this job. By uniqueness, h = idA×B. Replacing A×B with D
in this argument shows that the two unique morphisms are mutual inverses. Therefore
A×B and D are isomorphic.

Similar arguments show that all constructions using a universal property are unique
up to isomorphism.

Once we have obtained the product of two objects, we could try to form a product
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with a third object. We could either form (A×B)×C or A× (B×C), but either way,
these are isomorphic (as can be seen again from drawing diagrams).
Continuing in this fashion, we can make the product of n objects (n ≥ 2) (if they exist
in the category).
An object by itself can be seen as the product of one object and we define the product
of zero objects as a terminal object.

Definition 1.11. A terminal object is an object 1 such that for each object A, there is
a unique arrow A→ 1.

We say the category has finite products if it has a terminal object and all products
of n objects exists for each n ∈ N.

Suppose a product exists in the opposite category. Then we obtain a structure in the
original category where we have two objects A and B with morphisms i1, i2 going into

a third object C such that, whenever there are morphisms A
f // D and B

g // D ,
there exists a unique morphism C → D making the diagram below commute.

A

f ##

i1 // A+B

[f,g]
��

B
i2oo

g
{{

D

Here the object C is denoted A+B, the morphisms i1, i2 are called injections, and the
unique morphism is written as [f, g].

Definition 1.12. The above object A + B, if it exists, is called a coproduct of A and
B. Via a similar reasoning as with products, it is unique up to isomorphism.

In terms of morphisms we characterize the coproduct by

• [f, g]i1 = f, [f, g]i2 = g,

• h[f, g] = [hf, hg],

• [i1, i2] = id.

Definition 1.13. • A initial object is an object 0 such that for every object there
exists a unique arrow from 0 to that object.

• An object which is initial as well as final is called a zero object.

• We say a category has all finite coproducts if it has an initial object, and all
coproducts of n objects (n ≥ 2) exist.

In sets, a coproducts are given by disjoint union.
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1.3 Equalizers and Coequalizers

Our next categorical structure will be that of equalizers.

Definition 1.14. Let f, g : A→ B be two parallel arrows in a category C. An equalizer
for f and g consists of an object E ∈ C and a morphism e : E → A such that fe = ge
and whenever z : Z → A is such that fz = gz, there exists a unique arrow u : Z → E
such that eu = z.

E e // A
f //
g
// B

Z

u

OO

z

??

Proposition 1.15. If e is an equalizer for a pair of arrows, it is a monomorphism.

Proof. Let a, b be arrows such that ea = eb. Consider the following diagram

E
e // A

f //
g
// B

Z

a

OO

b

OO

ea=eb

??

Since fe = ge we have fea = gea, so by the uniqueness property of equalizers, a = b.

Dual to the concept of equalizers is that of coequalizers. The below diagram should
explain enough.

A
f //
g
// B

q //

z
��

Q

u
��
Z

Proposition 1.16. If q is a coequalizer for a pair of arrows, it is an epimorphism.

Proof. A coequalizer is an equalizer in the opposite category, so it is mono in that
category and hence epi in the original category.

1.4 Exponentials and Coexponentials

Let C ×D be the product of C and D with projections q1 and q2 and let A×B be the
product of A and B with projections p1 and p2. Suppose we have morphisms f : A→ C
and g : B → D. Then we can make an arrow f × g : A × B → C × D making the
following diagram commute:

C C ×Dq1oo q2 // D

A

f

OO

A×Bp1
oo

f×g

OO

p2
// B

g

OO
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From this we see f × g =< fp1, gp2 >.

Our last categorical structures for now are exponentials and coexponentials. We
assume the category C has finite products.

Definition 1.17. An exponential of two objects A and B is an object BA and a morph-
ism ε : BA × A→ B such that for any object and arrow f : C × A→ B there exists a
unique arrow Λ(f) : C → BA such that ε(Λ(f)× idB) = f .

BA BA × A ε // B

C

Λ(f)

OO

C × A

Λ(f)×idA

OO

f

;;

We see, from taking C = BA and f = ε, that Λ(ε) = id. Also, if we have
h : D → C, we have the arrow f ◦ (h × id) : D × A → B, so we have the unique
arrow Λ(f ◦ (h × id)) : D → BA making the diagram commute, but Λ(f) ◦ h is also
such an arrow, hence Λ(f ◦ (h× id)) = Λ(f) ◦ h.

If A and B are sets, then AB is the set of functions from B to A, and the evalu-
ation morphism ε : AB×B → A is the the function sending f ∈ AB, x ∈ B to f(x) ∈ A.

Of course, dualizing this structure, we find a new structure called the coexponent of A
and B.

BA

◦Λ(f)
��

BA ⊕ A
◦Λ(f)⊕idA

��

B
circεoo

f{{
C C ⊕ A

Here a map of the form f ⊕ g is meant to be the unique map making the diagram

C
i1 // C ⊕D D

i2oo

A

f

OO

j1
// A⊕B

f⊕g

OO

B
j2
oo

g

OO

commute (with i1, i2, and j1, j2 the respective injections).

Definition 1.18. A category with all finite products and exponentials is called Cartesian
closed.
A category with all finite coproducts and coexponentials is called cocartesian closed.

Sets does not have coexponentials.
Terminal objects, equalizer, and product are special cases of so-called limits. Like-

wise, initial objects, coequalizers, and coproducts are special cases of colimits. To define
such a limit in a category C, we begin by defining a diagram of type J .

Definition 1.19. • Let J be a category. A diagram of type J is a functor F : J →
C.
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• A cone to such a diagram is an object C ∈ C together with morphisms ci : C →
F (i) for every object i ∈ J , such that, if α : i → j is a morphism in J, we have
cj = F (α)ci.

• A limit is a special cone (L, li), such that, for each cone (C, ci), there exists a
unique map u : C → L such that ci = liu. In case the category J is small, we say
L is a small limit.

To see that, for example, an equalizer is a limit, let J be a category with two objects
and two parallel arrows between them (and of course identity arrows). Under a functor
this will be of the form

A
f //
g
// B

If L is a limit, there are two morphisms lA : L → A and lB : L → B such that
flA = lB = glA.

L
lB

++
lA
// A

f //
g
// B

The universal property of the equalizer is now exactly the universal property of the
limit.
A product is obtained in the special case where J has only two objects and no nontrivial
arrows, and a terminal object comes from J being the empty category.

It will be clear how cocones and colimits are defined. Namely as cones, limits in the
opposite category.
We have seen that equalizers and products are special cases of (finite) limits. The other
way around is also true, as we have the following:

Proposition 1.20. A category C has finite limits if and only if it has finite products
and equalizers.

Proof. Let F : J → C be a finite diagram. We can make the product A = ×i∈Obj(J)Fi
with projections πj : A → Fj and the product B = ×α∈Arr(J)Fcod(α) with projections
πα : B → Fcod(α), where the first product is over all objects in J and the second product
is over all arrows in J . We define two maps Ψ,Φ : A→ B coordinatewise by

πα ◦ Φ = πcod(α),

πα ◦Ψ = Fα ◦ πdom(α).

A

πdom(α) **

πcod(α)

!!Ψ //

Φ
// B

πα // Fcod(α)

Fdom(α)

Fα

OO
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We can take the equalizer (E, e) of Ψ and Φ and are going show that E together with
the morphisms ei = πie is a limit to F .
To this end, let C be an object with morphisms ci : C → Fi. Now C, together with the
ci is a cone to F if and only if Ψc = Φc, where c =< ci > is the product-morphism of
the ci. Indeed;

Ψc = Φc ⇔ παΨc = παΦc

⇔ Fαπdom(α)c = πcod(α)c

⇔ Fαcdom(α) = ccod(α).

This now shows that E together with the ei is a cone and also shows that any other
cone factorizes via E because it is an equalizer.

Since we did not really use finiteness in the proof, we can conclude that a category
has any type of limits if and only if it has equalizers and the same type of products.

1.5 Natural Transformations and the Yoneda Lemma

Until now, all we have done is abstractify regularly encountered constructions in certain
categories. We now give a very useful result which makes it easy to see if two objects
are isomorphic by looking at their homsets. This is known as the Yoneda lemma. First,
a bit more work is needed.

Definition 1.21. A natural transformation between two functors F,G : C → D is a
family of maps (θC)C∈objC : FC → GC, such that, if f : C → C̃ is a morphism in C,
then the following diagram commutes.

FC
θC //

Ff
��

GC

Gf
��

FC̃
θC̃ // GC̃

We write θ : F → G for the family of morphisms (θC). From a categorical point
of view, natural transformations are the morphisms in the category whose objects are
functors from C to D.

Definition 1.22. A natural transformation is a natural isomorphism if there is an
inverse natural transformation.

Proposition 1.23. A natural transformation θ : F → G is a natural isomorphism if
and only if every component θC is an isomorphism.

Proof. If every component θC is an isomorphism, then an inverse for θ is easily defined
by taking the componentwise inverse of the θC . It remains to prove this resulting θ−1

is natural. So we have to show the following diagram commutes.

FC

Ff
��

GC
θ−1
X

oo

Gf
��

FD GD
θ−1
Y

oo
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From the naturality of θ, it follows that

θD ◦ F (f) ◦ θ−1
C = G(f) ◦ θC ◦ θ−1

C

= G(f)

= θD ◦ θ−1
D G(f).

Multiplying both side from the left with θ−1
D gives the desired equality.

The other way around, suppose there exists θ−1 : G → F such that θ ◦ θ−1 = idG and
θ−1 ◦ θ = idF . Then θ−1

C ◦ θC = (θ−1 ◦ θ)C = idC . Likewise θC ◦ θ−1
C = idC .

The concept of isomorphisms between categories is straightforward.

Definition 1.24. Two categories A and B are isomorphic if there exists functors F :
A → B and G : B → A that satisfy F ◦G = idB and G ◦ F = idA.

However, being an isomorphism is often too strong a condition. The concept of
natural isomorphisms allows us to weaken this notion.

Definition 1.25. If F : C � D : G are functors, then C and D are called equivalent if
there are natural isomorphisms

η : 1C → G ◦ F,

and
ρ : 1D → F ◦G.

An important instance of equivalence is the following:

Definition 1.26. Two categories A and B are called dual to each other if there is an
equivalence between A and Bop.

Before we go on to the Yoneda Lemma, we make one last observation. We saw, in
the definition of the exponential, that in a Cartesian closed category, any morphism
A×B → C corresponds to a morphism AC → B. This is a special case of the following:

Definition 1.27. Let F : C � D : G be functors. F is left adjoint to G if there is an
isomorphism, natural in X and Y ,

HomC(FX, Y ) ∼= HomD(X,GY ),

for X ∈ C and Y ∈ D. In this case, we also say G is right adjoint to F .

For C and D locally small categories, we denote by DC the functor category, whose
objects are functors from C to D and whose morphisms are natural transformations. In
particular, we can look at SetsC

op

, which is called the category of presheaves on C.

Definition 1.28. The Yoneda embedding is a functor y : C → SetsC
op

, sending C to

yC = Hom(−, C) : Cop → Sets,

and a morphism f : C → D to

yf = Hom(−, f) : Hom(−, C)→ Hom(−, D),

where Hom(−, f) is composition with f .
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Lemma 1.29 (Yoneda). For each object C ∈ C and functor F ∈ SetsC
op

there is an
isomorphism

Hom(yC, F ) ∼= FC.

This isomorphism is natural in C as well as in F .

Proof. We will only give a very rough sketch of the proof (details can be found in the
literature [1], [7]).
On the one hand, there is a map φC,F : Hom(yC, F ) → FC, for which a natural
transformation θ : yC → F is sent to θC(1C). Indeed, θC : yC(C) = Hom(C,C)→ FC.
On the other hand, given a ∈ FC we define a natural transformation θa : yC → F by
defining it componentwise as (θa)C′ : Hom(C ′, C)→ FC ′, (θa)C′(h) = F (h)(a).
The rest of the proof now consists of showing these transformations are indeed natural
and are mutually inverse to each other.

Here, we just write yC instead of y(C) as we will do more often for functors.

Definition 1.30. A functor F : C → D induces a function FC,C′ : HomC(C,C
′) →

HomD(FC, FC ′). We say F is

• full if FC,C′ is injective, for all C,C ′ ∈ C,

• faithful if FC,C′ is surjective, for all C,C ′ ∈ C,

• fully faithful if F is full and faithful.

Theorem 1.31. The Yoneda embedding C → SetsC
op

is fully faithful.

Proof. By the previous lemma, for C,D ∈ C, we have the isomorphism

Hom(C,D) = yD(C) ∼= Hom(yC, yD).

We still have to show that this isomorphism is induced by the Yoneda embedding y.
So let h : C → D. Then, as in the previous lemma, we have the natural transformation
θh : yC → yD for which the components (θh)C′ act on f : C ′ → C as

(θh)C′(f) = yD(f)(h)

= Hom(f,D)(h)

= h ◦ f
= (yh)C′(f).

So indeed θh = yh.

The importance of this theorem is that if yA ∼= yB, then A ∼= B. That is to say, if
Hom(X,A) ∼= Hom(X,B) for all objects X, then A ∼= B.

We can do the same is a covariant setting, where we look at the functors Hom(C,−).
We then find that if Hom(X,A) ∼= Hom(Y,A), for all objects A, then X ∼= Y .

15



2 W ∗-algebras and von Neumann algebras

2.1 Basics of Operator algebras

In order to study the category of von Neumann algebras, it is necessary to have the
basic definitions and proposition regarding this subject. We will give these here, while
omitting the proofs. We by no means claim to give a full overview of the theory, we only
consider the bare essentials. We refer to [11], [8], [6], or any other book on Operator
Algebras for a detailed account of the theory.

Definition 2.1. • A Banach space is a complete normed vector space over R or C.

• A Hilbert space is an inner product space over R or C, which is complete in the
norm derived from this inner product.

• A Banach algebra is a Banach space X with an associative multiplication satis-
fying ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ X .

• A C∗-algebra is a Banach algebra A with involution and the additional condition
that ‖a∗a‖ = ‖a‖2 for all a ∈ A.

We note that while a C∗-algebra does not have to contain a unit, the operator spaces
we are interested in here are unital. That is why we mostly consider unital C∗-algebras
here. Most of the theory in this section can be done for non-unital C∗-algebras as well.

As a vector space, a Hilbert space always has a basis. We say a basis {ei} for H
is orthonormal if 〈ei, ej〉 = δi,j, (δi,j = 1 if i = j and 0 otherwise). Whenever we pick
a basis for a Hilbert space, we shall always mean an orthonormal basis. Whenever we
have an orthonormal basis, we have Parseval’s identity :

〈f, g〉 =
∑
i

〈f, ei〉〈ei, g〉.

Given a Hilbert space H, we can consider all bounded linear maps a : H → H, together
with the operator norm

‖a‖ = sup{‖ah‖ | h ∈ H, ‖h‖ ≤ 1}.

Upon this space we have an involution a 7→ a∗ where 〈f, ah〉 = 〈a∗f, h〉, for f, h ∈ H.
We call this space B(H), the bounded operators on H.
We note at this point that we take our inner product to be linear in the second entry
and anti-linear in the first.

Proposition 2.2. B(H) is a C∗-algebra.

Definition 2.3. A subset S ⊂ B(H) is called self-adjoint is a∗ ∈ S whenever a ∈ S.

It is clear that every norm-closed linear self-adjoint subspace of B(H) is also a C∗-
algebra.



Let S ⊂ B(H) be a subset. The commutant S ′ of S is the space

S ′ = {b ∈ B(H) | bs = sb, for all s ∈ S}.

We write S ′′ = (S ′)′ for the bicommutant of S and continue in this fashion, e.g., S ′′′ =
(S ′′)′. We can now sum up some properties of the commutant. The proofs of these are
trivial.

Proposition 2.4. Let S and R be subsets of B(H).

• If S ⊂ R, then R′ ⊂ S ′.

• S ⊂ S ′′.

• S ′ = S ′′′.

Definition 2.5. A von Neumann algebra is a C∗-algebra M in B(H) such that M =
M′′.

This definition of a von Neumann algebra is algebraic, in the sense that commutators
depend only on the multiplication in B(H). There are also topological conditions on
a ∗-subalgebra of B(H) to be a von Neumann algebra. To this end, we first introduce
other topologies besides the one given by the norm.

Definition 2.6. • A net ai of operators in B(H) converges weakly to some operator
a if

〈v, (ai − a)w〉 → 0,

for all v, w ∈ H.

• A net ai of operators in B(H) converges strongly to some operator a if

‖(ai − a)v‖ → 0,

for all v ∈ H.

• A net ai of operators in B(H) converges σ-weakly to some operator a if

tr(ρ(ai − a))→ 0,

for all ρ ∈ B1(H).
Here, tr is the trace, and B1(H) are the traceclass operators on H. We come back

on this in more detail later. Each of these notions of convergence endows B(H) (and
therefore any subalgebra) with a topology. These are called the strong topology, weak
topology, and σ-weak topology, respectively.

This next theorem is the well known and important double commutant theorem of
von Neumann. It links the algebraic condition on a von Neumann algebra to topological
conditions. It states the following:

Theorem 2.7. Let A ⊂ BH be a ∗-subalgebra such that 1H ∈ A. Then the following
are equivalent:
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• A is a von Neumann algebra, i.e. A = A′′.

• A is closed in the weak topology.

• A is closed in the strong topology.

• A is closed in the σ-weak topology.

We proceed by looking at single operators in a C∗-algebra (and in particular a von
Neumann algebra).

Definition 2.8. Let C be a unital C∗-algebra and a ∈ C. The spectrum of a is

spec(a) = {λ ∈ C | a− λ is not invertible}.

