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Abstract

In a rigorous post-von Neumann mathematical formalism of quantum mechanics, ob-
servables are represented by normalized positive operator-valued measures instead of
self-adjoint operators. In this formalism, the notion of joint measurability of two ob-
servables is more complex then in the von Neumann formalism, where observables
are jointly measurable if and only if they commute. We look into various notions of
compatibility, among which joint measurability, coexistence, commutativity, and joint
measurability of binarizations, and investigate for which classes of observables these
are equivalent.
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1 Introduction

In the literature, quantum-mechanical observables are usually described by self-adjoint op-
erators, as introduced by von Neumann [20]. But in certain cases there are observables that
cannot be fully described by self-adjoint operators [7, 9, 15, 17]. An example of such an
observable is the covariant phase space observable in a single-mode optical field. Therefore,
a new formalism of quantum mechanics has been formulated, where observables are repre-
sented by positive operator-valued measures (POVMs). This modern formalism of quantum
mechanics, sometimes referred to as operational quantum mechanics or quantum measure-
ment theory (see e.g., [5, 1, 3]) has the means to investigate these special observables.
Moreover, it provides a powerful toolset to study sequential, joint, and approximate joint
measurements. A subset of these POVMs are the projection valued measures (PVMs), which
are in one-to-one correspondence to self-adjoint operators.

Measurement of multiple quantum observables is an important part of quantum mechan-
ics. A well-known property, which lies at the heart of quantum mechanics, is the fact that in
general two observables cannot be measured together. Following the famous heuristic work
of Heisenberg, the mathematical analysis of this subject started with Von Neumann who
characterised jointly measurable observables as commuting self-adjoint operators [20]. But
when working in the new formalism, observables, represented by POVMs, can be jointly
measurable also if they do not commute [16]. This introduced several notions describing
the measurement of more than one quantum observable. We distinguish several proper-
ties of observables, among which commutativity, joint measurability, coexistence, and joint
measurability of binarizations, some of which are easier to verify than others. Under some
conditions theses notions are equivalent, but in general they differ.

Recently, for a broad class of observables, namely if one of the observables is extreme
and discrete, it has been shown that these observables are coexistent if and only if they
are jointly measurable [8]. In this thesis we further investigate the relation between these
notions and take a look at the proof of this result. We will also look into the relation between
coexistence and joint measurability of binarizations.

In section 2 we start by defining the needed mathematical knowledge about operator-
valued measures. In section 3 a introduction into this post-von Neumann formalism is
presented. In section 4 we will look into the results about the relations between coexistence,
joint measurability, commutativity, and joint measurability of binarizations, based on the
works of Lahti [13], Bush et al. [2], Reeb et al. [18], Pellonpää [16] and Haapasalo [8, 6].
We will clarify the proofs from [8] and correct a minor mistake in it.

We assume basic knowledge about functional analysis, measure theory and quantum
mechanics, but in the appendix an introduction into most of the important mathematical
concepts is given.
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2 Positive Operator-Valued Measures

Before we can introduce the new quantum-mechanical formalism, we first have to introduce
some mathematics. Some basic knowledge about functional analysis and measure theory
will be assumed. In appendix A the important functional analytic concepts are introduced.
Appendix B can be used as a reference for the measure theoretic definitions. Throughout
this thesisH will be a separable Hilbert space and we will write B(H) for the set of bounded
linear operators on H. We use the symbol 〈· | ·〉 for the inner product on any Hilbert space.
By convention, we choose the inner product to be linear in its second argument. Finally,
N = {1, 2, 3, . . .}.

We will now define the notion of an operator-valued measure, which will play a central
role in the rest of this thesis. Instead of a positive real-valued measure µ : A → [0,∞), as
usual, we will define a positive operator-valued measure E : A → B(H)+.

Definition 2.1. Let H be a Hilbert space and (Ω,A) a measurable space.

(a) A function E : A → B(H) is called a positive operator-valued measure (POVM) if the
next two conditions hold:

(i) E(X) ≥ 0 for all X ∈ A,

(ii) E is weakly σ-additive, that is, for {Xn} ⊆ A, a countable family of disjoint sets,

E

( ∞⋃
n=1

Xn

)
=

∞∑
n=1

E(Xn),

where the series on the right-hand side converges in the weak operator topology.1

(b) A POVM E : A → B(H) is said to be normalized if E(Ω) equals the identity operator
on H. A normalized POVM is called a semispectral measure.

(c) A POVM E : A → B(H) is called a projection valued measure (PVM) if E(X) is an
orthogonal projection on H for each X ∈ A.

(d) A normalized PVM is called a spectral measure.

We will give some examples of POVMs.

Example 2.2. (a) Consider the Borel-measurable space (R,F(R)) and let H = L2(R). For
any measurable function f : R→ C, we define the multiplication operator Mf by

(Mfφ)(x) = (fφ)(x) = f(x)φ(x) ∀x ∈ R, φ ∈ D(Mf ) = {φ ∈ L2(R) | fφ ∈ L2(R).}

One can simply check that for X ⊆ R, MχX
is a projection and thus we can define the PVM

Mχ : F(R)→ L2(R) by
Mχ : X 7→MχX

.

Because MχR
is the identity operator on L2(R) we even see that Mχ is a spectral measure.

This Mχ is called the canonical spectral measure in L2(R).

1That is ∀φ, ψ ∈ H,
〈
φ
∣∣∣ (∑N

n=1 E(Xn)
)
ψ
〉
→
〈
φ
∣∣E (⋃∞

n=1Xn
)
ψ
〉
, as N →∞.
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(b) For our second example, consider the measurable space ({1, 2, 3},P({1, 2, 3})) and the
Hilbert space H = C2. Denote the standard orthogonal basis on C2,{(

1
0

)
,

(
0
1

)}
,

by {|1〉 , |2〉}. Operators on C2 are given by complex-valued two-by-two matrices, that is
B(C2) = M2(C). First, we define three operators,

A1 = 1
3 |1〉〈1| =

(
1
3 0
0 0

)
,

A2 = 1
3 |2〉〈2| =

(
0 0
0 1

3

)
,

A3 = I −A1 −A2 =

(
2
3 0
0 2

3

)
,

which are, as one can easily verify, positive and bounded by the identity. We can now
construct a POVM A : P({1, 2, 3})→M2(C2) by

A({1}) = A1, A({2}) = A2, A({3}) = A3,

and the other outcomes of A follow by additivity. For example,

E({1, 2}) + E({1}) + E({2}) =

(
1
3 0
0 1

3

)
.

Since A({1, 2, 3}) = I, we see that A is a semispectral measure, but because the operators
appearing here are not projections, e.g.

A2
1 =

(
1
9 0
0 0

)
6= A1,

it follows that A is not a spectral measure. C

We now give some standard results on POVMs.

Proposition 2.3. Let E : A → B(H) be a POVM. Then the following hold:

(a) Let X,Y ∈ A such that X ⊆ Y . Then

E(Y \X) = E(Y )− E(X) and

E(X) ≤ E(Y ).

(b) For any X,Y ∈ A,

E(X ∪ Y ) + E(X ∩ Y ) = E(X) + E(Y ).

(c) If E(X) = E(X)∗ or ‖E(X)‖ ≤ 1 for all X ∈ A, then the following are equivalent:

(i) E(X ∩ Y ) = E(X)E(Y ) ∀X,Y ∈ A;

(ii) E(X) ∈ P(H) ∀X ∈ A.
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Proof. (a) Since for X ⊆ Y one has Y = X ∪ (Y \X), we have

E(Y \X) = E(X) + E(Y \X),

by additivity of E. And since E is positive, the second result follows immediately.

(b) For sets X,Y ∈ A one has

X ∪ Y = (X \ Y ) ∪ (X ∩ Y ) ∪ (Y \X),

X = (X \ Y ) ∪ (X ∩ Y ),

Y = (Y \X) ∪ (X ∩ Y ),

and the result follows from the additivity of E.

(c) If (i) holds, then E(X)2 = E(X ∩ X) = E(X), and combined with either E(X) =
E(X)∗ or ‖E(X)‖ ≤ 1 and with Proposition A.16, we conclude that E(X) is a pro-
jection. Now if (ii) holds, then

E(X ∩ Y ) ≤ E(X) ≤ E(X ∪ Y )

by (a), and so E(X)E(X ∩ Y ) = E(X ∩ Y ) and E(X)E(X ∪ Y ) = E(X) by Proposi-
tion A.18. Multiplying the equation of (b) by E(X) from the left now yields

E(X) + E(X ∪ Y ) = E(X) + E(X)E(Y ),

implying (i).

Definition 2.4 (POV Bimeasure). A positive operator-valued function B : A1×A2 → B(H)
is called a positive operator-valued bimeasure, if for all X ∈ A1, Y ∈ A2 the functions

A2 3 Y ′ 7→ B(X,Y ′),

A1 3 X ′ 7→ B(X ′, Y ),

are POVMs. If B(Ω1, Ω2) = I, we call B a semispectral bimeasure.

2.1 Naimark dilation theorem

Now we will prove the important result that any semispectral measure E : A → B(H) can
be written as a dilation of a spectral measure F : A → B(K) by an isometry, namely as
E(X) = J∗F (X)J ∀X ∈ A. This result is called the Naimark dilation theorem. There are
many ways to prove this theorem, and we follow the measure-theoretic proof in [12], since
it is hands-on and direct. We first need to the define the concept of a positive sesquilinear
form measure (PSFM), which is closely related to a POVM. For the rest of this section,
let V be a vector space. We will write S(V ) for the set of all sesquilinear forms on V and
S+(V ) for the set of all positive sesquilinear forms.

Definition 2.5 (Positive sesquilinear form measure). Let (Ω,A) a measurable space.

(a) Let S : A → S(V ) be a function and write S(X) = SX for X ∈ A. S is called a
positive sesquilinear form measure (PSFM) if:
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(i) S(A) ⊆ S+(V );

(ii) For all φ, ψ ∈ V the mapping X 7→ SX(φ, ψ) is σ-additive, i.e., a complex mea-
sure.

(b) A PSFM S : A → S+(V ) is said to be strict if SΩ(φ, φ) > 0 for all φ ∈ V \ {0}.

Remark. If we have a POVM E, we can naturally identify it with a PSFM S by set-
ting SX(φ, ψ) = 〈φ |E(X)ψ〉 . Using this identification, we will prove the Naimark dilation
theorem first for PSFM’s and immediately obtain the result for POVM’s.

For the rest of this section we assume that (Ω,A) is a measurable space, that V is a
vector space that has a countable infinite Hamel basis (en)∞n=1. Let F denote the vector
space of A-simple V -valued functions on Ω, i.e. if f ∈ F we can write

f =

N∑
i=1

φiχAi
,

with φi ∈ V,Ai ∈ A ∀i ∈ N and N ∈ N. Here we write χAφ for the function x 7→ χA(x)φ,
for A ∈ A and φ ∈ V.

Theorem 2.6. Let S : A → S+(V ) be a PSFM. Then there exists a Hilber space K, a
spectral measure F : A → K, and a linear map J : H → K such that

〈Jφ |F (X)Jψ〉 = SX(φ, ψ) ∀X ∈ A, φ, ψ ∈ V.

Moreover, the linear span of the set {F (X)Jφ | X ∈ A, φ ∈ V } is dense in K.

Proof. Assume that S : A → S+(V ) is a PSFM. We now fix a sequence of positive numbers
(αi)i∈N, such that

∑∞
n=1 αn <∞, and for X ∈ A we write

µ(X) =

∞∑
n=1

αn
SX(en, en)

1 + SΩ(en, en)
.

Then µ is a finite positive measure, and with the Cauchy-Schwarz inequality we see that for
X ∈ A, µ(X) = 0 if and only if we have SX(φ, ψ) = 0 for all φ, ψ ∈ V . For any φ, ψ ∈ V ,
with the Radon-Nikodým theorem (Theorem B.6) we can find a C(φ, ψ) ∈ L1(Ω,A, µ) such
that

SX(φ, ψ) =

∫
X

C(φ, ψ) dµ ∀X ∈ A.

Clearly, the mapping C : V × V → C is sesquilinear, and for all φ ∈ V we have that
C(φ, φ) ≥ 0 µ-almost everywhere.

Assume f =
∑n
i=1 φiχAi

and g =
∑m
j=1 ψjχBj

in F , such that all the φi are distinct
and all Ai pairwise disjoint. We can now define the unique positive sesquilinear form θ :
F × F → C by

θ(f, g) =

n∑
i=1

m∑
j=1

∫
Ai∩Bi

C(φi, ψi) dµ,

since every f ∈ F can uniquely be written in such a way. Then θ almost is an inner product
on F , but it is not strict. To accomplish this, we write N = {f ∈ F | θ(f, f) = 0} and by
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the Cauchy-Schwarz inequality we see that N is a vector subspace of F . We can now define
a inner product on the quotient space F/N via

〈[f ] | [g]〉 = θ(f, g),

where we have written [f ] = f +N . We denote the Hilbert space completion of this inner
product space by K and call it the associated Hilbert space of S, relative to the basis (en)
and sequence (αn). For every X ∈ A, f ∈ F we define the function F0 : F/N → K by

F0(X)[f ] = [χXf ].

