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Welke parameters zijn er bij de constructie van tafels voor verantwoordelijk of deze gaan wiebelen of niet? Hoe moeten
deze parameters worden ingesteld om wiebelen te voorkómen? (Naar een idee van Fowkes en Mahony [FoM].)

Inleiding

Een fabrikant produceert eenvoudige rechthoekige tafels met vier poten voor gebruik in kantoren, kantines
en dergelijke. Van zijn afnemers krijgt hij de klacht dat zijn tafels niet stabiel genoeg zijn: ze wiebelen,
vooral als ze op een harde, niet geheel vlakke ondergrond worden geplaatst. Hij benadert het ons met de
vragen:
- ‘Wat moet ik in het ontwerp van mijn tafels veranderen om de stabiliteit te verbeteren?’, en
- ‘Hoe kan ik, met een soort rapportcijfer, aangeven hoe geschikt een bepaalde tafel is voor een bepaalde

vloer?’

1. Oriëntatie op het probleem

Een eerste reactie op de vraag van de fabrikant zou kunnen zijn: ‘Zorg dat de vloer vlak is en de poten
even lang, dan zal de tafel niet wiebelen.’ Dat is inderdaad juist. Maar als advies aan de fabrikant is het
onbruikbaar: elke manier van produceren zal leiden tot bepaalde — misschien geringe — onnauwkeurigheden
in de pootlengte; en anderzijds is een vloer nooit helemaal vlak.
De wortel van ons probleem is natuurlijk, dat in het algemeen vier punten niet in één vlak liggen. Dit heeft
tot gevolg dat in de praktijk vier punten nooit in één vlak liggen. Ze kunnen deze eigenschap alleen met
zekere nauwkeurigheid bezitten.

De nauwkeurigheid waarmee de pootlengten overeenstemmen en de mate van vlakheid van de vloer
treden in als parameters in ons probleem.
Na enig nadenken komen we tot het volgende lijstje van zulke parameters.
1. De lengten van de poten;
2. De (on)effenheid van de vloer;
3. Het gewicht van het blad;
4. De indrukbaarheid van de poten (of de doppen daarop);
5. De indrukbaarheid van de vloer;
6. De deformeerbaarheid van het tafelblad.
Wat is eigenlijk de door ons gewenste eigenschap van ‘stabiliteit’? Wel, een stabiele tafel is er één die met
alle vier zijn poten stevig op de grond staat. Deze eerste werkdefinitie suggereert dat we moeten kijken naar
de krachten N1 , N2 , N3 en N4 die de vier tafelpoten op de vloer uitoefenen (of equivalent daaraan: die de
vloer op de tafelpoten uitoefent).
Zij W het gewicht is van de tafel. Volgens de klassieke mechanica van starre voorwerpen kan een tafel
alleen stilstaan als alle krachten en alle krachtmomenten die erop werken elkaar opheffen. Deze eis levert de
volgende vergelijkingen op:

W = N1 +N2 +N3 +N4 ;
N1 = N3 en N2 = N4 .

(1)

We kunnen dit stelsel reduceren tot één vergelijking in twee variabelen:

N1 +N2 = 1
2W . (2)



We zien dus dat de krachten door de eis van het stilstaan van de tafel op één variabele na bepaald zijn. In
het geval van een volkomen starre tafel zijn de krachten op de poten niet gedetermineerd.
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2. De tafelpoten als veren bekeken

We moeten duidelijk afstappen van het idee van een volkomen starre tafel. Deze raakt met zijn poten
in het algemeen de grond niet. En ook als dit wel het geval is, kan het gebeuren dat een tweetal diagonaal
tegenover elkaar liggende poten geen kracht uitoefent op de vloer.
Om de krachten die de vloer op de tafelpoten uitoefent in verband te kunnen brengen met de de pootlengten,
moeten we meer mechanica in stelling brengen. We modelleren de poten als indrukbare veren. Laten we
de ‘rustlengten’ van de poten L1 , L2 , L3 en L4 noemen, en de feitelijke pootlengten, dat wil zeggen de
afstanden van de vier hoekpunten van de tafel tot de vloer: z1 , z2 , z3 en z4 . Volgens de wet van Hooke
zijn de krachten Nj (j=1, 2, 3, 4) evenredig met de mate van indrukking van de poten:

Nj =
{
k(Lj − zj) als Lj ≥ zj ,
0 als Lj ≤ zj .

