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“If that were so then physics could only claim the interest of shopkeepers and

engineers; the whole thing would be a wretched bungle”
Albert Einstein in een brief aan Erwin Schrédinger (22 december 1950)
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Inleiding

“Alea iacta est” moet Albert Einstein hebben gedacht, toen zijn veelal jongere collega-fysici de
klassiek gedetermineerde wereld verlieten, de kolkende rivier van de jaren ‘20 overstaken en
terechtkwamen in een landschap vol onzekerheid en nieuwe fenomenen. De
kwantummechanica had in 1927 met de waarschijnlijkheidsinterpretatie van Born en de
onzekerheidsrelaties van Heisenberg zijn definitieve verschijningsvorm aangenomen en
daarmee het determinisme uit de wereld verbannen. Maar waar velen de empirische
successen van de nieuwe fysica bejubelden, bleef Einstein onverschrokken en fundamenteel
afkerig van deze theorie. Onze natuur is deterministisch, en de kwantummechanica met haar
waarschijnlijkheidsinterpretatie - niets meer dan het gooien van een dobbelsteen - kan
daarom niet correct zijn. Voor Einstein was het een incomplete theorie en hij was naarstig op
zoek naar een deterministisch alternatief.

Deze vergeefse zoektocht van Einstein is echter niet afschrikwekkend genoeg geweest voor
een aantal andere fysici. Ook zij beten zich vast in het probleem van determinisme en
kwantummechanica, maar geen van allen zag het uiteindelijke licht. Tegenwoordig is de
Nederlandse Nobelprijswinnaar Gerard 't Hooft een van de kopstukken van deze
deterministische traditie. Met zijn zoektocht naar een deterministische theorie onder! de
kwantummechanica treedt hij in de voetsporen van Einstein. In dit werk presenteer ik mijn
analyse van deze theorie.

Het doel dat ik nastreef is tweeledig. Ten eerste wil ik de theorie van "t Hooft inbedden in het
grotere geheel van de discussie over determinisme en kwantummechanica. Het zal blijken
dat ik vanuit deze inbedding uitspraken kan doen over de haalbaarheid en
mogelijkheidsvoorwaarden van de ideeén van ‘t Hooft. Ten tweede wil ik proberen een
kritische beschouwing van de theorie zelf te geven: wat probeert de theorie te
bewerkstelligen en in hoeverre slaagt zij daarin?

Met het oog op deze doelen is het werk als volgt opgebouwd. Om te weten waar we over
praten, moeten we allereerst een notie van determinisme ontwikkelen. Daarna zal ik
determinisme in de klassieke mechanica bespreken. Dit leidt tot verrassende inzichten en
laat zien dat determinisme binnen de fysica met de nodige voorzichtigheid en nuance moet
worden behandeld. Dan gaan we over op de kwantummechanica. Hier bespreek ik de
belangrijkste deterministische aspecten en (on)mogelijkheden van de kwantummechanica.
Tot slot behandel ik de deterministische theorie van ‘'t Hooft, waarbij ik teruggrijp op het

voorgaande en tevens een kritische beschouwing geef.

1 Waarom ik consequent “onder” gebruik zal hopelijk later duidelijk worden. 't Hooft gebruikt deze term
overigens zelf ook af en toe.



Voordat we werkelijk kunnen beginnen, wil ik graag opmerken dat de wijze waarop ik de
theorie van 't Hooft weergeef een interpretatie is van deze theorie. Ik heb mij gericht op de
elementen die mijns inziens voor dit werk van belang zijn en kan daarom niet garanderen
dat dit ook de visie is van "t Hooft zelf.2 Ook wil ik graag benadrukken dat ik - ook al leent
het onderwerp zich er goed voor - in dit werk géén filosofische standpunten betrek of
beschouw. Dit vanwege het feit dat ook 't Hooft in zijn artikelen geen blijk geeft van
filosofische pretenties rondom zijn deterministische theorie.

Ik wil mijn begeleider Prof. dr. Klaas Landsman hartelijk bedanken. Regelmatig heeft hij mij
een nieuw bos in gestuurd, waar ik telkens opnieuw de bomen met de heerlijkste vruchten
ontdekte. Ook bedank ik Prof. dr. Sijbrand de Jong en dr. Michael Miiger voor hun hulp bij
specifieke problemen. Tot slot bedank ik Prof. dr. Gerard "t Hooft voor de tijd die hij nam om

mijn vragen te beantwoorden tijdens het symposium Fysica 2008, te Nijmegen.

2 Daarvoor verwijs ik naar "t Hooft (2001) en "t Hooft (2006).



Determinismei

Wegens de grote verscheidenheid aan discussies omtrent determinisme - in combinatie met
bijvoorbeeld vrije wil® en/of goddelijke voorzienigheid - is het van belang dat we ons begrip
van determinisme goed afbakenen. Het doel van deze sectie is dan ook het ontwikkelen van
een heldere notie van determinisme. Omdat we niet willen afdwalen van ons eigenlijke
onderwerp - determinisme binnen de fysica, ih.b. binnen de kwantummechanica -

ontwikkelen we een definitie aan de hand van Laplace’ begrip van determinisme.

Laplace-determinisme

Deze notie van determinisme is klassiek, i.e. onafhankelijk van kennis over
relativiteitstheorie en kwantummechanica. Veronderstel dat de wereld* - of een geisoleerd?>
deel ervan, een systeem - wordt vastgelegd door een verzameling fysische grootheden O,
waarvan ieder element een welbepaalde waarde heeft op ieder tijdstip 7. Laat de geschiedenis

H een afbeelding zijn van R naar de rij van waardes van fysische grootheden van O,
H:R — (x',x*,..) met x' de waarde van de fysische grootheid X' &€ O. Voor ieder tijdstip
tEN legt H(t) nu de wereld op tijdstip ¢ vast.

De wereld is Laplace-deterministisch t.o.v. O dan en slechts dan als:

voor ieder paar geschiedenissen H,en H, die gehoorzamen aan de natuur-
wetten en waarvoor er een t' €N is zodat H,(t') = H,(t), tevens geldt dat voor alle

tENR: H (1)=H,(1).

Merk op dat hierbij verondersteld is dat de tijd 7 een globale tijd is, i.e. geldig als tijdfunctie
op willekeurig welke codrdinaat van de wereld. We definiéren deze notie van globale tijd zo
dat hij toepasbaar is voor zowel klassieke als relativistische ruimtetijden. Een globale
tijd(functie) is een afbeelding ¢: M — R, waarbij M de variéteit van de ruimtetijd is en

zodat er voor ieder paar punten p,qE M met #(p) < #(q) een toekomstgerichte tijdachtige

3 Ook Gerard "t Hooft heeft een artikel geschreven dat raakt aan discussies over de vrije wil, zie 't Hooft (2007).
We gaan hier niet verder op in.

4 Oftewel, het universum dat wordt beschreven door de wetten van de fysica.

5 Binnen moderne benaderingen van de kwantummechanica, zoals decoherentie, is volledige isolatie van een
systeem problematisch en niet meer mogelijk. Dit is zelfs het cruciale aspect van deze aanpak. Voor ons is de
vraag naar de mogelijkheid van volledige isolatie echter geen probleem. Het is namelijk voldoende om
determinisme binnen de wereld als geheel te denken, zonder te refereren aan deelsystemen. Een volledig
geisoleerd deelsysteem is dan slechts een theoretisch concept dat kan worden gebruikt in gedachte-experimenten,
zonder existentiéle pretenties te hebben.



wereldlijn van p naar q bestaat.c In relativistische ruimtetijden ligt de globale tijd(functie)
niet vast en hangt de precisie notie van determinisme dus af van de keuze van de globale

tijd(functie).”

Twee vormen van Laplace-determinisme
Het zojuist beschreven Laplace-determinisme is eigenlijk een conjunctie van twee zwakkere
vormen van dit determinisme: future en past Laplace-determinisme.

In het eerste geval geldt:

voor ieder paar geschiedenissen /,en H, die gehoorzamen aan de natuur-
wetten en waarvoor er een ' €N is zodat H,(¢t') = H,(t'), geldt tevens dat voor alle

tERmett>1t": H ()= H, ().

Er is sprake van past Laplace-determinisme als geldt:

voor ieder paar geschiedenissen /,en H, die gehoorzamen aan de natuur-
wetten en waarvoor er een t' €N is zodat H,(t') = H,(t"), geldt tevens dat voor alle

tERmett<t': H(t)=H,(@).

Pas als de wereld zowel past als future Laplace-deterministisch is, is de wereld Laplace-
deterministisch in de eerste en meeste algemene formulering.
Het is triviaal dat wanneer de natuurwetten invariant zijn onder tijdinversie, de

onderscheiden vormen van Laplace-determinisme equivalent zijn. De tijdsevolutie van de

geschiedenissen H, en H, wordt immers volledig vastgelegd door deze invariante

natuurwetten en dus impliceert H,(¢t) = H,(t) dat H,(~t) = H,(~t) voor alle tE3R . In dat
geval vervalt het onderscheid en is de wereld 6f Laplace-deterministisch, 6f niet.

Het is echter niet vanzelfsprekend dat de natuurwetten invariant zijn onder tijdinversie.
Denk bijvoorbeeld aan de zwakke interactie tussen elementaire deeltjes binnen het

Standaard Model.i Binnen de fysica is het onderscheid dus zeker zinvol.

6 Merk op dat met deze definitie voor een foton - die een toekomstgericht lichtachtige wereldlijn aflegt - de
globale tijd kan stilstaan, precies zoals de relativiteitstheorie voorspelt.

7 Alleen in pathologische gekromde ruimtetijden bestaat er geen globale tijdfunctie. Een voldoende en
noodzakelijke voorwaarde voor het bestaan van een globale tijd is stabiele causaliteit van de ruimtetijd. (zie Wald
(1984, pp. 198-199))



Modificatie van Laplace-determinisme
In de praktijk blijkt Laplace” notie van determinisme te beperkt te zijn. Binnen dit formalisme
is er namelijk geen sprake van determinisme als de tijdsevolutie van bepaalde fysische

grootheden wordt beschreven door differentiaalvergelijkingen met een tijdvertragings. Stel
bijvoorbeeld dat de tijdsevolutie van een fysische grootheid X' wordt beschreven door

x'(¢) = x'(t - C) met C een constante die niet nul is en dat H,(¢") = H,(¢") voor een bepaalde

'ER. Als nu x,'(t' - C) = x,'(t' = C) - een situatie die in het laboratorium eenvoudig te
creéren is -, dan is de wereld niet meer Laplace-deterministisch.? Toch zou je ook in deze
gevallen een notie van determinisme willen hebben, er zijn immers fysische systemen aan te
wijzen die beschreven worden door dit soort differentiaalvergelijkingen!® en tegelijkertijd

voldoen aan onze intuitieve notie van determinisme. Een modificatie van het Laplace-
determinisme eist dat x'(7) is gespecificeerd op het interval tE[t' -C ,t']. De wereld is nu
deterministisch als H,(¢) = H,(t) voor alle tENR in het geval dat H,(t) = H,(¢) voor alle

tE[t'—C,t']. Hiermee is een zinvolle notie van determinisme voor deze eenvoudige
differentiaalvergelijkingen met een tijdvertraging gecreéerd.!!

Voor de fysica is het van groot belang dat determinisme ook zinvol is gedefinieerd voor
systemen beschreven door differentiaalvergelijkingen met tijdvertraging. Zo wordt de
beweging van onderling wisselwerkende geladen deeltjes met dit soort vergelijkingen
beschreven, net als de beweging van (drie of meer) massa’s die een zwaartekrachtswerking
op elkaar uitoefenen. Immers, deze interacties planten zich voort met een eindige
lichtsnelheid ¢ waardoor er tijdvertraging optreedt (de interactie tussen deeltje i en j wordt
mede bepaald door de posities van de deeltjes op het tijdstip van uitzenden van de
interactiedeeltjes - respectievelijk fotonen en gravitonen -, dat voorafgaat aan de interactie
zélf).

Ondanks deze door de fysica opgelegde eisen aan de notie van determinisme, volstaat het
Laplace-determinisme voor het vervolg van dit werk. Als ik vanaf nu spreek over

determinisme, bedoel ik derhalve het Laplace-determinisme.

8 Een voorbeeld hiervan is de systeemanalyse van neurale processen, zie Van Opstal (2007).

9 Pathologische gevallen waarin de wereld nog wél Laplace-deterministisch is worden geélimineerd met de eis
dan fysische grootheden continu in de tijd moeten veranderen.