For g ∈ [f ] we have

‖[χXf − χXg]‖2 = θ(χXf − χXg,χXf − χXg) ≤ θ(f − g, f − g) = 0,

and hence this definition for F0(X) is sound. Furthermore, because

‖F0(X)[f ]‖2 = 〈F0(X)[f ] |F0(X)[f ]〉 ≤ 〈[f ] | [f ]〉 = ‖[f ]‖2,

we see that F0(X) is bounded and thus uniquely extends to a bounded linear operator
F (X) : K → K. We see that

〈[φχA] |F (X)[ψχB ]〉 =

∫
A∩B∩X

C(φ, ψ) dµ ∀A,B ∈ A, φ, ψ ∈ V,

and it can easily be verified that

F (X)2 = F (X)∗ = F (X),

for all X ∈ A. To see that X 7→ F (X) is a spectral measure on A, we first notice that
F (Ω) = I. And since F is bounded, for weak σ-additivity it is sufficient to show that it is
weakly σ-additive on a dense subset of K. And since by definition of K the linear span of
{[φχA] | φ ∈ V,A ∈ A} is dense in K, we verify this by noting that

A 3 X 7→ 〈[φχA] |F (X)[ψχB ]〉 =

∫
A∩B∩X

C(φ, ψ) dµ

is σ-additive for all A,B ∈ A, φ, ψ ∈ V. Finally, we define the linear map J : V → K by

Jφ = [φχΩ ].

Now we see that for φ, ψ ∈ V,X ∈ A we have

〈Jφ |F (X)Jψ〉 = 〈[φχΩ ] |F (X)[ψχΩ ]〉 =

∫
X

C(φ, ψ) dµ = SX(φ, ψ).

Furthermore, by construction,

span{F (X)Jφ | X ∈ A, φ ∈ V } = span{[φχX ] | X ∈ A, φ ∈ V }

is dense in K.
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Proposition 2.7. Let S : A → S+(V ) be a PSFM. The representation of S by the Hilbert
space K, the spectral measure F : A → K and the linear map J : V → K from Theorem 2.6
is essentially unique. That is, if the triple (K′, F ′, J ′) gives another representation with
these properties, then there is a unique unitary map U : K → K′ such that

UF (X)Jφ = F ′(X)J ′φ ∀X ∈ A, φ ∈ V.

In particular, we have

UJφ = J ′φ ∀φ ∈ V,
UF (X) = F ′(X)U ∀X ∈ A.

Proof. We define U0 : span{F (X)Jφ | X ∈ A, φ ∈ V } → K′ by

U0F (X)Jφ = F ′(X)J ′φ.

And since U0 is defined on a dense subspace of K, we can uniquely extend it to a bounded
operator U : K → K′. And because if X1, . . . , Xn ∈ A and φ1, . . . , φn ∈ V , we have∥∥∥∥∥

n∑
i=1

F (Xi)Jφi

∥∥∥∥∥
2

=

n∑
i,j=1

〈F (Xi)Jφi |F (Xj)Jφj〉 =

n∑
i,j=1

〈Jφi |F (Xi ∩Xj)Jφj〉

=

n∑
i,j=1

SXi∩Xj
(φi, φj) =

∥∥∥∥∥
n∑
i=1

F ′(Xi)J
′φi

∥∥∥∥∥
2

,

and we see that U is an isometry. Thus there is a well-defined isometry sending each∑n
i=1 F (Xi)Jφi to

∑n
i=1 F

′(Xi)J
′φi, and this map extends by continuity to a unitary U :

K → K′. In particular,

UJφ = UF (Ω)Jφ = F ′(Ω)J ′φ = J ′φ ∀φ ∈ V.

Moreover, for all X,Y ∈ A and φ ∈ V we have

UF (X)F (Y )Jφ = UF (X ∩ Y )Jφ = F ′(X ∩ Y )J ′φ

= F ′(X)F ′(Y )J ′φ = F ′(X)UF (Y )Jφ,

from which UF (X) = F ′(X)U immediately follows.

We can now almost define the Naimark dilation of a semispectral measure. Let (en)∞n=0

be an orthonormal basis of H and V = span{en}∞n=0 its finite linear span. Now assume
that E : A → B(H) is a semispectral measure and let S : A → S+(V ) be the corresponding
PSFM, defined by

SX(φ, ψ) = 〈φ |E(X)ψ〉 ,

for X ∈ A, φ, ψ ∈ V. Now let the triple (K, F, J) be as in Theorem 2.6. Now for all
φ, ψ ∈ V,X ∈ A we have

〈φ |E(X)ψ〉 = SX(φ, ψ) = 〈Jφ |F (X)Jψ〉 = 〈φ | J∗F (X)Jψ〉 .
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In this case J : V → K is an isometry, since, using the notation of Theorem 2.6, we have

‖Jφ‖2 = ‖[φχΩ ]‖2 = θ(φχΩ , φχΩ)

=

∫
Ω

C(φ, φ) dµ = SΩ(φ, φ) = 〈φ |E(Ω)φ〉 = ‖φ‖2,

since E is a semispectral measure. All constructions above have taken place in the vector
space V , but since it is dense in H we can extend all constructions to the whole space H.
For the details we refer to [12]. Doing this, we conclude this section with our desired result,
for which the proof follows from Theorem 2.6, Proposition 2.7 and our discussion above.

Theorem 2.8 (Minimal Diagonal Naimark Dilation). Let E : A → B(H) be a semispectral
measure.

(a) There exists a Hilbert space K, an isometry J : H → K, and a spectral measure
F : A → B(K) such that

E(X) = J∗F (X)J ∀X ∈ A.

(b) The linear span of {F (X)Jφ | X ∈ A, φ ∈ H} is dense in K.

(c) The triple (K, F, J) is essentially unique. That is if the triple (K′, F ′, J ′) gives another
representation with the properties from (a) and (b), then there is a unique unitary map
U : K → K′ such that

UF (X)Jφ = F ′(X)J ′φ ∀X ∈ A, φ ∈ H.

In particular, we have

UJφ = J ′φ ∀φ ∈ H,
UF (X) = F ′(X)U ∀X ∈ A.

(d) F is the canonical spectral measure on K, i.e. ∀ψ ∈ K and µ-almost all ω ∈ Ω we
have

(F (X)ψ)(ω) = χX(ω)ψ(ω).

Using the notation from the theorem above, we call the triple (K, F, J) a Naimark repre-
sentation of a semispectral measure E if it satisfies (a) of the theorem. We call this dilation
minimal if the linear span of {F (X)Jφ | X ∈ A, φ ∈ H} is dense in K and, a diagonal
minimal Naimark representation if it is a minimal Naimark representation and F is the
canonical spectral measure on K. Theorem 2.8 thus states that every semispectral measure
has a minimal diagonal Naimark representation. Not all Naimark representations are mini-
mal, but these are the one most helpful to us, and thus we will not look into non-minimal
Naimark representations.

3 States, Effects and Observables

In this section we define the notions of states, effects, and observables, which are the central
concepts in the formalism of quantum measurement. A good understanding of functional
analysis, in particular positive and traceclass operators, is necessary to comprehend these
definitions. Also, convex sets and the boundary of convex sets are used throughout this
section. In Appendices A and C, an introduction to these concepts is given.
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Definition 3.1 (State space). Let H be the Hilbert space associated with some quantum
mechanical system. A density operator ρ of the quantum system is defined as a positive
trace class operator ρ on H of trace one. The set of all density operators S(H) is therefore
given by

S(H) = {ρ ∈ B1(H) | ρ ≥ 0, tr(ρ) = 1}.

In this formalism, we identify states of the quantum mechanical system with density oper-
ators.

Remark. Sometimes another definition of a state is used. Namely, a state can also be
defined as a linear map ω : B(H)→ C, satisfying

1. ω(A) ≥ 0 ∀A ∈ B(H)+;

2. ω(I) = 1.

It can be shown that for a finite-dimensional Hilbert space H there is a one-to-one corre-
spondence between states and density operators. But if H is infinite-dimensional, the set of
states is strictly larger than the set of density operators; states that are in one-to-one cor-
respondence with density operators are called normal states. In most systems non-normal
states represent non-physical situations and can therefore be disregarded. For the rest of
this thesis we will only consider normal states, which we represent by density operators.
For more information about the difference between normal states and non-normal states,
we refer to [14, §4.2].

Proposition 3.2. S(H) is a convex subset of B(H).

Proof. Let ρ1, ρ2 ∈ S(H) and λ ∈ (0, 1) arbitrary. It is obvious that, since λ is positve,
λρ1 + (1− λ)ρ2 is positive and also

tr(λρ1 + (1− λ)ρ2) = λ tr(ρ1) + (1− λ) tr(ρ2) = λ+ (1− λ) = 1,

using the linearity of the trace, and so λρ1 + (1− λ)ρ2 ∈ S(H).

This convex structure of S(H) reflects the physical possibility of mixing states and the
extreme elements ex(S(H)) are those states that cannot be realised by mixing states. These
extreme elements are called the pure states.

Proposition 3.3. The set of pure states of S(H) is equal to the set of one-dimensional
projections on H, P1(H), that is

ex(S(H)) = P1(H).

Proof. Let ρ ∈ ex(S(H)). By the spectral theorem for a compact self-adjoint operator, we
know that we can write ρ as a weighted sum of one-dimensional projections:

ρ =
∑
n

λn |φn〉〈φn| ,

where (φn)n∈N is an orthogonal sequence of eigenvectors and (λn)n∈N is the set of corre-
sponding eigenvalues. But because ρ is extreme, λn is zero for every n except one, and thus
ρ is a one-dimensional projection. For the converse implication, assume ρ ∈ P1(H), but
now the only decomposition of ρ is the trivial decomposition ρ = |ψ〉〈ψ|, for a normalized
ψ ∈ H, and we conclude that ρ is pure.
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Definition 3.4 (Effects). A positive operator on H, bounded by the identity operator, is
called an effect operator. The set of all effect operators E(H) is given by

E(H) = {A ∈ B(H) | 0 ≤ A ≤ I}.

Proposition 3.5. E(H) is a convex subset of B(H).

Proof. If E1, E2 ∈ E(H) and t ∈ (0, 1), positivity of tE1 + (1 − t)E2 follows immediately.
And from I −E1 ≥ 0 and I −E2 ≥ 0 if follows that

0 ≤ t(I −E1) + (1− t)(I −E2) = I −(tE1 + (1− t)E2),

and thus tE1 + (1− t)E2 ≤ I .

We say that an effect E is extreme if it is an element of the extreme boundary of E(H).

Theorem 3.6. The set of extreme effects is equal to the set set of projections, i.e.,

ex(E(H)) = P(H)

Proof. From the definition of a projection operator it is immediately clear that any projec-
tion is an effect operator. Now let P ∈ P(H), and let A,B ∈ E(H), t ∈ (0, 1) such that
P = tA+ (1− t)B. Choose φ ∈ H such that Pφ = 0 (such φ can always be found). Then

0 = ‖tAφ+ (1− t)Bφ‖ ≤
∥∥∥t√A√Aφ∥∥∥ ≤ t∥∥∥√Aφ∥∥∥ (since

∥∥∥√A∥∥∥2 ≤ 1)

= t 〈φ |Aφ〉 ≤ t 〈φ |Aφ〉+ (1− t) 〈φ |Bφ〉
= 〈φ |Pφ〉 = 0,

which implies Aφ = 0. Let now ψ ∈ H be such that Pψ = ψ, that is (I −P )ψ = 0, but since
I −P = t(I −A)+(1− t)(I −B), one also has (I −A)ψ = 0. And since H = ker(P )⊕ ran(P )
we conclude A = P , from which it immediately follows that B = P and that P is an extreme
effect.

Now consider an A ∈ E(H) that is not a projection. Then there is an a ∈ σ(A) ∩ (0, 1).
Let f(x) be a continuous function on [0, 1] such that 0 ≤ x ± f(x) ≤ 1 ∀x ∈ [0, 1] with
f(a) 6= 0. From the spectral theorem, Theorem A.44, we see that both A1 = A+ f(A) and
A2 = A− f(A) are effects and A1 6= A 6= A2, but A = 1

2A1 + 1
2A2, from which we conclude

that A is not an extreme effect.

We have the following characterisation for effect operators.

Proposition 3.7. For a positive operator E ∈ B(H)+ we have

E ∈ E(H) ⇐⇒ ‖E‖ ≤ 1 ⇐⇒ r(E) ≤ 1.

Proof. This is an immediate consequence of Corollary A.18.1 and Corollary A.38.1.

Instead of identifying observables with self-adjoint operators as in the von-Neumann
formalism, we identify observables with normalised POVMs .
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Definition 3.8 (Observables). For a measurable space (Ω,A) and a Hilbert space H, the
set of all observables O(Ω,A,H) is given by

O(Ω,A,H) = {E : A → E(H) | E is a semispectral measure}.

The measurable space (Ω,A) is called the outcome space of E. A semispectral bimeasure
is called a bi-observable.