It turns out that the spectrum of an operator is a compact, non-empty subset of C.

Proposition 2.9. If a = a∗, then spec(a) ⊂ R.

Definition 2.10. An element a is positive if spec(a) ⊂ R≥0. In this case we write
a ≥ 0.

This then induces an order on positive operators via a ≤ b↔ 0 ≤ b− a.

Let A be a unital C∗-algebra and suppose B is a C∗-subalgebra, such that B also
contains the unit. Then, if a is in B ⊂ A we can calculate the spectrum of a in B, as
well as in A. Luckily, under these circumstances we have:

Proposition 2.11. The spectrum of a is the same in A as in B.

In particular, for any operator a, we can look at the C∗-algebra generated by a and
1. This can be realized as the norm closure of all polynomial expressions in a, a∗, and 1.
Whenever a commutes with a∗, this algebra is commutative and hence can be identified
with the continuous functions on some compact Hausdorff space X. If a is positive, a,
now seen as function X, is a positive function, because the spectrum of a continuous
function is just the closure of the range of that function. Since in C(X) any positive
function has a unique continuous positive square root, we find that for any positive

operator, there exists a unique positive square root a
1
2 such that (a

1
2 )2 = a.

The following proposition gives a nice and often used result on positivity.

Proposition 2.12. Let A be a C∗-algebra and a ∈ A. Then a ≥ 0 if and only if there
exists a b ∈ A such that a = b∗b.

With this, if a is an arbitrary element in a C∗-algebra, then a∗a is positive, so there
exists a unique positive element, denoted by |a|, such that |a|2 = a∗a. |a| is called the
absolute value of a.

This may remind us of the decomposition of a complex number z = reiθ, where r = |z|.
In fact, this is indeed the case.
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Proposition 2.13. Let a be an operator on a Hilbert space H. Then there exits a
unique decomposition a = u|a|, where u is a partial isometry.

Here, a partial isometry is a map between Hilbert spaces u : H1 → H2, such that u
is isometric on ker(u)⊥. This is equivalent to u∗u being a projection and equivalent to
uu∗ being a projection.

Definition 2.14. A bounded operator a on a Hilbert space is finite rank if the image
of a is finite dimensional.

A special case of a finite rank operator is the one dimensional operator |f 〉〈 g| for
f, g ∈ H mapping x 7→ 〈g, x〉f . Any finite rank operator is a finite sum of these
one dimensional operators. However, finite rank operators are not closed in the norm.
For example, if {ei}i∈N is an orthonormal basis in a Hilbert space H, the limit of the
elements

∑n
i=1 2−n|ei 〉〈 ei| is not finite rank.

Definition 2.15. An operator is called compact if it is the norm limit of finite rank
operators.

Finally, we say some words on Gelfand duality, which may be considered to be the
grandfather of this paper.

Let comC∗1 be the category of commutative C∗-algebras with unit and unit-preserving
∗-homomorphisms, and let cHTop be the category of compact Hausdorff spaces and
continuous maps. Then, there is a functor

C : cHTop→ comC∗1,

sending a compact Hausdorff space X to C(X), the continuous functions on X, and
sending a continuous map f : X → Y between compact Hausdorff spaces to the map
C(f) : C(Y ) → C(X), given by C(f)(g)(x) = g(f(x)), for g ∈ C(Y ) and x ∈ X.
This is a contravariant functor, as we easily see from C(g ◦ h)(f)(x) = f(g(h(x))) =
C(h) ◦ C(g)(f)(x), whenever g and h are composable. There is also a functor

sp : comC∗1 → cHTop,

sending a commutative unital C∗-algebraA to the space of all non-zero ∗-homomorphisms
A → C, and a unital ∗-homomorphism φ : A → B to the map sp(φ) : sp(B) → sp(A),
given by sp(φ)(τ)(a) = τ(φ(a)), for τ in sp(B and a ∈ A. This is again a contravariant
functor by a similar calculation. The topology on sp(A) is the one induced by ρi → ρ
if ρi(a)→ ρ(a) for all a ∈ A.

Proposition 2.16. cHTop is dual to comC∗1.

Proof. Composing the above functors, we obtain the following commutative diagram:

X

f

��

δX// sp(C(X))

sp(C(f))

��
Y

δY
// sp(C(Y ))
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Here, δX is given by δX(x) = δx, where δx(f) = f(x). Using this, we find δY ◦ f(x) =
δf(x), while sp(C(f)) ◦ δX(x) = sp(C(f))(δx). Now, for g ∈ C(Y ), we have

sp(C(f))(δx)(g) = δx(C(f)g)

= δx(g ◦ f)

= g(f(x))

= δf(x)(g).

So the diagram is indeed commutative.
Composing the other way around, we obtain

M
f

��

θM// C(sp(M))

C(sp(f))

��
N

θN
// C(sp(N ))

Here, θM is given by a 7→ â, where â(φ) = φ(a), for φ ∈ sp(A). Now θN ◦ f(a) = ˆf(a),
while for τ ∈ sp(N )

C(sp(f)) ◦ θM(a)(τ) = C(sp(f))â(τ)

= â(sp(f)τ)

= τ(f(a))

= ˆf(a)(τ).

So this diagam also commutes. The theorem now follows from the fact that for
unital C∗-algebras, the map a 7→ â isometric isomorphism, and that all non-zero ∗-
homomorphisms on C(X) are of the form δx.

The conclusion that cHTop is dual to comC∗1 has led to the idea that the dual of
the category of general C∗-algebras can be interpreted as a a category of noncommut-
ative topological spaces.

As a special case we can look at two particularly easy examples.

Example 2.17. • For the C∗-algebra 0, there are, trivially, no non-zero homo-
morphisms to any other algebra. Therefore, sp(0) = ∅.

• For the C∗-algebra C, there is only a unique unitial ∗-homomorphism to any other
unital C∗-algebra, given by z 7→ z · 1. Therefore, sp(C) is a singleton.

2.2 The Trace and the Predual on B(H)

A von Neumann algebra is explicitly defined acting on some Hilbert space. We now
introduce a certain class of operator algebras that do not have this property.

Definition 2.18. A W ∗-algebra N is a C∗-algebra N that, as a Banach space, is the
dual of some Banach space N∗, called a predual.
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This section, and the next, are devoted to showing that these concepts coincide.
That is, every von Neumann algebra is the dual of some Banach space, and every W ∗-
algebra has a faithful representation on a Hilbert space which makes it a von Neumann
algebra.
We will begin by showing that, for H a Hilbert space, the von Neumann algebra B(H)
has a predual. To this end, we first develop the theory of the trace on a Hilbert space.
Throughout this section, let H be a fixed Hilbert space with an orthonormal basis {ei}i.

Definition 2.19. Let 0 ≤ T ∈ B(H). The trace of T is

tr(T ) =
∑
i

〈ei, T ei〉 ∈ [0,∞].

This definition might seem somewhat strange; there appears to be a dependency on
the choice of basis and the trace might not be finite. Later on, we will see that the
trace becomes finite after restricting to a special class of operators. The dependency
on the basis will be dealt with after the following lemma.

Lemma 2.20. tr(T ∗T ) = tr(TT ∗) for T ∈ B(H).

Proof. First of all, for all i, j, we have

0 ≤ |〈ei, T ∗ej〉|2

= 〈ei, T ∗ej〉〈T ∗ej, ei〉
= 〈Tei, ej〉〈ej, T ei〉.

Now, using Parseval’s identity,∑
j

〈Tei, ej〉〈ej, T ei〉 = 〈Tei, T ei〉

= 〈ei, T ∗Tei〉,

and ∑
i

〈ei, T ∗ej〉〈T ∗ej, ei〉 = 〈T ∗ej, T ∗ej〉

= 〈ej, TT ∗ej〉.

From this, we find ∑
j

∑
i

〈ei, T ∗ej〉〈T ∗ej, ei〉 = tr(TT ∗),

∑
i

∑
j

〈Tei, ej〉〈ej, T ei〉 = tr(T ∗T ).

The desired equality now follows because the terms in the sums are equal and positive,
so we may change the order of summation.

Theorem 2.21. The trace of an operator T ≥ 0 does not depend on the choice of basis.
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Proof. Let T ≥ 0 and U unitary. Then, since there is anX ∈ B(H) such that T = X∗X,
we have, using the previous lemma twice,

tr(U∗TU) = tr(U∗X∗XU)

= tr(XUU∗X∗)

= tr(XX∗)

= tr(X∗X)

= tr(T ).

From this we then find that for a bounded positive operator T and unitary operator
U :

tr(T ) =
∑
i

〈ei, T ei〉

=
∑
i

〈Uei, TUei〉.

So, by definition of the operator norm, we conclude that for positive T :

tr(T ) ≥ ‖T‖.

Lemma 2.22. Let T ∈ B(H) and suppose tr(|T |) <∞. Then T is a compact operator.

Proof. For an orthonormal basis {ej}j∈J and ε > 0, since
∑

j〈ej, |T |ej〉 < ∞, there
exists a finite subset I ⊂ J such that∑

j /∈I

〈ej, |T |ej〉 < ε.

Let PI be the projection corresponding to the span of {ej}j∈I . Now

‖|T |
1
2 (1− PI)‖2 = ‖(1− PI)|T |(1− PI)‖

≤ tr((1− PI)|T |(1− pI))
< ε.

Letting ε→ 0, we see that
|T |

1
2PI → |T |

1
2 .

Now PI is a finite rank operator, so |T | 12PI is also of finite rank, since the finite rank op-

erators form an ideal in B(H). Therefore |T | 12 is the norm-limit of finite rank operators
and so it is compact. Since the compact operators also form an ideal in B(H), we find

that |T | = |T | 12 |T | 12 is also compact, therefor, by the polar decomposition, T = U |T | is
compact too.

Since any operator T is a linear combination of (up to) four positive operators,

T =
3∑

k=0

ikTk, with Tk ≥ 0,
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there is no need to restrict the trace to positive operators; we can just set

tr(T ) =
3∑

k=0

ikTr(Tk).

So, letting K(H) denote the compact operators, we define the trace class operators as

B1(H) = {T ∈ K(H) | tr(T ) <∞}.

In what follows it will be useful to have the following equations for operators in B(H)
(these are proven by just writing them out).

(S + T )∗(S + T ) + (S − T )∗(S − T ) = 2(S∗S + T ∗T ), (parallelogram law)

4T ∗S =
3∑

k=0

ik(S + ikT )∗(S + ikT ). (polarization identity)

We also note that tr(T ∗) = tr(T ), and that for T ≥ 0 (so that T = X∗X) we have

tr(T ) = tr(X∗X)

=
∑
i

〈ei, X∗Xei〉

=
∑
i

〈Xei, Xei〉

≥ 0.

Therefore, tr(·) is a positive linear functional on B1(H).

Lemma 2.23. B1(H) is a self-adjoint ideal in B(H).

Proof. Let T ∈ B1(H) and S ∈ B(H). Without loss of generality we may assume
T ≥ 0. Then by the polarization identity

4TS = 4T
1
2 (T

1
2S)

=
3∑

k=0

ik(T
1
2S + ikT

1
2 )∗(T

1
2S + ikT

1
2 )

=
3∑

k=0

ik(S∗T
1
2 + i−kT

1
2 )(T

1
2S + ikT

1
2 )

=
3∑

k=0

ik(S∗ + i−k)T (S + ik)

=
3∑

k=0

ik(S + ik)∗T (S + ik).
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For fixed k, write V = (S + ik). We then calculate

tr(V ∗TV ) = tr(V ∗T
1
2T

1
2V )

= tr(T
1
2V V ∗T

1
2 )

=
∑
j

〈ej, T
1
2V V ∗T

1
2 ej〉

=
∑
j

〈V ∗T
1
2 ej, V

∗T
1
2 ej〉

≤
∑
j

‖V ‖2‖T
1
2 ej‖2

= ‖V ‖2tr(T ).

Combining these results, we find

|tr(TS)| ≤

∣∣∣∣∣14
3∑

k=0

ik‖S + ik‖2

∣∣∣∣∣ tr(T ) <∞.

Therefore, B1(H) is a right ideal and since it is obviously self-adjoint, it is a two sided
ideal.

As a consequence, we can give another characterization of the trace-class operators.
If T ∈ B1(H), then, by the polar decomposition, so is UT = |T |. If |T | ∈ B1(H), then,
again by the polar decomposition, so is T = U∗|T |. Therefore, we have

B1(H) = {T ∈ B(H) | tr(|T |) <∞}.
Lemma 2.24. Let T ∈ B1(H) and S ∈ B(H). Then

|tr(ST )| ≤ ‖S‖ tr(|T |).
Proof. The expression (S, T )tr = tr(TS∗) is a sesquilinear form B(H) × B1(H) → C.
As such, we have the Cauchy-Schwarz inequality. If T = U |T |, then

|tr(ST )|2 = |tr(SU |T |
1
2 |T |

1
2 )|2

= |(|T |
1
2 , SU |T |

1
2 )tr|2

≤ (|T |
1
2 , |T |

1
2 )tr(SU |T |

1
2 , SU |T |

1
2 )tr

= tr(|T |)tr(SU |T |
1
2 (SU |T |

1
2 )∗)

= tr(|T |)tr(|T |
1
2U∗S∗SU |T |

1
2 )

= tr(|T |)
∑
j

〈SU |T |
1
2 ej, SU |T |

1
2 ej〉

= tr(|T |)
∑
j

‖SU |T |
1
2 ej‖2

≤ tr(|T |)
∑
j

‖SU‖2‖|T |
1
2 ej‖2

≤ tr(|T |)‖S‖2
∑
j

〈|T |
1
2 ej, |T |

1
2 ej〉

= ‖S‖2tr(|T |)2.
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Before we continue, we need to take a little detour and define the Hilbert-Schmidt
operators, denoted B2(H).

Definition 2.25.
B2(H) = {T ∈ B(H) | tr(T ∗T ) <∞}.

Lemma 2.26. The Hilbert-Schmidt operators form a self adjoint ideal in B(H).

Proof. The earlier parallelogram law implies

(S + T )∗(S + T ) ≤ 2(S∗S + T ∗T ),

which shows that B2(H) is a linear subspace. From the fact that tr(T ∗T ) = tr(TT ∗), we
then find that B2(H) is self-adjoint. It is clear that T ∗T ∈ B1(H) whenever T ∈ B2(H).
Therefore, we find that tr(S∗T ∗TS) < ∞ whenever T ∈ B2(H), showing that TS ∈
B2(H) whenever T is. Since we already know B2(H) is self-adjoint, we are done.

Lemma 2.27. If T, S ∈ B2(H), or if T ∈ B1(H) and S ∈ B(H), then

tr(TS) = tr(ST ).

Proof. Straightforward calculation using the polarization formula gives for S, T ∈ B2(H):

4 tr(T ∗S) =
3∑

k=0

iktr((S + ikT )∗(S + ikT )

=
3∑

k=0

iktr((S + ikT )(S + ikT )∗)

=
3∑

k=0

iktr(i−k(S∗ + i−kT ∗)∗ik(S∗ + i−kT ∗))

=
3∑

k=0

iktr((T ∗ + ikS∗)∗(T ∗ + ikS∗))

= 4 tr(ST ∗).

Now let T ∈ B1(H) and S ∈ B(H). Then, using the previous result, the polar decom-

position and the fact that |T | 12 ∈ B2(H), we find

tr(TS) = tr(U |T |S)

= tr((U |T |
1
2 )(|T |

1
2S))

= tr(|T |
1
2 (SU |T |

1
2 ))

= tr(ST ).

This next proposition is only partially relevant to our goal (i.e., the existence of a
predual), since we only ask for a predual to be a Banach space. However, the full result
is too nice to omit here.
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Proposition 2.28. B1(H) is a Banach algebra (and in particular a Banach space)
under the trace-norm ‖·‖1 = tr(| · |).

Proof. First of all we need to show that ‖·‖1 = tr(| · |) is indeed a norm. Homogeneity is
clear and positivity follows from the fact that ‖·‖1 ≥ ‖·‖. The only non-trivial property
is the triangle inequality. Let U be the partial isometry from the polar decomposition
of S + T . Then

‖S + T‖1 = tr(|S + T |)
= tr(U∗(S + T ))

= tr(U∗S) + tr(U∗T )

≤ ‖U∗‖tr(|S|) + ‖U∗‖tr(|T |)
= ‖S‖1 + ‖T‖1.

Next is the Banach algebra norm-estimate. Let V be the partial isometry from the
polar decomposition of ST . Then

‖ST‖1 = tr(V ∗ST )

≤ ‖V ∗S‖tr(|T |)
≤ ‖|S|‖tr(|T |)
≤ ‖S‖1‖T‖1.

Finally, we need to show B1(H) is complete. So let Tm be a Cauchy sequence with
respect to ‖·‖1. Then ‖Tn − Tm‖ ≤ ‖Tn − Tm‖1, so the Tm converge in norm to some
T , which is therefore compact. We now would like to say something about ‖T − Tn‖1,
but we do not know if this exists. Therefore, let P be a finite rank projection. Since
tr(·) is continuous we have

tr(P |T − Tn|) = lim
m
tr(P |Tm − Tn|)

≤ lim
m

sup ‖P‖‖Tm − Tn‖1

≤ lim
m

sup ‖Tn − Tm‖1.

Since this holds for any finite rank projection P , we find

‖T − Tn‖1 ≤ lim
m

sup ‖Tn − Tm‖1 → 0.

So T ∈ B1(H), which is therefore a Banach algebra.

