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“If that were so then physics could only claim the interest of shopkeepers and 
engineers; the whole thing would be a wretched bungle” 

Albert Einstein in een brief aan Erwin Schrödinger (22 december 1950) 
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Inleiding 

“Alea iacta est” moet Albert Einstein hebben gedacht, toen zijn veelal jongere collega-fysici de 

klassiek gedetermineerde wereld verlieten, de kolkende rivier van de jaren ’20 overstaken en 

terechtkwamen in een landschap vol onzekerheid en nieuwe fenomenen. De 

kwantummechanica had in 1927 met de waarschijnlijkheidsinterpretatie van Born en de 

onzekerheidsrelaties van Heisenberg zijn definitieve verschijningsvorm aangenomen en 

daarmee het determinisme uit de wereld verbannen. Maar waar velen de empirische 

successen van de nieuwe fysica bejubelden, bleef Einstein onverschrokken en fundamenteel 

afkerig van deze theorie. Onze natuur is deterministisch, en de kwantummechanica met haar 

waarschijnlijkheidsinterpretatie – niets meer dan het gooien van een dobbelsteen – kan 

daarom niet correct zijn. Voor Einstein was het een incomplete theorie en hij was naarstig op 

zoek naar een deterministisch alternatief. 

Deze vergeefse zoektocht van Einstein is echter niet afschrikwekkend genoeg geweest voor 

een aantal andere fysici. Ook zij beten zich vast in het probleem van determinisme en 

kwantummechanica, maar geen van allen zag het uiteindelijke licht. Tegenwoordig is de 

Nederlandse Nobelprijswinnaar Gerard ’t Hooft een van de kopstukken van deze 

deterministische traditie. Met zijn zoektocht naar een deterministische theorie onder1 de 

kwantummechanica treedt hij in de voetsporen van Einstein. In dit werk presenteer ik mijn 

analyse van deze theorie.  

Het doel dat ik nastreef is tweeledig. Ten eerste wil ik de theorie van ’t Hooft inbedden in het 

grotere geheel van de discussie over determinisme en kwantummechanica. Het zal blijken 

dat ik vanuit deze inbedding uitspraken kan doen over de haalbaarheid en 

mogelijkheidsvoorwaarden van de ideeën van ‘t Hooft. Ten tweede wil ik proberen een 

kritische beschouwing van de theorie zelf te geven: wat probeert de theorie te 

bewerkstelligen en in hoeverre slaagt zij daarin? 

Met het oog op deze doelen is het werk als volgt opgebouwd. Om te weten waar we over 

praten, moeten we allereerst een notie van determinisme ontwikkelen. Daarna zal ik 

determinisme in de klassieke mechanica bespreken. Dit leidt tot verrassende inzichten en 

laat zien dat determinisme binnen de fysica met de nodige voorzichtigheid en nuance moet 

worden behandeld. Dan gaan we over op de kwantummechanica. Hier bespreek ik de 

belangrijkste deterministische aspecten en (on)mogelijkheden van de kwantummechanica. 

Tot slot behandel ik de deterministische theorie van ’t Hooft, waarbij ik teruggrijp op het 

voorgaande en tevens een kritische beschouwing geef. 

                                                      
1 Waarom ik consequent “onder” gebruik zal hopelijk later duidelijk worden. ’t Hooft gebruikt deze term 
overigens zelf ook af en toe. 
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Voordat we werkelijk kunnen beginnen, wil ik graag opmerken dat de wijze waarop ik de 

theorie van ’t Hooft weergeef een interpretatie is van deze theorie. Ik heb mij gericht op de 

elementen die mijns inziens voor dit werk van belang zijn en kan daarom niet garanderen 

dat dit ook de visie is van ’t Hooft zelf.2 Ook wil ik graag benadrukken dat ik – ook al leent 

het onderwerp zich er goed voor – in dit werk géén filosofische standpunten betrek of 

beschouw. Dit vanwege het feit dat ook ’t Hooft in zijn artikelen geen blijk geeft van 

filosofische pretenties rondom zijn deterministische theorie.  

Ik  wil mijn begeleider Prof. dr. Klaas Landsman hartelijk bedanken. Regelmatig heeft hij mij 

een nieuw bos in gestuurd, waar ik telkens opnieuw de bomen met de heerlijkste vruchten 

ontdekte. Ook bedank ik Prof. dr. Sijbrand de Jong en dr. Michael Müger voor hun hulp bij 

specifieke problemen. Tot slot bedank ik Prof. dr. Gerard ’t Hooft voor de tijd die hij nam om 

mijn vragen te beantwoorden tijdens het symposium Fysica 2008, te Nijmegen. 

 

                                                      
2 Daarvoor verwijs ik naar ’t Hooft (2001) en ’t Hooft (2006). 
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Determinismei 

Wegens de grote verscheidenheid aan discussies omtrent determinisme – in combinatie met 

bijvoorbeeld vrije wil3 en/of goddelijke voorzienigheid – is het van belang dat we ons begrip 

van determinisme goed afbakenen. Het doel van deze sectie is dan ook het ontwikkelen van 

een heldere notie van determinisme. Omdat we niet willen afdwalen van ons eigenlijke 

onderwerp – determinisme binnen de fysica, i.h.b. binnen de kwantummechanica – 

ontwikkelen we een definitie aan de hand van Laplace’ begrip van determinisme. 

 

Laplace-determinisme 

Deze notie van determinisme is klassiek, i.e. onafhankelijk van kennis over 

relativiteitstheorie en kwantummechanica. Veronderstel dat de wereld4 – of een geïsoleerd5 

deel ervan, een systeem - wordt vastgelegd door een verzameling fysische grootheden , 

waarvan ieder element een welbepaalde waarde heeft op ieder tijdstip . Laat de geschiedenis 

 een afbeelding zijn van  naar de rij van waardes van fysische grootheden van , 

 met  de waarde van de fysische grootheid  Voor ieder tijdstip 

 legt  nu de wereld op tijdstip  vast.  

De wereld is Laplace-deterministisch t.o.v. dan en slechts dan als: 

 

voor ieder paar geschiedenissen en  die gehoorzamen aan de natuur- 

wetten en waarvoor er een  is zodat , tevens geldt dat voor alle 

: . 

 

Merk op dat hierbij verondersteld is dat de tijd  een globale tijd is, i.e. geldig als tijdfunctie 

op willekeurig welke coördinaat van de wereld. We definiëren deze notie van globale tijd zo 

dat hij toepasbaar is voor zowel klassieke als relativistische ruimtetijden. Een globale 

tijd(functie) is een afbeelding , waarbij  de variëteit van de ruimtetijd is en 

zodat er voor ieder paar punten met  een toekomstgerichte tijdachtige 

                                                      
3 Ook Gerard ’t Hooft heeft een artikel geschreven dat raakt aan discussies over de vrije wil, zie ’t Hooft (2007). 
We gaan hier niet verder op in.  
4 Oftewel, het universum dat wordt beschreven door de wetten van de fysica. 
5 Binnen moderne benaderingen van de kwantummechanica, zoals decoherentie, is volledige isolatie van een 
systeem problematisch en niet meer mogelijk. Dit is zelfs het cruciale aspect van deze aanpak. Voor ons is de 
vraag naar de mogelijkheid van volledige isolatie echter geen probleem. Het is namelijk voldoende om 
determinisme binnen de wereld als geheel te denken, zonder te refereren aan deelsystemen. Een volledig 
geïsoleerd deelsysteem is dan slechts een theoretisch concept dat kan worden gebruikt in gedachte-experimenten, 
zonder existentiële pretenties te hebben.  
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wereldlijn van p naar q bestaat.6 In relativistische ruimtetijden ligt de globale tijd(functie) 

niet vast en hangt de precisie notie van determinisme dus af van de keuze van de globale 

tijd(functie).7  

 

Twee vormen van Laplace-determinisme 

Het zojuist beschreven Laplace-determinisme is eigenlijk een conjunctie van twee zwakkere 

vormen van dit determinisme: future en past Laplace-determinisme.  

In het eerste geval geldt: 

 

voor ieder paar geschiedenissen en  die gehoorzamen aan de natuur- 

wetten en waarvoor er een  is zodat , geldt tevens dat voor alle 

met : . 

 

Er is sprake van past Laplace-determinisme als geldt: 

 

voor ieder paar geschiedenissen en  die gehoorzamen aan de natuur- 

wetten en waarvoor er een  is zodat , geldt tevens dat voor alle 

met : . 

 

Pas als de wereld zowel past als future Laplace-deterministisch is, is de wereld Laplace-

deterministisch in de eerste en meeste algemene formulering.  

Het is triviaal dat wanneer de natuurwetten invariant zijn onder tijdinversie, de 

onderscheiden vormen van Laplace-determinisme equivalent zijn. De tijdsevolutie van de 

geschiedenissen  en  wordt immers volledig vastgelegd door deze invariante 

natuurwetten en dus impliceert  dat  voor alle . In dat 

geval vervalt het onderscheid en is de wereld óf Laplace-deterministisch, óf niet.  

Het is echter niet vanzelfsprekend dat de natuurwetten invariant zijn onder tijdinversie. 

Denk bijvoorbeeld aan de zwakke interactie tussen elementaire deeltjes binnen het 

Standaard Model.ii Binnen de fysica is het onderscheid dus zeker zinvol. 

                                                      
6 Merk op dat met deze definitie voor een foton – die een toekomstgericht lichtachtige wereldlijn aflegt – de 
globale tijd kan stilstaan, precies zoals de relativiteitstheorie voorspelt.  
7 Alleen in pathologische gekromde ruimtetijden bestaat er geen globale tijdfunctie. Een voldoende en 
noodzakelijke voorwaarde voor het bestaan van een globale tijd is stabiele causaliteit van de ruimtetijd. (zie Wald 
(1984, pp. 198-199)) 
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Modificatie van Laplace-determinisme 

In de praktijk blijkt Laplace’ notie van determinisme te beperkt te zijn. Binnen dit formalisme 

is er namelijk geen sprake van determinisme als de tijdsevolutie van bepaalde fysische 

grootheden wordt beschreven door differentiaalvergelijkingen met een tijdvertraging8. Stel 

bijvoorbeeld dat de tijdsevolutie van een fysische grootheid  wordt beschreven door 

met C een constante die niet nul is en dat  voor een bepaalde 

. Als nu  - een situatie die in het laboratorium eenvoudig te 

creëren is -, dan is de wereld niet meer Laplace-deterministisch.9 Toch zou je ook in deze 

gevallen een notie van determinisme willen hebben, er zijn immers fysische systemen aan te 

wijzen die beschreven worden door dit soort differentiaalvergelijkingen10 en tegelijkertijd 

voldoen aan onze intuïtieve notie van determinisme. Een modificatie van het Laplace-

determinisme eist dat  is gespecificeerd op het interval . De wereld is nu 

deterministisch als  voor alle  in het geval dat voor alle 

. Hiermee is een zinvolle notie van determinisme voor deze eenvoudige 

differentiaalvergelijkingen met een tijdvertraging gecreëerd.11 

Voor de fysica is het van groot belang dat determinisme ook zinvol is gedefinieerd voor 

systemen beschreven door differentiaalvergelijkingen met tijdvertraging. Zo wordt de 

beweging van onderling wisselwerkende geladen deeltjes met dit soort vergelijkingen 

beschreven, net als de beweging van (drie of meer) massa’s die een zwaartekrachtswerking 

op elkaar uitoefenen. Immers, deze interacties planten zich voort met een eindige 

lichtsnelheid c waardoor er tijdvertraging optreedt (de interactie tussen deeltje i en j wordt 

mede bepaald door de posities van de deeltjes op het tijdstip van uitzenden van de 

interactiedeeltjes – respectievelijk fotonen en gravitonen –, dat voorafgaat aan de interactie 

zélf). 