Since an observable E is a normalised positive operator-valued measure, E(X) is an
effect operator for every X ∈ A. Using this, we can relate observables to measurements
by interpretating tr(ρE(X)) as a probability. Indeed, if E(X) ∈ E(H) and ρ ∈ S(H) ,
we see from Proposition A.31 that ρA ∈ B1(H), and because E(X) and ρ are positive,
from Proposition A.34 we see that tr(ρE(X)) ≥ 0. Using Proposition A.33 we conclude
tr(ρE(X)) ≤ ‖E(X)‖ tr(ρ) ≤ 1, and hence we have 0 ≤ tr(ρE(X)) ≤ 1.

Definition 3.9 (Probability interpretation). For a system prepared in a state ρ, we define
the probability pEρ (X) to obtain an outcome in the set X ∈ A when the observable E ∈
O(Ω,A,H) is measured as

pEρ (X) = Eρ(X) = tr(ρE(X)).

We thus see that pEρ or equivalently Eρ is a probability measure on A.

These outcome probabilities are to be interpreted as follows. If for a system in state ρ,
N times a measurement of E is performed, and if the result measured is N(X) times in the
set X, then we have for large N

pEρ (X) ≈ N(X)

N
.

And for larger N the measured probability approaches the predicted probability closer.

Example 3.10. Consider Example 2.2 (b), where the POVM A : P({1, 2, 3})→M2(C2) is
defined. We can define a state ρ on C2 by giving a positive trace-one matrix, for example:

ρ =

(
1
3 0
0 2

3

)
.

We can now calculate the probability to get the outcome 1, when measuring A for the state
ρ:

pAρ ({1}) = tr(ρA1) = tr

((
1
3 0
0 2

3

)(
1
3 0
0 0

))
= tr

(
1
9 0
0 0

)
=

1

9
.

In the same way, one can calculate to probabilities to get outcomes 2 and 3:

pAρ ({2}) = tr

(
0 0
0 2

9

)
=

2

9
, pAρ ({3}) = tr

(
2
9 0
0 4

9

)
=

6

9
. C

Spectral measures form a special class of observables, called sharp observables.

Definition 3.11 (Sharp observable). Observables that are given by normalized PVM’s, i.e.
spectral measures, are called sharp observables.

13



Remark. In the von-Neumann formalism of quantum mechanics, we identify observables
with self-adjoint operators. But, these observables correspond only with the sharp observ-
ables in the new formalism. To make this concrete, consider an observable E ∈ O(R,F(R),H).
Here F(R) denotes the Borel σ-algebra. For this observable, one can now define the first
moment operator2, E[1], by

E[1] =

∫
R
xdE(x).

With the spectral theorem for (unbounded) self-adjoint operators, one can prove that if
E is sharp, then the first momentum operator E[1] is self-adjoint and for any self-adjoint
operator A, there is a unique sharp observable E, such that E[1] = A. We thus have
a one-to-one correspondence between sharp observables and self-adjoint operators. This
correspondence is relevant to distinguish this new formalism from the standard one. Indeed,
by only regarding self-adjoint operators (and thus sharp observables) as observables, one
rejects the whole class of observables represented by semispectral measures that are not
sharp. We refer to the Remark after Theorem 3.14 for some examples of these non-sharp
observables.

We will now give the corresponding probability interpretation for (sharp) observables in
the von Neumann formalism, which, as can be shown, coincides with Definition 3.9. For
this example, let H be finite-dimensional, and let E ∈ O(R,F(R),H) be sharp. We now
only consider the first momentum operator E[1] = A ∈ B(H), which is self-adjoint. Let
σ(A) be its spectrum. For λ ∈ σ(A), eλ will denote the projection onto the eigenspace
Hλ = {ψλ ∈ H | Aψλ = λψλ}. We can now define the probability distribution pρA on σ(A)
for the state ρ by the Born rule

pAρ (λ) = tr(ρeλ),

and we interpret this as the probability that, when measuring the observable A, we get λ
as a result. If in fact ρ = |φ〉〈φ| for some φ ∈ H with ‖φ‖ = 1 (i.e. ρ is a pure state) and we
write pAφ for pA|φ〉〈φ|, this simplifies to

pAφ = 〈φ | eλφ〉 .

If in addition Hλ is one dimensional, such that eλ = |ψλ〉〈ψλ|, the Born rule takes its
standard form, in which it can be found in all standard introductions to quantum mechanics,

pAφ (λ) = |〈φ |ψλ〉|2.

For an extensive treatment of this formalism, the proofs of the statements above and the
correspondings statements in an arbitrary Hilbert space, we refer to [14, Ch. 2, Ch. 4].

Remark. The term sharp suggest that a sharp operator is precisely defined or noiseless in
a certain way. This is indeed the case. To make this concrete, consider again an observable
E ∈ O(R,F(R),H) and its first moment operators, as in the previous remark. We also
define its second moment operator E[2] as

E[2] =

∫
R
x2 dE(x).

2This operator is unbounded and its domain consist of the φ ∈ H such that x is integrable with respect to
the complex measure Eφ,ψ for all ψ ∈ H. But since unbounded operators are outside the scope of this thesis,
we will not go into further detail here and do not pay attention to the relevant domains in the remainder of
this section.
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With these moment operators, for a given state ρ one can define the expectation and the
variance of the probability measure Eρ, by the integrals

Exp(Eρ) =

∫
R
xdEρ(x) = tr(ρE[1]),

Var(Eρ) =

∫
R
x2 dEρ(x)−

(∫
R
x dEρ(x)

)2

= tr(ρE[2])− (tr(ρE[1]))
2
.

If we now define the noise operator N(E) = E[2] − (E[1])2, we can rewrite the second
equation as the sum of two non-negative terms:

Var(Eρ) =
(
tr(ρ(E[1])2)− tr(ρE[1])2

)
+ tr(ρN(E)).

This last noise-term is in general not zero; but it can be shown that for a sharp observable
it is. In fact, an observable E ∈ O(R,F(R),H) with self-adjoint first momentum operator
is sharp if and only if its noise operator is zero. See for example [3, Thm. 8.5, Cor. 9.1].

3.1 Classes of observables

Now that we have laid down the basis of this formalism, we can introduce some special
observables.

If E1, E2 ∈ O(Ω,A,H) and t ∈ (0, 1), then we define the observable E = tE1 + (1− t)E2

by
A 3 X 7→ E(X) = tE1(X) + (1− t)E2(X) ∈ E(H).

And thus we see that the set of observables is convex, induced by the convexity of E(H).

Definition 3.12 (Extreme Observable). We say that E ∈ O(Ω,A,H) is an extreme ob-
servable if E is an element of the extreme boundary of O(Ω,A,H), i.e. if

E ∈ ex(O(Ω,A,H)).

Proposition 3.13. Sharp observables are extreme.

Proof. Let P : A → B(H) be a sharp observable, that is, P (X) is a projection for all X ∈ A.
Now assume P = tA+ (1− t)B, for observables A and B, and t ∈ (0, 1). For every X ∈ A
we have

P (X) = tA(X) + (1− t)B(X),

and since from Theorem 3.6 we know that P (X) is extreme, we conclude

P (X) = A(X) = B(X).

Because this holds for every X, the claim follows.

There is a convenient characterisation of extreme observables, given in the theorem below.
Because the proof is slightly involved we will not give the complete proof here, but we refer
to the original article.

Theorem 3.14. Let A ∈ O(Ω,A,H), and let (K, P, J) be a minimal diagonal Naimark
dilation of A. Then A is extreme if and only if for any bounded operator D ∈ B(K) such
that [D,P (X)] = 0 ∀X ∈ A, the condition J∗DJ = 0 implies D = 0.
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Sketch of proof. Theorem 2 of [15] gives the result for a bounded decomposable operator
D. Then we use Proposition 8.11 in [3], stating that D is decomposable if and only if it
commutes with every Mf , f ∈ L∞(A, µ), where Mf is the multiplication operator with f .
And since every Mf is a norm limit of a sequence of linear combination of MχX

, any D
commuting with every MχX

commutes with every Mf . Now Theorem 2.8 shows that P is
of the form P (X) = MχX

.

Remark. For an infinite-dimensional Hilbert space H, there are observables that are ex-
treme, but not sharp. These observables are not artificial mathematical constructions, but
are of real physical relevance. All these examples are defined on infinite-dimensional Hilbert
spaces, and the proofs are beyond the scope of this article. But the existence of these
observables is the reason the questions in this article are relevant, since these non-sharp
extreme observables are precisely the observables which could not be studied in the old
formalism. Therefore, we will try to give some examples, which can be found in more detail
in [7, 9, 15, 17]. For these examples, consider the single-mode optical field with the Hilbert
space H ∼= L2(R) spanned by the photon number states {|0〉 , |1〉 , |2〉 , . . .}, associated with
the number operator

N = a∗a =

∞∑
n=0

n |n〉〈n| ,

where a =
∑∞
n=0

√
n+ 1 |n〉 〈n+ 1|. Define the position and momentum operator Q and P ,

respectively, as follows:

Q = 1√
2
(a∗ + a), P = i√

2
(a∗ − a),

which in position space behave as expected, (Qψ)(x) = xψ(x), (Pψ)(x) = −idψdx (x). For
q, p ∈ R define the Weyl operators

W (q, p) = e
iqp
2 e−iqP eipQ,

and thus for all ψ ∈ H = L2(R) we have ((D(q, p)ψ)(x) = e
iqp
2 eipzψ(x − q). Consider the

following two observables.

• For ρ ∈ S(H), define the covariant phase space observable Gρ for Z ⊆ C

Gρ(Z) =
1

2π

∫
Z

W (Re(z), Im(z))ρW (Re(z), Im(z))∗dz,

This observable represents the measurement in a so-called eight-port homodyne de-
tector, with reference state ρ. A homodyne detector is used to extract information
encoded in the phase of signal by comparing it to the signal that would have been
transmitted if no information was encoded. If ρ is a pure state, i.e. ρ = |ψ〉〈ψ| for a
normalized ψ ∈ H, and 〈ψ |W (q, p)ψ〉 6= 0 for all (q, p) ∈ R2, it can be shown that Gρ
is a extreme observable, but not sharp, see [10, Thm. 1].

• The canonical phase observable Φ for X ⊆ [0, 2π)

Φ(X) =

∞∑
n,m=0

1

2π

∫
X

ei(n−m)θ dθ |n〉 〈m| .

For a discussion how to physically measure this observable, we refer to [17]. In [9] it
shown that Φ is an extreme, but not a sharp, observable.
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An important class of observables are the so called discrete observables. They occur in
nature, but are also very useful for giving simple examples of observables. In Example 2.2
(b) we already saw an example of a discrete observable. Using a discrete observable, one can
think of a complete discrete observable, since its definition is simpler, and in most situations
sufficient.

Definition 3.15 (Completely discrete observable). An observable E ∈ O(Ω,A,H) is called
completely discrete if there exists a countable set Ω0 ⊆ Ω, such that {ω} ∈ A ∀ω ∈ Ω0 and
E(Ω0) = I .

Then for an observable as in the definition above,

E(X) = E(Ω0 ∩X) =
∑

ωi∈Ω0∩X
E({ωi}).

Now we can denote a completely discrete observable by its generating effects Ei = E({ωi}),
that is,

E = (E1, E2, . . . ).

If Ω is finite, one can always denote an observable by E = (E1, E2, . . . , En). In the case
that ωi /∈ A for some ωi we have the somewhat weaker notion of a discrete observable.

Definition 3.16 (Discrete observabele). An observabele E ∈ O(Ω,A,H) is called discrete
if there exists a countable set Ω0 ⊆ Ω such that E is absolutely continuous with respect to
the measure

∑
ω∈Ω δω, where δx is the point measure concentrated on the point x.

This implies that one can identify an discrete observable A with the sequence (Ai)
∞
i=1 of

effects where Ai = A(Xi), and {Xi}∞i=1 is a disjoint collections of sets. This sequence can
contain empty sets and it may happen that Ai = 0 for some i’s. Now we can restrict A to
the sub-σ-algebra generated by {Xi}∞i=1.

Any effect induces a simple binary observable on a binary outcome space.

Definition 3.17 (Binarization). Let E ∈ E(H) an effect operator. We define the binary
observable

OE : {∅, {+1}, {−1}, {+1,−1}} → B(H)

by OE({+1}) = E, and hence OE({−1}) = I −E.
For A ∈ O(Ω,A,H), we define its binarization associated to X as the binary observable
OA(X). A binarization is sometimes also called a partitioning.

In the next definition, the concept of a weak Markov Kernel is used. Its definition can be
found as Definition B.7 in Appendix B.

