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Abstract

Bloch theory has been very successful for describing electronic transport in
solids. In the integer quantum Hall effect, however, Bloch theory fails, due to
the breakdown of translation invariance. In this master’s thesis we discuss an at-
tempt of Jean Bellissard to generalise Bloch theory when translation invariance
is broken. This theory gives a noncommutative C*-algebra as the generalisation
of the Brillouin zone. Therefore we introduce noncommutative geometry, devel-
oped by Alain Connes. We show how this theory succeeds in giving a complete
description of the integer quantum Hall effect.
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Chapter 1

Introduction

In the eighties Jean Bellissard introduced the use of noncommutative geometry
in solid state physics to generalise Bloch theory to other materials than periodic
ones. In the present master’s thesis we discuss this mathematical framework,
developed by Alain Connes, and show how this tool is used. We do this using
the most spectacular example of noncommutative geometry in physics, also due
to Bellissard: the integer quantum Hall effect.

Bloch theory has proven to be an excellent tool for describing electronic trans-
port in crystalline solids. The main reason for this success is that in most
crystals the electronic transport can be read of the motion of one electron, ne-
glecting the interactions with other electrons and phonons (lattice vibrations).
Making explicit use of the periodicity of the crystal, the Bloch theorem says
that the electron in this configuration is an extended wavefunction. With this
information one is able to determine the continuous spectrum of the Hamilto-
nian, which shows the typical band structure for crystalline solids. This band
structure determines conductivity properties of the solid.

Because of the explicit use of the periodicity condition of Bloch theory, this
theory is not applicable to non-periodic substances as amorphous solids or qua-
sicrystals. If the periodicity is broken by disorder or the presence of a magnetic
field the Bloch theory fails also. Remark that it is not true that in the presence
of a magnetic field the periodic atomic structures of a crystal suddenly become
non-periodic. The motion of an electron through such a solid, however, loses its
translation invariance, which causes the failure of Bloch theory in this case.

Many theorists developed different tools to describe the electronic motions
through these solids where the translation invariance breaks down. One can
think of, finite scaling and the S-function of renormalisaion group for disor-
dered systems, curved space representation for amorphous materials, or the



cut-and-project method for quasicrystals. All these techniques, however, are
specific for certain kind of sub-families of materials. The motivation of Bel-
lissard to introduce noncommutative geometry in solid state physics, was the
strong believe that this mathematical framework could generate a general the-
ory for all kinds of solids. Replacing the old Brillouin zone by a generalisation of
it, a noncommutative manifold, one is able to describe some other than periodic
solids through a noncommutative Bloch theory. One of the most fascinating
applications of noncommutative geometry in solid state physics is the complete
description of the integer quantum Hall effect through this procedure. This is
the subject of the following Chapters.

In 1980 Klaus von Klitzing discovered the integer quantum Hall effect. In short
one can describe this effect as follows. Under a particular arrangement of a
strong magnetic field and an electric current in some sample, the resistance
normal to the current, the so-called Hall resistance, shows quantisation when
plotted against the strength of the magnetic field. This quantisation is, given in
certain units, integral and is measured to be very robust. Moreover, the current
is dissipationless.

Almost immediately after the discovery of the integer quantum Hall effect,
Laughlin proposed a gauge invariant argument to describe the quantisation of
the conductance in this effect. This showed the topological character if the in-
teger quantum Hall effect. Soon afterwards, other authors showed that the Hall
resistance is indeed a topological invariant.

The problem with these early theories for the integer quantum Hall effect is that
they are incomplete. They make the assumption that the amount of quantum
fluxes through the unit cell is rational. This assumption is not physical and
discards exactly the aperiodic character of the material (or more exactly, its
breakdown of translation invariance). An introduction to the integer quantum
Hall effect and a discussion of its early theories will be given in Chapter 2.

One can intuitively see why the Hall resistance is a topological invariant. Re-
member that a topological invariant is a quantity that stays the same under a
continuous deformation. The robustness of the Hall resistance is exactly this
invariance. One can change the geometry of the sample, the electron density
and even the material of the sample, the quantisation of the Hall resistance (if
any) stays the same.

The Hall resistance can be related to the first Chern class, which is a member
of the well-known family of characteristic classes. These classes are maps from
vector bundles over compact spaces to the de Rham cohomology groups. Using
the specific features of these classes one can show the integrality of the Hall
resistance. Characteristic classes and how one can relate this to the integer
quantum Hall effect, will be the subject of Chapter 3.

To give a complete description of the integer quantum Hall effect, Bellissard gen-



eralised the old theories through noncommutative geometry. The basic concept
of this mathematical framework is the relation between spaces and algebras. It
is known that every compact Hausdorff space M can be written in terms of
its associative algebra C(M) of continuous functions on M. This commuta-
tive algebra is a so called commutative C*-algebra. A theorem of Gelfand and
Naimark states that every commutative algebra can be written in terms of the
continuous functions over some compact Hausdorff space. Hence, working with
C*-algebras, one is always implicitly referring to the corresponding compact
space.

This theory is extended, also by Gelfand and Naimark, to the noncommutative
case. So, every noncommutative C*-algebra corresponds to some space. Because
the underlying space of a noncommutative algebra is hard to work with, one
often does not try to recover it and just work with the algebra itself, referring to
it as a noncommutative space. This is exactly what one does, when generalising
the Brillouin zone. One considers some (noncommutative) C*-algebra following
from the theory, which in the commutative case is the algebra C(B), with B
the Brillouin zone. This noncommutative algebra will then be referred to as
the noncommutative Brillouin zone. C*-algebras and both Gelfand-Naimark
theorems are the subject of Chapter 4.

We already mentioned that the Hall resistance is related to a Chern class. Ac-
tually the Hall resistance is the integral of the first Chern class over the Bril-
louin zone. Therefore, if one wants to express this quantity in the C*-algebraic
context, it is necessary to define the Chern class algebraically and to define a
calculus on a noncommutative C*-algebra. The intuitive manner to do this, is
to start with the commutative case, and try to generalise it to the noncommu-
tative framework. This generalisation is not straightforward and is the subject
of Chapter 5.

The generalisation of the Chern class to the noncommutative setting will be
done through the generalisation of the Chern character. This character is build
out of the Chern classes and as such, is a map from vector bundles over compact
spaces to the de Rham cohomology groups. The power of the Chern character
lies in the fact that is a an isomorphism from equivalence classes of vector
bundles to the cohomology groups. This equivalence classes form a group called
the K%-group. In Chapter 5, the C*-algebraic version of the Chern character is
given.

To complete the total picture of noncommutative geometry through the Chern
character one also needs a algebraic counterpart for the de Rham cohomology.
These cohomology groups are topological invariant, and define in a sense the
calculus on a space, or in this case on an algebra. On algebras one could define
different kind of cohomologies. The cohomology we will be needing is the a
generalisation of the de Rham cohomology, that makes the noncommutative
algebraic Chern character an isomorphism between the C*-algebraic K-theory
and this cohomology. This is the subject of Chapter 6.



When one has the tools needed to express the Chern character in C*-algebraic
terms, one could try to apply it to the integer quantum Hall effect. A crucial
ingredient is the noncommutative C*-algebra replacing the Brillouin zone. In
Chapter 7 we introduce the algebra proposed by Bellissard, which generalises the
Brillouin zone. Using the same physical arguments but applying the generalised
tools one can describe the integer quantum Hall effect, without making the
rationality assumption.

Before we continue the discussion of the integer quantum Hall effect, we would
like to mention that noncommutative geometry has also other applications in
solid state physics. A beautiful example is the use of noncommutative topology
in the theory of electronic motion in quasicrystals (see [84], for an insightful
overview, and references therein). Besides the applications in solid state physics,
noncommutative geometry is also used in other parts of theoretical physics. We
mention the standard model ([32], [57]) and string theory ([81]). We refer to
[31], [39] and [52] for more on noncommutative geometry in physics.



Chapter 2

The integer quantum Hall
effect

2.1 The quantum Hall effects

Consider a two-dimensional piece of conducting material placed in the zy-plane,
with a current density J in the y-direction and a magnetic field B in the z-
direction (see Figure 2.1). The Lorentz force will tend to push the charge
carriers in the z-direction, orthogonal to the magnetic field and the electric
current. In 1879 Hall discovered (see [42]) that this force was opposed by an
induced electric potential Ef, such that the charge carriers would be undeflected
in their motion. Hall did this by measuring a resistance in the y-direction, and
refuted hereby an earlier statement of Maxwell that a magnetic field does not
influence an electric current in a fixed conductor. This phenomenon that Hall
discovered is called the Hall effect.

Let o¢ be the contribution of the electric field to the velocity of a charge carrier
with a resulting current J, i.e. J = goFE. This contribution is given by (see [66])

oo = ne’ro/m, (2.1)

with n the charge carrier density, e the elementary charge unit, 79 the mean free
time, and m the mass of the charge carrier. Consider the Lorentz relation (in
ST units)

eEp +evx B=0. (2.2)

We stress the fact that we are using SI units, since many textbooks, including
the standard reference [66], use cgs units or both. Together with the relation
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Figure 2.1: The Hall effect
for the resistivity tensor p
_(Er) _
E= (Ey) = pd, (2.3)
we find
B
p= (1 ). (2.4
“ne PO

where pp = 1/09. We have used here Onsager’s relations py, = pyy and pgy =
—pyz, and ¥ = J/(—ne). The Hall resistance Ry, which is defined as the
resistance orthogonal to the current and magnetic field, equals pgy, = B/(ne).
Remark that in two dimensions resistance and resistivity are the same. We see
that the Hall resistance is linear in the magnetic field.

In 1980 von Klitzing (see Figure 2.2) and coworkers (see [47]) discovered that
for high magnetic fields and low temperatures, the responses are completely
different. First of all, the Hall resistance is not linear in the magnetic field but
gets stuck at values h/(ie?), with i an integer. Secondly, at these plateaux on the
values h/(ie?) the current J in the y-direction is dissipationless i.e., pg = 0. This
may not seem very surprising, for if we just take the limit of 7¢ to infinity (since
the temperature is small), po goes to zero. The difference, in the experiments
such as von Klitzing did however, is that py is not zero but goes to zero at the
plateaux. Furthermore, as we will see later, disorder plays a very important
role in this experiment such that 79 can not just go to infinity. Because of the
relation between the conductivity ¢ and the resistivity p

o= ( Ozzx Uzy) = — 1 _ (pzx —sz> _ p—l (2_5)

—Ozy Ozz Pzz T Pzy \Pzy  Paz
we see that we could equivalently say that the conductance in the z-direction
would be quantised at values ie?/h and the conductance in the y-direction would

go to zero. These two responses, that are shown in Figure 2.3, make up the
Integer Quantum Hall Effect (IQHE).
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Figure 2.2: Klaus von Klitzing Figure 2.3: The IQHE

The most remarkable of this effect is its accuracy and its universality. The
quantisation of the resistance is determined at least to a part per 107 accuracy
and is independent of the purity of the material, its geometric details and even
of the specific material used (see for instance [44] and [83]). Hence the fine
structure constant a = e2/(4mephc) can be determined very precise, since the
speed of light ¢ and the permittivity €y are exact defined (see [65]). In his article
von Klitzing already mentioned this important implication. For this discovery,
he was rewarded the Nobel prize for physics in 1985.

The two-dimensional electron system that von Klitzing used, was constructed
with a Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET). This
device is made out of an insulator fixed to a semiconductor on one side, and a
metal on the other side. The two dimensional system is created at the interface of
the semiconductor and the insulator by setting a voltage between the metal and
the semiconductor. The MOSFET von Klitzing used was made out of Silicon
(semiconductor) and Silicon-oxide. He did his experiments at a temperature of
1.5 K and a constant magnetic field of 18 T'. Instead of varying the magnetic
field he varied the voltage between the metal and the semiconductor, which has
the same effect but is simpler to realise.

The IQHE can be understood if the system is incompressible (i.e., there is an
energy gap between the ground state and the first excited state) and if there is
some kind of disorder that causes a range of localised states. The incompress-
ibility makes sure that the current in the y-direction flows dissipationless. In
our system dissipation is given by scattering of occupied states below the Fermi
energy with unoccupied states above the Fermi energy. Therefore, if the Fermi
energy lies in a gap there can be now dissipation in our system. See Section
2.6 for more on this. The localised states causes the formation of the plateaux
of Figure 2.3. When the Fermi energy happens to be in the region of these
localised states, there will be no contribution to the current, hence no contri-
bution to the resistance. In the IQHE the contribution of the electron-electron
interactions to the dynamics of the system is much smaller than the contribu-
tion of the electron-disorder interactions. Consequently it is sufficient to study
the single-electron Hamiltonian to explain the IQHE. See, again, Section 2.6 for
more on the precise approximation we made in our system.
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In 1982 Tsui, Stormer and Gossard (see [78]) discovered the Fractional Quantum
Hall Effect (FQHE). In this effect the conductance in the y-direction does not
only take values at integer multiples of €2 /h, but also at fractional multiples p/q
(with p and ¢ integers). Like in the IQHE, the conductance in the z-direction
vanishes at the plateaux. For their experiment Tsui and Stormer used a GaAs-
AlGaAs hetero-junction, which is a device made out of two semiconductors. It
works just like a MOSFET, where one of the semiconductors (AlGaAs) takes the
place of the insulator because of its larger energy gap. In the FQHE the electron-
electron interactions do have a significant contribution to the dynamics, with
respect to the electron-disorder interactions. This makes the FQHE much more
difficult to understand and we will not elaborate on this. We only mention that
for their discovery Tsui and Stormer were rewarded the Nobel prize for physics
in 1998 together with Laughlin for his work on the explanation of the FQHE.
For more on the FQHE (and IQHE) see for instance [26], [36], [66] and [76].

2.2 2D-electron gas in a strong magnetic field

In this section we discuss the basics of the 2D-electron gas in a strong magnetic
field, which we use later to explain the IQHE.

Consider a two-dimensional conducting piece of material with area L2, and
a magnetic field B perpendicular to it. Consider an electron gas without any
interactions in this material. To describe the physics of this system it is sufficient
to consider the single-electron Hamiltonian

Hy = (72 + 7T§)/2m, (2.6)

where @ = j+ eA, A is the magnetic potential (such that B =V x ff) and
m is the effective mass. The Hamiltonian works on the Hilbert space L?(IL?)
of square integrable functions on the subset L? of the real plane R? trough the
usual representation

P = (Pz.py) = —(1hOy,1h0y). (2.7

Following Kubo [49], we introduce the relative coordinates of the cyclotron

motion,
1 1

52 e—Bﬂ'y, n= —e—B’ITz (28)

with centre coordinates
X=z-¢ Y=y—n. (2.9)

In these new coordinates the Hamiltonian is

p— m}c
212

Ho & +n%, (2.10)
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with w. = % the cyclotron frequency and [y = (eiB)l/ 2 the so-called magnetic
length, which is the characteristic length of this system. From the commutation
relation [£,m] = —uZ we see that the Hamiltonian can be seen as a harmonic

Hamiltonian )
Ho = ﬁxuc(a+a_ + 5) (211)

with the correspondences

1 1
ar = —(& —1 and a_ = ——(£+1m). 2.12
= (€ —m) Tl (€ +m) (2.12)
Thus the energy spectrum is given by the so-called Landau levels

1
Ep=(n+phwe, n=012..., . (2.13)

The equations of motion for the centre coordinates are

d 7
EX = g[HO,X] =0,
d ?

EY = ﬁ[HO’Y] =0.

(2.14)

This justifies the identification of (X,Y) with the centre coordinates of the
cyclotron motion with frequency w,.

Let us take the Landau gauge, i.e., A = (0,4,,0) = (0, Bz,0). The Hamiltonian
can now be written as

1.
Ho= - [pg + (py + eBx)Q]. (2.15)

We see that the Hamiltonian is still translational invariant in the y direction
and we can describe the single-electron in that direction in plane waves. We
write any eigenfunction ¢y, (z,y) of Hy in the form

¢kn($7 y) = ¢h‘n($)emy . (216)

If we apply periodic boundary conditions for the y-axis, the values for k are
k= i—”ik with ¢ = 0,£1,%2,..., and L, the length of our sample. If we let

the operator Hy act on the function ¢, (z,y) we get

h? 1
™ i+ §mwc($ — 21)*kn = Ernrn » (2.17)
with 2, = —I3k and ¢/, the second derivative to z. For each k this equa-

tion is the Schrédinger equation for the harmonic oscillator, with frequency w,
and equilibrium x = z; As mentioned before the eigenvalues are the Landau
eigenvalues given in (2.13) at Landau level n. The energy eigenvalues are in-
dependent of the momentum Ak along the y-axis. Therefore, we say that the
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states are localised in z and extended in y. If the width of the sample is L,
the degeneracy of a Landau level is the number of k’s, such that the equilibrium
point zj lies in between 0 and L,. The space between two consecutive centre
points is 12:_213’ hence the degeneracy g, of a Landau level is

_ L.Ly
gn = 27Tl(2] )

(2.18)

We can see this in a different way. Every Landau state occupies an area 273,
and the degeneracy is nothing but the total area I? = L,L, of our system
divided by the area of a single state.

A useful quantity will be the filling factor v
v = 2mlZno, (2.19)

with ng the electron density. This filling factor is the dimensionless electron
density. For instance, if v = 1 the first Landau level (n = 0) will be exactly
filled.

As we mentioned in the previous Section we need localised states to explain the
plateaux in the IQHE. This localisation is brought into our system by disorder,
in the form of pollution of our material. Let us bring the disorder in our system
and consider the effective Hamiltonian

H = Hy + U(F) (2.20)

with U(7) the electron-disorder interaction, and 7 the position vector. The
equations of motion are now

d_ 1 _ 120U
d o _BoU '
)~ YI= oY== 50

Because of the disorder potential translation invariance is broken and (X,Y)
is not constant anymore. The degeneracy of the states with different (X,Y) is
therefore also broken, and the Landau levels, instead of a series of d-functions,
are broadened to bands. In these bands we can make a distinction between two
kind of regions. First the regions of extended states that contribute to our Hall
current and are called mobility edges. And secondly the regions of localised
states, which are called mobility gaps (see Figure 2.4).

2.3 Laughlin’s argument

In this section we discuss a gauge-invariant argument to explain the IQHE,
introduced by Laughlin [54] and extended by Halperin [43]. We closely follow
the discussion in [76].

10
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In

Ey/hw,

Figure 2.4: The broadening of the Landau levels. The shaded regions around
E,/hw.=n+ % are the extended states.

Ly

Figure 2.5: Diagram of the metallic loop that Laughlin used for his gedanken
experiment.

Consider once again the two-dimensional sample of Figure 2.1 discussed before,
but now bent such that if forms a ring in the (y, 2)-plane, with circumference L,
and width L, (see Figure 2.5). The magnetic field B pierces the ring everywhere
orthogonally to the surface. One may take this geometry if we assume that the
size, shape or edge conditions of the material do not effect the IQHE results.
Considering the robustness of the experimental data, these assumptions are not
unreasonable.

In this Section we give a relation between the current I and the flux dependence
(trough the ring) of the Hamiltonian. This relates I with the electric poten-
tial Ey, and therefore gives the Hall resistance. Consider the auxiliary vector
potential

=19, (2.22)

where ¢ is some dimensionless parameter and ¢q is the flux quantum % In

the original setting where our sample is just a plane, the potential does not

11
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contribute to the magnetic field because V x @ = 0. In the new geometry of
Figure 2.5 however the potential corresponds to a magnetic field trough the ring.
With this extra vector potential the unperturbed Hamiltonian of equation (2.6)
becomes

1 - e ¢0 )
H = — A — ge— .
0(q) = 5~ (F+ed —ge Lyy) ; (2.23)
and the current operator is
e - ¢o .. . eL,0Hy
I, =—— A—qge—9).9g=—"L . 2.24
y=—(0+e qeLyy) V= 8 (2.24)

We see that, if there is a current, the Hamiltonian is dependent on ¢ and there-
fore on the vector potential @. This is a consequence of the phase coherence of
the wave functions around the ring. The phase coherence plays a role when-
ever the wave function is larger than the circumference of the circle. As the
wave functions evolve around the ring, they pick up an extra phase factor ¢4p
after a whole round, the so-called Aharonov-Bohm phase ¢4 = —% Ja-dr.
Integrating over the loop gives ¢p4p = 2mq. This is exactly what happens if
one should pierce the ring through the centre with a flux ¢ = —q¢g. If ¢ is
an integer the wave functions are single-valued and there is no problem. If,
however, ¢ is not an integer the wave functions become multiple-valued, and
therefore not physical. To overcome this problem we should change the original
wave numbers k = 2miy/L,, with i, = 0,£1,£2,..., to eliminate the extra
Aharonov-Bohm phase. These new phase numbers are k = 2x (i, — ¢)/L,. This
g-dependence makes the current non-zero. If the wave function vanishes within
a region smaller than the circumference of the ring, the function is always single-
valued and there is no necessity to change the boundary conditions. Such states
do not carry any current and are called localised states.

We want to calculate the Hall resistance, as we place an electric field E in the
z-direction We use the trick with the auxiliary vector potential to relate the
current to the fraction ¢ of flux quanta. The single particle Hamiltonian, in the
Landau gauge without disorder, is now

qo
BL,

1 2
H(q):—[ﬁ-i-eB(x— )g] +eEyz. (2.25)

2m
We see that if we slowly add some flux ¢ to our system, the centre points of the
states move in the z-direction from zy to zy, + q¢o/(BL,). If we add precisely
one flux quantum the set of centre points of the states is mapped to itself. The
electrical field E, is now responsible for the ¢g-dependence of H. Consider the
single particle wave function ¢y, (z)e™¥ and let the Hamiltonian act on it.

1 ad0 Vg )] 2

; 1
H (@) Binsq (2)e™ = {Wi +gmee [ ~ ot

BL, w.
(2.26)

12
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where vy = E, /B is the classical drift velocity. The energy is now k-dependent
and therefore zi-dependent as well. If we add some fraction ¢ of flux quanta,
the energy of our system changes. If we add exactly one flux quantum, all the
wave functions and their energies remain the same. But during the process
all occupied states have moved one step in the z-direction. Remember that
the degeneracy of a Landau level equals the number of k’s such that z; lies
in between 0 and L,. Therefore we can conclude that, during the process of
adding one flux quantum, we moved one electron per Landau level across the
width L;. The energy change is now AE = neV = neE,L,, where n is the
number of filled Landau levels.

Consider Faraday’s law

de - dB
L= d§- == | dE, = [ dipyJ., 2.2
dt S /c v /c o] (227

where C is a contour enclosing the flux and J, is the current density in the
x-direction equal to I,/L,. Integrating this equation over time we obtain

Ad = pya / dtl, . (2.28)

If we now choose for the flux change the flux quantum, the net change in charge
is —ne. So

h
o = ~Pyane, (2.29)
and therefore b

We now want to use this gauge-invariance argument for a system with disorder.
This disorder helps us to explain the plateaux as we already mentioned. An-
other reason for putting disorder in our system is the robustness of the IQHE.
From experiments it is known that the quantisation of the conductance is very
precise and insensitive to changes of the material, size, number of charge carri-
ers etcetera. So we also want to explain the quantisation with disorder in our
system. The ingredients we used in Laughlin’s argument in the system of Figure
2.5 were

1. Only the extended states can carry current, due to the flux changes.

2. For the system to be dissipationless, such that the diagonal terms of the
resistivity tensor vanish, there must be a mobility gap.

3. If we insert one flux quantum, the wave functions and their energies will
be the same.

Remember the density of states we discussed in Section 2.2, which ensures us
that there is indeed a mobility gap of localised states between different regions

13
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of extended states. As long as the Fermi energy is in such a mobility gap, there
cannot enter more current in our system. The current is then dissipationless,
because dissipation is caused by scattering between occupied current-carrying
states and unoccupied ones, near the Fermi level. See [76] and Section 2.6 for a
more thorough consideration of the dissipation in our system.

