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1 Introduction

In stochastic analysis one studies random functions of one variable and various kinds of
integrals and derivatives thereof. The argument of these functions is usually interpreted as
“time”, so that the functions themselves can be thought of as paths of random processes.

Here, like in other areas of mathematics, going from the discrete to the continuous yields
a pay-off in simplicity and smoothness, at the price of more complicated analysis. Compare,
to make an analogy, the integral fg z3dzr with the sum Y ohet k3. The integral requires a more
refined analysis for its definition and for the proof of its properties, but once this has been done
the integral is easier to calculate. Similarly, in stochastic analysis you will become acquainted
with a convenient differential calculus as a reward for some hard work in analysis.

1.1 Applications

Stochastic analysis can be applied in a wide variety of situations. We sketch a few examples
below.

1. Some differential equations become more realistic when we allow some randomness in
their coefficients. Consider for example the following growth equation, used among other
areas in population biology:

d
95 = (v N, (L1)

Here, S; is the size of the population at time ¢, r is the average growth rate of the
population, and the “noise” N; models random fluctuations in the growth rate.

2. The Langevin equation describes the behaviour of a dust particle suspended in a liquid:

d
m=Vi = Vi + “Ny. (1.2)

Here, V; is the velocity at time ¢ of the dust particle, the friction exerted on the particle
due to the viscosity 7 of the liquid is —nV4, and the “noise” N, stands for the disturbance
due to the thermal motion of the surrounding liquid molecules colliding with the particle.
This equation is fundamental in physics.

3. The path of the dust particle in example 2 is observed with some inaccuracy. One
measures the perturbed signal Z; given by

Zy = Vi + “N,”. (1.3)

Here N; is again a “noise”. One is interested in the best guess for the actual value of V;,
given the observation Z; for 0 < s < ¢. This is called a filtering problem: how to filter
away the noise N;. Kalman and Bucy (1961) found a linear algorithm, which was almost
immediately applied in aerospace engineering. Filtering theory is now a flourishing and
extremely useful discipline.

4. Stochastic analysis can help solve boundary value problems such as the Dirichlet prob-
lem. Tf the value of a harmonic function f on the boundary of some bounded regular
region D C R (n > 1) is known, then the value of f in the interior of D can be
expressed as follows:

E(f(B7)) = f(=), (1.4)



where “Bf =z + fg Nyds” is an “integrated noise” or Brownian motion, starting at
z, and 7 denotes the time when this Brownian motion first reaches the boundary. (A
harmonic function f is a function satisfying Af = 0 with A the Laplacian.)

5. Stochastic analysis has found extensive application nowadays in finance. A typical prob-
lem is the following. At time ¢ = 0 an investor buys stocks and bonds on the financial
market, i.e., he divides his initial capital Cy into Ay shares of stock and By shares of
bonds. The bonds will yield a guaranteed interest rate r’, whereas the stock price S,
measured relative to time 0, is assumed to satisfy the growth equation (1.1). With a
keen eye on the market the investor sells stocks to buy bonds and vice versa. Such
dealings require no extra investments, and are called self-financing. Let A; and By be
the amounts of stocks and bonds held at time ¢. The total value C; of stocks and bonds
at time ¢ is

Cy = AiSi + Bterlt . (15)
The assumption that the tradings are self-financing can be expressed as:
dCy = AdS; + Byd(e"). (1.6)

An interesting question is now:

—  What would our investor be prepared to pay at time 0 for a so-called European
call option, i.e., the right to buy at some later time T' a share of stock at a prede-
termined price K7

The rational answer, ¢ say, was found by Black and Scholes (1973) through an analysis
of the possible self-financing strategies leading from an initial investment ¢ to the same
payoff as the option would do. Their formula is now being used on stock markets all
over the world.

The goal of this course is to first make sense of the above equations, and then to work with
them.

1.2 What is noise?

In all the above examples the unexplained symbol N; occurs, which is to be thought of as a
“completely random” function of ¢, in other words, the continuous-time analogue of a sequence
of independent identically distributed random variables.

In a first attempt to catch this concept, it is tempting to try and meet the following
requirements:

1. N, is independent of N for ¢ # s.
2. The random variables N; (¢ > 0) all have the same probability distribution pu.
3. E(NVy) =0.

However, these requirements do not produce what we want. We shall show that such a “con-
tinuous i.i.d. sequence” Ny is not measurable in ¢, unless it is identically zero.

Let p denote the probability distribution of Ny, which by requirement 2 does not depend
on t. If N; is not a sure constant function of ¢, then there must be a value a € R such that
p = P[N; < a] is neither 0 nor 1. Now consider the set E of time points where the noise is



less than a. It can be shown that with probability 1 the set E is not Lebesgue measurable.
Without giving a full proof we can understand this as follows.

Let A denote the Lebesgue measure on R. If £ would be measurable, then by the
independence requirement 1 we would expect its relative share in any interval (c, d) to be p,
by a continuous analogue of the law of large numbers:

MEN(c,d)=p(d—c) . (1.7)

On the other hand, it is known from measure theory that every measurable set B is arbitrarily
thick somewhere with respect to A, i.e., for every a < 1 an interval (c,d) can be found such
that

A(BnN(ed) >ald—c).

(cf. Halmos (1974) Theorem II1.16.A: “Lebesgue’s density theorem”). So by (1.7), E is not
measurable. This is a bad property of N; because in view of (1.1), (1.2), (1.3) and (1.4), we
would like to be able to consider integrals of NV;.

For this reason, let us approach the problem from a different angle. Instead of IV; itself,
let us consider directly the integral of Ny, and give it a name:

t
By 1= / N.ds”.
0

The three requirements on the evasive object IN; then translate into three quite sensible
requirements for B;.

BM1. For any 0 =ty < #; < ... < t, the random variables By, ,, — By, (j =0,... ,n —1)
are independent.
BM2. B; has stationary increments, i.e., the joint probability distribution of

(Bt1+s - Bu1—|—s, Bt2+s - Bu2+Sa s 7Btn+3 - Bun—l—S)

does not depend on s > 0, where t; > u; > 0 for 1 = 1,2,... ,n are arbitrary.
BM3. E(B;) =0 for allt > 0.

We add a normalisation:
BM4. IE(B%) =1.

Still, these four requirements do not determine B;. For example, the compensated Poisson
jump process also satisfies them. Our fifth requirement fixes the process B; uniquely (as will
become clear later on):

BMS5. t — B, is continuous a.s with probability 1.

The stochastic process B; satisfying these requirements is called the Wiener process or
Brownian motion. In the next chapter we shall give an explicit construction.



2 Brownian motion

In this section we shall construct Brownian motion on [0, 7] for some 7" > 0. We follow the
original idea of Norbert Wiener in the 1930’s. As we shall see, it clearly displays the noise Ny
as a random distribution in the sense of Schwartz, rather than a random function.

Norbert Wiener Fig. 0: the function e, (n =5)

Consider the orthonormal basis e1, es, €3, ... of the Hilbert space L2[0,T] given by

2 t
en(t):\/Tsin(%) n>1, 0<t<T).

For a function f € L?[0,T] the coefficients on this basis (i.e. the Fourier coefficients) are the
weights with which the frequencies n = 1,2,3,... are represented in f. Now, ‘white noise’
should contain all frequencies with equal weights and in a random way. This leads to the

following tentative definition of NV;:
o0
“Np:=) wnen(t)” (0<t<T), (2.1)
n=1

where w1, ws,ws,... is a sequence of independent standard Gaussian random variables. Now,
the probability that the sequence w1, wo,ws, ... should be square summable is 0. So N; will
almost surely not be an function in L2[0,T]. But we shall be able to make sense of (2.1) in
the sense of Schwartz distributions.

2.1 Notations

Let S, (m € Z) denote the space of all sequences w = (w1, ws,...) € RN for which
o
|w||?, := Zn2mwi < 0.
n=1

Note that Sy is the space I2(N) of square summable sequences. Let us denote by S the

S:= () Sm,

meZ

intersection



and by &’ the union

"= Sm-

mEeZ

S consists of the rapidly decreasing sequences and S’ of all the polynomially bounded ones.
Under the pairing

o0
x) = E WnTn,
n=1

the spaces S, and S_,,, are each others dual, and S’ is the dual of S. We have the following
inclusions:

S0 D84928.1208E=1PD8D28D---D8.

Next let P denote the infinite product measure on RY that makes w = (wy,ws,...) into
a sequence of independent standard Gaussian random variables. In a formula:

P(dw) = é ( \/12_7Te_§“’3bdwn) .

n=1

The following lemma, says that P-almost surely w,, increases slower than n, making the square
of their quotient summable.

o 92
Lemma 2.1 IP’(S_l):IP’{wEQ:Z—" <oo} =1.

Since the w;’s are standard Gaussian, we have for all n € N,

2

1 ™
Z 2SG
and therefore, for all £ € N and n € N, by the Markov inequality,

P[M, > k] < ~E(M,) <

?vlb—t
w-m

Since M, (w) is increasing in n for all w, it follows that

P[M, <k for all n] = P( () [My < k]) = lim P[M, <k]>1-

C
n—00 k’
neN



and hence

fi5.) =2(U (<) = i (1) =1

keNneN
O

Since S_1 C &', w also lies in &' with probability 1. Now, S’ consists of the sequences
of Fourier coefficients of the tempered distributions, and the latter are a good class to work
with. So we shall henceforth use S’ as our sample space €. The connection with the space of
distributions is as follows.

Let D[0,T] denote the space of infinitely differentiable functions on [0, 7] with compact
support inside (0,7"). A function f € D[0,T] determines a sequence of real numbers

T
vn = (e, f) = /O en(®)f(t)dt (n€N).

For all even m € N, the property that f is m times continuously differentiable implies that
v € S, by partial integration:

/ ' | (t)2dt = f}en, FIN2 ="l £)?
0 n=1 n=1

=S () = ()

Conversely, v € S, implies that f(™) e L2 [0,%], so f is m—1 times continuously differentiable.
Now, a sequence vi,vs,... is said to converge to an element v of S (v is itself a sequence
of numbers!) if it converges in Sy, for every m. On the other hand, a sequence fi, f2,... in

D[0,T] is said to converge to an f € D[0,T] if for all m € N the sequence fl(m),me), ..
converges uniformly to f(™). Therefore the topology on S is carried over to Dl0,T].

2.2 Definition of Brownian motion

We now define white noise N on [0,T] by

o0

N:QxD[0,T): (w,f) = Y wnlen, f).

n=1

For fixed w € Q, the map ]\~/'(w): f= ﬁ(w,f) is a distribution on [0,T]. Hence, with the

measure P being defined on 2, our map N becomes a random distribution. On the other
hand, for fixed f € D[0,T] the map

Ni:we N(w, f)

is a Gaussian random variable with mean zero and variance || f||2:

BFy) = B(Y wides 1) =0
i=1

B(N?) = B( > " wiwileis Nles 1)) = D e £ = 1711
i=1 j=1 i=1



It follows that the map f — N ¢ can be extended to a Hilbert space isometry L?[0,T) —
L?(Q,P). Indeed, if f; is a sequence of functions in D[0,T] such that || f; — fI| = 0 (i = o)
for some f € L?[0,T], then the sequence (N)$2; is a Cauchy-sequence in L?({2,P):

INf: = Ny |I” = B(Ny, = Np,)*) =E(N7 _p,) = I fi = £ill*
So it has a limit, N say. Moreover, the map f +— Ny is isometric:
E(N7) =|IfI? Vf e L*[0,T). (2.2)
Hence again for all f,g € L?[0,T):
E(Nf) =0,  E(NyNg) = (f,9) - (2.3)

However, the extension from N on 2 x D[0,T] to N on Q x L2[0, T] has a price: whereas
]\fo (f € D[0,T)) is a random element of (D[0,T]), Ny (f € L?[0,T)) is not a random element
of (L?[0,T])" = L?[0,T], the reason being that N¢(w) is only defined for fixed f € L?[0,T]
and almost all w € . The set of those w for which Ny(w) is defined for all f € L?[0,7T] has
measure 0.

We employ the extension from N to N in order to define Brownian motion:

Definition. Brownian motion over the time interval [0, is the family (Bt);c[o,7] of random
variables 2 — R given by

By(w) := Ny (W)

We finally show that this definition meets all our requirements.

Proposition 2.2 B; satisfies the conditions BM1-BM4 of Section 1. Moreover:

BMS5. There exists a version of (By);ejo,r) Such that t — By is continuous.
BM6. With probability 1, t — By has infinite variation over every time interval and is
therefore nowhere differentiable.

Proof. From the construction of N it is clear that for any fi, fa,...,fr € L?[0,T] the
random variables Ny, Ny,,... , Ny, are jointly Gaussian. A standard result in probability
theory ensures that
i. jointly Gaussian random variables are independent as soon as they are uncorrelated,
ii. their joint probability distribution depends only on their expectations and their corre-
lations.

So the independence of the increments of Brownian motion (BM1) follows from the
orthogonality of the functions 1 ;.. \y = Lot 1) — Ljog;) ( = 0,... ,m — 1), since N maps
orthogonal functions f and g to uncorrelated random variables (by (2.3)). The stationarity
of the increments (BM2) follows from the fact that the inner products of the functions
Lu;+s,t;4s) (4 = 1,...,n) do not depend on s. Properties BM3 and BM4 are obvious:
E(B:) = E(Ny,,) = 0, E(B?) = |1p4l> = t. The proof of properties BM5 and BM6
requires some preparation and is deferred to Sections 2.3-2.4. O

From (2.3) it follows that for all s,¢ > 0:
E(B;B;) = <1[0,s]7 1[0,,4,]) =sAt. (2.4)

10



2.3 Continuity of paths and the problem of versions

The continuity of paths ¢t — B;(w) with w € § is a somewhat subtle matter.

First, let us make clear that the continuity of the curve ¢ — By in L?(2,P) is not at all
sufficient to ensure continuity of the paths ¢t — By(w).

Example 2.1.j Let Q = [0, 1] with Lebesgue measure P. Let X; (¢ € [0, 1]) denote the process

0 ift<ow,
1 ift>w.

Xi(w) =1 q(w) = {

So Xi(w), far from being continuous, moves by making a single jump at a random time.
However, t — X; is a continuous curve in L?(£2,P), since

t
||Xt—Xs||2:/ du=t—s (s<t).
S

Second, let us observe that a description of a curve in L?(Q,P), such as t — By, can
never be sufficient to ensure pathwise continuity. This is shown by the following example.

Example 2.2.; Take (2,P) as in the previous example. Now let Y;(w) be given by

V() 1 if w—t is irrational
w) =
’ 0 if w—t is rational.

Let Zy(w) =1 for all w € Q, t € [0,1]. Clearly, ¢t — Z;(w) is constant, hence continuous for
all w € Q, whereas t — Yi(w) is discontinuous for all w € 2. Nevertheless, for any fixed value
of t, Y; and Z; are almost surely equal, so they correspond to the same curve in L2(Q, P).

These observations leads us to the following definition:
Definition. We say that a process Y; € L?(,P) (t € [0,T]) is a version of a process
Z, € L2(Q,P) (t € [0,T)) if

Vte[0,T]: Yi(w)= Zi(w) for almost all w € Q.