(3)

Hierbij is k de veerconstante van de poten, die als volgt kan worden uitgedrukt in termen van de lengte L
(die we hier plotseling voor alle poten gelijk veronderstellen!), en de doorsnede O :

k =
EO

L
∼ 2

ton
mm

.

E is de elasticiteitsmodulus van staal, die je in boeken over materiaalkunde kunt opzoeken. (E ≈ 2 ×
1011N/m2 . In bovenstaande schatting hebben we O = 1cm2 en L = 1m gekozen.)
We zullen veronderstellen dat het tafelblad is vlak is:

z1 + z3 = z2 + z4 . (4)

Definitie. We noemen de tafel stabiel als alle vier de poten op de grond drukken, dat wil zeggen als

Lj ≥ zj , (j = 1, 2, 3, 4).

Stelling 1. Een tafel met een vlak blad en indrukbare poten is stabiel dan en slechts dan als

|L1 − L2 + L3 − L4| ≤W/k . (5)

Bewijs. Uit (1) en (3) volgt met de vlakheidsconditie (4) dat

2(N1 −N2) = N1 −N2 +N3 −N4 = k(L1 − L2 + L3 − L4) .

De krachten N1 en N2 zijn beide positief dan en slechts dan als hun verschil in absolute waarde kleiner is
dan hun som uit (2); dit is precies conditie (5). ut
Voor het vervolg voeren we de volgende lineaire vorm in:

∆ : IR4 → IR : (x1, x2, x3, x4) 7→ x1 − x2 + x3 − x4 .

We korten daarmee bijvoorbeeld de stabiliteitsconditie (5) af tot k|∆L| < W , en de conditie (4) van een
vlak tafelblad luidt nu eenvoudigweg: ∆z = 0.

Evaluatie. Is dit een reëel antwoord aan onze fabrikant? Stel eens even dat zijn tafels 100 kg wegen. Dan
moeten volgens onze conditie (5) de poten gelijk afgezaagd zijn met een nauwkeurigheid

|∆L| :=≤ 100kg
2000kg/mm

= 0, 05mm .

Dit is een practisch onhaalbare eis! En als het al lukt de poten met deze nauwkeurigheid te zagen, dan zullen
de meeste vloeren dit weer verknoeien.
Blijkbaar zijn we te streng geweest. Misschien zijn stalen poten te stugge veren, en moeten we er rubber
dopjes op doen? Een berekening, waar de elasticiteitsmodulus van rubber in wordt gebruikt, en die we hier
niet weergeven, leert dat dit niet veel oplevert. Laten we daarom eens kijken naar de tot nog toe onbenutte
parameter nummer 6: de vervormbaarheid van het tafelblad.
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3. Een soepel tafelblad

Uit een boek [LaL] over elasticiteitstheorie halen we de volgende formule voor de deformatie-energie van
een bijna-vlakke plaat die de vorm heeft van de grafiek van een functie ϕ : [−a, a]× [−b, b] → IR:

U(ϕ) = D

∫ b

−b

∫ a

−a

(
1
2

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)2

+ (σ − 1)

(
∂2ϕ

∂x2

∂2ϕ

∂y2
−
(
∂2ϕ

∂x∂y

)2
))

dx dy .