10 Zie noot 8.

11 Bijj ingewikkelder differentiaalvergelijkingen faalt overigens ook deze gemodificeerde notie van determinisme.
Hiervoor verwijs ik naar Raju (1994).



Ontologisch en epistemologisch determinisme
Voordat we determinisme binnen de fysica gaan bestuderen moet er nog één onderscheid
worden gemaakt, namelijk tussen ontologisch en epistemologisch determinisme. Bij de
bespreking van de theorie van "t Hooft zal dit onderscheid opnieuw een rol spelen. Laten we
beginnen met de laatste. Epistemologisch determinisme heeft twee aspecten die we beide
kunnen verwoorden met een vraag:

1. Hoe kunnen we vaststellen of de wereld deterministisch is?ii

2. Hoe kan ik zekere (i.e. niet-statistische) voorspellingen doen?
In het eerste geval moet je kennis hebben van alle natuurwetten in de wereld'?, deze kennis
dient te zijn getoetst aan de empirie. Hier ontstaan direct twee problemen: hoe kunnen we
zeker weten dat er natuurwetten bestaan en dat wij bovendien alle natuurwetten
beschouwen?v We laten deze problemen voor wat ze zijn en veronderstellen dat we alle
natuurwetten van de wereld - getoetst aan de empirie - kennen. Om de eerste vraag te
beantwoorden moeten we nu controleren of de wereld (Laplace-)deterministisch is t.o.v. de
verzameling O van alle in de natuurwetten voorkomende fysische grootheden.
Het tweede aspect van epistemologisch determinisme - het doen van zekere voorspellingen
- is alleen mogelijk binnen een deterministische wereld. Immers, met een indeterministische
natuurwet - denk bijvoorbeeld aan de huidige stand van de kwantummechanica - kun je
hooguit een statistische en - zoals we binnenkort zullen zien - soms zelfs helemaal geen
voorspelling doen. In dat geval is aan het tweede aspect voldaan wanneer je zekere

voorspellingen kunt doen door op een bepaald tijdstip 1 ER de geschiedenis H(¢) vast te

leggen en vervolgens de tijdsevolutie van de natuurwetten op de fysische grootheden te
laten werken.

Ontologisch determinisme is daarentegen een zuiver theoretische vorm van determinisme.
Wetten worden - zonder tussenkomst van de empirie - gepostuleerd, waardoor de
beantwoording van de eerste vraag al niet meer mogelijk is. Vervolgens kan worden
gecontroleerd of de wereld van ontologische wetten voldoet aan het (Laplace-)determinisme.
Wanneer dit het geval is, dan is er sprake van ontologisch determinisme. Deze vorm van
determinisme bestaat dus louter in een gepostuleerde, niet-werkelijke wereld en kan - d.m.v.

empirische waarneming - hoogstens voorafgaan aan epistemologisch determinisme.1314

12 Ook hier is het uiteraard mogelijk om naar een geisoleerd systeem of een model te kijken en alleen de
natuurwetten binnen dit systeem te beschouwen.

13 Ik durf de bewering aan dat op deze wijze het grootste deel van de moderne natuurkunde is ontstaan.

14 Zoals we later zullen zien kunnen we met deze observatie een zich ontwikkelende theorie als die van Gerard 't
Hooft plaatsen in een bepaalde fase van ontwikkeling.



Determinisme in de klassieke mechanica

De meeste fysici zullen de klassieke mechanica aanwijzen als de plek bij uitstek voor
determinisme binnen de fysica. Velen geloven namelijk dat deze theorie volledig
deterministisch is. Dit is echter niet het geval. Als opstapje tot determinisme in de
kwantummechanica en ter illustratie van de niet-triviale rol van determinisme binnen de
fysica wil ik drie voorbeelden van falend determinisme binnen de klassieke mechanica
bespreken: (1) een bal op een oppervlak, (2) oneindig veel ballen op een lijn en (3) in eindige tijd naar
het oneindige.

We beschouwen de klassieke mechanica als de bewegingsleer die voldoet aan de wetten van
Newton.v Daarnaast veronderstellen we absolute (Euclidische) ruimte en tijd, zoals Newton
zich deze voorstelde. Niet alleen omdat de speciale en algemene relativiteitstheorie deze
assumptie ontkentvi, maar ook m.b.t. determinisme is dit zeker niet vanzelfsprekend. Een
ruimtetijd moet namelijk voldoende structuur hebben om de mogelijkheid van zogenaamde
“determinism killing symmetries” te elimineren.vii Een Euclidische ruimte met een absolute tijd
voldoet hieraan en heeft tevens alle benodigde aspecten voor onze bespreking van de drie

klassieke voorbeelden.

Een bal op een oppervlakviiiix
Neem een bal met massa m = % , waarbij g de gravitatieversnelling is, die op # =0 op een

wrijvingloos oppervlak in de oorsprong van een cilindrisch cotrdinatenstelsel ligt. De vorm

3
van het oppervlak wordt gegeven door de rotatiesymmetrische hoogtefunctie s(r) = —grz

(fig.1).

Fig. 1: een bal op een oppervlak.»
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Volgens de klassieke mechanica voldoet de bal aan de bewegingsvergelijking?!5

F=mx =-VV(%), (1)
die vanwege de rotatiesymmetrie van het systeem reduceert!® tot
. dv
F=mr=-——r.
dr
3
Met V(r)=- 3 gr? voor dit systeem is d.m.v. substitutie eenvoudig na te gaan dat

r()=t"-0@-a)

voor willekeurige o E[O,OO) een oplossing!” voor dit probleem is. Hierbij is ©(f —a) de
stapfunctie.

Het is duidelijk dat deze wereld niet future Laplace-deterministisch is. Immers,
H,,0=H,_(0) terwijl tevens H_,_,(t)= H,_.(t) voor alle #>0. En aangezien de
tweede wet van Newton (en daarmee de gehele klassieke mechanical®) invariant is onder
tijdsomkeer, is deze wereld ook niet past Laplace-deterministisch. We hebben hier dus een
voorbeeld van indeterminisme in de klassieke mechanica: de natuurwetten (in dit geval de
differentiaalvergelijking (1)) leggen immers niet vast of en wanneer de bal vanuit de
oorsprong naar beneden rolt.

Eigenlijk is dit een voorbeeld van een veel algemenere situatie waarin determinisme?® in de

klassieke mechanica niet automatisch gegarandeerd is als de krachtfunctie F'(x) niet voldoet

aan de Lipschitz-conditie op het relevante intervalx, wat in ons geval [0, OO) is. Eén van de

dF
eisen hiervoor is dat e bestaat op het hele interval. In onze situatie bestaat de afgeleide
x

van F(x) = g\/; niet in het punt x =0. Daarom voldoet de krachtfunctie niet aan de

Lipschitz-conditie en is determinisme niet meer gegarandeerd.

15 Omdat we werken met een wrijvingloos oppervlak is er geen sprake van een krachtmoment en zal de bal dus
niet gaan roteren. Daarom kunnen we de bewegingsvergelijking van een puntmassa gebruiken.

16 We beschrijven de beweging van de bal in termen van de radiéle codrdinaat r, wat wegens de rotatiesymmetrie
van het systeem een volledige beschrijving is.

17 De dimensionaliteit is verdisconteerd in de stapfunctie, deze heeft dimensies lengte-(tijd)4.

18 De tweede wet van Newton is immers de enige plek binnen de natuurwetten van de klassieke mechanica
waarin de tijd een rol speelt. We veronderstellen hierbij tijdonafhankelijke potentialen, zoals in ons voorbeeld het
geval is.

19 In plaats van “determinisme” moet er eigenlijk “een unieke oplossing van de bewegingsvergelijking” staan.
Echter, omdat het deeltje niet binnen eindige tijd naar het oneindige verdwijnt zijn deze formuleringen in dit
geval equivalent. In het derde voorbeeld In eindige tijd naar het oneindige gaat deze equivalentie niet meer op. De
oplossing van de bewegingsvergelijking is dan weliswaar uniek, maar er is geen sprake van determinisme.
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Oneindig veel ballen op een lijnxixi

Neem een 1-dimensionaal systeem waarbij oneindig veel identieke ballen met massa m op de

1
x-as liggen, geindexeerd met n =12,... en op plaatscodrdinaat x = — (fig.2). We hebben
n
hierbij aangenomen dat we de ballen oneindig klein kunnen maken. ledere modern
opgeleide fysicus zal direct allerlei kwantummechanische effecten?’ willen meenemen, maar

we werken in de klassieke mechanica en laten die dus buiten beschouwing.

\]nﬂl n=3 n=2 n

I
=

b
b
b
n—y

X-as —

Fig. 2: oneindig veel ballen op een lijn.

Laat nu een zelfde bal met snelheid 1 van rechts naar links bewegen, zodat deze zich op
tijdstip # = -1 op codrdinaat x =2 bevindt. Veronderstel tevens dat iedere botsing tussen
twee ballen elastisch en instantaan is.

Dit alles heeft tot gevolg dat bij een botsing tussen twee ballen de inkomende bal stil komt te
liggen en de uitgaande bal met snelheid 1 van rechts naar links doorgaat. Cruciaal is nu dat
het op tijdstip 7 =1 niet meer mogelijk is om aan te geven welke bal in beweging is, iedere
bal n moet dan immers al bal n+1 in beweging hebben gezet. Dit betekent dat het gehele
systeem in rust is vanaf ¢t =1.2

Determinisme komt in het spel als we tijdsomkeer toepassen. In het voorbeeld een bal op een
oppervlak is al aangegeven dat de klassieke mechanica invariant is onder tijdinversie.
(In)determinisme in de beschreven situatie is dus equivalent aan (in)determinisme in het
tijdgetransformeerde systeem met tijd ¢' = -7 .

Het tijdgetransformeerde systeem is in zijn geheel in rust voor alle tijdstippen ¢’ < -1, in de
oorspronkelijke situatie zijn dit immers de tijdstippen 7 = 1. Na ¢’ = -1 ontstaat er beweging
binnen het systeem en op ¢ =1 beweegt één bal - op dat moment in codérdinaat x =2 - met

snelheid 1 van links naar rechts. Echter, een andere oplossing voor de tijdsevolutie van dit

20 Denk hierbij in eerste instantie aan de (on)onderscheidbaarheid van de identieke ballen, de statistiek waaraan
de ballen voldoen en de Heisenberg onzekerheidsrelatie voor plaats en impuls.

21 Dit betekent tevens een schending van impuls- en energiebehoud. Dit is de reden waarom veel fysici dit een
pathologisch voorbeeld vinden en het niet serieus nemen. Echter, impuls- en energiebehoud worden alleen
geschonden in de inertiaalstelsels waarin alle geindexeerde ballen in eerste instantie in rust zijn. In ieder ander
intertiaalstelsel is de impuls en energie op alle tijdstippen oneindig en zijn deze grootheden dus behouden.
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klassieke systeem is dat de ballen ook voor de tijdstippen # =1 in rust blijven. We hebben nu
twee geschiedenissen H (") - het tijdgetransformeerde systeem - en H,(#') - het systeem
dat altijd in rust is - beschreven, die beide voldoen aan de natuurwetten van deze klassieke

wereld en waarvoor geldt: H,(-1) = H,(-1). Echter, we zien ook dat H,(1) = H,(1), want

in H,(l) is er sprake van beweging en in H,(l) zijn alle ballen in rust. Wegens de
invariantie onder tijdomkeer in de klassieke mechanica kunnen we vanuit de definitie van
Laplace concluderen dat er opnieuw sprake is van indeterminisme. En zelfs met de
gemodificeerde en striktere versie van het Laplace-determinisme (p. 8) moeten we d.m.v. de

substituties t' = -1 en C = ® concluderen dat deze wereld indeterministisch is.