Now we are finally ready to show that B(H) has a predual. Given all the work we
have done so far, it will come as no surprise that this predual is precisely the space
B1(H) of trace-class operators.

Proposition 2.29. There is an isometric isomorphism between B(H) and B1(H)∗.

Proof. Given S ∈ B(H), we define ψS ∈ B1(H)∗ as ψS(T ) = tr(TS). The map S 7→ ψS
is isometric. Indeed, we have

‖ψS‖ = sup{|tr(ST )| | T ∈ B1(H), ‖T‖1 ≤ 1}
≤ sup{‖S‖‖T‖1 | T ∈ B1(H), ‖T‖1 ≤ 1}
= ‖S‖.
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While we also have, since the projections Ph (projecting on h ∈ H) are trace class,

‖ψS‖ = sup{|tr(ST )| | T ∈ B1(H), ‖T‖1 ≤ 1}
≥ sup{|tr(SPh)| | ‖h‖ ≤ 1}
= sup{|〈h, Sh〉| | ‖h‖ ≤ 1}
= ‖S‖.

The map S 7→ ψS is also injective, since if ψS = ψS̃, then again, using the projections
Ph, we have 〈h, Sh〉 = 〈h, S̃h〉 for all h ∈ H, so S = S̃.
To show this map is also surjective, let ψ ∈ B1(H)∗. We need to find an operator
S ∈ B(H) such that ψ = ψS. Now, any ψ ∈ B1(H)∗ gives rise to a sesquilinear
form Bψ via Bψ(x, y) = ψ(|y 〉〈x|), for x, y ∈ H. There is also an isometric bijective
correspondence between sesquilinear forms B on H and elements SB in B(H), given by
〈x, SBy〉 = B(x, y). So, from ψ, we can form the element SBψ ∈ B(H). We then find
that

ψSBψ (T ) = tr(SBψT )

=
∑
i

〈ei, SBψTei〉

=
∑
i

〈ei, SBψ

(∑
j,k

λj,k|ej 〉〈 ek|

)
ei〉

=
∑
j,k

λj,k〈ek, SBψej〉

=
∑
j,k

λj,kψ(|ej 〉〈 ek|)

= ψ(T ).

2.3 Predual of a von Neumann algebra

Now that we know that B(H) has a predual, we are going to show that each von
Neumann algebra has a unique predual. In other words, we will show that every von
Neumann algebra is a W ∗-algebra. Since the case B(H) is already known, we will,
when convenient, assume that the von Neumann algebras below are proper subalgebras
of B(H).
The relation B1(H)∗ ∼= B(H) allows us to define the concept of annihilators. Given a
subset A ⊂ B(H), we define a subset A⊥ ⊂ B1(H) as

A⊥ = {T ∈ B1(H) | tr(Ta) = 0 ∀a ∈ A}.

Likewise, given a subset B ⊂ B1(H) we define a subset B⊥ ⊂ B(H) as

B⊥ = {x ∈ B(H) | tr(xb) = 0 ∀b ∈ B}.

These spaces are called the annihilator of A, B, respectively. We are interested in the
setting where A ⊂ B(H) is a von Neumann algebra and B = A⊥ ⊂ B1(H). So from
now on we assume this (even though it is not necessary for all of the arguments).
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Lemma 2.30. A⊥ is norm-closed in B1(H) with respect to the norm ‖·‖1.

Proof. Let Tn be Cauchy in A⊥. Then, as a subset of the compact operators, we have
Tn → T for some compact T . We now calculate, for a ∈ A

|tr(Ta)| = |tr(Ta− Tna+ Tna)|
= |tr((T − Tn)a) + 0|
≤ ‖a‖tr(|T − Tn|)→ 0.

Corollary 2.31. B1(H)/A⊥ is again a Banach space.

Lemma 2.32. Let A be a von Neumann algebra. Then A = (A⊥)⊥ (which we just
denote by A⊥⊥).

Proof. First of all, it is clear that A ⊂ (A⊥)⊥. Now let a /∈ A. Since A is σ-weakly
closed, its complement B(H)\A is σ-weakly open. Therefore, by the definition of the
σ-weak topology, we can find φ ∈ B1(H) and ε > 0 such that

{b ∈ B(H) | |φ(a)− φ(b)| < ε} ⊂ B(H)−A.

This means that if b ∈ A, then |φ(a) − φ(b)| ≥ ε. What’s more, since A is a linear
space, |φ(a) − λφ(b)| ≥ ε for each λ ∈ C. This is, of course, only possible if φ(b) = 0,
which shows that φ ∈ A⊥. It also shows that |φ(a)| ≥ ε, so that a /∈ A⊥⊥.

In what follows, if A,B are Banach algebras and f : A → B is a bounded linear
map of Banach spaces, we denote by f ∗ the Banach space adjoint map f ∗ : B∗ → A∗

such that
< x, f ∗φ >=< fx, φ >,

where x ∈ A, φ ∈ B∗ and < ·, · > is the pairing between a Banach space and its dual.
We shall often just write φ(b) =< b, φ > to denote such a pairing, so that the equation
for the Banach space adjoint map becomes

f ∗φ(x) = φ(fx).

Lemma 2.33. For A ⊂ B(H) a von Neumann algebra, let Q denote the canonical
quotient map

Q : B1(H)→ B1(H)/A⊥.
Then we may identify Q∗ with the inclusion map of A into B(H).

Proof. Let φ ∈ (B1(H)/A⊥)∗, then for any T ∈ A⊥ we have

Q∗ψ(T ) = ψ(QT ) = 0.

Therefore, Q∗ψ ∈ A⊥⊥ = A. Now Q is a quotient map and hence it maps the open
unit ball of B1(H) onto the open unit ball of B1(H)/A⊥. Therefore, we find that Q∗ is
isometric (and hence also injective), since

‖Q∗ψ‖ = sup{|Q∗ψ(S)||S ∈ B1(H), ‖S‖1 < 1}
= sup{|ψ(QS)||S ∈ B1(H), ‖S‖1 < 1}
= ‖ψ‖.
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Furthermore, a ∈ A⊥⊥ = A gives rise to a map φa ∈ (B1(H)/A⊥)∗ given by

φa([T ]) = tr(Ta),

where [T ] is the class of T in B1(H)/A⊥. This map is easily seen to be well defined.
Furthermore, it satisfies

< T, a >= tr(Ta) = φa(QT ) =< QT, φa >,

for T ∈ B1(H). From this which we conclude that a = Q∗ψa, so Q∗ is surjective.

The above proposition states that we can identify the Banach adjoint map

Q∗ : (B1(H)/A⊥)∗ → B1(H)∗ = B(H)

with the inclusion map A ↪→ B(H). From this we arrive at our desired conclusion:

Proposition 2.34. Every von Neumann algebra A in B(H) has a predual A∗, which
is given by

A∗ = B1(H)/A⊥.

Thus the predual of A is denoted by A∗, so that A ∼= (A∗)∗ = A∗∗. Under the
identification of a class of trace class operators [T ] in B1(H)/A⊥ and the corresponding
linear functional tr(T ·), A∗ is a subspace of the Banach dual space A∗ of A. In fact,
we now show that A∗ ⊂ A∗ consists precisely of the ultraweakly continuous linear
functionals on A.

Proposition 2.35. Let A be a von Neumann algebra with predual A∗ ⊂ A∗ equipped
with the associated ultraweak topology. This is the topology defined by ai → a if φ(ai)→
φ(a) for all φ ∈ A∗. Then the dual of A (in this topology) is precisely A∗.

Proof. Of course, A∗ is contained in the dual of A with respect to the ultraweak to-
pology. Now let f be a linear functional, continuous with respect to the ultraweak
topology on A. Then there are φ1, . . . , φn ∈ A∗, such that

f(a) ≤
n∑
i=1

|φi(a)|,

for all a ∈ A (if this were not the case, then f would not be bounded, hence it could
not be continuous). In particular:⋂

i

ker(φi) ⊂ ker(f).

We can take the φi to be linearly independent, so there are elements ai ∈ A such that
φj(ai) = δi,j. Now let x ∈ A and define y = x −

∑
i φi(x)ai. Then φj(y) = 0 for all j,

so,

0 = f(y)

= f(x)−
∑
i

φi(x)f(ai).

So f is a linear combination of the φi and f ∈ A∗.
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In particular, we never used the explicit form of the predual we have found for a
von Neumann algebra. This means that any predual is isomorphic to the space of all
ultraweakly continuous linear functionals on A. In particular:

Proposition 2.36. The predual of a von Neumann algebra is unique up to isomorphism.

So we can justly speak of the predual, instead of just a predual.

2.4 Equivalence of von Neumann algebras and W ∗-algebras

We have now seen that every von Neumann algebra is in fact a W ∗-algebra. To see
the converse, i.e., that every W ∗ algebra is a von Neumann algebra, we need to find,
given a W ∗ algebra A, some Hilbert space H such that A acts on this space as a von
Neumann algebra. So we need to find a representation π : A → B(H) that is faithful
and such that π(A) is a von Neumann algebra. Any such representation will do, the
point is that we need to make sure such a representation does indeed always exist. We
will now give a sketch of this and refer to [6], [11] for more details.

Definition 2.37. Let A be a unital C∗-algebra. A linear functional on φ : A → C on
A is called

• positive if φ(a∗a) ≥ 0 for all a ∈ A,

• normalized if φ(1) = 1,

• a state it it is both positive and normalized,

• faithful if φ(a∗a) = 0 implies a = 0,

• normal if for any bounded increasing net op positive operators ai, we have φ(supiai) =
supiφ(ai),

• completely additive if for any orthogonal family of projections pi we have φ(
∑

i pi) =∑
i φ(pi).

It turns out that for a von Neumann algebra, the concepts of being normal and
being completely additive coincide, and in fact are both equivalent to being ultraweakly
continuous. Any state which satisfies any (and hence all) of these conditions will be
referred to as a normal state.
A state in A∗ can be used to construct a cyclic representation of A via the so-called
GNS-construction as follows.
Let φ be a non-zero state in A∗ and let φ⊥ be the subspace of A given by

φ⊥ = {a ∈ A | φ(a∗a) = 0}.

Then A/φ⊥ is a pre-Hilbert space under the inner product defined by

〈[x], [y]〉 = φ(x∗y).

Then A acts on this pre-Hilbert space by left multiplication, i.e., a[x] = [ax], where of
course [·] denotes the class of a given element. Now we can complete this pre-Hilbert
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space in the norm given by this inner product. We have then obtained a representation
of A which we denote {πφ, Hφ}.
This representation always has a cyclic vector, i.e., a vector Ω such that πφ(A)Ω is
dense in Hφ. With respect to this vector we have

φ(a) = 〈Ω, πφ(a)Ω〉.

The existence of such an Ω is easy if A is unital (which is the case since A is a von
Neumann algebra), since we can just take Ω to be the class of the unit. For a general
C∗-algebra, we can take any linear functional to perform this construction and Ω will
be the class of an approximate unit.

For 0 6= a ∈ A, since A is the dual space of its predual, there exists a φa ∈ A∗
such that φa(a) 6= 0. In fact, we can always take φa to be a state. Taking the direct
sum of all the representations {πφa , Hφa} corresponding to such φa gives a represent-
ation {π,H}, in which A acts faithfully by construction. Likewise we could take the
direct sum of all representations derived from all states.
The final thing we need to know is that A acts as a von Neumann algebra. This is the
case if π is normal, which in turn is the case if each πφ is normal. So this amounts to
the question whether πφ is normal if φ is normal. Indeed, if piφ is normal, it preserves
all ultraweak limits, so the resulting space is ultraweakly closed and therefore a von
Neumann algebra by the double commutant theorem.

Lemma 2.38. A map π : A → B of W ∗-algebras is normal if and only if its dual
π∗ : B∗ → A∗ maps B∗ into A∗.

Proof. If we denote a limit in the ultraweak topology by σ-lim, then for any φ ∈ B∗ we
have

φ(σ- lim
i
π(ai)) = σ- lim

i
φ(π(ai))

= σ- lim
i
π∗(φ)(ai)

= π∗(φ)(σ- lim
i
ai)

= φ(π(σ- lim
i
ai)).

So π(σ- limi ai) = σ- limi π(ai). Reading the calculation in another order proves the
converse.

Proposition 2.39. The cyclic representation πφ associated to a normal state φ is
normal.

Proof. Let φ be a normal state on A and let πφ be the corresponding cyclic represent-
ation. Let ρf,g be the functional on πφ(A)′′ defined by ρf,g(a) = 〈f, πφ(a)g〉, for f, g
in Hφ. Then, since we can approximate any vector by πφ(an)Ω for certain elements
an ∈ A, we have for the Banach space dual π∗φ and for x ∈ A, that

π∗φ(ρf,g)(x) = ρf,g(πφ(x))

= 〈f, πφ(x)g〉
= lim

n
〈πφ(an)Ω, πφ(x)πφ(bn)Ω〉

= lim
n
πφ(b∗n)φπφ(an)(x),
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where aφb is is the functional aφb(x) = φ(bxa), which is normal since multiplication is
ultra-weakly continuous. So π∗φ maps normal states to normal states. That is to say, it
maps the predual of πφ(A)′′ into the predual of A. From this and the previous lemma
we conclude that πφ is normal.

We conclude that indeed every von Neumann algebra is a W ∗-algebra, and vice
versa. From a categorical point of view we even have the following:

Proposition 2.40. The category of von Neumann algebras and the category of W ∗-
algebras are equivalent.

Proof. Let us explicitly distinguish the category of von Neumann algebras vNA, and
the category of W ∗-algebras W∗. We can then define two functors:

U : vNA→W∗,M⊂ B(H) 7→ M,

forgetting the concrete Hilbert space representation, and

R : W∗ → vNA, N 7→ N ⊂ B(⊕φHφ),

representing N on the universal representation. Then U ◦ R = idW∗ , while for R ◦ U
we have, if f :M⊂ B(H)→ N ⊂ B(K),

M⊂ B(H)

f

��

RUM //M⊂ B(⊕φHφ)

f

��
N ⊂ B(K)

RUN
// N ⊂ B(⊕ξHξ)

Per construction, the Hilbert space structure on the right side of the diagram is precisely
the algebraic structure on the left side of the diagram. Therefore the maps RUM and
RUN are just the identity on M and N , respectively, so that the diagram commutes.
This shows that vNA and W∗ are equivalent categories.

Because of this, we will often interchange (and have interchanged) the terms W ∗-
algebra and von Neumann algebra.

32



3 The Category of von Neumann Algebras

We now study the category W∗ of von Neumann algebras, where the objects are von
Neumann algebras and the morphisms are unital normal ∗-homomorphisms. We now
try to construct most of the basic categorical constructions known for sets in W∗.

3.1 Products

Before looking at products we are going to see if W∗ has a terminal object.

Proposition 3.1. W∗ has a terminal object.

Proof. A little thought shows that the only possibility is the von Neumann algebra 0
acting on B(0). Then for any von Neumann algebra M we have the map 0 :M→ 0,
m 7→ 0, which is obviously unique.

When we look at the dual category, we find (since 0 is abelian) that it corresponds
to the set of non-zero homomorphisms from 0 to C, which is empty. This is precisely
what we expect, since the empty set is the initial object in the category of compact
Hausdorff spaces.
One might be inclined to think that 0 is also initial via the map 0 7→ 0 ∈ M, but
since 0 is also the unit (0 · 0 = 0), it should also map to 1 ∈ M. Therefore the only
W ∗-morphism going from 0 is its identity.
Our next aim will be the construction of (small) products, but before we do so, we
should first say something about uncountable sums. Whenever I is an uncountable
index set, we want to give meaning to the expression

∑
i∈I ai, for ai ∈ C.

Definition 3.2. Let I be any (in particular an uncountable) set and {ai}i∈I non-
negative real numbers. Then their sum is∑

i∈I

ai := sup
S⊂I

∑
i∈S

ai,

where the supremum is taken over all finite sets S ⊂ I.

Lemma 3.3. This sum can only be finite if the number of non-zero elements is at most
countable.

Proof. The number of elements xi ≥ 1 should obviously be finite. Now for any n ≥ 1
the set {i ∈ I | 1

n+1
≤ xi <

1
n
} should also be finite for the sum to be finite. The union

of all these sets is exactly the set of all elements greater than zero and it is a countable
union of finite sets and therefore countable.

For arbitrary complex numbers ai, we have four sets of non-negative real numbers
consisting of the positive real parts, negative real parts, positive imaginary parts and
negative imaginary parts of the ai.

Definition 3.4. Let I be any set, and ai, i ∈ I complex numbers. If
∑

i |ai| converges
(in the sense of Definition 3.2), then

∑
i ai is defined as the sum of the four sums over

the above mentioned sets.



If
∑

i |ai| does not converge, the original sum has no meaning.

Proposition 3.5. The category W∗ has small products.

Proof. Let some family {Mα}α∈I of von Neumann algebras be given, together with
their respective preduals Mα∗, for some index set I. Define⊕

α

Mα =

{
m : I →

⋃
α

Mα

∣∣∣∣m(α) ∈Mα, sup
α
‖m(α)‖ <∞

}
,

and (⊕
α

Mα

)
∗

=

{
µ : I →

⋃
α

(Mα)∗

∣∣∣∣µ(α) ∈ (Mα)∗,
∑
α

‖µ(α)‖ <∞

}
.

Our claim is now that (
⊕

αMα)∗ is the predual of the von Neumann algebra
⊕

αMα.
First of all, we check that

⊕
αMα is a C∗-algebra.