Definition 3.18 (Smearing). Let A ∈ O(Ω,A,H), M ∈ O(Ω,A,H). We call A a smearing
or post-processing of M , if there exist:

(a) a σ-finite measure µ : A → [0,∞], such that M is absolutely continuous with respect
to it, i.e. µ(X) = 0 implies M(X) = 0,

(b) a weak Markov Kernel β : Ω ×A → R with respect to µ, such that

A(X) =

∫
Ω

β(ω,X) dM(ω).
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4 Compatibility properties

The problem of measuring simultaneous two or more observables lies at the hart of quantum
mechanics. Unlike in classical physcis, in quantum mechanics this is usually not possible.
But under certain circumstances it is. It is well known that if observables are represented
by self-adjoint operators, two observables are jointly measurable if and only if the opera-
tors commute. But in the formalism of quantum measurement, this only holds for sharp
observables, as we shall see. So we will define other compatibility properties to characterise
whether observables can be measured together or not. The most basic property will be joint
measurability, which is essentially the property whether one can measure two observables A
and B by measuring a single observable M . For an observable A : A → B(H), we denote
its range by ran(A) = {A(X) | X ∈ A}. For the rest of this section, let A ∈ O(Ω1,A1,H),
B ∈ O(Ω2,A2,H) be two observables.

Definition 4.1 (Joint measurability). Let A1 ⊗ A2 denote the σ-algebra generated by
A1 × A2. The observables A and B are called jointly measurable if there exists a POVM
M : A1 ⊗A2 → B(H) such that for all X ∈ A1 and all Y ∈ A2,

A(X) = M(X ×Ω2), B(Y ) = M(Ω1 × Y ).

To verify that two observables are jointly measurable on this definition, one has to
explicitly construct the joint observable, and to prove that two observables are not jointly
measurable one has to show that such an observable does not exist. In many cases this is
not an easy task. Therefore, other definitions of compatibility, equivalent to or weaker than
joint measurability, have been formulated, hoping these are easier to verify. We will first
give three definitions, which, as we will show, are equivalent to joint measurability.

Definition 4.2 (Common bi-observable). The observables A and B are said to have a
common bi-observable if there is a bi-observable M : A1 × A2 → B(H) such that for all
X ∈ A1, Y ∈ A2,

A(X) = M(X,Ω2), B(Y ) = M(Ω1, Y ).

Definition 4.3 (Functions of an observable). The observables A and B are called functions
of an observable if there is an observable M ∈ O(Ω,A,H), and two measurable functions
f1 : Ω → Ω1, f2 : Ω → Ω2, such that for all X ∈ A1, Y ∈ A2

A(X) = M(f−11 (X)), B(Y ) = M(f−12 (Y )).

Definition 4.4 (Smearing of an observable). The observables A and B are said to be
smearings of an observable M ∈ O(Ω,A,H), if there are weak Markov kernels β1 : Ω×A1 →
R and β2 : Ω × A2 → R, such that A is a smearing of M with respect to β1 and B is a
smearing of M with respect to β2.

The next theorem states that under the right topological assumptions on the outcome
spaces the previous four compatibility properties are equivalent. These topological require-
ments are reasonable and for example hold if Ω is a subset of (Rn,F(Rn)) (see [3, prop.
4.9]). Here F(Rn) indicates the Borel σ-algebra. Because these topological details are be-
yond the scope of this article, we refer to [3, Section 4.7] for the proofs concerning these
properties. In the remainder of this theorem, we assume these conditions when necessary.

18



Theorem 4.5. Assume the outcome spaces (Ω1,A1) and (Ω2,A2) of A and B, respectively,
have the right topological properties.3 Then the following conditions are equivalent:

(a) A and B have a common bi-observable;

(b) A and B are jointly measurable;

(c) A and B are functions of a third observable;

(d) A and B are smearings of a third observable.

Proof. For the proof of (a) =⇒ (b) we refer to [3, Thm. 4.2]. The implication (b) =⇒ (c)
is quite trivial. Indeed, for a joint observable M : A1 ⊗A2 → B(H) of A and B, functions
f1 : Ω1 × Ω2 → Ω1, f2 : Ω1 × Ω2 → Ω2 given by f1(x, y) = x, f2(x, y) = y such that
f−11 (X) = X ×Ω2, f

−1
2 (Y ) = Ω1 × Y make A and B functions of the observable M .

For the implications (c) =⇒ (d), assume that A and B are functions of a third observables
M via functions fi : Ω → Ωi, i = 1, 2. Then the Markov kernels β1, β2, defined by

β1 : Ω ×A1 → R β2 : Ω ×A2 → R

β1(ω,X) = χX(f1(ω)) β2(ω, Y ) = χY (f2(ω)),

make A and B smearings of M .
Now we consider the last implication: (d) =⇒ (a). Let M ∈ O(Ω,A,H) be an observable
such that A and B are smearings of M by means of Markov kernels β1, β2. Consider the
positive operator bimeasure O : A1 ×A2 → B(H) defined by

O(X,Y ) =

∫
Ω

β1(ω,X)β2(ω, Y ) dM(ω).

Since A(X) = O(X,Ω2) ∀X ∈ A1 and B(Y ) = O(Ω1, Y ) ∀X ∈ A2, we see that O is a
bi-observable for A and B.

But also these compatibility properties are usually not easy to verify, since they essen-
tially require one to construct some kind of joint observable. This is the reason why people
have come up with weaker notions of compatibility, namely commutativity, coexistence, and
joint measurability of binarizations which are easier to verify. Commutativity is the easi-
est one, since it doesn’t require the construction of another observable, but only imposes
requirements on the given observables themselves.

Definition 4.6 (Commutativity). Two POVMs A and B are said to commute if

[A(X), B(Y )] = A(X)B(Y )−B(Y )A(X) = 0 ∀X ∈ A1, ∀Y ∈ A2.

Notice that this is a somewhat non-standard definition of commutativity, since with this
definition, a POVM does not need to commute with itself.

We will now give the equivalent of the well-known property that, when identifying ob-
servables with self-adjoint observables, observables are jointly measurable if and only if they
commute.

3We assume Ω is a Hausdorff space and there is a ring R generating the σ-algebra A, such that Ω is the
union of a countable collection of members of R. Moreover, we assume that every σ-additive set function
µ : R→ [0,∞) is such that for each L ∈ R and ε > 0 there is a set O ∈ R with a compact set K such that
O ⊆ K ⊆ L and µ(L)− µ(O) < ε.
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Proposition 4.7. Let A ∈ O(Ω1,A1,H), B ∈ O(Ω2,A2,H) be two observables and assume
A is sharp. Then A and B commute if and only if they are jointly measurable. In that case
they have a unique joint observable M , determined by

M(X × Y ) = A(X)B(Y ) ∀X ∈ A1, Y ∈ A2.

Proof. Let A ∈ O(Ω1,A1,H) be sharp and B ∈ O(Ω2,A2,H). First assume A and B
commute. We claim that M : A1 ×A2 → B(H), defined by

M(X,Y ) = A(X)B(Y ),

is a bi-observable for A and B. For M to be an bi-observable it is sufficient to check that
it is positive, since the other properties follow immediately from the fact that A and B are
observables. To see that M is positive, take X ∈ A1, Y ∈ A2 arbitrarily and consider

〈φ |M(X,Y )φ〉 = 〈φ |A(X)B(Y )φ〉 =
〈
φ
∣∣A(X)2B(Y )φ

〉
(since A(X) is a projection)

= 〈A(X)φ |A(X)B(Y )φ〉
= 〈A(X)φ |B(Y )A(X)φ〉 ≥ 0.

Now it follows immediately that M is a bi-observable for A and B, and with Theorem 4.5
we conclude that A and B are jointly measurable.

To prove the other implication, let M ∈ O(Ω,A,H) be the joint observable of A and B,
and let X ∈ A1, Y ∈ A2 be arbitrary. Since

M(X × Y ) ≤M(X ×Ω2) = A(X),

it follows that ranM ⊆ ranA. Because A(X) is a projection, from Proposition A.18 one
has

A(X)M(X × Y ) = M(X × Y )A(X) = M(X × Y ).

Applying this to Xc, we obtain

A(X)M(Xc × Y ) = (I −A(Xc))M(Xc × Y ) = 0 and M(Xc × Y )A(X) = 0.

It now follows that

A(X)B(Y ) = A(X)M(Ω1 × Y ) = A(X)((M(X × Y ) +M(Xc × Y )) = M(X × Y ),

and similarly
B(Y )A(X) = M(X × Y ).

We conclude that A and B commute, and since M is determined by its values on product
sets, it is unique.

Coexistence is another a weaker property than joint measurability, since it only requires
the existence of a encompassing observable, the so called mother observable of the two
observables, but not an explicit way to obtain the measurement outcome of the original
observables, when we have measured the mother observable.

Definition 4.8 (Coexistence). Two POVMs A and B are called coexistent if there exists a
POVM M such that

ran(A) ∪ ran(B) ⊆ ran(M).

Such a POVM M is called a mother observable to A and B.
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We will extensively study the relationship between coexistence and joint measurability
in the next section. But first, we introduce the last compatibility property which we will
study. It has been introduced by Heinosaari et al. in [11], and concerns the binarizations of
observables, instead of the observables themselves. Since binarizations are simple observ-
ables, with only two non-trivial outcomes, it is often easier to study them instead of the
original observables.

Definition 4.9 (Joint Measurability of Binarizations). The observables A and B are said
to have jointly measurable binarizations if for all X ∈ A1 and Y ∈ A2 the binarizations
OA(X) and OB(Y ) are jointly measurable.

As we shall see in the next few pages, for sharp observables all compatibility properties
are equivalent, including coexistence and joint measurability of binarizations. In the next
part of this paper, we will be looking for weaker notions than sharpness for the these last two
properties to be equivalent with joint measurability. That would be really helpful, because
then for these classes of observables it is sufficient to verify one of these simpler notions to
prove joint measurability. In section 4.1 we study the link between coexistence and joint
measurability, and in section 4.2 we study the relationship between joint measurability of
binarizations and joint measurabiliy.

4.1 Coexistence and Joint Measurability

It is obvious that joint measurability of two observables implies their coexistence, since the
POVM M in Definition 4.1 is clearly a mother observable of A and B. But the converse does
not hold in general, as proved by Reeb et al. [18]. We will now give their counterexample,
which is a simple construction concerning two observables.

Proposition 4.10. Coexistence does not imply joint measurability.

Proof. We will construct observables A and B that are coexistent but not jointly measurable.
Let ΩA = {1, 2, 3} and ΩB = {1, 2}. Let {|1〉 , |2〉 , |3〉} be an orthonormal basis of H = C3

and let |φ〉 = 1√
3
(|1〉 ,+ |2〉+ |3〉). Define the following effects:

Ai = 1
2 (I − |i〉 〈i|), i ∈ ΩA,

B1 = 1
2 |φ〉〈φ| , B2 = I −B1.

To show that A and B are coexistent we have to construct an observable whose range
contains the ranges of A and B. Now consider the observable M on the outcome space
ΩM = {1, 2, 3, 4, 5} given by

M =
(
1
2 |1〉〈1| ,

1
2 |2〉〈2| ,

1
2 |3〉〈3| , B1,

1
2 I −B1

)
.

We can now see that M is a mother observable for A and B by noting

Ai = M({2, 3}), A2 = M({1, 3}), A3 = M({1, 2}), B1 = M({4}) and B2 = M({1, 2, 3, 5}),

and conclude that A and B are coexistent.
To prove that A and B aren’t jointly measurable, we argue by contradiction. If they would
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be jointly measurable, there should exist an observable J = (J11, J12, J21, J22, J31, J32) such
that

Ai =

2∑
j=1

Jij ∀i ∈ ΩA, and Bj =

3∑
j=1

Jij ∀j ∈ ΩB .

Because the range of the projection operator B1 is one-dimensional, Ji1 = λiB1 must hold
for all i ∈ ΩA for some λi ≥ 0. And hence, by the equations above Ai = λiB1 + Ji2. But
then

0 = 〈i|Ai|i〉 =
λi
2
|〈i |φ〉|2 + 〈i|Ji2|i〉 ∀i ∈ ΩA,

which implies λi = 0 ∀i, since |〈i |φ〉|2 = 1
3 . Then however Ji1 = 0 for all i and hence

B1 = 0, which is the desired contradiction.

Recently Haapasalo et al. proved that if one of the two observables A,B is extreme and
discrete, then coexistence and joint measurability are equivalent [8]. We will now give a
slightly revised and more detailed version of their proof. We have also corrected a minor
mistake in the proof of the following lemma.

Lemma 4.11. Let H and K be Hilbert spaces and let A ∈ B(H,K) and B ∈ B(H). Then
0 ≤ B ≤ A∗A if and only if there exists a C ∈ B(K), 0 ≤ C ≤ IK, such that B = A∗CA.
Furthermore, C is unique if and only if ran(A) is dense in K.

Proof. First assume that 0 ≤ B ≤ A∗A. For an arbitrary φ ∈ H, we define C0(Aφ) =
√
Bφ.

