Algebraic quantum mechanics

Algebraic quantum mechanics is an abstraction and generalization of the Hilbert space formulation
of quantum mechanics due to von Neumann [5]. In fact, von Neumann himself played a major role in
developing the algebraic approach. Firstly, his joint paper [3] with Jordan and Wigner was one of the first
attempts to go beyond Hilbert space (though it is now mainly of historical value). Secondly, he founded
the mathematical theory of operator algebras in a magnificent series of papers [4, 6]. Although his own
attempts to apply this theory to quantum mechanics were unsuccessful [18], the operator algebras that
he introduced (which are now aptly called von Neumann algebras) still play a central role in the algebraic
approach to quantum theory. Another class of operator algebras, now called C*-algebras, introduced by
Gelfand and Naimark [1], is of similar importance in algebraic quantum mechanics and quantum field
theory. Authoritative references for the theory of C*-algebras and von Neumann algebras are [14] and
[21]. Major contributions to algebraic quantum theory were also made by Segal [7, 8] and Haag and his
collaborators [2, 13].

The need to go beyond Hilbert space initially arose in attempts at a mathematically rigorous theory
of systems with an infinite number of degrees of freedom, both in quantum statistical mechanics [9, 12,
13, 19, 20, 22] and in quantum field theory [2, 13, 20]. These remain active fields of study. More recently,
the algebraic approach has also been applied to quantum chemistry [17], to the — quantization and —
quasi-classical limit of finite-dimensional systems [15, 16], and to the philosophy of physics [10, 11, 16].

Besides its mathematical rigour, an important advantage of the algebraic approach is that it enables
one to incorporate — Superselection rules. Indeed, it was a fundamental insight of Haag that the
superselection sectors of a quantum system correspond to (unitarily) inequivalent representations of its
algebra of observables (see below). As shown in the references just cited, in quantum field theory such
representations (and hence the corresponding superselection sectors) are typically labeled by charges,
whereas in quantum statistical mechanics they describe different thermodynamic phases of the system.
In chemistry, the chirality of certain molecules can be understood as a superselection rule. The algebraic
approach also leads to a transparent description of situations where locality and/or entanglement play
a role [11, 13].

The notion of a C*-algebra is basic in algebraic quantum theory. This is a complex algebra A that
is complete in a norm || - || satisfying ||ab|| < |la| ||b]| for all a,b € A, and has an involution a — a*
such that ||a*al]| = |la]|>. A quantum system is then supposed to be modeled by a C*-algebra whose
self-adjoint elements (i.e. a* = a) form the observables of the system. Of course, further structure than
the C*-algebraic one alone is needed to describe the system completely, such as a time-evolution or (in
the case of quantum field theory) a description of the localization of each observable [13].

A basic example of a C*-algebra is the algebra M,, of all complex n x n matrices, which describes
an n-level system. Also, one may take A = B(H), the algebra of all bounded operators on an infinite-
dimensional Hilbert space H, equipped with the usual operator norm and adjoint. By the Gelfand—
Naimark theorem [1], any C*-algebra is isomorphic to a norm-closed self-adjoint subalgebra of B(H),
for some Hilbert space H. Another key example is A = Cy(X), the space of all continuous complex-
valued functions on a (locally compact Hausdorff) space X that vanish at infinity (in the sense that for
every £ > 0 there is a compact subset K C X such that |f(z)| < ¢ for all z ¢ K), equipped with the
supremum norm || f|le := sup,¢y | f(«)|, and involution given by (pointwise) complex conjugation. By
the Gelfand-Naimark lemma [1], any commutative C*-algebra is isomorphic to Cy(X) for some locally
compact Hausdorff space X. The algebra of observables of a classical system can often be modeled as a
commutative C*-algebra.