Define a norm ‖m‖ = supα ‖m(α)‖ and pointwise multiplication, addition and involu-
tion. We then find

‖mn‖ = sup
α
‖m(α)n(α)‖ ≤ sup

α
‖m(α)‖‖n(α)‖ ≤ ‖m‖‖n‖,

and
‖m∗m‖ = sup

α
‖m(α)∗m(α)‖ = sup

α
‖m(α)‖2 = ‖m‖2.

Now let mi be a Cauchy sequence in
⊕

αMα. Then

sup
α
‖mi(α)−mj(α)‖ → 0

implies
‖mi(α)−mj(α)‖ → 0

for every α. Since everyMα is complete, each such Cauchy sequence has a limit, which
we denote by m(α). This defines an element m ∈

⊕
αMα. Now for any ε > 0 we can

find an i ∈ I such that ‖m(α)‖ ≤ ‖mi(α)‖ + ε. Therefore ‖m‖ < ∞ and
⊕

αMα is a
C∗-algebra.
Because of the calculation

m(µ) =
∑
α

m(α)
(
µ(α)

)
≤ sup

α
‖m(α)‖

∑
α

‖µ(α)‖ <∞,

we find ⊕
α

Mα ⊂ (
⊕
α

Mα)∗
∗.

Now let φ ∈ (
⊕

αMα)∗
∗. For a µ ∈ (

⊕
αMα)∗, we know by the previous lemma that

there are at most a countable number of α such that µ(α) 6= 0. We write φ(µ) =∑
µ(α)6=0 φ(µα) where µα(β) = 0 if α 6= β and µα(α) = µ(α). So µα can be identified

with µ(α) ∈ (Mα)∗. Under this identification φ decomposes as a direct sum of elements
in (Mα)∗

∗ =Mα. So indeed ⊕
α

Mα = (
⊕
α

Mα)∗
∗.
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The projections are the obvious ones

pα :
⊕

α Mα →Mα,

m 7→ m(α).

To see they are w∗-continuous, suppose mi
w∗−→ m, so that φ(mi)→ φ(m) for all φ in the

predual. We want to show Pα(wi)
w∗−→ Pα(w). That is to say, wi(α)

w∗−→ w(α). This is
easily seen by using the elements µα as before. The final thing to show is that

⊕
αMα

indeed satisfies the categorical property of a product. So let W be a W ∗-algebra and
qα :W →Mα a set of morphisms. We define Q :W →

⊕
αMα as Q(w) = mw, where

mw(α) = qα(w). Then we certainly have pαQ = qα, and this property fixes Q, so it is

unique. If wi
w∗−→ w, we have

fwi(µ) =
∑
α

fwi(α)(µ(α))→
∑
α

fw(α)(µ(α)) = fw(µ).

Finally, since Q is obviously unital, it is indeed a W ∗-morphism.

If each Mα acts on some Hilbert space Hα, α ∈ I, there is another way to see that
the direct sum of these von Neumann algebras is again a von Neumann algebra. To
this end we form the direct sum Hilbert space

⊕
α

Hα =

{
(ψi)i∈I

∣∣∣∣ψi ∈ Hi,
∑
i

‖ψi‖2 <∞

}
,

with componentwise addition, scalar multiplication and inner product. Now
⊕

αMα

acts on this Hilbert space via m((ψi)i∈I) = (m(i)(ψi))i∈I . Then
⊕

αMα is a (unital)
subset of B(

⊕
αHα). Let X be a operator in the strong closure of

⊕
αMα. Let Pi be

the projection of
⊕

αHα onto Hi, so Pi : I →
⋃
αMα, Pi(α) = 1 if α = i and Pi(α) = 0

otherwise. We see that for each i ∈ I, Pi is in the center of
⊕

αMα. By the double
commutant theorem, X then commutes with Pi for all i. Now let Xi be some sequence
in
⊕

αMα converging strongly to X. Then we find

‖(XiPj −XPj)ψ‖ = ‖(Xi −X)Pjψ‖ → 0,

so XPj is also an element of the strong closure of
⊕

αMα. But XPj is just the restric-
tion Xj of X to Hj, so since Mj is strongly closed, we conclude that Xj is in Mj for
all j. So X is in

⊕
αMα, which is therefore strongly closed and hence a von Neumann

algebra.

3.2 Coproducts

First of all, we note that the von Neumann algebra C is initial in W∗, since the only
∗-homomorphisms from C to a general von Neumann algebra can be the map z 7→ z1.1

1We exclude the empty set as being a von Neumann algebra.
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Another way to see this is to note that C, as an von Neumann algebra, is dually equival-
ent to a compact Hausdorff space consisting of one point, which is final in the category
of compact Hausdorff spaces with continuous functions.

To construct the coproduct of a family of von Neumann algebras, we will look at
its universal property. Therefore, let (Mα)α∈I be such a family and let (ρα)α∈I be a
family of morphisms ρα : Mα → R into some von Neumann algebra R. Then there
exists a von Neumann algebra N ⊂ R such that N is generated by the images of the
ρα. If nowM is a coproduct, N should, in some sense, be part ofM. This will be the
way we construct the coproduct, but before we do that, we need to be sure thatM will
not have “too many parts”. The following lemma will be the key argument for this.

Lemma 3.6. A von Neumann algebra M generated by κ many elements, for some
cardinal number κ, has a faithful representation on a Hilbert space of dimension at
most 2ℵ0κ.

Proof. Let M be a von Neumann algebra generated by κ elements. This is the smal-
lest von Neumann algebra containing all finite products of these generators and their
adjoints, in other words, it is the σ-weak closure of all words over these generators
and their adjoints. This set of words has cardinality ℵ0κ. Now any normal state
M → C is precisely determined by its action on these words. So there are at most
|C|ℵ0κ = 2ℵ0·ℵ0κ = 2ℵ0κ normal states. The Hilbert space associated with the GNS
representation of such a normal state is the closed linear span of the ℵ0κ words and
therefore has dimension at most ℵ0κ. If we now take the direct sum of all these normal
GNS representations, we find a faithful representation on a Hilbert space of dimension
at most ℵ0κ · 2ℵ0κ = 2ℵ0κ

Theorem 3.7. W∗ has all small coproducts.

Proof. Let (Mα)α∈I again be a family of W ∗-algebras. If iα :Mα → N is a cocone, we
call it generating if N is generated by the images of the iα. By the above lemma, each
such generating cocone N can be represented faithfully on a Hilbert space of dimension
at most λ = 2ℵ0

∑
κα , where κα is the cardinality of the generators ofMα. Since Hilbert

spaces of the same dimension are isomorphic, we may restrict our attention to those
cocones for which the codomain is represented on a fixed Hilbert space H of dimension
no greater than λ. There is a set of algebras Mα and for each Mα we have a set
Hom(Mα, B(H)) of morphisms. Therefore, there is a set of generating cocones. We
call this set S and write s = {isα :Mα → Ns} for such a generating cocone.
Now consider the morphisms jα : Mα →

⊕
s∈SNs defined by jα(m) = ⊕s∈Sisα(m) for

m ∈ Mα. Finally we define M to be the W ∗-algebra generated by the images of the
jα in

⊕
s∈SNs. We now show that this is indeed a coproduct for the Mα.

Let {ρα}α∈I be any family of morphisms ρα : Mα → R for some W ∗-algebra R. As
mentioned before, R contains a subalgebra N generated by the images of the ρα. These
morphisms ρα, together with N , form a generating cocone for theMα. Therefore, there
is an s ∈ S such that s = {ρα}. Let πs be the projection of

⊕
t∈SNt onto Ns = N .

Then we see that πsjα = isα = ρα.
Now suppose there is a π :M→R such that πjα = ρα, then of course π coincides with
πs on the images of the jα. Since these images generate M and π is a W ∗-morphism,
π must equal πs.
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Before we go on, we note that the coproduct of two commutative von Neumann
algebras is in general not commutative any more. For this we shall look at C2 ∗ C2

(C2 being the functions on a two-point set). Now C2 is generated by a single element,
which we can take to be (1, 2). So any map f : C2 →M is determined if we know the
image of (1, 2). Since our morphisms are unital, the image of (1, 1) is already fixed and
so the map only depends on the image of (0, 1), which is a projection, so the image has
to be a projection as well.
By construction of the coproduct, we take a direct sum over “all” images of morphisms
from C2, so in particular it contains a subalgebra of, for example, the 2 × 2 matrices,
generated by two noncommuting projections.

3.3 Limits and Colimits

Now we can look at general limits (colimits). Since W ∗ has all products (coproducts),
by Proposition 1.20 (and its dual statement), it suffices to construct equalizers (co-
equalizers).

Proposition 3.8. W∗ has equalizers.

Proof. Let f, g : M → N be given. Define E = {m ∈ M | f(m) = g(m)} and let
i be the inclusion of E in M. By construction, we have fi = gi. If Z is any von
Neumann algebra with a morphism h such that fh = gh, then h(z) ∈ E for any z ∈ Z
and ih = h, as it should. Since E contains the unit of M, i is unital, and since i is an
inclusion map, h : Z → E is unique. Finally, we need to show E is a von Neumann

algebra. Indeed, let ei
w∗−→ e, with all ei ∈ E. Then, since f and g are W ∗-morhisms,

they preserve ultraweak limits, so

f(e) = σ- lim
i
f(ei) = σ- lim

i
g(ei) = g(e).

Proposition 3.9. W∗ has coequalizers.

Proof. Let f, g :M→N be given. We can look at the set {f(m)− g(m) | m ∈M} ⊂
N . Let I be the ideal generated by this set. We define q : N → Q = N /I as the
quotient map to the quotient algebra. Now by construction we have qf = qg.
If h : N → Z is any morphism such that hf = hg, then let q̄ : Q → Z be the map
q̄ : q([n]) 7→ h(n), where [n] is the class of n in Q. This map is well defined since Q is
the quotient algebra. Furthermore, since hf = hg, h must vanish on I and therefore it
must take the same values on the quotient classes, showing that q̄ is unique.

We have thus proven:

Proposition 3.10. W∗ has all general limits and colimits.

However, W∗ is not (co)cartesian closed. Indeed:

Proposition 3.11. W∗ does not have all coexponentials.
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Proof. Suppose W∗ would have all coexponentials. Then the opposite category ◦W∗,
would be cartesian closed, meaning that

Hom(A⊕B,C) ∼= Hom(A,CB).

So in W∗ we would have

Hom(C,A ∗ B) ∼= Hom(CB,A)

and therefore taking the coproduct would be a right adjoint to forming the coexponent.
Now right adjoints preserve limits, so in particular we would have

(A⊕A) ∗ B ∼= (A ∗ B)⊕ (A ∗ B).

However, taking A = C and B = C2 would yield

C2 ∗ C2 ∼= C2 ⊕ C2,

because C is the initial object. But C2 ⊕ C2 is commutative and C2 ∗ C2 is not, as we
have seen in the previous section.

Similarly:

Proposition 3.12. W∗ does not have all exponentials.

Proof. As in the previous proof, we suppose that exponentials do exist. Then the
product would be a left adjoint to forming the exponent. Now left adjoints preserve
colimits, so we would have the relation

(A ∗B)⊕ C ∼= (A⊕ C) ∗ (B ⊕ C).

However, taking A = B = 0 we would have C ∼= C ∗ C for all von Neumann algebras
C, but this fails already for C = C2.

Our conclusion that W∗ has no exponentials comes as no surprise. The opposite of
W∗ should be a category which reminds us of Sets, but Set does not have coexponen-
tials. However, the fact that W∗ does not have coexponents is quite a surprise, by the
same reasoning. To remedy this situation, we introduce the spatial tensor product of
von Neumann algebras and show that, just like in Set the exponential is right adjoint
to the product, this tensor product has a left adjoint (remember that we work in a dual
setting here).

3.4 Spatial Tensor Product of von Neumann algebras

In this section we define the spatial tensor product of W ∗-algebras and see how this fits
into a more general categorical framework. To this end we first define a tensor product
for Hilbert spaces.
Let U, V and W be vector spaces over some field. It is well known that there exists a
vector space U ⊗ V and a bilinear map ι : U × V → U ⊗ V such that every bilinear
map f : U × V → W corresponds to a linear map f̄ : U ⊗ V → W via f = f̄ ι.
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U × V
ι
��

f //W

U ⊗ V
f̄

;;

This can be seen by taking U ⊗ V to be the free vector space over the set U × V
quotiented by the subspace generated by

{(u1 + u2, v)− (u1, v)− (u2, v), (u, v1 + v2)− (u, v1)− (u, v2),

(λu, v)− λ(u, v), (u, λv)− λ(u, v)},

where λ is from the field, and then letting ι(u, v) be the class of (u, v) in U ⊗ V which
will be denoted u⊗ v.

Definition 3.13. The space U⊗V is called the (algebraic) tensor product of the vector
spaces U and V . Elements of the form u⊗ v are called elementary tensors.

If τ : U → U ′ and ρ : V → V ′ are linear maps, then the map τ×ρ : U×V → U ′⊗V ′
given by (u, v) 7→ τ(u) ⊗ ρ(k) is bilinear. Therefore there exists a unique linear map
τ ⊗ ρ : U ⊗ V → U ′ ⊗ V ′ such that τ ⊗ ρ(u⊗ v) = τ(u)⊗ ρ(k).
If α : U → U ′ and β : V → V ′ are conjugate linear maps, then there still exists a unique
conjugate linear map α⊗ β : U ⊗ V → U ′ ⊗ V ′ such that α⊗ β(u⊗ v) = α(u)⊗ β(v).
To see this, note that u× v 7→ ᾱ(u)⊗ β̄(v) is linear, so there exists a unique linear map

ᾱ⊗ β̄ such that ᾱ⊗ β̄(u⊗ v) = ᾱ(u)⊗ β̄(v). We now set α⊗ β = ᾱ⊗ β̄.
Now let H,K be Hilbert Spaces with algebraic tensor product H ⊗K. We want to put
an inner product on this tensor product to make it a pre Hilbert space and such that
this inner product reflects the inner products on the original spaces. This last property
would translate to

〈h⊗ k, h′ ⊗ k′〉 = 〈h, h′〉〈k, k′〉,

for elementary tensors. It turns out that if we require this property, the inner product
is fixed.

Proposition 3.14. For Hilbert spaces H,K there exists a unique inner product on the
tensor product such that 〈h⊗ k, h′ ⊗ k′〉 = 〈h, h′〉〈k, k′〉.

Proof. For h ∈ H, the map τh : H → C, τh(h
′) = 〈h′, h〉 is conjugate linear, as is

the similarly defined map τk for k ∈ K. The map (h′, k′) 7→ τh(h
′)τk(k

′) is therefore
biconjugate linear, so we have seen there exists a unique conjugate linear map τh⊗ τk :
H ⊗K → C such that τh ⊗ τk(h′ ⊗ k′) = τh(h

′)τk(k
′).

LetX be the space of all conjugate linear functionals onH⊗K. The map (h, k) 7→ τh⊗τk
from H×K to X is bilinear. Therefore, there exists a unique linear map T : H⊗K → X
such that T (h⊗ k) = τh ⊗ τk.
Now 〈·, ·〉 : (H ⊗K)× (H ⊗K)→ C given by 〈z, z′〉 = T (z′)(z) is a sesquilinear form.
If z = h⊗ k, z′ = h′ ⊗ k′, we have

〈z, z′〉 = T (z′)(z) = τh′ ⊗ τk′(h⊗ k) = 〈h, h′〉〈k, k′〉.

Since any element of H ⊗ K is a sum over elementary tensors, and the maps T and
T (z) are linear and conjugate linear, respectively, this form is unique.
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We do, however, still have to show this form really is an inner product. So, let z =∑n
i=1 hi ⊗ ki and let {ei} be a basis for the linear span of the ki. Because of the

bilinearity of the tensor product, we can write z =
∑m

i=1 h̃i⊗ei for certain h̃i ∈ H. Now

〈z, z〉 =
m∑

i,j=1

〈h̃i ⊗ ei, h̃j ⊗ ej〉

=
m∑

i,j=1

〈h̃i, h̃j〉〈ei, ej〉

=
m∑
i=1

〈h̃i, h̃i〉

=
m∑
i=1

‖h̃i‖2 ≥ 0.

This also shows that if 〈z, z〉 = 0, then the h̃i are zero, and so z = 0.

The algebraic tensor product H ⊗K is now a pre-Hilbert space and so we can take
the completion to obtain a Hilbert space which we also denote by H ⊗K and refer to
as the Hilbert space tensor product.
The norm on elementary tensors is particularly easy:

‖h⊗ k‖ =
√
〈h⊗ k, h⊗ k〉 =

√
〈h, h〉〈k, k〉 = ‖h‖‖k‖.

If {ei | i ∈ I} is an orthonormal basis for H and {fj | j ∈ J} is an orthonormal basis
for K, for some index sets I, J , then {ei ⊗ fj | i ∈ I, j ∈ J} is an orthonormal basis
H ⊗K.
If x ∈ B(H), y ∈ B(K), we denote by x ⊗ y the (unique) operator on the algebraic
tensor product such that x⊗y(h⊗k) = x(h)⊗y(k). Since any z in the algebraic tensor
product can be written as

∑m
i=1 hi ⊗ ei with the ei ∈ K orthonormal we find

‖x⊗ 1K(
m∑
i=1

hi ⊗ ei)‖2 = ‖
m∑
i=1

x(hi)⊗ ei‖2

=
m∑
i=1

‖x(hi)‖2

≤ ‖x‖2

m∑
i=1

‖hi‖2

= ‖x‖2‖
m∑
i=1

hi ⊗ ei‖2.