If the energy of the system changes due to the insertion of one flux quantum
into our system, this can only mean that there is a change in occupation of
the states in the same Landau level. It cannot be caused by excitation to a
higher Landau level, because the state would have to jump over the mobility
gap, and this cannot be done without some heat change. Since heat changes
causes dissipation this is not possible. The change of energy, then, must be the
result of moving n electrons over the width of the ring. The final question, now,
is how we can match n to the number of filled Landau levels in our system.

We are going to make this reasoning plausible by an example. Suppose that
the extended states are restricted to the region |z| > L;/2 — éx and the lo-
calised states are restricted to the region —L, + 0x < < L, — dxz. When we
(adiabatically) insert one flux quantum into our system, all occupied extended
states will move one step in the z-direction. Because no extended state below
the Fermi energy can move into the region of the occupied localised states, there
must be effectively one electron per Landau level that moves across the region
of localised states to the other side of the ring. Thus in this example n is indeed
the number of filled Landau levels.

Although we mentioned that the size and geometry of the material we were
considering did not matter, Laughlin’s argument still seems quite artificial. The
value of Laughlin’s article [54] lies particularly in the fact that it was the first
article that tried to explain the IQHE geometrically. In Section 2.5 we discuss
the continuation of this argument. Here the toroidal geometry will not lie in the
physical space as in Laughlin’s article but in the momentum space (the Brillouin
zone).

2.4 Bloch electrons in a uniform magnetic field

In the previous Section we calculated the Hall resistance of an electron gas with
disorder, making use of a special geometry. In the next Section we make explicit
use of the fact that our conducting material is a crystal, to calculate the Hall
resistance (conductance) via the Kubo-formula (see [49] or [26]). Normally we
would use Bloch theory to describe a free electron gas in a crystal. The magnetic
field, however, breaks down the translation invariance so crucial for this theory.
In this Section we introduce the theory that overcomes this problem, the so-
called magnetic Bloch theory. We follow the first part of the article by Kohmoto
[48].
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2.4. BLOCH ELECTRONS IN A UNIFORM MAGNETIC FIELD

Consider again an electron gas in the (z,y)-plane, with a magnetic field B
perpendicular to it. Again we only consider the single-electron Hamiltonian as
we neglect the electron-electron interactions. To take into account the ionic
lattice of the crystal we add a light potential U to our Hamiltonian.

1
H=—(5+ed)’ +Ulz,y), (2.31)
2m
where the potential is periodic in two directions, such that

Ulx+a,y) =Ul(z,y +b) =Ul(z,y). (2.32)

Due to the vector potential A our Hamiltonian is not invariant under translations
anymore.

The fundamental idea of magnetic Bloch theory is to find some kind of trans-
lation that keeps the system as well as the Hamiltonian invariant. These trans-
lations are called magnetic translations (see [85]). These translations are con-
structed as follows.

Consider the Bravais lattice (see [76]) with a and b its unit vectors. Define now
for each Bravais lattice vector R, a translation operator Tr which, acting on a
smooth function f(7), translates the argument with R:

Trf(7) = f(7 + R). (2.33)

We can, using the sequence for the exponential, write this translation operator
as -
TR = eﬁR'p (234)

The translated vector potential A(7+ R) does not always equal A(7). Because
the magnetic field is uniform, the potential and the translated potential can
differ a gradient of a scalar function g:

A(F) = A(F+ R) + Vg(7). (2.35)
Consider the operators

Tp = ek FlFte(PAB)/2]

4 (2.36)
= Trew (BAR)T/2
If we take the gauge such that A = (B A 7)/2, we see that to compute
[Tr, H] (2.37)
we only need to know
[pi +eAi,pr —eAg] for ik==zy, (2.38)

15



2.4. BLOCH ELECTRONS IN A UNIFORM MAGNETIC FIELD

which is zero. We conclude that TR commutes with H. Thus the Hamiltonian
is invariant under these operators which are called magnetic translations. To
use Bloch theory, we need to find functions that at the same time are eigen-
functions of H and Tr. Note however that the magnetic translations do not
commute with each other:

TaTb = 62ﬂZ¢TbTa (239)

where ¢ is the quantity of flux quanta piercing the unit cell. When ¢ = p/qisa
rational number (with largest common divisor 1, for p and ¢), there is a subset
of translations that do commute. To find that subset we enlarge the unit cell
such that a integer number of flux quanta pierces the unit cell. We can take a
Bravais lattice with vectors of the form

R' = n(q@) + mb. (2.40)

We see that p flux quanta pierce this unit cell, and we call this cell the magnetic
unit cell. The magnetic translation operators that belong to this new Bravais
lattice, commute with each other. Let 1) be a eigenfunction of H and Tr
simultaneously. The eigenvalues corresponding to Ty, and T, are given by

Tqalp = ethraa ¢

. 2.41
wa — ezk:zb,lp ( )

where k; and ke are the so-called generalised crystal momenta and make up
the magnetic Brillouin zone: 0 < k; < 27n/ga , 0 < ky < 27w/b. The
eigenfunctions are labelled with the two crystal momenta k;, k2 and with a
band index a, and they can be expressed as Bloch functions

,(p](g‘i‘})w (1.7 y) = eth1zt+ikay “5322 (.Z', y) (2.42)
These functions u, satisfy the so-called generalised Bloch conditions

ul®)(z + qa,y) = eV 4% (z,y)

(2.43)
ugin (z,y + b) = e~ v"PT/00 u,(g;w (z,9),
and are eigenfunctions of the Hamiltonian
- 1 - -
H= %(ﬁ+ hk + eA)? + U(z,y), (2.44)
such that .
H¢k1k2 = elklx+k2yHuk1k2- (245)

We now continue as we would continue with Bloch theory. That is, we determine
the physics of our system through the spectrum of a single-particle Hamiltonian.
This is done in the following Section, making use of the Kubo formula.
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2.5. THE TOPOLOGICAL INVARIANCE APPROACH

2.5 The topological invariance approach

In this section we discuss the approach introduced by Thouless et al. (TKNN)
[77], which links the Hall conductance to a topological invariant. A main in-
gredient in this theory is the use of a Kubo formula for the conductance. See
the following Section for the validity of this formula. We do not follow TKNN
exactly, but we make use of the conceptually very clear articles of Kohmoto [48]
and Watson [79].

Let U(z,y) be a potential, periodic in both dimensions. Consider again the
Hamiltonian )

A= 5 P+ hk + eA)? +U(x,y), (2.46)
corresponding to the generalised Bloch functions of equation (2.43). Note that
its eigenvalues depend continuously on k. For a fixed band index a, the eigen-
values form a band as one varies £ through the magnetic Brillouin zone. This is
called a magnetic sub band. If one applies a small electric field on our system,
we can use the linear response theory. In this linear response theory the Hall
conductance is given by the Kubo formula (see one of the original papers [49]
or, for instance, [26] for a derivation),

e2h (vy)ap(vz)ga — (Vz)ap(vy)sa (2.47)

a _ B)2 ’
L.L, e (E EB)

Ozy = —1

with L L, the area of the system and with Ef the Fermi energy and where the
sum is over all states under and above this Fermi level. Note that the sum is over
all states, which means that we also have to integrate over k within each band.
Let us consider the matrix elements of the velocity operator @ = (—1hV +e4) /m
by integrating over one magnetic unit cell, i.e.,

qa b
(Das = Gouy Sty /0 da /O dyus, vl (2.48)

where the states are normalised such that, [ dz fg dylu|? = 1. These matrix

elements can be expressed in term of partial derivatives of the Hamiltonian H
by

.
(v2)as = 3 (ol 5 13)

(2.49)

il

oH
(Uy)aﬁ = ﬁ(O"a—kzw) .

First-order perturbation theory gives the change of the wave function u® due to
a change ok, (O0H /0k;) (i = 1,2) of the Hamiltonian as
oH
o= E* — BB 16k (=) pu? . 2.
u §( )7 ki (G )asu (2.50)
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2.5. THE TOPOLOGICAL INVARIANCE APPROACH

Thus,

ouP

oH
<ala—kj|6> = (E° — E*){(a %

)= —(B° - E%@L,;w (2.51)

And we can write the Kubo formula as follows

ou®
ks

LiLy h Bo<Pr<Ey Ok1

=S Y [<Z—Z|ﬂ><ﬂ|§%>—<@w><ﬂ| >]. (2.52)

Changing the sum EEF<E5 into Y ps = pec g, and using the fact that
>, |B){B] =1 we obtain

1 e2 u® ou® u® ou®
= Y [<a—|a—>—<a—|a—>]. (2.53)

Oks Oky ' Oky

If the Fermi level is in a subband gap this reduces to

2 o Ao ot A o
o(@) = QL%/ko/dzrlau du®  du’ du
Y

- - — 2.54
Oko Okq Ok, Oks 2:54)

for the contribution to the Hall conductance of a filled band «. The integrals are
over the magnetic Brillouin zone and over the magnetic unit cell respectively.

Introduce now a vector field in the magnetic Brillouin zone by

~

A(kr, k2) =/d27”u}ilkﬁkuklkz = (Wky ko | Vi [ty y) (2.55)

where ﬁk is the vector operator with the components 9/9k; and 9/9ks. The
contribution of the band index o can be written as

2
@ ¢ [ 2L, « A
oly) = -5 / d k[Vk x A(kl,kz)]g, (2.56)

where []3 stands for the third component.Remember that the magnetic Brillouin
zone is actually a torus T?, because we can identify (k1,0) with (k1,27 /b) and
(0, ko) with (27/(qa), k2).

Using Stokes’ theorem, and remarking that a torus has no boundary, we could
conclude from equation (2.56) that the contribution a;(cz) is zero. The reason
that this is not the case comes from that fact that the vector field A can not
be uniquely defined on the whole torus. In fact, the vector field A can only
be defined locally. In Section 3.4 we give an explicit vector bundle over the
torus T2 and show how A transforms given a change of frame. Thereafter we

show that the contribution of equation (2.55) must be an integer times %

This is done by giving the relation between the integrand Vi X fl(kl, k2) and
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2.5. THE TOPOLOGICAL INVARIANCE APPROACH

the first Chern class defined in Chapter 3. This relation was first proposed by
Avron et. al. in [6]. In their article, they introduce the techniques of algebraic
topology in the integer quantum Hall effect. This approach is the starting point
of the generalisation proposed by Bellissard. For now we give a more intuitive
argument for the quantisation of equation (2.56).

The fact that the vector field A can not be defined uniquely is a consequence
of the generalised Bloch conditions of equation (2.43). The wave functions pick
up an extra phase 2mp as they travel around the magnetic unit cell defined
in Section 2.4. The quantity p is exactly the number of flux quanta piercing
the magnetic unit cell. Hence p is a real physical quantity and therefore gauge
invariant. This extra phase factor implies that the wave function is zero in at
least one point in the magnetic unit cell. If that is the case, A is indeed not well
defined over the entire torus.

The trick is to define the vector field A locally within some regions {U;}. If
the regions U; and U; overlap we need to have some transition functions ¢;
such that the 4; in U; equals A; in U; times the transition function. Such a
transition function is given by

¢ij(k?1, kg) = 61X(k1’k2). (2‘57)

Let us assume there is only one such zero point of ug,,. The torus is now split
in two regions Uy and Uz such that the zero point lies only in one of them. The
difference between the vector fields defined on the different regions is given by

Ay (ky, ko) = Ag(ky, ko) + 1V px(ky, k2. (2.58)

The contribution of the band a to the Hall conductance can consequently be
written as

o 1 - o - o
ole) — 2_7”{/(] Pk [V xA1]3+/U2 ER[V x Ag], )
1 - o ~

Q—M/aUdk.[Al_Aﬂ,

where the minus sign in the second equation comes from the orientation of the
boundary QU for Uz compared to U;. Now we have

(2.59)

=% =S

62
o) = =, (2.60)

with

1 - -
n=_— dk - VkX(kla k‘g), (261)
27 8H

where n must be an integer because, after a complete trip around the boundary,
the phase difference must be a integer value times 2.
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This explains the integral quantisation of the conductance in the integer quan-
tum Hall effect. Note however, that we did not included disorder in this model.
As we mentioned, disorder is necessary to explain the plateaux and the robust-
ness of the integer quantum Hall picture. See [51] for a discussion of this model
with disorder.

2.6 Gaps and assumptions in the theories

In this Section we discuss the assumptions we made explicitly or implicitly in
the theory of Sections 2.2 to 2.5. Furthermore, we discuss the gaps of the theory
in this Sections.

As we mentioned in Section 2.1 the IQHE occurs at high magnetic field and low
temperatures. In the experiment of von Klitzing these quantities were respec-
tively 18 T and 1.5 K. With these figures one can calculate that the energy
hw, is about a hundred times greater than the thermal energy k7. If the
system also satisfies the inequality w.79 >> 1, we say that the magnetic field is
extremely strong (see [49] and [66]). We always assume this situation.

In Section 2.4 we made explicit use of the fact that the system we are considering
is an electron gas in a crystal. The problem with such a system is that, due to
the ion lattice, there can exist configurations which are lower in energy than the
ground state without the lattice. A consequence is that the states of the system
are hard to calculate. The system can be simplified in the following way.

The first simplification is that we neglect the motion of the ions in the lattice.
A consequence is that an electron can not lose thermal energy to the ion, so a
collision between them is elastic. Dissipation, that is, the loss of energy through
heat, can only be caused by scattering between the electrons themselves. This
approximation is the so-called adiabatic or Born-Oppenheimer approximation.

The second is that we assume the electrons in the core of an atom to be hardly
contributing to the dynamics of our system. Their contribution to the system is
mainly the excluding factor due to electrostatic forces and the Pauli principle.
So the dynamics of our gas is governed by the electrons at the Fermi level.

The third simplification of our system we already assumed in the previous Sec-
tions. It is the use of the single-electron Hamiltonian to describe our system.
This approximation is known as the density functional theory.

Assuming these simplifications we can use Bloch theory, that is, the states of
our system can be written in the form wuy(r)e” with u having the periodicity
of the lattice, ug(r +1) = ur(r). The band structure of the system is given by
the graph of the energy E} against k. Using the Brillouin zone one can define
the different band indices. One advantage of this theory is that Ej is always
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continuous within a band index. This is also valid for the magnetic Bloch theory
discussed in Section 2.4.

Due to the first simplification of our system we concluded that dissipation is
caused by scattering between electrons. The other two simplifications make sure
that dissipation can only be caused by scattering between an occupied and an
unoccupied state near the Fermi level. In Section 2.3 this was already the case,
because in that Section we discussed an electron gas (without ion lattice) within
the third simplification.

Although we know that the IQHE is insensitive to geometrical changes of the
sample, one could dispute whether the Laughlin argument of Section 2.3 is
somewhat far-fetched. There are experimental realisations of this geometry,
called Corbino discs (see for instance [37] and [72]), but most of the experimental
samples of the IQHE are just planes. In the Laughlin argument one relates to
every flux quantum through the ring a displacement of n electrons from one side
of the ring to the other. In quantum theory however there is no reason why this
number n should always be the same (see for instance [4]). The conductance
is related to the average of electrons transferred per flux quantum through the
ring. This quantity is represented by the Kubo formula.

This Kubo formula is one of the main ingredients of the theory discussed in
Section 2.5 based on [77]. The other one is the gauge invariance on the toroidal
geometry in momentum space further developed in [6]. Although the domain of
validity is unclear, we know from the theory and experiments that it is valid in
the case of the IQHE. See for instance [9], [20], [35], [50], [61] and [74]

An advantage of this formulation of the IQHE is that it can be generalised to
multi-particle Hamiltonians (see for instance [5], [62] and [75]). Although the
generalisation to multi-particle Hamiltonians is not really necessary to explain
the IQHE, it is very useful from the fundamental physics point of view. Funda-
mental in the sense that the theory is more complete, and that the theory could
as well explain other observations.

There are, however, two unsatisfactory elements of the method introduced in
Section 2.5. First, the domain of validity of the magnetic Bloch theory discussed
in Section 2.4. This magnetic Bloch theory is only valid with the assumption
that the flux through the unit cell is rational. This restriction is not too strong,
since the rational numbers lie dense in the reals, but it is quite an unphysi-
cal assumption. Second, we did not discuss disorder in this model. Disorder
is required to form the plateaux and ensures us of the robustness of the con-
ductance. Without disorder, the model predicts only the quantisation and the
numerical value of the conductance at isolated values of the magnetic field. For
a discussion of disorder in this model we refer to [51].

The remainder of this thesis discusses a theory based on the Kubo formula of
Section 2.5 and noncommutative geometry of Connes (see [29] and [31]) intro-
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duced by Bellissard (see [11]-[13]).

The early works on the IQHE discussed in the former Sections are chosen such
that the they form a 'natural’ history towards the theory we discuss in this
thesis. Of course physics does not work that way, and there are some theories
we do not discuss and still are relevant in modern theories. One of them is a
field theoretical approach. See, for instance, the contribution of Pruisken in [66]
Chapter 5.
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Chapter 3

The classical Chern
character

In this Chapter we discuss a topological invariant called the (classical) Chern
character. With this character we are able to express the Kubo formula, dis-
cussed in Section 2.5, in terms of a topological invariant. This is done in the
last Section of this Chapter. In the Chapters to come we introduce a manner
to generalise this Chern character to the noncommutative case. This so-called
noncommutative Chern character is a key ingredient for the noncommutative
theory of the IQHE.

3.1 Invariant polynomials and Chern classes

In this section we discuss the theory of invariant polynomials, to define char-
acteristic classes. These classes are defined on vector bundles E 5> M and lie
in cohomology classes of the base space M. Cohomology classes are topological
invariants, i.e. they are equal for spaces M and N if there exist a homeomor-
phism f : M — N. One such characteristic class will be given explicitly, the
Chern class ([27]). For more on characteristic classes see for instance [34], [40]
and [59].

Let A € M, (C), the set of all n x n-matrices in C. Let P(A) be a polynomial in
the components of A. We call P(A) an invariant or characteristic polynomial if
for every g € GL(n,C), one has

P(g ' Ag) = P(4). (3.1)

Examples of such polynomials are Det(1 + A) and TrA, which are used to de-
fine the Chern classes and Chern character. Consider the set of eigenvalues
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{AM,...,An} of a matrix A. Because of property (3.1), every invariant poly-
nomial P(A) is a symmetric function of these A;, and we can write P(A) as a
polynomial in S;(A), defined by

Si(A) = D XAy (3.2)

i1 <ia <---<ij

Every invariant polynomial P defines a k-linear symmetric form P: M, (C) x

- X Mp(C) — C, called the polarisation of P, in the following manner.
Consider for every (A1, ..., Ay), the expansion (t; A; + - - - +txAx)*. Denote the
coefficient of ¢ ...t; by [A1 --- Ax]. Then

P(Ar,..., Ay) = %P([Al Ay (3.3)

is symmetric and invariant, by construction.
Example 3.1.1. Consider the polynomial P(A) = Tr(A). The polarisation
P(A;, Ay, A3) is then equal to

1 1

6TI'([A1A2A3]) = ETI'(AlAQAg + A2A1A3) (34)

due to the cyclicity of the trace.

Consider a complex (smooth) vector bundle E over M. Let I'*°(M, E) be the
set of (smooth) sections over the vector bundle, and QF(M) the set of k-forms
on M. Remember that an connection V on E is an operator

V :T®(M,E) = T®(M,E) @ Q" (M) (3.5)
that satisfies the relation
V(of)=(Vo)f + 0o @df, (3.6)

for f € C°(M) and ¢ € T°(M,E). We can extend this connection to an

operator
V :T®(M,E) ® O?(M) = T>°(M, E) @ QP (M) (3.7)

by enforcing the Leibniz rule
V(ic® @)= (Vo) ® ¢+ 0o Qde, (3.8)
for ¢ a p-form and o a section.

If w is the matrix-valued 1-form, corresponding to the connection V, we define
the curvature © as the matrix-valued 2-form

O =dw+wAw. (3.9)
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A simple calculation shows that © = V2.

We are able to define characteristic polynomials on matrix-valued p-forms An
through the relation
P(An) = nP(4) (3.10)

for n a p-form and A a nxn-matrix. The polarised polynomials on matrix-valued
p-forms are _
P(m A, ... e Ak) (3.11)

with 7; the p-forms and A; the matrices. The invariant polynomials defined on
the curvature 2-form O lie in cohomology classes, as we see in the following two
propositions.

Proposition 3.1.2. If P is an invariant polynomial and © the curvature, then
P(0) is closed.

Proof. Consider the infinitesimal transformation g = 1+¢'. Because P(gOg~!) =
P(0), and using a power series expansion of g, we obtain

> P(O,...,40,-0i,...0) =0, (3.12)

for the polarised polynomial of P(©). By multi-linearity of the polynomial we
find

Y P@O,...,.wA0;,...,0) =) P(O,...,0;Aw,...,0). (3.13)
Hence B B
dP(®,...,0)=>_P(O,...,V6,...,0), (3.14)
where
VO=d0+wAO-0OAw=0 (3.15)

is the covariant differential of ©, which is zero because of the Bianchi identity.
We conclude that
dP(©) = 0. (3.16)

O

Proposition 3.1.3. Let © and ©' be two curvatures corresponding to, respec-
tively, the connections w and w' on the vector bundle E. Let P be an invariant
polynomial. The difference P(©) — P(@') is exact.

Proof. Let w and w’ be two different connections on the bundle and let their
curvatures be © and ©’ respectively. Consider the interpolation between the
two connections

we=w+itn 0<t<1, (3.17)
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where 1 = w' —w. Then

®t:dwt+wt/\wt

5 (3.18)

=0 +tVnp+tnAn.

Let P(A,..., A) be the polarisation of P and define
T(B,A) =1P(B, A,...,A). (3.19)

——

{—1times

Then p

Eﬁ(etv o, 01) =T(Vn,0y) + 2tT(n An, O4). (3.20)

On the other hand, we have

VO, = tVZn+t*V(n A1)
=t(OAn—nAO)+t3(VnAn—nAO) (3.21)
=t(®t/\’l7—’l7/\®t).

So, using (3.14),

dT(nv G)t) = T(vnv ®t) - l(l - l)ﬁ(nv V@t, (")t, ERE] ®t)

=T(Vn,0;) — Il —1)tP(n,(O: An—n A©Oy),04,...,0,) (3.22)
And again using the multi-linearity as in (3.13) we obtain

2T (nAn) = —1(1—1)P(n,(©O; Ap—nABy),04...,0). (3.23)

Combining the last two equations gives
dT(n, 0,) = T(Vn,0,) + 24T (n An,©,) = %P(@t). (3.24)

Thus )
P(O)) - P(O,) =d / T(n, 0)dt = dT(w',w). (3.25)
0 O

These invariant polynomials defined on the curvature of a vector bundle £ — M,
modulo exact forms, are called characteristic classes, and are denoted by

P(E) = [P(@)] € H2.(M). (3.26)

Propositions 3.1.2 and 3.1.3, make sure that these classes are well-defined and
lie in the de Rham cohomology classes.
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Proposition 3.1.4. Let P be an invariant polynomial and E — M a vector
bundle.

1. The map ,
P — P(E) € HL(M) (3.27)

18 a homomorphism, called the Weil homomorphism.

2. Let f : N — M be a differentiable map. With f*E the pullback bundle of
E, we have
P(f*E)= f*P(E). (3.28)

Proof.

1. Let Py and Q; be two invariant polynomials, and denote the curvature ©
as T;0!. Then,

(PLQ)(O) =0 A---AO*OTT A ... A O x
1 =

mpk(Tiu“‘?Tik) 6jl(/Tju"wT'jz) (329)
=P,(©) A F(0).

2. Let w; and w; be two local connections in the intersecting charts U; and
U; of M. Let ¢;; be a transition function on U; N U;. The pullback
f*¢ij = ¢i;f is a transition function on the vector bundle f*E. The
corresponding f*w; and f*w; are related as

frw; = f* (i, widhij + ¢~ doy)
= ("o D(frw)(f i) + (i ") (f*ddss).

Hence f*w is a (local) connection on the bundle f*E. The corresponding
curvature is given by

(3.30)

d(f*wi) + ffwi A ffon = f*(dw; + w; Aw;) = 7O, (3.31)

Therefore f*P(0;) = P(f*0,), and equation (3.28) follows.