This said, we proceed to prove that Brownian Motion has a version with continuous
paths, as claimed in property BM5 in Proposition 2.2.

Proof. For the fourth moment of a centered Gaussian random variable ¢ we have E(¢%) =
3 Var(¢)2. Hence for the process B; we have

E(|B: — By|*) = 3|t — s|*.

Now fix a € (0,1/4) and put € := 1 —4a > 0. Then, for all s,t € [0,T], we have by the
Markov inequality,

P[|By — By| 2 [t — s|*] < [t — s|7**E(|B; — B|*)
S 3|t— 8|2—4a

= 3|t - 3|1+67

11



so that for alln € Nand 0 < k < 27,

P(|B(kt1)2-nT — Bra-nr| > 27" < 3 x 27 "(1Fe),

and hence
oo 2™"—1
> Z P[|Bks1)2-n1 — Bra-ng| > 27¢]
n=1 k=0
oo 2"—1 00 3
b — _ —ne __
Z 3x 22T =32 =5 <™

k=0 n=1

By the first Borel-Cantelli lemma it follows that if A,, denotes the event
An = [30 S k < Zni |B(k—|—1)2—nT — BkZ_"Tl Z 27”'0‘],

then with probability 1 only finitely many A,’s happen. So for almost all w € ) there exists
M (w) € N such that A,, does not occur for n > M(w), i.e., for all n > M (w) we have

VO S k < 2n1 |B(k+1)2—nT(w) — BkQ*"T(w” < 27na. (25)

Now fix an w for which the latter holds, and let s and ¢ be two points in the set @ of
dyadic rationals of T,

Q::{kT"T‘n,kEN,OSkﬁQ"},

such that |s —t| < 2~ MWT. Choose n > M(w) such that 2~ ("*DT < |s — ¢| < 27T Let
k € N be such that k27”7 has distance less than 277 to both s and t. We may then write
the dyadic representation

l
s = k27" T + Z o2~ ()
=1

m
t=k2 "T+ Y 2 (T,
j=1

where [, € Nand 0;,7; € { —1,0,1} fori=1,...,land j = 1,...,m. By (2.5) we may now
conclude that

| By (w) |<Z|02 <"+W|+E|Tz (n+j)a

< 2f(n+1)a

1-2«
2

< je—t
= Ta(1—2—a)|s |

It follows that the restriction of the function ¢ — Bi(w) to Q@ may be extended to a continuous
function ¢ — Bi(w) on all of [0,T].

12



It remains to show that Et is a version of By. Choose t € [0,7] and let t1,%2,... be a
sequence in @ tending to ¢. Let ¢ : R — R be a bounded, continuous and strictly increasing
function. Then

| o) = (i) PBld) = lp(Br) = (B = Jim lo(By) = o(Bi)I” =0,

since t — By is continuous in L2(Q, P) and ¢ — Et is pointwise continuous, and therefore also
continuous in L?(£2,P) by bounded convergence. O

Henceforth, when speaking of B; we shall always mean its continuous version and drop
the tilde from the notation.

2.4 Roughness of paths

Although the path of Brownian motion is continuous, it is extremely rough. This is expressed
by the following basic lemma, which we shall need to prove property BM6 in Proposition
2.2.

Lemma 2.3 Let 0 = t(()n) < tgn) < e < t%n) = T be a family of partitions of the interval
[0,T] that gets arbitrarily fine for n — oo, in the sense that

: (n) _ ,(n) _
o 2%, o — 57 =0

Then

n—1

2 : 2
L? — lim Z_:(Btﬁ)l — Bt§n)) =T.

Proof. Abbreviate AB; = B, — By and Aty = £, — ("), Let 5, = max; At;. Then
j+1 J

ieny 1] =] (em -]
_ E(Z(ABi)Q(ABj)Q) —27E( > (AB))?) + T

J

= Y E((AB)Y) + Y E((AB;)))E((AB))?) — 2T(Z Atj) + T2

J 1£] J
= 3(At)* + ) (At)(Aty) - T7

j i#j
=2 (At;)?

J
<26,y At
J

= 26,T,

13



where again we have used the fact that the fourth moment of a centered Gaussian random
variable ¢ is given by E (£*) = 3 Var(£)?. As limp_,0 6, = 0, the statement follows. O

We may write the message of Lemma 2.3 symbolically as
“(dBy)? = dt”, (2.6)
saying that “Brownian motion has quadratic variation growing linearly with time”. This

expression will acquire a precise meaning during the sequel of this course. For the moment,
let us just say that By has large fluctuations on a small scale, namely

dB; is of order Vdt (>> dt) .

To prove BM6 of Proposition 2.2 we need one more preparatory lemma, which applies
to a general sequence of random variables.

Lemma 2.4 Let X;, X5, X3,... be a sequence of real-valued random variables such that for
some p > 0,

lim E(|X,|’) =0 for some p > 0.
n—o0

Then there exists a subsequence (X, )p-, tending to 0 almost surely.

Proof. Choose a subsequence such that Y - | E(|X,,|[?) < co. By Chebyshev’s inequality
we have, for all m € N,

1
P || 2 | <m0,
and therefore, for all m € N,
1
>op {|Xnk| > —] < 0.
m
k
The first Borel-Cantelli lemma now implies that for any m,
1 .
P [|Xnk| > — for finitely many k:| =1.
m
By o-additivity the intersection over m of the event between brackets also has probability 1:
1
]P’[VmeNHKeNVkZK: | X0, | < E] =1,

ie., X, — 0 almost surely as k — oo. O

We are finally ready to finish our proof of Proposition 2.2:

14



Proof. By Lemmas 2.3 and 2.4 (with p = 2) there exists an increasing sequence (ny) such
that, for almost all w € €2,

n—1
2
kli)If)loz_: <Bt](3_k1) (w) - Btj('nk)(w)) =T.
Fix an w € ) for which this holds. Let
= AB;| := B — B n .
eny 1= max|ABj| = max ) (w) X o (W)

Then limy_, o, €5, = 0 by the uniform continuity of ¢t — B, (which is a continuous function on
the compact interval [0, 7). It follows that,

nk—l nk—l 1 1
Z |AB,| > Z —|ABj|?~ —T — 00 as k— o0
=0 =0 Em Er

a

This concludes the construction of Brownian motion. In the next sections we shall see
that Brownian motion is the building block of stochastic analysis.

The construction of Brownian motion induces a probability measure on the set of all
continuous functions [0,7] — R, which is called the Wiener measure.

It can be proved that all random variables in L2(€2,P) can be represented in a natu-
ral way as integrals of products of increments of Brownian motion. This is Wiener’s chaos
expansion, (Wiener (1938).)
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3 Stochastic integration: the Gaussian case

This section serves as a motivation for the It6-calculus presented in Sections 4 and 5.

3.1 The stochastic integral of a non-random function

If f, € L?[0,T] is a step function, i.e.,
n—1
Fa®) = 3 g @) O=to<t1 <-o- <ta=T),
=0

then from the definition B; := Nl[ it follows that

0,71
n—1
an = Z an) (Btj+1 - Btj)’
§=0

which is precisely what we would mean by the integral fOT fn(t)dBy. Moreover, if f, — f in
L?[0,T7), then Ny, — Ny in L?(€2,P) by the isometric property of N described in Section 2.2.
So f + Ny maps L?[0,T] into the Gaussian random variables on (€2, P). It is therfore natural
to define for all f € L?[0,T):

T
/0 f(H)dBy(w) == Ny (w).

3.2 The Ornstein-Uhlenbeck process

In 1908 Langevin proposed an equation in order to describe the motion of a particle suspended
in a liquid. He wanted to give a treatment which was more refined and more in harmony with
Newtonian mechanics than the above Brownian motion model. Let V; denote the velocity of
the particle at time ¢. According to Newton’s second law the derivative %V} should be equal
to the sum of the forces acting on the particle (see example 2 in Section 1: we take the mass
of the particle equal to 1). Langevin wrote

d
%W = _7]‘/;5 + UNta

where the first term on the r.h.s. models the friction due to the viscosity 1 of the liquid and
the second term describes the sum total of the erratic collisions of liquid molecules against
the particle, o being the strength of the noise.

In the spirit of the preceding discussion we rewrite the Langevin equation as
dVy = —nVidt + od By, (3.1)

which again is shorthand for the integral equation

t
ViV, = —n / Vidu + o(B; — By) (3.2)
S

16
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Figure 1: The function f;.

in L2(Q,P). This equation was solved by Ornstein and Uhlenbeck (1930) in the following way.
Rewrite (3.1) as

d(e™V;) = oe"dB;.

Integrating we obtain, for 0 <t < T,
t
eV, —Vp = a/ e dBs,
0
so we find

t
Vi =e MV + /—Wﬂw
1= ¢ 0 aoe s (3.3)

=e "Vy + oNy,,

where fi: s = 1o (s) exp[—n(t — s)] is shown in Figure 1.

Assuming V = 0, we obtain the following first and second moments for the Gaussian
random variable V; (recall (2.2)):

t 2
BV =0, B(V2) = ol =0 [ Me0ds = T(1 e,
0 n
Ignoring for the moment that time stops at 7' (T is arbitrary and could be taken very large),
we take the limit ¢ — oo:

0.2

lim E(V;?) = —. (3.4)

t—00 2’/)

This can be read as saying that the particle will eventually attain a certain mean energy.

Let us now show that the above informal calculation is indeed correct.

Proposition 3.1 For all Vy € R the process (V;);c[o,r defined by (3.3) satisfies the stochastic
integral equation (3.2).

17



Proof. After substitution of (3.3) into (3.2), the latter is found to consist of a deterministic
part

t
e MVy—e MV = —7]/ e ™Vydu,
S
which is obviously valid, and a stochastic part
t
oNy, —oNy, = —770'/ Nfudu + o(By — By),
S

which can be obtained by applying the map N to both sides of the following identity in
L%0,T):

i
ft_fs:—’f]/ fudu-I-l[s’t] (OSSStST).

The proof of this identity is left as an exercise. O

3.3 Some hocus pocus
Let us again consider the Ornstein-Uhlenbeck process (V;t)te[o,T] and perform some suggestive
formal manipulations.
It is tempting to write
d(V}?) = 2V,dV; = 2Vi(—nVidt + 0dBy),
which, under the formal assumption that V; and dB; are independent quantities, leads to
dE(V;?) = —20E(V;?)dt + 20E(V; )E(dB)
= —2nE(V,%)dt.
However, this result is false since it would imply that E(V,?) tends to 0 as t — oo, contradicting
(3.4).
What went wrong? How should we change the rules of formal manipulation of differen-
tials? Should we reject the independence assumption V; Il dB;? This is indeed a possibility,

and leads to the so-called “stochastic calculus of Stratonovic”. However, we shall not reject this
independence assumption, but instead follow It6 and reconsider the first step d(V;?) = 2V;dV;.

Let us take seriously the formula (dB;)? = dt in (2.6), implying that (dV;)? = o?dt, and
let us expand d(V;?) to second order in dV;:
(V) = 2VidV; + (dV3)?
= (Ve +dvi)* =V
= 2Vi(—nVidt + 0dBy) + o?dt.
This gives, upon calculation of expectations,
dE(V,2) = —2nE(V,2)dt + odt,

leading indeed to the correct equilibrium value (3.4). Note the occurrence of the extra term
o?dt compared to the previous calculation. This term is the essential ingredient to make ends
meet.

The above argument is heuristic at this stage, because both B; and V; are functions of
infinite variance, and hence nowhere differentiable. Still, we shall see that it makes perfect
sense in the right interpretation. This will be clarified in Sections 4 and 5.

18



4 The Ito-integral

Kiyosi Itd

In this section we shall extend the concept of stochastic integration by allowing the function
f(t,w) in the integral fOT f(t,w)dBy(w) to become stochastic as well. However, we shall see
that f(¢,w) cannot be completely arbitrary, but has in some way to be fitting to w — Bj(w).
The construction was pioneered by Kiyosi It6 in the 1940’s and leads to what is nowadays
called It6’s stochastic calculus.

4.1 Step functions

We define the stochastic integral of a step function of the form

—_

n—

¢(t,(—0) = Cj(w)]'[tj,tj+1)(t)

/ (1, w)dBy(w) == ch( ) (B, () — By, (). (4.1)

The next thing to do would be to approximate f by step functions f, and define [ fdB; to
be the limit of f frndBy. But here we meet a difficulty!

Example 4.1.; Put f(¢t,w) := By(w). Two reasonable approximations of f are ¢, and 1,
given by

= ZBtJ t]:tJ+1)( );

= ZBtﬁ-l twtﬂ—l)( );
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where tg,t1,...,t, are defined as in Lemma 2.3 in Section 2.4 (and are not w-dependent).
However, from our definition (4.1) we find that

T T n—1
/ YndBy —/ $ndBr = (AB;)?,
0 0 .
7=0

which, according to Lemma 2.3, does not tend to 0 as n — oo but to the constant 7. In other
words, the variation of the path ¢ — By is too large for [ BidB; to be defined in a casual way.

We now introduce a requirement on our function f for the approximation by step
functions f, to work nicely.

Definition. Let F; denote the o-field generated by {B; | 0 < s < t}. Let F := Fr. A
stochastic process on the probability space (2, F,P) of Brownian motion is a measurable
map [0, 7] x © — R. The process will be called adapted to the family of o-fields (F¢);ejo, 7y if
w > f(t,w) is Fi-measurable for all ¢ € [0,T].

The space L?(§2, F;,P) of square-integrable J;-measurable functions may be thought of
as those functions of w € Q that are fully determined by the initial segment [0,¢] = R: s —
Bs(w) of the Brownian motion. In other words, g € L?(2, 5, P) when g(w) = g(w') as soon
as Bs(w) = Bs(w') for all s € [0,¢].

Let £2(B,[0,T]) denote the space of all adapted stochastic processes f: [0,7] x 2 — R
that are square integrable:

T
10y = [t [ t07P(aw) < .

The natural inner product that makes £2(B,[0,7T]) into a real Hilbert space is
T
(o= [ at [ rt.w)gtoP(a)

= (g, )ae).

We note that the step functions ¢, in the last example are adapted, since ¢, (t,w)= By,
for t € [tj,tj11), so that ¢,(t,w) only depends on past values of B. On the other hand, 1, is
not adapted, since at time ¢ € [t;,t;41) it already anticipates the Brownian motion at time
tj_|_12 wn(t, w): Btj+1 (w)

The next theorem is a crucial property of stochastic integrals of adapted step functions.

Proposition 4.1 (The Ité-isometry) Let ¢ be a step function in £2(B,[0,T]), and let

T
LA = [ #lt.w)dBw)
be its stochastic integral according to (4.1). Then Iy is an isometry:

1Zo(D)lz2(,p) = |9l c2() s (4.2)
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ie.,

frao ([ o) - [

Proof. By adaptedness, ¢; in (4.1) is independent of AB; := By, , — By, for 0 < i < j.
Therefore

1Z0(8) 22 ) = ((ZC,AB))
:22:: (cie; AB,AB,)

:Z ( (AB +ZZ]E cchAB) (ABJ')

j=0 i<j
n—1

where we use that E(AB;) = 0, E((AB;)?) = At; (recall BM3-BM4 in Section 1). On the
other hand,

T n—1 9
||¢||%(B [0,17) — /0 E([chl[tj;tj+l)(t)] )dt

n—1n—1

= Z (/ [tistig1) (t)]‘[tj,tj+1)(t)dt)]E(cicj)
1=0 j=
n—1

= AtE(c)
§=0

The two expressions are the same. O

4.2 Arbitrary functions

To go from step functions to arbitrary functions we need the following.