So x⊗ 1 is bounded, in particular ‖x⊗ 1‖ ≤ ‖x‖, and likewise 1⊗ y is bounded, with
bound ‖y‖. Now

‖x⊗ y‖ = ‖(x⊗ 1)(1⊗ y)‖
≤ ‖x⊗ 1‖‖1⊗ y‖
≤ ‖x‖‖y‖,
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showing x⊗ y is bounded on the algebraic tensor product and therefore it extends to a
bounded operator on H ⊗K, also denoted x⊗ y.
For ε > 0 we can find unit vectors h ∈ H and k ∈ K such that ‖x(h)‖ > ‖x‖ − ε > 0
and ‖y(k)‖ > ‖y‖ − ε > 0. Then

‖x⊗ y(h⊗ k)‖ = ‖x(h)‖‖y(k)‖ > (‖x‖ − ε)(‖y‖ − ε).

Letting ε→ 0 we find
‖x⊗ y‖ ≥ ‖x‖‖y‖.

Therefore we conclude
‖x⊗ y‖ = ‖x‖‖y‖.

Definition 3.15. Let M⊂ B(H) and N ⊂ B(K) be von Neumann algebras. The von
Neumann algebra generated by elements of the from x ⊗ y ∈ B(H ⊗ K) is called the
spatial tensor product of M and N , denoted by M⊗N i.e., M⊗N = (M⊗N )′′.

3.5 Monoidal Structures

The above section has a categorical generalization; that of monoidal structures. Here
we introduce this subject and then show that W∗ indeed is a (symmetric) monoidal
category.

Let C and D be categories.

Definition 3.16. The product category C × D of C and D is the category which has

• pairs of objects (A,B), A ∈ C, B ∈ D as objects,

• pairs of morphims (f, g), f : A → C, g : B → D as morphims from (A,B) to
(C,D),

• composition defined as (f, g) ◦ (h, k) = (f ◦ h, g ◦ k) whenever f, h and g, k are
composable,

• The morphims 1(A,B) = (1A, 1B) as the identity of (A,B).

Definition 3.17. A bifunctor is a functor T which has a product category as its domain,
i.e., T : C × D → E, for some category E.
Let us spell out this definition. Given C ∈ C, D ∈ D, there is an object T (C,D) ∈
E. Given morphism (f : A → C) ∈ C, (g : B → D) ∈ D we obtain a morphism
T (f, g) : T (A,B)→ T (C,D) in E such that, if (h : C → E) ∈ C, (k : D → F ) ∈ D are
morphisms, we have T ((h, k) ◦ (f, g)) = T (h ◦ f, k ◦ g) = T (h, k) ◦ T (f, g).

In what follows, ⊗ shall be a bifunctor and we denote ⊗(A,B) as A ⊗ B, doing
the same for morphisms. The composition identity will then be (h ◦ f) ⊗ (k ◦ g) =
(h⊗ k) ◦ (f ⊗ g).

Definition 3.18. A monoidal category is a category C together with a bifunctor ⊗ :
C × C → C, an identity object I and three natural isomorphisms

• αA,B,C : (A⊗B)⊗ C
∼=−→ A⊗ (B ⊗ C),
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• λA : I ⊗ A
∼=−→ A and

• ρA : A⊗ I
∼=−→ A,

that satisfy the triangle identity

(A⊗ I)⊗B
αA,I,B //

ρA⊗1 ''

A⊗ (I ⊗B)

1⊗λBww
A⊗B

and the pentagon identity

((A⊗B)⊗ C)⊗D
αA,B,C⊗1

//

αA⊗B,C,D
��

(A⊗ (B ⊗ C))⊗D
αA,B⊗C,D // A⊗ ((B ⊗ C)⊗D)

1⊗αB,C,D
��

(A⊗B)⊗ (C ⊗D)
αA,B,C⊗D // A⊗ (B ⊗ (C ⊗D))

meaning that both diagrams commute.

If a category has products, it is automatically monoidal. We see this by taking

• the product to be the bifunctor in question,

• the terminal object as the identity object,

• the natural isomorphisms as the canonical ones.

The same is true if the category has coproducts, with the only difference that we then
take the initial object as the identity object.

Definition 3.19. Let C be a monoidal category. Suppose we have a natural isomorphism

with components βA,B : A⊗B
∼=−→ B ⊗ A such that

A⊗ (B ⊗ C)
βA,B⊗C// (B ⊗ C)⊗ A

αB,C,A

((
(A⊗B)⊗ C

αA,B,C
66

βA,B⊗1

((

B ⊗ (C ⊗ A)

(B ⊗ A)⊗ C
αB,A,C// B ⊗ (A⊗ C)

1⊗βA,C
66

and

(A⊗B)⊗ C
βA⊗B,C// C ⊗ (A⊗B)

α−1
C,A,B

((
A⊗ (B ⊗ C)

α−1
A,B,C

66

1⊗βB,C

((

(C ⊗ A)⊗B

A⊗ (C ⊗B)
α−1
A,C,B// (A⊗ C)⊗B

βA,C⊗1
66
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commute. Then C is called a braided monoidal category.

The first diagram says that

αβα = (1⊗ β)α(β ⊗ 1),

while the second gives the equality

α−1βα−1 = (β ⊗ 1)α−1(1⊗ β).

Since α and β are isomorphisms, we can take the inverse of this second equality to give

αβ−1α = (1⊗ β−1)α(β−1 ⊗ 1).

This is precisely the first equality, only with β−1 instead of β. This is because if we

go from A ⊗ B
βA,B−−−→ B ⊗ A we can go back with either βB,A, or with β−1

A,B and these
morphisms do not have to coincide.

Definition 3.20. Whenever βB,A◦βA,B = 1 for all A,B, that is to say βA,B = β−1
B,A, we

call the braided monoidal category symmetric and just speak of a symmetric monoidal
category.

Of course, we would now like to know if and how this works for the category W∗.
So let M⊂ B(H),N ⊂ B(K) and R ⊂ B(L) be von Neumann algebras.

Proposition 3.21. The category W∗ is monoidal.

Proof. We will just work out the checklist for a monoidal category.

• The bifunctor will be the spatial tensor product.

• The identity object will be C.

• The map αM,N ,R will be the linear extension of the map (m⊗n)⊗r 7→ m⊗(n⊗r),
for m ∈M, n ∈ N and r ∈ R.

• The maps λM and ρM wil be the linear extension of the maps m⊗ λ 7→ λm and
λ⊗m 7→ λm, respectively, for m ∈M, λ ∈ C.

It is obvious that the maps α, λ and ρ satisfy the right equations for W∗ to be a
monoidal category and that they are natural isomorphisms. The only part that might
require some explanation is the functoriality of the spatial tensor product.
So let −⊗− : W∗ ×W∗ →W∗ be as follows:

• For M,N von Neumann algebras, let M⊗N be the von Neumann algebra as in
definition 3.15.

• If f :M→A, g : N → B are morphisms, we obtain a morphism f⊗g :M⊗N →
A⊗B defined via the linear extension of f⊗g(m⊗n) = f(m)⊗g(n). Functorality
in both entries follows from the simple observation that (f ◦h)⊗g = (f⊗1)◦(h⊗g)
and f⊗(g ◦ k) = (f⊗g) ◦ (1⊗k), for h, k appropriate morphisms.
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It will come as no surprise that we are in fact dealing with a braided category and
that the braiding is even symmetric.

Proposition 3.22. The category W∗ is a symmetric monoidal category.

Proof. The braiding is of course given by the linear extension of the map βM,N : n⊗m 7→
m⊗n, which obviously satisfies the required equations and is a natural isomorphism. We
also directly see that βM,N ◦βN ,M = 1, which shows that the braiding is symmetric.

3.6 Exponentials in ◦W∗

We know that ◦W∗ is not Cartesian closed, since the category W∗ does not have all
coexponentials. As mentioned, we can, however, hope for ◦W∗ to be a closed monoidal
category with respect to another form of product. We will see this is indeed the case
with respect to the spatial tensor product ⊗. To this end we define a coexponent like
structure in W∗ and then show it is indeed in adjunction to the tensor product.

Lemma 3.23. Let M⊂ B(H) be a von Neumann algebra. Then M is generated by a
subset of cardinality bounded by dim(H).

Proof. If H is finite dimensional, M is isomorphic to a direct sum of matrix algebras,
for which the proposition is true. We show this first. Let ei,j be the n×n matrix which
has a 1 on entry (i, j) and zero everywhere else. These matrices satisfy ei,jek,l = δj,kei,l.
Now consider the n − 1 matrices ei,i+1, i = 1, . . . , n − 1. Then ei,i+1ei+1,i+2 = ei,i+2,
i = 1, . . . , n − 2, which has a 1 on the second off-diagonal entry. Continuing in this
fashion, we obtain all ei,j with j > i and taking adjoints, we also obtain all ei,j with
j < i. Finally, we obtain the diagonal via ei,i = ei,kek,i.
So now we focus on the case where dim(H) is infinite.
We can take a dense subset of H of cardinality dim(H) (consisting, for example, of
all elements of the form

∑n
i=1 qiei, where n ∈ N, qi ∈ Q and ei basis vectors). This

then gives a dense subset X in M∗ (with respect to the norm on this predual) via the
correspondence

h 7→ ωh with ωh(x) = 〈h, xh〉,

for x ∈ M. We now consider M1, the unit ball of M, with two topologies on it,
namely the weak-∗ topology and the topology induced by X, i.e., the coarsest (also
called weakest or smallest) topology on M1 such that all elements of X (seen as maps
M1 → C) are continuous. We denote the latter topology by τ . By the Banach-Alaoglu
theorem, M1 is compact in the weak-∗ topology. Also, the topology τ is Hausdorff,
since if we have two distinct elements m1,m2 ∈M, there is some element φ ∈M∗ such
that m1(φ) 6= m2(φ) (under the identification M = M∗

∗). Since X is dense, m1 and
m2 cannot be the same on each x ∈ X. Now let a = m1(x) 6= m2(x) = b. Then we
take open, disjoint sets A,B containing a, b respectively. By definition of τ , the sets
x−1(A), x−1(B) are open disjoint sets containing m1,m2 respectively.
Since the weak-∗ topology is such that it makes every element of M∗ continuous, it is
of course finer than τ (τ is coarser than the weak-∗ topology). The identity map from
(M1,weak-∗) to (M1, τ) is now a homeomorphism, since it is a continuous map from
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a compact Hausdorff space to a Hausdorff space. Therefore, the weak-∗ topology and
τ are the same.
A basis for the topology on C is given by open rectangles of the form (q1, r1)× (iq2, ir2)
with q1, q2, r1, r2 ∈ Q. Taking the pre-image of these sets with respect to all x ∈ X, we
find a basis of cardinality no more than ℵ0 · card(X) = card(X) = dim(H) for τ and
hence also for the weak-∗ topology. Taking an operator from each of these base sets,
we obtain a dense subset ofM1 with cardinality no greater than dim(H). Multiplying
every such element of this dense subset with Q we obtain a dense subset for M with
the same cardinality.

Once we know this, we can continue to the key lemma in the construction of the
coexponent like structure, but first we need some notation. For a Hilbert space H, and
a vector ψ ∈ H, let ψ̂ be the map ψ̂ : C → H given by ψ̂(λ) = λψ. This map is
obviously linear and determined by its value on 1. Its adjoint must satisfy

〈ψ̂(λ), φ〉 = 〈λ, ψ̂∗(φ)〉,

from which we find ψ̂∗(φ) = 〈ψ, φ〉.

Lemma 3.24. Let K,L be Hilbert spaces and N ⊂ B(K),M ⊂ B(L)⊗N von Neu-
mann algebras. Then there exists a smallest von Neumann algebra S ⊂ B(L) such
that M ⊂ S⊗N . Furthermore, if M has a faithful representation on a Hilbert space
H, then S has a faithful representation on a Hilbert space of dimension no more than
2ℵ0 dim(H) dim(K).

Proof. We have M⊂ B(L)⊗N ⊂ B(L)⊗B(K) ∼= B(L⊗K). By the previous lemma,
there is a generating subset M ⊂ M of cardinality no more than dim(L ⊗ K) =
dim(L) dim(K). Let {ei}i∈I be an orthonormal basis for K. First we take N = B(K).
For a generator m ∈M and basis vectors ea, eb, ec we have the following relation:

[(1⊗ ê∗a)m(1⊗ ê∗b)]⊗ (êcê
∗
c) = (1⊗ êcê∗a)m(1⊗ êbê∗c).

We show this now. Let k ∈ K, l ∈ L. Then

[(1⊗ ê∗a)m(1⊗ ê∗b)]⊗ (êcê
∗
c)(l ⊗ k) = [(1⊗ ê∗a)m(l ⊗ eb)]⊗ 〈ec, k〉ec,

while

(1⊗ êcê∗a)m(1⊗ êbê∗c)(l ⊗ k) = (1⊗ êcê∗a)m(l ⊗ 〈ec, k〉eb)
= (1⊗ êc)(1⊗ ê∗a)m(l ⊗ 〈ec, k〉eb)
= (1⊗ ê∗a)m(l ⊗ 〈ec, k〉eb)⊗ ec.

Therefore, if M ⊂ S̃⊗B(K) for some von Neumann algebra S̃ ⊂ B(L), then the
operators [(1⊗ ê∗a)m(1⊗ ê∗b)]⊗ (êcê

∗
c) = (1⊗ êcê∗a)m(1⊗ êbê∗c) are elements of S̃⊗B(K).

Taking the sum∑
c

[(1⊗ ê∗a)m(1⊗ ê∗b)]⊗ (êcê
∗
c) = [(1⊗ ê∗a)m(1⊗ ê∗b)]⊗ 1,

then shows that (1 ⊗ ê∗a)m(1 ⊗ ê∗b) ∈ S̃. So any von Neumann algebra S̃ such that
M ⊂ S̃⊗B(K) contains the elements (1 ⊗ ê∗a)m(1 ⊗ ê∗b). Now let S be the smallest
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von Neumann algebra generated by the elements (1 ⊗ ê∗a)m(1 ⊗ ê∗b). We claim that
M⊂ S⊗B(K). Indeed, for m ∈M ⊂M we have

m =
∑
a,b

(1⊗ êaê∗a)m(1⊗ êbê∗b)

=
∑
a,b

(1⊗ êa)(1⊗ ê∗a)m(1⊗ êb)(1⊗ ê∗b)

=
∑
a,b

(1⊗ ê∗a)m(1⊗ êb)⊗ êaê∗b ,

and all the operators in this last sum are obviously elements of S⊗B(K).
Now we go back to the general case, whereN ⊂ B(K) is any von Neumann algebra. The
S we have found still is the smallest von Neumann algebra such that M ⊂ S⊗B(K),
but we also know that M ⊂ B(L)⊗N . Therefore, M ⊂ S⊗N and S is still minimal,
since for any S̃ such that M⊂ S̃⊗N we have M⊂ S̃⊗B(K).
The statement about a faithful representation of S now follows directly from Lemma
3.6 and from knowing the number of generators of S, which we know can be taken to
be dim(K)card(M) dim(K) = dim(H) dim(K).

Note that we explicitly found a set of generators of the von Neumann algebra S.

We now are finally ready to get to the heart of this section: the construction of ”coex-
ponentials” in W∗.

Proposition 3.25. Let M ⊂ B(H),N ⊂ B(K) be von Neumann algebras. There
exists a von Neumann algebra M∗N and a morphism ε : M → M∗N⊗N such that
for any von Neumann algebra R and morphism π : M → R⊗N there is a unique
ρ :M∗N → R such that

M∗N⊗N ρ⊗1 //R⊗N

M

ε

OO

π

88

commutes, i.e., π = (ρ⊗1)ε.

Proof. Let κ = 2ℵ0 dim(H) dim(K). We consider all morphisms σ :M→ B(l2(κ))⊗N . For
each such morphism there is, by the previous lemma, a smallest von Neumann algebra
Sσ such that σ(M) ⊂ Sσ⊗N .
We now define ε :M→

⊕
σ(Sσ⊗N ) = (

⊕
σ Sσ)⊗N as ε(m) = ⊕σσ(m). Now letM∗N

be the smallest von Neumann algebra in
⊕

σ Sσ such that ε(M) ⊂M∗N⊗N . We claim
this satisfies the properties given in the proposition.
So let R be any von Neumann algebra and let π : M → R⊗N be any morphism.
Again by the previous lemma, there is a minimal von Neumann algebra S ⊂ R such
that π(M) ⊂ S⊗N . By construction of M∗N , this S is a summand of M∗N , so let ρ
be the projection onto this summand. Then, of course,

π = (ρ⊗1)ε :M→ S⊗N ⊂ R⊗N .
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The last thing to show is that this morphism ρ is unique with respect to this property.
So let ρ̃ : M∗N → R also satisfy π = (ρ̃⊗1)ε. We know that elements of the form
(1 ⊗ k̂∗1)ε(m)(1 ⊗ k̂2) generate M∗N for k1, k2 ∈ K and m ∈ M. So we take such an
element

(1⊗ k̂∗1)ε(m)(1⊗ k̂2) = (1⊗ k̂∗1)(⊕σσ(m))(1⊗ k̂2).

Now every σ(m) is an element of Sσ⊗N and therefore is of the form

σ(m) =
∑
i

sσ(m),i ⊗ nσ(m),i.

From this we find that the map (1⊗ k̂∗1)ε(m)(1⊗ k̂2) acts on a vector ψ in M∗N as

ψ 7→ ⊕σ
∑
i

〈k1, nσ(m),ik2〉 · sσ(m),iψ.

So, for a linear map f we find

f((1⊗ k̂∗1)ε(m)(1⊗ k̂2)) = (1⊗ k̂∗1)(f⊗1)(ε(m))(1⊗ k̂2).