O

Remark 3.1.5. In equation (3.31) we made use of the fact that for a dif-
ferentiable map f, its pullback f* commutes with the exterior differential d.
Due to this fact H¥p(M) ~ H5,(N), whenever there exists a diffeomorphism
f: N — M. Moreover, H%,(M) is isomorphic to the cohomology with com-
pact support vector space H¥(M,R) (Alexander-Spanier cohomology). This
ensures us that HE,(M) ~ HX.(N), whenever there exists a homeomorphism
f: N — M. This makes P(E) a topological invariant for the base space M.
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The Chern classes are defined through the Chern forms. We define the Chern
forms as follows.

Definition 3.1.6. The total Chern form ¢(©) is the polynomial

c(©) = Det(1 + QL@) =1+¢c1(0) +ca(®) +---, (3.32)

™

where the ¢;(0), the polynomials of degree j, are called the individual Chern
forms.

If {A1,..., Ar} are the eigenvalues of O, we have the equation,
v il v
Det(l1 + —0) = 14+ —M\). .
et(l + 5-0) j];[l( +5-3) (3.33)

So the explicit expression of ¢;(0) is given by

?

Cj(@) = SJ(%Q) (3‘34)
Because ¢;(0) € A¥T*M,
¢;=0 if 2j>dimM (3.35)

50 ¢(0©) will always be a finite sum.

Propositions 3.1.2 and 3.1.3 give a cohomology class ¢;(E)
&(B) = [¢5(0)] € Hij(M). (3.36)

These classes are called Chern classes. They are independent of the connec-
tion, because ¢;(0©) — ¢;(0') is exact. We define the total Chern class as
A(E) =co(B) +cr(B) + -

3.2 The Chern character

In this section we discuss some properties of the Chern classes and define the
Chern character.

Working with vector bundles, we would like to have some operations on them.
We define here two such operations.

Definition 3.2.1. Let E and F be two vector bundles over M , with projections
g and g , respectively. The Whitney sum E® F over E and F is defined as
the pullback bundle f*(E x F), with f : M — M x M defined by f(z) = (z,x).
Hence, f*(E x F) = {(z,u,v) € M x Ex F| f(z) = (7p(u),7r(v))} and
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3.2. THE CHERN CHARACTER

the projections 7¢ : f*(EX F) - EX F and 7 : f*(E x F) - M defined by
(2, u,v) = (u,v) and w(x,u,v) = x make the following diagram commute.

fHExXxF) 2L sExF (3.37)

wl l/(ﬂ'Eaﬂ'F)

M—f>M><M

The fibre (E @ F), is given by 77 1(z) = ng 1(2) ® 7 1(z) ~ E, © F,
where E, @ F, is the direct sum between the vector spaces E, and F,. Let
¢or € GL(m,C) and ¢ € GL(n,C) be transition functions for, respectively, E
and F'. The matrix

bBor = (¢0E ¢0F) € GL(m +n,C) (3.38)

is then an transition function for the vector bundle E @& F. We can write the
connection Vggr of E @ F also in this form:

Ve 0
Veer =Ve®Vp = ( oE VF) (3.39)

Definition 3.2.2. Let E and F be two vector bundles over M, with projections
g and 7, respectively. The tensor product bundle E® F 5 M is defined
as

E@F={(e® f,x) € B, ® F, x M}, (3.40)

with projection w(e ® f,z) = x = wg(e) = np(f), where E, @ Fy is the tensor
product of the vector spaces E, and F.

Lemma 3.2.3.

1. If f: M — N is some C*® map and E — N a complex vector bundle,
then

¢j(f*E) = frc;(E). (3.41)
2. Let E— M and FF — M be two vector bundles. We have
c(Ea® F)=c(E)Ac(F). (3.42)

3. For E a vector bundle of rank r and L a line bundle, we have

a(E®L)=c(E)+rc(L). (3.43)
Proof.

1. This follows immediately from Proposition 3.1.4.
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2. If O and O are the curvatures of respectively E and F, equation (3.39)
gives us for the curvature Opgp of E® F

C) 0
Opegr =Op ®OFp = ( OE @F) . (3.44)

Therefore,
2 o o7
=¢(OF) - ¢(OF).

(3.45)

Hence (3.42)follows.

3. If ©g and Oy, are the curvatures of respectively E and L, one can show
that the curvature Oggr of E @ L is given by

Oper =0r®1+1® 0. (3.46)

Hence .
c(E@ L) = [%TrG)E@L] = ¢y (E) + rey (L), (3.47)
O

Note that property 3 of Lemma 3.2.3 cannot be extended to every vector bundle
L. Inspired by the Chern classes we define a invariant polynomial that is well
defined under the tensor product of vector bundles.

Definition 3.2.4. The Chern character is defined as

1 2

ch(E) =Tre3® =) ﬁﬁ(—

J

0)/, (3.48)
with ©, again, the curvature 2-form and Tr the normal trace over matrices.

If we use the eigenvalue expression for 2 we find
k k 1 .
— =i — Z ()Y
ch(E) = Zez = ZZj!(%'\Z)J’ (3.49)
i=1 =1 3
and we can express the Chern character in terms of the Chern classes:
1 1
ch(E)=k+c(E)+ 5(0% —2¢9)(E) + g(cf —3c169 — 3¢3)(E) +--- . (3.50)

With this fact, Lemma 3.2.3 and Proposition 3.1.4, one sees that the Chern
character lies in a de Rham cohomology class. Hence the Chern character is
indeed a topological invariant of the base space M.

Because the transition functions lie in GL(k, C), the connection (and curvature)
takes values in the corresponding Lie algebra gl(k,C). The Chern character is
then well defined under the tensor product of vector bundles.
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Lemma 3.2.5.

1. If f: M — N is some C*® map and E — N a complex vector bundle,
then

ch(f*E) = f*ch(E). (3.51)
2. Let E— M and FF — M be two vector bundles. We have
ch(E @ F) = ch(E) + ch(F).

3.52
ch(E ® F) = ch(E) A ch(F) (3:52)
Proof.
1. This follows directly from Lemma 3.2.3.
2. This follows directly from the construction of the Chern character:
ch(E @ F) = Tre3=®#er = Z QE@F)
(3.53)

3 %T [(i@E)f + (%@F)f] = ch(E) + ch(F).
And

WE®F) = Z =T (5 @E®11+]1®®F)

= ch(E) A ch(F).

3.3 The group K°(M)

In this Section we discuss the semigroup structure on the set of all vector bundles
over a compact Hausdorff space M, and introduce the Grothendieck construc-
tion to make a group structure.

Let E and F be two vector bundles over M. We say that they are isomorphic,
and write E 2 F, if there exists a homeomorphism ¢ : E — F, such that each
©|m, is a linear isomorphism between vector spaces.
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3.3. THE GROUP K°(M)

Consider V (M), the set of all vector bundles over M, modulo isomorphisms.
This set is a Abelian semigroup with the Whitney sum as addition,

[E]+[F]:=[Ea®F]. (3.55)
It is easy to see that V(M) is indeed Abelian and associative. Note that V(M)
is really a semigroup and not a group, for we do not have an inverse.

Example 3.3.1. Consider the two-sphere S2. Let E be the tangent bundle
T(S?) over S? and E' be the trivial bundle I? over S2. Then
T(S*)aI' ~ I3,
( ; ) 3 (3.56)
el ~I°
but 7'(5?) is not isomorphic with I2.

We see that summing with trivial bundles helps to cancel inequalities, due to
low dimension. With this in mind we define an equivalence class.

Definition 3.3.2. The vector bundles E and E’ are called stably equivalent,
written E = E' or [Els = [E']s, if
Eaol~FE @®I" for some jkeN (3.57)

We see that in our previous example, T'(52) 2 I2. We know, by a theorem
of Swan, that for each vector bundle E over a compact Hausdorff space M,
we can find an F over M such that E & F is a trivial bundle. Because the
trivial bundles act as units in the stable equivalence, we can introduce a formal
difference between the vector bundles,

EcE =E®E", (3.58)

whenever E' @ E" is a trivial bundle. Thus we can define an inverse and we
have a group structure on the set of stable equivalence classes of vector bundles
over M. We denote this group as K°(M).

To every Abelian semigroup S belongs an associated Abelian group G(.9), called
the Grothendieck group. The Grothendieck group of V(M) is isomorphic to
KO°(M) and will later be used in the construction of K-theory. The Grothendieck
group of any semigroup S, is constructed as follows. Define an equivalence
relation ~ on S x S as

(z,y) ~(',y') if Jz€eS:z+y'+2=2"+y+= (3.59)

The equivalence class of (z,y) is written as [z, ylo. The set G(S) := S x S/ ~,
is an Abelian group with group operation

[z,y]o + [2",y']o = [z + 2",y + y']o, (3.60)
and inverse and identity

[z,0]0" =y, 2lo, 0= [x,2]o. (3.61)
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Proposition 3.3.3. The groups K°(M) and G(V(M)) are isomorphic.

Proof. Consider the map ¢ : K°(M) — G(V(M)), defined by
[E]s = [[Els + [H]s, [H]s] (3.62)

for some [H]; € K°(M). Note that ¢ is independent of the choice of [H]s,

because [[E]s + [H]s, [H]s]o = [[E]s + [Gls, [G]S]o-

1. ¢ is a group homomorphism:

o([E]s + [F]s) = ¢([E ® F;) = [[E ® Fs + [H],, [H],],
= [[E]s + [F]s + 2[H]s, 2[H],],

(3.63)
= [[E]s + [H]s, [H]S]o + [[F]s + [H]s, [H]S]o
= ¢([E]s) + 6([F]s)-
2. ¢ is injective:
If $([E]s) = 0, then
[[E]s + [H]s, [H]s], = 0 = [[Fs, [F]s],- (3.64)
Thus
[Els + [H]s + [F]s + [Gls = [Fls + [H]s + [Gls, (3.65)
for some [G]; € K°(M). And
[E], = 0. (3.66)
3. ¢ is surjective
Consider [[E];, [F]s], € G(V(M)).
[(E]s, [Fs], = [[Els + 2[H]s, [Fls + 2[H]],
= (Bl + U L], + [ s+ L]
= ¢(lEls) — [[F]s + [H]s, [H]],
= 6([Els) - 6([Fs) = ¢([E]s - [F]s)-
O
Proposition 3.3.4. The Chern character ch is a ring isomorphism
ch: K°(M) ®zC — H%™(M). (3.68)

See [39] for proof.

33



3.4. BACK TO THE IQHE

3.4 Back to the IQHE

In this section we link the Hall conductance given in equation (2.56) in the
previous Chapter to an expression in terms of the first Chern class. This con-
firms the claim made in Section 2.5 that the Hall conductance is a topological
invariant.

Consider the functions uy,k, of equation (2.42), where we omitted the band
index a and integrated over all space R?. These functions can be seen as sections
of a complex vector bundle of rank 1 in the following manner. Consider the
magnetic Brillouin zone we discussed in Section 2.4. As we mentioned in Section
2.5 this space is a torus T?. Hence, the states ux,z, can be seen as smooth
functions u(ky, k2) from T2 to C, with inner product

(u,0) = / wvdkidky Yu,v € C(T2,C). (3.69)
Tz

Taking the canonical projection 7 : T? x C — T?, we have constructed the trivial
vector bundle over the base space T?, where the sections of the vector bundle
are just the smooth functions from T? to C, hence the states uy,, .

The states u are normalised such that
llull = (u,u)? = 1. (3.70)

We want this expectation value of a state u to be invariant under the action
of a transition function ¢ on such a vector state, therefore we demand these
functions to be elements of U(1). Note that these transition functions are just
phase transformations.

In the same manner we can describe vector fields and differential forms as sec-
tions on a vector bundle over T2. These constructions however, are defined
locally and the vector bundle is not necessarily trivial. A differential form of
degree 2 for instance, is a section of a vector bundle that looks locally like
U; x A2(T*T?) ~ U; x C for {U;} an open covering of T?. We still want our
transition functions to be elements of U(1). This statement is the fundamental
principle of gauge-theory (of electro-magnetism). For more on this matter we
refer to [8].

We now construct an explicit vector bundle over T2, and relate the Kubo formula
(2.47) to the first Chern class of this vector bundle. Consider the following open
subsets of T?2.

U1 = {(k1,k2) |0 < k1 < 7/qa, 0 < ky < 7/b},
= {(k1,k2) |7/qa < k1 < 27/qa, 0 < ko < mw/b},
= {(k1,k2) | 7/qa < k1 < 2w /qa, /b < ko < 7w/b},
U4 = {(k1,k2) |0 < k1 < m/qa, w/b < ko < w/b}.

(3.71)
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Construct an open covering {U;} of T? by letting U; be an open subset of T2,
slightly bigger then U/, such that U] fits entirely in U;. Define the transition
functions ¢;; : (U; N U;) — U(1) as

pij = e = @), (3.72)

with @ and 7 some smooth functions. The transition functions obey the com-
patibility conditions
Gij¢jk = ¢ir and @ = 1. (3.73)

The covering {U;} of T? and the transition functions (3.72) define a U (1) vector
bundle E over T2. This is done by gluing together the trivial vector bundles
U; x C and choosing a representation p of U(1) on C. The vector bundle E is now
the union |J; U; x C where we identify the points (p,v) and (p, p(¢i;(p))v). This
procedure is the same procedure one uses when constructing the corresponding
U(1) vector bundle of a U(1) principle bundle (see for instance [8] or [34].

Consider now a connection V on a vector bundle E — T? with projection =.
This is a transformation from sections to sections, hence it is defined locally by
a frame of a neighbourhood U; in T2. Such a frame is given by a set of sections
{en} such that {e,(k1,k2)} is a basis for the fibre V(;, 1,) of the point (ki, k2)
in U;. This set of sections is supposed to change continuously with respect to
(k1, ko) in U; such that this frame gives the local trivialisation U; x V ~ 7= 1(U;)
of the vector bundle. This is done with the identification

((kl,kg),z”) — e,,(kl,kg)z“(kl,kg) =z, (374)

with z = (21, 22) € V{4, k) and z# the coordinate in V. In terms of equations
(3.7) and (3.8) the connection V can be written as

Vienz") = (Ve,) @ 24 + ¢, @ dz*

3.75
=e, @whz" +e, @dz", (3.75)

where w¥ is the matrix valued 1-form. The dependence with respect to (ki, k2)
gives

0
Vi, (s) = eu(w))az” + ey 72", (3.76)
Ok,
where we have put s = e, 2*.

We show that the vector field A(ky,ks) of equation (2.55) can be written in
terms of the matrix valued 1-form w¥. Consider the 1-form A(k;, ks) given by

~

0
A(ky, k) = Ag(ky, ko)dk, = (uk1kz|W|uk1k2)dka- (3.77)

The states ug,x, can be seen as sections on our vector bundle, as we already
mentioned. Remember that the fiber of our vector bundle equals C, hence the
frame is given by a set of one element e, = u. This frame can be transformed
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in the region U; N U; through the transition functions (3.72) in the following
manner

Ul(kl, kg) = u(kl, k2)¢1_31 (k’l, kg) = u(kh k2)e—7ffij (k1,k2) (378)
This change of frame gives for A(k1, k2)
0 1 (k1 , ko) dk
Ok, e (3.79)
= ¢ij Ad;; (k1 ko) + ¢igdoy (ka, ka).

The collection of 1-forms obeying this transformation 3.79 defines the connection
V.

A/(kl, kg) = A(kl, k2) —1

The corresponding 2-form © of equation (3.9) is given by

F=dA+AANA= (ai Ay + Ay Ay)dk, A dky
5 (3.80)

= 8—ka/ibdka A dky

Consider now the contribution of the band index a to the conductance O';(c(;)
of equation (2.56). We can express this contribution in terms of the curvature

2-form ©
5 o 0
2 A :/
/Tzd B[ x Atk )] o

= 0 =—27 1,
T2 T2

where ¢; is the individual Chern 1-form (see Definition 3.1.6 and equation
(3.34)).

Aydk, A dky

(3.81)

The first Chern class of T? equals the Euler class of the underlying real bundle
and can be related to the Euler characteristic y, through the index theorem for
the de Rham complex (see for instance the references [19], [34] or [59])

/1r2 “as /T e(T?) = x(T?). (3.82)

The Euler characteristic is always an integer as it is the following sum over the
dimensions of the de Rham cohomology groups

X(T?) =Y (=1)" dim H}(T?). (3.83)
Combining this with the expression for the contribution of the conductance

a%) and with the equations (3.81) and (3.82) the integral quantisation of the

conductance follows immediately:
2
e
Oy = Y 0l = :Fn, (3.84)
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with n an integer.

There is another manner to look at the integrality of the Euler characteristic.
Namely through the Hopf index theorem. This theorem states that the Euler
characteristic x(T?) equals the indices of a vector field (as a section of the unit
tangent bundle) on T?. These indices count the amount of zeros in a vector
field and the amount of times this vector field rotates around such a zero. This
is obviously an integer.

This closes the discussion of the early theories of the IQHE. The goal of this
thesis is to explain how one can generalise the theory discussed in Section 2.5
and finished in this Section. That is, how one can generalise it to the case where
we do not make the assumption that the quantity of flux ¢, through the unit
cell, is rational. Remember equation (2.39),

T.T, = 2™ T, T,. (3.85)

The reason for taking ¢ = p/q rational was that we could magnify the unit cell
and define translation operators T,, and T}, that did commute. The fact that
these operators commute was crucial in the theory we discussed in the previous
Sections. In the remainder of this thesis we discuss a tool called noncommutative
geometry, to generalise Bloch theory to the case where ¢ is not rational, and
therefore the translations operators do not commute.
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Chapter 4

From spaces to algebras

In this Chapter we give a relation between spaces and algebras, via the Gelfand-
Naimark theorem. We also introduce noncommutative topology, linking vector
bundles to finitely generated projective modules. With this information we are
able to define the Chern character in algebraic terms.

Looking at the set of observables in a physical system, we expect to find two
kinds of structures. First, an algebraic one. This allows us to use a product on
the observables, as to build up, for example, operators. We then, would also like
that some sequences of observables can converge. So the second structure we
expect on our algebra of observables, is a topological structure. We want this
topology to have a algebraic link, such that the operations on the observables
are continuous. An example of such a set, is a Banach algebra.

Definition 4.0.1. A Banach algebra A is both an algebra (over C) and a
Banach space, such that
[labl] < lall - |[b]]- (4.1)

From now on, we will always assume that an algebra A is defined over C.
The measured observables in our physical system are all real, so we need to
distinguish real from complex numbers. We can do this by introducing an
involution, on our algebra A. An involution on A is defined as amap x: A — A,
such that for all a,b € A and A € C

a* =a, (ab)* =0b*a*, (Ma)* = a*. (4.2)
An element a € A, with the property a* = a is called self-adjoint.

Examples of Banach algebras with involution are Von Neumann algebras and
C*-algebras. Both can be seen as a *-subalgebra of the bounded operators L(H)
on some Hilbert space H. The bounded operators on a Hilbert space form a
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Banach space in the operator norm (see for example [53]). A von Neumann
algebra is a closed subspace of L(H) in the weak topology, while a C*-algebra
is closed in the norm. The weak topology on the algebra of observables, can
often generate the whole algebra £(H). This is often too large for our purposes.
The C*-algebra is a better candidate for the algebra of observables. These C*-
algebras are exactly the algebraic constructions we use in the Gelfand-Naimark
theorem: the link between spaces and algebras.

4.1 (C*-algebras

In this Section we discuss some basics of C*-algebras. These constructions play
a fundamental role in the Gelfand-Naimark theorem, which gives a link between
spaces and algebras. We mainly used [53] for this Section.

Definition 4.1.1. A C*-algebra A is a Banach algebra with a involution, such
that ,
lla*al| = [lal|". (4.3)

One of the best-known examples of a, C'*-algebra is the set of continuous func-
tions, over a compact Hausdorft space.

Proposition 4.1.2. Let C(M) be the set of continuous functions over the com-

pact Hausdorff space M. Define the pointwise product and the supremum norm

-1l

1 flloo = supge | f ()] (4.4)

on C(M). If we define the involution as the compler conjugate, C(M) is a
C*-algebra.

Proof. A closed bounded subset of a complete set is also complete, hence C'(M)
is a Banach space, since M is compact. With the pointwise product, and the
complex conjugate as involution, the norm satisfies the following properties

I1£9lloo = supgearlf(@)g(2)] < supgep F(@)g(2)] < N fllool9l] oo
1£* Flloo = suPenr| F(@) F(@)] = sup,epr || £@)*] = [I£]1”.

We conclude that C(M) is, indeed, a C*-algebra. O

(4.5)

The main idea of algebraic geometry is the investigation of geometries that come
from an algebra or, vice versa, the study of a space M, trough its associative
algebra C(M). We do this by the following construction. Consider the set s(A)
of an algebra A,

s(4) ={¢: A= C|o(fg) = &(f)o(9), ¢ # 0} (4.6)
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Whenever M is compact and Hausdorff, there exists, using the right topology,
an homeomorphism between M and s(C(M)), given by the evaluation function,

¢=(f) = f(x) Vee M. (4.7)

We can follow this idea also the other way around, and try to find an associative
(compact and Hausdorff) space M, such that for given commutative algebra A,
A = C(M). Gelfand and Naimark proved in 1943 that this can be done if and
only if A is a commutative C*-algebra. Before we prove this, we first give some
definitions.

Definition 4.1.3. A *~homomorphism between two C*-algebra A and B, is
a linear map ¢ : A — B such that for all a,b € A

ab) = p(a)p(b),
plab) = ¢a)o(t) ws)
p(a®) = ¢(a)”.
An *-isomorphism is a bijective *-homomorphism.
Definition 4.1.4. The structure space A of a C*-algebra A, is given by

A(A) = {w: A — C|wlinear, w(fg) = w(f)w(g), w # 0}. (4.9)

This space is the one we are looking for. We remark that w(I) = 1 (we are
assuming here that A is unital), due to the homomorphism property and the
fact that w is nonzero. The functionals w are then continuous in the operator
norm. It is clear that A(A) C A*, the dual of A. We can define the weak*-
topology on this set, i.e. the topology such that

on =@ it p,(a) > pla) Vae A (4.10)
The topological space then created, is compact and Hausdorff (see [53]).

Following the procedure we used for C'(M), we define the Gelfand transform
": A — C(A(A)) as the map

a(w) :=w(a). (4.11)
It is easily seen that this transform is a homomorphism. Moreover, this trans-
form is exactly the isomorphism we are looking for.

Theorem 4.1.5. Let A be a unital commutative C*-algebra. Then there exists
a compact Hausdorff space M such that C(M) is isomorphic to A.

Proof. Consider the structure space M = A(A) and the Gelfand transform from
A to C(M). We show that this is an isomorphism.
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1. A simple calculation shows that the Gelfand transform is a homomorphism

2. We show that it is a *-homomorphism, i.e. a* = @* = a. Because every
a € A can be written as a linear span of self-adjoint elements, it suffice to
proof that w(a) € R for a* = a. Write w(a) = a + 16, with o, 3 € R. The
self-adjoint element b = a — al € A gives w(b) =18, because of w(l) = 1.
For t € R we now have

lw(d) + otl* = B2 + 28t + t2. (4.12)
On the other hand we also have
lw(®) + I <||b+«I| (w is continuous)
= ||(b+ atT)(b— ot)|| = ||b* + £21|| (4.13)
< |foll” + 2.

Comparing these two expression for all ¢ € R, gives # = 0. And we proved
that the Gelfand transform is a *-homomorphism.

3. We show that the Gelfand transform is an isometry. Injectivity follows.
Assume a* = a. Then ||a?|| = ||a||?, and ||a®"|| = ||a||*" for all m € N.
One can show ([53]), that the spectral radius r(a) is given by

r(a) = lim ||a"||", (4.14)

n—0o0

while the spectrum o(a) of a can be written as the set
o(a) = {a(w) |w e A(A)}. (4.15)
So we have r(a) = ||a||, and
l[allco = llall- (4.16)
The element a*a is self-adjoint for any a € A hence
llal* = lla*al| = [la*all, = |la*dl| o, = |[al[2 (4.17)
Thus the Gelfand transformation is an isometry and injectivity follows.