Lemma 4.2 Every function f € £L?(B,[0,T]) can be approximated arbitrarily well by step
functions in L2(B, [0, T]).

Proof of Lemma 4.2. We divide the proof into three steps of successive approximation.

Step 1. Every bounded pathwise continuous g € £2(B,[0,T]) can be approximated by a
sequence of step functions.
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Proof. Partition the interval [0,7] into n pieces by times (¢;)7_; in the customary
way. Define

n—1

d’n(ta w) = Z g(tj7 w)]‘[t]‘ tig1) (t)

=0
Then, since ¢ — ¢(t,w) is continuous and max; |At;| = 0 for all w € 2, we have
T

lim [ (g(t,w) — ¢n(t,w))’dt = 0.

n—00 0

Hence, by bounded convergence,
T 2
lim IEZ( /O (9(t, ) — du(t,w)) dt) — 0.

a

Step 2. Every bounded h € £2(B) can be approximated by a sequence of bounded continuous
functions in £2(B).

Proof. Suppose |h| < M. For n € N, let 1, be a non-negative continuous function
of the form given in Figure 2, with the properties 9,(z) = 0 for z ¢ [0,1/n] and
[% tn(z)dz = 1. Define

t
gn(t,(—d) ::/ "/)n(t_ S)h(s,w)ds.
0
(Think of 1, as a “mollifier” of h.) Then t + g,(t,w) is continuous for all w, and
lgn| < M. Moreover, for all w,
T

lim (gn(s,w) — h(s,w))st =0,

n—oo 0

since 1, constitutes an approximate identity. Again, by bounded convergence,

n—oo

lim ]E( /OT(gn(s,w) - h(s,w))st) =0.

O
Step 3. Every f € £2(B,[0,T]) can be approximated by bounded functions in £2(B, [0, T]).

(This is in fact a general property L2-spaces.)
Proof. Let f € £2(B) and put hy,(t,w) := (—n) V (n A f(t,w)). Then

T
1= Palagoy < [t [ () 100y (17 ()T (.7

which tends to 0 as n — oo by dominated convergence. O
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O 1/n

Figure 2: The function ,.

On the basis of Proposition 4.1 and Lemma 4.2 we can now define the It6-integral of
a function g € £2(B,[0,T]) as follows. Approximate g by step functions ¢, € £L2(B,[0,T]),
ie., o — g in L2(B,[0,T]). Apply Iy to each of the ¢,. Since Z; is an isometry, the sequence
Tobn has a limit in L2(Q,P). This is what we define to be the Ito-integral Zg of g:

T
/0 9(t,w)dB, () = (Tg)() = I — lim (Togh) ().

Here is an example of a stochastic integral.

Example 4.2, The following identity holds:

T 1, 1
B;dB; = ~B% — ~T.
0 2 2

Proof. We choose an adapted approximation of B;(w), namely ¢, (t,w) of the example in
Section 4.1. By definition,

T n—1
/ ¢n(t)dB; = Y B;AB;,

where we use the shorthand notation B; := By, and ABj := By, — B,. Note that B; =
> o0<j<i AB;. We therefore have

B} = (Y aB;)?
j
=> (AB)?+2) (AB;)(ABy)
) 1<j
=> (AB)?+2)_ B;(AB)
i j
T
=S (AB)? +2 / $u(t)dB.
- 0
2
From Lemma 2.3 in Section 2.4 it now follows that

T T
1
IB = / BidB; = lim / ¢n(t)dB; = =(B7 —T).
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Note that the integral in the above example is actually different from what it would be
for a smooth function f with f(0) = 0, namely: fOT fdf(t) = % f(T)?. What the example
shows is that “stochastic integration is ordinary integration except that the diagonal terms
must be left out”. This will be made precise in Section 5, where we shall encounter a faster

way to calculate stochastic integrals.

4.3 Martingales

In Section 4.4 we shall prove that the Ité-integral w.r.t. Brownian motion of an adapted
square-integrable stochastic process always has a continuous version. For this we shall need the
interlude on martingales described in this section. For a general introduction on martingales
we refer to the book by D. Williams (1991).

Definition. By the conditional expectation at time ¢ € [0,7] of a random variable X €
L?(Q,P) we shall mean its orthogonal projection onto L?(2, F;,P), the space of random
variables that are determined by the Brownian motion up to time ¢. We denote this projection
by E(X | F:), or briefly E;(X).

In words, E;(X)(w) is the best estimate (in the sense of least mean square error) that can be
made of X (w) on the basis of the knowledge of B,(w) for 0 < s < t.

Definition. An adapted process M € L£2(B,[0,T)) is called a martingale (w.r.t. Brownian
motion) if

Es (M) = M for0<s<t<T.

A martingale is a “fair game”: the expected value at any time in the future is equal to the
current value. Note that Brownian motion itself is a martingale, since for 0 < s <t < T,

]Es (Bt) = Es (Bs + (Bt - Bs)) = Bs + Es (Bt - Bs) = Bs;
because B; — B, is independent of and hence orthogonal to any function in L?(Q, F;,P), in

particular, to Brownian motion.

Theorem 4.3 The stochastic integral of an adapted step function is a martingale with con-
tinuous paths.

Proof. This follows directly from the fact that Brownian motion has continuous paths and
satisfies the martingale property (use the definition of the stochastic integral of a step function
given in (4.1) in Section 4.1). O

The following powerful tool will help us prove that the It6-integral of any process in
L?(B,[0,T)) possesses a continuous version.

Theorem 4.4 (The Doob martingale inequality) If M, is a martingale with continuous
paths, then for allp > 1 and A > 0,

1
Pl sup [My| > X] < —E(M]).
0<t<T AP

24



Proof. We may assume that E(|Mr|P) < oo, otherwise the statement is trivially true. Let
Zy = |My|P. Then, since z +— |z|P is a convex function, Jensen’s inequality gives that Z; is
sub-martingale: for all 0 < s <t < T,

B (Zt) = By (|Mif?) 2 [Es (M) [P = |M; [P = Zs.

It follows in particular that E(|M;|P) < oo for all s € [0,7]. Let us discretise time and first
prove a discrete version of the Doob inequality. To that end we fix n € N and put t; = kT'/n,
k=0,1,... ,n. Let K(w) denote the smallest value of k for which Z;, > AP, if this occurs at
all. Otherwise, put K(w) = co. Then we may write, since [K = k] € Fy,,

> = =
Plygex, Wl 2 X) = 3 BIK =

"1

1
— p
= E(| M7 |P).
Here, the second inequality uses the sub-martingale property at time t;. To get the same for

continuous time, let A, denote the event [maxg<y<p |My, | > A]. Then we have Ay C Ay C
Ay C Ag C ---, and so, t — M; being continuous,

1
— n — i n p
]P[Oiltlf | M| > A] = P(nl Ol Az ) nhm P(Agn) < )\pE(|MT| )-

4.4 Continuity of paths

We shall use the martingale inequality of Theorem 4.4 in Section 4.3 to prove the existence of
a continuous version for our stochastic integrals. Two stochastic processes I; and J; are called
versions of each other if I;(w) and J;(w) are equal for all ¢ € [0,7] and almost all w € Q.
(recall Definition 2.3 in Section 2.3).

Theorem 4.5 Let f € L?(B,[0,T]). Let

I(w) = /0 F(5,w)dBy(w).

Then there exists a version Jy of I such that t — Jy(w) is continuous for almost all w € Q.
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Proof. The point of the proof is to turn continuity in L?(Q, P) into continuity of paths. This
requires several estimates.

Let ¢, € £L2(B,]0,T]) be an approximation of f by step functions. Put

Lo(t,w) = /0 (5, w)dBs ().

By Lemma 4.3 in Section 4.3, I, is a pathwise continuous martingale for all n. The same
holds for the differences I,, — I,,. Therefore, by Doob’s martingale inequality (with p = 2 and
A = ¢) and the Ité-isometry, we have

P [ sup [In(t) — I (1) > 5] < iQE((In(T) - Im(T))2)
0<t<T €
= L T B(n®) — b))t

= 6—2||¢n - ¢m||%2(B,[O,T])’

which tends to 0 as n,m — oo because ¢, is a Cauchy sequence. We can therefore choose an
increasing sequence 11,72, 13, ... of natural numbers such that

P [ sup |In,,, (t) — In, (t)]| > 2_11 <27k
0<t<T

By the first Borel-Cantelli lemma, it follows that
P [ sup I, (t) — I ()] > 27 for infinitely many k] =0.
0<t<T

Hence for almost all w there exists K(w) such that for all £ > K(w),

sup | I, , (t,w) — I, (t,w)| < 27%,

0<t<T E+1 (

so that for | > k > K(w),
-1 '
sup |In, (t,w) — I, (t,w)| < 22—7 < 9—(k=1)
0<t<T =~

This implies that ¢ — I, (t,w) as k — oo converges uniformly to some function ¢ — J(¢,w),
which must therefore be continuous. It remains to show that J(¢,w) is a version of I(¢,w).
This can be done by Fatou’s lemma, namely for all ¢ € [0, T7:

/ () — I(t, w)[2P(dw) = / lim inf |7, (1, 0) — (1) *B(d)
Q

< liminf / o (£ ) — I(t,0)[P(dw) = 0.

k—00
Od

From now on we shall always take fot f(s,w)dB;s to mean a t-continuous version of the
integral.

We have completed our construction of stochastic integrals. In Sections 5-8 we shall
investigate their main properties.
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5 Stochastic integrals and the It6-formula

In this chapter we shall treat the It6-formula, a stochastic chain rule that is of great help in
the formal manipulation of stochastic integrals.

We say that a process X; is a stochastic integral if there exist (square-integrable
adapted) processes Uy, V; € £L?(B,[0,T]) such that, for all ¢ € [0, 7],

t t
Xt=X0+/ Usds—l—/ V,dB,. (5.1)
0 0

The first integral on the r.h.s. is of finite variation, being pathwise differentiable almost every-
where. The second integral is an It6-integral and therefore a martingale. A decomposition of
a process into a martingale and a process of finite variation is called a Doob-Meyer decomposi-
tion. Processes in £2(B, [0, T]) that have such a decomposition are called “semi-martingales”.
Equation (5.1) is conveniently rewritten in differential form:

dXt = Utdt + V;gdBt (52)

Example 5.1.; In Section 4.2 it was shown that the process B? satisfies the equation

d(B?) = dt + 2B;dB;. (5.3)

5.1 The one-dimensional Ito-formula

Relation (5.3) is an instance of a general chain rule for functions of stochastic integrals that can
be stated as follows: “the differential must be expanded to second order and every occurrence
of (dB;)? must be replaced by dt”. Here is the precise rule.

Theorem 5.1 (Itdo-formula). Let X; be a stochastic integral. Let g: [0,00) x R — R be
twice continuously differentiable. Then the process Y; := g(t, X;) satisfies

dyg dyg g 9
dY; = E(t,Xt)dt + %(ta X3)dX; + %@ (t, X¢) (dXy)”7, (5.4)

where (dX;)? is to be evaluated according to the multiplication table:

dt | dB;
a |0 |0
dB; | 0 | dt

i.e., with the Doob-Meyer decomposition (5.1):

dX; = Updt + V;dBy
(dX;)? = V2dt.
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In terms of the explicit form (5.2) of X;, we can write (5.4) as

dY; = U/dt + V/dB;

with
dg dg d%g
Up = 5t (t, Xt) + 97 (t, Xi) Up + %3352 (t, X4) V7
9g
V;’ = _8.'1,‘ (t,Xt) V;j,

which in turn stands for
T T
Yr =Yy +/ U;ds+/ V/dBs.
0 0

The third term in the r.h.s. of (5.4) is called “the It correction”.

We shall prove Theorem 5.1 via the following extension of Lemma 2.3 in Section 2.4.

Lemma 5.2 If A; is a process in L2(B,[0,T]), then

n—1 T
Y Ay (ABj)? — / Aidt  in L2(Q,P) as n — .
3=0 0

Proof. We leave this as an exercise. O

We now give the proof of Theorem 5.1. It will be a bit sketchy, but the details are easily
filled in.

Proof. We shall use the by now standard notation

Aty = A" = ¢

W — " and AB;=AB{" =B,

) — By ,
j+1 J

where the points (t;n));?zo with

0=t <t <. <t =T for n=1,2,3,...

form a sequence of partitions of [0, 7] whose mazes §,, = [Joax Atg-") tend to zero as n — oo.
<i<n

We shall generally write X; for X,.

1. First, we may assume that g, %, %, %, % and % are all bounded. If they are not,
then we stop the process as soon as the absolute value of one of them reaches the value IV,

and afterwards take the limit N — oo.
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2. Next, using Taylor’s theorem we obtain

g(T, X1) — 9(0, Xo0) = Z (9(tjs1, Xj1) — g(t;, X;))
39
_Z (t;, X;)At; +Z (1, X;)A
QZ o2 t], At] +28t8 tJ,Xj)AtjAXj

Z 5 (6, X5) (AX;)* + ) e,
J
where ¢ = o (|At;[*> + |AX;|?) for all j.
3. The first two terms converge because ¢, — 0:
Zag(t X)At—)/ (t, X;) dt,
ot at

39
oz

dg

(t]’ j)AXj or

- (t5, X;) (UjAt; + V;ABj) + o(1)

—>/ —9(tX)Udt+/T@(tX)VdB

4. The third and the fourth term tend to zero. For instance, if in the fourth term we substitute
AX; = UjAt; + V;ABj, then a term

2
a(z—a‘(;(t], DViAGAB; =Y ¢;At;AB; (5.5)
J J

arises. But, because c; is F;-measurable and |c;| < M for all j, it follows that (5.5) tends to
zero because

2
]E( (3" ciataB;) ) = Y E(&)(At)? — 0.
J J
5. The fifth term again converges:
d%g
%Zﬁ (AX;)? = 22 9 (15, X;) (Uj At + V;AB;)? 4 o(1)
J
= Z 9 (45, X;) (U3(At;)? + 2U;V;At; AB; + VE(AB))?) + o(1)
T 52
oy 2
—>%/ oz Q(t.?’ J)V;t dt
0
by Lemma 5.2 (recall the multiplication table in Theorem 5.1). O
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5.2 Some examples

Example 5.2.; We can now generalise (5.3) as follows:
1
d(BP) =nB" 1dB; + 5un — 1)BM2dt (5.6)

(use Theorem 5.1 with g(t,z) = z™, Uy = 0.)