Ondanks deze door de fysica opgelegde eisen aan de notie van determinisme, volstaat het 

Laplace-determinisme voor het vervolg van dit werk. Als ik vanaf nu spreek over 

determinisme, bedoel ik derhalve het Laplace-determinisme.  

 

                                                      
8 Een voorbeeld hiervan is de systeemanalyse van neurale processen, zie Van Opstal (2007). 
9 Pathologische gevallen waarin de wereld nog wél Laplace-deterministisch is worden geëlimineerd met de eis 
dan fysische grootheden continu in de tijd moeten veranderen.  
10 Zie noot 8. 
11 Bij ingewikkelder differentiaalvergelijkingen faalt overigens ook deze gemodificeerde notie van determinisme. 
Hiervoor verwijs ik naar Raju (1994). 
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Ontologisch en epistemologisch determinisme 

Voordat we determinisme binnen de fysica gaan bestuderen moet er nog één onderscheid 

worden gemaakt, namelijk tussen ontologisch en epistemologisch determinisme. Bij de 

bespreking van de theorie van ’t Hooft zal dit onderscheid opnieuw een rol spelen. Laten we 

beginnen met de laatste. Epistemologisch determinisme heeft twee aspecten die we beide 

kunnen verwoorden met een vraag: 

1. Hoe kunnen we vaststellen of de wereld deterministisch is?iii 

2. Hoe kan ik zekere (i.e. niet-statistische) voorspellingen doen? 

In het eerste geval moet je kennis hebben van alle natuurwetten in de wereld12, deze kennis 

dient te zijn getoetst aan de empirie. Hier ontstaan direct twee problemen: hoe kunnen we 

zeker weten dat er natuurwetten bestaan en dat wij bovendien alle natuurwetten 

beschouwen?iv We laten deze problemen voor wat ze zijn en veronderstellen dat we alle 

natuurwetten van de wereld – getoetst aan de empirie – kennen. Om de eerste vraag te 

beantwoorden moeten we nu controleren of de wereld (Laplace-)deterministisch is t.o.v. de 

verzameling O van alle in de natuurwetten voorkomende fysische grootheden. 

Het tweede aspect van epistemologisch determinisme – het doen van zekere voorspellingen 

–  is alleen mogelijk binnen een deterministische wereld. Immers, met een indeterministische 

natuurwet – denk bijvoorbeeld aan de huidige stand van de kwantummechanica – kun je 

hooguit een statistische en – zoals we binnenkort zullen zien – soms zelfs helemaal geen 

voorspelling doen. In dat geval is aan het tweede aspect voldaan wanneer je zekere 

voorspellingen kunt doen door op een bepaald tijdstip de geschiedenis vast te 

leggen en vervolgens de tijdsevolutie van de natuurwetten op de fysische grootheden te 

laten werken. 

Ontologisch determinisme is daarentegen een zuiver theoretische vorm van determinisme. 

Wetten worden – zonder tussenkomst van de empirie – gepostuleerd, waardoor de 

beantwoording van de eerste vraag al niet meer mogelijk is. Vervolgens kan worden 

gecontroleerd of de wereld van ontologische wetten voldoet aan het (Laplace-)determinisme. 

Wanneer dit het geval is, dan is er sprake van ontologisch determinisme. Deze vorm van 

determinisme bestaat dus louter in een gepostuleerde, niet-werkelijke wereld en kan – d.m.v. 

empirische waarneming – hoogstens voorafgaan aan epistemologisch determinisme.13,14 

                                                      
12 Ook hier is het uiteraard mogelijk om naar een geïsoleerd systeem of een model te kijken en alleen de 
natuurwetten binnen dit systeem te beschouwen. 
13 Ik durf de bewering aan dat op deze wijze het grootste deel van de moderne natuurkunde is ontstaan. 
14 Zoals we later zullen zien kunnen we met deze observatie een zich ontwikkelende theorie als die van Gerard ’t 
Hooft plaatsen in een bepaalde fase van ontwikkeling.  
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Determinisme in de klassieke mechanica 

De meeste fysici zullen de klassieke mechanica aanwijzen als de plek bij uitstek voor 

determinisme binnen de fysica. Velen geloven namelijk dat deze theorie volledig 

deterministisch is. Dit is echter niet het geval. Als opstapje tot determinisme in de 

kwantummechanica en ter illustratie van de niet-triviale rol van determinisme binnen de 

fysica wil ik drie voorbeelden van falend determinisme binnen de klassieke mechanica 

bespreken: (1) een bal op een oppervlak, (2) oneindig veel ballen op een lijn en (3) in eindige tijd naar 

het oneindige. 

We beschouwen de klassieke mechanica als de bewegingsleer die voldoet aan de wetten van 

Newton.v Daarnaast veronderstellen we absolute (Euclidische) ruimte en tijd, zoals Newton 

zich deze voorstelde. Niet alleen omdat de speciale en algemene relativiteitstheorie deze 

assumptie ontkentvi, maar ook m.b.t. determinisme is dit zeker niet vanzelfsprekend. Een 

ruimtetijd moet namelijk voldoende structuur hebben om de mogelijkheid van zogenaamde 

“determinism killing symmetries” te elimineren.vii Een Euclidische ruimte met een absolute tijd 

voldoet hieraan en heeft tevens alle benodigde aspecten voor onze bespreking van de drie 

klassieke voorbeelden. 

 

Een bal op een oppervlakviii,ix 

Neem een bal met massa  , waarbij g de gravitatieversnelling is, die op  op een 

wrijvingloos oppervlak in de oorsprong van een cilindrisch coördinatenstelsel ligt. De vorm 

van het oppervlak wordt gegeven door de rotatiesymmetrische hoogtefunctie  

(fig.1). 

 
Fig. 1: een bal op een oppervlak.x 
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Volgens de klassieke mechanica voldoet de bal aan de bewegingsvergelijking15 

                                                                 ,                         (1) 
die vanwege de rotatiesymmetrie van het systeem reduceert16 tot  

. 

Met  voor dit systeem is d.m.v. substitutie eenvoudig na te gaan dat  

  

voor willekeurige   een oplossing17 voor dit probleem is. Hierbij is  de 

stapfunctie. 

Het is duidelijk dat deze wereld niet future Laplace-deterministisch is. Immers, 

 terwijl tevens  voor alle . En aangezien de 

tweede wet van Newton (en daarmee de gehele klassieke mechanica18) invariant is onder 

tijdsomkeer, is deze wereld ook niet past Laplace-deterministisch. We hebben hier dus een 

voorbeeld van indeterminisme in de klassieke mechanica: de natuurwetten (in dit geval de 

differentiaalvergelijking (1)) leggen immers niet vast of en wanneer de bal vanuit de 

oorsprong naar beneden rolt. 

Eigenlijk is dit een voorbeeld van een veel algemenere situatie waarin determinisme19 in de 

klassieke mechanica niet automatisch gegarandeerd is als de krachtfunctie  niet voldoet 

aan de Lipschitz-conditie op het relevante intervalxi, wat in ons geval  is. Eén van de 

eisen hiervoor is dat  bestaat op het hele interval. In onze situatie bestaat de afgeleide 

van  niet in het punt . Daarom voldoet de krachtfunctie niet aan de 

Lipschitz-conditie en is determinisme niet meer gegarandeerd. 

 

                                                      
15 Omdat we werken met een wrijvingloos oppervlak is er geen sprake van een krachtmoment en zal de bal dus 
niet gaan roteren. Daarom kunnen we de bewegingsvergelijking van een puntmassa gebruiken. 
16 We beschrijven de beweging van de bal in termen van de radiële coördinaat r, wat wegens de rotatiesymmetrie 
van het systeem een volledige beschrijving is. 
17 De dimensionaliteit is verdisconteerd in de stapfunctie, deze heeft dimensies lengte·(tijd)-4. 
18 De tweede wet van Newton is immers de enige plek binnen de natuurwetten van de klassieke mechanica 
waarin de tijd een rol speelt. We veronderstellen hierbij tijdonafhankelijke potentialen, zoals in ons voorbeeld het 
geval is. 
19 In plaats van “determinisme” moet er eigenlijk “een unieke oplossing van de bewegingsvergelijking” staan. 
Echter, omdat het deeltje niet binnen eindige tijd naar het oneindige verdwijnt zijn deze formuleringen in dit 
geval equivalent. In het derde voorbeeld In eindige tijd naar het oneindige gaat deze equivalentie niet meer op. De 
oplossing van de bewegingsvergelijking is dan weliswaar uniek, maar er is geen sprake van determinisme. 
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Oneindig veel ballen op een lijnxii,xiii 

Neem een 1-dimensionaal systeem waarbij oneindig veel identieke ballen met massa m op de 

x-as liggen, geïndexeerd met  en op plaatscoördinaat  (fig.2). We hebben 

hierbij aangenomen dat we de ballen oneindig klein kunnen maken. Iedere modern 

opgeleide fysicus zal direct allerlei kwantummechanische effecten20 willen meenemen, maar 

we werken in de klassieke mechanica en laten die dus buiten beschouwing.  

 
Fig. 2: oneindig veel ballen op een lijn. 

 

Laat nu een zelfde bal met snelheid 1 van rechts naar links bewegen, zodat deze zich op 

tijdstip  op coördinaat  bevindt. Veronderstel tevens dat iedere botsing tussen 

twee ballen elastisch en instantaan is. 

Dit alles heeft tot gevolg dat bij een botsing tussen twee ballen de inkomende bal stil komt te 

liggen en de uitgaande bal met snelheid 1 van rechts naar links doorgaat. Cruciaal is nu dat 

het op tijdstip  niet meer mogelijk is om aan te geven welke bal in beweging is, iedere 

bal n moet dan immers al bal  in beweging hebben gezet. Dit betekent dat het gehele 

systeem in rust is vanaf .21 

Determinisme komt in het spel als we tijdsomkeer toepassen. In het voorbeeld een bal op een 

oppervlak is al aangegeven dat de klassieke mechanica invariant is onder tijdinversie. 

(In)determinisme in de beschreven situatie is dus equivalent aan (in)determinisme in het 

tijdgetransformeerde systeem met tijd . 

Het tijdgetransformeerde systeem is in zijn geheel in rust voor alle tijdstippen , in de 

oorspronkelijke situatie zijn dit immers de tijdstippen . Na  ontstaat er beweging 

binnen het systeem en op  beweegt één bal – op dat moment in coördinaat  –  met 

snelheid 1 van links naar rechts. Echter, een andere oplossing voor de tijdsevolutie van dit 

                                                      
20 Denk hierbij in eerste instantie aan de (on)onderscheidbaarheid van de identieke ballen, de statistiek waaraan 
de ballen voldoen en de Heisenberg onzekerheidsrelatie voor plaats en impuls.  
21 Dit betekent tevens een schending van impuls-  en energiebehoud. Dit is de reden waarom veel fysici dit een 
pathologisch voorbeeld vinden en het niet serieus nemen. Echter, impuls-  en energiebehoud worden alleen 
geschonden in de inertiaalstelsels waarin alle geïndexeerde ballen in eerste instantie in rust zijn. In ieder ander 
intertiaalstelsel is de impuls en energie op alle tijdstippen oneindig en zijn deze grootheden dus behouden. 
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klassieke systeem is dat de ballen ook voor de tijdstippen  in rust blijven. We hebben nu 

twee geschiedenissen  – het tijdgetransformeerde systeem – en  – het systeem 

dat altijd in rust is – beschreven, die beide voldoen aan de natuurwetten van deze klassieke 

wereld en waarvoor geldt: . Echter, we zien ook dat , want 

in  is er sprake van beweging en in  zijn alle ballen in rust. Wegens de 

invariantie onder tijdomkeer in de klassieke mechanica kunnen we vanuit de definitie van 

Laplace concluderen dat er opnieuw sprake is van indeterminisme. En zelfs met de 

gemodificeerde en striktere versie van het Laplace-determinisme (p. 8) moeten we d.m.v. de 

substituties  en  concluderen dat deze wereld indeterministisch is. 