In eindige tijd naar het oneindigexivxv.xvi
Veronderstel een deeltje met massa m dat parallel aan de x-as onder invloed van een

potentiaal V' (x) beweegt door de Euclidische ruimte. Neem tevens aan dat de krachtfunctie

F(x) =62—V voldoet aan de Lipschitz-conditie, zodat er een unieke oplossing van de
e

bewegingsvergelijking voor dit systeem bestaat. Het is op zijn minst denkbaar dat de
oplossing voor een specifiek systeem het deeltje binnen een eindige tijd een oneindige
snelheid geeft. In dat geval verdwijnt het deeltje binnen eindige tijd naar het oneindige
(fig.3).

time

Worldline of
accelerating object

space

Y

Fig. 3: Een deeltje verdwijnt in eindige tijd naar het oneindige.xvi

Earman (2007) stelt nu dat past determinisme hiermee geschonden is. Hij zegt namelijk dat

twee geschiedenissen H,(f) en H,(t) vanaf een bepaald tijdstip ' identiek kunnen zijn -
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want “no particle is present at these times anywhere in space”~ii - terwijl dat niet hoeft te
gelden voor een tijdstip " <t omdat er dan deeltjes in de ruimte aanwezig zijn die van
positie kunnen verschillen, waardoor H,(¢t") = H,(t").

Net als in het vorige voorbeeld passen we nu tijdomkeer toe. Deze tijdgetransformeerde
situatie is niet meer future deterministisch. Immers, op tijdstip # = —¢' komt er een deeltje
vanuit het oneindige het eindige cotrdinatenstelsel binnen. Omdat er voor dit tijdstip geen
deeltje aanwezig was in onze wereld (fig.4), bestaat er een conform de natuurwetten
alternatieve tijdsevolutie die de ruimte leeg laat voor alle ¢ = —¢'. Een geschiedenis van de
lege ruimte tot tijdstip ¢ kan dus op verschillende manieren evolueren, daarmee is future

determinisme geschonden.

time

A

Invader's worldline

space

Fig. 4: tijdsomkeer toegepast op figuur 3.xix

We hadden natuurlijk ook opnieuw gebruik kunnen maken van invariantie onder
tijldomkeer. Want omdat de klassieke mechanica invariant is onder tijdomkeer, is future
indeterminisme in de tijdgetransformeerde situatie equivalent aan past indeterminisme in de
oorspronkelijke situatie. Door de tijdgetransformeerde situatie echter concreet uit te werken,
hebben we gezien dat de fysische interpretatie en de argumentatie voor indeterminisme

wezenlijk verschillen t.o.v. de oorspronkelijke situatie.
Hiermee sluiten we het derde voorbeeld van indeterminisme binnen de klassieke mechanica

af. Vooral met het laatste voorbeeld heb ik moeite, omdat ik denk dat Earmans argument niet

in ieder coordinatenstelsel geldig is. Volgens de klassieke notie van ruimte en tijd kun je
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namelijk altijd een assenstelsel kiezen dat met het deeltje mee beweegt. In dat geval is er
geen sprake meer van oneindigheden en is Earmans argument dus niet geldig. Het lijkt er in
eerste instantie op dat we nu in een aporie terechtkomen waarin determinisme afhankelijk is
van het gekozen referentiestelsel. Echter, met deze cotrdinatentransformatie verlaten we
stiekem de klassieke mechanica. Het getransformeerde codrdinatenstelsel is namelijk niet-
intertieel en in dat stelsel zijn de wetten van de klassieke mechanica dus niet meer geldig.
Een algemeen relativistische benadering - waarin het principe van algemene covariantie zegt
dat dezelfde natuurwetten in willekeurig welk codrdinatenstelsel geldig moeten zijnx - zal
hier uitkomst bieden.

Deze mening over de problematiek van de voorbeelden verschilt echter per auteur. Zo
hebben velen moeite met het oneindige aantal ballen in het tweede voorbeeld.22 En ook het
voorbeeld Een bal op een oppervlak is niet zonder controverse, zo is het twijfelachtig of het
oppervlak als Newtoniaans systeem beschouwd kan worden.x

Tot slot wil ik graag twee opmerkingen maken. Het is in de eerste plaats niet zo dat we nu
alle voorbeelden van indeterminisme in de klassieke mechanica hebben besproken. De drie
gebruikte voorbeelden (of representanten van sets van voorbeelden) worden het meest
genoemd in de literatuur, maar het zijn niet de enige. Meer hierover is te vinden in John
Earmans Primer on Determinismi,

Ten tweede is het een misvatting dat deze voorbeelden uitspraken doen over
(in)determinisme in de wereld waarin wij leven. Daarvoor is toepassing van moderne
tysische theorieén zoals kwantummechanica en relativiteitstheorie noodzakelijk. Zo hebben
we gezien dat het tweede en derde voorbeeld door toepassing van deze theorieén
problematisch worden. En zelfs dan blijft het onmogelijk om zinvolle uitspraken te doen
over (in)determinisme in onze wereld, daarvoor zijn deze moderne theorieén simpelweg nog
niet goed genoeg begrepen.?? Pas met een “theorie van alles” kan de vraag naar het
(in)deterministische karakter van onze wereld definitief beantwoord worden.xii Het doel
van dit hoofdstuk was dan ook niet om tot wereldschokkende resultaten te komen over de
wereld waarin wij leven, maar om aan te geven dat onze intuities over (in)determinisme
binnen de fysica niet altijd correct zijn en dat dit vraagstuk een genuanceerde behandeling

behoeft.

22 Onder wie mijn begeleider prof. dr. Klaas Landsman. Desondanks heb ik er voor gekozen dit voorbeeld op te
nemen in mijn werkstuk, al was het maar vanwege de schokkende gedachte dat het gehele systeem tot rust komt
omdat het niet meer mogelijk is de bewegende bal aan te wijzen.

2 In feite speelt dit werkstuk in op een onderdeel van dit probleem, namelijk (in)determinisme binnen de
kwantummechanica.
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Determinisme in de kwantummechanica

Introductie

De “wetenschappelijke massa” beschouwt kwantummechanica als het voorbeeld bij uitstek
van een indeterministische fysische theorie. Nu zit hier een kern van waarheid in, maar het is
niet zo eenduidig als de “massa” het poneert. Zo is kwantummechanica in een bepaald
opzicht deterministisch, waar de klassieke mechanica indeterministisch is. Bovendien wordt
het indeterminisme waar de “massa” van spreekt veroorzaakt door het ineenstorten van de
golffunctie bij een kwantummechanische meting. Dit is echter een hoogst controversiéle
interpretatie van het meetproces binnen de kwantummechanica. Laten we - voordat we
beginnen aan het werkelijke indeterminisme binnen de kwantummechanica - de eerste
nuancering eens verder uitdiepen.

Zoals we in het vorige hoofdstuk hebben gezien, heeft de differentiaalvergelijking die de
tijdsevolutie van een klassiek mechanisch systeem beschrijft (tweede wet van Newton) niet
in iedere situatie een unieke oplossing of {iberhaupt een oplossing voor alle tENR . Het
analogon van de tweede wet van Newton in de kwantummechanica is de Schrodinger-

vergelijking
ih% _ Ay (i),

die de tijdsevolutie van de toestandsfunctie 9 (X,7) van een kwantummechanisch systeem
beschrijft. In tegenstelling tot de klassieke mechanica is in de kwantummechanica het
bestaan van een unieke oplossing van de tijdsevolutie van een systeem eenduidig
vastgelegd. Daarvoor moet de Hamiltoniaan H van het bestudeerde systeem namelijk

wezenlijk zelf-geadjungeerd zijn, i.e. de domeinen D(H)C L*(R") en D(H ) C L*(R")

van H resp. H~ moeten dicht liggen in L*(N") en H" = H".Het vinden van zo'n domein
is doorgaans niet moeilijkxxiv, maar het komt vaak voor dat er niet aan de tweede eis wordt
voldaan>v. Echter, in een fundamentele theorie van de kwantummechanica kunnen we deze
eigenschap veronderstellen. Een zelf-geadjungeerde Hamiltoniaan garandeert dus het
bestaan van een unieke oplossing van de tijdsevolutie van de toestandsfunctie ¥ (X, ) van
een kwantummechanisch systeem. In dit opzicht heeft de kwantummechanica een
deterministisch karakter t.o.v. de klassiecke mechanica, waar het bestaan van zo'n

gedetermineerde oplossing niet altijd eenduidig kon worden gegarandeerd.
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In het geval van een zelf-geadjungeerde Hamiltoniaan wordt de tijdsevolutie van ¥ (X,?)
expliciet beschreven door de unitaire evolutieoperator U (t;t,) = exp(—iI:[t) 24 Voor een
gegeven beginoestand ¥ (X,?,) is dit namelijk ¥ (X,?) =U ;¢ (x,t,). Omdat U (t:t,)

gedefinieerd is op de gehele Hilbert-ruimte L*(R") , is de bovenstaande uitdrukking altijd
geldig. Een inzichtelijk bewijs wordt gegeven in Weidmann (2000).xxvi
Ter illustratie komen we terug op het voorbeeld Een bal op een oppervlak uit het vorige

hoofdstuk.xvii De Hamilton-operator van dit systeem werd gegeven door

A #>
H=-—V>-V(r),
2m

2 3
met een potentiaal V(r)= 3 gr?. Met als Hilbert-ruimte de ruimte van kwadratisch

integreerbare functies op R’ ligt D(]:IJ dicht. En omdat in dit geval H™ = H" bestaat er in
tegenstelling tot het klassieke analogon een unieke oplossing voor de tijdsevolutie van de
toestandsfunctie van dit systeem. Hiermee hebben we een systeem geidentificeerd waarvan
de kwantummechanische variant wat betreft de tijdsevolutie van de toestandsfunctie
deterministischer is dan de klassiek mechanische variant.

Zonder te verzanden in discussies over het meetprobleem en de interpretatie van de
kwantummechanica wil ik bij het tweede punt van nuancering opmerken dat een
interpretatie van de kwantummechanica met daarin een reductie/ineenstorting van de
toestandsfunctie niet noodzakelijk indeterministisch is. Zo zijn er modellen die de
ineenstorting van de toestandfunctie beschouwen als een (mogelijk deterministisch)
dynamisch proces.xviii D.m.v. verborgen variabelen? en de toevoeging van een niet-lineaire
term aan de Schrodinger-vergelijking op het moment van een meting geeft Pearle (1976)
bijvoorbeeld een deterministische collapse-interpretatie van de kwantummechanica. Wegens
een gebrek aan empirische verifieerbaarheid wordt dit soort theorieén tegenwoordig niet
meer serieus genomen.

Het is tevens van belang dat men zich realiseert dat het kwantummechanisch formalisme als
zondanig geen zinvolle uitspraken doet over (in)determinisme. De zogenaamde no go-
theorema’s?* - waar we nog uitgebreid over zullen spreken - zijn immers slechts van

toepassing onder additionele (natuurlijke) voorwaarden of wanneer een expliciete

24 De Hamiltoniaan is hier de infinitesimale generator van de unitaire operatorgroep, zie Weidmann (2000, pp.
264-267).

25 Op deze term komen we binnenkort uitgebreid terug.

26 Het theorema van Einstein-Podolsky-Rosen (EPR), het theorema van Bell en het theorema van Kochen en
Specker. In de literatuur komt het EPR-theorema overigens voor als EPR-argument of EPR-paradox. Maar omdat
ik de EPR-paradox in het vervolg behandel als een 1o go-theorema, noem ik het ook een theorema.
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waardetoekenning van observabelen is gegevenxix Een voorbeeld van zo'n

waardetoekenning is de eigenwaarde-eigentoestand-link, die zegt dat een observabele O
met bijbehorende operator 0 op een tijdstip # dan en slechts dan een welgedefinieerde
waarde heeft als de toestandsfunctie een eigentoestand is van O. De waarde van O is in dat

geval een eigenwaarde van O behorende bij de desbetreffende eigentoestand.