Example 5.3.; More generally, we have for every twice continuously differentiable function
f:R—=R

1
df (By) = f'(Bt) dBt + §f"(Bt) dt . (5.7)
Example 5.4.; With the help of It6’s formula (5.6) it is possible to quickly calculate an
integral like fOT B2dB;, in much the same way as ordinary integrals. We make a guess for the

indefinite integral, calculate its derivative, and where needed we apply a correction. In the
case at hand we would guess the integral to be something like B}, so we calculate V; = 1):

d(B}) = 3B}dB, + 3B,(dB;)? = 3B7dB; + 3B,dt

= B}dB; = 1d(B}) — B,dt
T T

— / B{dB, = i{B} — / Bydt.
0 0

Example 5.5.; In the same way it is found that

T 1 (T
/ sinBtdBtzl—cosBT—E/ cos B; dt .
0 0

Example 5.6.j Let f be differentiable. We can rewrite Ny = fOT f(t)dBy; as follows, (use
Theorem 5.1 with g(¢,z) = f(t)z, Uy =0, V; = 1):

d(f()B) = d(f(8) B + F(H)dB,
T T
— [ 1B = £(0)Br— 108 - [ F0B

This is a partial integration formula for the integration of functions with respect to Brownian
motion.
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Example 5.7.; Let us solve the stochastic differential equation
dXy = BXydB,

which is a special case of the growth equation in Example 1 in Section 1. We try ¥; =
exp (8By), and obtain with the help of the It6-formula that

dY; = BY; dBy + 1 6°Y, dt.

This is obviously growing too fast: the second term in the r.h.s., which is the It6-correction,
must be compensated. We therefore try next X; = exp (—at)Y;, finding

dX; = —ae~*Ydt + e~ *'dY;
1
== —aXt dt + (,BXtdBt + E,BQXtdt)

The dt terms cancel if a = % (3? and we find the solution
X, = SBi— 567

This process is called the ezponential martingale.

5.3 The multi-dimensional Ito-formula

Theorem 5.3 Let B(t,w) = (Bi(t,w), Ba(t,w), ..., Bn(t,w)) be Brownian motion in R™
consisting of m independent copies of Brownian motion. Let X (t,w) = (X1 (t,w), ... , X1(t,w)
be the stochastic integral given by

m
dX;(t) = Us(t)dt + Y Vi;(t)dB;(t)  (i=1,...,n), (5.8)
j=1
for some processes U;(t) and V;;(t) in £L* (B, [0,T]). Abbreviate (5.8) in the vector notation
dX =Udt+ VdB.

Let g: [0,T]xR* — RP be a C%-function. Then the process Y (t,w) := g(t, X1(t),... , Xp(t))
satisfies the stochastic differential equation

dgi - 82.%
dYi(t) = = i (4, X)) dt+Z . (t, Xy) dX;(t) + 5 Y 5, (t, X;) dX;(t)d X (t)
Jh=1 (5.9)
(Z: 17"'7p)7

where the product dX;dX}, has to be evaluated according to the rules

dB; dBy = 5jk dt
dB;dt = (dt)* = 0.
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Equation 5.9 is the multi-dimensional version of It6’s formula, and can be proved in the
same way as its one-dimensional counterpart. Be careful to keep track of all the indices. The
easiest case ism =n, p= 1.

Example 5.8.; (Bessel process). Let Ri(w) = ||B¢(w)||, where B; is m-dimensional Brown-
ian motion and || - || is the Euclidean norm. Apply the Ité-formula to the function r: R™ —

Ry : z > [[z]|. We compute 3 a’" = 7 and ‘9 L =1

2
x4
=% So we find

m
B; m—1
dR = JdB —— =7 |dt= —LdBj + ———dt.
Z +ZZ<R R3> JZ:IR it 2R

For notational convenience we have dropped here the arguments ¢ and w.

The next theorem gives a way to construct martingales out of Brownian motion. A
function f on R™ is called harmonic if Af = 0, where A denotes the Laplace operator

2
AN
Theorem 5.4 If f: R™ — R is harmonic, then f(B;) is a martingale.

Proof. Write out

(B =Y 5L (B() dB %ZZ ade; (B(0) BB, 0)

The second part in the r.h.s. is zero because dB;(t)dBj(t) = 0;;dt and Af = 0. Integration
yields

This is an It6-integral and hence a martingale. O

We can understand Theorem 5.4 intuitively as follows. A harmonic function f has the
property that its value in a point z is the average over its values on any sphere around z.
This property, together with the fact that multi-dimensional Brownian motion is isotropic,
explains why f(B;) is a “fair game”.

The following technical extension of It6’s formula (5.7) will be useful later on.

fu

Figure 3: The graph of f;/ approximating f” having a jump.
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Lemma 5.5 It6’s formula for a function of Brownian motion

t t
F(B) = £(Bo) + /0 F'(By)dB, + /0 F(B,) ds (5.10)

still holds if f: R — R is C! everywhere and C? outside a finite set { z1,... ,zx }, with f"
bounded on some neighbourhood of this set.

Proof. Take f; € C*(R) such that fy — f and f; — f’ as k — oo, both uniformly, and
such that for z ¢ { z1,... ;25 }

fi(z) — f'(z) as k — o0
|fr(z)] <M in a neighbourhood of {z1,...,zn5}.

(Fig. 3 shows the graph of f; approximating some f” with a jump.) For f; we have the Ito
formula

t t
fe(By) = fu(Bo) + /0 Fi(B.)dB, + 1 /0 F/(By)ds.

In the limit as k — oo this equality tends, term by term in L2(€,P), to (5.10). Indeed,
the distances ||fx(B:) — f(By)|| and ||fx(Bo) — f(Bo)|| tend to 0 by the uniformity of the
convergence fr — f, the norm difference || f(f [1.(Bs) dB, — f(f 1'(Bs) dBs|| tends to 0 by the
uniformity of the convergence f; — f' plus Itd’s isometry, and the difference

t t 2 t
E (/ fr (Bs)ds — / f"(Bs) dS) <t / / (f#(Bs(w)) — " (B;(w))) *P(dw) ds
0 0 o JO
tends to 0 by dominated convergence combined with the fact that

]P’®)\({(w,s) € Qx[0,t] : Bs(w) € {z1,-.. ,zN}}) = 0.

5.4 Local times of Brownian motion

As an application of Lemma 5.5 we shall prove Tanaka’s formula for the local times of Brow-
nian motion.

Theorem 5.6 (Tanaka) Let t — B; be a one-dimensional Brownian motion. Let A denote
the Lebesgue measure on [0,T]. Then the limit

1
Lii=1lim o A( 4] 5 By € (—&,0)})
pe=limoA({s €[0,4] = By € (—e,e) }
exists in L?(),P) and is equal to

t
Ly = |By| — |Bo| — / sgn(By)dBs.
0

(Think of L; as the density per unit length of the total time spent close to the origin up to
time ¢.)
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—€ €

Figure 4: The function g.(t).

Proof. For € > 0, consider the function
() || if |z| > ¢
Tr =
9 s (e+2%/e) if|z| <e,

as shown in Fig. 4. Then g, is C?, except in the points { —¢,¢ }, and it is C! everywhere on
R. Apply Lemma 5.5 to get

t t
%/0 gél(Bs)dS = g¢(Bt) — g9:(Bo) _/0 gg’-:(BS)sta (5.11)

where g (z) and g (z) are given by

o (z) = {sgn(ac) if |z|>¢

z/e if |z|<e
and
gg(x) = %][(—6,6)('%.) if z g_ﬁ {_555} :
Now, the limit as € | 0 of the Lh.s. of (5.11) is precisely L;. Moreover, we trivially have

9:(B;) — |Bi| and g.(By) — |By| as € | 0. Hence it suffices to prove that the integral in the
r.h.s. of (5.11) converges to the appropriate limit:

/t (9.(Bs) —sgn(B,)) dB; — 0 in  L*(,P).
0

To see why the latter is true, estimate

2 2

! 1
/0 T c)(Bs) (EBS - sgn(Bs)) dB;

=E ( / 1 (B) (13 - sgn(Bs))2 ds>

g/otIP’(Bse(—s,e))ds

H/Ot (:(Bs) — sgn(By)) dB;

—0 as €0,
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where in the second equality we use the Ité-isometry, in the inequality we use that |Bs| < ¢
implies that |¢e ™! Bs—sgn(B;s)| < 1, and the last statement holds because the Gaussian random
variable B; (s > 0) has finite density. It follows that L; exists and can be expressed as in the
statement of the theorem. O

Note that for smooth functions f,

F@®)] - 1£0)] - /0 sgn (£(5)) f(s)ds = 0
because

Lol =sm @) F@) (G0 £0).

Thus, the local time is an It6-correction to this relation, caused by the fact that d|B;| #
sgn (B;) dBy: if By passes the origin during the time interval At;, then |By, , — By;| need not
be equal to sgn(By;)ABy;. The difference is a measure of the time spent close to the origin.

The existence of the local times of Brownian motion was proved by Lévy in the 1930’s
using hard estimates. The above approach is shorter and more elegant. What is described
above is the local time at the origin: L; = L;(0). In a completely analogous way one can prove
the existence of the local time L;(x) at any site z € R.

The process plays a key role in many applications associated with Brownian motion.
For instance, it is used to define path measures that model the behaviour of polymer chains.
Let Py denote the Wiener measure on the time interval [0, 7’]. Fix a number 8 > 0, and define
a new measure ng on path space by setting

%m - Zigexp -5 [ @O |

where Zg is the normalising constant. What the measure QIHW does is reward paths that
spread themselves out compared to Brownian motion. We may think of Py as modeling the
erratic spatial distribution of the polymer and of the exponential weight factor as modeling its
stiffness or self-repellence. The parameter (3 is the strength of the self-repellence. It is known
that

lim Qg (@ € [9(B) — &,9(B) +E]) =1 Ve>0

for some constant ¥(f3), called the asymptotic speed of the polymer, given by

9(B) = Cst - B3.

(See R. van der Hofstad, F. den Hollander and W. Koénig (1997).) The Brownian motion
corresponds to § = 0 and has zero speed.
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6 Stochastic differential equations

A stochastic differential equation for a process X (t) with values in R" is an equation of the
form

dXZ(t) = bi(t,Xt) dt—i—zm:(fij(t,Xt) dBj(t) (Z =1,--- ,n). (61)
j=1

Here, B(t) = (Bi(t),Ba(t),--- ,Bn(t)) is an m-dimensional Brownian motion, i.e., an m-
tuple of independent Brownian motions on R. The functions b; and o0;; from Rx R" to R with
1=1,2,...,nand j =1,2,...,m form a field b of n-vectors and a field ¢ of n X m-matrices.
A process X € L2(B,[0,T]) for which (6.1) holds is called a strong solution of the equation.
In more pictorial language, such a solution is called an Ité-diffusion with drift b and diffusion
matriz oo®.

In this section we shall formulate a result on the existence and the uniqueness of It6-
diffusions. It will be convenient to employ the following notation for the norms on vectors
and matrices:

n n m
2| => "2}  (@eR);  |o|?=>> of=tr(co*) (0 € RV™),
o1

i=1 j=1

Also, we would like to take into account an initial condition X (0) = Z, where Z is an R"-valued
random variable independent of the Brownian motion. All in all, we enlarge our probability
space and our space of adapted processes as follows. We choose a probability measure u on
R” and put

Q=R x Q"™;
Fi=BR") @ FF™ (t€[0,T]);
P =y PO™;

Z:Q 5 R": (z,w) = 2
L3(B,[0,T)) :={X € L*(R", u) ® L*(Q, Fr,P)®™ @ L?[0,T] ® R" |

w = Xi';(w) is Fi-measurable}.

This change of notation being understood, we shall drop the primes again.

6.1 Strong solutions

Theorem 6.1 FixT > 0. Let b: [0,T]xR* - R* ando: [0,T]xR* — R"™™ be measurable
functions, satisfying the growth conditions

162 Vo2 <O +]zl) (t€[0,T], zeR")
as well as the Lipschitz conditions

16(t, 2) = b(t, y)| V llo(t, z) —o(t,y)l| < Dz —yll (¢t €[0,T], z,y €R"),
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for some positive constants C and D. Let (By);c[o,r] be m-dimensional Brownian motion and
let ;1 be a probability measure on R" with [, ||z||*1(dz) < co. Then the stochastic differential
equation (6.1) has a unique continuous adapted solution X (t) given that the law of X (0) is
equal to p.

Proof. The proof comes in three parts.

1. Uniqueness. Suppose X,Y € L?(B,[0,T]) are solutions of (6.1) with continuous paths.
(Continuity will be proved in part 3). Put

Ab;(t) == bi(t, Xy) — bi(t,Y})
Aoy(t) = 04i(t, Xy) — 035(t, V3).
Applying the inequality (a + b)> < 2(a” + b%) for real numbers a and b, the 1ndependence

of the components of B(t), the Cauchy-Schwarz inequality ( fot g(s)ds)? <t fo s)2ds for an
L?-function g, the multi-dimensional Ité-isometry and finally the Llpschltz condltlon, we find

E@&—nwy=zﬁm&w—nwﬁ

2
t

—ZE Ab, ds—l—Z/ Ao;j(s)dB;(s)

0

2
t

<2ZE bi( Z/ Ac;j(s)dB;(s)
0
t n mo ot
- (s))2ds
_221@((/0 Abi(s )+2;]E ;/0 (Aoij(s))2d
th/tE<§:Abi(s)2> ds+2/ ZZA% )? | ds
0 i=1

i=1 j=1

Z%AMWMW@HAHMmWW

t
2(t + 1)D2/ E|| X, — Y;||ds.
0
So the function f: s E ( 11X, — Yt||2> satisfies the integral inequality

o<sw<a[ s (el (62)
0
for the constant A = 2D?(T + 1).

Lemma 6.2 (Gronwall’s lemma) Inequality (6.2) implies that f = 0.
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Proof. Put F(t) = f(ff(s)ds. Then F(t) is C and F'(t) = f(t) < AF(t). Therefore

S (e HR() = e (1) - AP() <0.

Since F(0) = 0, it follows that e *4F(t) < 0 implying F () < 0. So we have 0 < f(t) <
AF(t) <0 and hence f(t) = 0. ]

Thus, we have E <||Xt - Y{g||2) =0 for all ¢ € [0,7]. In particular,
Vi€ [0,T1NQ: Xi(w) = Y3 (w) for almost all w.
Now let
N:={weQ|Fte[0,TINQ: Xi(w) # Yi(w) }.
Then N is a countable union of null sets, so P(N) = 0. For Q\ N we have for all ¢t € [0,7]NQ,
Xi(w) = Yi(w),

and since X; and Y; have continuous paths we conclude that for almost all w the equality
extends to all ¢t € [0,7]. This completes the proof of uniqueness.

2. Ezxistence. We shall find a solution of (6.1) by iterating the map
L£%(B,[0,T])) — L%B,[0,T])): X - X

defined by
B t t
Xt:Z+/ b(s,Xs)ds+/ o(s, X.)dB..
0 0

Let us start with the constant process X} := Z, and define recursively
x*D .= x® (k> 0).