 

In eindige tijd naar het oneindigexiv,xv,xvi 

Veronderstel een deeltje met massa m dat parallel aan de x-as onder invloed van een 

potentiaal  beweegt door de Euclidische ruimte. Neem tevens aan dat de krachtfunctie 

 voldoet aan de Lipschitz-conditie, zodat er een unieke oplossing van de 

bewegingsvergelijking voor dit systeem bestaat. Het is op zijn minst denkbaar dat de 

oplossing voor een specifiek systeem het deeltje binnen een eindige tijd een oneindige 

snelheid geeft. In dat geval verdwijnt het deeltje binnen eindige tijd naar het oneindige 

(fig.3). 

 
Fig. 3: Een deeltje verdwijnt in eindige tijd naar het oneindige.xvii 

 

Earman (2007) stelt nu dat past determinisme hiermee geschonden is. Hij zegt namelijk dat 

twee geschiedenissen  en  vanaf een bepaald tijdstip  identiek kunnen zijn – 
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want “no particle is present at these times anywhere in space”xviii – terwijl dat niet hoeft te 

gelden voor een tijdstip  omdat er dan deeltjes in de ruimte aanwezig zijn die van 

positie kunnen verschillen, waardoor .  

Net als in het vorige voorbeeld passen we nu tijdomkeer toe. Deze tijdgetransformeerde 

situatie is niet meer future deterministisch. Immers, op tijdstip  komt er een deeltje 

vanuit het oneindige het eindige coördinatenstelsel binnen. Omdat er vóór dit tijdstip geen 

deeltje aanwezig was in onze wereld (fig.4), bestaat er een conform de natuurwetten 

alternatieve tijdsevolutie die de ruimte leeg laat voor alle . Een geschiedenis van de 

lege ruimte tot tijdstip  kan dus op verschillende manieren evolueren, daarmee is future 

determinisme geschonden. 

 
Fig. 4: tijdsomkeer toegepast op figuur 3.xix 

 

We hadden natuurlijk ook opnieuw gebruik kunnen maken van invariantie onder 

tijdomkeer. Want omdat de klassieke mechanica invariant is onder tijdomkeer, is future 

indeterminisme in de tijdgetransformeerde situatie equivalent aan past indeterminisme in de 

oorspronkelijke situatie. Door de tijdgetransformeerde situatie echter concreet uit te werken, 

hebben we gezien dat de fysische interpretatie en de argumentatie voor indeterminisme 

wezenlijk verschillen t.o.v. de oorspronkelijke situatie. 

 

Hiermee sluiten we het derde voorbeeld van indeterminisme binnen de klassieke mechanica 

af. Vooral met het laatste voorbeeld heb ik moeite, omdat ik denk dat Earmans argument niet 

in ieder coördinatenstelsel geldig is. Volgens de klassieke notie van ruimte en tijd kun je 
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namelijk altijd een assenstelsel kiezen dat met het deeltje mee beweegt. In dat geval is er 

geen sprake meer van oneindigheden en is Earmans argument dus niet geldig. Het lijkt er in 

eerste instantie op dat we nu in een aporie terechtkomen waarin determinisme afhankelijk is 

van het gekozen referentiestelsel. Echter, met deze coördinatentransformatie verlaten we 

stiekem de klassieke mechanica. Het getransformeerde coördinatenstelsel is namelijk niet-

intertieel en in dat stelsel zijn de wetten van de klassieke mechanica dus niet meer geldig. 

Een algemeen relativistische benadering – waarin het principe van algemene covariantie zegt 

dat dezelfde natuurwetten in willekeurig welk coördinatenstelsel geldig moeten zijnxx – zal 

hier uitkomst bieden. 

Deze mening over de problematiek van de voorbeelden verschilt echter per auteur. Zo 

hebben velen moeite met het oneindige aantal ballen in het tweede voorbeeld.22 En ook het 

voorbeeld Een bal op een oppervlak is niet zonder controverse, zo is het twijfelachtig of het 

oppervlak als Newtoniaans systeem beschouwd kan worden.xxi 

Tot slot wil ik graag twee opmerkingen maken. Het is in de eerste plaats niet zo dat we nu 

alle voorbeelden van indeterminisme in de klassieke mechanica hebben besproken. De drie 

gebruikte voorbeelden (of representanten van sets van voorbeelden) worden het meest 

genoemd in de literatuur, maar het zijn niet de enige. Meer hierover is te vinden in John 

Earmans Primer on Determinismxxii. 

Ten tweede is het een misvatting dat deze voorbeelden uitspraken doen over 

(in)determinisme in de wereld waarin wij leven. Daarvoor is toepassing van moderne 

fysische theorieën zoals kwantummechanica en relativiteitstheorie noodzakelijk. Zo hebben 

we gezien dat het tweede en derde voorbeeld door toepassing van deze theorieën 

problematisch worden. En zelfs dan blijft het onmogelijk om zinvolle uitspraken te doen 

over (in)determinisme in onze wereld, daarvoor zijn deze moderne theorieën simpelweg nog 

niet goed genoeg begrepen.23 Pas met een “theorie van alles” kan de vraag naar het 

(in)deterministische karakter van onze wereld definitief beantwoord worden.xxiii Het doel 

van dit hoofdstuk was dan ook niet om tot wereldschokkende resultaten te komen over de 

wereld waarin wij leven, maar om aan te geven dat onze intuïties over (in)determinisme 

binnen de fysica niet altijd correct zijn en dat dit vraagstuk een genuanceerde behandeling 

behoeft. 

                                                      
22 Onder wie mijn begeleider prof. dr. Klaas Landsman. Desondanks heb ik er voor gekozen dit voorbeeld op te 
nemen in mijn werkstuk, al was het maar vanwege de schokkende gedachte dat het gehele systeem tot rust komt 
omdat het niet meer mogelijk is de bewegende bal aan te wijzen.  
23 In feite speelt dit werkstuk in op een onderdeel van dit probleem, namelijk (in)determinisme binnen de 
kwantummechanica.  
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Determinisme in de kwantummechanica 

 
Introductie 

De “wetenschappelijke massa” beschouwt kwantummechanica als het voorbeeld bij uitstek 

van een indeterministische fysische theorie. Nu zit hier een kern van waarheid in, maar het is 

niet zo eenduidig als de “massa” het poneert. Zo is kwantummechanica in een bepaald 

opzicht deterministisch, waar de klassieke mechanica indeterministisch is. Bovendien wordt 

het indeterminisme waar de “massa” van spreekt veroorzaakt door het ineenstorten van de 

golffunctie bij een kwantummechanische meting. Dit is echter een hoogst controversiële 

interpretatie van het meetproces binnen de kwantummechanica. Laten we – voordat we 

beginnen aan het werkelijke indeterminisme binnen de kwantummechanica – de eerste 

nuancering eens verder uitdiepen. 

Zoals we in het vorige hoofdstuk hebben gezien, heeft de differentiaalvergelijking die de 

tijdsevolutie van een klassiek mechanisch systeem beschrijft (tweede wet van Newton) niet 

in iedere situatie een unieke oplossing of überhaupt een oplossing voor alle . Het 

analogon van de tweede wet van Newton in de kwantummechanica is de Schrödinger-

vergelijking 

, 

die de tijdsevolutie van de toestandsfunctie  van een kwantummechanisch systeem 

beschrijft. In tegenstelling tot de klassieke mechanica is in de kwantummechanica het 

bestaan van een unieke oplossing van de tijdsevolutie van een systeem eenduidig 

vastgelegd. Daarvoor moet de Hamiltoniaan  van het bestudeerde systeem namelijk 

wezenlijk zelf-geadjungeerd zijn, i.e. de domeinen  en  

van  resp.  moeten dicht liggen in  en . Het vinden van zo’n domein 

is doorgaans niet moeilijkxxiv, maar het komt vaak voor dat er niet aan de tweede eis wordt 

voldaanxxv. Echter, in een fundamentele theorie van de kwantummechanica kunnen we deze 

eigenschap veronderstellen. Een zelf-geadjungeerde Hamiltoniaan garandeert dus het 

bestaan van een unieke oplossing van de tijdsevolutie van de toestandsfunctie  van 

een kwantummechanisch systeem. In dit opzicht heeft de kwantummechanica een 

deterministisch karakter t.o.v. de klassieke mechanica, waar het bestaan van zo’n 

gedetermineerde oplossing niet altijd eenduidig kon worden gegarandeerd. 
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In het geval van een zelf-geadjungeerde Hamiltoniaan wordt de tijdsevolutie van  

expliciet beschreven door de unitaire evolutieoperator .24 Voor een 

gegeven beginoestand  is dit namelijk . Omdat  

gedefinieerd is op de gehele Hilbert-ruimte  , is de bovenstaande uitdrukking altijd 

geldig. Een inzichtelijk bewijs wordt gegeven in Weidmann (2000).xxvi  

Ter illustratie komen we terug op het voorbeeld Een bal op een oppervlak uit het vorige 

hoofdstuk.xxvii De Hamilton-operator van dit systeem werd gegeven door  

 

met een potentiaal . Met als Hilbert-ruimte de ruimte van kwadratisch 

integreerbare functies op  ligt  dicht. En omdat in dit geval  bestaat er in 

tegenstelling tot het klassieke analogon een unieke oplossing voor de tijdsevolutie van de 

toestandsfunctie van dit systeem. Hiermee hebben we een systeem geïdentificeerd waarvan 

de kwantummechanische variant wat betreft de tijdsevolutie van de toestandsfunctie 

deterministischer is dan de klassiek mechanische variant. 

Zonder te verzanden in discussies over het meetprobleem en de interpretatie van de 

kwantummechanica wil ik bij het tweede punt van nuancering opmerken dat een 

interpretatie van de kwantummechanica met daarin een reductie/ineenstorting van de 

toestandsfunctie niet noodzakelijk indeterministisch is. Zo zijn er modellen die de 

ineenstorting van de toestandfunctie beschouwen als een (mogelijk deterministisch) 

dynamisch proces.xxviii D.m.v. verborgen variabelen25 en de toevoeging van een niet-lineaire 

term aan de Schrödinger-vergelijking op het moment van een meting geeft Pearle (1976) 

bijvoorbeeld een deterministische collapse-interpretatie van de kwantummechanica. Wegens 

een gebrek aan empirische verifieerbaarheid wordt dit soort theorieën tegenwoordig niet 

meer serieus genomen.  

Het is tevens van belang dat men zich realiseert dat het kwantummechanisch formalisme als 

zondanig geen zinvolle uitspraken doet over (in)determinisme. De zogenaamde no go-

theorema’s26 – waar we nog uitgebreid over zullen spreken – zijn immers slechts van 

toepassing onder additionele (natuurlijke) voorwaarden of wanneer een expliciete 

                                                      
24 De Hamiltoniaan is hier de infinitesimale generator van de unitaire operatorgroep, zie Weidmann (2000, pp. 
264-267). 
25 Op deze term komen we binnenkort uitgebreid terug. 
26 Het theorema van Einstein-Podolsky-Rosen (EPR), het theorema van Bell en het theorema van Kochen en 
Specker. In de literatuur komt het EPR-theorema overigens voor als EPR-argument of EPR-paradox. Maar omdat 
ik de EPR-paradox in het vervolg behandel als een no go-theorema, noem ik het ook een theorema. 
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waardetoekenning van observabelen is gegeven.xxix Een voorbeeld van zo’n 

waardetoekenning is de eigenwaarde-eigentoestand-link, die zegt dat een observabele  

met bijbehorende operator  op een tijdstip  dan en slechts dan een welgedefinieerde 

waarde heeft als de toestandsfunctie een eigentoestand is van . De waarde van  is in dat 

geval een eigenwaarde van  behorende bij de desbetreffende eigentoestand. 