A von Neumann algebra M is a special kind of C*-algebra, namely one that is concretely given on
some Hilbert space, i.e. M C B(H), and is equal to its own bicommutant: (M') = M (where M’ consists
of all bounded operators on H that commute with every element of M). For example, B(H) is always
a von Neumann algebra. Whereas C*-algebras are usually considered in their norm-topology, a von
Neumann algebra in addition carries a second interesting topology, called the o-weak topology, in which
its is complete as well. In this topology, one has convergence a,, — a if Tr p(a,, —a) — 0 for each density
matrix p on H. Unlike a general C*-algebra (which may not have any nontrivial projections at all), a
von Neumann algebra is generated by its projections (i.e. its elements p satisfying p? = p* = p). It is



often said, quite rightly, that C*-algebras describe “non-commutative topology” whereas von Neumann
algebra form the domain of “non-commutative measure theory”.

In the algebraic framework the notion of a state is defined in a different way from what one is used
to in quantum mechanics. An (algebraic) state on a C*-algebra A is a linear functional p : A — C
that is positive in that p(a*a) > 0 for all @ € A and normalized in that p(1) = 1, where 1 is the unit
element of A (provided A has a unit; if not, an equivalent requirement given positivity is ||p|]| = 1).
If A is a von Neumann algebra, the same definition applies, but one has the finer notion of a normal
state, which by definition is continuous in the o-weak topology (a state is automatically continuous in
the norm topology). If A = B(H), then a fundamental theorem of von Neumann [5] states that each
normal state p on A is given by a density matrix p on H, so that p(a) = Tr pa for each a € A. (If H is
infinite-dimensional, then B(H) also possesses states that are not normal. For example, if H = L?(R)
the Dirac eigenstates |z) of the position operator are well known not to exist as vectors in H, but it turns
out that they do define non-normal states on B(H).) On this basis, algebraic states are interpreted in
the same way as states in the usual formalism, in that the number p(a) is taken to be the expectation
value of the observable a in the state p (this is essentially the — Born rule).

The notions of pure and mixed states can be defined in a general way now. Namely, a state p: A — C
is said to be pure when a decomposition p = Aw + (1 — A\)o for some A € (0,1) and two states w and
o is possible only if w = 0 = p. Otherwise, p is called mixed, in which case it evidently does have a
nontrivial decomposition. It then turns out that a normal pure state on B(H) is necessarily of the form
¥(a) = (¥, aV) for some unit vector ¥ € H; of course, the state p defined by a density matrix p that is
not a one-dimensional projection is mixed. Thus one recovers the usual notion of pure and mixed states
from the algebraic formalism.

In the algebraic approach, however, states play a role that has no counterpart in the usual formalism
of quantum mechanics. Namely, each state p on a C*-algebra A defines a representation 7, of A on a
Hilbert space H, by means of the so-called GNS-construction (after Gelfand, Naimark and Segal [1, 7]).
First, assume that p is faithful in that p(a*a) > 0 for all nonzero a € A. It follows that (a,b) := p(a*b)
defines a positive definite sesquilinear form on A; the completion of A in the corresponding norm is a
Hilbert space denoted by H,. By construction, it contains A as a dense subspace. For each a € A,
define an operator m,(a) on A by 7,(a)b := ab, where b € A. It easily follows that 7,(a) is bounded, so
that it may be extended by continuity to all of H,. One then checks that w, : A — B(H,) is linear and
satisfies m,(a1a2) = m,(a1)m,(az) and 7,(a*) = 7,(a)*. This means that 7, is a representation of A on
H,. If p is not faithful, the same construction applies with one additional step: since the sesquilinear
form is merely positive semidefinite, one has to take the quotient of A by the kernel N, of the form (i.e.
the collection of all ¢ € A for which p(c*c) = 0), and construct the Hilbert space H, as the completion
of A/N,.

As in group theory, one has a notion of unitary (in)equivalence of representations of C*-algebras.
As already mentioned, this provides a mathematical explanation for the phenomenon of superselection
rules, an insight that remains one of the most important achievements of algebraic quantum theory to
date.
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