First we show this is well defined. If Aφ = Aψ, i.e. Aφ− = 0 for φ− = φ− ψ, then

0 ≤ ‖C0(Aφ−)‖2 =
∥∥∥√Bφ−∥∥∥2 = 〈φ− |Bφ−〉 ≤ 〈φ− |A∗Aφ−〉 = ‖Aφ−‖ = 0,

and with linearity we can conclude C0(Aφ) = C0(Aψ). If η ∈ ran(A)⊥ then define C0(η) =
0. Now we define C = C∗0C0, and we see that

〈φ |A∗CAφ〉 = 〈φ |A∗C∗0C0Aφ〉 = 〈C0Aφ |C0Aφ〉 =
〈√

Bφ
∣∣∣√Bφ〉 = 〈φ |Bφ〉 ,

and so B = A∗CA. Furthermore, from 〈Aφ | (IK−C)Aφ〉 = 〈φ |A∗Aφ〉− 〈φ |Bφ〉 it directly
follows that 0 ≤ C ≤ IK. Now assume that there is a 0 ≤ C ≤ IK, such that B = A∗CA.
For any φ ∈ H we have

〈φ |Bφ〉 = 〈φ |A∗CAφ〉 = 〈Aφ |CAφ〉 ≥ 0,

since C is positive. But also because C ≤ IK, one has

0 ≤ 〈Aφ | (IK−C)Aφ〉 = 〈Aφ |Aφ〉 − 〈Aφ |CAφ〉 = 〈φ |A∗Aφ〉 − 〈φ |Bφ〉 ,

we have verified that 0 ≤ B ≤ A∗A.
Concerning uniqueness of C, we notice that C is determined by A and B only on the

closure of the range of A. So if and only if ran(A) is dense in K, i.e. ran(A)⊥ = {0}, and
hence C is unique.

Theorem 4.12. Let A ∈ O(Ω,A,H) and M ∈ O(Ω,A,H) If A is discrete and extreme
and such that ran(A) ⊆ ran(M), then A and M are jointly measurable.
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Proof. Let A ∈ O(Ω,A,H) and M ∈ O(Ω,A,H) and assume that there are X ∈ Σ and
ZX ∈ Σ such that M(ZX) = A(X). Pick a minimal diagonal Naimark dilation (K, P, J) for
A. For all Z ∈ Σ,

M(Z ∩ ZX) ≤M(ZX) = A(X) = (P (X)J)∗P (X)J,

and Lemma 4.11 implies that there exists a CX(Z) ∈ B(K) such that 0 ≤ CX(Z) ≤ IK,
and

M(Z ∩ ZX) = (P (X)J)∗CX(Z)P (X)J = J∗P (X)CX(Z)P (X)J.

From this we see that we can choose CX(Z) such that CX(Z)K ⊆ P (X)K, and with Propo-
sition A.18 we conclude 0 ≤ CX(Z) ≤ P (X) and

M(Z ∩ ZX) = J∗CX(Z)P (X)J. (1)

Assume now that A is discrete, that is, there exists a disjoint sequence {Xi}∞i=1 such that one
can identify A with the sequence (Ai)

∞
i=1 where Ai = A(Xi). Similarly, we write Pi = P (Xi).

Moreover, we assume that A is extreme and that ranA ⊆ ranM . Now, for all X ∈ A there
is a ZX ∈ A such that M(ZX) = A(X) and, as above, we have the positive operators
CX(Z) ≤ P (X) such that (1) holds for all X ∈ A and Z ∈ A. From now on, denote
Ci(Z) = CXi

(Z) and Zi = ZXi
for any i and Z ∈ A. Note that since I ∈ ran(A) and

M(Ω) = I we must have ∪∞i=1Zi = Ω. It follows that 0 ≤ Ci(Z) ≤ Pi for any i and Z ∈ A,
and with Proposition A.18 we conclude Ci(Z) = PiCi(Z) = Ci(Z)Pi. For any Xi 6= Xj such
that Ai 6= 0 6= Aj one has from (1),

M(Zi ∩ Zj) = J∗Ci(Zj)J = J∗Cj(Zi)J.

By defining D = Ci(Zj)− Cj(Zi) we get

J∗DJ = 0, [D,P (X)] = 0 ∀X ∈ A,

implying D = 0 by Theorem 3.14, so that, since the operator Ci(Zj) and Cj(Zi) are sup-
ported on the orthogonal subspaces PiH and PjH, we have Ci(Zj) = 0 = Cj(Zi) and
M(Zi ∩ Zj) = 0. From Equation (1) we get

M(Z ∩ Zi) = J∗Ci(Z)J.

Claim: For all i, Ci : A → B(PiK) is a unique normalized POVM.
Assume that (Wn)∞n=1 is a disjoint sequence in A. For any N ∈ N the following equality
holds for any i:

J∗Ci

( N⋃
n=1

Wn

)
J = M

( N⋃
n=1

Wn ∩ Zi
)

=

N∑
n=1

M(Wn ∩ Zi) =

N∑
n=1

J∗Ci(Wn)J.

Since the operator Ci
(⋃N

n=1Wn

)
−
∑N
n=1 Ci(Wn) commutes with the spectral measure P ,

by using the previous equality together with the extremality of A we can conclude, with
Theorem 3.14, that

N∑
n=1

Ci(Wn) = Ci

( N⋃
n=1

Wn

)
≤ Pi.
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Since all the summands are positive, the sequence
(∑N

n=1 Ci(Wn)
)∞
N=1

=
(
Ci
(⋃N

n=1Wn

))∞
N=1

is increasing, as well as bounded from above by Pi, implying that

∞∑
n=1

Ci(Wn) = w-limN→∞

N∑
n=1

Ci(Wn) = sup
N∈N

Ci

( N⋃
n=1

Wn

)
is well-defined, and since the limit is weak, the operator

∑∞
n=1 Ci(Wn) commutes with

P (X) ∀X ∈ A. Again by using Theorem 3.14, one now has

Ci
( ∞⋃
n=1

Wn

)
=

∞∑
n=1

Ci(Wn),

since the operator Ci
(⋃∞

n=1Wn

)
−
∑∞
n=1 Ci(Wn) commutes with the Pj ’s. Hence for all i,

the map Ci : A → B(PiK) is weakly σ-additive. Similarly, Ci(Ω) = Pi = IPiK, proving the
claim. Note that K = ⊕∞i=1PiK.
Now one can define a joint observable N : A⊗A → B(H) via

N(Xi × Z) = J∗Ci(Z)J,

satisfying

A(Xi) = J∗PiJ = N(Xi ×Ω),

M(Z) =
∑
i

M(Z ∩ Zi) =
∑
i

J∗Ci(Z)J = N(Ω × Z). (2)

This proves that A and M are jointly measurable.

Corollary 4.12.1. Any discrete and extreme A ∈ O(Ω1,A1,H) and any B ∈ O(Ω2,A2,H)
are jointly measurable if and only if they are coexistent.

Proof. We use the assumptions and notation of Theorem 4.12. Assume also that ranB ⊆
ranM , i.e. for each Y ∈ A2 there exists a WY ∈ A such that M(WY ) = B(Y ). Then, by
Equation (2) we have

B(Y ) = M(WY ) =

∞∑
i=1

J∗Ci(WY )J.

We now claim that
C ′i : A2 → B(PiK), C ′i(Y ) = Ci(WY )

is a semispectral measure for all i ∈ N. Namely, let (Yn)∞n=1 ⊆ A2 be a disjoint sequence,

and write Y N =
⋃N
n=1 Yn for any N ∈ N. Now one has

∑
i

J∗Ci(WY N )J = B(Y N ) =

N∑
n=1

B(Yn) =
∑
i

N∑
n=1

J∗Ci(WYn
)J,

and because A is extreme, from Theorem 3.14 we can conclude

∑
i

Ci(WY N ) =
∑
i

N∑
n=1

Ci(WYn).
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Since the images of Ci are supported on mutually orthogonal subspaces, it follows that

C ′i

(
N⋃
n=1

Yn

)
= Ci(WY N ) =

N∑
n=1

Ci(WYn
) =

N∑
n=1

C ′i(Yn),

for all i and N , and, as in the previous proof, the sequence of finite partial sums in increasing
and bounded from above, and one can show that C ′i is weakly σ-additive. Positivity of C ′i
follows immediately from the positivity of Ci. And since B(Ω2) = I = M(WΩ2

), we have
WΩ2

= Ω, and we see that C ′i is normalised. This proves our claim that C ′i is a semispectral
measure. And thus we see that

(Xi, Y ) 7→ J∗Ci(WY )J

is a common bi-observable of A and B, and by Theorem 4.5 we conclude that A and B are
jointly measurable.

4.2 Joint Measurability of Binarizations and Coexistence

We will now discuss the relationship between joint measurability of binarizations and coex-
istence of two quantum observables. We first note that for binary observables, coexistence
and joint measurability are equivalent, as proved in [13].

Proposition 4.13. Let OE , OF ∈ O(Ω = {+1,−1},P(Ω),H) be two binary observables
for effects E,F ∈ E(H). OE , OF are jointly measurable if and only if they are coexistent.

Proof. Let OE , OF ∈ O(Ω = {+1,−1},P(Ω),H) and let M ∈ O(Ω,A,H) a mother ob-
servable of OE , OF , such that M(X) = E, M(Y ) = F . Now consider the following partition
of Ω

R = {X ∩ Y,Xc ∩ Y,X ∩ Y c, Xc ∩ Y c},

and define the observable MR : {1, 2, 3, 4} → B(H) by

(MR1 ,M
R
2 ,M

R
3 ,M

R
4 ) =

(
M(X ∩ Y ),M(Xc ∩ Y ),M(X ∩ Y c),M(Xc ∩ Y c)

)
.

We now define the functions f1, f2, by

f1 : {1, 2, 3, 4} → {+1,−1} f2 : {1, 2, 3, 4} → {+1,−1},
f1 : 1, 3 7→ 1; 2, 4 7→ −1 f2 : 1, 2 7→ 1; 3, 4 7→ −1,

and hence we can write

E = M(X) = M((X ∩ Y ) ∪ (X ∩ Y c)) = M(X ∩ Y ) +M(X ∩ Y c) = MR(f−11 (1)),

F = M(Y ) = M((X ∩ Y ) ∪ (Xc ∩ Y )) = M(X ∩ Y ) +M(Xc ∩ Y ) = MR(f−12 (1)),

which shows that OE , OF are functions of the observable MR and thus by Theorem 4.5
they are jointly measurable.

We also see that coexistence implies joint measurability of binarizations.

Theorem 4.14. If A ∈ O(Ω1,A1,H) and B ∈ O(Ω2,A2,H) are coexistent, they have
jointly measurable binarizations.
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Proof. Let A ∈ O(Ω1,A1,H), and B ∈ O(Ω2,A2,H), and let M ∈ O(Ω,A,H) be their
mother observable, and choose X ∈ A1 and Y ∈ A2 arbitrary. It is clear that M is also a
mother observable for OA(X) and OB(Y ). Thus there is a Z ∈ A such that

OA(X)({+1}) = A(X) = M(Z) =

∫
Ω

β(ω, {+1}) dM(ω),

where β(ω, {+1}) = χZ(ω). We can now extend β to a Markov kernel by defining for all
X ∈ {∅, {+1}, {−1}, {+1,−1}},

β(ω,X) = χf−1(X)(ω),

where f : Ω → {+1,−1} is a measurable function such that

f−1({+1}) = Z,

f−1({−1}) = Ω \ Z,

and now we see that OA(X) is a smearing of M . In exactly the same way OB(Y ) is a
smearing of M as well. With Theorem 4.5 we conclude that OA(X) and BB(Y ) are jointly
measurable.

As Haapsalo et al. has showed in [8], joint measurability of binarizations is a weaker property
than coexistence.

Proposition 4.15. Joint measurability of binarizations does not imply coexistence.

Proof. We will show this by constructing two observables A and B that have jointly mea-
surable binarizations but are not coexistent. Let ΩA = {1, 2, 3} and ΩB = {1, 2}. Let
{|1〉 , |2〉} be the standard orthonormal basis of H = C2 and let |φ〉 = 1√

2
(|1〉 − |2〉). Define

the following effects

A1 = 4
7 |1〉〈1| , A2 = 4

7 |2〉〈2| A3 = I −A1 −A2,

B1 = 4
7 |φ〉〈φ| , B2 = I −B1,

and, from these, define the observables A = (A1, A2, A3) and B = (B1, B2).
If A and B are coexistent, there exists a mother observable M : A → B(C2), such

that ranA ∪ ranB ⊆ ranM. This implies that there exist sets X,Y, Z ∈ A such that
A1 = M(X), A2 = M(Y ), B1 = M(Z). Since these effects are rank-1 and we always have
M(X ∩Y ) ≤M(X), it follows that M(X ∩Y ) = 0. Because this has to hold for all pairwise
intersections of X,Y , and Z, and M(X ∩ Y ∩ Z) ≤M(X ∩ Y ) = 0, we have

M(X ∪ Y ∪ Z) = A1 +A2 +B1 ≤ I,

where the inequality has to hold because the range of an observable only consists of effect
operators. But this gives a contradiction with Proposition 3.7, since the greatest eigenvalue

of A1+A2+B1 =

(
6/7 −2/7
−2/7 6/7

)
is 8

7 and thus the observables A and B are not coexistent.

To see that all binarizations of A and B are jointly measurable, because of Proposi-
tion 4.13 it is sufficient to show that all the binarizations are coexistent, which is the case
if the following three conditions hold:

Ai +B1 ≤ I ∀i ∈ ΩA.
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Indeed, consider the binarization OA1 whose range is {A1, I −A1}. If A1 +B1 ≤ I, we can
define a mother observable M : A → B(C2) by M(X) = A1, M(Y ) = B1 for some disjoint
X,Y ∈ A.