Postuleer nu de zojuist besproken ineenstorting van de golffunctie bij een meting en je hebt 

in hoofdzaak de Kopenhaagse interpretatie van de kwantummechanica. Uiteindelijk geeft de 

waarschijnlijkheidsinterpretatie van de toestandsfunctie van Born het indeterministische 

karakter aan de kwantummechanica.xxx Dit alles leidt echter tot het meetprobleem, met de 

Schrödinger-kat paradox als beroemde illustratie ervan. De zojuiste besproken dynamische 

ineenstorting van de toestandsfunctie moest een antwoord op dit probleem zijn.xxxi 

 

Von Neumann 

Er is echter nog een tweede optie die het meetprobleem moet oplossen en de 

kwantummechanica mogelijk deterministisch maakt. Deze optie laat de eigenwaarde-

eigentoestand-link als waardetoekenning varen en gebruikt in plaats daarvan verborgen 

variabelen als toevoeging aan de toestandsfunctie .27,28 Een voorbeeld hiervan is de 

Bohm-interpretatie29 die als verborgen variabelen de plaatscoördinaten van de afzonderlijke 

deeltjes gebruikt. De waarde van de Bohm-interpretatie hangt echter af van de vraag of een 

meting van een willekeurige observabele gereduceerd kan worden tot een positiemeting van 

de afzonderlijke deeltjes. Daarnaast bestaan er binnen deze optie varianten van de modale 

interpretatie van o.a. van Fraassen en Dieks en van de veel-werelden-interpretatie van 

Barrett.30 

De eerste echter die de mogelijkheid van verborgen variabelen opperde was Von Neumann. 

Hij zegt niet dat de kwantummechanica incompleet is zonder verborgen variabelen, hij geeft 

daarentegen slechts aan wat de noodzakelijke veronderstellingen zijn bij een poging om de 

toestandsfunctie  oorzakelijk te verbinden met de meetwaarden van fysische 

grootheden – naar het voorbeeld van de klassieke mechanica: “In Wahrheit bestimmt  gar 

                                                      
27 Het is niet zo dat dit de enige twee opties zijn. Earman (2007) geeft dit summier aan door te stellen dat de 
tweede optie een variant heeft zonder verborgen variabelen. (Earman (2007, p. 1406)) 
28 Een intuïtieve notie van verborgen variabelen is hier voldoende. In het vervolg zullen we dit preciezer maken. 
Het is echter van belang dat men zich realiseert dat verborgen variabelen een theorie niet noodzakelijk 
deterministisch maken.  
29 Te onderscheiden van de waarschijnlijkheidsinterpretatie van de toestandsfunctie, eveneens van Bohm. 
30 Hier gaan we niet verder op in, te meer omdat Earman (2007) op zeer heldere wijze uiteenzet van de (serieuze) 
problemen met deze varianten zijn. Het is overigens niet zo dat van Fraassen, Dieks en Barrett zelf een 
deterministische theorie aanhingen, in tegenstelling tot Bohm. Later zijn er deterministische varianten op hun 
theorieën ontwikkeld.  
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nicht den Zustand genau, um diesen restlos zu kennen sind vielmehr noch weitere 

Zahlenangaben notwendig. D. h. das System hat neben  noch weitere Bestimmungsstücke, 

weitere Koordinaten”xxxii. Deze notie van verborgen variabelen is sindsdien niet meer 

veranderd, we zullen dit zo direct met meer precisie formuleren. Overigens is volgens Von 

Neumann een theorie met verborgen variabelen automatisch ook een deterministische 

theorie, alle fysische grootheden liggen dan immers volledig vast: “Würde man diese alle 

kennen, so könnte man die Werte aller physikalischen Grö�en genau und bestimmt angeben 

– mit Hilfe von  allein sind dagegen […] nur statistische Aussagen möglich”xxxiii. Dit zien 

wij tegenwoordig anders, niet iedere theorie van verborgen variabelen is ook een 

deterministische theorie.31 Ook hier komen we binnenkort op terug. 

 

Verborgen variabelenxxxiv 

De door Von Neumann aangedragen optie van een theorie met verborgen variabelen kent 

een breed scala aan varianten, die worden onderscheiden via extra condities op de meest 

primitieve verborgen variabelen theorie zoals Von Neumann die al beschreef. Het doel van 

een theorie met verborgen variabelen is om een model te construeren dat empirisch 

equivalent is aan een oorspronkelijk model32, i.e. beide modellen geven in dezelfde fysische 

situaties dezelfde voorspellingen. De haalbaarheid van dit doel is afhankelijk van de extra 

condities op de primitieve verborgen variabelen theorie en wordt in een aantal gevallen 

ontkracht door de zogenaamde no go-theorema’s. Om een goed beeld te krijgen van wat wel 

en niet mogelijk is met een theorie van verborgen variabelen en van wat de no go-theorema’s 

precies zeggen, moet er eerst een beperkt formalisme33 worden ingevoerd.  

We kijken naar de eindige34 kansruimte 

 

van metingen a, b, c,… en meetuitkomsten A, B, C,…. Op deze ruimte leggen we een 

kansverdeling , zodanig dat bijvoorbeeld  de waarschijnlijkheid 

geeft op meetuitkomsten A en B wanneer er de metingen a respectievelijk b worden 

uitgevoerd.35 Laat  de eindige ruimte zijn met daarin de verborgen variabele(n) . We 

                                                      
31 Ik beschuldig hier Von Neumann geenszins van een verkeerde redenering. Ik geef slechts aan dat zijn notie van 
een theorie met verborgen variabelen verschilt van de onze.  
32 In ons geval is dit natuurlijk de kwantummechanica met de waarschijnlijkheidsinterpretatie van Bohm. 
33 Voor een volledig formalisme verwijs ik naar Brandenburger & Yanofsky (2007). Voor ons is het voldoende om 
vanuit het formalisme een fysisch beeld te scheppen over de problematiek rond verborgen variabelen theorieën.  
34 De oorspronkelijke theorema’s zijn gedefinieerd met oneindige kansruimten. Maar om het maattheoretische 
formalisme te kunnen negeren werken wij met eindige kansruimten. De theorema’s zelf worden hiermee 
weliswaar minder krachtig, maar de betekenis en  zeggingskracht ervan zeker niet. 
35 De oriëntatie van twee metingen a en b t.o.v. elkaar in de ruimtetijd is verdisconteerd in de metingen a en b zelf. 
Aan iedere meting is dus een ruimtetijd coördinaat toegevoegd.  



 20 

definiëren nu een tweede eindige kansruimte  met daarop een kansverdeling 

 zodanig dat  de waarschijnlijkheid geeft op meetuitkomsten A 

en B wanneer er de metingen a respectievelijk b worden uitgevoerd in de situatie van 

verborgen variabele(n) . Als laatste nemen we aan dat metingen elkaar onderling niet 

uitsluiten (op bijvoorbeeld fysische gronden), i.e.  en  voor 

alle metingen a, b, c,…. 

 

Definitie 1 Een empirisch model is een paar . 

Definitie 2 Een verborgen variabelen model is een paar . 

Definitie 3  en  zijn empirisch equivalent als voor alle A,B,C,… en a,b,c,… geldt: 

        . 

 

Vervolgens definiëren we een zestal extra condities die aan het primitieve verborgen 

variabelen model kunnen worden opgelegd. 

 

Definitie 4  voldoet aan éénwaardigheid als  precies één element bevat. 

Definitie 5  is �-onafhankelijk als voor alle a,b,c,… en , 

        .      (2) 

 

Dit betekent dat de waarde(n) van de verborgen variabele(n)  en de tijdsevolutie van  

onafhankelijk zijn van welke metingen er worden uitgevoerd. Het is van belang om op te 

merken dat dit ook andersom geldt: de verborgen variabele(n)  kunnen – op wat voor een 

manier dan ook – de metingen beïnvloeden.36 

 

 

 

Definitie 6  voldoet aan sterk determinisme37 als er voor alle paren  een A 

bestaat zodat , net als voor alle  etc.  

Definitie 7  voldoet aan zwak determinisme als voor alle a,b,c…,� er meetuitkomsten 

A,B,C,… bestaan zodanig dat . 

 

                                                      
36 Dit bestaat onder de noemer “samenzweringstheorie”.  
37 Vanaf nu is determinisme niet meer vanzelfsprekend Laplace-determinisme, maar wordt er weer onderscheid 
gemaakt tussen verschillende noties van determinisme. 
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Beide vormen van determinisme zeggen dat de verborgen variabelen de meetuitkomsten 

vastleggen. Voor zwak determinisme geldt dit echter alleen als gegeven is welke metingen er 

nog meer worden uitgevoerd, terwijl dit voor sterk determinisme voor iedere meting 

afzonderlijk geldt. Merk op dat alleen een sterk deterministisch model mogelijk ook Laplace-

deterministisch is, want in een Laplace-deterministische wereld worden fysische grootheden 

niet beïnvloed door welke metingen er worden uitgevoerd. Tevens moet een Laplace-

deterministisch model dan �-onafhankelijk zijn, anders kan de waarde van een fysische 

grootheid alsnog afhangen van de uitgevoerde metingen omdat Definitie 6 zegt dat in een 

sterk deterministisch model de meetuitkomst mede door de verborgen variabele(n) wordt 

bepaald.38 

 

Definitie 8  is uitkomstonafhankelijk als voor alle A,B,C,…,a,b,c,…,�, 

 , net als voor B,C, etc. (3)  

 

De meetuitkomst van een meting is in zo’n model onafhankelijk van andere meetuitkomsten.  

 

Definitie 9  is parameteronafhankelijk als voor alle A,a,b,c,…,�, 

 , net als voor alle B,a,b,c,…,� etc. (4)  

 

In een parameteronafhankelijk verborgen variabele model hangt de meetuitkomst (eventueel 

met een waarschijnlijkheidsverdeling) dus niet direct39 af van andere uitgevoerde metingen.  

Vanuit deze definities is het mogelijk om een Vendiagram van verborgen variabelen 

modellen op te stellen (fig.5)40. Dit diagram wordt geconstrueerd d.m.v. een aantal 

elementaire resultaten uit de kansrekening.41  

                                                      
38 Merk op dat ik hier stiekem onderscheid maak tussen de deterministische tijdsevolutie van een wereld en de 
vrije keuze daarin over de uit te voeren meting(en). Ik neem hier impliciet een vrije wil aan. Misschien is het 
daarom beter om hier van systeem i.p.v. wereld te spreken en het systeem vervolgens als geïsoleerd van de 
menselijke vrije wil te beschouwen. 
Het is bovendien beter om van systeem te spreken omdat het uitvoeren van een meting in een wereld tot de 
geschiedenis van die wereld behoort. Laplace-determinisme m.b.t. welke metingen er worden uitgevoerd is dan 
een lege notie geworden. Wanneer een fysisch systeem wordt onderscheiden van de metingen die niet tot dit 
systeem behoren, dan is dit niet het geval. 
39 De meetuitkomst kan nog wel indirect afhangen van de uitgevoerde metingen, omdat er in de verborgen 
variabele(n) � een mogelijke afhankelijkheid zit.  
40 De terminologie is in het Engels, want de figuur komt uit Brandenburger & Yanofsky (2007). Mijn Nederlandse 
vertalingen spreken voor zich. 
41 Zie Brandenburger & Yanofsky (2007) voor alle bewijzen. 
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Fig. 5: een Vendiagram van zes condities op verborgen variabelen modellen.xxxv 

 

Ter illustratie tonen we aan dat ieder zwak deterministisch model een uitkomstonafhankelijk 

model is, zoals het Vendiagram aangeeft.  

 

Propositie 1 Als  zwak deterministisch is, dan is  uitkomstonafhankelijk.  