Postuleer nu de zojuist besproken ineenstorting van de golffunctie bij een meting en je hebt
in hoofdzaak de Kopenhaagse interpretatie van de kwantummechanica. Uiteindelijk geeft de
waarschijnlijkheidsinterpretatie van de toestandsfunctie van Born het indeterministische
karakter aan de kwantummechanica.xx Dit alles leidt echter tot het meetprobleem, met de
Schrodinger-kat paradox als beroemde illustratie ervan. De zojuiste besproken dynamische

ineenstorting van de toestandsfunctie moest een antwoord op dit probleem zijn.xxi

Von Neumann

Er is echter nog een tweede optie die het meetprobleem moet oplossen en de
kwantummechanica mogelijk deterministisch maakt. Deze optie laat de eigenwaarde-
eigentoestand-link als waardetoekenning varen en gebruikt in plaats daarvan verborgen
variabelen als toevoeging aan de toestandsfunctie ¥ (X,?).2%28 Een voorbeeld hiervan is de
Bohm-interpretatie?® die als verborgen variabelen de plaatscotrdinaten van de afzonderlijke
deeltjes gebruikt. De waarde van de Bohm-interpretatie hangt echter af van de vraag of een
meting van een willekeurige observabele gereduceerd kan worden tot een positiemeting van
de afzonderlijke deeltjes. Daarnaast bestaan er binnen deze optie varianten van de modale
interpretatie van o.a. van Fraassen en Dieks en van de veel-werelden-interpretatie van
Barrett.30

De eerste echter die de mogelijkheid van verborgen variabelen opperde was Von Neumann.
Hij zegt niet dat de kwantummechanica incompleet is zonder verborgen variabelen, hij geeft
daarentegen slechts aan wat de noodzakelijke veronderstellingen zijn bij een poging om de

toestandsfunctie 1 (X,7) oorzakelijjk te verbinden met de meetwaarden van fysische

grootheden - naar het voorbeeld van de klassieke mechanica: “In Wahrheit bestimmt 3 gar

27 Het is niet zo dat dit de enige twee opties zijn. Earman (2007) geeft dit summier aan door te stellen dat de
tweede optie een variant heeft zonder verborgen variabelen. (Earman (2007, p. 1406))

28 Een intuitieve notie van verborgen variabelen is hier voldoende. In het vervolg zullen we dit preciezer maken.
Het is echter van belang dat men zich realiseert dat verborgen variabelen een theorie niet noodzakelijk
deterministisch maken.

2 Te onderscheiden van de waarschijnlijkheidsinterpretatie van de toestandsfunctie, eveneens van Bohm.

30 Hier gaan we niet verder op in, te meer omdat Earman (2007) op zeer heldere wijze uiteenzet van de (serieuze)
problemen met deze varianten zijn. Het is overigens niet zo dat van Fraassen, Dieks en Barrett zelf een
deterministische theorie aanhingen, in tegenstelling tot Bohm. Later zijn er deterministische varianten op hun
theorieén ontwikkeld.
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nicht den Zustand genau, um diesen restlos zu kennen sind vielmehr noch weitere
Zahlenangaben notwendig. D. h. das System hat neben 9 noch weitere Bestimmungsstticke,
weitere Koordinaten”x«ii, Deze notie van verborgen variabelen is sindsdien niet meer
veranderd, we zullen dit zo direct met meer precisie formuleren. Overigens is volgens Von
Neumann een theorie met verborgen variabelen automatisch ook een deterministische
theorie, alle fysische grootheden liggen dan immers volledig vast: “Wiirde man diese alle
kennen, so konnte man die Werte aller physikalischen Gr6Jen genau und bestimmt angeben
- mit Hilfe von 9 allein sind dagegen [...] nur statistische Aussagen moglich” i, Dit zien
wij tegenwoordig anders, niet iedere theorie van verborgen variabelen is ook een

deterministische theorie.3* Ook hier komen we binnenkort op terug.

Verborgen variabelenxiv
De door Von Neumann aangedragen optie van een theorie met verborgen variabelen kent
een breed scala aan varianten, die worden onderscheiden via extra condities op de meest
primitieve verborgen variabelen theorie zoals Von Neumann die al beschreef. Het doel van
een theorie met verborgen variabelen is om een model te construeren dat empirisch
equivalent is aan een oorspronkelijk model3?, i.e. beide modellen geven in dezelfde fysische
situaties dezelfde voorspellingen. De haalbaarheid van dit doel is afhankelijk van de extra
condities op de primitieve verborgen variabelen theorie en wordt in een aantal gevallen
ontkracht door de zogenaamde no go-theorema’s. Om een goed beeld te krijgen van wat wel
en niet mogelijk is met een theorie van verborgen variabelen en van wat de no go-theorema’s
precies zeggen, moet er eerst een beperkt formalisme worden ingevoerd.
We kijken naar de eindige3* kansruimte
®={4,A4.}x{B,B.}x{C,C'.}x..{a,a'.}x{bb..}x{cc.}x..
van metingen a, b, ¢,... en meetuitkomsten A, B, C,.... Op deze ruimte leggen we een
kansverdeling ¢g:® — [0,1], zodanig dat bijvoorbeeld ¢(A4,B|a,b) de waarschijnlijkheid
geeft op meetuitkomsten A en B wanneer er de metingen a respectievelijk b worden

uitgevoerd.®> Laat A de eindige ruimte zijn met daarin de verborgen variabele(n) A. We

31 [k beschuldig hier Von Neumann geenszins van een verkeerde redenering. Ik geef slechts aan dat zijn notie van
een theorie met verborgen variabelen verschilt van de onze.

32 In ons geval is dit natuurlijk de kwantummechanica met de waarschijnlijkheidsinterpretatie van Bohm.

3 Voor een volledig formalisme verwijs ik naar Brandenburger & Yanofsky (2007). Voor ons is het voldoende om
vanuit het formalisme een fysisch beeld te scheppen over de problematiek rond verborgen variabelen theorieén.
34 De oorspronkelijke theorema’s zijn gedefinieerd met oneindige kansruimten. Maar om het maattheoretische
formalisme te kunnen negeren werken wij met eindige kansruimten. De theorema’s zelf worden hiermee
weliswaar minder krachtig, maar de betekenis en zeggingskracht ervan zeker niet.

3 De oriéntatie van twee metingen a en b t.o.v. elkaar in de ruimtetijd is verdisconteerd in de metingen a en b zelf.
Aan iedere meting is dus een ruimtetijd codrdinaat toegevoegd.
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definiéren nu een tweede eindige kansruimte 2 =® x A met daarop een kansverdeling
p:Q— [0,1] zodanig dat p(4,B|a,b,A) de waarschijnlijkheid geeft op meetuitkomsten A
en B wanneer er de metingen a respectievelijk b worden uitgevoerd in de situatie van
verborgen variabele(n) AE A . Als laatste nemen we aan dat metingen elkaar onderling niet
uitsluiten (op bijvoorbeeld fysische gronden), i.e. g(a,b,c,...)>0 en p(a,b,c,..)>0 voor

alle metingena, b, c,....

Definitie 1 Een empirisch model is een paar (®,q).

Definitie 2 Een verborgen variabelen model is een paar (€2, p).

Definitie 3 (P,q) en (€2, p) zijn empirisch equivalent als voor alle A,B,C,... ena,b,c,... geldt:
q(4,B,C,...|a,b,c,...) = p(4,B,C,...| a,b,c,...).

Vervolgens definiéren we een zestal extra condities die aan het primitieve verborgen

variabelen model kunnen worden opgelegd.

Definitie 4 (L2, p) voldoet aan éénwaardigheid als A precies één element bevat.

Definitie 5 (L2, p) is [l-onafhankelijk als voor alle a,b,c,... en A,
pla,b,c,...,A) = p(a,b,c,..)p(A). (2)

Dit betekent dat de waarde(n) van de verborgen variabele(n) A en de tijdsevolutie van A4
onafhankelijk zijn van welke metingen er worden uitgevoerd. Het is van belang om op te
merken dat dit ook andersom geldt: de verborgen variabele(n) A kunnen - op wat voor een

manier dan ook - de metingen beinvloeden.3

Definitie 6 (2, p) voldoet aan sterk determinisme® als er voor alle paren (a,A) een A

bestaat zodat p(A|a,A) =1, netals voor alle (b,A) etc.

Definitie 7 (L2, p) voldoet aan zwak determinisme als voor alle 4,b,c...,[] er meetuitkomsten

A,B,C,... bestaan zodanig dat p(4,B,C,...|a,b,c,..A) =1.

3 Dit bestaat onder de noemer “samenzweringstheorie”.
37 Vanaf nu is determinisme niet meer vanzelfsprekend Laplace-determinisme, maar wordt er weer onderscheid
gemaakt tussen verschillende noties van determinisme.
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Beide vormen van determinisme zeggen dat de verborgen variabelen de meetuitkomsten
vastleggen. Voor zwak determinisme geldt dit echter alleen als gegeven is welke metingen er
nog meer worden uitgevoerd, terwijl dit voor sterk determinisme voor iedere meting
afzonderlijk geldt. Merk op dat alleen een sterk deterministisch model mogelijk ook Laplace-
deterministisch is, want in een Laplace-deterministische wereld worden fysische grootheden
niet beinvloed door welke metingen er worden uitgevoerd. Tevens moet een Laplace-
deterministisch model dan [C-onafhankelijk zijn, anders kan de waarde van een fysische
grootheid alsnog afhangen van de uitgevoerde metingen omdat Definitie 6 zegt dat in een
sterk deterministisch model de meetuitkomst mede door de verborgen variabele(n) wordt

bepaald.38

Definitie 8 (L2, p) is uitkomstonafhankelijk als voor alle A,B,C,....a,b,c,...,[],

p(4|a,b,c,...,B,C,...,A) = p(4]| a,b,c,..., 1), net als voor B,C, etc. (3)

De meetuitkomst van een meting is in zo'n model onafhankelijk van andere meetuitkomsten.

Definitie 9 (L2, p) is parameteronafhankelijk als voor alle A,a,b,c,...,[],

p(4|a,b,c,...,A)= p(A|a,A), net als voor alle B,a,b,c,...,[ ] etc. @)

In een parameteronafhankelijk verborgen variabele model hangt de meetuitkomst (eventueel
met een waarschijnlijkheidsverdeling) dus niet direct®® af van andere uitgevoerde metingen.

Vanuit deze definities is het mogelijk om een Vendiagram van verborgen variabelen
modellen op te stellen (fig.5)%. Dit diagram wordt geconstrueerd d.m.v. een aantal

elementaire resultaten uit de kansrekening.*!

38 Merk op dat ik hier stiekem onderscheid maak tussen de deterministische tijdsevolutie van een wereld en de
vrije keuze daarin over de uit te voeren meting(en). Ik neem hier impliciet een vrije wil aan. Misschien is het
daarom beter om hier van systeem i.p.v. wereld te spreken en het systeem vervolgens als geisoleerd van de
menselijke vrije wil te beschouwen.

Het is bovendien beter om van systeem te spreken omdat het uitvoeren van een meting in een wereld tot de
geschiedenis van die wereld behoort. Laplace-determinisme m.b.t. welke metingen er worden uitgevoerd is dan
een lege notie geworden. Wanneer een fysisch systeem wordt onderscheiden van de metingen die niet tot dit
systeem behoren, dan is dit niet het geval.

3 De meetuitkomst kan nog wel indirect afhangen van de uitgevoerde metingen, omdat er in de verborgen
variabele(n) [] een mogelijke afhankelijkheid zit.

40 De terminologie is in het Engels, want de figuur komt uit Brandenburger & Yanofsky (2007). Mijn Nederlandse
vertalingen spreken voor zich.

41 Zie Brandenburger & Yanofsky (2007) voor alle bewijzen.
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Strong Determinism

Parameter Independence
Weak Determinism »

Outcome Independence

Single-Valuedness

h-Independence

Fig. 5: een Vendiagram van zes condities op verborgen variabelen modellen.xxx

Ter illustratie tonen we aan dat ieder zwak deterministisch model een uitkomstonafhankelijk

model is, zoals het Vendiagram aangeeft.

Propositie 1 Als (2, p) zwak deterministisch is, dan is (2, p) uitkomstonafhankelijk.
Bewijs Vanwege het zwak determinisme kunnen we bij iedere reeks metingen a,b,c...

meetuitkomsten A,B,C,... vinden zodat p(4,B,C,...|a,b,c,..A) =1. Maar omdat iedere kans
kleiner of gelijk aan 1 is, moet dan ook gelden dat p(4|a,b,c,..A)=1, p(B|a,b,c,.A)=1,
p(C|la,b,c,..A) =1,..., we weten immers altijd:

p(4,B,C,...|a,b,c,..A) < p(4]| a,b,c,..A)p(B|a,b,c,..A)p(C|a,b,c,..A)-... Omdat we
tevens weten dat 1= p(4|a,b,c,...,B,C,..,A)= p(4|a,b,c,..,A), moet nu gelden:
p(4|a,b,c,...,B,C,..,.A)=1= p(A4]|a,b,c,...,A), net als voor B,C, etc. Het model is dus
uitkomstonafthankelijk. QED

Als laatste definiéren we de twee condities lokaal en non-contextueel die zijn samengesteld uit

een aantal zojuist geformuleerde eigenschappen. Het belang van deze condities is dat ze

tysisch interpretabel zijn en dat voorkomen in de 1o go-theorema’s.
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Definitie 10 (€2, p)is lokaal als voor alle A,B,C,...,a,b,c,...,[] geldt dat
p(4,B,C,...|a,b,c,..A) = p(A]a,A) p(B|b,A)p(C|c,A)- ... ©)

Dit betekent dat de meetuitkomstwaarschijnlijkheden noch van de gekozen set metingen,
noch van andere meetuitkomsten afhangen. Lokaal betekent hier dus dat meetexperimenten
volledig geisoleerd van de wereld buiten het experiment kunnen worden uitgevoerd. De
volgende propositie reduceert lokaliteit tot de eerdere zes primitieve condities die kunnen

worden opgelegd aan een verborgen variabele model.