By a straightforward calculation, we then find that the eigenvalues of the the operators

Ai + B1 are λ1 = −2
√
2+4
7 , λ2 = 2

√
2+4
7 for i = 1, 2 and λ1 = 3

7 , λ2 = 1 for i = 3. Now with
Proposition 3.7 one can see that the conditions Ai +B1 ≤ I hold.

But as Heinosaari et al. have showed in [11], if one of the observables A and B is sharp,
joint measurability of binarizations even implies joint measurability of A and B.

Theorem 4.16. Let A ∈ O(Ω1,A1,H) and B ∈ O(Ω2,A2,H) and let A be sharp. If A
and B have jointly measurable binarizations, then A and B are jointly measurable.

Proof. Let A ∈ O(Ω1,A1,H) be a sharp observable and B ∈ O(Ω2,A2,H). Assume that
A and B have jointly measurable binarizations. Since A is sharp, every binarization of A
is. But from Proposition 4.7 we now known that for all X ∈ A1, Y ∈ A2 O

A(X) and OB(Y )

commute. But this means that A and B commute, since for two observables to commute
we have to have [A(X), B(Y )] = [OA(X)(+1), OB(Y )(+1)] = 0 ∀X ∈ A1, Y ∈ A2. And thus
again by Proposition 4.7, we conclude that A and B are jointly measurable.

5 Conclusion

We have studied different compatibility properties and found that they are equivalent in
certain cases. If one of the two studied observables is sharp, i.e. a spectral measure, all
given compatibility properties are equivalent4, as represented in the following scheme. Here
we have written JMOB for joint measurability of binarizations.

Commutativity

m
Joint measurability ⇐⇒ Coexistence ⇐⇒ JMOB

m
Common bi-observable

m
Smearings of a third observable

m
Functions of third observable

4Under the right topological assumptions on the outcome space.
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If one of the observables if extreme and discrete, then the relations between the compatibility
properties are given by the following scheme.

Commutativity

6m

Joint measurability ⇐⇒ Coexistence
?⇐⇒ JMOB

m
Common bi-observable

m
Smearings of a third observable

m
Functions of third observable

There is one unknown in this scheme, namely whether joint measurability of binarizations
is equivalent to coexistence under these conditions. Further research is needed here. There
is also the hope that the rather arbitrary condition of discreteness of one of the observables
can be lifted. If this is the case, then it will be much easier to verify joint measurability
for extreme observables, the most important class of observables, from which all other
observables can be obtained by affine combinations.

28



Appendices

A Functional Analysis

In this section we give a brief introduction to functional analysis, focusing on positive and
trace-class operators. We also give an introduction to and state the spectral theorem.
Although most fundamental definitions are given, a basic understanding of (functional)
analysis is assumed. We will always write H for a separable Hilbert space. For some
(simple) results we have omitted the proof and refer to any good introduction to functional
analysis, such as [19] and [3, Ch. 2,3].

Definition A.1 (Inner product). Let V be a vector space. We say that a mapping h :
V × V → C is a sesquilinear form, if for all φ, ψ, η ∈ V and α, β ∈ C we have

(a) h(φ, αψ + βη) = αh(φ, ψ) + βh(φ, η);

(b) h(αφ+ βψ, η) = αh(φ, η) + βh(ψ, η);

We denote the set of all sesquilinear forms on V by S(V ). If we also have

h(φ, φ) ≥ 0 ∀φ ∈ V

we call h a positive sesquilinear form. We denote the set of all positive sesquilinear forms
on V by S+(V ). Furthermore, if for a postive sesquilinear form h we have

h(φ, φ) = 0 ⇐⇒ φ = 0,

we call h strict or positive definite. A strict positive sequilinear form is called an inner
product on the vector space V and we call V equipped with h, an inner product space.

For an inner product space V we define its norm by ‖x‖ =
√
〈x |x〉 ∀x ∈ V . And for any

normed linear space W we can define a metric d : W ×W → [0,∞) by d(x, y) = ‖x− y‖,
which makes W into a metric space. We now quickly recapitulate the definitions of Banach
and Hilbert spaces.

Definition A.2.

• We say that a metric space X is complete if every Cauchy sequence in X converges to
an element in X.

• If X is a complete normed vector space, then we say that X is a Banach space.

• If K is a complete inner product space, we say that K is a Hilbert space.

• If H is a Hilbert space and admits a countable orthonormal basis, then we say that H
is a separable Hilbert space.

Definition A.3 (Bounded linear operator). Let V and W be normed linear spaces. A map
T : V →W is called linear if

T (αx+ βy) = αT (x) + βT (y) ∀x, y ∈ V, α, β ∈ C.
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We say that a linear map T is a bounded linear operator from V to W if there is a finite
constant C such that

‖Tx‖W ≤ C‖x‖V .

We denote the set of bounded linear operators T : V →W , by B(V,W ) and we write B(V )
for B(V, V ).

Definition A.4. The norm of a bounded operator T : V →W is given by

‖T‖ = sup
ξ∈V,‖ξ‖≤1

‖Tξ‖.

This norm is called the operator norm.

Proposition A.5. On an inner product space V with induced norm ‖v‖ =
√
〈v | v〉, the

norm of v ∈ V is equal to

‖v‖ = sup{|〈v |w〉| | w ∈ V, ‖w‖ ≤ 1}.

We now immediately have the following corollary for the operator norm.

Corollary A.5.1. The norm of an operator T ∈ B(H) is equal to

‖T‖ = sup{|〈ψ |Tφ〉| | ψ, φ ∈ H, ‖ψ‖ ≤ 1, ‖φ‖ ≤ 1}.

Proposition A.6. Let V be an inner product space.

(a) If φ1, . . . , φn ∈ V are vectors satisfying 〈φi |φj〉 = 0, whenever i 6= j, then∥∥∥∥∥
n∑
k=1

φk

∥∥∥∥∥
2

=

n∑
k=1

‖φk‖2.

(b) For all φ, ψ ∈ V ,

‖φ+ ψ‖2 + ‖φ− ψ‖2 = 2‖φ‖2 + 2‖ψ‖2.

(c) If W is an complex inner product space, then for any φ, ψ ∈W ,

〈φ |ψ〉 =
1

4

(
‖φ+ ψ‖2 − ‖φ− ψ‖2 + i‖φ− iψ‖2 − i‖φ+ iψ‖2

)
.

All of the above equations are proved by simple calculations. The equation in (a) is
the inner product space version of the Pythagorean theorem. The equation in (b) is called
parallelogram law and the one in (c) is the polarisation identity, which shows that the norm
of an inner product space completely determines the inner product from which it is induced.

Proposition A.7 (Parseval’s identity). If K ⊆ H is an orthonormal basis, then

‖φ‖2 =
∑
ξ∈K

|〈ξ |φ〉| ∀φ ∈ H.

A well known fact is that for any bounded operator T there is an operator T ∗, called
the adjoint of T .
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Proposition A.8. For any T ∈ B(H) there is an unique operator T ∗ such that for all
φ, ψ ∈ H,

〈φ |Tψ〉 = 〈T ∗φ |ψ〉 .

We always have T ∗∗ = T.

Definition A.9. We say that an operator T ∈ B(H) is self-adjoint if T ∗ = T .

Proposition A.10. For an operator T ∈ B(H) we have the following equivalence,

T self-adjoint ⇐⇒ 〈φ |Tφ〉 ∈ R ∀φ ∈ H.

Proof. For the implication to the right, we note that for T ∈ B(H) self-adjoint we have

〈φ |Tφ〉 = 〈Tφ |φ〉 = 〈φ |Tφ〉 ∈ C,

and conclude 〈φ |Tφ〉 ∈ R. For the other implication, we note that 〈φ |Tφ〉 = 〈Tφ |φ〉
follows immediately from its realvaluedness. Now by using the following variation of the
polarization identity

〈φ |Tψ〉 = 〈φ+ ψ |T (φ+ ψ)〉 − 〈φ− ψ |T (φ− ψ)〉
+ i 〈φ− iψ |T (φ− iψ)〉 − i 〈φ+ iψ |T (φ+ iψ)〉 ,

self-adjointness follows.

Proposition A.11. If T ∈ B(H) is self-adjoint, then

‖T‖ = sup
‖φ‖≤1

|〈φ |Tφ〉|.

Proof. Using the polarisation identity and the parallelogram law, we obtain for φ, ψ ∈ H
with ‖φ‖ ≤ 1, ‖ψ‖ ≤ 1,

|Re 〈φ |Tψ〉| = 1

4
|〈ψ + φ |T (ψ + φ)〉 − 〈ψ − φ |T (ψ − φ)〉|

≤ 1

4
M(‖ψ + φ‖2 + ‖ψ − φ‖2) =

1

2
M(‖ψ‖2 + ‖φ‖2) ≤M,

where M = sup‖φ‖≤1 |〈φ |Tφ〉|. Suppose now that ‖φ‖ ≤ 1 and ‖ψ‖ ≤ 1. Choose α ∈ C
such that |α| = 1 and |〈φ |Tψ〉| = α 〈φ |Tψ〉 = 〈φ |Tαψ〉. Applying the first part of the
proof to the aψ and φ yields |〈φ |Tψ〉| = Re 〈φ |Tαψ〉 ≤M, so that

‖T‖ = sup {|〈φ |Tψ〉| | ‖φ‖ ≤ 1, ‖ψ‖ ≤ 1} ≤M.

On the other hand, |〈φ |Tφ〉| ≤ ‖φ‖‖T‖ ≤ ‖T‖ if ‖φ‖ ≤ 1, and so M ≤ ‖T‖, proving their
equality.

We will now introduce some classes of operators which are important in quantum me-
chanics.

Proposition A.12. Any T ∈ B(H) can be written uniquely as T = A + iB, with A,B ∈
B(H) self-adjoint.
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Proof. If T = A + iB, and A and B are self-adjoint, we have A = 1
2 (T + T ∗) and B =

1
2i (T − T

∗) and these operators always exist and are self-adjoint if T ∈ B(H).

Definition A.13 (Isometry). An operator T ∈ B(H) is called an isometry if it satisfies

T ∗T = IH .

An equivalent definition for an isometry T is ‖Tψ‖ = ‖ψ‖ for all ψ ∈ H and from this
definition we immediately see that an isometry in injective, by noting ‖Tφ− Tψ‖ = ‖φ− ψ‖.
Whenever an operator is an isometry and also is surjective we call it an unitary operator,
which is equivalent with the following definition.

Definition A.14 (Unitary operator). An operator U ∈ B(H) is called an unitary operator
if it statisfies

U∗U = UU∗ = IH .

Since injectivity implies surjectivity in a finite dimension case, any isometry is an unitary
operator in a finite dimensional Hilbert space .

Definition A.15 (Orthogonal projection). An operator P ∈ B(H) is called an (orthogonal)
projection if

P = P 2 = P ∗.

We denote the set of all projection operators on H by P(H) = {P ∈ B(H) | P = P 2 = P ∗}.

Proposition A.16. For a linear map P : H → H satisfying P = P 2 we have

P = P ∗ ⇐⇒ ‖P‖ ≤ 1.

Proof. Assume P = P ∗ and φ ∈ H. By noticing

‖Pφ‖2 = 〈Pφ |Pφ〉 =
〈
φ
∣∣P 2φ

〉
= 〈φ |Pφ〉 ≤ ‖φ‖‖Pφ‖,

we obtain ‖Pφ‖ ≤ ‖φ‖, proving the implication to the right. For the other implication we
refer to [3, Thm. 2.10].

Definition A.17 (Positive operator). We say that an operator T ∈ B(H) is positive if

〈φ |Tφ〉 ≥ 0 ∀φ ∈ H.

We write B(H)+ for the set of all positive operators on H. For T, S ∈ B(H) self-adjoint we
write S ≤ T if T − S ≥ 0.

Since 〈φ |Tφ〉 ∈ R implies self-adjointness, as proven in Proposition A.10, we see that a
positive operator is self-adjoint.

Proposition A.18. If P ∈ P(H) and T ∈ B(H)+, then the following conditions are equiv-
alent:

(a) T (H) ⊆ P (H) and ‖T‖ ≤ 1;

(b) T ≤ P .

In that case PT = TP = T.
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Proof. First assume (a). For all φ ∈ H we have

〈φ |Tφ〉 = 〈φ |PTφ〉 = 〈Pφ |TPφ〉 ≤ ‖Pφ‖‖T‖‖Pφ‖ ≤ ‖Pφ‖2 = 〈φ |Pφ〉 ,

since PT = T , so that T = T ∗ = T ∗P ∗ = TP.
Now assume (b). We first note that ‖P‖ ≤ 1, by observing

‖Pφ‖2 = 〈Pφ |Pφ〉 =
〈
φ
∣∣P 2φ

〉
= 〈φ |Pφ〉 ≤ ‖φ‖‖Pφ‖,

and thus ‖Pφ‖ ≤ ‖φ‖. Since the map (φ, ψ) 7→ 〈φ |Tψ〉 is a positive sesquilinear form, for
all ξ, φ ∈ H we have by the Cauchy-Swartz inequality

|〈ξ |Tφ〉|2 ≤ 〈ξ |Tξ〉 〈φ |Tφ〉 ≤ 〈ξ |Pξ〉 〈φ |Pφ〉 .