4. Surjectivity follows from the Stone-Weierstrass theorem, which we give
without proof (see [64]):

Theorem 4.1.6. Let M be a compact Hausdorff space. Fvery C*-subalgebra
of C(M), which separates points on M, and contains 1 € C(M), coincides
with C(M)

We saw that A := {dla € A} is closed under multiplication and com-
plex conjugation. Together with the isometry this gives that Ais a
C*-subalgebra of C(A(A)). If w; # wsy, there is an a € A such that
wi(a) # wa(a), and that gives us a(w1) # a(ws). We know therefore that
A separates points on C(A(A)). Because 1 = 1 € C(A(A)), we have
1 € A. We conclude that A = C(A(A)).
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We have showed that the Gelfand transformation is indeed a (isometric) iso-
morphism between unital commutative C*-algebras and the continuous function
algebras of a corresponding compact and Hausdorff space. O

Remark 4.1.7. We can reformulate this in a categorical manner. Let CH
be the category of compact Hausdorff spaces and CCA the category of unital
commutative C*-algebras. Consider the cofunctor C : CH — CCA, which
maps an object M to an object C(M), and an arrow f : M — N to an arrow
f*: C(N) = C(M) defined by f*(g9) = go f. Theorem 4.1.5 is equivalent to
saying that the cofunctor C is essentially surjective. The cofunctor C' is even
fully faithful (see for instance [53]), i.e. for every pair of objects (M, N) the
map

C:HOmCH(M,N) —)HOmCCA(C(N),C(M)) (4.18)

is bijective. These two properties make the functor an equivalence of the cate-
gories CH and CCA. This means that there exists a cofunctor A : CCA — CH,
such that Ao C ~ 1oy and C o A ~ lgca are natural isomorphisms. This
cofunctor is exactly the cofunctor that maps an object A to the structure space
A(A) of (4.9), and maps an arrow ¢ : A — B to the arrow ¢* : A(B) — A(A)
defined by ¢* (w) =wo ¢.

Remark 4.1.8. We assumed all the time, that the space M was compact and
Hausdorff. If the space M is not compact, but locally compact, the algebra
C(M) will be too large to say something about M. In this case we prefer to
look at a smaller algebra, namely C.(M) the algebra of continuous functions
(over M) with compact support. This C*-algebra does not contain a unit, and
is exactly the algebra we use for the non-unital version of Theorem 4.1.5. We
have, for a non-unital commutative algebra A, A ~ C.(A(A)), with M = A(A)
a locally compact Hausdorff space. Adding a unit to A (see end of the following
Section below), is similar to the one-point compactification of M. For more
information about this matter see, for instance, [39] and [53].

4.2 The Gelfand-Naimark theorem

In this Section we focus on noncommutative (unital) C*-algebras and give a
noncommutative version of Theorem 4.1.5. This theorem links C*-algebras to
the set of bounded linear operators on a Hilbert space. For this Section we made
use of [53], [39] and [63].

Proposition 4.2.1. Consider the bounded linear operators L(H) on a Hilbert
space H, with the normal operator product and operator norm. If we define the
following involution on it

(ula*v) = {au|v) VYu,v € H,a € L(H), (4.19)

L(H) is a C*-algebra.

42



4.2. THE GELFAND-NAIMARK THEOREM

Proof. The bounded operators on a Banach space form again a Banach space.
This, together with the computation

lladl| = llSlﬂlglll(ab)vll < llal[ lboll < llall |®]], (4.20)

make of £L(H) a Banach algebra. Consider now the following calculation where
we use the Cauchy-Schwartz inequality

2 *
llav]|” = {av|av) = (v]a*av) < [|v]| lla*av]| < |la*all [[v]l- (4.21)
Due to this inequality and the definition of the operator norm we have
llall < lla”all < [la”|l]all, (4.22)

and we see that ||a|| < ||a*||]. With a similar calculation we can show that
lla*|| < ||al|, therefore ||a*|| = ||a||. Plugging this back into (4.22), we get the
C*-condition

llall* = [|a*all, (4.23)
and the bounded linear operators £(H) on a Hilbert space H make up a C*-
algebra. 0

Remark that if the dimension n of the Hilbert space is smaller than infinity, we
can identify H with C", and therefore £L(H) with M, (C), the algebra of n x n
matrices over C.

This C*-algebra is probably the best-known noncommutative C*-algebra, and
it plays a fundamental role in the noncommutative version of Theorem 4.1.5.
Before we give and prove this Theorem we give some definitions.

Definition 4.2.2. A state on a unital C*-algebra A, is a functionalw : A — C,
with the following properties

(4.24)

We see that the characters, defined in the previous Section in (4.9), are all
states. Both properties following from the homomorphism property. We say
that the states are the generalisation of the characters, and form the so-called
noncommutative structure space.

Definition 4.2.3. A representation of a C*-algebra A on a Hilbert space H
is *-homomorphism between A and L(H).

Again we see here a generalisation of the commutative case. The Gelfand trans-
form (4.11) can be seen as a representation of A on the one-dimensional Hilbert
space A(A) ~ C. We now generalise two equivalent properties of the Gelfand
transform: non-degeneracy and cyclicity.
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e We say that a representation 7 is non-degenerate if 7(.4) is non-degenerate
on H, i.e. if for each non-zero vector u € H there is an element a € A
such that w(a)u # 0.

e We say that a representation 7 is cyclic if there is a cyclic vector v € H
for w(A), i.e. if there is a element v € H such that the 7(A)-invariant
subspace generated by v is dense in H.

In the previous Section we found for every state w € A(A) a representation
N A — C(A(A)), such that A ~ C(A(A)). We want to do the same for
the generalised case. For every non-degenerate representation m, we can find a
normalised vector u € H such that u defines a state on A, with

u(a) = (u|r(a)u). (4.25)

Every cyclic representation is immediate non-degenerate. Hence we only need
to concentrate on the cyclic representations, and ask ourself if we can construct
such a representation of A, given any state on A. We can do this, using the
Gelfand-Naimark-Segal (GNS) construction.

Proposition 4.2.4 (GNS-construction). For every state w on the (unital)
C*-algebra A, there is a cyclic representation w, of A, with cyclic vector uy,
such that

(my(@)ugluy) = w(a), (4.26)
for all a € A.

Proof. In the same manner we made a Hilbert space out of the set of characters,
we want to make a Hilbert space out of the set of states on A. We can do this in
two steps.

1. Given a state w on the C*-algebra A, define a sesquilinear form (:|-)  on

A as
(alb),, == w(a™d). (4.27)
Because this form is positive semi-definite, it obeys the Cauchy-Schwarz
inequality
2
l{a|b),|” < {(ala),(b|D),, (4.28)

To make this form a inner product we define the nullspace N, as
N, :={ae€ Al|{ala), =0} ={aec A|{alb), =0 Vbe A}, (4.29)

where the second equality comes from (4.28). This nullspace is a left ideal

in A.

2. The sesquilinear form (4.27) is an inner product on the space A/N,,, mak-
ing it a pre-Hilbert space. The equivalence class of a in A/N,, is denoted
by a. The completion H, of A/N,, is the Hilbert space we are looking
for.
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Having constructed a Hilbert space for every state w, we are now going to con-
struct a cyclic representation on A, over this Hilbert space.

3. Consider the maps 7,(a) : A/N,, = A/N,,, defined by
7, (a) : b~ ab. (4.30)
If 7, is continuous we can extend these maps to
Tw : A= L(H,). (4.31)

Continuity of 7, follows from ||m, (a)|| < ||a]|, due to the inequality (see
for instance [53])

w(b*a*ab) < |la*al|lw(b*D). (4.32)
The fact that these maps are *-homomorphisms makes them representa-

tions of A over H,,.

4. Remember that we are working with unital C*-algebras. We can write
then u, = 1 € A/N,. With this we have 7, (b)u,, = b for b € A, and
7w (A)u, = A/N,. This makes of u,, a cyclic vector for the representation
Teo-

Now it is easy to see that, indeed,

(T (a)uyluy,) = w(a). (4.33)
o

With this construction we are able to proof the Gelfand-Naimark Theorem.

Theorem 4.2.5 (Gelfand-Naimark). Every (unital) C*-algebra A has an
isometric representation to a closed subalgebra of the algebra L(H) of bounded
operators on some Hilbert space.

Proof. Using the Theorem of Hahn-Banach one can show ([53]) that for each
non-zero element b € A, there exists a state w = wy such that

w(b*b) = [|b]|°. (4.34)

With the GNS-construction of Proposition 4.2.4 (and in particular (4.26)), one
has
17w () || = [1B]]- (4.35)

Take now the direct sum 7« := @&, 7, of all the GNS-representations of these
states w = wp. This map is a representation on the direct sum H := ¢, ,H,.
And, as we saw from (4.35), this representation is isometric. O
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The representation © we constructed in this proof of the Gelfand-Naimark The-
orem, is called the universal representation. In C*-algebras, for morphisms,
isometry is equivalent to injectivity. Thus, we could equivalently say that every
(unital) C*-algebra is isomorphic to a subalgebra of L(H), for some Hilbert
space H.

Both Proposition 4.2.4 as Theorem 4.2.5 are given for a unital C*-algebra. It
is possible to generalise these statements to any C*-algebra. We do this by
unitisation of the algebra.

Let A be a C*-algebra without unit. We can add a unit to A, by the following
construction. Consider the vector space Ay := A & C, with multiplication

(a, 1) (b, \) = ab+ Aa + ub + Ay, (4.36)

and involution (a, A\)* = (a*, ). One can treat (a,\) € Ay as operators on A,
and define a operator norm on it. This norm is a C*-norm, and the inclusion
A C Ajp is a *-homomorphism. The C*-algebra thus created, is unique such
that Ay /A ~ C. The C*-algebra A; is called the unitisation of A. Using an
approximate unit one can make a unique extension to a state wq on Ap, for
given state w on A. With this one can generalise the GNS-construction (and
therefore also Theorem 4.2.5) for any C*-algebra.

4.3 Noncommutative topology

In Section 4.1 we showed that any unital commutative C*-algebra is isomorphic
to C(M), with M some compact Hausdorff space. One can even show ([53]) that
this space M must be unique (up to homeomorphism), and is homeomorphic
to the structure space A(C(M)). This is due to the fact that the category of
compact Hausdorff spaces is equivalent to the category of (unital) commutative
C*-algebras, as we remarked after the proof of Theorem 4.1.5. It implies

M ~ N (homeomorphic) <= C(M)~ C(N) (isomorphic).  (4.37)

This means that all the topological information of a compact Hausdorff space
can be translated into some algebraic structure on a unital commutative C*-
algebra.

In this Section we give an algebraic analogue of a vector bundle E over M.
In Chapter 3 we looked at smooth vector bundles over a manifold M. The
corresponding function algebra is C*° (M), the smooth functions over M. This
algebra is not a C*-algebra, but we know that it lies dense in the algebra C(M).
In this and the following Section we concentrate on the C*-algebra C'(M). In

Section 5.1 we mention whenever and how the theory holds for the algebra
C>®(M).
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The corresponding vector bundles of the algebra C' (M) are the continuous vector
bundles. For these bundles we define a vector bundle morphism as follows.

Definition 4.3.1. Let E and F be two vector bundles over M, with projec-
tions wg, g respectively. A continuous map ¢ : E — F is a vector bundle
morphism if 1p¢ = 7w, and if the restriction of ¢ to the vector space E, is
linear. If ¢ is also a homeomorphism, and if the restriction of ¢ to E, is an
isomorphism between vector spaces, we call ¢ a vector bundle isomorphism

The algebraic analogue of a vector bundle, that is invariant under these iso-
morphisms, is some kind of module. A module is a generalisation of a vector
space. Where vector spaces are defined over fields, modules are defined over
rings. Hence, a right A-module &, is a Abelian group with an action of the ring
A on & such that

o(ab) = (ca)(b), o(a+b) =0c(a)+o(), (c+7)(a)=0c(a)+7(a), (4.38)

for all 0,7 € £, a,b € A. We suggestively used the notation A for our ring,
because we want to work with modules over the algebra A = C(M), for some
compact Hausdorff space M. Remark that all our algebras are associative, hence
rings.

Consider now the set I'(M, E) of all sections over the vector bundle E. We
denote this set as T'(E) if there can be no confusion about the base space M.
This set is a (right) C(M)-module, with the pointwise product

of(x) =0c(z)f(x), VoeD(M,E), feC(M), (4.39)

as action. This module contains exactly the topological information of the vector
bundle. This means that I'(M, E) is isomorphic to I'(M, F') as C(M)-modules
if and only if E is isomorphic to F' as vector bundles. We prove this in the follow-
ing.

1. Let ¢ : E — F be a vector bundle morphism. Consider the associative

map I'¢ : T'(E) — I'(F), defined by I'¢(s) = ¢ o s. Because the map I'¢

is C(M)-linear and conserves the group structure of I'(E), it is a C'(M)-

module morphism. Whenever ¢ is a vector bundle isomorphism we can

construct the C'(M)-module morphism 'y :=T¢~! : F — E. Because of
the property

Ty = Ty T, (4.40)

we have, for every s € ['(E) and z € M
I Té(s)(z) = Log(s)(z) = v o 5(x)
=¢ ¢ os(z) = s(z).

In the same way we can show that T'¢ Tyt = ¢t for every t € T'(F), and
conclude that T'¢ is a C(M)-module isomorphism, whenever ¢ is an iso-
morphism between vector bundles.

(4.41)
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2. Conversely, let ® be a C'(M)-module morphism between I'(E) and I'(F').
Then
® € Homu(T'(E),['(F)) ~T(E*) @4 T'(F)
0 (4.42)
~T(E* @4 F)

where E* — M is the dual vector bundle of E — M (see for the isomor-
phisms for instance [39]). Every such element can be identified with an
element I'¢ for some vector bundle morphism ¢ : E — F. Using (4.41), we
see that, if I'(E) is isomorphic to I'(F') as C(M )-modules, E is isomorphic
to F' as vector bundles.

Remark 4.3.2. Let V(M) be the category of vector bundles over M and I'(M)
the category of the sets I'(M, E) of the vector bundles E. The transformation
I" discussed above is a functor between these two categories, due to the first
part of the proof. The second part of the proof makes the functor I' even
fully faithful, hence an equivalence of categories. The fact that the functor is
essentially surjective lies in the construction of the set I'(M, E).

The C(M)-modules I'(M, E) we are looking at, have more structure then we
already mentioned. In fact they are finitely generated projective modules.

Definition 4.3.3. A A-module £ is called o finitely generated projective
module if there exist an element n € N and a p € M,(A), with p*> = p such
that £ ~ pA™ as A-modules.

Before we really proof that every I'(M, E) is a finitely generated projective
modules, and vice versa, we first give the following definition.

Definition 4.3.4. A short exact sequence (a SES for short) is a collection
of maps

0 A—-p-Lsc 0 (4.43)

such that « is injective, B is surjective, and ima = ker 3.

Consider now a SES E — F — G of vector bundles over the space M, where
the maps are vector bundle morphisms. If M is paracompact and Hausdorff
such a sequence splits, i.e. F~ E & G. Such a sequence is called split exact.
Remember that the spaces we use are compact Hausdorff, hence paracompact
and Hausdorff. We will not mention this always, but assume it implicitly. We
are now able to prove the statement earlier made.

Proposition 4.3.5. The C(M)-modules T'(M, E) are finitely generated projec-
tive modules.

Proof. By a Theorem of Serre and Swan we can find for every vector bundle
E — M another vector bundle F — M such that E & F' is a trivial vector
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bundle, ie. E@® F = M x C*. (This Theorem also uses the fact that M is
compact and Hausdorff.) Therefore we are able to construct a split SES F' —
M xC* — E. Because every homeomorphism between vector bundles gives rise
to an isomorphism between sections, the sequence I'(F) — I'(M x C*) — I'(E)
will also be split exact. We can identify the set of continuous functions from
M x C™ to M, with the module C(M)™. The set ['(E) is then a direct summand
of C(M)™, hence a finitely generated projective C'(M)-module. O

To complete the proof of our statement, we use the next proposition.
Proposition 4.3.6. Every finitely generated projective C(M)-module £ is of
the form T'(M, E) for some vector bundle E.

Proof. By definition £ ~ pC(M)", for some p € M,(C(M)). Consider the
following exact sequence

0 ker p ML sg— 50 (4.44)

We can split C'(M)™ into pC(M)™ & (1 — p)C(M)™. The kernel of p is then
exactly (1 — p)C(M)™ and the sequence splits. We can identify C(M)™ with
the set of sections I'(M, M x C") and then identify p : C(M)" — C(M)™ with
e, where e : M x C* — M x C" is a vector bundle morphism. The image of e
is a subbundle E(p) of M x C". We then have

I'(M,E(p)) ={eos:seT' (M xC")} =imp=E¢. (4.45)

O

The equivalence of categories between V(M) and I'(M) gives us the following
correspondence between vector bundles and finitely generated projective mod-
ules.

E~F <= pCM)"~qCM)" (4.46)

where p,q € M,(C(M)) are related to the vector bundles E, F' as explained in
Propositions 4.3.5 and 4.3.6. Note that every vector bundle of rank n can then
be identified with a idempotent p € M,(C(M)). In the following section we
start with this notion, and try to make a equivalence class for the idempotents,
to make an analogue for the group K°(M) of Section 3.3.

4.4 (C*-algebraic K-theory

In this Section we discuss C*-algebraic K-theory, a generalisation of the group
KO%(M), (the vector bundles modulo isomorphisms and stable equivalence), we
introduced in Section 3.3.
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Remember that for every vector bundle over M we have a corresponding finitely
generated projective module, characterised by a idempotent p = p? € M,,(C(M).
Consider the Whitney sum E & F between two vector bundles E and F', with
corresponding finitely generated projective modules pC(M)™ and ¢C(M)™ re-
spectively. This gives a C(M)-module isomorphism pC(M)™ & ¢qC(M)™ ~
rC(M)™r™. We can always rearrange the basis of C'(M)™*™ gsuch that we get
r ~ p @ ¢q with the identity

p®q= (g 2) € My (C(M)) (4.47)

for p € M,(C(M)) and ¢ € M,,,(C(M)). We are now able to find for every
vector bundle over M a corresponding idempotent p € M, (C(M)), with the
following identification of morphisms.

Lemma 4.4.1. Let p € M,(C(M)) and ¢ € M,,(C(M)) be two idempotents.
Let an element On stand for the N x N-zero matriz. The finitely generated
projective modules pC(M)™ and gC(M)™ are isomorphic if and only if there
exist an invertible matriz z € My (C(M)) such that z(p@O0n_n)2~ = ¢B0N_m
for some N € N.

Proof. Let ¢ : pC(M)"™ — qC(M)™ be a C(M)-module isomorphism. We can
construct the maps ¢ : C(M)* - C(M)™ and n : C(M)™ — C(M)™ by
extending respectively ¢ to 0 on (1 —p)C(M)™ and ¢~ to 0 on (1 —¢q)C(M)™.
There exist g € My, ,,(C(M)) and h € My, ,(C(M)) such that ¢(s) = gs and
n(t) = ht, with the identifications gh = ¢, hg = pg = gp = qg and h = ph = hg.
Take N :=n + m and compute

(1gp 1;(]) <lfq lgp)=((1) 2) (4.48)
<1€p 1;q) (g 8) (1fq 1;])):(8 8) (4.49)

The other way around we have, for zpz~! = ¢, zpC(M)N = q2C(M)V. O

Consider now the set P(C(M)) of idempotents in the disjoint union |J,, M, (C(M)),
and define the following equivalence relations on it.

1.p~p®0, formeN

2. p~ qif zpz~! = q for some invertible 2 € My (C(M)),

We denote the second equivalence relation as ~, because it is equal to the
unitary equivalence for projections (see Lemma 4.4.3 below). Denote the set
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P(C(M)) modulo these two equivalences as P(C(M)). Every p € P(C(M))
will characterise a vector bundle, modulo isomorphisms. Like the set V(M) of
vector bundles, modulo isomorphisms, the set P(C(M)) is also a semigroup.
The Grothendieck group (see Section 3.3) of this semigroup is called the Ky-
group of C'(M) and is denoted as Ko(C(M)).

Corollary 4.4.2. There is a isomorphism 0y between K°(M) and Ko(C(M))
natural in M, i.e. for every compact Hausdorff spaces M and N and continuous
function f: M — N, the diagram

KO(M) —24 Ko(C(M)) (4.50)

KofT TKoocf
o Ko(C(N))

K°(N) — Ko(
commutes, and 0y and O are isomorphisms between Abelian groups.

Proof. This follows directly from the equivalence of categories between V(M)
and I'(M), and Propositions 4.3.5 and 4.3.6. O

We now want to extend the notion of a Ky-group to any C*-algebra A. In
order to do that we construct for any C*-algebra A a C*-algebra M, (A) of
n X n-matrices with entries in \A. The involution is transposing the matrix and
involute every entry. Thus, we have for example

(? Z) = (Z 2) € Ma(A). (4.51)

For the norm of the C*-algebra M,,(A), we first represent 4 as a subalgebra of
L(H), the bounded operators on some Hilbert space (see Theorem 4.2.5). We
define the norm as the operator norm in L(H™), where H" = @, H.

Just as for C'(M) we take the disjoint union U, M, (A) for a C*-algebra A and
look at the idempotents p = p*> € M, (A), for any n. We denote the space
of these idempotents in M,(A) as P,(A). An element of P,(A) is called a
projection in A.

In the case of C'(M) we then defined an equivalence relation on the projections.
Remark however, that we made use of the fact that C(M) is unital. Because
our C*-algebra A is not necessary unital we have to redefine the equivalence
relation on our projections p € P,(A). To do that we first study different kind
of equivalences of projections on a unital C*-algebra A.

Consider a unital C*-algebra A, with p, ¢ projections in A. We can define three
equivalence relations on these projections.
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1. (Murray-von Neumann equivalence), p MoN q if there exists a v € A
such that p = v*v and ¢ = vv*.

2. (Unitary equivalence), p ~ ¢ if there exists a unitary element u € A
with p = uqu*.
3. (Homotopy equivalence) p 9 q if there exists a norm-continuous path

r(t) of projections, such that p = r(0) and ¢ = r(1).

Lemma 4.4.3. Let A be o unital C*-algebra. Two projections p,q in A are

unitary equivalent if and only if there exist an invertible element z € A such

that zpz—1 =gq.

Proof.

1. Let p = uqu*. Take z = u*, then zpz~1 =¢

2. Let zpz~! = ¢, and let z = u|z| be the polar decomposition of z, with u a

unitary element of A. (See, for the existence of the polar decomposition,
[73].) The relation zp = ¢z and the fact that projections in A are self-
adjoint, gives pz* = 2*q. Hence

|2[’p = (" 2)p = 2"qz = pz"z = pl2f* (4.52)

and p commutes with |2|> and therefore also with all elements in C*(1, |z|%)
the C*-algebra generated by the elements 1 and |z|2 In particular, p com-
mutes with |2 '. Thus

q = quu* = qzlz| " 'ut = aplz| T et = 2z put = upu® (4.53)

Hence p and ¢ are unitary equivalent.
O

Thus, as we already mentioned, the second equivalence relation we defined for
idempotents in M, (C(M)) is indeed the unitary equivalence.

We have the following dependencies for the three equivalence relations we just
defined.

Proposition 4.4.4. Let p,q be projections in the unital C*-algebra A. The
following statements hold.

1. prr}bqthenpr%q.

2. Ifp~gq theanrgN q.
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Proof.

1. Let p & g, and set z = pg+ (1 —p)(1 — ¢). One can show (see for instance
[73]) that the elements z and zz* are invertible. Consider the unitary
element u = z(zz*)_é = z|z|_1. We have the relations pz = pg = 2q and
therefore p = uqu*.

2. Let p = uqu™*, with u a unitary element in 4. Set v = up. This is clearly
an element in 4. The relations v*v = p and vv* = ¢ give the Murray-von
Neumann equivalence.