Bewijs Vanwege het zwak determinisme kunnen we bij iedere reeks metingen a,b,c… 

meetuitkomsten A,B,C,… vinden zodat . Maar omdat iedere kans 

kleiner of gelijk aan 1 is, moet dan ook gelden dat , , 

,…, we weten immers altijd: 

. Omdat we 

tevens weten dat , moet nu gelden: 

, net als voor B,C, etc. Het model is dus 

uitkomstonafhankelijk. QED 

 

Als laatste definiëren we de twee condities lokaal en non-contextueel die zijn samengesteld uit 

een aantal zojuist geformuleerde eigenschappen. Het belang van deze condities is dat ze 

fysisch interpretabel zijn en dat voorkomen in de no go-theorema’s. 
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Definitie 10 is lokaal als voor alle A,B,C,…,a,b,c,…,� geldt dat 

                   . (5) 

 

Dit betekent dat de meetuitkomstwaarschijnlijkheden noch van de gekozen set metingen, 

noch van andere meetuitkomsten afhangen. Lokaal betekent hier dus dat meetexperimenten 

volledig geïsoleerd van de wereld buiten het experiment kunnen worden uitgevoerd. De 

volgende propositie reduceert lokaliteit tot de eerdere zes primitieve condities die kunnen 

worden opgelegd aan een verborgen variabele model. 

 

Propositie 2 is lokaal dan en slechts dan als  uitkomst- en parameteronafhankelijk is. 

Bewijs 

: De eerste identiteit is een bekend resultaat uit de kansrekening, de tweede en 

derde zijn simpele substituties. 

  

 : Wanneer je (5) over alle mogelijke meetuitkomsten van B,C,… sommeert levert     

je dit (4) op, volgens ons model is een meting immers altijd gepaard aan een meetuitkomst. 

Substitutie van (4) en de analoga van (4) in (5) levert: 

 

Door opnieuw gebruik te maken van de bekende identiteit wordt dit: 

 

Dit levert (3). QED 

 

Het begrip non-contextualiteit wordt gedefinieerd voor empirische modellen. Aangezien 

ieder empirisch model op triviale wijze kan worden uitgebreid tot een primitieve verborgen 

variabelen model – neem voor  de lege verzameling en definieer als kansverdeling 

 voor ieder argument  - heeft deze definitie ook betrekking op de laatste soort 

modellen. Non-contextualiteit betekent dat de meetuitkomstwaarschijnlijkheid op geen 

enkele wijze afhangt van de overige uitgevoerde metingen. 
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Definitie 11 Een empirisch model  is non-contextueel als voor alle A,a,b,b’,c,c’,… geldt 

dat: . 

 

Uit het voorgaande valt nu op te maken dat als een model �- en parameteronafhankelijk is, 

het model ook non-contextueel is.  

 

Propositie 3  is non-contextueel als  �- en parameteronafhankelijk is. 

 Voor het bewijs verwijzen we naar Brandenburger & Yanofsky (2007, p.9). 

 

Go-theorema’s 

Met het gegeven formalisme kunnen we nu de mogelijkheidsvoorwaarden van verschillende 

verborgen variabelen modellen onderzoeken, i.e. bestaat er voor ieder empirisch model een 

empirisch equivalent verborgen variabelen model dat voldoet aan de condities…? Het 

voordeel van deze abstracte behandeling is tweeledig. Wanneer we één of meerdere 

condities op een concrete verborgen variabelen theorie van de kwantummechanica kunnen 

identificeren, is het direct mogelijk om uitspraken te doen over de levensvatbaarheid van 

zo’n theorie. Daarnaast weten we zo in welke gebieden van het Vendiagram het zinvol is te 

zoeken naar nieuwe verborgen variabele theorieën van de kwantummechanica. 

Brandenburger & Yanofsky (2007) bewijzen dat er voor ieder empirisch model een empirisch 

equivalent verborgen variabelen model bestaat dat: 

E1: sterk deterministisch is. 

E2:  zwak deterministisch en �-onafhankelijk is. 

Deze twee go-theorema’s42 zeggen dus dat het voor iedere fysische theorie mogelijk is om een 

equivalente verborgen variabelen theorie te vinden die sterk deterministisch, dan wel zwak 

deterministisch en �-onafhankelijk is. Omdat een sterkere conditie een zwakkere43 

impliceert, bestaat er volgens Brandenburger & Yanofsky (2007) nu bijvoorbeeld m.b.v. E1 

voor ieder empirisch model een fysisch equivalent parameteronafhankelijk verborgen 

variabelen model. Dit leidt volgens hen tot het Vendiagram in figuur 6. Voor ieder empirisch 

model bestaat er een equivalent verborgen variabelen model uit een groen domein in het 

diagram. In elk domein staat aangegeven welk theorema daarvoor zorgt.44  

 
                                                      
42 In de literatuur bestaan alleen no go-theorema’s. De go-theorema’s kunnen worden beschouwd als de 
tegenhangers van de no go-theorema’s. 
43 Dit heeft niets met sterk en zwak determinisme te maken. 
44 Een soortgelijke stelling geldt voor éénwaardigheid, vandaar het vinkje. Dit is triviaal, vul het empirische 
model aan met een constante � in ieder argument van de waarschijnlijkheidsfunctie p en je hebt een empirisch 
equivalent éénwaardig model. 
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Fig. 6: de go-theorema’s hebben betrekking op modellen uit de groene domeinen.xxxvi 

 

Ik denk overigens dat Brandenburger & Yanofsky (2007) hier een omissie maken, ze hebben 

bijvoorbeeld geen go-theorema voor parameteronafhankelijke modellen die niet sterk 

deterministisch zijn terwijl ze dit domein wél donker kleuren. De bewijzen zijn echter 

eenvoudig uit te breiden tot deze domeinen, waardoor de figuur als zodanig correct is. 
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No-go theorema’s 

Desondanks zijn we over het algemeen niet tevreden met louter de groene domeinen in 

figuur 6. Zo willen we bijvoorbeeld graag dat een fysische theorie intrinsiek45 lokaal is, 

omdat non-lokaliteit tegen onze fysische intuïties in gaat.46 Wat derhalve overblijft om te 

onderzoeken zijn de lichte domeinen in de figuur. Er blijken drie zogenaamde no go-

theorema’s te bestaan die zeggen dat er in deze domeinen niet voor ieder fysisch model een 

empirisch equivalent verborgen variabelen model bestaat.47 We zullen deze theorema’s nu  

bespreken. 

 

Einstein-Podolski-Rosen (EPR) 

We geven hier een kort bewijs van het EPR-theorema in termen van ons formalisme. Daarna 

zullen we kort terugkomen op de oorspronkelijk fysische formulering, die analoog is aan de 

onze. 

 
EPR-theorema Er is een empirisch model  waarvoor er geen empirisch equivalent verborgen 

variabelen model bestaat dat zowel éénwaardig als uitkomstonafhankelijk is.  

Bewijs We bewijzen deze stelling door een empirisch model te construeren waarvoor dit 

geldt. Laat  

                                       (6) 

en neem als kansverdeling: 

 en . 

Veronderstel nu dat er wél zo´n equivalent verborgen variabelen model bestaat met 

vanwege de éénwaardigheid  Vanwege de empirische equivalentie moet nu gelden 

dat 

 en ,  

waardoor  

 

en 
                                                      
45 I.e. dat de structuur van de theorie het toelaat om een empirisch equivalent lokaal verborgen variabelen model 
te construeren. 
46 Non-lokaliteit impliceert namelijk instantane werking op afstand, wat in tegenspraak is met het tweede 
postulaat van de speciale relativiteitstheorie, dat zegt dat er niets sneller gaat dan licht.   
47 Een misvatting is dat no go-theorema’s het bestaan van bepaalde consistente verborgen variabelen modellen 
uitsluiten. De theorema’s zeggen daarentegen slechts dat dit soort modellen niet noodzakelijk voor elk empirisch 
model bestaat. 
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                .            (7) 

Dit is in contradictie met de uitkomstonafhankelijkheid van het model , dus bestaat er 

geen empirisch equivalent model  dat éénwaardig en uitkomstonafhankelijk is. QED  

 

Tot zover is er nog geen fysica aan te pas gekomen. Als we nu echter kunnen aantonen dat 

de kwantummechanica zo’n empirisch model representeert48, dan weten we dat er geen 

empirisch equivalente verborgen variabelen theorie van de kwantummechanica bestaat die 

zowel éénwaardig is als uitkomstonafhankelijk.  

Met een voorbeeld is dit eenvoudig aangetoond. Neem twee ruimtelijk onderscheidbare 

spin-  deeltjes met antiparallelle spin in de z-richting. Isaac en Gottfried meten ieder aan 

een apart deeltje de spin in de z-richting. Laat nu a de meting van Isaac representeren en b de 

meting van Gottfried. Hiermee is een kwantummechanisch voorbeeld van het empirische 

model uit het bewijs gegeven. Er bestaat dus geen verborgen variabelen theorie van de 

kwantummechanica die zowel éénwaardig is als uitkomstonafhankelijk.49 

 

Bell 

Omdat de Bell-ongelijkheid – het analogon van het Bell-theorema – voor veel fysici bekend is 

en omdat het laatste no go-theorema algemener is dan het Bell-theorema, laat ik het bij een 

formulering van het Bell-theorema. Voor het bewijs verwijs ik naar Brandenburger & 

Yanofsky (2007, pp. 18-21), een inzichtelijk bewijs voor de Bell-ongelijkheid is te vinden in 

Bell (1987, pp. 36-38). 

 

Bell-theorema  Er is een empirisch model  waarvoor er geen empirisch equivalent verborgen 

variabelen model bestaat dat �-, parameter- en uitkomstonafhankelijk is. 

 

Een equivalente formulering is dat er geen equivalent model bestaat dat �-onafhankelijk en 

lokaal is.  

Door Isaac en Gottfried onafhankelijk van elkaar te laten kiezen in welke richting zij de spin 

meten, hebben we een kwantummechanische situatie gevonden die het empirische model uit 

                                                      
48 Of dat een onderdeel van de kwantummechanica zo’n model representeert, wat voldoende is voor onze 
bewering. 
49 Schokkender is dat ook de klassieke mechanica zo’n empirisch model representeert. Zie bijvoorbeeld Von 
Neumann (2005).   
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het bewijs van Brandenburger & Yanofsky (2007, pp. 18-21) representeert. Oftewel, de 

kwantummechanica kan niet worden beschreven door een verborgen variabelen theorie die 

zowel �-onafhankelijk als lokaal is. Bell concludeerde uit zijn ongelijkheid dat de 

kwantummechanica fundamenteel non-lokaal is, ondanks onze fysische intuïtie. Griffiths 

(2005, pp. 423-428) beschrijft hoe we non-lokaliteit desondanks kunnen accepteren. De 

instantane werking op afstand is slechts schijn, omdat er geen informatie wordt 

overgedragen. We kunnen nu dus de non-lokaliteit van de kwantummechanica voor waar 

aannemen, zonder dat dit een tegenspraak met de speciale relativiteitstheorie oplevert. 

Merk overigens op dat Bells conclusie over de non-lokaliteit van de kwantummechanica 

impliciet veronderstelt dat de kwantummechanica �-onafhankelijk is. Dit komt o.a. tot uiting 

in Bell (1987, pp.36-38), waar � op geen enkele wijze wordt beïnvloed door het uitgevoerde 

experiment. Deze veronderstelling is echter niet algemeen geldig. Zo zijn er verborgen 

variabelen theorieën die de fase van de toestandsfunctie als verborgen variabele nemen.50 

Wanneer we nu een meting opvatten als een interactie met het systeem, kan de fase wel 

degelijk worden beïnvloed door de uitgevoerde metingen. Een interactie kan immers een 

faseverschuiving opleveren, denk bijvoorbeeld aan het Aharonov-Bohm effect.xxxvii Dit 

betekent dat Bells conclusie afhankelijk is van de eisen die je stelt aan een eventuele 

verborgen variabelen theorie en is de kwantummechanica dus niet noodzakelijk non-

lokaal.51 

                                                      
50 Een voorbeeld is Pearle (1976). 
51 Dit neemt niet weg dat voor veel fysici �-onafhankelijkheid een vanzelfsprekende eis is, hetgeen nu non-
lokaliteit van de kwantummechanica impliceert. 
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Kochen-Specker (KS) 

Dit laatste no go-theorema kan qua uitspraak worden beschouwd als een uitbreiding van het 

Bell-theorema, we laten namelijk alleen de eis van uitkomstonafhankelijkheid vallen. 