In particular,
‖T‖2 = sup

ξ≤1,φ≤1
|〈ξ |Tφ〉|2 ≤ sup

ξ≤1,φ≤1
‖Pξ‖‖Pφ‖ ≤ 1,

and so ‖T‖ ≤ 1. Furthermore, Tφ = 0 if Pφ = 0 and so 〈ξ |Tφ〉 = 〈Tξ |φ〉 = 0 whenever
φ ∈ H and ξ ∈ P(H)⊥, implying Tφ ∈ P(H)⊥⊥ = P(H), proving T (H) ⊆ P (H).

Corollary A.18.1. For T ∈ B(H)+, one has

‖T‖ ≤ 1 ⇐⇒ T ≤ I .

Proof. Apply Proposition A.18 to the identity I, which is of course a projection onto H.

For a positive operator T one can define the square root of that operator, usually denoted
by
√
T or T

1
2 .

Lemma A.19. For a positive operator T ∈ B(H)+ there is a unique positive operator
√
T ,

satisfying (
√
T )2 = T.

The square root enables us to state the following proposition.

Proposition A.20. Any operator T ∈ B(H) can be written as a linear combination of four
unitary operators.

Proof. Let T ∈ B(H). From Proposition A.12 we know that there are A,B ∈ B(H) self-
adjoint, such that T = A+iB, by dividing this bym = max(‖A‖, ‖B‖) we obtain T

m = C+iD

with C,D ∈ B(H) self-adjoint and ‖C‖ ≤ 1, ‖D‖ ≤ 1. Define U = C + i
√
I −C2. Then

U∗ = C − i
√
I −C2 and we have UU∗ = U∗U = I and A = m

2 (U + U∗). In the same way,
B is the linear combination of two unitary operators and thus we conclude that T can be
written as a linear combination of four unitary operators.

By making the observation that 〈φ |T ∗Tφ〉 = 〈Tφ |Tφ〉 = ‖Tφ‖2 we see that for any
bounded operator T , T ∗T is a positive operator. This makes the following definition sound.

Definition A.21 (Absolute value). For any T ∈ B(H), the positive operator
√
T ∗T is

denoted by |T | and is called the absolute value of T.
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A.1 Trace-class operators

In this section we extend the definition of the trace of a matrix (i.e. the sum of diagonal
elements) to a subset of bounded operators, the so-called trace-class operators.

Lemma A.22. Let K and L be orthonormal bases in the Hilbert space H. If T ∈ B(H),
then:

(a)
∑
ξ∈K

〈ξ |T ∗Tξ〉 =
∑
η∈K
〈η |T ∗Tη〉 .

(b)
∑
ξ∈K

‖Tξ‖2 =
∑
η∈L
‖Tη‖2 =

∑
η∈L
‖T ∗η‖2

Proof. (a) Using Proposition A.7 and the fact that we may exchange the summation in
double series with positive terms, we obtain:∑

ξ∈K

〈ξ |T ∗Tξ〉 =
∑
ξ∈K

‖Tξ‖2 =
∑
ξ∈K

∑
η∈L
|〈η |Tξ〉|2

=
∑
η∈L

∑
ξ∈K

|〈T ∗η | ξ〉|2 =
∑
η∈L
‖T ∗η‖2 =

∑
η∈K
〈η |T ∗Tη〉 .

(b) The equality of the outer sides of the equation was already shown in the identity above.
Taking K = L we also obtain the remaining equality.

Corollary A.22.1. Let K and L be orthonormal bases in the Hilbert space H. If T ∈
B(H)+, then: ∑

ξ∈K

〈ξ |Tξ〉 =
∑
η∈K
〈η |Tη〉 .

Proof. Apply Lemma A.22 on T =
√
T
√
T =

√
T
∗√
T =

√
T
√
T
∗
.

Using this corollary, we can now define the trace base-independently for positive operators.

Definition A.23 (Trace). We define the trace of an operator T ∈ B(H)+ by

tr(T ) =
∑
ξ∈K

〈ξ |Tξ〉 .

Note that tr(T ∗T ) =
∑
ξ∈K ‖Tξ‖

2
. In rest of this section, let K be an orthonormal basis

of H. Using the result above, we will define the set Hilbert-Schmidt operators and the set
of traceclass operators, both independent of the orthonormal basis K.

Definition A.24 (Hilbert-Schimdt operator). If T ∈ B(H) and tr(T ∗T ) < ∞ we say that
T is a Hilbert-Schimdt operator, and we write:

B2(H) = {T ∈ B(H) | tr(T ∗T ) <∞},

for the set of all such operators. For a T ∈ B2(H) we define the Hilbert-Schimdt norm ‖·‖2
as follows:

‖T‖2 =
√

tr(T ∗T )
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Theorem A.25. For all S, T ∈ B2(H) and any orthonormal basis {ξi}i∈N in H, {〈Sξi |Tξi〉}i∈N
is summable and

〈S |T 〉 = tr(S∗T )

is independent of the choice of orthonormal basis K. Then B2(H) is a linear subspace of
B(H) and the mapping 〈· | ·〉 as defined above is an inner product, with respect to which
B2(H) is a Hilbert space.

For a proof we refer to [3, p. 45-46].

Proposition A.26. If S ∈ B2(H), T ∈ B(H), then S∗, ST and TS are in B2(H). Moreover

‖ST‖2 ≤ ‖S‖2‖T‖,
‖TS‖2 ≤ ‖T‖‖S‖2 and

‖S∗‖2 = ‖S‖2.

Proof. We have ∑
ξ∈K

‖TSξ‖2 ≤ ‖T‖2
∑
xi∈K

‖Sξ‖2 = ‖T‖2‖S‖22,

which shows that TS ∈ B2(H) and proves the second inequality. From Lemma A.22 (b)
we see that if S ∈ B2(H) then S∗ ∈ B2(H) and ‖S∗‖2 = ‖S‖2. With this we ascertain
ST = (T ∗S∗)∗ ∈ B2(H). In addition

‖ST‖2 = ‖T ∗S∗‖2 ≤ ‖T
∗‖‖S∗‖2 = ‖S‖2‖T‖,

which proves the first inequality.

Using Corollary A.22.1 we can define the trace class, also independent of choice of the
orthonormal basis K.

Definition A.27 (Trace-class). We write

B1(H) = {T ∈ B(H) | tr(|T |) <∞}

and call this set the trace class.

In the proof of the next lemma, the polar decomposition of an operator is used. In short
this entails that any operator T ∈ B(H) can be written as T = U |T |, where U is a bounded
operator with some additional requirements.5

Lemma A.28. We have the following identities for the trace class:

(a) B1(H) = {ST | S, T ∈ B2(H)};

(b) B1(H) ⊆ B2(H).

5In fact U is an partially isometric operator whose initial projection is supp(|T |).
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Proof. (a) We will prove both inclusions. So first assume S, T ∈ B2(H) and let U |ST | be
the polar decomposition of ST. Now we see that∑

ξ∈K

〈ξ | |ST |ξ〉 =
∑
ξ∈K

〈ξ |U∗STξ〉 =
∑
ξ∈K

=
∑
ξ∈K

〈(U∗S)∗ξ |Tξ〉 ≤ ‖U∗S‖2‖T‖2,

where in the last step we have used the Cauchy-Schwartz inequality for the Hilbert-
Schmidt norm. This shows that ST ∈ B1(H). For the other inclusion, assume that

Q ∈ B1(H) and let V |Q| its polar decomposition, so that Q = V |Q|
1
2 |Q|

1
2 . Now we

see that |Q|
1
2 ∈ B2(H), since Q ∈ B1(H) implies∥∥∥(|Q|

1
2 )
∥∥∥2
2

=
∑
ξ∈K

〈
|Q|

1
2 ξ
∣∣∣ |Q| 12 ξ〉 =

∑
ξ∈K

〈ξ | |Q|ξ〉 <∞,

and W |Q|
1
2 ∈ B2(H) by Proposition A.26.

(b) This follows immediately from (a) and Proposition A.26.

Lemma A.29. If K and L are orthonormal bases of H, T ∈ B1(H), then the sequences
(〈ξ |Tξ〉)ξ∈K , (〈η |Tη〉)η∈L are summable, and∑

ξ∈K

〈ξ |Tξ〉 =
∑
η∈L
〈η |Tη〉 .

Proof. Let T ∈ B1(H). From Lemma A.28 we know that there are A,B ∈ B2(H) such that
T = AB. By writing 〈ξ |Tξ〉 = 〈A∗ξ |Bξ〉 and noting that A∗ ∈ B2(H), the result follows
from Theorem A.25.

With this lemma we can extend the trace, as defined in Definition A.23 base-independently
to all operators in the trace class. We can also define the trace norm.

Definition A.30 (Trace norm). For T ∈ B1(H), we define the trace norm ‖·‖1 by

‖T‖1 = tr(|T |).

Notice that tr(|T |) =
∥∥∥|T | 12 ∥∥∥2

2
.

Proposition A.31. If S ∈ B1(H), T ∈ B(H), then S∗, ST , and TS are in B1(H).

Proof. Let T, S ∈ B1(H), from Lemma A.28 it follows that T, S ∈ B2(H) and thus again
with the same lemma one has that TS, ST ∈ B1(H). Again from this lemma one can
find operators A,B ∈ B2(H) such that S = AB. From Proposition A.26 it follows that
A∗, B∗ ∈ B2(H) and we conclude S∗ = B∗A∗ ∈ B1(H).

Proposition A.32. The trace is a linear functional on B1(H). Besides, for any T ∈ B1(H)
and U ∈ B(H) unitary we have

tr(T ) = tr(U∗TU).

Moreover, for any S ∈ B(H) we have

tr(ST ) = tr(TS).
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Proof. Linearity of the trace follows immediately from linearity of the inner product and
the definition of the trace. Let T ∈ B1(H) and U ∈ B(H) be unitary and K an orthonormal
basis in K, then UK = {Uξ | ξ ∈ K} is also an orthonormal basis of H and hence with
Lemma A.29 we have

tr(U∗TU) =
∑
ξ∈K

〈Uξ |TUξ〉 =
∑
η∈UK

〈η |Tη〉 = tr(T ).

Thus for U ∈ B(H) unitary we have

tr(UT ) = tr(U∗UTU) = tr(TU),

and since by Proposition A.20 any operator is a linear combination of four unitary operators,
it follows from linearity of the trace that for any S ∈ B(H) we have tr(ST ) = tr(TS).

Proposition A.33. For all S ∈ B(H), T ∈ B1(H) one has

|tr(ST )| ≤ ‖S‖ ‖T‖1.

Proof. Let T ∈ B1(H) and S ∈ B(H). By writing U |T | for the polar decomposition of T ,
we have

|tr(ST )| = |tr(SU |T |)| =
∣∣∣SU |T | 12 |T | 12 ∣∣∣ =

∣∣∣∣∣∣
∑
ξ∈K

〈
|T |

1
2U ∗ S∗ξ

∣∣∣ |T | 12 ξ〉
∣∣∣∣∣∣

≤
∥∥∥|T | 12U∗S∗∥∥∥

2

∥∥∥|T | 12 ∥∥∥
2
≤
∥∥∥|T | 12 ∥∥∥

2
‖U∗‖‖S∗‖

∥∥∥|T | 12 ∥∥∥
2

= ‖S‖‖T‖1,

where for the first inequality we have used Cauchy-Swartz for the Hilbert-Schmidt inner-
product from Theorem A.25. For the second inequality we used Proposition A.26 and in
the final step we used the fact that for the polar decomposition ‖U‖ = 1 holds.

Proposition A.34. If T ∈ B1(H) ∩ B(H)+ and S ∈ B(H)+ then tr(TS) > 0.

Proof. Let T ∈ B1(H) and T, S ∈ B(H)+. Since S is positive we can write S =
√
S
√
S.

Now by Proposition A.32 we have

tr(TS) = tr(T
√
S
√
S) = tr(

√
ST
√
S).

By observing〈
φ
∣∣∣√ST√Sφ〉 =

〈√
Sφ
∣∣∣√T√T√Sφ〉 =

〈√
T
√
Sφ
∣∣∣√T√Sφ〉 ≥ 0 ∀φ ∈ H,

we see that
√
ST
√
S is a positive operator and from the definition of the trace we conclude

tr(TS) = tr(
√
ST
√
S) ≥ 0.
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A.2 Spectral Theorem

We now give a brief introduction into the functional calculus and the spectral theorem.

Definition A.35 (Spectrum). We define the spectrum σ(T ) of an operator T ∈ B(H) as

σ(T ) = {λ ∈ C | T − λ I is not invertible}.

Definition A.36 (Spectral radius). For an operator T ∈ B(H) we define its spectral radius,
r(T ) as

r(T ) = max{|λ| | λ ∈ σ(T )}

There is a remarkably simple formula for the spectral radius.