O

Consider the set P, (A) of a unital C*-algebra A, and the disjoint union P(A) =
Un Py (A). We put an addition & on P(A) like we did for P(C(M)) in equation
(4.47).

poa=(} 7)€ PunlA), (4.59)

for p € P,(A) and ¢ € P,,(A). Define, as in the case of P(C(M)), the equiv-
alence relation p ~ p @ 0,, on it. Modulo this passing to matrix algebras, the

three equivalence relations (2», ~ and Mi}»N) are actually equal in P(A). This is
a consequence of the following Proposition.

Proposition 4.4.5. Let p and q be projections in a unital C*-algebra A. The
following statements hold.

1. Ifp M2 g in A then (g 8) ~ (g 8) in M>(A).
2. p~gqin A then (g 8) b (g 8) in My(A).

Proof.

1. Let there be a v € A such that p = v*v and ¢ = vv*. Use the relation
v = qu = vp = qup (see [73]), to show that the elements

_([ v 1l-4q _(a 1-g¢
u_(l—p U*> and w_(l—q ‘ ) (4.55)

are unitary in My(A). The relation

p O\ «w «__ (p O\ . (g O
wu(o O)uw —w(o O)w —<0 0) (4.56)

proves the first statement.
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2. Let there be a unitary element in A such that ¢ = upu*. With the relation

([73])
026 Y
we can show that

GD-GICYE D6 e

Hence, there is a continuous path ¢t — w; of unitary elements in M5(A),

such that
1 0 v 0
wo = (0 1) and w; = (0 u*) . (4.59)

Put e; = w; diag (p,0) w.*. Every e; is a projection in Ms(A). The map
t — e, is continuous, with eq = diag (p,0) and e; = diag (g, 0). This proves
the second statement.

O

Let A be a unital C*-algebra. Define P(A) of A as the set P(A) modulo
the equivalence relation p ~ p & 0,,, and the Murray von Neumann relation.
Denote the equivalence class of p in P(A) as [p]p. Define an addition on this
set by [plp + [qg]lp = [p® ¢]p. One can show that this addition makes the set
of projections P(A), an Abelian semigroup. we only show the commutativity
of the addition. The other properties can be showed in a similar way and are
proved in [73]. Let p € P,(A) and g € P,,,(A). Consider the element

v= (2 g) € Pom(A). (4.60)

Then p & g = v*v MEN po* =qDp.

The Kop-group is now defined, using the Grothendieck construction (see Section
3.3).

Definition 4.4.6. The Kq -group Ko(A), of a unital C*-algebra A, is de-
fined as the Grothendieck construction of the Abelian semigroup P(A). The
equivalence class of an element [p]p in Ko(A) is denoted as [plo-

As we showed in Propositions 4.4.4 and 4.4.5, we could have equivalently used
one of the other relations to define P(A), and Ky(A). Thus, if we want to
generalise the Ky-group to any (not necessarily unital) C*-algebras, we have to
choose the Murray-von Neumann or the homotopy equivalence relation. One
of the problems of these constructions is however, that the functor K, is not
necessarily half exact in this case. That is, if

0 A—tsp—teg 0 (4.61)
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is an exact sequence of C*-algebras, the sequence

0 —— Ko(A) 2% Ko(B) 222

Ko(C) 0 (4.62)

does not need to obey the property im Ko = ker Kg¢. The functor Ky¢ :
Ko(A) — Ko(B) on an arrow ¢ : A — B is here given by Ko¢([plo) = [¢(p)]o,
where ¢ is extended to a map from M, (A) to M,(B) by

CH-@w

For more on the functoriality of K see, for instance, [73].

A consequence of the fact that Ky need not be half exact, is that the functor
does not necessarily respect the direct sum, in the sense that Ko(A @ B) does
not need to equal Ko(A) ® Ko(B). As is mentioned later we would like the
functor K to have this property.

To ensure that the functor Ky is half exact, we construct it in a different way,
using the unitisation 4; of A discussed at the end of Section 4.2.

Definition 4.4.7. Let A be a C*-algebra without unit, and Ay its unitisation.
Consider the split exact sequence

0 A—= Ay "> 0 (4.64)

with 1 the inclusion and m the projection w(a, A) = X\. The Ko-group Ko(A) of
the C*-algebra A is given by the kernel of the homomorphism Kom : Ko(A1) —
Ky(C).

If A is unital, Kgi is just the identity and Kym maps to zero. In this case, both
definitions of the Ky-group are equivalent, hence Definition 4.4.7 is indeed a
generalisation of Definition 4.4.6.
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Chapter 5

The noncommutative Chern
character

In the previous Chapter we discussed the link between compact Hausdorff spaces
and C*-algebras. In this Chapter we construct a Chern character defined on
a C*-algebra. If the C*-algebra is noncommutative the character is called the
noncommutative Chern character.

5.1 The algebraic Chern character

In this Section we give the algebraic structure of the Chern character we defined
in Chapter 3. This Chern character is defined through a connection on a smooth
vector bundle E over a manifold M. The corresponding algebra of a compact
manifold M is C°° (M), a dense subalgebra of C(M). Although C*(M) is not a
C*-algebra, we can characterise M by it, in a Gelfand-Naimark way. Hence we
also have a translation from spaces to algebras in the smooth case. Propositions
4.3.5 and 4.3.6 can be translated immediately into the smooth variant: the
category of smooth vector bundles over a compact manifold M, is equivalent
to the category of finitely generated projective C*°(M)-modules. Also, the
C*-algebraic K-theory of C'(M), has its smooth variant. One does this by
replacing the set of projections in C'(M) with an open neighbourhood to which
it is homotopy equivalent. If i : C*°(M) — C(M) is the inclusion map, Koi :
Ko(C*®(M)) — Ko(C(M)) is an isomorphism. Thus if we want to consider
the Ko-group of the smooth algebra C*(M) it is sufficient to consider the C*-
algebraic K-theory of C(M). For more on this construction, with C*®°(M) as
algebra, see [46].
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As we saw in Section 3.2, the Chern character is a map from the group K°(M)
to the de Rham cohomology Hj,(M). In Section 4.4 we saw that we can relate
K°(M) to the Kg-group of the C*-algebra C (M), therefore also to the Ky-group
of C*(M).

We defined the Chern character via a connection on a vector bundle. Such a
connection can be generalised to a connection on a finitely generated projective
module. It is then necessary to identify the ring of C*-differential forms Q(M),
as a differential graded algebra over C*° (M), i.e., a graded algebra together with
a derivation d of degree 1, such that d is a differential. See for a definition of
these terms Section 5.2. To every associative algebra we define a corresponding
differential graded algebra given in Section 6.1. With this information we are
ready to define a connection from purely algebraic constructions.

Definition 5.1.1. Let A be a commutative algebra, £ a finitely generated projec-
tive module over A, and Q(A) = ®,Q7(A) the corresponding differential graded
algebra over A, with derivation d. A connection is an operator

V:E@QP(A) = £ NPT A), (5.1)
that satisfies the relation
V(s®a) =(Vs)®@a+s®da, (5.2)

for s € £ and a € QP(A).

Because £ is a finitely generated projective module over A, it can be written
as eA", with e an idempotent in M, (A4). The module £ is then determined by
this projection. If V is a some connection on A", then (e ® 1)V is a connection
on eA". Consider now the connection coming from the derivation d of the
graded algebra Q(A). Since the Chern character is invariant with respect to
the connection on the vector bundle, as we saw in Chapter 3, it should also be
invariant in the algebraic case (as we will see in the following Section). Hence we
can define the algebraic Chern character in terms of the matrix valued one-form
connection V =ed on £.

The corresponding curvature ) = V2 is given by,
Qs = (ed)?s = ede ds. (5.3)

Algebraically a Chern character defined on a finitely projective module £ = e A™
is equal to a Chern character defined on the corresponding idempotent e.

Definition 5.1.2. The Chern character on projections e € M, (A) is defined

as
oS}

— 1
ch(e) := Tre? = Zch%e = Z ETre(dve)%. (5.4)
k=0 k=0 "
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The trace here is the matrix trace over the matrix valued two-form 2.

In the next Section we are going to generalise this construction to arbitrary
C*-algebras A.

5.2 Noncommutative geometry

In this Section we define a calculus on any unital, not necessarily commutative,
C*-algebra. With this calculus we are able to define a generalisation of the
Chern character of Section 5.1.

In Section 5.1 we used an object (Q,d), called a differential graded algebra,
to describe the ring of differentials of a vector bundle algebraically. Such a
construction is defined as a graded algebra 2 with a derivation d of degree 1,
such that d is a differential. Hence, (1 = @,>0{2”, with

d: QP = QFftt @ =0, (5.5)

and
ab € "t whenever a € O, be Q. (5.6)

For a calculus on an algebra we need, besides the differentials in the form of the
graded algebra, also an integral. Such an integral is defined through a trace on
the algebra. A total calculus is defined by a cycle.

Definition 5.2.1. A n-dimensional cycle is a triple (Q,d, [), where Q =
T_oS¥" together with d is some differential graded algebra, and [:Q" = Cis
a closed graded trace.

Remark that we can consider (2, d) as a cochain complex (see Definition 6.0.6).
And because the trace is closed we can consider the triple (2, d, [) as a (co)cycle
of this complex. This justifies the use of the term cycle.

A cycle (Q,d, [) together with a homomorphism A 2 Q0 is called a cycle over
A. Such a cycle over A defines the calculus on A.

The classical Chern character was defined through a connection on the vector
bundle. The algebraic Chern character was defined through a connection on a
C(M)-module. The noncommutative Chern character is in the same manner
defined through a connection on a finite generated projective A-module.

Definition 5.2.2. Let A 5 Q be a cycle over the unital C*-algebra A, and €
be a finitely generated projective module over A. Then a connection V on & is
an linear map V : £ = £ @4 Q' such that

V(zx) = (V&x +E@dp(x), VEe &, ze A (5.7)
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Note that this definition generalises the definitions given in Sections 3.1 and
5.1. Again, one can extend this connection to amap V: E®4Q — £ @4 Q, by
imposing

VEdw)=(VHw+E@dw, VEEE we . (5.8)
In [29] Connes showed that every finitely generated projective module admits
a connection. Furthermore he proved that the extension of a connection to a
map V:E@4 02 — £ ®4 Q is unique. He proved this by considering £ ® 4 Q as
a finitely generated projective Q-module.

As in the previous Sections we define the Chern character Ch over a projective
module, in terms of the curvature © = V2.

In Section 3.1 we denoted the curvature © as a matrix valued 2-form, so we
could use the normal (matrix) trace on it, in Section 3.2. This was done by
seeing the curvature as an element in the algebra

I (End(E) @ A’T*M) ~ Endg ) ([°(E) @ce () Q*(M))
~ End(T™(E)) ®@c=(r (M), (5.9)
= End(l") ® 02,

and choosing a base in I'°(E). The last equation defines the shorthand notation
we will use from now on.

Thereafter we showed that the Chern character was closed. We did this, using
the Bianchi identity V(©) = 0 and the fact that the trace is an invariant poly-
nomial. In the Bianchi identity (3.15), we implicitly used a connection V on the
algebra Endg (F ® Q) This connection is induced by V through
V(T)=VoT —(~1)PToV, (5.10)

where p is the degree of T in End(T') ® , defined as follows. Let S € T' @ QF.
The endomorphism T is of degree p, if TS € T @ QFtP,

To build the noncommutative Chern character, we repeat this procedure for
the connection of definition 5.2.2 (that is, for the connection given in equation
(5.8)). Inspired by equation (5.10) we construct a derivation on Endq (€ ® 4 Q).

Lemma 5.2.3. For every connection V : E@ 4 Q — E@4, we have an induced
derivation V of degree 1 defined by

V : Endo(€ @4 Q) = Endg (€ ©4Q),

N (5.11)
V(T)=VoT —(—)ToV,

for every T € Endq(E @4 Q) with degree p. This derivation obeys the Bianchi
identity V(V?) = 0.

Proof.
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1. The operator V is Q-linear. Let w € QF and n €& ®aN. We have, for
every T' € Endq (€ ® 4 Q) of degree p,

VT (wn) = V((~=1)"*wT (1))

= (COPAT) + (D DRV @),
and
T(V(n)) = T(dw)n + (~1)*w¥(n)) 1
= (CLPE )T () + (1) (1P (T (),
hence
T wn) = (PR D)) = CDEDFT@). (514)

2. The operator V is a derivation. Let T,T" € Endo(€ ® Q) with degree p
and p’ respectively.

V()T + (~1)PTV(T") = (Vo T — (1)’ T o V)T'
+ (—1)PT(V(T) = (-1)P'T'oV)  (5.15)
=Vo(TT) = (-1)"*"'TT' o V.

3. The operator v obeys the Bianchi identity.
V(V) =VoV2-V20V =0 (5.16)

O

Having constructed a derivation on Endq (€ @4 ), we want to put a trace on
it. We use the ungraded trace

Try : Endo(€) — AJ[A, Al (5.17)

from the endomorphisms on & to the algebra A, modulo commutators. This
trace is just the normal matrix trace, since £ is a finitely generated projective
module. We extend this trace canonically to a trace

Trq : Endo(€ ®4 Q) = Q/[Q,Q]. (5.18)
A more detailed construction of these traces can be found in [33].

We are now able to define the noncommutative Chern character.

Definition 5.2.4. Let A 5 Q be a cycle over the unital (not necessarily com-
mutative) algebra A, and let £ be a finitely generated projective module over A.
The noncommutative Chern character Ch of £ is defined by

LGRS %Trg(ivﬂj, (5.19)

where V is a connection, associated to the cycle p and E.
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With the important property
doTrg =TrqgoV, (5.20)

and the Bianchi identity one can show that this Chern character is closed in
the calculus of the cycle A % Q over A (see [33]). Therefore this character
defines a cohomology class. More on this noncommutative cohomology can be
found in the following Chapter. Again in reference [33], one shows that the
cohomology classes retained from the Chern character are independent of the
chosen connection V. Every finitely generated projective .4-module (modulo
isomorphisms) can be associated with an element p € Ky(A) (see Chapter
Sections 4.3 and 4.4). Consequently, given a cycle over an algebra A and a
finitely generated projective module over that algebra, the Chern character is
a well-defined map from the Kyp-group of A to some cohomology corresponding
to the cycle over A.

Remark 5.2.5. We defined the noncommutative Chern character for a unital
algebra. The character for a non-unital algebra 4 can be constructed in the
following way. Consider the unitisation .45 of the non-unital algebra A (see last
paragraph of Section 4.2). As we saw in Definition 4.4.7, the Ky-group of A is
given by the kernel of the map Ko : Ko(A1) — Ko(C). Consider the Chern
character Chq, corresponding to the unitised cycle A; 2 Q4. The restriction
of Chq, to the kernel of Ko7 in the diagram

Ko(Ar) 227 H(Ay) (5.21)

KO ((C) dim C

defines the Chern character from Ky(.A) to the cohomology group H(A).

Remark 5.2.6. In [29] Connes gives an explicit cycle over the algebra End 4(€)
corresponding to the cycle p : A — Q. He does this through the following con-
struction. Consider the graded algebra Endq (€ ® ) with the graded derivation
of Lemma 5.2.3 and the graded trace of equation (5.18). This is almost a cycle
over Endg (€ ® ), except that the derivation V does not obey V2 = 0. But us-
ing the Bianchi identity of Lemma 5.2.3 and the fact that V(T) = V2T — T'V?
for all T € Endq(€ ® ), Connes proves that one can construct a cycle over
Endg(€ ® Q) by adding an element X of degree 1 to this algebra. Taking
now the usual homomorphism from End4(€) to Endq(E ® Q) gives us a cycle
over End4(€). The character of this cycle (see equation (5.33)) defines the
noncommutative Chern character of £.
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5.3 Fredholm modules

In this Section we will construct an explicit cycle over a algebra A. This con-
struction uses the notion of a Fredholm module, which is a noncommutative
generalisation of an elliptic operator on a compact Hausdorff space M. An el-
liptic operator on a compact Hausdorff space (see [1]) is constructed as follows.

Let Hy and H> be two Hilbert spaces and let m; and w2 be two corresponding
uniform continuous representations of the C*-algebra C(M) on Hy and Hs. A
bounded linear operator

P: H1 — H2 (522)

is an operator on M if for every element f € C'(M), the commutator Py (f) —
mo(f) P is a compact operator. If this operator is also Fredholm, i.e. ker P and
coker P are finite-dimensional and P has closed range, the operator is an elliptic
operator on M. One can show ([1]) that, to every elliptic operator on M, one
can associate a K-cycle in the K-homology of M. This homology can be seen as
the dual of (topological) K-theory. For more on K-homology see the overview
[10] of Baum and Douglas or the reference [45].

An elliptic operator can be seen as an operator between the C(M)-modules
H, and H,. This motivates the definition of a Fredholm operator over any
C*-algebra A.

Definition 5.3.1. Let A be a C*-algebra. An even Fredholm module over
A is defined as o pair (H, F) such that

1. the set H = Hy ® Hy is a Z/2-graded Hilbert space with grading operator
v, i.e. Yh is h for h € Hy and —h for h € Hy,

2. there exists a representation w of A on the Hilbert space H,

3. the element F is an operator on H such that F = F*, F> =1, yF = —F
and the graded commutator [F,n(a)] is compact for every a € A.

If we take H without any grading, (H, F) is called an odd Fredholm module.
This is a special case of an even Fredholm module and generalises an elliptic
operator from H to H. If there can be no confusion we often write 7(a) = a €
L(H), for simplicity.

We are now able to define a n-summable Fredholm module over a C*-algebra
A. This is an even Fredholm module (H, F') such that

[F,a] € £L™(H), (5.23)

where L£"(H) is the nth Schatten class. This class is an ideal of the compact
operators on H, with the ¢"-convergency property on the eigenvalue expansion
of its operators. The most common Schatten classes are the trace class £1(H)
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(Tr|T| < o0) and the Hilbert-Schmidt class £L2(H) (Tt T*T < o). Two impor-
tant properties of these ideals are that £LP(H) C L™(H) for p < r and that they
obey Holders inequality

Te|TS| < ||T|||S|l; whenever

+-=1 (5.24)

D=
SR

For more on Schatten classes see for instance [39].

With this n-summable Fredholm module over A we build up a cycle over A.
Let A be a unital algebra. We define a derivation d on £(H) by,

dT =q[F,T] forall T € L(H). (5.25)

With this derivation we construct a differential graded algebra (Q2,d). Let, for
each j € N, () be the linear span in £(H), of the operators

apday - -+ da]-, a, € A. (5.26)

The following Lemma shows that d is indeed a (graded) derivation and that
(Q,d) is a differential graded algebra.

Lemma 5.3.2.

1. &*T=0 VT € L(H).

2. d(T\Ty) = (dTV)Ts + (—1)°T1TydT, Ty, Ty € L(H).

3. dQJ C QI

4. QU x QF C QItk,

5. QF c LoDk ().
The proof of this Lemma (see [29]) uses some straightforward calculations and
the Holder inequality for part 5.

From this Lemma we conclude that 2 = @?:OQj is indeed a graded algebra,
and together with the derivation d, it will form a differential graded algebra.
We only need a closed graded trace to complete the cycle. This trace will be
defined in terms of the supertrace Tr,.

Definition 5.3.3. Let T € L(H) such that [F,T] € L*(H). The supertrace
Trs on T will be defined by

Tey(T) = %Tr(vF[F, ). (5.27)

Remark that the trace on vF[F,T] is well-defined, because F' is a bounded
operator and [F,T] is trace class, hence by Hélders inequality F[F,T] € £!(H).

We mention some useful properties of this supertrace without proof (see [29]).
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Lemma 5.3.4.

1. If T € O, with i odd, then Trs(T) = 0.

2. If T € LY(H), then Try(T) = Tr(+T).
Due to Lemma 5.3.2, [F,T] is an element of L'(H) for every homogeneous
T € Q™. This ensures us that the supertrace is well-defined on Q.
Lemma 5.3.5. The restriction of Try to Q™ defines a closed graded trace on
the differential graded algebra 2.
Proof. Let w € Q™1 then Tr,(dw) = 0 because d> = 0. So Tr, is a closed

trace.

We now want to show that it is a graded trace. Hence, we want to show that
for wi € Q™ ,we € Q™21+ N0 =n

Trs(wiwa) = (=1)™ "2 Trs (waw ). (5.28)

If n is odd, equation (5.28) is an empty statement, due to Lemma 5.3.4 part 1.
If we take n even, we have

(-1)™mF2 =1 and (=)™ = (=1)"2 = (—=1)"". (5.29)

Because of the trace property and the fact that yF commutes with dw; and
dws, we have

Trs(wiws) = Tr(yFd(wiws))

(YFdwyws) + (=1)" Tr(yFw; dws)

r(yFwadwy) + (—1)™ Tr(vF dwaw ) (5.30)
-1 "1Tr(7Fd(w2w1))

)
1)n1n2TI‘s(wa1).

([ |

O

We are now able to associate a n-dimensional cycle over A, to a given (n + 1)-
dimensional Fredholm module (H, F') over A.

Definition 5.3.6. Let n = 2m an integer and (H,F) be a n + 1-dimensional
Fredholm module over A. The associated cycle over A, will be given by the
differential graded algebra (Q,d) following from Lemma 5.8.2, together with the
integral

/w = (2tr)"m!Trs(w) Yw e Q" (5.31)

and the homomorphism 7 : A — Q° C L(H).
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This cycle can be seen as the dual of an element in Ko(A). In the following
Section we will see how this cycle induces a functional on A®"*! that can be
extended to a functional on Ky(A).

5.4 The Chern character of a Fredholm module

We mentioned in the previous Section that a Fredholm module is a generalisation
of an elliptic operator P on a compact Hausdorff space M. Because P is a
Fredholm operator by definition, we can define

IndexP := dim ker P — dim cokerP < oo. (5.32)

An important property of this Index map is that it is invariant under compact
perturbations, i.e. Index(P + K) = Index(P) for every compact operator K
on the Hilbert space. This map classifies elliptic operators on M, by inducing
an isomorphism between these operators and the dual of K°(M) (see [1]). The
index map can be expressed in topological terms, using (topological) K-theory
and in analytical (local) terms, using the symbol class o(P) of P. The equality of
both expressions is known as the Atiyah-Singer Theorem ([2]). In reference [3] it
is shown that this can be expressed in cohomological language, using the Chern
character. In this Section we generalise this notion to the noncommutative
language following Connes ( [31]). To do that we first have to define a Chern
character of a Fredholm module.

One can associate to every cycle A 5 Q over an algebra A, a unique character
7 : A®"*+1 — C. This character is determined by

(0. - an) = / plao) d(p(ar)) -+~ d(p(an))- (5.33)

Proposition 5.4.1. Let n = 2m be an even integer and let (H, F) be a (n+1)-
summable Fredholm module over A. Consider the corresponding character T, of
the associated cycle of Definition 5.3.6:

(a0, - .., an) = (2um)™m!Trs(ao day - - - day,). (5.34)

The following equations hold:

1. m(a1,- -, an,a0) = Ta(ag, - - -, an),

2. Z;‘:O(—l)jrn(ao, ey QA4 - A1) + (=1 (any1 a0, - -, 0n) =0

Proof. Assume A = Q0 so we can omit p.
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1. Because Tr; is a closed graded trace, we have
Tn(ag, ... an) = /ao daidas - - -da,, = (—1)("_1)1 /daz -+ -danaoday

= (—1)”/da2 -~dapdaga; = Tp(a1,. .., an,ap)-
(5.35)

2. The Leibniz identity gives

n

day - - - danapt1 = Z(—l)"*jdal <-d(ajajyr) - - - dansa
= (5.36)

+ (=1)™a1das - - - dany1.

Consequently,

n

Z(—l)an(ao, cey QA1 ,an+1)
7=0

= Z(—l)n_j/aodal"'d(ajaj+1)"'dan+1
j=0

(5.37)
= /aoaldag'--danﬂ + /aodal---danan+1
— (—1)"/aoa1da2~~-dan+1
= (=1)"1n(@nt100,a1, - - -, Gn)-
O

In the following Chapter we will see that the properties of 7,,, given in Propo-
sition 5.4.1, make 7, an element of HC™(A), where HC™(A) C HC(A) is the
nth cyclic cohomology group.