Propositie 2 (L2, p)is lokaal dan en slechts dan als (2, p) uitkomst- en parameteronafhankelijk is.
Bewijs

<: De eerste identiteit is een bekend resultaat uit de kansrekening, de tweede en
derde zijn simpele substituties.

p(4,B,C,...|a,b,c,..A) =

3)
p(4|a,b,c,...,B,C,...A)p(B|a,b,c,...,A,C,...A\)p(C | a,b,c,..., A,B,...,.A) ... =

)
p(4|a,b,c,.,A)p(B|a,b,c,.,A)p(C|a,b,c,.,A)..=

p(Ala,)p(B|b,A)p(Clc,A)-...
=>: Wanneer je (5) over alle mogelijke meetuitkomsten van B,C,... sommeert levert
je dit (4) op, volgens ons model is een meting immers altijd gepaard aan een meetuitkomst.

Substitutie van (4) en de analoga van (4) in (5) levert:
p(4,B,C,...|a,b,c,..A)= p(4|a,b,c,..,A) p(B|a,b,c,...,A) p(C|a,b,c,..., A) - ...
Door opnieuw gebruik te maken van de bekende identiteit wordt dit:

p(4|a,b,c,...,B,C,..,A)p(B|a,b,c,... A,C,...A)p(C| a,b,c,.... A, B,..., A) - ... =
p(A4|a,b,c,....,A)p(B|a,b,c,...A)p(C|a,b,c,...,. L) ...

Dit levert (3). QED

Het begrip non-contextualiteit wordt gedefinieerd voor empirische modellen. Aangezien
ieder empirisch model op triviale wijze kan worden uitgebreid tot een primitieve verborgen
variabelen model - neem voor A de lege verzameling en definieer als kansverdeling
p(a) = qg(a) voor ieder argument a - heeft deze definitie ook betrekking op de laatste soort
modellen. Non-contextualiteit betekent dat de meetuitkomstwaarschijnlijkheid op geen

enkele wijze afhangt van de overige uitgevoerde metingen.
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Definitie 11 Een empirisch model (®,q) is non-contextueel als voor alle A,a,b,b’,c,c’,... geldt

dat: g(4|a,b,c,..)=q(A|a,b’,c',...).

Uit het voorgaande valt nu op te maken dat als een model [I- en parameteronafhankelijk is,

het model ook non-contextueel is.

Propositie 3 (2, p) is non-contextueel als (2, p) [I- en parameteronafhankelijk is.

Voor het bewijs verwijzen we naar Brandenburger & Yanofsky (2007, p.9).

Go-theorema’s
Met het gegeven formalisme kunnen we nu de mogelijkheidsvoorwaarden van verschillende
verborgen variabelen modellen onderzoeken, i.e. bestaat er voor ieder empirisch model een
empirisch equivalent verborgen variabelen model dat voldoet aan de condities...? Het
voordeel van deze abstracte behandeling is tweeledig. Wanneer we één of meerdere
condities op een concrete verborgen variabelen theorie van de kwantummechanica kunnen
identificeren, is het direct mogelijk om uitspraken te doen over de levensvatbaarheid van
zo'n theorie. Daarnaast weten we zo in welke gebieden van het Vendiagram het zinvol is te
zoeken naar nieuwe verborgen variabele theorieén van de kwantummechanica.
Brandenburger & Yanofsky (2007) bewijzen dat er voor ieder empirisch model een empirisch
equivalent verborgen variabelen model bestaat dat:

El:  sterk deterministisch is.

E2:  zwak deterministisch en [1-onafhankelijk is.
Deze twee go-theorema’s*2 zeggen dus dat het voor iedere fysische theorie mogelijk is om een
equivalente verborgen variabelen theorie te vinden die sterk deterministisch, dan wel zwak
deterministisch en [-onafhankelijk is. Omdat een sterkere conditie een zwakkere#
impliceert, bestaat er volgens Brandenburger & Yanofsky (2007) nu bijvoorbeeld m.b.v. E1
voor ieder empirisch model een fysisch equivalent parameteronafhankelijk verborgen
variabelen model. Dit leidt volgens hen tot het Vendiagram in figuur 6. Voor ieder empirisch
model bestaat er een equivalent verborgen variabelen model uit een groen domein in het

diagram. In elk domein staat aangegeven welk theorema daarvoor zorgt.4

42 In de literatuur bestaan alleen 10 go-theorema’s. De go-theorema’s kunnen worden beschouwd als de
tegenhangers van de no go-theorema’s.

4 Dit heeft niets met sterk en zwak determinisme te maken.

44 Een soortgelijke stelling geldt voor éénwaardigheid, vandaar het vinkje. Dit is triviaal, vul het empirische
model aan met een constante [] in ieder argument van de waarschijnlijkheidsfunctie p en je hebt een empirisch
equivalent éénwaardig model.
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Strong Determinism

Parameter Independence
Weak Determinism ~

Outcome Independence

Single-Valuedness

h-Independence

Fig. 6: de go-theorema’s hebben betrekking op modellen uit de groene domeinen.xxvi

Ik denk overigens dat Brandenburger & Yanofsky (2007) hier een omissie maken, ze hebben
bijvoorbeeld geen go-theorema voor parameteronafhankelijke modellen die niet sterk
deterministisch zijn terwijl ze dit domein wél donker kleuren. De bewijzen zijn echter

eenvoudig uit te breiden tot deze domeinen, waardoor de figuur als zodanig correct is.
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No-go theorema’s

Desondanks zijn we over het algemeen niet tevreden met louter de groene domeinen in
figuur 6. Zo willen we bijvoorbeeld graag dat een fysische theorie intrinsiek® lokaal is,
omdat non-lokaliteit tegen onze fysische intuities in gaat.#¢ Wat derhalve overblijft om te
onderzoeken zijn de lichte domeinen in de figuur. Er blijken drie zogenaamde no go-
theorema’s te bestaan die zeggen dat er in deze domeinen niet voor ieder fysisch model een
empirisch equivalent verborgen variabelen model bestaat.#” We zullen deze theorema’s nu

bespreken.

Einstein-Podolski-Rosen (EPR)
We geven hier een kort bewijs van het EPR-theorema in termen van ons formalisme. Daarna
zullen we kort terugkomen op de oorspronkelijk fysische formulering, die analoog is aan de

onze.

EPR-theorema Er is een empirisch model (®,q) waarvoor er geen empirisch equivalent verborgen
variabelen model (€2, p) bestaat dat zowel éénwaardig als uitkomstonafhankelijk is.

Bewijs We bewijzen deze stelling door een empirisch model te construeren waarvoor dit

geldt. Laat
D ={+,,— px{+;,—p ) x{a} x{b} (6)
en neem als kansverdeling:
1
q(+ 5| a,0) =q(= =5 |a,0) =0 en q(+ -5 [a,b) = q(- ;,+ | a, D) =5

Veronderstel nu dat er wél zo'n equivalent verborgen variabelen model bestaat met
vanwege de éénwaardigheid A = {A}. Vanwege de empirische equivalentie moet nu gelden

dat
Pt gty | @b, A) = pl= =y | @b, 2) = 0 en p(+ =y | @b, ) = p(= 45 |a,b, A) =%,
waardoor
Pty 1a,b,2) = pl+ 1ty |, 0) + p(+ 1= |a,b,)L)=%

en

45 L.e. dat de structuur van de theorie het toelaat om een empirisch equivalent lokaal verborgen variabelen model
te construeren.

46 Non-lokaliteit impliceert namelijk instantane werking op afstand, wat in tegenspraak is met het tweede
postulaat van de speciale relativiteitstheorie, dat zegt dat er niets sneller gaat dan licht.

47 Een misvatting is dat no go-theorema’s het bestaan van bepaalde consistente verborgen variabelen modellen
uitsluiten. De theorema’s zeggen daarentegen slechts dat dit soort modellen niet noodzakelijk voor elk empirisch
model bestaat.
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1
p(+ T aabaﬂ')
p(+ la,b—5,A)= 4| =é=1‘ p(+,la,b,A) . ()

p(_B|a7baA’) %

Dit is in contradictie met de uitkomstonafhankelijkheid van het model (€2, p), dus bestaat er

geen empirisch equivalent model (€2, p) dat éénwaardig en uitkomstonafhankelijk is. QED

Tot zover is er nog geen fysica aan te pas gekomen. Als we nu echter kunnen aantonen dat
de kwantummechanica zo'n empirisch model representeerts, dan weten we dat er geen
empirisch equivalente verborgen variabelen theorie van de kwantummechanica bestaat die
zowel éénwaardig is als uitkomstonafthankelijk.

Met een voorbeeld is dit eenvoudig aangetoond. Neem twee ruimtelijk onderscheidbare
1
spin-a deeltjes met antiparallelle spin in de z-richting. Isaac en Gottfried meten ieder aan

een apart deeltje de spin in de z-richting. Laat nu a de meting van Isaac representeren en b de
meting van Gottfried. Hiermee is een kwantummechanisch voorbeeld van het empirische
model uit het bewijs gegeven. Er bestaat dus geen verborgen variabelen theorie van de

kwantummechanica die zowel éénwaardig is als uitkomstonafthankelijk.4

Bell

Omdat de Bell-ongelijkheid - het analogon van het Bell-theorema - voor veel fysici bekend is
en omdat het laatste no go-theorema algemener is dan het Bell-theorema, laat ik het bij een
formulering van het Bell-theorema. Voor het bewijs verwijs ik naar Brandenburger &
Yanofsky (2007, pp. 18-21), een inzichtelijk bewijs voor de Bell-ongelijkheid is te vinden in
Bell (1987, pp. 36-38).

Bell-theorema Er is een empirisch model (®,q) waarvoor er geen empirisch equivalent verborgen

variabelen model (L2, p) bestaat dat (-, parameter- en uitkomstonafhankelijk is.

Een equivalente formulering is dat er geen equivalent model bestaat dat [I-onafhankelijk en
lokaal is.
Door Isaac en Gottfried onafhankelijk van elkaar te laten kiezen in welke richting zij de spin

meten, hebben we een kwantummechanische situatie gevonden die het empirische model uit

48 Of dat een onderdeel van de kwantummechanica zo'n model representeert, wat voldoende is voor onze
bewering.

49 Schokkender is dat ook de klassieke mechanica zo'n empirisch model representeert. Zie bijvoorbeeld Von
Neumann (2005).
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het bewijs van Brandenburger & Yanofsky (2007, pp. 18-21) representeert. Oftewel, de
kwantummechanica kan niet worden beschreven door een verborgen variabelen theorie die
zowel [J-onafhankelijk als lokaal is. Bell concludeerde uit zijn ongelijkheid dat de
kwantummechanica fundamenteel non-lokaal is, ondanks onze fysische intuitie. Griffiths
(2005, pp. 423-428) beschrijft hoe we non-lokaliteit desondanks kunnen accepteren. De
instantane werking op afstand is slechts schijn, omdat er geen informatie wordt
overgedragen. We kunnen nu dus de non-lokaliteit van de kwantummechanica voor waar
aannemen, zonder dat dit een tegenspraak met de speciale relativiteitstheorie oplevert.

Merk overigens op dat Bells conclusie over de non-lokaliteit van de kwantummechanica
impliciet veronderstelt dat de kwantummechanica []-onafhankelijk is. Dit komt o.a. tot uiting
in Bell (1987, pp.36-38), waar LI op geen enkele wijze wordt beinvloed door het uitgevoerde
experiment. Deze veronderstelling is echter niet algemeen geldig. Zo zijn er verborgen
variabelen theorieén die de fase van de toestandsfunctie als verborgen variabele nemen.>
Wanneer we nu een meting opvatten als een interactie met het systeem, kan de fase wel
degelijk worden beinvloed door de uitgevoerde metingen. Een interactie kan immers een
faseverschuiving opleveren, denk bijvoorbeeld aan het Aharonov-Bohm effect i Dit
betekent dat Bells conclusie afhankelijk is van de eisen die je stelt aan een eventuele
verborgen variabelen theorie en is de kwantummechanica dus niet noodzakelijk non-

lokaal.5!