Theorem A.37 (Spectral Radius Formula). For T ∈ B(H), one has,

r(T ) = lim
n→∞

‖Tn‖
1
n .

Proposition A.38. For a self-adjoint operator T ∈ B(H), we have the following identity
for the spectral radius:

r(T ) = ‖T‖.

Proof. Let T ∈ B(H) be a self-adjoint operator and φ ∈ H such that ‖φ‖ = 1. Then one
has

‖Tφ‖2 = 〈Tφ |Tφ〉 =
〈
T 2φ

∣∣φ〉 ≤ ∥∥T 2φ
∥∥‖φ‖ =

∥∥T 2φ
∥∥,

from which we conclude:
∥∥T 2

∥∥ = ‖T‖2. With induction we obtain
∥∥T 2n

∥∥ = ‖T‖2n for all n ∈
N and so

r(T ) = lim
n→∞

‖Tn‖
1
n = lim

n→∞
‖T‖ = ‖T‖.

Corollary A.38.1. For T ∈ B(H)+, one has

T ≤ I ⇐⇒ r(T ) ≤ 1.

Proof. This is an immeditate consequence of Corollary A.18.1 and Proposition A.38.

We will now define the integral of a function with respect to a positive operator-valued
measure (POVM). The definition of a POVM is given in Definition 2.1. For the rest of
this section, assume that (Ω,A) is a measurable space. We say that f =

∑n
i=1 αiχXi

is an
A-simple function if n ∈ N, Xi ∈ A, αi ∈ C for all i ∈ {1, 2, . . . , n}. When the measurable
space is clear from the context, we just speak of simple functions.

Definition A.39. The integral of a A-simple function f =
∑n
i=1 αiχXi

with respect to a
POVM E : A → B(H) is defined as∫

Ω

f dE =

n∑
i=1

αiE(Xi).

As one can simply check, the integral is independent of the way f is represented as a
linear combination of characteristic functions. Now let FA denote the space of all bounded
A-measurable functions f : Ω → C, and equip it with the supremum norm ‖f‖∞ =
supω∈Ω |f(ω)|. It can be shown that FA with this norm is a Banach space.

38



Lemma A.40. If f ∈ FA, then there exists a sequence {fn} of simple functions on Ω
converging uniformly to f , such that |fn(ω)| ≤ |f(ω)| ∀ω ∈ Ω. In particular, the space of
simple functions is dense in FA.

Proof. For each n ∈ N, we consider {z ∈ C | |z| ≤ ‖f‖} as the union of a finite number of dis-
joint Borel sets Bn1 , B

n
2 , . . . , B

n
kn

having diameter of at most 1
n . For every i ∈ {1, 2, . . . , kn},

we can choose an element zni ∈ Bni such that |zni | ≤ |z| for all z ∈ Bni , since the closure

Bni is compact. Now we define the simple function fn =
∑kn
i=1 z

n
i χf−1(Bn

i ) and we see that

‖fn − f‖ ≤ 1
n and |fn(ω)| ≤ |f(ω)| for all ω ∈ Ω.

Using this lemma, we can extend the operator integral of simple functions to all bounded
measurable functions. In this proof we use the convention to write Eφ,ψ(X) for the positive
measure 〈φ |E(X)ψ〉 for a POVM E : A → B(H).

Proposition A.41. Let E : A → B(H) be a POVM. For any simple function f : Ω → C,
we have ∥∥∥∥∫

Ω

f dE

∥∥∥∥ ≤ 2‖E(Ω)‖ sup
ω∈Ω
|f(ω)|.

Moreover, the mapping f 7→
∫
Ω
f dE on the space of simple functions on Ω can be uniquely

extended to a bounded linear map L : FA → B(H).

Proof. First assume that f is a real valued simple function. If φ ∈ H and ‖φ‖ ≤ 1, we have∣∣∣∣〈φ ∣∣∣∣ (∫
Ω

f dE

)
φ

〉∣∣∣∣ =
∣∣∣〈φ ∣∣∣ (∑n

i=1
αiE(Xi)

)
φ
〉∣∣∣ =

∣∣∣∑n

i=1
αi 〈φ |E(Xi)φ〉

∣∣∣
=

∣∣∣∣∫
Ω

f dEφ,φ

∣∣∣∣ ≤ ‖f‖∞Eφ,φ(Ω) = ‖f‖∞ 〈φ |E(Ω)φ〉 ,

and since
∫
Ω
f dE is self-adjoint, with Proposition A.11 we conclude

∥∥∫
Ω
f dE

∥∥ ≤ ‖f‖∞‖E(Ω)‖.
Now if f = f1 + if2 for two real valued simple functions f1 and f2, we have∥∥∥∥∫

Ω

f dE

∥∥∥∥ ≤ ∥∥∥∥∫
Ω

f1 dE

∥∥∥∥+

∥∥∥∥∫
Ω

f2 dE

∥∥∥∥
≤ (‖f1‖+ ‖f2‖)‖E(Ω)‖ ≤ 2‖f‖‖E(Ω).‖

The second claim follows from Lemma A.40 and the completeness of B(H).

We can now give the following definition.

Definition A.42. In the situation of Proposition A.41, for any measurable function f we
call the bounded operator L(f) the integral of the function f with respect to the POVM
E : A → B(H), and we write

L(f) = L(f,E) =

∫
Ω

f dE =

∫
f dE =

∫
Ω

f(ω) dE(ω).

Before we can state the spectral theorem, we first have to define f(A) for a function f

and self-adjoint operator A. If f is a polynomial, i.e. f(x) =
∑N
i=0 αix

i, it is natural to
define

f(A) =

∞∑
i=0

αiA
i.
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The next theorem states that we can extend this uniquely to any bounded Borel-measurable
function f .

Theorem A.43 (Borel functional calculus). Let A be a bounded self-adjoint operator, and
let F∞(σ(A)) denote the set of bounded Borel-measurable functions on the spectrum of A.
There exists a unique map

γ : F∞(σ(A))→ B(H), γ(f) = f(A),

such that:

1. γ(αf) = αγ(f);

2. γ(f + g) = γ(f) + γ(g);

3. γ(fg) = γ(f)γ(g);

4. f(A)∗ = f(A);

5. if f(x) = x, then f(A) = A;

6. ‖f(A)‖ ≤ ‖f‖∞ with equality for f continuous;

7. σ(f(A)) = {f(λ) | λ ∈ σ(A)}.

The assignment f 7→ f(A) is called the the Borel functional calculus. We will now state
the spectral theorem for bounded self-adjoint operators.

Theorem A.44 (Spectral Theorem for bounded self-adjoint operators). Let H is a separable
Hilbert space and let A be a bounded self-adjoint operator in B(H). Let F denote the Borel
subsets of σ(A). There is a unique spectral measure F : F → B(H) with

A =

∫
F
z dF.

Moreover, given any bounded Borel-measurable function f on σ(A) we have

f(A) =

∫
F
f dF,

where on the left-hand side f(A) is defined by the Borel functional calculus.

B Measure theory

In this section we will state the important definitions for measure theory. It is intended only
as a reference. For a good introduction to measure theory we refer to [4].

Definition B.1 (σ-algebra). Let Ω be an arbitrary set. A collection A of subsets of Ω is
called a σ-algebra on Ω if:

(a) Ω ∈ A;

(b) A ∈ A =⇒ Ac ∈ A;
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(c) {Ai}∞i=1 ⊆ A =⇒
⋃∞
i=1Ai ∈ A;

(d) {Ai}∞i=1 ⊆ A =⇒
⋂∞
i=1Ai ∈ A.

The pair (Ω,A) is called a measurable space.

Definition B.2 (Measure). Let (Ω,A) be a measurable space and let µ : A → [−∞,∞] be
a function.

(a) µ is called σ-additive (or countably additive) if, for any {Ai}∞i=1 ⊆ A, we have

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

(b) µ is called an signed measure if it is σ-additive and µ(∅) = 0.

(c) If µ is a signed measure and ran(µ) ⊆ [0,+∞], µ is called a positive measure.

(d) If µ is a signed measure and ran(µ) ⊆ R, µ is called a finite measure.

(e) If µ is a signed measure, ran(µ) ⊆ [0, 1], and µ(Ω) = 1, then µ is called a probability
measure.

(f) If µ is a positive measure and Ω is the union of a sequence {Ai}∞i=1 ⊆ A such that

µ(Ai) ≤ +∞ ∀i ∈ N,

then µ is called a σ-finite measure.

(g) A σ-additive function ν : A → C such that µ(∅) = 0, is called an complex measure.

If we say a function µ is a measure, we always mean a positive measure. In this case the
triple (Ω,A, µ) is called a measure space.

Definition B.3 (Almost everywhere). Let (Ω,A, µ) be a measure space. A property of
elements in Ω holds µ-almost everywhere if there is a set N ∈ A with µ(N) = 0 that
contains every point at which the property fails to hold.

We often write µ-a.e. for µ-almost everywhere, and if the measure µ is clear from the
context, the expressions almost everywhere and a.e. are also used.

Definition B.4. Let (Ω,A) be a measurable space, let µ and ν be a positive measures on
(Ω,A). We say that ν is absolutely continuous with respect to µ and write ν � µ if

µ(A) = 0 =⇒ ν(A) = 0 ∀A ∈ A.

Definition B.5. Let (Ω,A) be a measurable space and let A ∈ A. A function f : A →
[−∞,+∞] is called A-measurable (or measurable with respect to A) if

{x ∈ A | f(x) ≤ t} ∈ A ∀t ∈ R.

Theorem B.6 (Radon-Nikodym Theorem). Let (Ω,A) be a measurable space, and let µ
and ν be σ-finite measures on (Ω,A). If ν is absolutely continuous with respect to µ, then
there is a A-measurable function g : Ω → [0,∞) such that

ν(A) =

∫
A

g dµ ∀A ∈ A.

The function g is unique up to µ-almost everywhere equality.
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A proof can be found in [4, Thm. 4.2.2, p. 123].

Definition B.7 (Weak Markov Kernel). Let (Ω1,A1) and (Ω2,A2) be measurable spaces
and let µ be a σ-finite postive measure on A1. We say that β : Ω1 × A2 → R is a weak
Markov kernel with respect to µ if:

(a) Ω1 3 ω 7→ β(ω,X) ∈ R is A-measurable for all X ∈ A2;

(b) ∀X ∈ A2, 0 ≤ β(ω,X) ≤ 1 for µ-almost all ω ∈ Ω1;

(c) β(ω,A2) = 1 and β(ω, ∅) = 0 for µ-almost all ω ∈ Ω1;

(d) if {Xi}∞i=1 ⊆ A2 is a disjoint sequence, then β(ω,
⋃
iXi) =

∑
i β(ω,Xi) for µ-almost

all ω ∈ Ω1.

Definition B.8 (Markov Kernel). Let (Ω1,A1) and (Ω2,A2) be measurable spaces and let
µ be a σ-finite postive measure on A1. We say that β : Ω1 ×A2 → R is a Markov kernel if
it fullfils the conditions of a weak Markov kernel, with the modification that (b) - (d) hold
for all ω ∈ Ω1, instead for almost all ω. That is, for every ω ∈ Ω1,

β(ω, ·) : A2 → R, X 7→ β(ω,X)

is a probability measure on A2.

C Convexity

Definition C.1 (Convex set). A subset C of a vector space V is called convex if for all
v, w ∈ C and t ∈ (0, 1), one has

tv + (1− t)w ∈ C.

Definition C.2. The (extreme) boundary of a convex set C, denoted by ex(C), is given by

ex(C) = {u ∈ C | u = tv + (1− t)w for v, w ∈ C, t ∈ (0, 1) implies u = v = w}.

Elements of the boundary are called extreme elements.

Example C.3. A classic example of a convex set is the three-dimensional unit ball

B3 = {(x1, x2, x3) ∈ R3 | ‖(x1, x2, x3)‖ ≤ 1}.

Indeed, if x, y ∈ B3 and s ∈ (0, 1) then

‖tx+ (1− t)y‖ ≤ ‖tx‖+ ‖(1− t)y‖
= t‖x‖+ (1− t)‖y‖ ≤ t+ (1− t) = 1,

where the first inequality holds because of the triangle inequality.
Furthermore, the extreme boundary of B3 is the 2-dimensional unit sphere

S2 = {(x1, x2, x3) ∈ R3 | ‖(x1, x2, x3)‖ = 1}.

To see this, let x ∈ B3 such that ‖x‖ = 1 and assume there are t ∈ (0, 1) and y, z ∈ B3 such
that

x = ty + (1− t)z.
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Assuming that x = y = z does not hold, by taking norms and using the triangle inequality
we see

1 < t‖y‖+ (1− t)‖z‖ ≤ 1,

yielding a contradiction. Furthermore, if we assume that x ∈ B3 with ‖x‖ < 1, we can
always find an 0 < ε < 1 such that ‖(1 + ε)x‖ < 1, and thus

x = t((1 + ε)x) + (1− t)(εx)

holds for t = 1− ε.
C
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