In particular, we now have a chain of equalities

ρ((1⊗ k̂∗1)ε(m)(1⊗ k̂2)) = (1⊗ k̂∗1)(ρ⊗1)(ε(m))(1⊗ k̂2)

= (1⊗ k̂∗1)π(m)(1⊗ k̂2)

= (1⊗ k̂∗1)(ρ̃⊗1)(ε(m))(1⊗ k̂2)

= ρ̃((1⊗ k̂∗1)(ε(m))(1⊗ k̂2)),

showing that ρ is indeed unique.

Definition 3.26. The von Neumann algebra M∗N of Proposition 3.25, together with
the morphism ε : M → M∗N⊗N , is called the free exponential of M and N . By
Proposition 3.25, it is unique up to isomorphism.

Now for fixed N we have the map of objectsM 7→M∗N . We wish this map to be a
functor, so we need to define it on morphisms, too. Let f :M0 →M1 be a morphism
and consider the following (part of a) diagram, where ε0, ε1 are the maps defined in the
previous proposition:

M0
f //

ε0
��

M1

ε1
��

M∗N
0 ⊗N M∗N

1 ⊗N

Now the morphism ε1 ◦f is a mapM0 →M∗N
1 ⊗N , so by the universal property of the

free coexponent, there is a unique map f ∗N :M∗N
0 →M∗N

1 such that f ∗N⊗1 completes
the above diagram, i.e., (f ∗N⊗1) ◦ ε0 = ε1 ◦ f .
The fact that this is indeed a functor is now easy to prove. For the identity id :M→M
we find a morphism such that ε = ((id)∗N⊗1) ◦ ε. But the identity of M∗N also
accomplishes this, so by uniqueness they are equal.
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Given M0
f−→ M1

g−→ M2, with associated morphisms ε0, ε1, ε2, we find a morphism
(gf)∗N , such that

((gf)∗N⊗1)ε0 = ε2gf

= (g∗N⊗1)ε1f

= (g∗N⊗1)(f ∗N⊗1)ε0

= (g∗Nf ∗N⊗1)ε0.

So again by uniqueness, (gf)∗N = g∗Nf ∗N .
What we were looking for was an adjunction between a product like structure and an
exponential like structure in ◦W∗. This next theorem shows that we have indeed found
such an adjunction.

Theorem 3.27. Let N be any von Neumann algebra. The functor (−)∗N is left adjoint
to the functor −⊗N .

Proof. We recall the universal property of ε as in Proposition 3.25. For M and R von
Neumann algebras and π : M → R⊗N a morphism, there exists a unique morphism
ρ :M∗N → R such that

π = (ρ⊗1)ε.

Because of this, the function φM,R : Hom(M∗N ,R) → Hom(M,R⊗N ) given by
φM,R(ρ) = (ρ⊗1)ε is a bijection. Indeed, the existence part of the universal property of
ε shows surjectivity, whereas the uniqueness part shows injectivity. What remains is to
show that φ is natural in M and R. To this end, let f :M1 →M0 and g : R0 → R1

be morphisms. We have to show the following diagram commutes:

Hom(M0
∗N ,R0)

Hom(f∗N ,g)
��

φM0,R0 // Hom(M0,R0⊗N )

Hom(f,g⊗N )
��

Hom(M1
∗N ,R1)

φM1,R1 // Hom(M1,R1⊗N )

Starting with some morphism ρ and going via the top we have

ρ 7→ (ρ⊗1)ε0 7→ (g⊗1)(ρ⊗1)ε0f = (gρ⊗1)ε0f,

whilst going via the bottom we have

ρ 7→ gρf ∗N 7→ (gρf ∗N⊗1)ε1 = (gρ⊗1)(f ∗N⊗1)ε1,

and these are equal since (g∗N⊗1)ε1 = ε0g.

We can now obtain numerous of results by just using basic category theory. For
example, since the functor −⊗N is a right adjoint, it preserves limits. Likewise, since
the functor (−)∗N is a left adjoint, it preserves colimits. In particular, this applies to
the the product and coproduct, proving the following:

Proposition 3.28. Let Mα and N be a W ∗ algebras. then

(∗αMα)∗N ∼= ∗αM∗N
α ,

and
(
⊕
α

Mα)⊗N ∼=
⊕
α

Mα⊗N .
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Using the Yoneda lemma, we can make some more statements about the behavior
of the exponent with respect to other constructions.

Proposition 3.29. For A,B,M W ∗-algebras, we have

M∗(A⊕B) ∼=M∗A ∗M∗B.

Proof. As mentioned, we use use the Yoneda lemma. We then find

Hom(M∗(A⊕B),N ) ∼= Hom(M,N⊗(A⊕ B))
∼= Hom(M,N⊗A⊕N⊗B)
∼= Hom(M,N⊗A)× Hom(M,N⊗B)
∼= Hom(M∗A,N )× Hom(M∗B,N )
∼= Hom(M∗A ∗M∗B,N )).

Proposition 3.30. Let A,B and M be W ∗-algebras. Then we have

(M∗A)∗B ∼=M∗(B⊗A).

Proof.

Hom((M∗A)∗B,N ) ∼= Hom(M∗A,N⊗B)
∼= Hom(M,N⊗B⊗A)

∼= Hom(M∗(B⊗A),N ).

The exponential M∗N also gives rise to the assignment N 7→ M∗N . We will show
that this also defines a functorM∗−, so we need to show how this works on morphisms.
Let f : A → B. Then we have

M
εM,A//

=

��

M∗A⊗A 1⊗f //M∗A⊗B

M
εM,B//M∗B⊗B

!⊗1B

88

Here the arrow ! is the unique arrow M∗B → M∗A that follows from the universal
property of εM,B. We shall write ! =M∗f and this will be howM∗− acts on morphisms.
If M∗− is indeed a functor, we see from this that it is contravariant. We check the
composition property explicitly using the following diagram:

M
εM,A//

=

��

M∗A⊗A 1⊗f //M∗A⊗B 1⊗g //M∗A⊗C

M
εM,B//

=

��

M∗B⊗B

M∗f⊗1B

88

1⊗g //M∗B⊗C

M
εM,C//M∗C⊗C

M∗g⊗1C

88

M∗g◦f⊗1C

HH
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Following this diagram, we find this chain of equations:

(M∗g◦f⊗1) ◦ εM,C = (1⊗g)(1⊗f) ◦ εM,A

= (1⊗g)(M∗f⊗1) ◦ εM,B

= (M∗f⊗1)(1⊗g) ◦ εM,B

= (M∗f⊗1)(M∗g⊗1) ◦ εM,C.

By uniqueness we have M∗g◦f =M∗f ◦M∗g and preservation of the identity is easily
seen, so we indeed have a (contravariant) functor.
For contravariant functors, the notion of adjunction is slightly different from the notion
of adjunction for covariant functors. Two contravariant functors F : C � D : G between
categories C and D can be in left or right adjunction via HomD(FC,D) ∼= HomC(GD,C)
or HomD(D,FC) ∼= HomC(C,GD), respectively. We can see this, for example, via
the identification of a contravariant functor F : C → D with a covariant functor
◦F : Cop → D. Now we have HomD(◦FC,D) ∼= HomCop(C,

◦GD) ∼= HomC(
◦GD,C).

Proposition 3.31. The functor M∗− is its own adjoint on the left.

Proof. We just check

Hom(M∗N ,R) ∼= Hom(M,R⊗N )
∼= Hom(M,N⊗R)
∼= Hom(M∗R,N ).

Proposition 3.32. The functor M∗− sends all limits to corresponding colimits. That
is to say, if Ai is some diagram in W∗ and limiAi is its limit (we remove the morphisms
from the notation), then

M∗ limiAi ∼= co lim
i
M∗Ai .

Proof. Once again, we use the Yoneda lemma and find

Hom(M∗ limiAi ,R) ∼= Hom(M,R⊗ lim
i
Ai)

∼= Hom(M, lim
i
R⊗Ai)

∼= lim
i

Hom(M,R⊗Ai)
∼= lim

i
Hom(M∗Ai ,R)

∼= Hom(co lim
i
M∗Ai ,R).

So all limits are sent to corresponding colimits.

As an example, we have already found the isomorphism M∗A⊕B ∼= M∗A ∗M∗B in
Proposition 3.29.
We note here that if the adjunction would have been on the right, then all colimits
would have been sent to corresponding limits.
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Another special case is that of the terminal object 0, which is mapped to the initial
object, C, so we find

M∗0 ∼= C.

The universal property of ε in the special case of M = 0 tells us there is a unique
morphism ε0,N : 0 → 0∗N⊗N . Now the only morphism with domain 0 is its identity
function, so 0∗N⊗N = 0. If N 6= 0, this implies that 0∗N = 0. For N = 0, we have
already found the answer 0∗0 = C. Going to the opposite category and interpreting
◦M∗N as the functions from ◦N to ◦M, we indeed find 0∗0 to correspond with the set
of functions from ∅ to ∅. There is exactly one such function, so it is a singleton, which
corresponds to C in W∗. There are no morphisms from ∅ to any other object, so the
formula 0∗N = 0 makes sense in the same way. We also note the similarity with natural
numbers, where 0n = 0 for n 6= 0 and 00 = 1.

3.7 Conclusion

In conclusion, W∗ is a nicely behaved category which has products, coproducts, general
limits and colimits, but is not Cartesian closed. We have seen we can circumvent this
problem. The role of coproduct in the original definition of coexponential is replaced
by the spatial tensor product. To this end we can think of ◦M∗N⊗N as a Cartesian
product of the space of functions from ◦N to ◦M with ◦N . The map ◦εM,N is then
thought of as evaluation.
The fact that we think of ◦W∗ as a category resembling Set comes from the fact that
for any set X, we have the von Neumann algebra `∞(X) of bounded functions on X
equiped with the discrete topology.
Kornell then proceeds by looking at the category of von Neumann algebras with com-
pletely positive ∗-homomorphisms2 as morphisms. We do not follow approach, but
instead look to generalize the construction valid in W∗ to some other category of op-
erator algebras.

2A map ψ :M→ N is completely positive if all maps ψ ⊗ idMn :M⊗Mn → N⊗Mn are positive
for all n ∈ N, where Mn are the n× n matrices over C.
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4 AW ∗-algebras

In this section we define the notion of AW ∗-algebras, which historically were invented
by I. Kaplansky to be an algebraic generalization of von Neumann algebras. Our goal
is to construct the categorical constructions valid for von Neumann algebras. This will
first lead us to take a look at rings.

4.1 Rickart ∗-rings and Baer ∗-rings

Definition 4.1. Let A be a ring and let S ⊂ A be a non-empty subset of A. We define
the right annihilator3 of S as

R(S) = {x ∈ A | sx = 0∀s ∈ S}.

Similarly, we define the left annihilator of S as

L(S) = {x ∈ A | xs = 0∀s ∈ S}.

We now state some very simple, but important, properties of these annihilators.

Proposition 4.2. Let A be a ring and S ⊂ A a non-empty subset of A. Then the
following properties hold:

• R(S) is a right ideal in A. Likewise, L(S) is a left ideal in A.

• S ⊂ L(R(S)). Likewise, S ⊂ R(L(S)).

• If B ⊂ S then R(S) ⊂ R(B) and L(S) ⊂ L(B).

• L(S) = L(R(L(S))) and R(S) = R(L(R(S))).

Proof.

• If r ∈ R(S) and s ∈ S, then of course sra = 0 for all a ∈ A.

• For r ∈ R(S), we have sr = 0 for all s ∈ S so s ∈ L(R(S)).

• For r ∈ R(S) and b ∈ B we have br = 0 since b ∈ B ⊂ S.

• Combine the above two items.

Interesting things happen when the ring A has more structure, like an involution
to make it a ∗-ring, and/or a structure making it an algebra. If so, we can add the
following to our list of properties:

Proposition 4.3. Let A be a ring and S ⊂ A a non-empty subset of A.

• If A is also an algebra, then R(S) and L(S) are linear subspaces of A.

• If A is a ∗-ring, then L(S∗)∗ = R(S). Likewise, L(S) = R(S∗)∗.

3Note that these annihilators are different from those introduced in the first section.



Proof.

• It is clear that any multiple of an element in R(S) is still in R(S) and the same
applies to sums of elements in R(S).

• We calculate

L(S∗)∗ = {x∗ ∈ A | xs∗ = 0∀s ∈ S}
= {x ∈ A | (sx)∗ = 0∀s ∈ S}
= R(S).

Definition 4.4. A Rickart ∗-ring is a ∗-ring A such that the right annihilator of any
singleton is of the form eA with e a projection (e2 = e = e∗) in A, i.e.,

R({x}) = eA = {ea | a ∈ A}

is the right ideal generated by e.

Proposition 4.5. Let A be a Rickart ∗-ring and x ∈ A. Then the projection generating
R({x}) is unique. That is, if R({x}) = eA = fA with e, f projections, then e = f .

Proof. Suppose eA = fA, then e = ee ∈ eA = fA. Say e = fb. Then

fe = ffb = fb = e,

so e ≤ f . By the same argument, f ≤ e. Therefore f = e.

The condition that any right annihilator of a singleton is a right ideal generated by a
single projection implies that the left annihilators of singletons are left ideals generated
by a single projection, making the definition of a Rickart ∗-ring left-right symmetric.
Indeed,

L({x}) = R({x∗})∗ = (hA)∗ = Ah

where h is the projection generating the right annihilator of {x∗}.

Proposition 4.6. Every Rickart ∗-ring A has a unique unit element.

Proof. We look at R({0}). On the one hand this is of the form eA for a projection e.
On the other hand, we know it is the whole of A so, since e is a projection, e is a left
unit. Since we also have A = A∗ = (eA)∗ = Ae, we find that e is a unit. Now if 1 is
also a unit, we find e = e1 = 1.

Proposition 4.7. Let A be a Rickart ∗-ring. If x∗x = 0, then x = 0. In other words,
the involution is proper.

Proof. Suppose x∗x = 0. Then we know that

x ∈ R({x∗}) = hA,

for some projection h ∈ A. Therefore, hx = x (since h acts trivially on R({x∗}) = hA).
Taking adjoints we then find x∗ = x∗h. Since A has a unit we have that h ∈ R({x∗}),
so

0 = x∗h = x∗.

Now x = x∗∗ = 0∗ = 0.
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Proposition 4.8. In any ∗-ring with proper involution (in particular in a Rickart ∗-
ring) we have

xy = 0⇔ x∗xy = 0.

In particular, we find that
R({x}) = R({x∗x}).

Proof. Suppose x∗xy = 0. Then

0 = y∗x∗xy = (xy)∗xy,

so xy = 0. The other way around is trivial.

Proposition 4.9. Let A be a Rickart ∗-ring and x ∈ A. Then there exists a unique
projection e which satisfies the following two conditions:

xe = x,

xy = 0⇔ ey = 0.

Furthermore, if h is a projection such that xh = x, then e ≤ h.

Proof. Let e = 1−g, where g is the unique projection such that R({x}) = gA. We first
show that e satisfies the proper equations. Indeed, we obviously have

xe = x(1− g) = x.

Furthermore, suppose xy = 0, then y = ga for some a ∈ A. Therefore

ey = ega = 0.

Finally, suppose ey = 0, then, since x = xe, we have

xy = xey = 0.

Now suppose h is a projection such that x = xh. Then x(1 − h) = 0, so e(1 − h) = 0
and e = eh.
Finally, to show uniqueness, suppose that the above element h in addition satisfies

xy = 0⇔ hy = 0.

Then we find xe = x = xh, so that x(e−h) = 0. Therefore, h(e−h) = 0. We conclude
that he = h, so that e = h.

Of course, a similar argument shows that if f = 1 − q, where q is the unique
projection such that L({x}) = Aq, then f is the unique projection such that

• fx = x,

• yx = 0⇔ yf = 0,

• if h is a projection such that hx = x, then f ≤ h.
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We call e the right projection of x and call f the left projection of x, denoted e =
RP (x), f = LP (x).
From now on, we write R(x) instead of R({x}) to denote the annihilator of the subset
{x} ⊂ A.

An immediate consequence of Proposition 4.8 is that

RP (x∗x) = RP (x).

Corollary 4.10. Let A be a Rickart ∗-ring and x ∈ A. Then LP (x) = RP (x∗).

Proof. Let x ∈ A. Then since LP (x)x = x, we have x∗LP (x) = x∗. Therefore,
RP (x∗) ≤ LP (x). Since xRP (x) = x we have RP (x)x∗ = x∗. Therefore, LP (x∗) ≤
RP (x). Combining these results, we find

LP (x) ≥ RP (x∗) ≥ LP (x).

Theorem 4.11. Let A be a Rickart ∗-ring. Then the projections of A form a lattice.
Explicitly, we have:

p ∨ q = q +RP [p(1− q)],
p ∧ q = q − LP [q(1− p)].

Proof. Since p(1 − q)q = 0, we have RP [p(1 − q)]q = 0. Therefor, q + RP [p(1 − q)]
is indeed a projection. Of course, we have q ≤ q + RP [p(1 − q)]. To see that p ≤
q +RP [p(1− q)], we calculate

0 = p(1− q)RP [p(1− q)]− p(1− q)
= pRP [p(1− q)]− p(qRP [p(1− q)])− p+ pq

= pRP [p(1− q)]− p(RP [p(1− q)]q)∗ − p+ pq

= pRP [p(1− q)]− p+ pq

= p(q +RP [p(1− q)])− p.