50 Een voorbeeld is Pearle (1976).
51 Dit neemt niet weg dat voor veel fysici [J-onafhankelijkheid een vanzelfsprekende eis is, hetgeen nu non-
lokaliteit van de kwantummechanica impliceert.
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Kochen-Specker (KS)

Dit laatste no go-theorema kan qua uitspraak worden beschouwd als een uitbreiding van het
Bell-theorema, we laten namelijk alleen de eis van uitkomstonafthankelijkheid wvallen.
Wanneer het Bell-theorema toepasbaar is op een verborgen variabelen model, dan is het KS-
theorema dat ook. We kunnen echter niet stellen dat het Bell-theorema volledig te reduceren
is tot het KS-theorema. Kochen en Specker doen namelijk een controversiéle algebraische

aanname die Bell niet nodig heeft.52

KS-theorema Er is een empirisch model (®,q) waarvoor er geen empirisch equivalent verborgen
variabelen model (£, p) bestaat dat [1- en parameteronafhankelijk is.

Bewijs. We construeren een empirisch model waarvoor de bewering geldt. Neem negen sets

van metingen a,b,c,d, die worden gerepresenteerd door vier basisvectoren. Ieder basisvector

1
komt in twee verschillende sets voor, in totaal zijn er dus 9-4-— =18 basisvectoren.5® Dit

levert tabel 1 op, waarin e, een van de achttien basisvectoren representeert.

Tabel 1: negen verschillende bases op een vierdimensionale vectorruimte.xxvii

a || eq €16 | €16 | €17

-
-
-
v &)
m
|1|.
-
o
-~
Qo

o

b|lex|es| eo | €11 | e €11 | €17 | €18 | €18

C || €3 | €6 | €3 €7 | €13 | €14 | €4 €6 | €13

d || es|er|ew| €2 |ea|es| el e es

Neem vervolgens aan dat iedere meting meetuitkomsten 0 en 1 kan hebben.5* De
kansverdeling ¢q(4,B,C,D|e, e, ,e, ,e, )% wordt nu z6 geconstrueerd, dat bij een set van
metingen a,b,c,d, precies één meting 1 als uitkomst heeft en de andere drie metingen 0 als
uitkomst hebben.

Nu veronderstellen we dat er een equivalent [I- en parameteronafhankelijk verborgen

variabelen model bestaat. Bekijk de eerste kolom van de tabel en neem5¢

52 Tk heb een sterk vermoeden dat deze aanname te identificeren met de eis van exchangeability in ons bewijs van
het KS-theorema.

% In kwantummechanische termen kies je negen bases op een vierdimensionale Hilbert-ruimte, zodanig dat
iedere basisvector in twee verschillende bases voorkomt.

54 Een meting is nu feitelijk een propositie met een waarheidswaarde.

5 Waarbij A,B,C en D dus de waarden 0 en 1 kunnen aannemen.

% Dit is vrij te kiezen.
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p(0,1,0,0¢,,e,,e;,e,,A) =1, 8)
wat per constructie impliceert dat
p(1,0,0,0]¢,,e,,e;,e,,A) =0, p(0,0,1,0 e, e,,e;,e,,A) =0en p(0,0,0,1|¢,,e,,e;,e,,A)=0.
In dit geval geldt dus zeker dat p(B =1]e¢,,e,,e;,e,,A) =1. Vanwege [I- en parameter-

onafhankelijkheid geldt nu ook dat p(B =1]e,,e,,e;,€,,,A) =1. In bepaalde situaties zegt

de kansrekening dat wanneer je metingen en bijbehorende meetuitkomsten op dezelfde

manier verwisselt, de waarschijnlijkheid onveranderd blijft.5” Laten we dit nu aannemen.5 Er
volgt dan direct dat p(4 =1]e,,es,e;,e,,A) =1 en dus dat p(1,0,0,0]e,,es,€,;,¢e,,A) =1
en dat de overige metingen in de vijfde kolom een 0 als meetuitkomst hebben.

Onder de aannamen van [- en parameteronafhankelijkheid zien we dus dat de basisvector -
in dit geval e, - die in een bepaalde set van metingen meetuitkomst 1 heeft, dezelfde
meetuitkomst heeft in de andere set waar deze basisvector deel van uit maakt. Dit levert
echter een contradictie op. ledere meetuitkomst 1 is nu namelijk uniek gepaard aan een
andere meetuitkomst 1, wat een even aantal enen in de tabel impliceert. Echter, omdat per
constructie iedere kolom één 1 telt en het aantal kolommen oneven is, is het aantal enen in de
tabel dat ook. We hebben dus een empirisch model geconstrueerd waarvoor geen equivalent
- en parameteronafthankelijk verborgen variabelen model bestaat zonder dat dit

contradicties oplevert. QED

Merk op dat de oorspronkelijke formulering van het KS-theorema niet over (- en parameter-
onafhankelijk spreekt, maar over non-contextueel. Er bestaat dus niet voor ieder empirisch

model een non-contextueel verborgen variabelen model.

Een kwantummechanisch voorbeeld van het empirische model in het bewijs is een spin—E

deeltje’®, waarvan het spindeel van de toestandsfunctie een vierdimensionale Hilbert-ruimte
opspant. Meting van de spincomponent in de z-richting geeft vier mogelijke

meetuitkomsten: —%h,—lh,lh,%h. We definiéren nu meting a als volgt: a heeft als

2 2

3
meetuitkomst 1 als de spincomponent — Eh is en anders is de meetuitkomst 0. Definieer b,c

57 In de kansrekening heet dit exchangeability.

% Waar de meeste fysici deze aanname als triviaal beschouwen, is hij cruciaal voor het KS-theorema en zeker niet
oncontroversieel. Zo ontkent Von Neumann een equivalente formulering in operatortaal.

% Dit is het enige no go-theorema waarbij niet aan meerdere deeltjes gemeten wordt. Daarom kunnen discussies
over non-lokaliteit en instantane werking op afstand achterwege worden gelaten.
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en d op analoge wijze voor de overige spincomponenten. Merk op dat bij een volledige set
metingen a,b,c en d er één meetuitkomst 1 oplevert en de andere drie meetuitkomsten 0
opleveren. Analoog aan de constructie van tabel 1 kunnen we willekeurige bases op de
vierdimensionale Hilbert-ruimte kiezen. Hiermee is een kwantummechanisch empirisch
model geconstrueerd dat overeenkomt met het model in het bewijs. Onder de aanname van
exchangeability concluderen we daarom dat de kwantummechanica intrinsiek contextueel is,
i.e. er bestaat geen kwantummechanisch verborgen variabelen model dat non-contextueel is.
Dit is de belangrijkste fysische conclusie van het KS-theorema. Er zijn dus altijd
kwantummechanische metingen waarvan de meetuitkomstwaarschijnlijkheid athangt van de
overige uitgevoerde metingen, dit is intrinsiek aan de kwantummechanica en kan niet

worden geélimineerd met enig verborgen variabelen model.
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Determinisme

Het resultaat van de analyse van de go- en no go-theorema’s is te zien in figuur 7. Een
kwantummechanisch verborgen variabelen theorie is slechts dan mogelijk als het model in
een groen domein valt. Dit legt ernstige restricties op aan deterministische verborgen
variabelen theorieén van de kwantummechanica.

Strong Determinism

Parameter Independence
Weak Determinism ~

Outcome Independence

Single-Valuedness

h-Independence

Fig. 7: het Vendiagram met de werking van alle go- en no go-theorema’s.xxix

Sterk determinisme is nu alleen mogelijk als de theorie niet [J-onafhankelijk is. Wil zo'n
theorie sterk deterministisch zijn, dan moet de theorie beschrijven hoe de verborgen
variabele(n) I worden beinvloed door de uitgevoerde metingen zodat (2) niet meer altijd
geldig is.

Bovendien moeten we concluderen dat kwantummechanica als wetenschappelijke theorie
niet Laplace-deterministisch kan zijn. We hadden immers gezien dat Laplace-determinisme
equivalent is aan een sterk deterministische [-onafhankelijke verborgen variabelen theorie.
Uit figuur 7 blijkt echter dat een kwantummechanische verborgen variabelen theorie niet aan
beide eisen tegelijk kan voldoen. De meest oorspronkelijke notie van determinisme is dus
uitgesloten voor de kwantummechanica.

Het is van belang dat men hier onderscheid maakt tussen het kwantummechanisch

formalisme en de kwantummechanica als wetenschappelijke theorie. Zoals we hebben
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gezien is het formalisme fundamenteel Laplace-deterministisch. Wanneer we zeggen dat
kwantummechanica niet Laplace-deterministisch kan zijn, bedoelen we dit m.b.t. metingen.
Door de bril van een observator kan kwantummechanica dus niet Laplace-deterministisch
zijn, terwijl het formalisme dat wel is.

Een alternatief voor louter sterk determinisme is zwak determinisme. Maar ook zo'n theorie
kent de nodige restricties, zo kan een zwak deterministische verborgen variabelen theorie
niet tegelijk [J- en parameteronafhankelijk zijn. Oftewel, wil je enige vorm van determinisme
behouden, dan moet de kwantummechanica contextueel zijn.

Nu we goed bekend zijn met de mogelijkheden en onmogelijkheden van determinisme in de
kwantummechanica, kunnen we een concrete deterministische theorie onder de

kwantummechanica bestuderen: die van Gerard 't Hooft.
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Determinisme in de kwantummechanica volgens Gerard "t Hooft

Introductie

In mijn bestudering van "t Hoofts deterministische theorie van de kwantummechanica heb ik
mij gericht op twee artikelen van zijn hand, te weten Determinism in free bosons uit 2001 en
The mathematical basis for deterministic quantum mechanics uit 2006. De centrale gedachte in
deze theorie is dat toestanden van een kwantummechanisch systeem één-op-één zijn te
identificeren met een set van toestanden van een volledig®® deterministisch model. Deze set
van toestanden is een equivalentieklasse op een klassieke faseruimte. Hiermee krijgt ook de
waarschijnlijkheidsinterpretatie een plaats binnen de nieuwe theorie, want vanwege
informatieverlies over de precieze toestand binnen een equivalentieklasse is het niet meer
mogelijke om zekere voorspellingen te doen. Dit alles zou betekenen dat
kwantummechanica is te reduceren tot een deterministische onderlaag, waaruit zij als het
ware emergeert.

De deterministische onderlaag beschouwt ‘t Hooft als opgebouwd uit verschillende
klassieke, of “ontologische”, systemen. Klassiek betekent hier niet “gehoorzamend aan de
wetten van de klassieke mechanica”. Het heeft een algemenere betekenis, namelijk dat ieder

systeem wordt vastgelegd door een aantal grootheden ¢(#) en dat de tijdsevolutie van het

systeem wordt vastgelegd door de 1ste orde differentiaalvergelijking %é(l‘) = f(é(t)) in

combinatie met de beginvoorwaarden ¢(#,) en E}(to) .

De meeste opzetten van de kwantummechanica proberen vervolgens zo'n klassiek systeem
te modificeren, zodat er een gekwantiseerd systeem ontstaat met als kwantisatieconstante de
constante van Planck. ‘'t Hooft echter laat het klassieke systeem als zodanig intact binnen zijn
theorie. Hij herformuleert dit systeem slechts in een taal die geschikt is voor
kwantummechanica en laat vervolgens zien dat dit de gebruikelijke kwantummechanica
oplevert. Deze methode noemt hij pre-kwantisatie.

Ik denk dat dit alles moet worden bezien in het licht van een groter plan dat moet leiden tot

een deterministische kwantumveldentheorie en er als volgt uit ziet:

1. Aantonen dat een herformulering van een volledig deterministisch, klassiek

systeem de fysica van een kwantummechanische harmonische oscillator (KHO)

60 Het centrale voorbeeld in zijn artikelen - de kwantummechanische harmonische oscillator - impliceert dat "t
Hooft hier Laplace-determinisme in gedachten heeft.
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oplevert, i.e. de eigentoestanden van een KHO zijn één-op-één te identificeren
met een set van toestanden van het klassieke systeem.