Wanneer het Bell-theorema toepasbaar is op een verborgen variabelen model, dan is het KS-

theorema dat ook. We kunnen echter niet stellen dat het Bell-theorema volledig te reduceren 

is tot het KS-theorema. Kochen en Specker doen namelijk een controversiële algebraïsche 

aanname die Bell niet nodig heeft.52 

 

KS-theorema Er is een empirisch model  waarvoor er geen empirisch equivalent verborgen 

variabelen model bestaat dat �- en parameteronafhankelijk is. 

Bewijs. We construeren een empirisch model waarvoor de bewering geldt. Neem negen sets 

van metingen a,b,c,d, die worden gerepresenteerd door vier basisvectoren. Ieder basisvector 

komt in twee verschillende sets voor, in totaal zijn er dus  basisvectoren.53 Dit 

levert tabel 1 op, waarin  een van de achttien basisvectoren representeert. 

 

Tabel 1: negen verschillende bases op een vierdimensionale vectorruimte.xxxviii 

 
 

Neem vervolgens aan dat iedere meting meetuitkomsten 0 en 1 kan hebben.54 De 

kansverdeling 55 wordt nu zó geconstrueerd, dat bij een set van 

metingen a,b,c,d, precies één meting 1 als uitkomst heeft en de andere drie metingen 0 als 

uitkomst hebben. 

Nu veronderstellen we dat er een equivalent �- en parameteronafhankelijk verborgen 

variabelen model bestaat. Bekijk de eerste kolom van de tabel en neem56 

                                                      
52 Ik heb een sterk vermoeden dat deze aanname te identificeren met de eis van exchangeability in ons bewijs van 
het KS-theorema. 
53 In kwantummechanische termen kies je negen bases op een vierdimensionale Hilbert-ruimte, zodanig dat 
iedere basisvector in twee verschillende bases voorkomt. 
54 Een meting is nu feitelijk een propositie met een waarheidswaarde. 
55 Waarbij A,B,C en D dus de waarden 0 en 1 kunnen aannemen. 
56 Dit is vrij te kiezen. 
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                          ,                         (8) 

wat per constructie impliceert dat 

, en . 

In dit geval geldt dus zeker dat . Vanwege �- en parameter-

onafhankelijkheid geldt nu ook dat . In bepaalde situaties zegt 

de kansrekening dat wanneer je metingen en bijbehorende meetuitkomsten op dezelfde 

manier verwisselt, de waarschijnlijkheid onveranderd blijft.57 Laten we dit nu aannemen.58 Er 

volgt dan direct dat  en dus dat  

en dat de overige metingen in de vijfde kolom een 0 als meetuitkomst hebben. 

Onder de aannamen van �- en parameteronafhankelijkheid zien we dus dat de basisvector – 

in dit geval  – die in een bepaalde set van metingen meetuitkomst 1 heeft, dezelfde 

meetuitkomst heeft in de andere set waar deze basisvector deel van uit maakt. Dit levert 

echter een contradictie op. Iedere meetuitkomst 1 is nu namelijk uniek gepaard aan een 

andere meetuitkomst 1, wat een even aantal enen in de tabel impliceert. Echter, omdat per 

constructie iedere kolom één 1 telt en het aantal kolommen oneven is, is het aantal enen in de 

tabel dat ook. We hebben dus een empirisch model geconstrueerd waarvoor geen equivalent 

�- en parameteronafhankelijk verborgen variabelen model bestaat zonder dat dit 

contradicties oplevert. QED 

 

Merk op dat de oorspronkelijke formulering van het KS-theorema niet over �- en parameter-

onafhankelijk spreekt, maar over non-contextueel. Er bestaat dus niet voor ieder empirisch 

model een non-contextueel verborgen variabelen model. 

 

Een kwantummechanisch voorbeeld van het empirische model in het bewijs is een spin-  

deeltje59, waarvan het spindeel van de toestandsfunctie een vierdimensionale Hilbert-ruimte 

opspant. Meting van de spincomponent in de z-richting geeft vier mogelijke 

meetuitkomsten: . We definiëren nu meting a als volgt: a heeft als 

meetuitkomst 1 als de spincomponent  is en anders is de meetuitkomst 0. Definieer b,c 

                                                      
57 In de kansrekening heet dit exchangeability. 
58 Waar de meeste fysici deze aanname als triviaal beschouwen, is hij cruciaal voor het KS-theorema en zeker niet 
oncontroversieel. Zo ontkent Von Neumann een equivalente formulering in operatortaal. 
59 Dit is het enige no go-theorema waarbij niet aan meerdere deeltjes gemeten wordt. Daarom kunnen discussies 
over non-lokaliteit en instantane werking op afstand achterwege worden gelaten. 
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en d op analoge wijze voor de overige spincomponenten. Merk op dat bij een volledige set 

metingen a,b,c en d er één meetuitkomst 1 oplevert en de andere drie meetuitkomsten 0 

opleveren. Analoog aan de constructie van tabel 1 kunnen we willekeurige bases op de 

vierdimensionale Hilbert-ruimte kiezen. Hiermee is een kwantummechanisch empirisch 

model geconstrueerd dat overeenkomt met het model in het bewijs. Onder de aanname van 

exchangeability concluderen we daarom dat de kwantummechanica intrinsiek contextueel is, 

i.e. er bestaat geen kwantummechanisch verborgen variabelen model dat non-contextueel is. 

Dit is de belangrijkste fysische conclusie van het KS-theorema. Er zijn dus altijd 

kwantummechanische metingen waarvan de meetuitkomstwaarschijnlijkheid afhangt van de 

overige uitgevoerde metingen, dit is intrinsiek aan de kwantummechanica en kan niet 

worden geëlimineerd met enig verborgen variabelen model. 
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Determinisme 

Het resultaat van de analyse van de go- en no go-theorema’s is te zien in figuur 7. Een 

kwantummechanisch verborgen variabelen theorie is slechts dan mogelijk als het model in 

een groen domein valt. Dit legt ernstige restricties op aan deterministische verborgen 

variabelen theorieën van de kwantummechanica. 

 
Fig. 7: het Vendiagram met de werking van alle go- en no go-theorema’s.xxxix 

 

Sterk determinisme is nu alleen mogelijk als de theorie niet �-onafhankelijk is. Wil zo’n 

theorie sterk deterministisch zijn, dan moet de theorie beschrijven hoe de verborgen 

variabele(n) � worden beïnvloed door de uitgevoerde metingen zodat (2) niet meer altijd 

geldig is. 

Bovendien moeten we concluderen dat kwantummechanica als wetenschappelijke theorie 

niet Laplace-deterministisch kan zijn. We hadden immers gezien dat Laplace-determinisme 

equivalent is aan een sterk deterministische �-onafhankelijke verborgen variabelen theorie. 

Uit figuur 7 blijkt echter dat een kwantummechanische verborgen variabelen theorie niet aan 

beide eisen tegelijk kan voldoen. De meest oorspronkelijke notie van determinisme is dus 

uitgesloten voor de kwantummechanica. 

Het is van belang dat men hier onderscheid maakt tussen het kwantummechanisch 

formalisme en de kwantummechanica als wetenschappelijke theorie. Zoals we hebben 
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gezien is het formalisme fundamenteel Laplace-deterministisch. Wanneer we zeggen dat 

kwantummechanica niet Laplace-deterministisch kan zijn, bedoelen we dit m.b.t. metingen. 

Door de bril van een observator kan kwantummechanica dus niet Laplace-deterministisch 

zijn, terwijl het formalisme dat wel is.  

Een alternatief voor louter sterk determinisme is zwak determinisme. Maar ook zo’n theorie 

kent de nodige restricties, zo kan een  zwak deterministische verborgen variabelen theorie 

niet tegelijk �- en parameteronafhankelijk zijn. Oftewel, wil je enige vorm van determinisme 

behouden, dan moet de kwantummechanica contextueel zijn. 

Nu we goed bekend zijn met de mogelijkheden en onmogelijkheden van determinisme in de 

kwantummechanica, kunnen we een concrete deterministische theorie onder de 

kwantummechanica bestuderen: die van Gerard ’t Hooft. 
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Determinisme in de kwantummechanica volgens Gerard ’t Hooft 

 
Introductie 

In mijn bestudering van ’t Hoofts deterministische theorie van de kwantummechanica heb ik 

mij gericht op twee artikelen van zijn hand, te weten Determinism in free bosons uit 2001 en 

The mathematical basis for deterministic quantum mechanics uit 2006. De centrale gedachte in 

deze theorie is dat toestanden van een kwantummechanisch systeem één-op-één zijn te 

identificeren met een set van toestanden van een volledig60 deterministisch model. Deze set 

van toestanden is een equivalentieklasse op een klassieke faseruimte. Hiermee krijgt ook de 

waarschijnlijkheidsinterpretatie een plaats binnen de nieuwe theorie, want vanwege 

informatieverlies over de precieze toestand binnen een equivalentieklasse is het niet meer 

mogelijke om zekere voorspellingen te doen. Dit alles zou betekenen dat 

kwantummechanica is te reduceren tot een deterministische onderlaag, waaruit zij als het 

ware emergeert.  

De deterministische onderlaag beschouwt ’t Hooft als opgebouwd uit verschillende 

klassieke, of “ontologische”, systemen. Klassiek betekent hier niet “gehoorzamend aan de 

wetten van de klassieke mechanica”. Het heeft een algemenere betekenis, namelijk dat ieder 

systeem wordt vastgelegd door een aantal grootheden  en dat de tijdsevolutie van het 

systeem wordt vastgelegd door de 1ste orde differentiaalvergelijking  in 

combinatie met de beginvoorwaarden  en .  

De meeste opzetten van de kwantummechanica proberen vervolgens zo’n klassiek systeem 

te modificeren, zodat er een gekwantiseerd systeem ontstaat met als kwantisatieconstante de 

constante van Planck. ’t Hooft echter laat het klassieke systeem als zodanig intact binnen zijn 

theorie. Hij herformuleert dit systeem slechts in een taal die geschikt is voor 

kwantummechanica en laat vervolgens zien dat dit de gebruikelijke kwantummechanica 

oplevert. Deze methode noemt hij pre-kwantisatie. 

Ik denk dat dit alles moet worden bezien in het licht van een groter plan dat moet leiden tot 

een deterministische kwantumveldentheorie en er als volgt uit ziet: 

 

1. Aantonen dat een herformulering van een volledig deterministisch, klassiek 

systeem de fysica van een kwantummechanische harmonische oscillator (KHO) 

                                                      
60 Het centrale voorbeeld in zijn artikelen – de kwantummechanische harmonische oscillator – impliceert dat ’t 
Hooft hier Laplace-determinisme in gedachten heeft.  
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oplevert, i.e. de eigentoestanden van een KHO zijn één-op-één te identificeren 

met een set van toestanden van het klassieke systeem. 