Now suppose r is a projection such that p ≤ r and q ≤ r. Then we have p(1 − q)r =
p(1−q), from which it follows that RP [p(1−q)] ≤ r, but then also q+RP [p(1−q)] ≤ r.
We now claim that this implies that p ∧ q also exists. In fact, it equals

p ∧ q = 1− (1− p) ∨ (1− q).

For this, first note that if x ≤ y then (1 − y) ≤ (1 − x) for all projections x, y. We
introduce the notation p⊥ = 1− p for a projection p. Now of course

p⊥ ∨ q⊥ ≥ p⊥,

and
p⊥ ∨ q⊥ ≥ q⊥.

So indeed
(p⊥ ∨ q⊥)⊥ ≤ p,
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and
(p⊥ ∨ q⊥)⊥ ≤ q.

Now suppose x ≤ p, x ≤ q, then we need to show that x ≤ (p⊥ ∨ q⊥)⊥, or, which comes
to the same,

p⊥ ∨ q⊥ ≤ x⊥.

Since

p⊥(1− q⊥)x⊥ = p⊥x⊥ − p⊥q⊥x⊥

= p⊥ − p⊥q⊥

= p⊥(1− q⊥),

we find RP [p⊥(1− q⊥)] ≤ x⊥. We already have q⊥ ≤ x⊥, so we finally find

q⊥ +RP [p⊥(1− q⊥)] ≤ x⊥.

To get to our desired formula, we calculate

p ∧ q = (p⊥ ∨ q⊥)⊥

= 1− p⊥ ∨ q⊥

= 1− (q⊥ +RP [p⊥(1− q⊥)])

= q −RP [(1− p)q]
= q −RP [(q(1− p))∗]
= q − LP [q(1− p)].

If S1 and S2 are two subsets of a ring A, we can look at the right annihilator of their
union. It is clear that

R(S1 ∪ S2) = R(S1) ∩R(S2).

More generally,

R(
⋃
i

Si) =
⋂
i

R(Si),

for any family of subsets Si ⊂ A. Now if A is a Rickart ∗-ring and x, y ∈ A, we have

R(x) = pA and R(y) = qA,

for certain projections p and q. We then find

R({x, y}) = pA ∩ qA.

We claim
R({x, y}) = (p ∧ q)A.

Indeed, for a ∈ A, we have

(p ∧ q)a = p(p ∧ q)a
= q(p ∧ q)a,

56



so
(p ∧ q)A ⊂ pA ∩ qA.

The other way around, let x = pa = qa′ be an element of pA ∩ qA. Now

(p ∧ q)x = (q − LP [q(1− p)])x
= qqa′ − LP [q(1− p)]pa
= qa′

= x,

where we have used
q(1− p)p = 0⇔ LP [q(1− p)]p = 0.

So indeed,
x ∈ (p ∧ q)A.

More generally, we can do this for any finite number of elements. However, if we try
to do this for arbitrary subsets, there is of course no guarantee that such a generating
projection (which is the infimum of all generating projections of the right annihilators
of the singletons) still exists, since the lattice of projections need not be complete.

Definition 4.12. A Baer ∗-ring is a ∗-ring A such that for each non-empty subset
S ⊂ A, the right annihilator of S is generated as an right ideal by a projection, i.e.,
R(S) = qA for some projection q.

Suppose A is a Baer ∗-ring and S ⊂ A is some subset. Then

R(S) =
⋂
s∈S

R(S) =
⋂
s∈S

psA = qA,

where the ps are the right annihilating projections generating R(s) and q is a projection.
Then, for each s ∈ S there is a as ∈ A such that q = psas. It follows that

psq = pspsa = q,

so q ≤ ps for all s ∈ S. Now, if e is a projection such that q ≤ e ≤ ps for all s ∈ S, then

qa = eqa ∈ eA,

so qA ⊂ eA. Furthermore,
psxa = xa,

for any a ∈ A and s ∈ S, so

xA ⊂
⋂
s∈S

psA = qA.

We have found that
qA = eA,

so in particular e = qa for some a ∈ A and so qe = e. Also, q = ea′ for some a′ ∈ A,
therefore

eq = q = e.
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The conclusion is that q is the infimum of all right annihilators.
So suppose we have an arbitrary family of projections {pi}i in a Baer ∗-ring A. We let
S ⊂ A be the subset S = {1− pi}i. Then

R(S) =
⋂
i

piA = pA

where p exists by definition of a Baer ∗-ring. By what we have just seen, we have now
proven:

Proposition 4.13. In a Baer ∗-ring the infima of arbitrary families of projections exist,
i.e., the projection lattice is complete.

By the same reasoning as before we find that suprema of arbitrary families of pro-
jections also exits and are equal to

sup
i
pi = 1− inf{1− pi}.

We can now also easily prove the converse to Proposition 4.13

Proposition 4.14. If A is a Rickart ∗-ring in which the projection lattice is complete,
then A is a Baer ∗-ring.

Proof. Let S be an arbitrary subset in A. For every s ∈ S we have R(s) = psA for
some projection ps. Let p be the infimum of the ps, which exists by assumption. Then
as we have seen R(S) = pA.

Definition 4.15. A Baer ∗-ring that is also a C∗-algebra is called an AW ∗-algebra.

In particular, the projection lattice of an AW ∗-algebra is complete.

4.2 Commutative AW ∗-algebras

Whenever we deal with commutative C∗-algebras we know that, up to isomorphism,
every such algebra is of the form C(X) for some (locally) compact Hausdorff space X.
In the case of a von Neumann algebra, X is hyperstonean [11]. To be complete, let us
recall the definitions.

Definition 4.16. • A space X is called a Stone space if it is compact, Hausdorff
and totally disconnected in the sense that the empty set and the singletons (one
point sets) are the only connected subsets of X.

• A space X is called Stonean if it is Stone and the closure of any open set is open
(and therefore clopen).

• A measure µ on X is called normal if for any increasing bounded net of continuous
functions {fi}i on X with supremum f we have

µ(f) = sup
i
µfi.
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• A space X is called hyperstonean if it is Stonean and if for any nonzero positive
continuous function f on X there exists a positive normal measure µ with µ(f) >
0.

So a commutative AW ∗-algebra is certainly of the form C(X) for some compact
Hausdorff space X. However we may not expect X to be hyperstonean, since there
are AW ∗-algebras that are not von Neumann algebras. One might already guess where
this is heading: a commutative AW ∗-algebra is of the form C(X) where X is a Stonean
space.

Theorem 4.17. Let T be a compact Hausdorff space. Then C(T ) is an AW ∗-algebra
if and only if T is Stonean.

We note that if p is a projection in C(T ), then p∗ = p = p2 means that p is a
continuous function taking only the values 0 and 1. This means that every projection
is the characteristic function of a clopen set, and vice versa.

Proof. First we show that if T is Stonean, then C(T ) is an AW ∗-algebra.
We will show C(T ) to be a Rickart *-ring with a complete projection lattice (C(T ) is
obviously a C∗-algebra). So, let f ∈ C(T ) and U = {t ∈ T | f(t) 6= 0}. Let p be the
characteristic function of U . Since U is open, U is clopen and p is a projection such
that 1 − p is the right annihilator of f . By Proposition 4.13, it suffices to show the
projection lattice is complete. Let Ui be a family of clopen sets. We will show that
U =

⋃
i Ui is the supremum of this family. Of course every Ui ⊂ U . If V is clopen and

Ui ⊂ V for all i, then
⋃
i Ui ⊂ V and so U =

⋃
i Ui ⊂ V = V .

The other way around, suppose C(T ) is an AW ∗-algebra. Let U be open T , we need
to show U is open. We will use the fact that clopen sets in T are basic for the topology
on T . With that, we can find a family of clopen sets Ui such that

⋃
i Ui = U . Since

the projection lattice of C(T ) is complete, so is the lattice of clopen sets. Let V be the
supremum of the Ui in this lattice of clopen sets. Then every Ui ⊂ V and so U ⊂ V
and therefore U ⊂ V = V . We are done if U = V , since then U is (cl)open. So let
W = V − U and assume W 6= ∅. Then, using again the fact that the clopens form a
basis for the topology, there is a clopen set Q ⊂ W . Now Q∩Ui = ∅ for all i, so for each
i we have Ui ⊂ T − Q, but then also V ⊂ T − Q. However, we now have V ∩ Q = ∅,
while we assumed Q ⊂ W = V − U . So indeed, Q = ∅.

Lemma 4.18. If C(T ) is an AW ∗-algebra, then the clopen sets in T form a basis for
T .

Proof. Let x, y ∈ T be distinct points. Since T is Hausdorff, we can find U 3 x, V 3 y
open such that U ∩ V = ∅. Now let f, g be continuous functions on T such that f
satisfies f(x) 6= 0, f = 0 on T − U and g satisfies g(y) 6= 0, g = 0 on T − V . Now
RP (f) corresponds to a clopen set P such that x ∈ P and y /∈ P since RP (f)g = 0.
So we can separate points in T by clopen sets.
Now let U be a open set, and x ∈ U . For each y ∈ T − U , we can find clopen sets
separating x and y. Since T is compact and U is open, T − U is compact and so we
can find a finite number of clopen sets Vi such that T −U ⊂

⋃
i Vi. Now T −

⋃
i Vi is a

clopen set, containing x and contained in U .
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Lemma 4.19. Let A be an AW ∗-algebra and 0 6= x ∈ A, with x ≥ 0. Given ε > 0,
there exists an y ∈ {x}′′, y ≥ 0, such that

1. xy = e for some nonzero projection e,

2. ‖x− xe‖ < ε.

Proof. Since {x}′′ is a commutative AW ∗-algebra, it is of the form {x}′′ = C(T ) for
some Stonean space T . The spectrum of x in C(T ) is the same as its spectrum in A,
so as a function on T , x assumes only non-negative values.
If ε ≥ ‖x‖, part two of the theorem is trivial, so we assume 0 < ε < ‖x‖. Let

U = {t ∈ T | x(t) >
ε

2
}.

Then U = x−1(( ε
2
,∞)) is open, and since ‖x‖ ∈ U , it is also non-empty. Since T is

Stonean, the closure U of U , is clopen. Let e be the characteristic function of U , so
that e is a non-zero projection in C(T ). Since x(1− e) = 0 on U and x(1− e) ≤ ε

2
on

the complement of U , we have

x(1− e) ≤ ε

2
· 1T ,

and therefore ‖x− xe‖ < ε. Furthermore, since U is the intersection of all closed
subsets X of T such that U ⊂ X, and x−1([ ε

2
,∞]) is such a set, we have x(t) ≥ ε

2
on

U . Therefore we can define a function y on T via

y(t) =

{ 1
x(t)

if t ∈ U,
0 if t /∈ U.

Since U is clopen and x is continuous, y is continuous and therefore it is an element of
C(T ) = {x}′′. Now y obviously satisfies xy = e and y ≥ 0, which finishes the proof.

If we do not suppose x ≥ 0 in the previous theorem, then we can still look at x∗x
which is positive. Therefore there exists y ∈ {x∗x}′′, y ≥ 0 such that, given ε > 0,

1. x∗xy = e for some nonzero projection e,

2. ‖x∗x− x∗xe‖ < ε.

Since e = x∗xy and y ∈ {x∗x}′′, we have e ∈ {x∗x}′′. Therefore, e commutes with x∗x.
Using this, we furthermore find

‖x− xe‖2 = ‖(x− xe)∗(x− xe)‖
= ‖x∗x− ex∗x− x∗xe+ ex∗xe‖
= ‖x∗x− x∗xe‖
≤ ε.
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4.3 AW ∗-subalgebras

Let A be a Baer ∗-ring and B a ∗-subset in A. It could of course happen that B is again
a Baer ∗-ring in its own right. However, when calculating something like suprema or a
right projection it could matter if we view B on its own or as a subset of A. Therefore,
we have the following definition.

Definition 4.20. Let A be a Baer ∗-ring and B a ∗-subring in A. We say B is a Baer
∗-subring if

• whenever x ∈ B, we have RP (x) ∈ B,

• if S is a nonempty set of projections in B, then supS ∈ B.

Lemma 4.21. Let A be a Baer ∗-ring and let e ∈ A be a projection. Then B = eAe is
a Baer ∗-subring of A.

Proof. Let p be a projection in A. Then of course epe is a projection in B and epe ≤ e.
Let q be a projection in B. Then q is also a projection in A and q = eqe, so q ≤ e. We
see that the projections in B are precisely the projections in A which are ≤ e.
Now let {pi} be some set of projections in B with supremum p in A. Since each pi is
in B, we have

pi = epie.

Therefore
pe = sup

i
(epie)e = p,

so p ≤ e and p ∈ B. Furthermore, let x ∈ B, then x = exe, so x(1− e) = 0. Therefore
RP (x)(1− e) = 0, which is to say RP (x) ≤ e.

Because of the contrived definition of a Baer ∗-subring, we do not a priori know
that a Baer ∗-subring is itself a Baer ∗-ring. Fortunately:

Lemma 4.22. If B is a Baer ∗-subring of a Baer ∗-ring A, then B is itself a Baer
∗-ring.

Proof. The projection e = sup{RP (x) | x ∈ B} is an element of B and acts as a unit
element on B. Now for x ∈ B, RP (x) is in B, and

RP (x)e = RP (x),

so e−RP (x) is a projection. For y ∈ B we have

xy = 0 ⇔ RP (x)y = 0

⇔ (e−RP (x))y = y,

so
R(x) = (e−RP (x))B.

This shows that B is a Rickart ∗-ring. By definition, the suprema of arbitrary families
of projections in B are contained in B and hence, so are their infima. So B is a Rickert
∗-ring with complete projection lattice, and therefore a Baer ∗-ring.
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The following lemma shows that in the definition of a Baer ∗-subring it suffices to
look at orthogonal projections instead of arbitrary sets of projections.

Lemma 4.23. Let A be a Baer ∗-ring and B ⊂ A be a ∗-subring. Then B is a Baer
∗-subring if and only if the following two conditions are both satisfied:

1. x ∈ B ⇒ RP (x) ∈ B,

2. if {ei} is a family of orthogonal projections in B, then sup{ei} ∈ B.

Proof. A Baer ∗-subring obviously satisfies these conditions, so we only need to prove
the converse. Let {pi} be any family of projections in B and set

p = sup{pi}.

Choose a maximal orthogonal family {ei} of projections in B such that ei ≤ p for all i.
Set

e = sup{ei},

then e ∈ B and e ≤ p. If, for any pi, we have pi − pie 6= 0, then

pi ∨ e− e = RP (pi − pie),

which (as we see from Theorem 4.11) is a projection in B, for which

(pi ∨ e− e)pj = pj − pj = 0,

for any j and
(pi ∨ e− e)p = pi ∨ e− e.

This cannot be, since the family {ei} was chosen to be maximal. Therefore, pi ≤ e for
all i, and hence also p ≤ e so p = e ∈ B.

Lemma 4.24. Let A be a AW ∗-algebra. If 0 6= x ∈ A and {ei}i is a maximal orthogonal
family of nonzero projections in A such that for each ei

ei = x∗xyi
∗yi,

for some yi ∈ {x∗x}′′, then
sup
i
{ei} = RP (x).

Proof. Let e = supi{ei}. We calculate, for any i:

RP (x)ei = RP (x)x∗xyi
∗yi

= (xRP (x))∗xyi
∗yi

= x∗xyi
∗yi

= ei.

Therefore RP (x) ≥ ei for all i, so RP (x) ≥ e. Therefore, RP (x) − e is a projection.
Suppose RP (s)− e 6= 0, then it is orthogonal to all ei, as we see from

(RP (x)− e)ei = ei − ei = 0.
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Furthermore, RP (x) = RP (x∗x) ∈ {x∗x}′′, because {x∗x}′′ is an AW ∗-algebra contain-
ing x∗x. Also, e ∈ {x∗x}′′ because it is the supremum of the ei which are all a product
of elements in {x∗x}′′. So RP (x) − e ∈ {x∗x}′′ is as in the statement of the lemma
since {x∗x}′′ is commutative and RP (x)− e ≥ 0. Then, since the ei are assumed to be
maximal, RP (x)− e should be one of the ei. However, e+ ei is not a projection (since
eei 6= 0), whereas RP (x) is a projection. So RP (x)− e = 0.

Theorem 4.25. Let A be a AW ∗-algebra and B ⊂ A a ∗-subring that is also an AW ∗-
algebra satisfying supS ∈ B for any nonempty set S of orthogonal projections in B.
Then

• x ∈ B ⇒ RP (x) ∈ B,

• B is a AW ∗-subalgebra.

Proof. Once we know the first of these statements, the second follows from Lemma
4.23. So let 0 6= x ∈ B. By Lemma 4.19 (or rather, its immediate consequence) there
exists an y ∈ {x∗x}′′ such that x∗xy∗y = e is a nonzero projection. We take a maximal
orthogonal set of such projections {ei}. By assumption, their supremum is contained
in B, but by the previous lemma this supremum is precisely RP (x).

Let A, B be AW ∗-algebras. The question then arises what the “right” notion of
morphisms is between these algebras.

Lemma 4.26. Let f : A → B be a ∗-homomorphism between AW ∗-algebras such that
f preserves the suprema of orthogonal families of projections. Then the kernel of f is
generated (as an ideal) by a central projection, i.e., a projection that commutes with
every element in A.

Proof. Let {ei}i be a maximal orthogonal family of projections in ker(f) and let e be
the supremum of the ei. Then

f(e) = f(sup ei) = sup f(ei) = 0,

so e ∈ ker(f). Since f is a homomorphism, this implies that

eA ⊂ ker(f) ⊃ Ae.