Remark 5.4.2. There seems to be an ambiguity in our construction of 7,, €
HC(A), because of the fact that L1 (H) C L"T3(H), i.e. whenever (H,F) is
a (n + 1)-summable Fredholm module it is also a (n + 3)-summable Fredholm
module. Hence we could as well define 7,2 instead of 75 to represent the
corresponding character in the cohomology HC(A). There is however a map
S :HC™ — HC™? (see Section 6.2) such that S7,, = 7,42 in HC(A). And in
periodic cyclic cohomology HP(A) C HC(A) (see Definition 6.2.8) we even have
the equality 7,, = 742. Consequently, in HP(A) we have a unique character 7
corresponding to a Fredholm module (H, F).

Motivated by equations (5.4) and (5.19) we define the Chern character of a
Fredholm module in terms of the character of equation (5.34).
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Definition 5.4.3. Let (H,F) be a finite summable Fredholm module over A.
The Chern character Ch(H, F) of this module, is the element of H*(A) given
by one of the characters Tom, with m big enough.

The next Theorem is a generalisation of the cohomological Index Theorem of
Atiyah and Singer, due to Connes ([29]).

Theorem 5.4.4. Let n = 2m and let (H,F) be a n + 1-summable Fredholm
module over a unital algebra A. Let (-,-) be the pairing between the Ko-group of
A and the cyclic cohomology group HY (see Proposition 6.2.7 in the following
Chapter). The Index map Ko — Z is given by

IndexF! = ([e], [ra]), (5.38)

where [e] € Ko(A), with e a projection in A, [1,] the class in HY of the cor-
responding character of the Fredholm module, and F. the Fredholm operator
e(F ® 1)e from e(H; @ C) to e(H> ® C).

Proof. If we replace A by Mj,(A) and (H, F) by (H®CF, F®1), we may assume
k =1. Since vF = —F~ and F? = 1 we have P, (Q such that

F= (g ‘g) , (5.39)

with PQ) = 1g, and QP = 1g,. Let H* = eH; and H~ = eH,. Define P’
(resp. Q') as the operator eP (resp. eQ) restricted to H+ (resp. H~). Hence,
Tgy+ — Q'P' (resp. 1x- — P'Q') is the restriction of e — eFeFe to Ht (resp.
H~). We give the following Proposition without proof (see [29] or [39]).

Proposition 5.4.5. Let P,Q € L(H) be such that, for positive integer p, 1—PQ
and 1 — QP are elements in LP(H). Then P is a Fredholm operator and for
any integer N > p one has

IndexP = Tr(1 — QP)Y — Tr(1 — PQ)". (5.40)

Because e — eFeFe = —¢[F,e]?e and [F,e] € L' (H) we have e — eFeFe €
L™(H) and Proposition 5.4.5 gives
IndexP’ =Tr(1 g+ — Q'P)™ ! — Tr(1y- — P'Q' )™

5.41
= Try(e — eFeFe)™ . (5.41)

We show that the pairing (see equation (6.44))

(e, ) = (_;)m Tr(vF[F, e[F,e*™]) =

(=n™
2

Tr(vF[F, e]*™ ) (5.42)

equals equation (5.41).

67



5.4. THE CHERN CHARACTER OF A FREDHOLM MODULE

Because of the identity [F),e] = e[F, e] + [F, e]le we have
Te(yF[F,e)*" ") = Tr(yFe[F, e][F,e]*™) + Tr(vF[F, ele[F,e]*™).  (5.43)

Now, using vF = —Fv, F[F,e]*"*1 = —[F,e¢]*"*1F and the trace property,
the first term becomes

Tr(yFelF,e]> ") = Tr(veF[F,e)*™ ). (5.44)
Because e[F,e]? = [F,e]?e and e? = e equation (5.43) equals

Tr(vF[F, e]*™ ) = 2Tr(yeF[F, €]e[F, e]*™)

= 2(_1)mTr('y(e — eFeF)m—i-l). (545)

This concludes the proof. O
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Chapter 6

The algebraic cohomology

De Rham cohomology is a topological invariant in de sense that, whenever
two manifolds M and N are diffeomorphic, their de Rham cohomology groups
Hyr(M) and Hyr(N) are isomorphic. Because the corresponding algebras
C*(M) and C*(N) (see Chapter 4) are also isomorphic, the de Rham co-
homology can be expressed in algebraic terms. This Chapter discusses two
such algebraic constructions, which are direct generalisations of de Rham co-
homology: Hochschild and cyclic cohomology. The area of mathematics that
investigates these kind of algebraic constructions is called homological algebra.
In the following we give a brief introduction. For more on this subject see, for
instance [24] or [80].

Let A be an associative algebra.

Definition 6.0.6. A (cochain) complex C = (C,d) of A-modules is a family
{C™}nez of A-modules, together with A-module maps d = d™ : C* — C™+!
such that dod = 0.

A more illustrative way to denote a complex is the following sequence of maps

cr— On-1 &Cn—dn>cn+1—> (6]_)

A complex C is called positive (negative) if C™ = 0 for all n < 0 (n > 0). In this
and the following sections we assume every complex to be positive . The maps
d are called the differentials or coboundary operators of C. The kernel of
d™ is the module of n-cocycles of C, denoted by Z™ = Z™(C), while the image
of d" is called the module of n + 1-coboundaries, denoted by B"*! = B"+1(().
Because d o d = 0, we have B" C Z" for all n, so the quotient Z™/B"™ is
well defined. This quotient, H® = H"(C) = Z™/B™, will be called the n'!
cohomology module of C. The homology of a (chain) complex is the algebraic
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dual of the cohomology. That is, the differentials have degree —1 and the indices
are lowered.

Let C and D be complexes of A-modules. Denote for convenience both differen-
tials with d. A cochain map f : C' — D is a family of .A-module homomorphisms
f*: C™ — D™ such that fd = df, i.e. f1d™ = d"f™. That is, such that the
following diagram commutes

..._>0n—1£>0n_dn>cn+l_>... (6_2)

lfn—l lf" l/fn+1
dn—l n

"—>D"71—>D"—>D"+l—>"'

Note that the cochain map sends coboundaries to coboundaries, and cocycles
to cocycles, hence maps H™(C) — H™(D).

Let f,g : C — D be cochain maps. A homotopy h between f and g is a
sequence of morphisms h™ : C™ — D" ! such that dh + hd = f — g, i.e.
d"1R" + hnHdr = f7 — g™ If f and g are homotopic and z € H™(C), we get
f(x) — g(x) = d(h(x)). We see that f(z) = g(z) in H*(D) and conclude that
H"™f = H™g, whenever f and g are homotopic. If the identity map on C*® is
homotopic with the zero map, the cochain C will be called contractible, and
the homotopy h, satisfying dh + hd = 1, will be called a contracting homotopy.

A complex C is called acyclic if H*(C) =0 for all n > 0. Let x € H*(C) and
let C be a contractible complex, then z = d(h(z)), so x € B™. We can conclude
that any contractible complex C is acyclic. Note that a complex is acyclic if its
sequence of maps is exact, i.e. whenever ker d”*t! = im d™ for all n.

A grading in a module C is defined by a family of submodules C™ such that
C is the direct sum @,,C™. By this means we can consider a complex C' as a
graded module together with differentials d* : C™* — C™t1.

6.1 Hochschild cohomology

In this section we construct the universal differential graded algebra, and define
Hochschild cohomology, the canonical cohomology for a unital associative alge-
bra A. This cohomology is a generalisation of the de Rham cohomology, and
serves to define cyclic cohomology in the following Section.

Let A be a unital algebra. The universal differential graded algebra
(QA) = @,d) over A is the unique differential graded algebra with the uni-
versal property. That is, for every differential graded algebra (12, d) over A with
A 5 QO there exists a unique algebra morphism f : Q(A) — Q such that f, re-
stricted to Q°(A) = A, is exactly p. Because of this universal property one can
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6.1. HOCHSCHILD COHOMOLOGY

define unambiguously a differential graded algebra on A, hence a cohomology
on A. For convenience we denote Q™(A) = Q" A.

To construct the universal differential graded algebra (2(.A),d), we only need
to construct the derivation d, because we require Q°A = A. This derivation is
constructed as follows.

Let d be the linear map d : A - A® A defined by da :=1®a—a®1. Because

dlab)=1®0ab—ab®1=a®b—ab®1+1Qab—a®b

6.3
=adb+ dab, (63)

for every a,b € A, the map d is a derivation. Let Q' A be the subset of A ® A
generated by the elements adb. We can turn Q' A into a (bi)module over A,
defining a left and a right action on ¢ € A, by

c(adb) := cadb, (adb)c := ad(bc) — abdec, (6.4)

respectively. Some straightforward calculations show that these actions are
compatible in the sense that

a1 ((adb)ey) = (er(adb))es, (6.5)

hence QA! is indeed a bimodule. We call Q' A the bimodule of universal 1-
forms over A. The universal property of this module is the following: for each
derivation D of the algebra 4 into a bimodule £, we can find a unique bimodule
morphism tp : Q' A = &£, with D = 1p od. This bimodule morphism is given
by

tp(a ®b) := aDb. (6.6)

Remember that D(1) = 0 for every derivation D. Then ¢p is a bimodule
morphism, because of the module structures of Q' A.

Remark 6.1.1. When A is a commutative algebra, a bimodule over A should
be symmetric, i.e. the notions of the right and left module over A are identical.
In this case it is reasonable to expect that a db = dba. The universal bimodule of
1-forms, denoted as 2}, A, is consequently a subset of Q(A). Let (2(.A))? be the
subbimodule of Q(A) given by the elements da db. Because A is commutative

we have the relation
dadb=(1®a—-a®1)(1b—-b®1)=—(adb—dba) (6.7)

Define 2}, A as Q(A)/(Q2(A))2. From equation (6.7) follows that ), A is indeed
a symmetric bimodule. To verify that (2}, A obeys the universal property one
follows the same steps as we made for 2(A) (see also [39]).

We now want to construct the universal differential graded algebra by extending
the derivation d to a differential on Q*A. Denote A := A/C and a the equiva-
lence class of a in A. Using the map ag ® d1 — ap da; and the fact that d1 = 0,
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one sees that Q' A is isomorphic to A ® A. The bimodule structures of equation
(6.4) translate to

clap ® a1) = cag @ a, (6.8)
(ap ® @1)c = ap ® arc — apa; ® ¢. )

Define VA := (' UAR4 P AR @4 QA (i times), so that QA ~ A @ A9,
This isomorphism A ®4 A — A is given by the multiplication a ® b — ab. We
now define the differential d : A ® A®" - A @ A®"H! by

dlap®a1 ® - Qay) =1Ra @ @ ap- (6.9)

Because 1 = 0, the map fl is indeed a differential. Extending the isomorphism
apg®a1 — agday to A®A®i gives the identity aRa1 Q- --Qa, = apday -- - da,.
The bimodule construction of QA is a direct generalisation of equation (6.4)
and is given by
c(ap ® 01 @ -+ ® Gp) = c(agday . . .day)
= capday .. .dan,,
(ap® a1 @ - ®ayp)c = (apday - ..day)c
= apday .. .dan—1d(anc) — apday .. .da,—1andc
= (—=1)"apairdas . . . daydc (6.10)

n—1
+ Z (=1)"agday . ..d(a;a;41) - .. dande
7j=1

+ aoday - . .dan_1d(anc).
Consider now the algebra Q(A4) = & Q™A with the product defined by
(aoda1 v dak)(bodbl cee dbl) = ((aoda1 cee dak)bo)dbl cee bl. (611)

With this product Q(A) is clearly a graded algebra and d a derivation of degree
1. The differential graded algebra we just constructed is the universal differential
graded algebra.

We verify the universal property. Let (Q2,d) be a differential graded algebra over
A with A% Q°. Consider the map f : Q(A) — Q given by

flaoday - - - day) := p(ag) 6(p(a1)) - - - d(p(an))- (6.12)

Some computations show that f is an algebra morphism and is equal to p when
restricted to A.

Remark 6.1.2. This construction of the universal graded algebra can be ex-
tended to the non-unital case. If A is non-unital and A; its unitisation (see
Section 4.2), we consider the bimodule A ~ A; ® A®? instead of A @ A®?.
In some literature the universal differential graded algebra is always defined on
Az, whether the algebra A is unital or not (see for instance [29]).
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In the commutative case the universal differential graded algebra, denoted by
QabA, is given by the exterior algebra A 40} A of QL A over A. We can un-
derstand this from the general case. Let agda;das € Q? A and let A be commu-
tative. Because A is commutative (adb = dba) we have

aodaldag = aod(aldag) = aod(d(a1a2) — dalag)

6.13
= —aod(agdal) = —aodanal. ( )

Hence, the interchanging of ¢ and j in an element
apday - --da; - - -da; - - - day, € QF A (6.14)

with A commutative, gives rise to a minus sign, which is typical for an exterior
algebra.

Remember that we can consider a differential graded algebra as a cochain com-
plex. We use this notion in the following Proposition, which shows that the
universal differential graded algebra is a generalisation of the de Rham coho-
mology. For the proof of this Proposition we refer to [39].

Proposition 6.1.3. The exterior algebra Qq,,C™ (M) can be identified with the
de Rham complex Qqr(M) of differential forms on M.

Consider the set C™(A) of (n + 1)-linear functionals on A and put C(A) =
®C"(A). Such a functional can be seen as a linear form on A®(™*+1) or a n-
linear form on A with values in the dual A4*. The algebra A* is a bimodule over
A, if we define the actions as (apb)(c) = p(bca) for every ¢ € A* and a,b,c € A.
Consider the map b : C"(A) — C™1(A) defined by

bp(ao, .-, ant1) = Y (=1Y¢(ao, - ., a5a541,- -, any1)
Z ™ (6.15)

j=0
+ (=DM p(ant1a0,. .., an).

Since each C™(A) is an A-bimodule and b?> = 0, C(A) together with b is a
cochain complex.

Definition 6.1.4. The cohomology of C(A) together with the coboundary of
equation (6.15) is the Hochschild cohomology of A, denoted by HH(A).

In particular is a Hochschild O-cocycle 7 on the algebra A a trace, because
7€ A* = Hom(A,C) and 7(apa1) — 7(a1ap) = br(ag,a1) = 0.

Remark 6.1.5. Consider now the set C™(A) as the set of n-linear forms with
values in A*, denoted by C™(A, A*). The coboundary b of equation (6.15)
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transforms to a coboundary b : C"(A, A*) — C™*1(A, A*) given by

(b&)(ad’ CREE an+1) = al(;Qv(aQ, ey an+1)
+ Z(—l)jﬁ(au QGG - Q) (6.16)
j=1
+ (—1)"+1<ﬁ(a1, ‘e ,an)an_H,

where we use that @(ai, ..., a,)(a0) = ¢(ag,-..a,) for every ¢ € C™(A). The
cohomology of C(A, A*) = &C™(A, A*) with the coboundary of equation (6.16)
is the Hochschild cohomology of A over A*, denoted by HH(A, A*). One can
generalise this to any A-bimodule £ and define a corresponding Hochschild
cohomology HH(A,£). Then, HH°(A,£) = {s € £ : as = sa Ya € A}, and
HHY(A, &) = Der (A4,€)/ Der’ (A, E), where Der (A, £) is the vector space of all
A-bimodule derivations with values in £ and Der’ (A4, £) are all inner derivations,
ie. all sa —as with s € £ and a € A.

To extend the trace property of the 0-cocycles to higher orders we introduce

cyclicity.

Definition 6.1.6. A n-cochain ¢ € C™(A) on A is cyclic if Ap = ¢, where
()\(,9)(0/07 at,.- .-, an) = (_1)n(p(a/n7 ag, - - -, Cln,]_)- (617)

A cyclic cocycle is a cyclic cochain with the property bp = 0. This is indeed o
generalisation of the trace property. For instance, a cyclic 1-cocycle v(ao,a1)
satisfies p(ao,a1) = —p(ai,ao) and

p(aoar, az) — p(ao, araz) + p(azag, a1) =0 (6.18)
As we already pointed out, the universal differential graded algebra over A
gives our cohomology over A. The next Proposition shows how the Hochschild

cohomology (with cyclicity) follows naturally from the algebra A and its corre-
sponding universal differential graded algebra.

Proposition 6.1.7. Let 7 be a (n + 1)-linear functional on A that vanishes on
C @ A™. The following statements are equivalent.

1. There ezists a n-dimensional cycle (2,6, [) and a homomorphism p: A —
OO such that

a0, - .-, an) =/p(a0)5(p(a1)) < 8(plan)) Vai€ A (6.19)

2. There exists a closed graded trace T of dimension n on Q(A) such that

7(ag,-..,an) = T(apday - - -day) Va; € A. (6.20)
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3. The functional T satisfies the cyclicity property
T(a1,...,an,a0) = (—1)"7(ag,...,a,) Va; € A (6.21)

and is a Hochschild cocycle, i.e. for all a; € A

(—1)j7'(a0, RN 77 R .,an+1) + (—1)”+lr(an+1a0, ... 7an) =0.

n
=0

’ (6.22)

Proof. The equivalence between (1) and (2) is immediate from the universal
property of Q(A). Using the same arguments as the proof of Proposition 5.4.1,
one can prove that (3) follows from (1). To complete the proof we show that
(2) follows from (3). Let ¢ be a (n + 1)-linear functional on A, and define ¢ as
a linear functional on Q2"(A) by

d(apday - - - day) = ¢(ao, ay, ..., an). (6.23)
This construction gives us 7(dw) = 0 for every w € 2"1(A), because 7 vanishes
on C & A". Hence 7 is closed. We want to show that 7 is a graded trace. We
have

#((aoday - - - dag)(apt1dagy2 - - - dany1))
k (6.24)

= (—l)kij(ao,.‘.ajaj+1,...,an+1)
Jj=0

and

(=1)k" B¢ ((apt1daprs - - - dans1)(aoday - - - day))

n—~k
=) (—D)FOTRE TR (g Gk - GR)-
i=0
(6.25)

Because 7 = A*t'7 and the signature of \+1 is (—1)*(*+1) (see [39]), equation
(6.25) becomes

n+1
— Z (—l)kij(ao,.‘.,ajaj+1,‘..7an+1), (626)
j=k+1
and equation (6.22) ensures us that 7 is indeed a graded trace. O

Remark 6.1.8. If we take the unitisation A7 of A, as in [29] (see Remark
6.1.2), to build Q(A) it is not necessary to demand that 7 vanishes on C @ A"
in Proposition 6.1.7.

This Proposition gives a correspondence between cycles over A and cyclic co-
cycles. In the following Section we see that this correspondence is given by the
(noncommutative) Chern character.
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6.2 Cyclic cohomology

In Proposition 6.1.3 we saw how the exterior algebra Q,,C* (M) can be identi-
fied with the de Rham complex. Thereafter we saw in Proposition 6.1.7 that the
Q(A), which is the generalisation of Q,,C° (M), corresponds with Hochschild
cohomology. To do that properly one has to introduce cyclicity. This is a di-
rect consequence of the fact that the algebra A is noncommutative and the
(graded) commutator db + bd does not equal zero. This cyclicity defines cyclic
cohomology, which is introduced by Connes in [29], and is the noncommutative
generalisation of de Rham cohomology.

Consider the set of all cyclic n-cochains in C™(A), denoted by C}(A). The
following Proposition shows that the set Cy\(A) = &C}(A) together with the
Hochschild coboundary (6.15) is a subcomplex of the Hochschild complex.

Proposition 6.2.1. Let b be the Hochschild coboundary. For every ¢ € Cy(A),
the element b ¢ still lies in Cx(A).

Proof. Consider the truncated Hochschild coboundary b’ : C™(A) — C™t1(A)

n
Vo(ao, .- ., ant1) := Z(—l)jw(ao, QG4 Gng), (6.27)
7=0

and the difference r := b — V', given by

rg(ag, - -y ang1) == (=1)"p(antiag, ar, - . s an). (6.28)

For every ¢ € C"(A) and j =0, ...,n we have,

)‘_j_llr)\j(b(a/(h R an+1) = (_1)(j+1)(n+1)r)‘j¢(a’j+17 cevyGn41,00,-- -, a])
= (—1)(j+2)("+1)/\jqb(ajajH, ceeyQp41,00,-- -y aj,l)
= (—1)j¢(a07 B 1 S R an+1).
(6.29)
Therefore
n ) , n+1 ] )
V=) NN, b=t hr=) AN, (6.30)
=0 =0

because A"t =1 on C™ and A™""2 = 1 on C™*!. For each ¢ € C"(A) one has
n+1

IT=XNb=(1=X) > AN
Jj=0
=D AN 4 =) AN - ATy (6.31)
j=0 j=0
n+1

Il
M=

AN =Y AN =1 (1= ).
j=1

.
Il
o
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Hence for every ¢ € Cx(A), i.e. (1—=A)¢p=0
(1— A)bo = b'(1— N = 0. (6.32)

We can take the cohomology of this complex.

Definition 6.2.2. Consider the subcomplez (Cx(.A),b) of the Hochschild com-
plex of A. The cyclic cohomology HC(A) of the algebra A is the cohomology
of this subcomplez.

We give the following Proposition without proof.
Proposition 6.2.3.
1. Let u be an invertible element in the unital algebra A and 6 the corre-

sponding inner automorphism defined by 6(z) = uzu~1. The induced map

6 : HC(A) — HC(A) is the identity on HC(A).
2. Letp: A — A be a homomorphism and X an invertible element in Ma(A)

such that
X (8 p(oa)) Xl= (8 p(oa)) ,a€ A (6.33)

Then HC™(A) =0 for all n.

Let (2, d, [) be a cycle. We call this cycle vanishing if the algebra Q° satisfies
condition 2. of Proposition 6.2.3. Remember that we can associate to every
cycle a character 7 given in equation (5.33). Proposition 6.1.7 gives the following
Corollary.

Corollary 6.2.4. Let 7 be a (n + 1)-linear functional on A. Then

1. 7€ ZY¥(A) if and only if T is a character.

2. 7 € BY(A) if and only if T is the character of a vanishing cycle.
In the following we construct a product HC™(A)®@ HC™(B) = HC"t™(A® B),
called the cup product. Because of the universal property of Q(A® B) one has a

homomorphism 7 : Q(A® B) — Q(A) @ Q(B), where Q(A) ® Q(B) is the graded
tensor product

(wal @ Wep, )(waz ® wbz) = (_1)6‘%1 Bwag (wal Way @ wb1wb2)' (6'34)

Using the equivalences of Proposition 6.1.7 one can define for any ¢ € C™(A)
and ¢ € C™(B) the cup product ¢ V ¢ defined by

(pVi)=(p@)om, (6.35)
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where (¢ V 9), ¢ and v are the corresponding linear functionals (traces) on
respectively Q(A ® B), Q(A) and Q(B).

Proposition 6.2.5.
1. The character of the tensor product of two cycles is the cup product of
their characters.

2. The cup product defines a homomorphism

HC"(A) @ HC™(B) - HC""™ (A ® B). (6.36)
Proof.

1. Given two cycles (Q4,dy, [;) and (Q2,ds, [,), with respectively the homo-
morphisms p; : A — Q1 and py : A — Qs, one has by construction the
commutative triangle

QA ® B) —"> Q(A) @ Q(B) (6.37)

X lﬁl@ﬁz
(p1®p2)

0 @0

where p is the corresponding algebra morphism between the universal
differential graded algebra and the cycle.

2. Let ¢ € Z7(A) and ¢ € Z*(B). Due to Proposition 6.1.7 both ¢ as 1
are closed graded traces on respectively Q(A) and (B), hence ¢ ® ¢ is a
closed graded trace on (A) ® Q(B) and ¢V 1p € ZyT™(A® B). We need
to show that if ¢ € B} (A), the cup product ¢V ¢ is also a boundary. This
follows from 1., Corollary 6.2.4 and the fact that the tensor product of a
cycle with a vanishing cycle is also vanishing.

Corollary 6.2.6.