2. Een manier vinden om op dezelfde wijze meerdere KHO’s te beschrijven. 

3. Het toevoegen van interacties aan de theorie. 

4. Een theorie ontwikkelen waarin overaftelbaar veel KHO’s, inclusief interacties, 

deterministisch kunnen worden beschreven. Dit is dan een deterministische 

kwantumveldentheorie61, aangezien kwantumveldentheorie niets anders is dan 

de beschrijving van overaftelbaar veel KHO’s in de ruimtetijd.62 

 

Het is hierbij van belang dat men zich realiseert dat ’t Hooft de kwantummechanica – die 

haar waarde als wetenschappelijke theorie ruimschoots heeft bewezen – niet afkeurt. Hij wil 

slechts laten zien dat er een deterministisch beschrijvingskader bestaat waaruit de 

kwantummechanica emergeert, hetgeen impliceert dat kwantummechanica intrinsiek 

deterministisch is. 

Ik heb mij voornamelijk gericht op de eerste twee punten van het grotere plan, deze wil ik 

hier dan ook presenteren. We zullen gaan kijken naar het centrale voorbeeld in zijn theorie, 

de kwantummechanische harmonische oscillator. Daarna behandelen we kort punt 2 van het 

grotere plan en bestuderen we een probleem waar ’t Hooft tegenaan loopt: het feit dat de 

verkregen Hamiltoniaan niet vanonder begrensd is.  

 

Kwantummechanische harmonische oscillator (1) 

Als centraal voorbeeld van zijn theorie laat ‘t Hooft zien hoe een herformulering van een 

bepaald klassiek systeem de fysica van een kwantummechanische harmonische oscillator 

oplevert. 

Het deterministische klassieke systeem bestaat uit N toestanden die genoteerd worden met 

. In eerste instantie veronderstellen we dat het systeem evolueert met 

discrete tijdstapjes . We construeren de tijdsevolutie van de klassieke toestanden als volgt: 

                              .                       (9)63 

In figuur 8 is een representatie van deze tijdsevolutie te zien voor . 

 

                                                      
61 Eigenlijk zou mijn werkstuk daarom “Determinisme onder de kwantumveldentheorie” moeten heten. Maar 
omdat wij ons beperken tot de kwantummechanica, heb ik gekozen voor de alternatieve titel. 
62 Het idee van deze laatste stap komt van prof. dr. Sijbrand de Jong, zelf weet ik nog niets af van 
kwantumveldentheorie. 
63 “mod” betekent modulo. We noteren � alleen met getallen tussen 0 en N-1. 
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Fig. 8: illustratie van de tijdsevolutie van het klassieke systeem voor N=9. 

 

Nu we het klassieke systeem en zijn tijdsevolutie hebben beschreven, herformuleren we het 

in termen die beter geschikt zijn voor kwantummechanica. We representeren de toestanden 

van het systeem met kolomvectoren van lengte N, zodat een toestand  op plaats  1 heeft 

staan64 en op de overige plekken 0. In deze representatie wordt de tijdsevolutie beschreven 

door een matrix65  

,  

zodat . 

Feitelijk gebruikt ’t Hooft hier het Koopmanformalisme, dat zegt dat zo’n unitaire evolutie-

operator van een klassiek systeem altijd bestaat.66 Veronderstel nu dat er een zelf-

geadjungeerde lineaire operator  bestaat zodanig dat . Deze operator 

werkt op de N-dimensionale vectorruimte van toestanden, die we nu kunnen beschouwen 

als een Hilbert-ruimte. Merk op dat we tot nu toe nog geen schokkende resultaten hebben 

geboekt. Alles wat we hier hebben gebruik is klassiek en reeds bekend.  

’t Hooft stelt nu dat  eigentoestanden  heeft, waarbij  en waarvoor de 

volgende eigenwaardevergelijking geldt: 

                                .                     (10) 

                                                      
64 Op een fasefactor na. Deze fasefactor is voor iedere toestand overigens hetzelfde. 
65 Oftewel, als een lineaire operator op de N-dimensionale vectorruimte waarvan de toestanden een basis vormen. 
66 Dit is het lemma van Koopman en onderdeel van ergodentheorie, zie Reed & Simon (1972, p. 57-58).  
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Ik heb het bewijs hiervan uitgewerkt.  

Laat , zodat 

                      .                 (11) 

 is dus ook een eigenfunctie van de evolutie-operator . 

 

Lemma De eigenwaarden  van  voldoen aan de vergelijking . 

Bewijs We noteren met  de eigenwaarde  op de i-de plek in een rij van dezelfde 

eigenwaarden. De eigenwaarden voldoen dan aan 

Bij de derde gelijkheid is gebruikt dat de determinant van een boven- of 

onderdriehoeksmatrix het product van de diagonaalelementen is. Hiermee is het lemma 

bewezen. QED 

De  eigenwaarden van  liggen dus equidistant op de eenheidscirkel in het 

complexe vlak, waarbij  één eigenwaarde is. De eigenwaarden zijn 

 met .67 

                                                      
67 De nummering van de eigenwaarden is vrij te kiezen. De hier aangehouden nummering levert (10) op. Een 
andere nummering zorgt voor een altijd toegestane translatie op de energieschaap in (10). 
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Uit (11) volgt nu dat 

                                              (12) 

oftewel 

                            .                  (13) 

Oplossen voor  geeft inderdaad (10). 

Om de verkregen Hamiltoniaan in de gewenste vorm te krijgen, definiëren we een aantal 

nieuwe parameters. Hierbij nemen we N oneven, maar analoge definities gelden voor N 

even. 

                                                                          (14) 

                                                                           (15) 

Omdat , nu . We moeten het getal l beschouwen als een 

maat voor het aantal toestanden van het klassieke systeem (op de cirkel in figuur 8), terwijl 

het getal m nu een index is voor een specifieke toestand. Wanneer we het getal l nu 

interpreteren als het azimuthale kwantumgetal en m als het magnetische kwantumgetal, dan 

kunnen we gebruik maken van kennis over de algebra van de operatoren .68 We 

vervangen de set eigentoestand  door de set . Omdat , is de 

Hamiltoniaan te schrijven als  

                        ,                (16) 

                       of .                   (17) 

                                                      
68 Dit zijn de generatoren van de symmetriegroep SU(2). 
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Vervolgens kunnen we een plaats- en impulsoperator definiëren. Met deze plaats en impuls 

identificeren we een deeltje met massa , andere massa’s kunnen later in de 

vergelijkingen verdisconteerd worden als constante.69 

                        en                  (18) 

Als laatste definiëren we een hoekfrequentie 

                                     ,                                 (19) 

die een maat is voor de snelheid waarmee de klassieke toestanden evolueren in de tijd 

(ronddraaien op de cirkel). M.b.v. bekende identiteiten van de SU(2)-generatoren - zoals 

 - verkrijgen we na flink wat schrijfwerk de volgende twee 

vergelijkingen: 

                                                         (20) 

                 .          (21) 

’t Hooft neemt nu de continuümlimiet van , waarbij  constant blijft. De 

hoekfrequentie is immers een eigenschap van het klassieke systeem (en het toekomstige 

kwantumsysteem). Het klassieke systeem is nu een continuüm van toestanden geworden die 

periodiek evolueren in de tijd met hoekfrequentie  en waar een toestand is te identificeren 

met een coördinaat  op de eenheidscirkel. Bovendien is ook de tijd nu continu. In 

deze limiet reduceren (20) en (21) tot: 

                                          ;                                (22) 

                                 .                          (23) 

Waarachtig een spectaculair resultaat, want dit zijn precies de vergelijkingen waar een 

ééndimensionale kwantummechanische harmonische oscillator met eigenfrequentie  aan 

voldoet! We verkrijgen namelijk de kanonieke kwantummechanische commutatierelatie voor 

plaats en impuls en de Hamiltoniaan van de KHO. Hiermee geeft ’t Hooft een prachtig 

voorbeeld van een bekend kwantumsysteem dat emergeert uit een klassiek systeem. 

Bovendien is punt 1 in het plan hiermee volbracht. Uit (16) volgt namelijk dat de energie van 

een kwantumtoestand van de KHO het kwantumgetal m bepaalt. En aangezien een klassieke 

                                                      
69Dimensionale analyse leert waar de eenheidsmassaterm zich in de volgende vergelijkingen bevindt. 
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toestand  ontbonden kan worden in een discrete Fourier-reeks van toestanden van , 

kunnen we de kwantumtoestanden van de KHO identificeren met een equivalentieklasse op 

de toestanden van het klassieke systeem.70 De KHO is daarmee volledig te reduceren tot een 

deterministisch klassiek systeem. 

Het belang van de deterministische KHO van Gerard ’t Hooft is mijns inziens tweeledig. In 

de eerste plaats is het een belangrijke stap in het grotere plan van een deterministische 

theorie onder de kwantumveldentheorie. Ten tweede is het een duidelijke aanwijzing dat 

zo’n theorie wel eens zou kunnen kloppen.71 

Merk overigens op dat we nergens het klassieke systeem hebben gekwantiseerd, we hebben 

het klassieke systeem slechts in een andere taal geformuleerd. Dit is in overeenstemming met 

’t Hoofts idee van pre-kwantisatie. Ook worden de plaats- en impulsoperator in de limiet 

continu, precies wat we willen voor een KHO. 

 

Kwantummechanische harmonische oscillator (2) 

Ik denk echter dat in de herformulering de inzichtelijkheid van de continuümlimiet 

verdwijnt en dat we hierdoor verkeerde conclusies trekken. Dit vermoeden ontstaat vooral 

door (16) en (17), want omdat  constant is in de limiet, blazen de eigenwaarden van 

 lineair in l op. Hoe is het dan mogelijk dat in de herformulering (21) de Hamiltoniaan 

netjes eindig blijft in de continuümlimiet? Het antwoord is dat dit niet het geval is, ook in 

(21) blaast de Hamiltoniaan op. 

De tijdstap  gaat weliswaar naar nul in de continuümlimiet, maar m.b.v. (16) vinden we 

dat in de limiet . Daarom heeft ook (21) geen eindige limiet. We moeten concluderen 

dat de continuümlimiet niet de Hamiltoniaan van de KHO oplevert. In plaats daarvan 

hebben alle kwantumtoestanden m een oneindige energie72, wat het onmogelijk maakt om 

een bekend kwantumsysteem met deze Hamiltoniaan te identificeren. 

Maar ook (20) levert in de limiet niet de kanonieke commutatierelatie (22) op. In de limiet 

immers gaat , met als gevolg dat . Dit is een commutatierelatie van een 

klassiek systeem, waarin plaats en impuls met elkaar commuteren. Het is dus niet alleen 

onmogelijk gebleken om een bekend kwantumsysteem te identificeren met ons klassieke 

systeem, het is überhaupt niet mogelijk dat op deze wijze kwantummechanica emergeert uit 

                                                      
70Oftewel, een set van toestanden op de cirkel.  
71 ’t Hooft geeft in zijn twee artikelen helaas geen andere voorbeelden waarin een bekend kwantumsysteem 
emergeert uit een klassiek systeem.  
72 Bij eindige m. 
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een deterministisch klassiek systeem. Ondanks de herformuleringen behouden we immers 

de oorspronkelijke klassieke commutatierelatie van plaats en impuls. 

Met deze klassieke commutatierelatie als resultaat ben je snel geneigd te denken dat de 

continuümlimiet eigenlijk niets anders is dan de klassieke limiet van de kwantummechanica. 

Ik denk echter dat dit niet zo is. Immers, in de klassieke limiet van de KHO laat je niet het 

aantal mogelijke eigentoestanden l naar oneindig gaan (dit aantal is in de KHO al oneindig), 

maar de actuele eigentoestand m gaat naar oneindig.xl Bovendien gaat in deze limiet de 

constante van Planck naar nul, terwijl daar bij ons geen sprake van is. Dit is dus wel degelijk 

een andere limiet en het probleem van de klassieke commutatierelatie is niet weg te 

redeneren door te verwijzen naar de klassieke limiet. 