The calculation in part 1 can be used to conclude that
I | ! 2 2
]E(HXt —Y}H ) < A/ IE(||XS —v| )ds for any X,,Y, € L2(B).
0
Tteration of this result yields, for k& > 1 and the choice X; = X't(k) and Y; = X't(k_l),
2 . . 2
(<P -= - )
t 2
< A/ E (HXS(’“) - Xs(k_l)H ) ds
0
t Sk—1 S1 2
SA]C/ dSkl/ d3k2"‘/ dSO]E(HX‘Sé)_ZH )
0 0 0

Ak k
<SLK (e,
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where we insert

R t t
x{© :Z-l—/ b(s,Z)ds-l—/ o(s, Z)dB,
0 0

)

t
/ o(s,Z)dBs
0

and K is given by

¢ t
K:= sup E / b(s,Z)ds+/ o(s, Z)dBs
t€[0,T] 0 0

t 2
<2 sup {IE( / b(s,Z)ds )—HE(
t€[0,T 0

< 2T?C?E(1+|Z)))? + 2TCE (1 + || Z||)

)

<20%(T? + T)E(1 + || Z]|)?,

which is finite by the growth condition and the requirement that Z has finite variance. Now let
X = £%(B,[0,T)))- limg_,o X ). The existence of this limit follows because 3, /AFtF/k! <
oo (Cauchy sequence). Then

lim xX®*+t) = x,

k—00

X = (EQ(B, [0,7])- lim X(k)>”: £%(B,[0,T])

k—o00

So X is a solution of (6.1).

3. Continuity and adaptedness. By Theorem 4.5 the paths ¢t — X;(w) can be assumed to be
continuous for almost all w € 2. The fact that the solution is adapted is immediate from the
construction. |

6.2 Weak solutions

What we have shown in Section 6.1 is that there exists a strong solution of (6.1), i.e., a
solution that is an adapted functional of the Brownian motion. In the literature on stochastic
differential equations often a different point of view is taken, namely one where the Brownian
motion itself is also considered unknown. This leads to a so-called weak solution of stochastic
differential equations, i.e., a solution in distribution.

Definition. A weak solution of (6.1) is a pair (By, X;), measurable w.r.t. some filtration
(Gt)te[o,r] on some probability space (2, G, P), such that B; is m-dimensional Brownian
motion and such that (6.1) holds.

The key point here is that the filtration need not be (Ft)icjo,r] = o((Bs)sefo,q): if it is,
then we have a strong solution.

Definition.
1. Strong uniqueness is uniqueness of a strong solution.

2. Weak uniqueness holds if all weak solutions have the same law.
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By the following example we illustrate the difference between these two concepts.

Example 6.1.; (Tanaka). This example is related to our example of Brownian local time in
Section 5.4. Let B; be a Brownian motion and define

t
B; ::/ sgn(B;)dBs.
0

Since dB; = sgn(B;)dB; we have, by It6’s formula in Lemma 5.4,
d(B?) = 2BydB; + (dB;)?
with (dB;)? = sgn(B;)2(dB;)? = (dB;)? = dt. Hence B; is a martingale with quadratic
variation ¢ (see Section 2.4):
~ t ~ ~
B} - 2/ B,dB; = t.
0

Since B; satisfies the requirements (BM1)-(BMS5) of Section 1, it must be a Brownian
motion.

Turning matters around, B; is itself a solution of the stochastic differential equation
dB; = sgn(B;)dB;, (6.3)

since By = fg dB; = f(f sgn(B;)%2dBs = f(f sgn(B;)dB;. Because every solution of (6.3) is
a Brownian motion, we have weak uniqueness. However, because —B; obviously is also a
solution of (6.3), there are two solutions of (6.3) for a given process B;. In other words, we
do not have strong uniqueness.

Taking this argument one step further we find (cf. Theorem 5.6):
B(t) = |B(t)| - |B(0)| — Ly,
where L, is the local time at the origin. By its definition, L, is adapted to the filtration
(Gt)repo,]
generated by (|B|)¢co,71- Hence so is By. Tt follows that F; C G;, where
(-7:— t)te[o,T]

is the filtration generated by (Bt)te[O,T]- However, since B; is not Gi-measurable (its sign is
not determined by G;), it is not F;-measurable.
Note that (6.3) is an It6-diffusion with b(¢,z) = 0 and o(¢,z) = sgn(z). The latter is

not Lipschitz, which is why Theorem 6.1 does not apply.
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7 It6-diffusions, generators and semigroups

The goal of this section is to give a functional analytic description of It6-diffusions that will
allow us to bring powerful analytic tools into play.

7.1 Introduction and motivation

An Ité-diffusion X (with initial condition X§ = z € R") is a Markov process in continuous
time. If we suppose that the field b of drift vectors and the field o of diffusion matrices are both
time-independent, i.e., X}’ is the solution starting at = of the stochastic differential equation

dX; = b(Xt)dt + O'(Xt)dBt (71)

(where b and o satisfy the growth and the Lipschitz conditions mentioned in Theorem 6.1),
then this Markov process is stationary (= time-homogeneous) and can be characterised by
its transition probabilities

Fi(z,B) :=P[X{ € B] (t>0),

where B runs through the Borel subsets of R”. These transition probabilities satisfy the
one-parameter Chapman-Kolmogorov equation

Prya(z,B) = / .. Pl dy)P.(0,B). (7.2)

An alternative way to characterise an It6-diffusion is by its action on a sufficiently rich class
of functions f : R* — R". Namely, if we define S; by

S =BG = [ P, (7.3
then (7.2) leads to
St+5 = St ] Ss, (74)

i.e., the transformations (S;);>0 form a one-parameter semigroup. Such a semigroup is deter-
mined by its generator A, defined by

1
Af izltlfglg(stf—f)a (7.5)

which describes the action of the semigroup over infinitesimal time intervals. In what follows
we make the above observations more precise and we study the interplay between the diffusion
X7, its generator A and its semigroup (St)s>0-

7.2 Basic properties

Let ¢ > 0, and for s > ¢t let Xz’m denote the solution of the stochastic differential equation
(7.1) with initial condition X}* = z.

Lemma 7.1 (Stationarity) The processes s — X.* and s — X? , are equal in law for
s>t.
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Proof. These processes are solutions of the equations

dXb® =
dXy

(X$7)ds + o(X®)d(Bs — By)
(X5-t)ds + o(X54)d(Bs )

b
b

respectively, for s > ¢. Since By — B; and B,_; are Brownian motions on [t,T], both starting
at 0, the two processes have the same law by weak uniqueness (which is implied by strong
uniqueness obtained in Theorem 6.1). O

Proposition 7.2 (Markov property) Let X (¢ > 0) denote the solution of (7.1) with
initial condition X§ = z. Fix t > 0. Let Cyo(R™) be the space of all continuous functions
R™ — R that tend to 0 at infinity. Then for all s > 0 the conditional expectation E(f (X}, ;)| F;)
depends on w € ) only via X['. In fact,

E(f (Xi4s)[Ft) = (Ssf)(XY)-

Proof. Fixt>0. For y € R* and s > t, let
Yi(y) == X2,
Then, according to Lemma 7.1, Y;(y) and X have the same law. Hence, for all f € Cy(R"),

E(f(Ys(v) =E(f(XY)) = (S:)(y)-

On the other hand, the random variable Ys(y) depends on w € € only via the Brownian
motion u — By(w) — By(w) for u > t, so Ys(y) is stochastically independent of F;. By strong
uniqueness we must have, for s > 0,

Y (X7) = X{y, as.

since both sides are solutions of the same stochastic differential equation (7.1) for s > 0 with
initial condition Yy(X7) = XF. As X} is Fi-measurable, we now have

E (f(X{y o)) (w) = /,EQ F (Ys(XF (W) (@) P(dw') = (Ssf) (X} (w))

where w represents the randomness before time ¢ and w’ the randomness after time ¢. |

Definition. Let B be a Banach space. A jointly continuous one-parameter semigroup of
contractions on B is a family (S;);>o of linear operators Sy : B — B satisfying the following
requirements:

CS1. [|Sif[| < [|f]| for all £ >0, f € B;

CS2. Syf = f for all f € B;

CS3. Siys=Si08; forallt,s > 0;

CS4. the map (¢, f) — Sif is jointly continuous [0,00) x B — B.
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We choose B = Cy(R"). The natural norm on this space is the supremum norm
[f]l = sup [f(z)].
TER™
For f € Cy(R") we define
(Sef)(x) == E(f(XY)),
where X7 (¢ > 0) denotes the solution of (7.1) with initial condition X§ = z.

Theorem 7.3 The operators S; with t > 0 form a jointly continuous one-parameter semi-
group of contractions Cy(R") — Cp(R").
Proof. We prove properties 1-4 in Definition 7.2.

1. Fix t > 0 and f € Cy(R"™). We show that the function S;f again lies in Cy(R"), by showing
that it is continuous and tends to 0 at infinity. The inequality ||S;f|| < ||f]| is obvious from
the definition of S;.

Continuity: Choose z,y € R" and consider the processes X¥ and X/. The basic estimate in
Section 6.1 yields

t
B|X7 - X}|* <2 (Ilw —yllI* + A/O B X5 - X§’||2d8>

for some constant A. Putting F(t) := fot E|[| X% — X?||?ds, we may write this as

d
ZF(0) < 2]z —y* + 24F(2).
So
d —2At 2 —2At
— < — i
= (P @) < 2z -yl

Hence, as F(0) = 0,

e (1) < flo —yl g (1—e M),
or
AF(t) < o — y]? (240~ 1) .
We thus obtain that
E| X7 — X{|? < 2|le - yl|* + 24F (1) < 2[|z —y|?e*. (7.6)
Now choose € > 0. Since f is uniformly continuous on R™, there exists a §' > 0 such that

vy €eRY 2’ =y <6 = |f(@) - F) <

N[ ™
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It follows that for z,y € R® not more than § := §'y/ze~4/2,/2||f|| apart we may estimate
(Si)(@) — (Sif) )| = [E(X7) ~ B(r(xD))|
< IE|f(Xt“”) — f(XP)]
= +2|f| B [“Xt x{| > o]

N |

e —y)?

(5’)2
<e¢g,

where the third inequality uses the Markov inequality and (7.6). We conclude that S.f is
uniformly continuous as well.

Approach to 0 at infinity: It suffices to prove that there exists a 7 > 0 such that for all
t € [0, 7] we have

lim (Sif)(z) =

llz[|—00

Indeed, the same then holds for all £ by the semigroup property. Heuristically speaking, we
must prove that the diffusion cannot escape to infinity in a finite time. We start with the
estimate

Ak k
]EHXf’(k“) —Xf’(k)H < k—Dt(l + ||z]))2

for the iterates of the map X +— X in Section 6.1, starting from the constant process Xf’o = z.
Since X[ =z + >, (X, o(k+1) — x=(k)) (because (Xf’(k) — X7 as k — o0), it follows that

E| X7 —z|* < Dy(1 + ||z]))” (7.7)

with D; = Dt(}, /AFtk /k!)?. Now choose ¢ > 0. Let M > 0 be such that |f(z')| < £ for
all z' € R* with ||z|| > M, and let 7 > 0 be such that 16D.||f|| < e. Then, by the trlangle
inequality in R” and by Chebyshev’s inequality, we have for all z € R" with ||z|| > 2M Vv 1
and all ¢ € [0, 7]:

1(Sef) (@) < §+ AT < M]

&
< g NP [Ile — x| > 3lll]

£

< g+l QEIIXt z||?
|z ||

13
=+l
2 |z ||2
15 1 2
=+ | f|l 4D <—+1>
2 NTET

< €.

Dr(1+||z]))”

IA

Since ¢ is arbitrary, this proves the claim.
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2. From the initial condition X§ = z it is obvious that (Sof)(z) = E(f(X{)) = f(z).

3. The semigroup property of S; is a consequence of the Markov property of X;. Namely, for
all s,¢ > 0 and all x € R":

4. To prove the joint continuity of the map (¢, f) — Sif, it in fact suffices to show that
Sif — f as t ] 0. Indeed, for all s > ¢ >0,

|Sef — Ssgll = |Se(f — Ss—t9)ll < ||f — Ss—egll < |If — gll + lg — Ss—9]|-

Note that from (7.7) it follows that lim; o E|| X¥ —z||? = 0. Now again take ¢ > 0. Let § > 0 be
such that |z —y|| < § = |f(z)—f(y)| < &/2. Let tg > 0 be such that E|| XF —z||? < £62/4]|f||
for 0 <t < ty. Then for ¢t € [0,ty] we have, again by Chebyshev’s inequality,

1(Sef) (z) — f (2)| = ‘/Q (f (X¢(w)) = f(2)) P (dw)

> + 20 FIPIXF (@) - all > 4]

IN

e, 2l :
<2+ 20LE|XE — o

<eE.

7.3 Generalities on generators

We next describe some basic theory for one-parameter semigroups on Banach spaces. (We
refer to the book of E.B. Davies (1980) for further details.)

Definition. The domain of a generator A of a one-parameter semigroup (S;);>0 on a Banach
space B is defined by

Dom(A) := { feB

.1 .
]tljgl? (Stf = f) ex1sts} ,
and for f in this domain, Af denotes the limit.

This definition leads to the following.

Proposition 7.4 Let A be the generator of a jointly continuous one-parameter semigroup
(St)t>0 on a Banach space B. Then

(i) Dom(A) is dense in B;

(ii) S; leaves Dom(A) invariant: S;(Dom(A)) C Dom(A);
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(iii) Vf € Dom(A): S, Af = AS,f = L£8,f.

Proof. (i). For f € B and € > 0 we define

1 13
= —/ Sy fdt.
€Jo
Then lim, o f; = f, so { fe]e > 0, f € B} is dense in B. But we also have
1(S -0 f. = 1S— Sfdt
h h e = h h t
1 h-+¢
== / Stfdt—/ Stfdt)

he 0

(
=i< StSfdt—/ Stfdt>
(

—

ESEf—f) as h | 0.
So fe € Dom(A), and hence Dom(A) is dense in B.
(ii),(iii). If f € Dom(A), then

G- EN =5 (3G -D () > s4f ashlo

So S;f € Dom(A) and AS;f = S;Af. The identity AS;f = %Stf follows from the definition
of A. O

Since S; is the solution of the differential equation %St f = AS:f with initial condition
So = 1, it is customary to write

St = etA

The next theorem gives us an explicit formula for the generator of an Ité-diffusion on
a large subset of its domain (namely, all functions that are twice continuously differentiable
and have compact support).

Theorem 7.5 Let (S;)¢>0 be the one-parameter semigroup on Cy(R"™) associated to an Ito-

diffusion with coefficients b and o. Let A be the generator of (S})i>o. Then C?(R") C Dom(A),
and for all f € C2(R"):

2
Zb +3 Z )%)ij Ti;;j (z). (7.8)

Proof. Denote the r.h.s. of (7.8) by A’f. By Itd’s formula we have

O*f
Zaxz X;) dX;(t 228 0] (X;) dX;(t)dX;(t).
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Since dX;(t) = b; (X¢) dt + >, 04j(X¢)dB;(t), we have

dX;dX; = (Z O'ilchlc> (Z Ujlde) = (Z "ik"jk) dt = (00");; dt.
k l k

Using the condition X§ = x, we conclude that for any f € CCQ(R"),
t
7 - st = X g, ()7 O a0 + [ (D) 0D . (19
(2

The first part on the r.h.s. is a martingale and therefore

0 t )

t
(Af) () = lim ; (E(f (XT)) = f (z)) = hmE( /0 (A'f) (X3) d8> - (7.10)
Since A’f is a continuous function, we have almost surely
¢
tim [ (AN s — A1) @),

and since A’f is bounded we can apply dominated convergence to the r.h.s. of (7.10) and
conclude that (Af)(z) = (A'f)(z). O

Theorem 7.5 shows that on C2(R") the generator A acts as a second-order differential
operator, with a first-order part coming from the drift and a second-order part coming from
the diffusion. This fundamental fact forms a bridge between the theory of partial differential
equations and the study of diffusions.