1. HC(C) is a polynomial ring with one generator o of degree 2.

2. Every HC(A) is a module over the ring HC(C).

Proof.
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1. Consider the set C™(C) of n + 1-functionals on C. This set equals C with
the identification

&(ag, - .- any1) = ag---ant1d(e,...,e) VYo € C™(C), (6.38)

where e is the unity in C. Hence every ¢ € Z{(C) is characterised by
o(e,...,e). This yields HC™(C) =0 for n is odd, and HC™(C) =Cforn
is even. Let ¢ € Z3™(C) and ¢ € Z3™ (C). We compute ¢ V 1.

BVY)(e,...,e) = (p@)r([e@e)de@e)--d(e ®e))

m+m")! (6.39)
= Mq&(e, one)Y(e ... ,e).

m!m'!

One sees this using the identities
de = ede + (de)e, e(de)e =0, e(de)* = (de)?e. (6.40)
For instance,
m((e®e)(d(e® e))4) = e(de)* @ e+ 2e(de)? @ e(de)? + e @ e(de)*. (6.41)
Choose as generator of HC(C) the 2-cocycle o with o(e,e,e) = 2ur.

2. Let ¢ € Z7(A). We prove that ¢ Vo = oV ¢ and we give an explicit
formula of the corresponding map S : HC™(A) — HC™2(A). One has

i(éb\/ )(a0; - -+ Ang2) = ($ ® %&) (ao ® ed(a1 ®€) -+ - d(ani2 ® €))

é(aoalagdag s dan+2) + gg(aodal (azag)da4 s dan+2
¢(agday -+~ dai—1(a;aiy1)daits - - dani

é(aodal T dan(an+1an+2)).
(6.42)

Computing oV ¢ gives the same result. Define for ¢ € Z7(A), the element
Sp=0Ve=¢Voe Z}"(A). Because of Proposition 6.2.5 we have
SBT(A) C BY*?(A). This makes HC(A) a module over the ring HC(C).

O

The following Proposition relates the Ko-group of A (see Section 4.4) to the
cyclic cohomology of A. To do that we consider, for given algebra A, the algebra
M, (A). We can extend an element ¢ € Z7(A) to an element ¢ € ZT (M (A))
by

¢(0/0 & A07 <., 0n & An) = ¢(a07 .- '7an)ﬂ(A0 o An)7 (643)

where a; € A, A; € My(C) and where the trace is just the normal matrix trace.
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Proposition 6.2.7.

1. The following equation defines a bilinear pairing between the Ky-group of
A and HC"*"(A)

([e]o, ®) = (2em)~™(mY) " (o V Tr)(e, ..., €) (6.44)
for e € Py(A) and ¢ € ZF™(A).
2. One has {[elo, S¢) = ([e]o, ¢)-

Proof.

1. To simplify the calculations, replace A by My(A) and ¢ by ¢. If ¢ €
B3™(A) then ¢ V Tr is also a coboundary, hence ¢ V Tr = b) and

2m

(pVTr)(e,...,e) =ble,...,e) = Z(—l)’iﬁ(e,...,e) =y(e,...,e) =0,
i=0

(6.45)

because M) = —1). If we take another representative of [e], the expres-

sion ¢ V Tr(e,...,e) will differ a coboundary (see [29]), hence it is only
dependent of the equivalence class of e. We find

(pVTr)(e,...,e) = (Zum)"mld(e,. .., e€). (6.46)

2. One has

L _ ~ j—1 n—j+1
2 Sle,---.e) = — #lelde)’"e(de) ) (6.47)

¥

I
—_ <
3
+
-
IS
\.Q
>

and the statement follows.
O

Part 2. of the last Proposition motivates a cohomology where S¢ = ¢, as it
should be a generalisation of the de Rham cohomology. This cohomology is
defined in the following.

Definition 6.2.8. The periodic cyclic cohomology HP(A) over A is de-
fined by
HP(A) = HC(A) ®nc(c C. (6.48)
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Corollary 6.2.6 shows us that HC(C) is isomorphic with the polynomial ring
Clo]. This ring acts on C through the map P(o) — P(1), where P is some
polynomial. We see that HP(A) is just HC(A) modulo the equivalence relation
S¢ ~ ¢. The periodic cyclic cohomology obtains therefore a Z /2-grading such
that

HP(A) = HP°(A) @ HP'(A). (6.49)

This and the pairing of Proposition 6.2.7 gives the following Corollary.
Corollary 6.2.9. There is a canonical pairing between HP*"™(A) and Ko(A).

Remark 6.2.10. One can also show (see [29]) that H P°%(A) pairs canonically
with the K (A)-group of A. In this way, the map S reflects the Bott periodicity
of K-theory. For more on the K;-group of A and Bott periodicity, see for
instance [73].
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Chapter 7

The noncommutative IQHE

In Chapter 2 we saw that classical Bloch theory failed to describe the Integer
Quantum Hall Effect due to the breakdown of translation invariance. Because of
the magnetic field applied, we replaced the translation operators by the magnetic
translation operators T which commute as

TaTb = €2M¢TbTa, (71)

where ¢ is the quantity of flux piercing the unit cell. If ¢ is rational we can
reduce the problem to the classical (translation invariant) case (see Section 2.4).
In the case that ¢ is irrational this is not possible. In this Chapter we use the
techniques of noncommutative geometry, discussed in the previous Chapter, to
generalise the theory of the Integer Quantum Hall Effect for all ¢.

7.1 The Hull

When constructing the algebra of observables one would normally take the
Hamiltonian and its invariant transformations (in our case the magnetic trans-
lations). In this Section we follow a slightly different approach, using a C*-
dynamical system, called the Hull, to construct the algebra of observables for
our system. This approach used on the so-called aperiodic solids, is due to
Bellissard (see [12] and for some overviews [14], [15] and [17]).

Consider a first order differential equation & = f(z,t) with f € C'(R x R)
and initial condition z(t = 0) = 9. The (unique) solution of such a differen-
tial equation gives a flow ¢(t,zo) defined on I, x zo with I,, some interval
dependent of 2o € R. This flow has the following properties (see [41]),

i ¢(0,$0) = Zo,
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7.1. THE HULL

ii ¢(t+ s,20) = ¢(t, ¢(s,20)) for t + 5,5 € I, and t € Ly(s 2,),
iii ¢(t,20) is C1(R) in t and it has a C*(R) inverse given by ¢(—t, o).

A map from R to R with these properties is called a dynamical system on R.
This notion can be generalised in the following manner.

Definition 7.1.1. A C*-algebraic dynamical system is a triple (A, G, a)
with A o C*-algebra, G a locally compact group and a o continuous homomor-
phism from G to the group Aut(A) of automorphisms of A with the topology of
pointuise convergence.

If the flow ¢(t, zo) is defined on the whole set Rx R, we see that it defines a C*-
algebraic dynamical system and that our definition is indeed a generalisation.
We can see this by identifying G and A with R (as a group and a real C*-algebra
respectively) and identifying the map a with ¢t — ¢(¢, ).

Consider now a Hamiltonian, which stays conserved under some transformations
(think of time evolution or space translation). This Hamiltonian generates a sys-
tem of first order differential equations and one can associate a dynamical system
to it. From this dynamical system we construct the algebra of observables of
our system. So let us first consider our Hamiltonian.

As we mentioned in Section 2 we need disorder in our system that causes lo-
calised states. Let V,, denote the potential that represents the configuration of
the disorder. Our Hamiltonian with this disorder looks like

H, = Hy+V,, (7.2)

where Hy is just the unperturbed Hamiltonian from equation (2.6). Note that V,
is not anymore the periodic potential from equation (2.31), due to the disorder
w. But because we are assuming the disorder to be random distributed, we
say that V, and therefore H, is globally (magnetic) translation invariant. This
follows from the homogeneity of the medium we are considering. This means
that in spite of the local differences it does not matter where we choose our origin
because the physics will be the same. The exact definition of this homogeneity
of the medium, hence of the operator H,, follows.

Definition 7.1.2. Let U be a unitary projective representation of R? on the
Hilbert space L2(R?), i.e., for every a € R? there exists a unitary operator U(a)
acting on L2(R?) such that

1. U(a)U(b) = U(a + b)e*®® for every a,b € R2, with ¢(a,b) some phase
factor.

2. For every vector v € L*(R?) the map given by a € R? — U(a)y € L*(R?)
18 continuous.
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We call a self-adjoint operator H on L?*(R?) homogeneous with respect to U
if the set
S ={R,(2) =U(a)(21 — H)"'U(a)"|a € R?} (7.3)

has a compact strong closure (for some z € C).

Let H be such a homogeneous operator and let Qg (z) be the strong closure
of S in (7.3). The strong (operator) topology we used in this Definition is the
weakest topology on £(L?(R?)) such that for all ¢ € L?(R?) the map R,(z) —
R, (2)% is continuous. Because L?(R?) has a countable base, Q5 (z) is a compact
metrisable space (see [67]). This implies that the full set of translates (in a) of
R,(z) on some ¢ € L?(R?) can be approximated by a finite number of ¢}s. One
can show ([14]) that

{1+ (2" = 2)Ro(2)} " = {1 - (¢' = 2)Ra(2)} (7.4)

and that Qg (z) is homeomorphic to Qg (z') via the the action of some (finite)
a; € R? on the elements R,(z). By identifying these spaces we can just work
with the abstract compact space Qz, with an action of R? through the represen-
tation U on it. Let T% denote the action of a € R? on w € Qy, and let R, (2)
be the representative of w in Qg (2). The triple (Qy,R?,U) is a dynamical
system corresponding to the operator H and is called the Hull of an operator.

We are interested in the dynamical system defined by the Hamiltonian (7.2).
Note however that this operator is not self-adjoint due to V,,. We are however
still able to define a Hull and dynamical system for H,, if the potential satisfies
some boundedness conditions. We demand our Hamiltonian H,, to be measur-
able in the variable w, which is reasonable since our disorder configuration is
random. The following Theorem, which is proved in [14] and [60], gives the
precise construction how to make a Hull, and a dynamical system associated to
the Hamiltonian H,,,.

Theorem 7.1.3. Consider the Hamiltonian H,, of equation (7.2). Let 'V, be
a real, measurable, essentially bounded function over R2. Then H, is homoge-
neous with respect to the magnetic translations T of equation (2.56).

Remark 7.1.4. There is another manner (see [17]) to construct an associated
dynamical system of the Hamiltonian H,,. This is done by defining a Hull over
a uniform discrete set £ in R?, representing the disorder configuration w of the
system. In this construction one associates to every uniform discrete set £ the
so-called counting measure defined by

vE(z) = Z(S(m—y). (7.5)

yeL

For every a € R? one defines the translation 7 such that 7%f(z) = f(z — a)
for every continuous function on R?. The Hull of £ is the dynamical system
(9, R2, 7) where  is the closure of the R?-orbit {7%v* : a € R?} in M(R?). The
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space M (R2) is here the space of Radon measures, i.e., the linear functionals
on C.(R?), the space of continuous functions with compact support, with the
weak-* topology over C.(R?).

Although the two dynamical systems (Qp_, K2, T) and (€2, K2, 7) are not exactly
the same, one can show that they are semi-conjugate and that the physics behind
these dynamical systems are the same. For the proofs of these statements and
more on this matter see, again, [17].

To every (C*-algebraic dynamical system (A,G,«) one can associate a C*-
algebra A x G (see [63]) called the crossed product. The main ingredient of
the construction of this C*-algebra is a non-zero left-invariant Radon measure
pug on G, ie. pug(sE) = ug(E) for every Borel set E in G and every s € G. This
measure is called a left Haar measure and one can show that, up to multipli-
cation with scalars, this measure is unique. Together with a left Haar measure
exists an associated right Haar measure. This right Haar measure is associated
to the left Haar measure trough the modular function A from G to the positive
elements of R and the equation

pa(Es) = As)ua(E). (7.6)

With the identification ds = du,4(s) one has
d(ts) =ds, d(st) = A(t)ds, d(s™') = A(s)"ds. (7.7
The C*-algebra corresponding to the dynamical system (A, G, a) is now con-
structed through the space C.(G,.A) of continuous functions from G to A with

compact support. We make it a x-algebra by defining an involution and a con-
volution on it. Namely,

1O = A0 ae(FETH),

7.8
(F+9)(®) = [ fs)aulals s, (7%

for all f,g € C.(G, A). We proceed by defining a norm by
1= [ @l (7.9)

The completion of C.(G,.A) in this norm is the algebra L'(G,A). Consider

the universal representation (7, H,), introduced in Section 4.2, of the space

LY(G, A). Tt is the direct sum over all non-degenerate representations of L (G, A).
The crossed product of the dynamical system (A, G, ) is the norm closure

of m, (L*(G, A)) in L(H,), denoted by Ax,G or just A x G for simplicity.

Remark 7.1.5. Often the crossed algebra of a dynamical system (A, G,a)
is called the covariance algebra, because of the correspondence between the
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covariant representations of (A, G, &) and the non-degenerate representations of
L'(G, A) (see [63]). Such a covariant representation of a dynamical system
(A,G,a) is a triple (m,u, H), where (m, H) is some representation of 4, and
(u, H) is some unitary representation of G and

m(ay(z)) = uem(z)us” (7.10)

for all z € A and t € G. Having a covariant representation (m,u, H) one can
represent (uniquely) L'(G,.A) on H. This is done trough the equation

wxumnz/w@mmmu (7.11)

for every y € C.(G, A).

Let A act faithfully on some Hilbert space H (through some representation 7
which will be omitted) and let L?(G,H) = L*(G) ® H be the Hilbert space of
square integrable functions from G to ‘H with H-valued inner product

<ﬂm=/jwwww. (712)

One can define a covariant representation (7, \,H) of the dynamical system

(A,G,a) by
(F(a)f) (1) = au-1(a) F(t),  (Aef)(s) = F(t"s), (7.13)

for all a € A and t,s € G. The image of (& x \) given in equation (7.11) gives a
C*-algebra called the reduced crossed product which is denoted by A %, G.
This reduced crossed product equals the crossed product if the group G of the
dynamical system (A, G, ) is amenable ([63]).

Definition 7.1.6. Let A be a C*-algebra in L®(G), invariant under left trans-
lation. We say that a state m of A is a left invariant mean if m(\s f) = m(f)

for every f in A. We say that G is amenable if there is a left invariant mean
on L*®(Q).

One can show that every Abelian group is amenable ([63]). In our system the
group G is given by R? or Z2. The continuous case G = R? corresponds to
the Hamiltonian as we defined it in equation (7.2). The discrete case, G = Z2,
corresponds to the model where we make use of the tight-binding approximation.
We can make this approximation using the second simplification discussed in
Section 2.6. In this case the Hamiltonian consists of hopping terms (see for
instance [38]). Since in our system the group G is given by either R? or Z2 G
is commutative and therefore amenable.

In the following Section we construct the algebra of observables corresponding
to the Hull of the Hamiltonian, with the magnetic translations as continuous
homomorphisms.
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7.2 The noncommutative algebra of observables

In this Section we construct the C*-algebra corresponding to the Hamiltonian
(7.2) and the magnetic translations. We show that this algebra can be seen as
the algebra of observables of our system. We follow Bellissard (see for instance
[15] and [16]).

Consider the dynamical system, denoted by (Qz, R?,T') associated to the Hamil-
tonian H,, of Theorem 7.1.3. The Haar measure on the topological group R? is
just the squared Lebesgue measure, denoted by d2s, and the modular function
A is the identity. The group operation on R? is additive and we denote the
inverse t~1 of an element t € R? as —t. We follow Bellissard in [14] and we
construct a C*-algebra starting with C.(Qy x R?), the functions with compact
support on Qz x R?. The reason why we start with this algebra can be made
plausible by the following argument.

Consider an element A in our algebra of observables. This element is a measur-
able function on Qg and obeys the covariant condition

T(2)AyT*(z) = A, (7.14)

where T is the magnetic translation of equation (2.36). Remember that this
magnetic translation is given by

T(y)f(z) = T (y) f(z) = eV f(z +y), (7.15)

with A the magnetic field strength times 5. Therefore we can rewrite the matrix
elements (z|A,|z") as follows

(2lAula’) = (@ + ylArvala’ +y)e o = o(TVo,z '), (7.16)
where a is a function of Qg x R?, measurable in the first variable.

Hence, starting with the algebra C.(Qgy x R?) we define an involution and
convolution on it similar to equation (7.8):

A¥(w,z) = A(T"w, —x),
7.17
(Ax B)(w,2) = | A(w,y)B(T Yw,z — y)e*Vds, (747
R2
forall A, B € C.(Qy xR2%), w € N and x € R2, where ] is
field strength.

37 times the magnetic

As for the crossed product, we proceed by defining a norm similar to equation

(7.9). The completion of C..(Q x R?) under this norm is denoted by L'(Q x R?).
The representation m,, of this algebra on L2(R2), for given w € (), is given by

T (A)Y(x) = . PYyAT w,y —2)e™ " p(y), ¢ e L*(R?).  (7.18)
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The C*-algebra denoted by C*(Q x R?;)\) is now given by the completion of
L' (Q x R?) under the norm

||A]] = sup ||my, (A)]]. (7.19)
weR

Remark 7.2.1. In [14] Bellissard uses the fact that the C*-algebra of a groupoid
is closely related to the C*-algebra of the corresponding dynamical system (see

[71]) .

Definition 7.2.2. A groupoid is a small category with inverses, i.e., a family
of two sets {G°, G} with two maps r and s from G (the arrows) to G° (the
objects) and an inverse on G such that

1. there is an associative multiplication gh in G with r(gh) = r(g), s(gh) =
s(h) if r(h) = s(g) for g,h € G,

2. r(g™") = s(g), and s(g~") =r(g) for g€ G,

3. G° can be seen as a subset of G with r(z) = x = s(x) for all x € G° and
gz = g for s(9) = x and xg = g for r(g) = =.

The maps r and s on an element in G are called the range and the source of
that element, respectively. The set GO is called the basis or the space of units of
the groupoid. Mostly we will omit it and denote the groupoid as G.

The groupoid G defined by a dynamical system (2, R?, T') is given by G = Q x R?
where {2 is the basis such that

r(w,z) = w, s(w,z) =T w, (7.20)
(W, 2) = (w,y) o (T w2 —y), (w,2) "t = (T "w,~z).  (7.21)

See [70] and [71] for more on this.

Remark 7.2.3. In Remark 7.1.4 we considered the Hull €2 of the lattice £ and
we claimed that the physics of the corresponding dynamical system equalled the
physics of the Hamiltonian H,. This is a consequence of the fact that H, is
affiliated to the C*-algebra A, corresponding to the lattice Hull (see [14], [17]
and [16]).

Definition 7.2.4. A covariant family (H,) of self adjoint operators is affili-
ated to A if, for every f € Co(R), the bounded operator f(H,) can be rep-
resented as m,(Ayf) for certain Ay € A such that the map A : f € Co(R) —
A; € A is o bounded x-morphism.

This means that the C*-algebra coming from the operator H,, is x-isomorphic
to a subalgebra of the C*-algebra corresponding to the lattice £. Since both
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these algebras represent an algebra of observables, they give the same physics.
It is possible that the Hamiltonian is not bounded and that it does not belong
to our C*-algebra of observables. The resolvent, however, does belong to this
algebra and therefore also f(H,) for every f € Cy(R).

Consider the case A = 0 of no magnetic field. The algebra of observables of
our system corresponding to a perfect lattice is isomorphic to C'(B) ® K, where
C(B) is the algebra of continuous functions over the Brillouin zone B and K is
the algebra of compact operators (see [14] and [84] for the proof and the pre-
cise physical conditions of this statement). This is the reason to claim that the
topological manifold corresponding to the C*-algebra C*(Qx R?; \) is a generali-
sation of the Brillouin zone B. As a topological manifold is completely described
by its C*-algebra, we call the C*-algebra C* (2 x R?; \) the noncommutative
Brillouin zone of our system.

Consider the tight-binding approximation mentioned in the previous Section.
Simply said, this means that only the electrons with energy near the Fermi
energy contribute to the physics. Bellissard introduces this approximation in
the noncommutative framework to simplify the calculations. The Hamiltonian
(7.2) can very well be an unbounded operator on the Hilbert space L?(R2).
The corresponding discrete Hamiltonian Heg is a bounded operator, acting on
the Hilbert space ¢?(7Z?2), making the computations easier. In the tight-binding
approximation, the case G = Z2, we can make the same constructions as in the
previous two Sections 7.1 and 7.2 (see [11], [17] and [58]).

Having defined the algebra of observables of our system, we want to be able to
work with it. What we need, is to define a calculus on our algebra, which will
be the subject of our next Section.

7.3 The noncommutative calculus on the alge-
bra of observables

In this Section we construct the calculus on the noncommutative algebra of
observables A = C*(Q x G;\), with G is R2. In a similar manner one can
construct a calculus on the discrete noncommutative algebra of observables of
the tight-binding approximation, i.e. G = Z2. Although we also use the discrete
calculus in the following Sections, we do not construct it here explicitly, but refer
to [15] and [16].

Consider a probability measure P on  such that P is invariant and ergodic
under the action of G. Hence we can apply the Birkhoff ergodicity Theorem
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OBSERVABLES
and we have for every f € L*(Q,P)
] N1
dm 3 5@ = [ i), (7.22)

for almost all z (see [67]). We can always choose such a measure since G is
amenable (see [11] and [63]).

Using this measure we define a trace 7 on A as follows
T(A) = / A(w,0)dP(w), for every A € C.( x G) (7.23)
Q
Consider for every p > 1 the norm

Al = (T((AA*)P/2))?7, (7.24)

and denote the completion of C.(Q x G) under this norm as LP(A, T). Consider
the situation p = 2. Using the GNS-construction of Proposition 4.2.4 one can
show that the trace defines a representation m of A on some Hilbert space such
that

(r(a)ulu) =T(a), (7.25)

where u is a cyclic vector of the Hilbert space for 7w(A). This Hilbert space is
exactly L2(A, T).

Now that we have defined an integral on our algebra of observables we are able
to express some physical quantities in algebraic terms. To do this we need the
following Theorem, which is proven in [14].

Theorem 7.3.1. Let A be an element in C.(Q2 x G) and let A be a square in G
around the zero. The trace of A can be obtained as the trace per volume of the
operator m, (A) in the following manner. Namely for P-almost all w’s we have

T(4) = Jim 7 Te (mo(4), (7.26)

where Try is the restriction of the normal trace on L?(G) to L*(A).

The existence of a sequence A which converges to G is due to the fact that G
is amenable. These A fulfill some finite volume properties, which are needed to
prove the above Theorem. For more on this see [14] and [63].

Consider the density of states we discussed in Section 2.2. Due to some random
disorder we obtain new states with energies in-between the Landau levels. These
states are described by the density of states. We define this density through
the integrated density of states V' (E) which is the number of eigenvalues, of the
Hamiltonian per volume, under the energy E:

1

e L . < '
}\1{8 Al #{ eigenvalues of H|) < E}, (7.27)

N(E)
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where the degeneracy of the eigenvalues is counted with their multiplicity. This
is a monotone function of E. Therefore the derivative p(E) = dN(E)/dE is a
well-defined positive Lebesgue-Stieltjes measure (see for instance [67] and [69]).
This quantity p is called the density of states. Thus, at 7' = 0 the electron
density n in our system is given by

N dEp(E) = N'(EF), (7.28)

—0o0
where Ef is the Fermi level.
With Theorem 7.3.1 in mind we are able to define for every self-adjoint element

H € A the density of states as the positive real measure dN'(E)/dE such that
for every continuous function f with compact support on R

T(F(H)) = / AN (B)(E). (7.20)

To complete the calculus on our algebra A we need a derivative 0. This deriva-
tive is defined as the linear map from C.(2 x G) to C.(Q2 x G) and

0iA(w, z) =12, A(w, x). (7.30)

This defines a family of commuting *-derivations, which generates a 2-parameter
group of x-automorphisms. Namely,

ph‘(A)(wax) = e<k‘z>A(wax)a (731)

where k lies in the dual of R?. This extends continuously to the C*-algebra A
and one can show that

T (8;A4) = 1[Xi, 7 (A)], 7o (pr(A)) = X7, (A)e=*IX) (7.32)

where X; is the position operator, that means, multiplying with z; in L?(G).
Equation 7.32 can now be rewritten as

0
Ty (0;4) = l%(m (P (A))) k=0, (7.33)
and we see that the derivative of our algebra is actually a derivative in the mo-
mentum space. Hence the derivative describes the geometry of our momentum
space which is a noncommutative version of the Brillouin zone we are used to.