2. Een manier vinden om op dezelfde wijze meerdere KHO's te beschrijven.

3. Het toevoegen van interacties aan de theorie.

4. Een theorie ontwikkelen waarin overaftelbaar veel KHO's, inclusief interacties,
deterministisch kunnen worden beschreven. Dit is dan een deterministische
kwantumveldentheorie?!, aangezien kwantumveldentheorie niets anders is dan

de beschrijving van overaftelbaar veel KHO's in de ruimtetijd.c2

Het is hierbij van belang dat men zich realiseert dat 't Hooft de kwantummechanica - die
haar waarde als wetenschappelijke theorie ruimschoots heeft bewezen - niet atkeurt. Hij wil
slechts laten zien dat er een deterministisch beschrijvingskader bestaat waaruit de
kwantummechanica emergeert, hetgeen impliceert dat kwantummechanica intrinsiek
deterministisch is.

Ik heb mij voornamelijk gericht op de eerste twee punten van het grotere plan, deze wil ik
hier dan ook presenteren. We zullen gaan kijken naar het centrale voorbeeld in zijn theorie,
de kwantummechanische harmonische oscillator. Daarna behandelen we kort punt 2 van het
grotere plan en bestuderen we een probleem waar 't Hooft tegenaan loopt: het feit dat de

verkregen Hamiltoniaan niet vanonder begrensd is.

Kwantummechanische harmonische oscillator (1)

Als centraal voorbeeld van zijn theorie laat ‘t Hooft zien hoe een herformulering van een

bepaald klassiek systeem de fysica van een kwantummechanische harmonische oscillator

oplevert.

Het deterministische klassieke systeem bestaat uit N toestanden die genoteerd worden met

(0),(1),...,(N =1). In eerste instantie veronderstellen we dat het systeem evolueert met

discrete tijdstapjes 7 . We construeren de tijdsevolutie van de klassieke toestanden als volgt:
t—t+7:(v) = ((v+1)modN). (9)es

In figuur 8 is een representatie van deze tijdsevolutie te zien voor N =10.

61 Eigenlijk zou mijn werkstuk daarom “Determinisme onder de kwantumveldentheorie” moeten heten. Maar
omdat wij ons beperken tot de kwantummechanica, heb ik gekozen voor de alternatieve titel.

62 Het idee van deze laatste stap komt van prof. dr. Sijbrand de Jong, zelf weet ik nog niets af van
kwantumveldentheorie.

6 “mod” betekent modulo. We noteren [] alleen met getallen tussen 0 en N-1.
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6

Fig. 8: illustratie van de tijdsevolutie van het klassieke systeem voor N=9.

Nu we het klassieke systeem en zijn tijdsevolutie hebben beschreven, herformuleren we het
in termen die beter geschikt zijn voor kwantummechanica. We representeren de toestanden
van het systeem met kolomvectoren van lengte N, zodat een toestand (v) op plaats v 1 heeft
staan® en op de overige plekken 0. In deze representatie wordt de tijdsevolutie beschreven

door een N x N — matrix65

i

UAt=t)=e V oo,

zodat U(r)(v)= (v + lmodN).
Feitelijk gebruikt 't Hooft hier het Koopmanformalisme, dat zegt dat zo'n unitaire evolutie-

operator van een klassiek systeem altijd bestaat.®® Veronderstel nu dat er een zelf-

- i .
geadjungeerde lineaire operator H bestaat zodanig dat e * =U(Afr =7). Deze operator

werkt op de N-dimensionale vectorruimte van toestanden, die we nu kunnen beschouwen
als een Hilbert-ruimte. Merk op dat we tot nu toe nog geen schokkende resultaten hebben

geboekt. Alles wat we hier hebben gebruik is klassiek en reeds bekend.
't Hooft stelt nu dat H eigentoestanden |n> heeft, waarbij n =0,1,..., N =1 en waarvoor de

volgende eigenwaardevergelijking geldt:

_ 2ah(n+ 1/2) |n>

]:I| n> Nt

(10)

64 Op een fasefactor na. Deze fasefactor is voor iedere toestand overigens hetzelfde.
65 Oftewel, als een lineaire operator op de N-dimensionale vectorruimte waarvan de toestanden een basis vormen.
6 Dit is het lemma van Koopman en onderdeel van ergodentheorie, zie Reed & Simon (1972, p. 57-58).
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Ik heb het bewijs hiervan uitgewerkt.

Laat I;T| n> = a(n)| n> , zodat

~ i

U(At=‘r)|n>=e_h |n>=e

—éa(n)r

.

|n> is dus ook een eigenfunctie van de evolutie-operator U(At =T1).

Lemma De eigenwaarden A van U(At =T) voldoen aan de vergelijking A" -1

(11)

0.

Bewijs We noteren met A" de eigenwaarde A op de i-de plek in een rij van dezelfde

eigenwaarden. De eigenwaarden voldoen dan aan

A0 -1
AP -1
0= ’ .
AN
-1 M
AP -1 -1
A8 1 A
=AY ' . +(=D"
AV
2N
AV + (DN (=D =AY -1
Bij de derde gelijkheid is gebruikt dat

-1

A(N—Z)

-1
)L(N_l)

-1

de determinant van een boven-

=2+ (=) (=)

of

onderdriehoeksmatrix het product van de diagonaalelementen is. Hiermee is het lemma

bewezen. QED

De N eigenwaarden van U(At =7) liggen dus equidistant op de eenheidscirkel in het

complexe vlak, waarbij A =1 één eigenwaarde is. De eigenwaarden zijn

A, = exp(z{%r(— 1- n)}) met n=0,2,...,.N-1.7

67 De nummering van de eigenwaarden is vrij te kiezen. De hier aangehouden nummering levert (10) op. Een
andere nummering zorgt voor een altijd toegestane translatie op de energieschaap in (10).
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Uit (11) volgt nu dat
exp(z{%—@}) = exp(i{%r(—l—n)}) (12)

& _almr 2w
i N(l n). (13)

oftewel

Oplossen voor a(n) geeft inderdaad (10).

Om de verkregen Hamiltoniaan in de gewenste vorm te krijgen, definiéren we een aantal
nieuwe parameters. Hierbij nemen we N oneven, maar analoge definities gelden voor N
even.

N -1
[=—— 14
. (19

m=n-1 (15)
Omdat n=0,1,..,N -1, nu m=-[,-/+1,..,]. We moeten het getal | beschouwen als een

maat voor het aantal toestanden van het klassieke systeem (op de cirkel in figuur 8), terwijl
het getal m nu een index is voor een specifieke toestand. Wanneer we het getal | nu

interpreteren als het azimuthale kwantumgetal en m als het magnetische kwantumgetal, dan

kunnen we gebruik maken van kennis over de algebra van de operatoren L L, , L. .% We

vervangen de set eigentoestand *{n>} door de set *{m>} Omdat £Z|m>=hm|m>, is de

Hamiltoniaan te schrijven als

27h

4 m>=m(m+l+l/2]m>, (16)
A 27T ~

68 Dit zijn de generatoren van de symmetriegroep SU(2).
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Vervolgens kunnen we een plaats- en impulsoperator definiéren. Met deze plaats en impuls
identificeren we een deeltie met massa M =1, andere massa’s kunnen later in de

vergelijkingen verdisconteerd worden als constante.®

A T » N -2 T A
x=.—L en = —L 18
P PEoreiNne (18)

Als laatste definiéren we een hoekfrequentie

2
w = m ’ (19)

die een maat is voor de snelheid waarmee de klassieke toestanden evolueren in de tijd

(ronddraaien op de cirkel). M.b.v. bekende identiteiten van de SU(2)-generatoren - zoals
ﬁxz +£y2 +£22 =l(l +1) - verkrijgen we na flink wat schrijfwerk de volgende twee

vergelijkingen:

H=—0'+=p>+—
2 2Pt

1 50, 1., t(hwz H?

't Hooft neemt nu de continutimlimiet van ¢/ — ©,7 — 0, waarbij w constant blijft. De

hoekfrequentie is immers een eigenschap van het klassieke systeem (en het toekomstige
kwantumsysteem). Het klassieke systeem is nu een continutim van toestanden geworden die

periodiek evolueren in de tijd met hoekfrequentie w en waar een toestand is te identificeren
met een coordinaat yE[O,2Jt] op de eenheidscirkel. Bovendien is ook de tijd nu continu. In

deze limiet reduceren (20) en (21) tot:

[2.p]=in ; (22)
A-toesl; (23)
2 2P

Waarachtig een spectaculair resultaat, want dit zijn precies de vergelijkingen waar een
ééndimensionale kwantummechanische harmonische oscillator met eigenfrequentie @ aan
voldoet! We verkrijgen namelijk de kanonieke kwantummechanische commutatierelatie voor
plaats en impuls en de Hamiltoniaan van de KHO. Hiermee geeft 't Hooft een prachtig
voorbeeld van een bekend kwantumsysteem dat emergeert uit een klassiek systeem.
Bovendien is punt 1 in het plan hiermee volbracht. Uit (16) volgt namelijk dat de energie van

een kwantumtoestand van de KHO het kwantumgetal m bepaalt. En aangezien een klassieke

Dimensionale analyse leert waar de eenheidsmassaterm zich in de volgende vergelijkingen bevindt.
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toestand (V) ontbonden kan worden in een discrete Fourier-reeks van toestanden van |m> ,

kunnen we de kwantumtoestanden van de KHO identificeren met een equivalentieklasse op
de toestanden van het klassieke systeem.” De KHO is daarmee volledig te reduceren tot een
deterministisch klassiek systeem.

Het belang van de deterministische KHO van Gerard "t Hooft is mijns inziens tweeledig. In
de eerste plaats is het een belangrijke stap in het grotere plan van een deterministische
theorie onder de kwantumveldentheorie. Ten tweede is het een duidelijke aanwijzing dat
zo'n theorie wel eens zou kunnen kloppen.”

Merk overigens op dat we nergens het klassieke systeem hebben gekwantiseerd, we hebben
het klassieke systeem slechts in een andere taal geformuleerd. Dit is in overeenstemming met
"t Hoofts idee van pre-kwantisatie. Ook worden de plaats- en impulsoperator in de limiet

continu, precies wat we willen voor een KHO.

Kwantummechanische harmonische oscillator (2)
Ik denk echter dat in de herformulering de inzichtelijkheid van de continutimlimiet

verdwijnt en dat we hierdoor verkeerde conclusies trekken. Dit vermoeden ontstaat vooral

door (16) en (17), want omdat (2[ + l)c constant is in de limiet, blazen de eigenwaarden van

H lineair in I op. Hoe is het dan mogelijk dat in de herformulering (21) de Hamiltoniaan
netjes eindig blijft in de continutimlimiet? Het antwoord is dat dit niet het geval is, ook in
(21) blaast de Hamiltoniaan op.

De tijdstap T gaat weliswaar naar nul in de continutimlimiet, maar m.b.v. (16) vinden we

dat in de limiet 7H* o [ . Daarom heeft ook (21) geen eindige limiet. We moeten concluderen
dat de continutimlimiet niet de Hamiltoniaan van de KHO oplevert. In plaats daarvan
hebben alle kwantumtoestanden m een oneindige energie’2, wat het onmogelijk maakt om
een bekend kwantumsysteem met deze Hamiltoniaan te identificeren.

Maar ook (20) levert in de limiet niet de kanonieke commutatierelatie (22) op. In de limiet

immers gaat tH — 271, met als gevolg dat [)?, [7]—> 0. Dit is een commutatierelatie van een

klassiek systeem, waarin plaats en impuls met elkaar commuteren. Het is dus niet alleen
onmogelijk gebleken om een bekend kwantumsysteem te identificeren met ons klassieke

systeem, het is iberhaupt niet mogelijk dat op deze wijze kwantummechanica emergeert uit

700ftewel, een set van toestanden op de cirkel.

71t Hooft geeft in zijn twee artikelen helaas geen andere voorbeelden waarin een bekend kwantumsysteem
emergeert uit een klassiek systeem.

72 Bij eindige m.
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een deterministisch klassiek systeem. Ondanks de herformuleringen behouden we immers
de oorspronkelijke klassieke commutatierelatie van plaats en impuls.