 

Een ander probleem en de oplossing 

Ik zou nu in principe graag ’t Hoofts theorie bespreken over hoe twee (of meerdere) KHO’s 

te identificeren zijn met een klassiek systeem (dat nu bestaat uit twee cirkels). Het is een 

mooie theorie die de golffunctie interpreteert als een equivalentieklasse op de 

tweedimensionale gedetermineerde klassieke faseruimte en op deze wijze de 

waarschijnlijkheid in dit voorbeeld een plaats geeft. Maar voordat we over meerdere KHO’s 

kunnen spreken, is het mijns inziens noodzakelijk om eerst één KHO goed te begrijpen. 

Daarvoor moeten de zojuist genoemde problemen worden opgelost. En als dit niet mogelijk 

blijkt te zijn, dan is het zinloos om de theorie verder te ontwikkelen tot meerdere KHO’s. 

Daarom bespreek ik twee (of meerdere) KHO’s niet en wacht ik op een oplossing voor de 

zojuist genoemde problemen. 

Een heel ander probleem is het feit dat de verkregen Hamiltoniaan niet van onder begrensd 

is. Dit is goed zichtbaar in (16), waar in de continuümlimiet . Daarom is het 

niet mogelijk om een nulpuntsenergie aan te wijzen73, terwijl dit in kwantummechanische 

systemen wél aanwezig moet zijn. ’t Hooft lost dit probleem op door zich te beperken tot de 

positieve energie eigenfuncties. Hij beargumenteert dit met de volgende stelling, die zegt dat 

deze beperking geen verlies van algemeenheid tot gevolg heeft. 

 

                                                      
73 Dit is eigenlijk enigszins ambigu, want je werkt met twee oneindigheden die je van elkaar aftrekt. Maar het idee 
dat er géén nulpuntenergie is aan te wijzen, is duidelijk. 
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Propositiexli Consider any probability distribution W(q) that is not strictly vanishing for any value 

of q, that is, a strictly positive, real function of q. Then a complex wave function can be found 

such that , and  is a convergent linear composition of eigenstates of  

with nonnegative eigenvalues only. 

Dit is namelijk  met  en met  een functie 

gedefinieerd op de gehele eenheidscirkel van z.  

Bewijs Het bewijs heb ik te danken aan dr. Michael Müger en is te vinden in de appendix. Er 

wordt gebruik gemaakt van een zogenaamde Hilbert-transformatie.  ! 

 

Ik denk dat ’t Hooft hiermee een goede oplossing geeft voor zijn probleem, maar ik zie niet 

in hoe dit in de praktijk kan worden gebracht (bijv. in de KHO). Hiervoor is meer en 

specifieker onderzoek nodig.  



 43 

Determinisme 

Tot slot wil ik het determinisme binnen de theorie van ’t Hooft op twee manieren belichten. 

In de eerste plaats kunnen we stellen dat er binnen zijn theorie sprake is van ontologisch 

determinisme en niet van epistemologisch determinisme. Op de twee vragen die gezamenlijk 

het epistemologisch determinisme representeerden heeft de theorie namelijk geen antwoord. 

Zoals gezegd accepteert ’t Hooft de kwantummechanica als wetenschappelijke theorie. Zijn 

gepostuleerde deterministische onderlaag biedt echter geen nieuwe voorspellingen die de 

kwantummechanica niet doet. Daarom kunnen we op empirische grond niet het onderscheid 

maken tussen de kwantummechanica en de theorie van ’t Hooft en is het niet mogelijk om 

vast te stellen of de wereld werkelijk deterministisch is. 

Bovendien biedt de theorie geen methode om zekere, niet-statistische voorspellingen te 

doen. Vanuit de eigentoestand van de KHO kan ’t Hooft weliswaar afleiden wat de toestand 

van het klassieke systeem is, maar deze kennis over de klassieke toestand leidt niet tot zekere 

voorspellingen over het kwantumsysteem (bijv. over waar het deeltje zich in de 

potentiaalput bevindt).74 

We kunnen dus concluderen dat ’t Hoofts determinisme niet epistemologisch, maar 

ontologisch is. Hij  postuleert een deterministisch klassiek systeem en probeert aannemelijk 

te maken dat de kwantummechanica uit dit systeem emergeert, zodat we de 

kwantummechanica als intrinsiek deterministisch kunnen beschouwen. Omdat het 

determinisme van het klassieke systeem Laplace-determinisme is75, hebben we nu inderdaad 

te maken met ontologisch determinisme. 

Een belangrijke stap die ’t Hooft zal moeten zetten in de ontwikkeling van zijn theorie is 

deze overgang van ontologisch naar epistemologisch determinisme. Om beide vragen van 

het epistemologisch determinisme te kunnen beantwoorden is kennis van de geschiedenis 

 op een bepaald tijdstip  nodig. Dit betekent dat de klassieke onderliggende 

toestanden empirisch waarneembaar moeten zijn. Echter, in de experimentele fysica is er op 

dit moment geen enkele aanwijzing voor het bestaan van die soort klassieke toestanden en 

de theorie geeft ook niet aan of en hoe deze klassieke toestanden waarneembaar zijn. Wil ’t 

Hooft de stap naar epistemologisch determinisme maken en daarmee tegelijkertijd een 

werkelijk wetenschappelijke76 theorie creëren, dan moet dit probleem worden opgelost.  

In de tweede plaats kunnen we bestuderen hoe het determinisme van ’t Hooft zich verhoudt 

tot de vormen van determinisme in onze analyse van het scala van verborgen variabelen 
                                                      
74 Informatieverlies over de onderliggende deterministische toestanden speelt ook een belangrijke rol wanneer 
interacties bij de theorie worden betrokken. Dit maakt zekere voorspellingen opnieuw onmogelijk. 
75 Dit is in ieder geval zo bij de KHO. Tevens blijkt nergens uit dat ’t Hooft een andere vorm van determinisme 
voor ogen heeft. 
76 Met “wetenschappelijk” bedoel ik hier empirisch verifieerbaar, dan wel empirische falsificeerbaar.  
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theorieën. Eenmaal impliceert ’t Hooft dat we zijn theorie kunnen beschouwen als een 

verborgen variabelen theorie.xlii Ik ben het hiermee eens. De verborgen variabelen zijn hier 

namelijk de coördinaten van de toestanden van het klassieke systeem. Hiermee is op zijn 

minst een primitieve verborgen variabelen theorie geconstrueerd.  

Ik denk dat wij zijn theorie zelfs kunnen beschouwen als een meerwaardige, �-

onafhankelijke, sterk deterministische verborgen variabelen theorie. De toestanden van het 

systeem veranderen namelijk in de tijd en hun tijdsevolutie is gegeven zonder de 

kwantummechanische eigenschappen van de KHO en eventuele metingen aan het systeem 

erbij te betrekken. Dat de theorie sterk deterministisch is wordt nergens expliciet gesteld. 

Maar aangezien de theorie geen belang hecht aan welke metingen worden uitgevoerd, 

kunnen we aannemen dat ’t Hooft een sterk deterministische theorie voor ogen heeft. 

Het probleem is nu dat de theorie van ’t Hooft vanwege het Bell-theorema alleen kan bestaan 

als minstens één van de aannamen in deze stelling wordt verworpen  (fig. 7). Tegen het 

algemenere KS-theorema kan een ontkenning van exchangeability worden ingebracht, maar 

daarmee blijft het Bell-theorema overeind. Wil de theorie kans van slagen hebben, dan moet 

dit no go-theorema op de een of andere manier worden omzeild. 

Wat betreft het omzeilen zijn er twee opties (fig. 9). In beide gevallen moet de theorie een 

conditie laten vallen. Je kunt vasthouden aan sterk determinisme en de conditie van �-

onafhankelijkheid laten varen. De klassieke toestanden moeten dan afhankelijk worden 

gemaakt van welke metingen er worden uitgevoerd, of de klassieke toestanden moeten op 

de een of andere wijze de metingen beïnvloeden. De tweede optie is om �-onafhankelijkheid 

te behouden en te eisen dat de theorie niet sterk, maar zwak deterministisch is. In dat geval 

zal moeten worden verklaard hoe overige uitgevoerde metingen een zekere, niet-statistische 

meetuitkomst kunnen beïnvloeden. In beide gevallen moet binnen de theorie de invloed van 

welke metingen er worden uitgevoerd vergroot worden. Op Fysica 200877 gaf ’t Hooft te 

kennen dat zijn voorkeur uitgaat naar de eerste optie in de tweede variant: hij denkt dat het 

Bell-theorema omzeild kan worden omdat verborgen variabelen de meting zélf beïnvloeden.  

 
 

                                                      
77 Een symposium georganiseerd door de Nederlandse Natuurkunde Vereniging, gehouden op 18 april 2008 te 
Nijmegen. 
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Fig. 9: positie van huidige theorie ’t Hooft en van de twee opties om het Bell-theorema te omzeilen. 
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Conclusie 

Wil een nieuwe en controversiële theorie weerstand bieden aan het kwantummechanische 

paradigma van de afgelopen tachtig jaar, dan moet zij op zijn minst óf met cruciale 

empirische fenomenen komen die de kwantummechanica tegenspreken óf een goede 

aanwijzing hebben die de uitspraken van de theorie bevestigen. Zoals gezegd is er in de 

theorie van ’t Hooft van het eerste geval geen sprake; de kwantummechanica als zondanig is 

volgens hem correct, maar onvolledig. De goede aanwijzing voor de uitspraak dat de 

kwantummechanica emergeert uit klassiek gedetermineerde systemen is daarentegen 

volgens ‘t Hooft wél aanwezig, namelijk de kwantummechanische harmonische oscillator. Ik 

heb echter laten zien dat de problemen met de continuümlimiet deze uitspraak ondermijnen, 

uit het klassieke systeem dat ’t Hooft beschouwt emergeert noch de KHO, noch enig ander 

bekend kwantummechanisch systeem. Voordat de theorie verder ontwikkeld kan worden is 

het mijns inziens daarom noodzakelijk dat de problemen met de KHO worden opgelost, of 

dat er een ander kwantummechanisch systeem wordt gevonden dat gerepresenteerd kan 

worden door een klassiek systeem en daarmee de theorie onderbouwt. Dit laatste is niet 

noodzakelijkerwijs uitgesloten. We hebben echter gezien dat ons klassieke systeem na de 

kwantummechanische herformulering haar klassieke commutatierelatie van plaats en 

impuls had behouden. Dit lijkt een fundamenteel probleem te zijn en dient te worden 

opgelost met het oog op alternatieve kwantummechanische systemen die exemplarisch zijn 

voor de theorie. 

Daarnaast hebben we gezien dat een levensvatbare deterministische theorie een aantal 

aanpassingen behoeft: om de stap naar epistemologisch determinisme en daarmee empirisch 

verifieerbare/falsifieerbare uitspraken te maken, moet er een mechanisme beschreven 

worden dat waarneming van onderliggende klassieke toestanden mogelijk maakt. Tevens 

moet de theorie antwoord geven op het Bell-theorema, óf door het te ontkennen, óf door het 

te omzeilen. We hebben gezien dat in het tweede geval de theorie zich meer rekenschap 

dient te geven van de invloed van overige uitgevoerde metingen en van het verband tussen 

de verborgen variabelen en een meting. Het lijkt erop dat dit aspect – de eerder besproken 

contextualiteit –onlosmakelijk verbonden is aan de kwantummechanica. 

Ondanks de problemen en benodigde aanpassingen denk ik dat de ideeën van ’t Hooft zeker 

kans van slagen hebben. De problemen met de interpretatie van de kwantummechanica zijn 

te groot om kwantummechanica als een volledige theorie te beschouwen. Bovendien wordt 

er nog steeds veel onderzoek gedaan op het grensvlak van klassieke en 

kwantummechanische systemen, mogelijk kunnen de ideeën van ’t Hooft op nieuwe 

ontwikkelingen binnen dit vakgebied inhaken.  
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