Now let y ∈ ker(f). We want to show that x = y − ey = 0, which would imply
ker(f) = eA. If x 6= 0, then xx∗ 6= 0. By Lemma 4.19 there would exist a z ∈ {xx∗}′′
such that xx∗z = p for some non zero projection p. Then

ep = e(y − ey)x∗z = 0,

and
eip = ei(y − ey)x∗z = (eiy − eiy)x∗z = 0,

and of course f(p) = 0 because f(x) = 0. This would imply that the family {ei} were
not maximal, so indeed, x = 0 and ker(f) = eA. By the same reasoning, we find
ker(f) = Ae and so we conclude ker(f) = eAe.
To show e is central, we take a ∈ A and consider ea = ea′e for some a′ ∈ A. Right
multiplication with (1−e) on both sides then gives ea(1−e) = 0. Likewise, if we consider
ae = ea′′e for some a′′ ∈ A and left multiply with (1− e), we find (1− e)ae = 0. This
finally gives ea = eae = ae, so indeed e is central.
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Lemma 4.27. If e is a central projection in a Baer ∗-ring A, we can make the decom-
position

A = (1− e)A(1− e)⊕ eAe.

If x ∈ (1− e)A(1− e) and y ∈ eAe, then

RP (x+ y) = RP (x) +RP (y).

Proof. Since (1− e)A(1− e) and eAe are Baer ∗-subrings of A, we have

RP (x) ∈ (1− e)A(1− e),

and
RP (y) ∈ eAe.

We check the relevant properties of the right projection:

• Because xRP (y) = 0 (since xy = 0) and likewise for yRP (x), we have

(x+ y)(RP (x) +RP (y)) = xRP (x) + yRP (y) + xRP (y) + yRP (x)

= x+ y.

• Suppose (x+ y)z = 0. Then −xz = yz, and so

yz = eyz = −exz = 0 = −xz.

Hence we find

(RP (x) +RP (y))z = RP (x)z +RP (y)z = 0.

• Suppose (RP (x) +RP (y))z = 0. Then

RP (x)z = −RP (y)z,

and so
eRP (x)z = 0 = −RP (y)z = RP (x)z,

so yz = 0 = xz and obviously (x+ y)z = 0.

Lemma 4.28. Let f : A → B be a ∗-homomorphism between AW ∗-algebras such that
f preserves suprema of orthogonal families of projections. Then f preserves RP , i.e.,

f(RP (x)) = RP (f(x)).

Proof. Let e be the projection generating the kernel of f , then

A = (1− e)A(1− e)⊕ eAe.

Let x ∈ A. We can write
x = x̃+ x′
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with x̃ ∈ (1− e)A(1− e) and x′ ∈ eAe. Then by the previous lemma we have

RP (x) = RP (x̃+ x′) = RP (x̃) +RP (x′),

and therefore
f(RP (x)) = f(RP (x̃)).

On the other hand,
f(x) = f(x̃),

so
RP (f(x)) = RP (f(x̃)).

So in proving RP (f(x)) = f(RP (x)) we may assume

x ∈ (1− e)A(1− e).

Now, since e is central:

f(A) ∼= A/ker(f)

= (eA⊕ (1− e)A)/eA
∼= (1− e)A
= (1− e)A(1− e).

So by Lemmas 4.21 and 4.22, f(A) is an AW ∗-algebra. Therefore we have RP (f(x)) ∈
f(A) and RP (f(x)) is the same whether we calculate it in B or in f(A). Calculating in
f(A) and using the fact that f : (1− e)A(1− e)→ f(A) is an isomorphism, we indeed
find

f(RP (x)) = RP (f(x)).

The following theorem shows that the three most “obvious” choices of morphisms
for AW ∗-algebras actually coincide.

Theorem 4.29. Let f : A → B be a ∗-homomorphism between AW ∗-algebras A and
B. Then the following are equivalent:

(1) f preserves the right annihilating projections of arbitrary subsets of A.

(2) f preserves suprema of arbitrary families of projections.

(3) f preserves suprema of orthogonal families of projections.

Before we start the proof we note, for completeness, that (1) means that if Y ⊂ A
is a subset with R(Y ) = eA for some projection e, then R(f(Y )) = f(e)B.

Proof. • Suppose (1) holds. Let P be any family of projections with supremum s.
We have R(P ) = gA for some projection g. By (1) we then have

R(f(P )) = f(g)B.
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Now we claim that 1− f(g) is a supremum for f(P ); let f(p) ∈ f(P ), then

f(p)(1− f(g)) = f(p),

so
f(p) ≤ 1− f(g).

Now let q ∈ B be such that f(p) ≤ q for all p ∈ P . Then, since

f(p)q − f(p) = 0,

we find that
1− q ∈ R(f(P )) = f(g)B.

So 1− q = f(g)b for some b ∈ B. It follows that

f(g)(1− q) = f(g)f(g)b = f(g)b = 1− q,

so
1− q ≤ f(g),

which means that
1− f(g) ≤ q.

So indeed 1− f(g) is a supremum for f(P ). By the same reasoning, we find that
1− g is a supremum for P , so

1− g = s,

and
f(s) = f(1− g) = 1− f(g)

is the supremum for f(P ) which shows (2).

• (2) trivially implies (3).

• We now show that (3) implies (2). By Lemma 4.26 we know that ker(f) = zA
for some central projection z, and so we decompose

A = zAz ⊕ (1− z)A(1− z).

Let P be an arbitrary family of projections in A. Obviously, each p ∈ P has such
a decomposition as well, i.e.,

p = zp+ (1− z)p,

and all elements in zP are orthogonal to all elements in (1−z)P . Because of this,
we find that

f(
∨
P) = f(

∨
zP) + f(

∨
(1− z)P) = f(

∨
(1− z)P).

So we can just restrict to (1− z)A(1− z). The rest now follows from the proof of
Lemma 4.23.

66



• Finally, we show that (2) implies (1). Let Y ⊂ A be any subset, then

R(Y ) =
⋂
y∈Y

R(y) =
⋂
y∈Y

(1−RP (y))A = inf
y∈Y
{1−RP (y)}A.

By assumption, f preserves arbitrary suprema and therefore it also preserves
arbitrary infima. Since f also preserves RP , we find

f( inf
y∈Y
{1−RP (y)}) = inf

y∈Y
1−RP (f(y)),

which we see to be precisely the right annihilating projection of f(Y ).

Thus the morphisms of AW ∗-algebras are the same as the morphisms of W ∗-
algebras.

4.4 W ∗-algebras and AW ∗-algebras

We began this chapter by saying that AW ∗-algebras were introduced as an algebraic
generalization of von Neumann algebras. In this section we want to clarify this. We
start by showing that AW ∗-algebras indeed are such generalizations.

Proposition 4.30. Let A ⊂ B(H) be a von Neumann algebra, then A is an AW ∗-
algebra.

Proof. Let a ∈ A be an element. We claim that the right annihilator of a is the
projection onto the kernel of a. Indeed, let P be the projection onto ker(a), we show
1−P is the right projection of a. Obviously a(1−P ) = a. Now suppose ax = 0, then x
maps H into the kernel of a, so (1− P )x = 0. The next step is to show that R(a) = P
is actually in A. We will show P ∈ A′′ = A. To this end, let b ∈ A′. If k ∈ ker(a),
then bak = 0 = abk, so b maps ker(a) in ker(a).
If b ∈ A′ then b∗ ∈ A′. Indeed, since A is closed under involution, ba∗ = a∗b for all
a ∈ A. Taking the star on both sides then gives ab∗ = b∗a for all a ∈ A. In particular, b∗

also maps ker(a) into itself. If h ∈ ker(a)⊥ and k ∈ ker(a), then 〈k, bh〉 = 〈b∗k, h〉 = 0,
so b also maps ker(a)⊥ into itself.
Now for any h ∈ H we may write h = h‖ + h⊥ with h‖ ∈ ker(a) and h⊥ ∈ ker(a)⊥.
We then have bPh = bh‖, while Pbh = P (bh‖ + bh⊥) = bh‖, showing P ∈ A′′ = A. So
any von Neumann algebra is certainly a Rickart *-ring. We need to show its projection
lattice is complete. This will be done in the following Lemma.

Lemma 4.31. In a von Neumann algebra A ⊂ B(H), the projection lattice is complete.

Proof. Given a family of projections {pi} in A, each pi projects on some closed subspace
of H. Then supi pi is the projection onto the closure of the ranges of the pi, i.e.,

sup
i
pi = P⋃

i piH
.

The infimum of the pi also exists, and is equal to

inf
i
pi = P⋂

i piH
.
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Note that all piH are closed, so
⋂
i piH is automatically closed, while

⋃
i piH need not

be. That these expressions indeed satisfy the right properties for sup and inf is easily
seen. The fact that supi pi and infi pi are elements of A follows in the same way as in
the above theorem.

We could have also finished the proof of the theorem in a more direct way. Let
S ⊂ A be some subset, and set K =

⋂
s∈S ker(s). As an intersection of closed sub-

spaces, K is a closed subspace. Therefore there is a projection PK projecting on K.
By the same argument as in the theorem, PK is an elements of A. It is then clear that
R(S) = PKB(H).

We now know that von Neumann algebras are AW ∗-algebras. In fact, we can say
something more, but first a lemma.

Lemma 4.32. Let {ei} be a family of projections in a Rickart ∗-ring A. Suppose
sup ei ∈ A (this is in particular the case if A is a Baer ∗-ring). Then for x ∈ A we
have eix = 0 for all i if and only if ex = 0.

Proof. We have the following chain of equivalences:

eix = 0 ⇔ eiLP (x) = 0

⇔ ei = ei(1− LP (x))

⇔ ei ≤ 1− LP (x)

⇔ e ≤ 1− LP (x)

⇔ eLP (x) = 0

⇔ ex = 0.

Proposition 4.33. Let A ⊂ B(H) be a von Neumann algebra. Then A is an AW ∗-
subalgebra of B(H).

Proof. We first show that x ∈ A implies RP (x) ∈ A. To this end, let b ∈ A′ and x ∈ A.
Then, since xb = bx and x = xRP (x) we have

0 = b(x− xRP (x)) = x(b− bRP (X)).

Therefore
RP (x)(b− bRP (x)) = 0,

so
RP (x)b = RP (x)bRP (x).

Doing the same for b∗, we find RP (x)b∗ = RP (x)b∗RP (x). Taking adjoints, we find
bRP (x) = RP (x)bRP (x). Combining these two results gives

bRP (x) = RP (x)bRP (x) = RP (x)b,

so RP (x) commutes with b ∈ A′ and therefore RP (x) ∈ A′′ = A.
Now let ei be an orthogonal family of projections in A and let e = supi ei. For b ∈ A′
we have eib = bei. Also we have eei = eie = ei. It follows that

0 = b(ei − eie) = ei(b− be),
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for all i. By the above Lemma, we have e(b − be) = 0, so eb − ebe = 0. Again, doing
the same with b∗ we find eb = ebe = be, so e ∈ A′′ = A.

The converse is also true and follows from a more general result by G. Pedersen [10]:

Proposition 4.34. An AW ∗-algebra with a separating family of completely additive
states is a von Neumann algebra.

Here, a family of states is separating if for any a ∈ A, there is a state φ in this
family, such that φ(a) 6= 0.

Using this, we have:

Proposition 4.35. If A is an AW ∗-subalgebra of B(H) , then A is a von Neumann
algebra.

Proof. IfA is an AW ∗-subalgebra of B(H), the states 〈ψ, ·ψ〉 for ψ ∈ H are a separating
family of completely additive states.

4.5 AW ∗-algebras as a Category

We now look at the category AW∗ that has as its objects AW ∗-algebras and as morph-
isms unital ∗-homomorphisms satisfying any (and hence all) of the conditions in The-
orem 4.29. We note that, for example, the inclusion of an eAe in A for e a projection
and A an AW ∗-algebra does not preserve the unit. As in the von Neumann case, the
AW ∗-algebras 0 and C are the terminal and initial objects, respectively.
If Ai, i ∈ I is a family of AW ∗-algebras, we define their direct sum

⊕
iAi as

{f : I →
⋃
i

Ai|f(i) ∈ Ai, sup
i
‖f(i)‖ <∞},

with pointwise multiplication, addition, and involution. The norm is defined as

‖f‖ = sup
i
‖f(i)‖.

Instead of writing f we shall mostly just use the notation (ai)i with ai ∈ Ai for an
element of

⊕
iAi.

Theorem 4.36. Let Ai be a family of AW ∗-algebras. Then
⊕

iAi is the categorical
product, with projections

πj :
⊕
i

Ai → Aj,

(ai)i 7→ aj.

Proof. The fact that
⊕

iAi is a C∗-algebra was already established before. What we
still need to show is that it is also a Baer ∗-ring, that the projections πi :

⊕
j Aj → Ai

are AW ∗-morphisms, and that
⊕

iAi satisfies the appropriate universal property.
Let Y ⊂

⊕
iAi be any subset. Then Y = (Yi)i for certain subsets Yi ⊂ Ai. Since each
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Ai is an AW ∗-algebra, we have R(Yi) = piAi for some projection pi. Now (pi)i is a
projection in

⊕
iAi and

R(Y ) = (pi)i
⊕
i

Ai,

showing
⊕

iAi is a Baer ∗-ring.
Since all operations are defined coordinatewise, we see that RP ((ai)i) = (RP (ai))i,
which under πj maps to RP (aj) = RP (πj(ai)i). If for each i there is a morphism hi :
W → Ai for some AW ∗-algebra W , then we define g : W →

⊕
iAi as g(w) = (hi(w))i.

It should be clear that this is the unique AW ∗-morphism with πjg = hi.

To define coproducts we need to have a notion of what it means for an AW ∗-algebra
to be generated by a family of elements.

Lemma 4.37. Let A be an AW ∗-algebra and Bi a family of AW ∗-subalgebras of A.
Then

⋂
iBi is again an AW ∗-subalgebra of A.

Proof. This is clear from the definition of an AW ∗-subalgebra. Given x ∈
⋂
iBi, then

x ∈ Bi for all i, therefore RP (x) ∈ Bi for all i, and RP (x) ∈
⋂
iBi. The same argument

applies to suprema of projections.

In particular, if S is any set in an AW ∗-algebra M , we can look at all AW ∗-
subalgebras of M containing S and take their intersection. The resulting space is
then of course the smallest AW ∗-subalgebra containing S.

Definition 4.38. Let M be a AW ∗-algebra and let S ⊂ M be any subset, then the
smallest AW ∗-subalgebra of M containing S is called the AW ∗-subalgebra generated
by S.

Theorem 4.39. The category of AW∗ has coproducts.

Proof. Let a family (Mα)α∈I of AW ∗-algebras be given. Just as in the W ∗ case we call
a cocone iα : Mα → N generating if N is generated by the images of the iα. Let S be
the set of all such generating cocones. We write s = {isα : Mα → Ns} for a generating
cocone in S.
Now look at jα : Mα →

⊕
s∈S Ns, with jα(m) = ⊕jsα(m) for m ∈ Mα. Let M be the

AW ∗-algebra generated by the images jα(Mα). The fact that this is the coproduct of
the Mα follows in the same way as in the W∗ case.

Proposition 4.40. AW∗ has all general limits and colimits.

Proof. The construction for equalizers and coequalizers carries over from W∗.

The fact that AW∗ does not have exponentials or coexponentials also follows from
exactly the same example as in the W∗ case. So what we would like to do is, just
as in W∗, define something like the free exponential and a tensor product, which are
in adjunction with each other. However, here we run into problems. Proposition 4.34
shows that any AW ∗-algebra that can be embedded in B(H) for some Hilbert space H
automatically is a von Neumann algebra. Therefore, if we have an AW ∗-algebra that
is not a von Neumann algebra, we cannot embed it that way. We have to conclude
there is no spatial theory for AW ∗-algebras. Of course, since every AW ∗-algebra is
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also a C∗-algebra, we can embed it in B(H), as a C∗-algebra, however, the resulting
algebra might not have the same lattice structure as the original AW ∗-algebra (and in
fact does not if the original AW ∗-algebra is not W ∗). We might also try to construct
a free exponential, but as we see from the proof of Proposition 3.25, this construction
hinges heavily on the existence of a spatial theory.

Of course, some tensor product, other than the spatial tensor product, might exist
for AW ∗-algebras. This should then be some closure of the algebraic tensor product of
two AW ∗-algebras, with respect to some norm on this algebraic tensor product, such
that the resulting space is again AW ∗. However, unlike von Neumann algebras, which
we know are ultraweakly closed, there are, to our knowledge, no relations between the
topological and the algebraic properties of AW ∗-algebras. So there is no preferred norm
(if any at all), in which to take the closure.
As a final thought, let us ignore the closure, and just focus on the algebraic tensor
product. Let A and B be AW ∗-algebras and A ⊗ B their algebraic tensor product.
We want the canonical injections iA : A → A ⊗ B, a 7→ a ⊗ 1 and iB : B → A ⊗ B,
b 7→ 1⊗B to be AW ∗ morphisms, and therefore we find

RP (a⊗ 1) = RP (iA(a)) = iA(RP (a)) = RP (a)⊗ 1,

and likewise RP (1⊗b) = 1⊗RP (b). For a general elementary tensor a⊗b, we conjecture
that a right annihilating projection is given by

R(a⊗ b) = R(A)⊗ 1 + 1⊗R(B)−R(A)⊗R(B)

= 1⊗ 1− (1−R(a))⊗ (1−R(b))

= 1−RP (a)⊗RP (b).

However, since we do not know what relation there is between right annihilators and
sums, we have no idea what the right annihilator of an arbitrary tensor is.
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