In general it is difficult to calculate the evolution semigroup S;, but in a few exceptional
cases, such as that of the Ornstein-Uhlenbeck process, the differential equation %St = S;A
can be explicitly solved.

Proposition 7.6 Let  and o be positive numbers, and let (S;);>0 be the semigroup of
contractions Cp(R) — Co(R) associated to the stochastic differential equation

Then for all f € Cy(R) an z € R,

O e exp( ve ;?,Z))f(y)dy.

Exercise Prove this proposition by checking explicitly that for all £ > 0

d
Estf = St(Af) ’

where A is the generator of the Ornstein-Uhlenbeck process, given for f € C3(R) by
Af(z) := —naf'(z) + 507 f"(z) .

Below we shall give a stochastic proof.
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Proof. First note that the solution X7 of (7.11) with initial condition X§ = x is given by
XF =ze ™+ 0Ny, ,

where fi(z) = 1jo9 (z)en@=t)_ (Cf. (3.3).) For t > 0, let -y, denote the Gaussian density with
mean 0 and variance 2| f;||2 = 02(1 — e ~27)/2n, and for f € CZ(R), let f denote the Fourier
transform of f, so that

f@) =5 [ i),

:E e

Then, since E(e“"5) = 44(w), we have, using Fubini’s theorem and the property that the

Fourier transform of a convolution product equals the product of the Fourier transforms,

(Sef)(z) = E(f(X}))
- ([ i)

1 * ]E( iwwe‘"t—l—iwath) f( )d
€ w)aw (7.12)

= L7 e s ) Fw) du
2 ) o

-/ " lae™ — ) (y) dy -

—0oQ

By writing out the function 7; we obtain the statement. O

7.4 Dynkin’s formula and applications

Having thus identified the generator associated with Ito-diffusions, we next formulate an
important formula for stopped It6-diffusions. A stopping time 1 for (X{);>o is a random
variable such that for all ¢ > 0 the event [ < t] := {w € Q|7(w) < t} is an element of the
sigma-algebra F; generated by (X{'),ec(o,q-

Theorem 7.7 (Dynkin’s formula) Let X be a diffusion in R" with generator A. Let T be
a stopping time with E(1) < co. Then for all f € C2(R") and all z € R",

B (£ (%) =1 @)+ [ an (X as).

Proof. The theorem is intuitive, but its proof is rather technical. We limit ourselves here to
a very brief sketch.

By applying (7.9) to the stopped process t — X/, and letting ¢ tend to infinity after-
wards, we find:

Ty _ T 8f T\ .. T . T T
f(X2) = f (@) + /0 Z S (X3)o3y (X)dBy(s) + /0 (Af) (X7) ds.
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After taking expectations we get the statement, since stopped martingales starting at 0 have
expectation 0. (See Dynkin (1963).) O

The simplest example of a diffusion is Brownian motion itself: X; = B; (b =0, 0 = id).
Its generator is 1/2 times the Laplacian A. We investigate two problems.

Example 7.1.; Consider Brownian motion B := a + B; starting at a € R". Let R > ||a]-
What is the average time Bf* spends inside the ball Dp = {z € R": ||z|| < R}?

Solution: Choose f € C2(R") such that f(z) = ||z||? for ||z|| < R. Let 7% denote the first
time the Brownian motion hits the sphere 0Dg. Then 74 is a stopping time. Put 7 := 74 AT
and apply Dynkin’s formula, to obtain

B(7B2) = f@)+E( [ 36D @)
= Jla|® + n(r),
where we use that 2Af = n. Obviously, E(f(B%)) < R?. Therefore
() < & (° ~ al?).

As this holds uniformly in 7T, it follows that E(r%) < 1 (R? —||a|?) < cc. Hence 7 — 74 as
T — oo by monotone convergence. But then we must have f(B%) — ||B$§ |I?=R?as T — oo,
and so in fact

E(tf) = 5 (R* = llall*)

by dominated convergence.

Example 7.2.; Let b € R” be a point outside the ball Dr. What is the probability that the
Brownian motion starting in b ever hits 0Dg?

Solution: We cannot use Dynkin’s formula directly, because we do not know whether the
Brownian motion will ever hit dDpg (i.e., whether 7 < c0). In order to obtain a well-defined
stopping time, we need a bigger ball Dy := {z € R"|||z|| < M } enclosing the point b. Let

a?\/[, g be the first exit time from the annulus A g := Dy\Dp starting from b. Then clearly
b

OMR = 7'1?4 A 7'?3. Now take A = %A, the generator of Brownian motion, and suppose that
fu,r: Anr,r — R” satisfies the following requirements:
(i) Afm,r =0, i.e., far,r is harmonic,
(ii) far(z) =1 for ||z]| = R,
(iii) fam,r(z) =0 for ||z| = M.
We then find
[l

OM,R

= R] =E [fM,R (ng )] = fum,r(b),
M,R
where the first equality uses (ii) and (iii) and the second equality uses Dynkin’s formula in

combination with (i). Incidentally, this equation says that fis g is uniquely determined if it
exists.
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Next, we let M — oo to obtain
P[T§<oo] :IP’[EIMZ 3] T§<T}{4] ,

because any path of Brownian motion that hits 0Dz must be bounded. From the latter we
in turn obtain

P [T?z < oo] =P (UMZ”,,”[T]% < Tﬁﬂ) = ]V}i_r)noo]P’ [Tg < 'r}{/[]

_ 1 b - = 1
- g e [l =] = s

M-

Thus, the only thing that remains to be done is to calculate this limit, i.e., we must solve
(1)-(iii).
For n = 2 we find, after some calculation:
_ log||b]| — log M

= 1 M .
fM’R(b) log R — log M — as — OO

For n # 2, on the other hand, we find:

ot () = o2~ ™ — M2 ™ 1 ifn=1
MR T TR M2 T ()l /R)P it > 3,

It follows that Brownian motion with n = 1 or n = 2 is recurrent, since it will hit any sphere
with probability 1. But for n > 3 Brownian motion is transient.
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8 Transformations of diffusions
In this section we treat two formulas from the theory of diffusions, both of which describe

ways to transform diffusions and are proved using It6-calculus.

8.1 The Feynman-Kac formula

Theorem 8.1 (Feynman-Kac formula) For z € R", let X! be an Ité-diffusion with gen-
erator A and initial condition X§ = z. Let v: R® — [0,00) be continuous, and let S} f for
f € Cy(R™) and t > 0 be given by

50w =2 (0o (- [ vopan)).

Then (S7)¢>0 is a jointly continuous semigroup on Cy(R™) (in the sense of Definition 7.2)
with generator A — v.

Proof. It is not difficult to show, by the techniques used in the proof of Theorem 7.3, that
Sy f lies again in Cy(R™), and that the properties 1, 2 and 4 in Definition 7.2 hold (note that
v is non-negative). It is illuminating, however, to explicitly prove Property 3.

For 0 < s <t,let
t
Zgy = exp (—/ v (X;") du) .
S

Property 3 in Definition 7.2 is preserved due to the particular form of the process Zg,. In
fact, let f € Co(R"™). Then

(Stsf) (@

=E(Z5s1sf (Xt—l—s))
E<ZO tZt t—|—8 XH—S))
B(

E(

ZOt]E( tt+s ( t+s )|-7:t))
ZOtg )
= (5{9) (2),

where
9(y) = B( 28, F (X)) = B(Z8,£(XD) = (S2H) )
by stationarity. So indeed
(Stisf) (@) = (87 0 SUf) () -

Let us finally show that A — v is the generator of (S}):>o. To that end we calculate
(dropping the upper index z):
d(Zouf (X1)) = f(Xi) dZoy + Zoudf (Xi)

- (8.1)
= [—’U (Xt) f (Xt) + (Af) (Xt)] Z(),tdt + Z(),t<0' (Xt) Vf (Xt) ,dBt>.
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Here we use Itd’s formula and dX; = b(X;)dt + o(X;)dB; to compute

2
X0 = 3 7 (X0axi(0 + 8‘9 o (X)X, ()X, 1)
- Z Xt (X, dt+Z 7, (Xt)oij(Xe)dB;(t) (8.2)

_Zaxza% Xt loxea )”(Xt)d

where the first and third term are precisely (Af)(X:)dt according to Theorem 7.5. Taking
expectations on both sides of (8.1), we get

dE(Zorf (Xt)) = E([—vf + Af] (X1) Zodt) .

In short, d(S7 f) = S} ((A — v)f) dt, which means that A — v is indeed the generator of the
semigroup (S7);>0 (recall Proposition 7.4(iii)). O

We can give the semigroup (S7):>o a clear probabilistic interpretation. The positive
number v(y) is viewed as a “hazard rate” at y € R", the probability per unit time for the
diffusion process to be “killed”. Let us extend the state space R™ by a single point d, the
“coffin” state, where the system ends up after being killed. Then it can be shown that there
exists a stopping time 7, the “killing time”, such that the process Y,* given by

ye . Xy ift<r
b 0 ift>r

satisfies
2707 =B e (- v a)).

provided we define f(0) := 0. The proof of this requires an explicit construction of the killing
time 7, which we shall not give here.

Example 8.1.; The Feynman-Kac formula was originally formulated as a non-rigorous “path-
integral formula” in quantum mechanics by R. Feynman, and was later reformulated in terms
of diffusions by M. Kac. The connection with quantum mechanics can be stated as follows. If
X is Brownian motion, then the generator of (Sy)¢>0 is A —v. This is (—1)x the Hamilton
operator of a particle in a potential v in R". According to Schrodinger, the evolution in time
of the wave function v € L?(R") describing such a particle is given by v +— U+, where U}
is a group of unitary operators given by

U = exp (it (34 —v)) (t € R).

This group can be obtained by analytic continuation in ¢ into the complex domain of the
semigroup

S? =exp (t (34 —v)) (t €]0,00)).
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Example 8.2.; Consider the partial differential equation

%u(x,t) = Au(z, t) + £(x)u(z, t), zeR4¢>0, (8.3)

with initial conditions
u(z,0) =1 Yz e R, (8.4)

Here, A is the Laplacian acting on the spatial variable and {¢(z) : z € R?} is a field of random
variables that plays the role of a random medium. Depending on the choice that is made for
the probability law of this random field, (8.3) can be used in various areas of chemistry and
biology. For instance, u(z,t) describes the flow of heat in a medium with randomly located
sources and sinks.

A formal solution of (8.3) and (8.4) can be written down with the help of the Feynman-

Kac formula:
(o) = E (exp [/Otg(Bf) dsb .

This representation expresses u(z,t) in terms of a Brownian motion starting at z and is the
starting point for a detailed analysis of the behaviour of the random field {u(z,t) : z € R?}
as t — oo. (See Carmona and Molchanov (1994)).

Finally, if v fails to be nonnegative, then the Feynman-Kac formula may still hold. For
instance, it suffices that v be bounded from below. This guarantees that the properties in
Definition 7.2 hold.

8.2 The Cameron-Martin-Girsanov formula

Brownian motion starting at £ € R" can be represented naturally on the probability space
(Q,F,P?), where Q = C([0,T] — R™) is the space of its paths, F is the o-algebra generated
by the cylinder sets {w € Q|a < w(t) < b} (a,b € R, ¢t € [0,T]), and P? is the probability
distribution on C[0, 1] of (Bf := x + By)se[o,1] constructed in Section 2. We want to compare
the probability distribution P* with that of another process derived from it, namely, Brownian
motion with a drift.

Let X[ denote the solution of
dX} =b(X])dt + dB, Xy ==z, (8.5)
where b is bounded and Lipschitz continuous. The process X} induces a probability measure

P} on Q.

Theorem 8.2 (Cameron-Martin-Girsanov formula) For allz € R" the probability mea-
sures P* and P§ are mutually absolutely continuous with Radon-Nikodym derivative given
by

T (Bcam) = oo ([ 0E.a8 1 [ bEDPs).
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Proof. Fix x € P". The idea of the proof is to show that X} has the same distribution
under P* as Bf has under p7P*, where pr denotes the Radon-Nikodym derivative of the
theorem. In other words, we shall show that for all 0 < t; < t9 < --- < t, < T and all

fl,fQ, - fn S C()(Rn):
B (06) % 6 = (orfy (BE) % x 1a(BE)). (89

Indeed, by the definition of P§ the L.h.s. is equal to

/Q Fu@(t)) % -+ X fulw(tn))PE (dw)

and the r.h.s. is equal to

/Q Fr@(E)) X+ X fn (@(tn)) pr(@)P® (dw)

while the functions w — f1 (w(t1)) X -+ X f, (w(t,)) generate the o-algebra F when t1,...,1,
are running. We shall prove (8.6) by showing that both sides are equal to

Sty (f1 Sty—ty (= Sta—tuy (fn)++)) (). (8.7)

Let us start with the Lh.s. of (8.6). First we note that, for all 0 < s <¢ < T, all F in
the algebra A of bounded Fs-measurable functions on Q2 and all f € Cy(R™), by the property
of conditional expectations and the Markov property we have that

= " (FE(f(X.))|Fs)
= E (F (S1-sf)(X,))-

If we apply this result repeatedly to the product fi(Xy,) X - X fr(Xy,), first projecting onto
Ay, _,, then onto A;,_,, and all the way down to A, then we obtain (8.7).

Next consider the r.h.s. of (8.6), which is more difficult to handle. We shall show that
it is also given by (8.7), in three steps:

Step 1. Forall0 <t < T and F € A
F* (Fpr) = (Fp) (53)

Hence the r.h.s. of (8.6) does not depend on 7' (as long as T' > t,).
Step 2. Forall 0 <s<T, F e As;and f € Cy(R"):

E* (F f (Bt) pr) = E* (F (St—sf)(Bs)pr) - (8.9)

Step 3. We apply (8.9) repeatedly, first with ¢t = t,, s = t,_1, F' € As, ,, then with ¢t = ¢,_1,
s =tp_2, F € Ay, _,, continuing all the way down to ¢ = ¢;, and we obtain (8.7).
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Thus, to complete the proof it remains to prove (8.8) and (8.9).

Proof of 1. Put p; := exp (Z;) with
dZ = (b(By),dBy) — 5 ||b(By)||” dt.
Then pr is as defined above and It6’s formula gives
dpy = exp (Z) dZ; + 5 exp (%) (dZ,)° = py(b (By) ,dBy),

where two terms cancel because (dZ;)? = ||b(B;)|?. Tt follows that ¢ — p; is a martingale.
Therefore, for F € Ay,

E* (Fpr) = E* (E(Fpr|Ft))
=E* (FE(pr|#1))
=E* (Fpy).