As usual we are interested in the elements of A € A which are in a sense
differentiable. We call an element A € A N times differentiable if the map
ke R2 — p,(A) € Ais N times differentiable. This comes down to: A is N
times differentiable if ||0f05A|| < oo for every a,b such that a+b= N. The set
of this elements is denoted by CV(A). This differentiability is actually a little
too strict. It turns out that the physical quantities of our system are given in
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terms of T(Af(H)) for some distribution f. The differentiability condition of
CN(A) can be relaxed and we just demand differentiability within the trace 7.
Consider the Hilbert space S, which is the completion of C.(Qz,R?) under the
norm

(A|B)s = T(A*B) + T(81A*, B + 9, A*3, B). (7.34)

This space S is called the noncommutative Sobolev space ([18] and [16])
after the commutative version (see [68] and [69]). An element in S, hence any
element A € Co(m,R?) such that T(|[VAJ?) < co with V = (81, 82), is called
Sobolev differentiable.

7.4 The noncommutative Kubo formula

In this Section we give an equation for the conductivity in the noncommutative
setting. As in Section 2.5 we start from the linear response theory and give the
Kubo formula for the conductivity. For the validity of this expression for the
conductivity see Section 2.6 and the references [9], [35] and [61].

Consider the single-electron Hamiltonian with disorder of equation (7.2). This
operator is represented on L?(R?) and the map w — H,, is a measurable function
with respect to the probability space (Q2,P). See the former Section for the
precise construction of this model. The linear response theory follows from
averaging over time and using the relaxation time approximation. We will give
here the basic construction of this approximation following [18], but will not
get into details. For more information on this subject see [25] for the physical
construction, or [20] for the more mathematical point of view.

As mentioned before, we can consider a single-electron system with disorder.
This disorder is supposed to be random. The main idea of the relaxation time
approximation is that the disorder can be described as collisions as the electron
travels around our system. All information about the dissipative effects is there-
fore given by one unique parameter called the relaxation time 7. Normally one
would define the relaxation time as the average time per collision. We, however,
take an efficiency coefficient 0 < k < 1 into account. The smaller «, the greater
the efficiency of the collision. The relaxation time we use is given by 7/(1 — k).
The Kubo formula relates dissipative coefficients to current correlation func-
tions and gives us an expression for the conductivity since the conductivity is
the differential of the current with respect to the electric field.

The conductivity of our system is given in terms of the current. To give an
expression of the current we need the following observations. In our system the
density matrix in consideration is just the Fermi-Dirac distribution

fou(H) = 1+ PH-1)=1 (7.35)

where 8 = kT, the inverse of the Boltzmann constant times the temperature,
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and p is the chemical potential. The temperature averaged expectation value
per volume of an observable A € A is consequently given by

(A) = (A) g, = T(Afp.u(H)). (7.36)

The conductivity tensor is now given (see [18] and [20]) by

0ij = 50 5. u(FD|(A(1 = &)/7 = KL) ™ OiH), (7.37)

with Ly (A) = o/h[H, A], and where & is actually the operator, acting on A,
which represents the average change of an observable due to the collisions. We
will not give the explicit form of this operator, but mention that the norm of
this operator is proportional to k.

As mentioned before, we take the following limits. The electrical field is vanish-
ing small, the relaxation time goes to infinity and the temperature goes to zero.
The distribution fg,, in this limit is

lim fﬁ,p« = PF, (738)

B—o0

which is the Fermi projection, i.e., the projection onto energy levels lower
than the Fermi level. The limit is taken with respect to the norm in L2(A,T)
defined in equation (7.24). For this limit to exist we demand that the Fermi level
is not a discontinuity of the DOS of the Hamiltonian H (see equation (7.29)).
In this limit the conductivity of equation (7.37) becomes

2
Oij = %@‘Pﬂ — i Ly 0. H). (7.39)

Let us consider the operator —h~'£};'3; H. The matrix elements are given by

YE|0;H|E")

(E| - R 'L, 0;H|E") = o]

(7.40)
We can see this using (E|Lg(A)|E') = ¢ (E — E'){(E|A|E'), and the fact that
the eigenvalues of an inverse of an operator is the inverse of the eigenvalues
of that operator. If E approaches E’ this will diverge. The reason that the
conductance does not diverge, is that d;Pr is zero in this region (since fg , is a
bounded operator of the Hamiltonian). Indeed, due to the derivative properties
of 0; and the projection properties of Pr we have

0jPp = (1 — Pg)0; PpPp + Pr0;Pr(1 — Pp), (7.41)

and the matrix element (E|0; Pr|E’) is only non zero, whenever E < Er < E’
or E' < Er < E. Thus instead of looking at £5;'8;H it suffices to look only at
the operators (1 — Pp)EEl(?jHPF and PpﬁglajH(l — Pr). We used here the
properties of the inproduct.
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7.4. THE NONCOMMUTATIVE KUBO FORMULA

The Theorem of this Section, which gives the noncommutative Kubo formula,
is a consequence of the following Lemma. In this Lemma we demand the oper-
ator Pr to be Sobolev differentiable. Because Pr is an eigenprojections of an
operator with resolvent in 4 and H is bounded from below, we know that it is
trace class. In particular, we know that this operator is Hilbert-Schmidt. Now
we only need to show that 9;Pr is Hilbert-Schmidt. Using (7.23) we have

T(VPe[?) = /Q 4P ()| V Pr (0, 0)

(7.42)

:/dp(w)/dx\<0|PF|x>|2|x|2 —¢
Q

where £ measures the localisation length at the Fermi level (see [11], [18] and
references therein). Hence, 0;Pr is Hilbert-Schmidt whenever the Fermi level
lies in a region of localised states.

Lemma 7.4.1. If the Fermi level is not a discontinuity point of the density of

states of H, and if the Fermi projection is Sobolev differentiable, the following
formulas hold,

PrL;'0;H(1 — Pr) = —1hPrd;Pr(1 — Pr), (7.43)

(1 — Pr)L5'0;Pr = 1h(1 — Pr)0; PrPr. (7.44)

Proof. We prove only the first formula, because the second can be proved in the
same way. Let B be the right hand side of formula 7.43. Then.
Ly(B) = HPr0;Pr(1 — Pr) — Pro; Pr(1 — Pp)H
= PrHO;Pr(1 — Pr) — PrO; PrH(1 — Pr) (7.45)
= Pp[H,0;Pr](1 — Pr)
The last equation we got, by realizing that H and Pr commute. For the com-
mutator in the last line we can write,
[H,0;Pr) = HO;Pr — 0;PrH
= 0;(HPr) — 0;HPp — 0;(PrH) + Pro;H (7.46)
= —[0;H, Pr].
We now have
Ly (B) = —Pr[0;H, Pr](1 — Pr)
= —PpaiHPF(]. —PF)+PF61'H(1 —PF) (747)
= Pr0;H(1 — Pr).
Because B connects only energies above the Fermi level with energies below it,
and since the Fermi level is not an eigenvalue of H, Ly (B) will never be zero
and Ly is invertible on the subspace of such operators. We can conclude that,
B =L, (Pro;H(1- P
H (_1F i H(1 - Pp)) (7.48)
= PpLy 0;H(1 — Pr).
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7.5. QUANTISATION OF THE IQHE

The next Theorem is a consequence of this Lemma.

Corollary 7.4.2 (IQHE-Kubo formula). If the Fermi level is not a disconti-
nuity point of the DOS of H, and if the Fermi projection is Sobolev differentiable,
the conductivity tensor is given by

2
Oij = %2”‘-7—(PF[81'PF78]'PF])7 (7.49)

in the zero temperature and infinite relaxation time limit. In particular, the
direct conductivity vanishes.

7.5 Quantisation of the IQHE

In this section we prove the quantisation of the integer quantum Hall effect in
the noncommutative framework. We also see how the plateaux appear in this
picture. To do so, we introduce the necessary mathematics.

In Chapter 5 we saw that the geometry of an algebra A can be given by a
Fredholm module (H, F). Let us introduce an even Fredholm module on the
algebra C.(Qy x G). Consider the graded Hilbert space # = Hi & Hy =
L?(G) @ L?(G) with grading operator y

v = (é _01) _ (7.50)

Define a representation 7, of C.(Qy x @) on # by
fo(d) = A, = (Aw 0) Ay =m(A), (7.51)

with 7, the representation given in equation (7.18). The Fredholm module
(H, F) is now given by the operator

0 F+_ 0 U Xl +ZX2
<F—+ 0 ) <u* 0) Y | X1 +1X5|’ (7.52)

with X; the position operator on L?(G). See for the precise definition of a
Fredholm module Definition 5.3.1. Just as in Section 5.3, equations (5.25) and
(5.27), we define a derivation d and a supertrace Trg on £(#), the bounded
operators on 7:[, as

dT = J[F,T], and Trg(T) = %Tr('yF[F, T) VTecl®).  (7.53)
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7.5. QUANTISATION OF THE IQHE

Consider the Schatten classes £P(H) discussed in Section 5.3. These classes are

ideals of the algebra of compact operators on #H such that T' € LP(H) if
oo
S HA(T) < oo, (7.54)
n=1

with (u, (7)) the characteristic values of T', that is the eigenvalues of (T*T)%
in decreasing order. Consider now a slightly bigger ideal denoted by L*(#),
such that T' € £P*(H) if the characteristic values of T' obey the property

N
1
lim sup —— P(T) < oo. 7.55
N%oplnN,;u( ) (7.55)

These ideals are called the Dixmier ideals, and are the duals of the Macaev ideals
(see for instance [30] and [31]). An element T' € £™(#) is called n*-summable.
The advantage of these Dixmier ideals is that we can define a trace on it which
vanishes when applied to a trace class operator. This property enables us to
compute the Hochschild class of the character of a Fredholm module. This trace
is called the Dixmier trace, and is constructed as follows (see [18] and [31]).

Consider a positive linear functional Lim , on the space of bounded sequences
1°°(N), which has the following properties

1. Lim (o) <0if o, <0,

2. Lim (o) = lim(ay,) if ay, converges,

3. Lim , (a1, 01, Q2,a0,...) = Lim ,(ay,),

for all a,, € [°°(N). A Dixmier trace Tr,, is defined as
;] X
Try,(T) = Lim i — n; pin(T). (7.56)

If the so-called Cesdro means of the sequence &% Zﬁ;l un(T) converge (see
[31] and [39)]), Tr,(T) is independent of w. In that case we are able to define the
Dixmier trace denoted by Trpix . That this linear functional is indeed a trace,
i.e. positive and vanishing on commutators, can be found in the references.

We are now able to relate the conductance (7.49) to the index of some Fredholm
operator, hence an integer. We do this using two so-called Connes formulas and
an applied version of Theorem 5.4.4. The first Connes theorem, based on a
result of Connes in [30], gives a necessary summability condition to a Sobolev
differentiable operator (see Section 7.3). See [18] for the proof of this Theorem.
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7.5. QUANTISATION OF THE IQHE

Theorem 7.5.1 (First Connes formula). Consider the Fredholm module
(H, F) over Co.(Qpn x G) defined by the equations (7.50)-(7.52). This module is
2% -summable for P-almost all w’s. Moreover for every A € C.(Qy x G), the
following formula holds:

2 .
T(VAP?) = = Trpip(|dA, [?),  for P-almost all w. (7.57)
Y

This formula can be continued to elements A in the Sobolev space S associated
to T. In particular, if A€ S, then dA,, € L?>T for P-almost all w.

Although Bellissard proved this formula, in [18], only for the case G = Z2,
leaving the case G = R? for future work, we assume, in the case G = R?,
the summability condition dA, € £2* for P-almost all w. This condition is
needed for the following Theorem to be well defined. This assumption is not
unreasonable, but loses the connection with the localisation condition given in
the previous Section.

In the following Theorem we relate the Kubo formula of Corollary 7.4.2 to the
associated character of the Fredholm module (H, F') over C.(Q x G). We do
this by considering the following expression (compare to (7.49)

T2 (Ao, Ay, Az) = 2T (Ap01 A102 Ay — Ag02 A101 Az) (7.58)

for Ap, A1, Az € C.(Q H X G). Remember that the associated character m» of
the Fredholm module (#, F') is given by (see equation (5.33) and Proposition
5.4.1))

T2 (Ao, A]_, A2) = QZ’R"I‘I‘S (Ao,wdAl,wdAg,w). (759)

The conductance in terms of T3 can be related to the Fredholm module through
the second Connes formula.

Theorem 7.5.2 (Second Connes formula). For Ay, A1, Ay € C.(2 x G),
we have the following formula:

To(Ao, Ay, Ay) = / dP(w) Trs (Ao dAr wdAs). (7.60)
Q

We will not give the proof here but refer to [18], where the Theorem is proved for
the case G = Z2. The continuous case where G = R? is a direct generalisation
which can be proved using [7] and [29]. Remark that we need Theorem 7.5.1
for the right hand side of equation (7.60) to be well defined.

Consider again equation (7.59) which is by Definition 5.4.3 a Chern character
of the Fredholm module (7, F'), which pairs the Ko-group of A with the cyclic
cohomology group (see Theorem 5.4.4 and Proposition 6.2.7). This pairing can
be given in terms of the index of the Fredholm module, which is an integer. The
following Proposition is similar to Theorem 5.4.4.
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7.5. QUANTISATION OF THE IQHE

Proposition 7.5.3. Consider the Fredholm module (H,F) over Ce(Qy x G)
defined by the equations (7.50)-(7.52). Let P € C.(Q x G) be a 3-summable
projection. Then Ff{* = PF*~|py, is a Fredholm operator and

Index(F~) = 2unTry(PdPdP). (7.61)
The proof of this Proposition is similar to the proof of Theorem 5.4.4 (with
P = ¢). The pairing of equation (5.38) can be written as
([e], [12]) = T2(e, e,€) = 2unTrs(€ dé dé), (7.62)
where we used equations (6.44) and (6.46).

We are now able to state our main Theorem of this Section.

Theorem 7.5.4. Let P be a projection belonging to the noncommutative Sobolev
space S. Then for P-almost every w € Q, P is 2% -summable and

2nT (P[0, P, 9, P)) := Ch(P) = Ind(P,u|p,,), (7.63)

where P,, = 7,(P) and u as in equation (7.52). In particular, Ch(P) is an
integer.

Proof. Consider the character Ch(P),
Ch(P) = 2unT (P[01 P, 02 P))

=T(P.P,P) (7.64)

= / dP(w)Trs(P,,dP,dP,),
Q

where we used Theorems 7.5.1 and 7.5.2 for the last equation. Proposition 7.5.3
gives us,

Ch(P) = (2ur) ! / dP(w)Index(Py F*~ | pu10s). (7.65)
Q
We show now that the index is P-almost independent of w and therefore
Ch(P) = Ind(PwF+_|pwH2). (766)

Using the ergodicity (and Birkhoff) of P, we only have to show that the index
is translation invariant. For indeed, if f(w) is translation invariant we have,

. 1
/dIP’(w)f(w) = hmn_,oom /An dz f (Tyw)

R (7.67)
= lim, oo ™ /An dz f(w)

= 2w f(w).
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The translation of P, by a € G is due to the covariance property Pra,. If we
translate F*— = u, we get u + O(IITI) Thus, finally P,u|p, 3, translates to

Pr—u,(u+ O(plf_\mPT—aszv that is Pr-a,ulp,_, #, modulo a compact opera-
tor. Because a compact perturbation does not change the index of a Fredholm
module, we can indeed conclude (7.66). O

This not only proves the quantisation of the conductance, but also the existence
of the plateaux in the noncommutative framework. Namely, as long as the Fermi
energy lies in a region of localised states, the character Ch(Pr) is constant. We
refer to [18] for more on the relation between the localisation length and the
Hall conductance

7.6 Further developments

In this Section we discuss a model introduced by Xia in [82], which has much
resemblance with the work of Bellissard. This model starts with the same Kubo
formula. But where Bellissard relates the Hall conductance to the (analytic)
index of some Fredholm module, Xia relates this conductance to a topological
index, as the difference in dimension between two vector bundles. Equating both
indices of the different models gives an analogue of the classical Atiyah-Singer
theorem in the sense that

(analytical index) = —(topological index)

We start by constructing an algebra of observables closely related to the one
constructed in Section 7.2. Let 2 be a separable, connected, compact Hausdorff
space. And let there be a group of homeomorphisms {¢, , : (z,y) € R?} acting
on Q such that for every f € C(), the map (z,y) — f o ¢z, from R? to C(Q)
is continuous. Consider the algebra C.(2 x R?) of continuous functions with
compact support on the space Q x R?2. We define a representation m,, for every
w € Q on this algebra by

(re@f) o) = [ Alw+ @) Em)e 5@+ &+ n)dedn, (769
with 4 € C.(Q x R?), f € L%(R?) and S equal to the X of equation (7.15).
The algebra of observables of this Section is now given by all elements 7, (A)
with fixed w and is denoted by C(Q,R2?,3). Next Xia defines a convolution
and an involution on the algebra L?(Q x R?) very similar to the ones defined in
equation (7.17). The C*-algebra thus constructed is denoted by C*(Q, R?, 3).
This algebra is very similar to the algebra of observables constructed by Bel-
lissard. Moreover they are unitarily equivalent to each other. For the precise
construction of this algebra we refer to the original paper [82]. For the relation
between both algebras we also refer to [58].
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Xia proceeds by considering a natural isomorphism ¢ from Ko(C*(Q2,R?, 3))
to Ko(C(2)). He does this by applying twice the Thom isomorphism. The
classical Thom isomorphism is a isomorphism from the K-group of a locally
compact space X to the K-group of a (complex) vector bundle V' over X (see
for instance [46] for more details). A generalisation of this isomorphism (see
[28]) is a map

Ki(A) = Kiy1(AxgR) with i€ Z/2, (7.69)
where (A, R, a) is a C*-dynamical system. This gives the natural isomorphism

¢:
Ko(C(Q)) = K1 (C(Q) x4 R)
~ Ko ((C(Q) g R) 3, R) (7.70)
~ Ko(C*(Q, B2, B)),
with @ and ~ the corresponding homomorphisms.

Just as for the algebra of Bellissard we define a trace 7 and some derivations 0;
on the algebra C*(Q, R?, 3). They are similar to the constructions of Bellissard
and we refer again to the article [82]. Consider now the conductance given by
equation (7.49)
2

oy = %2@#T(Pp[8iPF,6jPF]). (7.71)
Using the pairing (6.44) between K-theory and cyclic cohomology of Proposition
6.2.7 one can rewrite the expression for the conductance to

¢
oij = 2 [¥], [Pr), (7.72)
where [¢] is the cocycle defined such as in (7.58)
Y(ao,ar,az) = T(ao(a1 (a1)02(a2) — 0a2(a1)0: (ag))) . (7.73)

Xia subsequently shows that the pullback of ¥ by the transposed of ¢ equals
—[u], where [u] is the even cyclic cocycle defined by the measure

- / f(@)dp(w). (7.74)

That is
(), [Pr]) = =([u), o~ ' [PF]) (7.75)

for [Pr] € Ko(C*(Q,R?,3)). Remember that every element of Ko(C(Q)) can
be written as the difference between two vector bundle classes (see Sections 3.3
and 4.4). Hence ¢~1[Pr] = [V*] — [V~] for some vector bundles V+ and V~
on 2. And therefore one can write

(1], $~'[Pr]) = dim V"~ — dim V+, (7.76)
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and, indeed, express the conductance o;; in topological terms, namely the dif-
ference in dimension of two vector bundles over the space (.

From equation (7.76) one sees immediately that the conductance takes the in-
teger value times the known factor. In [82] Xia shows that this integer can
be interpreted as the Landau band index only if ¢~![Pp] lies in the subgroup
Z[1] of Ko(C(2)). Because the group Ko(C()) is often bigger than Z[1], the
Landau interpretation of the conductance does not need to be universally ap-
plicable. Xia suggests that therefore the K-theory class ¢~ ![Pr] could contain
more physical information of the integer quantum Hall effect than the conduc-
tivity itself. Examples of ¢~1[Pr]| ¢ Z[1], however, have not yet been found.
Therefore we can not say that this model is preferred over that of Bellissard.
Moreover one could argue that Bellissard’s model is more complete for the fol-
lowing reason. While in Xia’s model we have to assume the Fermi energy to be
in a gap, in Bellissard’s model we can extend this assumption to the case where
the Fermi energy lies in a region of localised states. This is a consequence of
less restrictive smoothness conditions Bellissard uses on the projections.

Although we would prefer, on physical grounds, Bellissard’s model, Xia’s article
is certainly not redundant. As a mathematical extension it can be very useful.
For instance, the topological index is often easier to calculate than the analytical
one. An other reason for studying Xia’s model is its mathematical beauty. As
we already mentioned, we can link both relations for the Hall conductivity to
get the equation

Index(Fp) = —([u], 6" [Pr]), VP € CF(QLR,P), (7.77)
which is an analogue of the classical Atiyah-Singer theorem.

About a decade after the first articles of Bellissard and Xia on the noncommuta-
tive geometry in the integer quantum Hall effect, these theories where extended
to the hyperbolic geometry case ([23], [21], [55], [22] and [56]). In references [23]
and [21] the hyperbolic geometry was introduced to describe the integer quan-
tum Hall effect on real parabolic structures. It was believed that in this manner
one could study the edge effects for the quantum Hall effect and the behaviour
of electrons in quantum dots. In these articles the authors extended the discrete
and continuous noncommutative Kubo formula to the parabolic geometry case
and found an integer value for the Hall conductance. They did this by extending
both approaches of Bellissard and Xia, finding an analytical and a topological
index for the Hall conductance. Disorder, which generates the plateaux due to
the localised states, is taken into account.

In the later references [55], [22] and [56] the hyperbolic structure was intro-
duced with a different motivation. As we already mentioned in Section 2.1, the
Coulomb interactions play an important role in the physics of the fractional
quantum Hall effect. And exactly these interactions make it difficult to apply
the Bloch theory to the system. The interpretation of the hyperbolic geometry
was then, that it simulated the electron interactions. The single-electron Hamil-
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tonian becomes an effective Hamiltonian when placed in a hyperbolic structure.

With this interpretation the authors could use a generalised Bloch theory on the
fractional quantum Hall effect. They were able to reproduce the fractional values
of the Hall conductance. Actually the model predicts too many fractions, which
at present are not observed in the experimental setup. Because this limitation
also exists for other models of the fractional quantum Hall effect, we are not (yet)
urged to overthrow this model. An interesting physical implication of this model
is that it predicts the existence of an absolute lower bound on the fractional
values of the Hall conductance. This could be an excellent experimental test of
the validity of the theoretical model.
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Chapter 8

Conclusions

In this thesis we discussed some early theories of the integer quantum Hall
effect. We saw that these theories relied on the somewhat unphysical assumption
that the amount of flux through the magnetic unit cell should be rational.
Another problem the theories encountered was combining disorder (to explain
the plateaux) and the quantisation of the Hall resistance. Not soon after these
theories were introduced, Bellissard proposed to use Connes’ noncommutative
geometry to give a complete description of the integer quantum Hall effect.

The noncommutative geometry approach to the integer quantum Hall effect
uses a generalisation of the much celebrated Bloch theory. It does not assume
other physics, but uses just other tools. We saw that with this approach one is
able to describe the integer quantum Hall effect without making the rationality
assumption. Also the quantisation and disorder go perfectly together.

While there are other explanations of the integer quantum Hall effect, that could
be satisfying either, the beauty of the noncommutative geometry approach is
its generality. It is a true generalisation of the Bloch theory and it is applicable
to other non-periodic solids, such as quasicrystals. For a wide range of solids
however, there is still a lot of work to be done, to fit this theory in.
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