Met deze klassieke commutatierelatie als resultaat ben je snel geneigd te denken dat de
continutimlimiet eigenlijk niets anders is dan de klassieke limiet van de kwantummechanica.
Ik denk echter dat dit niet zo is. Immers, in de klassieke limiet van de KHO laat je niet het
aantal mogelijke eigentoestanden [ naar oneindig gaan (dit aantal is in de KHO al oneindig),
maar de actuele eigentoestand m gaat naar oneindig.X Bovendien gaat in deze limiet de
constante van Planck naar nul, terwijl daar bij ons geen sprake van is. Dit is dus wel degelijk
een andere limiet en het probleem van de klassieke commutatierelatie is niet weg te

redeneren door te verwijzen naar de klassieke limiet.

Een ander probleem en de oplossing

Ik zou nu in principe graag 't Hoofts theorie bespreken over hoe twee (of meerdere) KHO’s
te identificeren zijn met een klassiek systeem (dat nu bestaat uit twee cirkels). Het is een
mooie theorie die de golffunctie interpreteert als een equivalentieklasse op de
tweedimensionale gedetermineerde klassieke faseruimte en op deze wijze de
waarschijnlijkheid in dit voorbeeld een plaats geeft. Maar voordat we over meerdere KHO's
kunnen spreken, is het mijns inziens noodzakelijk om eerst één KHO goed te begrijpen.
Daarvoor moeten de zojuist genoemde problemen worden opgelost. En als dit niet mogelijk
blijkt te zijn, dan is het zinloos om de theorie verder te ontwikkelen tot meerdere KHO's.
Daarom bespreek ik twee (of meerdere) KHO’s niet en wacht ik op een oplossing voor de
zojuist genoemde problemen.

Een heel ander probleem is het feit dat de verkregen Hamiltoniaan niet van onder begrensd

is. Dit is goed zichtbaar in (16), waar in de continutimlimiet m = —,...,+% . Daarom is het

niet mogelijk om een nulpuntsenergie aan te wijzen?, terwijl dit in kwantummechanische
systemen wél aanwezig moet zijn. 't Hooft lost dit probleem op door zich te beperken tot de
positieve energie eigenfuncties. Hij beargumenteert dit met de volgende stelling, die zegt dat

deze beperking geen verlies van algemeenheid tot gevolg heeft.

73 Dit is eigenlijk enigszins ambigu, want je werkt met twee oneindigheden die je van elkaar aftrekt. Maar het idee
dat er géén nulpuntenergie is aan te wijzen, is duidelijk.
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Propositie*’t Consider any probability distribution W(q) that is not strictly vanishing for any value

of q, that is, a strictly positive, real function of q. Then a complex wave function v (q) can be found

such that W(q) =y (q) v (q), and ¥(q) is a convergent linear composition of eigenstates of H

with nonnegative eigenvalues only.

Dit is namelijk ¥ (g) = exp(a(q) + i/)’(q)) met z=e’ en met a(qg)+iB(g) een functie
gedefinieerd op de gehele eenheidscirkel van z.
Bewijs Het bewijs heb ik te danken aan dr. Michael Miiger en is te vinden in de appendix. Er

wordt gebruik gemaakt van een zogenaamde Hilbert-transformatie.
Ik denk dat "t Hooft hiermee een goede oplossing geeft voor zijn probleem, maar ik zie niet

in hoe dit in de praktijk kan worden gebracht (bijv. in de KHO). Hiervoor is meer en

specifieker onderzoek nodig.
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Determinisme

Tot slot wil ik het determinisme binnen de theorie van "t Hooft op twee manieren belichten.
In de eerste plaats kunnen we stellen dat er binnen zijn theorie sprake is van ontologisch
determinisme en niet van epistemologisch determinisme. Op de twee vragen die gezamenlijk
het epistemologisch determinisme representeerden heeft de theorie namelijk geen antwoord.
Zoals gezegd accepteert 't Hooft de kwantummechanica als wetenschappelijke theorie. Zijn
gepostuleerde deterministische onderlaag biedt echter geen nieuwe voorspellingen die de
kwantummechanica niet doet. Daarom kunnen we op empirische grond niet het onderscheid
maken tussen de kwantummechanica en de theorie van 't Hooft en is het niet mogelijk om
vast te stellen of de wereld werkelijk deterministisch is.

Bovendien biedt de theorie geen methode om zekere, niet-statistische voorspellingen te
doen. Vanuit de eigentoestand van de KHO kan "t Hooft weliswaar afleiden wat de toestand
van het klassieke systeem is, maar deze kennis over de klassieke toestand leidt niet tot zekere
voorspellingen over het kwantumsysteem (bijv. over waar het deeltje zich in de
potentiaalput bevindt).74

We kunnen dus concluderen dat 't Hoofts determinisme niet epistemologisch, maar
ontologisch is. Hij postuleert een deterministisch klassiek systeem en probeert aannemelijk
te maken dat de kwantummechanica uit dit systeem emergeert, zodat we de
kwantummechanica als intrinsiek deterministisch kunnen beschouwen. Omdat het
determinisme van het klassieke systeem Laplace-determinisme is7>, hebben we nu inderdaad
te maken met ontologisch determinisme.

Een belangrijke stap die 't Hooft zal moeten zetten in de ontwikkeling van zijn theorie is
deze overgang van ontologisch naar epistemologisch determinisme. Om beide vragen van
het epistemologisch determinisme te kunnen beantwoorden is kennis van de geschiedenis

H(t) op een bepaald tijdstip tER nodig. Dit betekent dat de klassieke onderliggende

toestanden empirisch waarneembaar moeten zijn. Echter, in de experimentele fysica is er op
dit moment geen enkele aanwijzing voor het bestaan van die soort klassieke toestanden en
de theorie geeft ook niet aan of en hoe deze klassieke toestanden waarneembaar zijn. Wil "t
Hooft de stap naar epistemologisch determinisme maken en daarmee tegelijkertijd een
werkelijk wetenschappelijke?¢ theorie creéren, dan moet dit probleem worden opgelost.

In de tweede plaats kunnen we bestuderen hoe het determinisme van "t Hooft zich verhoudt

tot de vormen van determinisme in onze analyse van het scala van verborgen variabelen

74 Informatieverlies over de onderliggende deterministische toestanden speelt ook een belangrijke rol wanneer
interacties bij de theorie worden betrokken. Dit maakt zekere voorspellingen opnieuw onmogelijk.

75 Dit is in ieder geval zo bij de KHO. Tevens blijkt nergens uit dat "t Hooft een andere vorm van determinisme
voor ogen heeft.

76 Met “wetenschappelijk” bedoel ik hier empirisch verifieerbaar, dan wel empirische falsificeerbaar.
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theorieén. Eenmaal impliceert 't Hooft dat we zijn theorie kunnen beschouwen als een
verborgen variabelen theorie.Xlii [k ben het hiermee eens. De verborgen variabelen zijn hier
namelijk de codrdinaten van de toestanden van het klassieke systeem. Hiermee is op zijn
minst een primitieve verborgen variabelen theorie geconstrueerd.

Ik denk dat wij zijn theorie zelfs kunnen beschouwen als een meerwaardige, [I-
onafhankelijke, sterk deterministische verborgen variabelen theorie. De toestanden van het
systeem veranderen namelijk in de tijd en hun tijdsevolutie is gegeven zonder de
kwantummechanische eigenschappen van de KHO en eventuele metingen aan het systeem
erbij te betrekken. Dat de theorie sterk deterministisch is wordt nergens expliciet gesteld.
Maar aangezien de theorie geen belang hecht aan welke metingen worden uitgevoerd,
kunnen we aannemen dat 't Hooft een sterk deterministische theorie voor ogen heeft.

Het probleem is nu dat de theorie van ‘'t Hooft vanwege het Bell-theorema alleen kan bestaan
als minstens één van de aannamen in deze stelling wordt verworpen (fig. 7). Tegen het
algemenere KS-theorema kan een ontkenning van exchangeability worden ingebracht, maar
daarmee blijft het Bell-theorema overeind. Wil de theorie kans van slagen hebben, dan moet
dit no go-theorema op de een of andere manier worden omzeild.

Wat betreft het omzeilen zijn er twee opties (fig. 9). In beide gevallen moet de theorie een
conditie laten vallen. Je kunt vasthouden aan sterk determinisme en de conditie van [I-
onafhankelijkheid laten varen. De klassieke toestanden moeten dan afhankelijk worden
gemaakt van welke metingen er worden uitgevoerd, of de klassieke toestanden moeten op
de een of andere wijze de metingen beinvloeden. De tweede optie is om [l-onafhankelijkheid
te behouden en te eisen dat de theorie niet sterk, maar zwak deterministisch is. In dat geval
zal moeten worden verklaard hoe overige uitgevoerde metingen een zekere, niet-statistische
meetuitkomst kunnen beinvloeden. In beide gevallen moet binnen de theorie de invloed van
welke metingen er worden uitgevoerd vergroot worden. Op Fysica 200877 gaf 't Hooft te
kennen dat zijn voorkeur uitgaat naar de eerste optie in de tweede variant: hij denkt dat het

Bell-theorema omzeild kan worden omdat verborgen variabelen de meting zélf beinvloeden.

77 Een symposium georganiseerd door de Nederlandse Natuurkunde Vereniging, gehouden op 18 april 2008 te
Nijmegen.
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Strong Determinism

Parameter Independence
Weak Determinism »

Outcome Independence

Single-Valuedness

-Theorie 't Hooft
B ;e 1
B o:ie 2

h-Independence

Fig. 9: positie van huidige theorie 't Hooft en van de twee opties om het Bell-theorema te omzeilen.
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Conclusie

Wil een nieuwe en controversiéle theorie weerstand bieden aan het kwantummechanische
paradigma van de afgelopen tachtig jaar, dan moet zij op zijn minst 6f met cruciale
empirische fenomenen komen die de kwantummechanica tegenspreken 6f een goede
aanwijzing hebben die de uitspraken van de theorie bevestigen. Zoals gezegd is er in de
theorie van 't Hooft van het eerste geval geen sprake; de kwantummechanica als zondanig is
volgens hem correct, maar onvolledig. De goede aanwijzing voor de uitspraak dat de
kwantummechanica emergeert uit klassiek gedetermineerde systemen is daarentegen
volgens ‘t Hooft wél aanwezig, namelijk de kwantummechanische harmonische oscillator. Ik
heb echter laten zien dat de problemen met de continutimlimiet deze uitspraak ondermijnen,
uit het klassieke systeem dat 't Hooft beschouwt emergeert noch de KHO, noch enig ander
bekend kwantummechanisch systeem. Voordat de theorie verder ontwikkeld kan worden is
het mijns inziens daarom noodzakelijk dat de problemen met de KHO worden opgelost, of
dat er een ander kwantummechanisch systeem wordt gevonden dat gerepresenteerd kan
worden door een klassiek systeem en daarmee de theorie onderbouwt. Dit laatste is niet
noodzakelijkerwijs uitgesloten. We hebben echter gezien dat ons klassieke systeem na de
kwantummechanische herformulering haar klassieke commutatierelatie van plaats en
impuls had behouden. Dit lijkt een fundamenteel probleem te zijn en dient te worden
opgelost met het oog op alternatieve kwantummechanische systemen die exemplarisch zijn
voor de theorie.

Daarnaast hebben we gezien dat een levensvatbare deterministische theorie een aantal
aanpassingen behoeft: om de stap naar epistemologisch determinisme en daarmee empirisch
verifieerbare/falsifieerbare uitspraken te maken, moet er een mechanisme beschreven
worden dat waarneming van onderliggende klassieke toestanden mogelijk maakt. Tevens
moet de theorie antwoord geven op het Bell-theorema, 6f door het te ontkennen, 6f door het
te omzeilen. We hebben gezien dat in het tweede geval de theorie zich meer rekenschap
dient te geven van de invloed van overige uitgevoerde metingen en van het verband tussen
de verborgen variabelen en een meting. Het lijkt erop dat dit aspect - de eerder besproken
contextualiteit ~onlosmakelijk verbonden is aan de kwantummechanica.

Ondanks de problemen en benodigde aanpassingen denk ik dat de ideeén van "t Hooft zeker
kans van slagen hebben. De problemen met de interpretatie van de kwantummechanica zijn
te groot om kwantummechanica als een volledige theorie te beschouwen. Bovendien wordt
er nog steeds veel onderzoek gedaan op het grensvlak van klassieke en
kwantummechanische systemen, mogelijk kunnen de ideeén van 't Hooft op nieuwe

ontwikkelingen binnen dit vakgebied inhaken.
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