Proof of 2: Note that, by 1t6’s formula,

d(pef (By)) = f(By) dpg + pedf (By) + (dpg) (df (By))
= oo (F(BOb(Br) ,dBy) + (V1 (Br) , dBy))
+pi (5AF (Br) dt + (b (By), Vf (By))dt)

following a calculation similar to (8.1) and (8.2). Hence, for 0 < s < t (with F' € A;) we have,
by (8.8),

d

SB (Fprf (B) =SB (Fpuf (B)

=E* (Fp (Af) (By))
=E* (F (Af) (B1) pr)

where A := A + (b, V) is the generator of (X;). Therefore the Lh.s. and the r.h.s. of (8.9)
have the same derivative with respect to ¢ for any ¢ > s > 0. Since they are equal for ¢ = s,
they must be equal for all t > s > 0. a

The Cameron-Martin-Girsanov formula is a generalisation by Girsanov (1960) of the
original formula of Cameron and Martin (1944) for a translation in Wiener space, which we
now give as a special case. Let h be a square integrable function [0,7] — R, and consider the
shifted noise N given by

Nf = <h,f) —|—Nf .
Clearly this corresponds to a shift in the associated Brownian motion given by
_ t
Bt = / h(S)dS + Bt .
0
Now, since this shifted Brownian motion satisfies the stochastic differential equation

dB; = h(t)dt + dB; ,
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the Cameron-Martin-Girsanov formula says that the probability distributions P and P are

related by
] ] ] |
e ([ wwam—j [ nw2ar) = e

This Radon-Nikodym derivative can be understood as a quotient of Gaussian densities, as
the following analogy shows. Let v be the standard Gaussian density on the real line, and -y,
is its translate over a distance py € R, then

’Yu(ﬂv) _ 6_%@_“)2

— T T
v(z) e 2%
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9 The linear Kalman-Bucy filter

The Kalman-Bucy filter is an algorithm that filters out random errors occurring in the ob-
servation of a stochastic process. When put on a fast computer, the algorithm follows the
observations in “real time”: at each moment it produces the best possible estimate of the
actual value of the process under observation (given certain probabilistic assumptions on the
process itself and on the observation errors).

The filter is called “linear” because the estimates depend linearly on the observations.
In fact, the model on which the algorithm is based is situated in a Hilbert space of jointly
Gaussian random variables with mean zero. In such a space independence is equivalent to
orthogonality. For the general nonlinear theory of stochastic filtering we refer to the book of
Kallianpur (1980).

The basic idea of linear filtering is best understood by a simple example. From there
we shall build up the full model of Kalman and Bucy.

9.1 Example 1: observation of a single random variable

Let X be a Gaussian random variable with mean 0 and variance a®. Suppose that we cannot
observe X directly, but only with some small Gaussian error W, independent of X, that has
mean 0 and variance m?. So we observe

Z=X+W.

We are interested in the best estimate X of X based on our observation of Z and the above
assumptions. It is reasonable to interpret “best” as the requirement that E((X — X)2) be
minimal, which leads to

A~

X = B(X|F(2)),

i.e., the orthogonal projection of X onto L? (2, F (Z),P), where F (Z) is the o-algebra gen-
erated by Z. This is equivalent to projecting X onto the one-dimensional space R Z.

Proposition 9.1 The best estimate of X is given by (see Fig. 5)

E(XZ) a?

E(Z2) a? +m?

Proof. Put

Then, because E(XW) =0,

m2X — a®W

E((X -Y)Z) = E((W) (X + W)) = 0.

So (X —Y) L Z. For jointly Gaussian random variables with mean zero, orthogonality (i.e.,
absence of correlation) implies independence. So (X —Y") I Z. It follows that X —Y L F for
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X: (a 0)

Figure 5: Relative positions of X, W, Z and X in the space spanned by X and W. Orthogo-
nality corresponds to independence. Distances in the plane correspond to distances in mean
square.

~

all F € L2(Q, F(Z),P), and since Y € L2(Q, F(Z),P) it follows that ¥ = E(X|F(Z)) =: X
(see Fig. 5). O

The mean square distance between X and X can be read off from Fig. 5:

R . 4 2,.,,2 1 1 \-1
X - X 2 _ X 2 X 2 _ 2 a — a"m — ( ) .
| P =1X1" =X =0 - 55 = 55

a2 ' m?
Note that || X — X| < min(a,m).

9.2 Example 2: repeated observation of a single random variable

Next, let us measure X several times with i.i.d. Gaussian observation errors Wi, Wy, ..., Wy,
all independent of X. This gives us the sequence of outcomes

Zj:X+Wj, (jzl,,k)
Again we ask for the best estimate X based on these observations.

Theorem 9.2 The best estimate of X after k observations is given by

k
ch ;:E(X|.7:(Z1,..-,Zk)) = a2_|_ m2 JZIZJ

Note that X, — X almost surely as k — oo, because % Z?Zl W; — 0 almost surely as
k — o0o. Thus, frequent observation allows us to retrieve X without error.

We shall prove Theorem 9.2 in two ways. First we shall give a direct proof. After that
we shall give a recursive proof suggesting a way to implement this estimation procedure in a
machine in “real time”.
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Direct Proof. As the problem is linear, and as there is no reason to prefer any one
of the Z; to another, let us try as our best estimate

k
Yk = Qg Z Zj
j=1
for some constant a. Again, we require E((X — Y%)Z;) = 0 (¢ = 1,... ,k). So, because

E(XZ;) =E(X?) =

k k
0=E((X-Y3)Z)=E X—akZZj Z; :aQ—QkZE(ZiZj).
. i
Now
a® if i # j;
E(Z; Z;) = E((X + W) (X + W;)) = ’
( ) ]) (( Z)( J)) {a2—|—m2 lf‘l:_],

which gives

k
> E(Z:Z;) = ka® +m
j=1
Using this result we obtain
a® 1 a®
@ ==
T kP v m2 T ka?+ im?
Therefore Y;, = X, if oy, is given the above value. a

Recursive Proof. The goal of this proof is to find a recurrence relation in k for Xj.
This is done by means of a procedure that is essential to linear filtering: one identifies what
is new in each of the consecutive observations by means of the so-called innovation process
(Nj)j>1- In terms of P;, the projection onto Z; := span(Zi,... ,Z;) in the spirit of Fig.5:

N; is defined as follows:

Nj :=Z; — Pj-1(Zj) = Zj — Pi-1(X + Wj) = Zj = Pj-1(X) = Z; — X
The Ni,...,N;_1 all lie in the space Z;_1, whereas N; is orthogonal to it. It follows that the

N; are orthogonal. Since dim(Z;) = j, the variables Nl, ., Nj form an orthogonal basis of
Z Therefore

E(XN;)

X =P X = Z BV

) N (9.1)
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with the coefficients determined by the orthogonality property. Now,
E(XN;) =E(X (X +W; - X;-1))

s (x(x %)

(Xj,l 1 X — )A(j,l because Xj,l =P;_1X) and
2 o 2 2 2

(because W; L X and W; L X;_). This gives us a recursion for Xj:
2

~ ~ o ~
Xpo1 = Xp + —Fk (Z - X )
k+1 k+ m? 4 ‘71% k41 k

2 2
m A o
<m2+a,2€> k (m2+0z> k+1)

where the r.h.s. is a convex combination. We are able to calculate J,% by means of the recursion

of — ot = |1 X — Xi|? = IX — Xisa|* = | X — P X|* — || X — Peyr X|?
E(XNg1)®  of
IE(N,§+1) m?+ o}’

= [|PeX — Poni X|* = | Xppp1 — Xi* =

This equation can be simplified by changing to the reciprocal of oy 1:

11 1+a,§ _ 1.1
ol O m?) o2 m?

where 03 = a2. We thus find for o, the relation

2 2
9 m-a
= —. 9.2
Tk = 2 + ka? (9:2)
If (9.2) is substituted into (9.2), then we find the following recursion relation for X ;:
2 2 2
A m* + ka . a
Xpi1 = X Za1- 9.3
kil (m2+(k+1)a2> k+(m2+(k+1)a2) Ftl (9:3)
This relation expresses the new estimate as a convex combination of the old estimate and the
new observation, which is clearly useful for calculation in real time. O
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9.3 Example 3: continuous observation of an Ornstein-Uhlenbeck process

We now apply the above recursive program to the observation Z; of an Ornstein-Uhlenbeck
process X;:

dXy = —aXdt + BdBy (X() Gaussian, X 1L Bt) (9.4)
and
dZy = yXedt + 6dWy (Z() = O) (95)

Here B; and W; are independent Brownian motions, and «, 8,7, € R are parameters. Note
that W; plays the same role as the i.i.d. random variables W; in the previous example, and
Z; plays the role of Z;. The parameters o and 3 are the drift and the diffusion coefficients of
the observed process X;. We can think of v as some kind of coupling constant that indicates
how strong the process Z; is influenced by X;. The parameter § plays the role of m.

Theorem 9.3 (Linear Kalman-Bucy filter) Let the Ornstein-Uhlenbeck process X; and
its observation process Z; be given by (9.4) and (9.5). Then the projection X; of X; onto Z;,
the closed linear span of (Z;)o<s<t, satisfies the stochastic differential equation

2
dX, = (—a — g—Qa (t)2> Xydt + 57—20 (t)% dZ,. (9.6)
where o(t)? satisfies the ordinary differential equation
2
%0 (1) = ~200 (1 + 5~ Lo (1)". 9.7)

Equation (9.6) is the analogue of the recursion (9.3) in Example 2 above. Equation (9.7) will
be solved at the end of this section. We shall build up the proof of Theorem 9.3 via several
lemmas.

In order to calculate X’t, we first identify the innovation process of Z; as the closest
analogue to an orthogonal basis. This goes as follows. Let

V= W, + % /t (Xs . Xs) ds. (9.8)
0

Then, since Z; = 0W; + 'yfot Xds, we can write
1 b
Vi== (Zt—'y/ Xsds>.
0 0

8dV; = dZ, — yX,dt = (1 — P,) dZy, (9.9)

Hence

provided we take P; (the projection onto Z;) “just before” dt, so that P,dW; = 0. Because
of (9.9), V; indeed deserves the name of innovation process: it isolates from the observations
that part which is independent of the past.

The idea of the proof of Theorem 9.3 is now to write X; as a stochastic integral over
the innovation process V;, analogous to the expansion (9.1) in the orthogonal basis (IV;). This
will be done in Lemma 9.5 and requires the following fact:
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Lemma 9.4 V; is a Brownian motion.

Proof. The family {V;}icjor is jointly Gaussian. It therefore suffices to show that the
covariance is the same as for a Brownian motion (cf. (2.4)): E(V;V;) = s At (s,t > 0).

First note that V; € Z;, and that V; — V; L Z; for s > t because Vs — V; = fts dVy, =
fts AWy + F( Xy — Xu)du] is orthogonal to Z; by construction. Taking expectations we get

E(ViVs) — E(V;?) =E(V; (Vs — i) = 0,
So E(V;V;) = E(V,%). We next calculate the derivative of V;2:
d(V2) = 2V;dV; + (dV;)?* = 2V,dV; + dt.
Taking expectations we get
dE (V) = 2E(V;dV;) + dt = dt,
because V; 1L dV;. Integration now yields the desired result:

E(WV,) =EV7?) =t=tAs  (s>1).

We now make the following claim, which is the analogue of (9.1).

Lemma 9.5 For all F € L? (), F,P), the projection P; onto Z; acting on F is given by

t
PF = [ f(s)dV,,
= [ 1
where f(s) := E(FV;). In particular, f' € L?([0,1]).

The proof is deferred to later. An explanation for this theorem can be given by com-
paring the integral with the sum

k
P.F =) E(FNj) N,
i=1

where (IN;) is an orthonormal basis (]E(NJQ) = 1). The continuous analogue is the formal
expression

t
PF :/ E(FN,)Nyds  (with N, = 4%)
0

_ /Ot (%E(F%)) av,.

To prove Lemma 9.5 we need the following technical lemma:

Lemma 9.6 The following three spaces are equal for all t > 0:
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(i) 2,
(i) { I f (s)dZs|f € L2([0,4)) },
(iii) {Jf g(s)dVslg € L2([0,¢]) }.

Proof. 1. First we show that (ii) is a closed linear space. Let Z be the operator L?([0,#]) —
L?(,P) defined as Zf = f(ff(s)dZs. Then, because (dZ;)% = §%ds,

t
117 < 12512 < (52 +72E( / X?ds)) T

Indeed, by the It6 isometry and the independence of X and W, we have

E((/Otf(s)dzs>2) :]E((7/Otf(s)Xsds+5/0tf(5)dWs>2)
=’E (/Otf(S) Xsds)2 +8% |17

The first term in the r.h.s. lies between 0 and

([ rera)e(([ )

This implies that Z: L%([0,t]) — Ran(Z) is bounded and has a bounded inverse, so Ran(Z)
is closed.

2. Clearly, Z; is contained in (ii) because, for all 0 < s < ¢,
t
Zs = / 1jo,s) (u) dZy = Z (1p,4)) € Ran(Z).
0

Conversely, suppose that f = lim;_,, f; with f; simple. Then Z f; € span ((Zs)OS SSt), which
means that Zf; is a linear combination of Z;, 0 < s < t. Hence Zf € Z;, so that also
Z; D Ran(Z). Thus, (i)=(ii).

3. Obviously, (iii) is closed because V': L%([0,t]) — L? (Q,P) : g — f(fg (s) dVs is an isometry.
We know that Ran(V) C Ran(Z), since Vs € Z; = Ran(Z) for all 0 < s < t. To show equality

of (i) and (iii) we must show that Z; € Ran(V) for all 0 < s < ¢t. Now, omitting 7y and § for
the moment, we may write

S
dZ, = dV, + X,ds = dV, + (/ hs (1) dZT> ds,
0

for some h; € L%([0, s]) because X; € span((Z,)o<r<s), so that, for all g € L*([0,1]),

/Otg (s)dVy = /Otg(s)dzs — /Ot (/Os hs(r)er> g(s)ds
/Otg(r)dzr - /Ot (/rths(r)g(s)ds> iz,
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By the theory of Volterra integral equations, it is possible for any u > 0 and (hs)o<s<¢ to
choose g such that

M- [ g ds=Tpu)  O<r<b
Then Z, = [, Tjp ) (r) dZ, = [} g (s) dVy € Ran(V). O

Proof of Lemma 9.5: Use the equality of (i) and (iii) from Lemma 9.6 to obtain a
function g € L([0,%]) such that
t
BF = / g (s)dVs
0

Then, for 0 < u < t, we find by the isometric property of integration w.r.t. V; (Lemma 9.4),

f (u) = E(FV,) = E((P,F) V,)
~=(([ @) ([ 1oqeran))
~lo.Tg) = [ a()dr

which implies f' = g. We thus conclude that f’' € L?[0,t] and P,F = fot 1! (s) dVs. O
Now we can prove Theorem 9.3.

Proof. By Lemma 9.5 we may write

t
X, = PX, = / £ (s)dV,
0

where fi(s) := E(XVs). Let us calculate f;(s) for 0 < s < ¢ using the solution of (9.4) for
X, which can be written as

X, = ﬁ/ o(t=5)gB, + e~ X,.

We have:
fe(s) = E(X:V5) S
—E (Xt (WS n %/0 (Xu —Xu) du))

SR =R =R
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Differentiating this expression w.r.s. s we get
A\ 2
fl(s) = %e_a(t_s)E((Xs =9 ) = Jemol=g (s)”.

This means that X, satisfies the stochastic differential equation:

ax-{ t [ ] av e+ i

A 1 A
== —aXtdt + f{ (t) (EdZt - %Xﬂit)

04 - v
= (—a — 550 (t)2> Xidt + 50 (t)%dz,,

which is (9.6). To finish the proof of Theorem 9.3 we must find an expression for o (t), given
by

o(t)? :=E ( (Xt - f(t)2> —E(X2) —E (Xf) :

where (use Lemma 9.5)

¢
E(X7?) = e *™E(X¢) + / e 2ll79)ds  — %]E(Xf) = —2aE (X}) + B,
0
and
d A d [!
il X2 _ ! 2
dt ( t) dt/o Ji(s)"ds
! l d l ! 2
:/ 2f1 () 1 (5) ds + 1} (1)
0
! 2 7 4
= -2« i fi(s) ds+ 520 (t)
-2 0l 4
= —2aE(X}) + 5—20(15)
It follows that o(t)? satisfies (9.7), and Theorem 9.3 is proved. O

In the case treated above, where a, 8, 7, and § are constants, (9.7) can be solved (with
o(0) = a) to give

a1 — Kagexp (’y2 (g — 1) t/62)

2 _
o)== Kexp (y? (a2 — 1) t/6%) '
where
o] = iZ (—O[dz — 0y 242 + ’)’2,62)
2

ay =1y (—a52 + Va2 + ’7252>
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and

a2—a1

K=—

a? — a9’

This is easily checked by substitution. The formulas are not easy, but explicit.

We note that Theorem 9.3 remains valid when «, 3, v and § are allowed to depend on
time.
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10 The Black and Scholes option pricing formula.

Myron Scholes and Fisher Black

In 1973 Black and Scholes published a paper (after two rejections) containing a formula for
the fair price of a European call option on stocks. This formula now forms the basis of pricing
practice on the option market. It is a fine example of applied stochastic analysis, and marks
the beginning of an era were banks employ probabilists that are well versed in It6 calculus.

A (European) call option on stocks is the right, but not the obligation, to buy at some future
time T a share of stock at price K. Both T' and K are fixed ahead. Since at time T the value
of the stock may be higher than K, such a right-to-buy in itself has a value. The problem of
this section is: “What is a reasonable price for this right?”

10.1 Stocks, bonds and stock options

Let (Bt)sefo,r) be standard Brownian motion on the probability space (€2, F,P) with filtration
(Ft)tejo,r- We model the price of one share of a certain stock on the financial market by an
It6-diffusion (S)eo,7] on the interval (0, 00), described by the stochastic differential equation

The constant p € R (usually positive) describes the relative rate of return of the shares. The
constant ¢ > 0 is called the wvolatility and measures the size of the random fluctations in
the stock value. Shares of stock represent some real asset, for example partial ownership of a
company. They can be bought or sold at any time ¢ at the current price S;.

Let us suppose that on the market certain other securities, called bonds, are available
that yield a riskless return rate r > (0. This is comparable to the interest on bank accounts.
The value B; of a bond satisfies the differential equation

The question we are addressing is: How much would we be willing to pay at time 0 for the
right to buy at time T one share of stock at the price K > 0 fixed ahead? Such a right is
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called a Furopean stock option. The time T is called the expiry time, the price K is called the
exercise price. This option pricing problem turns out to be a problem of stochastic control.

Another type of option is the American stock option, where the time at which the shares
can be bought is not fixed beforehand but only has an upper limit. The pricing problem for
American stock options contains, apart from a stochastic control element, also a halting
problem. It is therefore more difficult, and we leave it aside.

The solution to the European option pricing problem is given by the Black and Scholes
option pricing formula (10.4) appearing at the end of this Section. As this formula does not
look wholely transparant at first sight, we shall introduce the result in three steps, raising the
level of complexity slowly by introducing the ingredients one by one.

10.2 The martingale case

Let us first suppose that both the stock price and the bond price are martingales: y =7 =0
in Equations (10.1) and (10.2). For bonds this simply means that their price is constant: they
are the stock-market equivalent of bank notes. For stocks it means that their price behaves
like the exponential martingale found in Chapter 5:

Sy = Spexp (O'Bt - %0215).

In this stationary world our option pricing problem is easy: a fair price ¢ at time 0 of the
right to buy at time 7" a share of stock at the price K is

¢:= E((Sr — K)*), (10.3)

where z7 stands for max(0, z). Indeed, if the stock value St turns out to be larger than the
exercise price K, then the holder of the option makes a profit of S — K by buying the share of
stock at the price K that he is entitled to, and then immediately selling it again at its current
value St. On the other hand, if ST < K, then his option expires as a worthless contract.

Since we know the price process S; to be an exponential martingale, we can explicitly
evaluate the option price ¢:

q=E((Sr— K)T)

_F ( (Soe“BT—%“zT — K) +>

o0 +
:/ (Soew_%(’zT —K) o2 (w)dw

—0o0

o0 1.2
= / (Soe“h?” T_ K) Yp2r(w)dw
It

og S£0+%02T

(10.4)

S 1 S 1
::Soéaﬂﬂ<bg}§'+502T>'_}(@J%W(bgjg-—§U2T),

where @): u — %@ (L) is the normal distribution fuction with mean 0 and variance A,

VA
and @) = \/%emp(—uﬂ /2) is the associated density function. In (10.4) we have made use

of the equalities

w—iA

e’ 2\ (w) = pa(w — A),
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and
/oo oa(w)dw = @(—x).

The above option pricing formula covers the case y = r = 0. Surprisingly, it also covers
the case p # 0,7 = 0, i.e.,, p plays no role in the final result. In fact, the full Black and
Scholes option pricing formula is obtained by substituting Ke™"" for K to take devaluation
into account. It was this surprising disappearance of y from the formula that caused the
difficulties that Black and Scholes experienced in getting their result accepted.

And indeed, for a justification of these statements we need a considerable extension of
our theoretical background.

10.3 The effect of stock trading

If we now drop the assumption that gy = 0, but keep r = 0, the intuitive argument leading
to (10.3) breaks down. Indeed, if y > 0, then there is an upward drift in the stock value that
makes “dollars at time 0” inequivalent to “dollars at time 7”. Simply building in a discount
factor e is ill-founded, and will in fact turn out to be incorrect. We shall have to consider
seriously the definition of a “fair price”. It is reasonable to base such a definition on the
question what else could be done with a capital ¢ during the interval of time [0,7"]. This
brings us to the subject of trading.

Suppose that a dealer in securities enters the market at time 0 with a capital q. He buys
an amount ag of stock at the current price Sy, keeping the rest by := g — a¢Sp in his pocket
in the form of banknotes. Then at the times t; < t3 < t3 < --- < t,(= T') he repeats the
following procedure. Let ¢ € {0,1,2,--- ,n—1}. At time ¢;;; our dealer, judging the past stock
values Sy, (0 < ¢ < t;41), decides to change his amount of stock from ay; to a4, by buying or
selling. If he chooses to buy more than his capital can pay for, he borrows money, (thus making
bi+1 negative), and keeps in mind that his loan must be paid back in due course, say after
time T. Nevertheless, his tradings must be self-financing, i.e., our dealer spends no money,
and obtains no money from outside, other than the loans and stock tradings mentioned. So
his total capital (“portfolio value”) just before ¢; 1 must be equal to the portfolio value just
after this moment of time:

at; Stiy + by, = g Sty by (1=0,1,--- ,n—1). (10.5)
Employing the notation of Chapter 2,
(At); =tiy1 —ti; (AX); =Xy,
we may write (10.5) as
(Aa)i(Sy; + (AS);) + (Ab); = 0. (10.6)

We note that this equation expresses a kind of “time delay”: the amount a;, of stock bought
at time ¢; only has its effect at time ;1. This delay will remain even after the continuous
time limit is taken, when it will give rise to an It6-term.

Now consider the portfolio value Cy at time :

Cy = aSt + by
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We note that in the case of self-financing trade:

(AC); := Cyyy — Cy
=at; Sty b1 —ay;Cr — by,
= (atyy — at;)(Stipy — St;) + (byy — b)) + (aryy — at;) Sy + ay, (S, — St;)
= (Aa)i(AS)i + (Ab); + (Aa);S; + ai(AS);

%

Therefore (10.6) can be written concisely as
(AC); = a;i(AS);.

Now, since there is no essential limit to the frequency of trade, the partition of [0, 7| generated
by the sequence of times 0 = tg <t <to < --- <t,_1 <t, =T can be made arbitrarily fine.
It is therefore reasonable to make the following idealisation.

Definition. A self-financing trading strategy is a pair (a,b) of square-integrable adapted
processes on [0, 7] with continuous paths, such that the sum C; := a;S; + b; satisfies

dCt = atdSt. (107)

We are now in a position to define what we mean by the “fair price” of a claim or
option. Let g : [0,00) — [0, 00) be measurable. By a claim to ¢(St) we mean the right to cash
in at time 7' the amount g(S7), which depends on the current stock value St at time 7.

Definition. A claim to g(Sr) is called redundant if there exists a self-financing strategy (a, b)
such that with probability 1,

Cr:=arSr+br = g(ST).
By the fair price F(g(St)) of a redundant claim to g(St) we mean

F(g(St)) := Co = aoSo + bo.

So F(g(ST)) = q if g could be used as the starting capital ¢ = a9Sy + by for a trading
(a,b) that ends up with g(St) with certainty.

10.4 Motivation

In the financial literature the above definition is usually motivated by the following argument
(a so-called arbitrage argument).

Suppose that claims to g(S7) were traded at time 0 at a price p higher than ¢. Then
it would be possible to make an unbounded and riskless profit (an “arbitrage”) by selling n
such claims for the market price p, then to reserve an amount nq as initial capital for the
self-financing strategy (na,nb) — yielding with probability 1 the amount ng(S7) needed to
satisfy the claims — and then to pocket the difference n(p—gq). Conversely, if the market price
p of the claim would be lower than ¢, then one could buy n claims and apply the strategy
(—na, —nb) yielding an immediate gain of n(g—p) at time 0. At time 7" one could cancel one’s
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debts by executing the n claims to g(St). It should be admitted that this second strategy,
involving negative share holdings (or short sales of stock), is somewhat more artificial than
the first. But clearly, the possibility of arbitrage is not fair.

This concludes the motivation of Definition 10.3. In economic theory one often goes
one step further and assumes that arbitrage in fact does not occur. It is claimed that the
possibility of arbitrage would immediately be used by one of the parties on the market, and
this would set the market price equal to the fair price.

10.5 Results

Theorem 10.1 Let g € Cy(0,00). On a stock market without bonds or interest (i.e., with
r = 0), the fair price at time 0 of a claim to g(St) at time T > 0 is

F(g(S1)) = E(9(XT)),

where (X¢)ejo,) is the exponential martingale with parameter o starting at Sy, i.e., the
solution of the stochastic differential equation

dX, = Xy(cdB;)  with Xo=S,. (10.8)

Corollary 10.2 In the absence of bonds or interest the fair price at time 0 of an option to
a share of stock at time T is

F((Sr—K)") = E((Xr - K)"),
where X, is the exponential martingale of Theorem 10.1. The right hand side is given explicitly
by (10.4).
Proof. Approximate the function z — (z — K)™ by a sequence g, € Cp(0,00) ad apply
Theorem 10.1. O
We now give the proof of Theorem 10.1.
Proof. Let A := 023:23—; denote the generator of the diffusion X; in (10.8), and define
fr=eTD4  (te0,T)).
Define a trading strategy (a,b) by
ar := f{(Sy) and by = fi(S) — Sif{(St)-

Then apSt + br = fr(St) = 9(ST)- Moreover, (a,b) is self-financing since the total portfolio
value C; satisfies

dCy = dfy(Sy)

d
= (%) (Sp)dt + f{(S)dS: + 5 £/ (St)(dSy)?
= —(Afy)(S))dt + adS; + 20> S7 /' (Sy)dt
== atdSt.
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It follows that the fair price at time 0 is given by

F(g(Sr)) = aoSo + b = fo(So) = (¢g) (S0) = E (9(X}?)).
O

Note that there is no y in this proof! Apparently the fair price at time 0 is not influenced
by p To begin to understand this fact, we take the case g(x) = z. Clearly the fair price at
time 0 of a share at time 7' is just Sy, not E(S7): S; is automatically a “martingale under F”.

Explicit calculation of the strategy for the case g(z) = (x— K)™ of a stock option yields
S,
a; = QUZ(T—t) (lOg Et + %UQ(T — t)) ;
and
_ St 1 o
bt =-K ¢0'2(T—t) log E - 50’ (T - t) .

These expressions describe a smooth steering mechanism, moving from the initial value (ag, by)
to the final value (ar,br), given by

0,0), if St < K;
(a’Ta bT) = ( ) .

(1,-K), if Sy > K.
Thus the pair (a, b;) always moves inside [0,1] x [—K, 0], the strategy always involves bor-
rowing of money in order to buy up to one single share of stock. In cases where the option is
cheap, relatively much has to be borrowed in order to imitate the workings of the option.

10.6 Inclusion of the interest rate

We complete our treatment of the Black and Scholes model by including bonds, securities
that yield a riskless return. The presence of these bonds on the market leads to a constant
devaluation. Therefore, measured in “dollars at time 0”, the exercise price of the option will
only measure Ke "T. Interestingly, this is the only change (in the Black and Scholes) result
due to a nonzero interest rate: if again X; denotes the exponential martingale with parameter
o and Sy the stock value at time 0, then

F((St— K)Y) =E((Xr — Ke™")*).
This result will come out as a combined effect of an upward drift and a discount.

In the presence of bonds, a self-financing strategy is to be defined as a pair (a,b) of
adapted processes with continuous paths such that the total portfolio value C; := a;S; + b3,
satisfies

dCt = atdSt + btdﬁt-
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Theorem 10.3 On a stock market with stocks and bonds the fair price at time 0 of a claim
to g(St) at time T > 0 is

F(g(Sr)) = e " E(g(Yr)),

where (Y)cjo,) is the solution of the stochastic differential equation

dY, = Yy(rdt + odB;)  with Yy=S,.

2

Proof. Let B := rm% + 0'2562% be the generator of the diffusion Y; and define

fri=eT BT (1€ (0,T)),
Let the strategy (a,b) be given by
1
Bt

(Recall that 3; = €™ by (10.2).) Then arSt + brfr = fr(St) = g(St). Moreover, (a,b) is
self-financing since

ar = f{(S;) and b := (ft(St) - Stft'(St)>-

dCy = df(St)
= —(B — 1) fi(Sy)dt + f{(St)dS; + & f/'(S+)(dS,)?

= <—(B —7)f1(S) + 305} t”(St))dt + £1(Sy)dS,
=r (ft(St) - Stft,(St))dt + f1(S1)dS;
= btdﬁt + atdSt.

It follows that

F(9(S1)) = fo(So) = (e"P~g) (So) = E (™ Tg(¥r))

Corollary 10.4 The fair price of a stock option is
F((Sr—K)")=e""E((Yr— K)*) =E((Xr —e " K)")

S
= 5,P (log % +(r+ %02)T) —Ke ™o (log fﬂ +(r— %02)T> ]

Proof. The first equality is Theorem 10.3, the second equality follows from the fact that
Y; = e"' Xy, while the third equality is (10.4). ]
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