Hierbij is

D =
Ed3

12(1− σ2)
,

d is de dikte van het blad, en σ ∈ (0, 1) een deformatieparameter die meestal in de buurt ligt van 0,3.
Wat moeten we met deze verschrikkelijke formule? Wel, laten we er eerst eens rustig naar kijken. Er vallen
ons na enige tijd een paar dingen op:
• De deformatie-energie is kwadratisch in de deformatie: U(λϕ) = λ2U(ϕ) voor alle (‘kleine’) λ ∈ IR en

‘gladde’ ϕ : [−a, a]× [−b, b] → IR.
• De deformatie-energie is ongevoelig voor het bijtellen van lineaire deformaties: voor alle ψ van de vorm

ψ(x, y) = ax+ by + c en voor alle ϕ geldt dat U(ϕ+ ψ) = U(ϕ).
• Als we voor ϕ de speciale deformatie ϕ(x, y) := xy/ab kiezen, dan vinden we voor de deformatie-energie:

U(ϕ) = 4D(1− σ)/ab .

Een voorwerp kan alleen stilstaan wanneer zijn potentiële energie zich in een lokaal minimum bevindt. Deze
conditie houdt hetzelfde in als die van het krachtenevenwicht uit de vorige paragraaf, maar is nu handiger
omdat we een uitdrukking hebben voor de potentiële energie van het tafelblad, niet voor de krachten ervan.
Laten we eerst eens proberen het voorgaande resultaat hiermee terug te vinden.
De totale potentiële energie is, bij star tafelblad en indrukbare poten:

V (z1, z2, z3, z4) = 1
4W (z1 + z2 + z3 + z4) + 1

2

4∑
j=1

k(Lj − zj)2 .

We zoeken hiervan het minimum onder de nevenconditie

∆z := z1 − z2 + z3 − z4 = 0 .

De multiplicatorenmethode van Lagrange levert de condities:

∂V

∂zj
= λεj ; (ε := (1,−1, 1,−1)) .

Dit is equivalent met
1
4W − k(Lj − zj) = λεj .

Door links en rechts de operatie ∆ te laten werken vinden we dat λ = − 1
4k∆L , en dus is

k(Lj − zj) = 1
4W − λεj = 1

4 (W + (k∆L)εj) .

Dus inderdaad is Nj is positief voor alle j dan en slechts dan als de ongelijkheid (5) geldt.
Nu vervangen we ons vlakke tafelblad door een deformeerbaar exemplaar. De conditie ∆z = 0 vervalt,

en zijn plaats wordt ingenomen door een extra term in de potentiële energie V :

V (z1, z2, z3, z4) = 1
4W (z1 + z2 + z3 + z4) + 1

2

4∑
j=1

k(Lj − zj)2 + Ũ(z1, z2, z3, z4) . (6)

Hierbij is

Ũ(z) := min{ U(ϕ) | ϕ(a, b) = z1, ϕ(−a, b) = z2, ϕ(−a,−b) = z3, ϕ(a,−b) = z4 } .

Stelling 2. Er bestaat een constante k′ zó dat Ũ(z) = 1
8k

′|∆z|2 . Deze voldoet aan

k′ ≤ 2D(1− σ)
ab

(
=: k0

)
. (7)
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Bewijs. Voor elke z ∈ IR4 is er een lineaire functie ψ : [−a, a]× [−b, b] → IR zó dat


z1 − ψ(a, b)
z2 − ψ(−a, b)
z3 − ψ(−a,−b)
z4 − ψ(a,−b)

 = 1
4 (∆z)


1
−1
1
−1

 = 1
4 (∆z)ε .

Immers de lineaire functies, opgevat als elementen van IR4 door restrictie tot de hoekpunten van de rechthoek,
spannen een 3-dimensionale deelruimte van IR4 op waar ε niet in ligt. (Deze deelruimte is de nulruimte van
∆.) Dus elke z ∈ IR4 kan worden geschreven als 1

4 (∆z)ε + ψz

∣∣
H , waarbij H de verzameling van de vier

hoekpunten voorstelt, en ψz een lineaire functie is die afhngt van z . Er geldt nu:

Ũ(z) = min{ U(ϕ) | ϕ
∣∣
H = z }

= min{ U(ϕ) | (ϕ− ψz)
∣∣
H = z − ψz

∣∣
H }

= min{ U(ϕ) | (ϕ− ψz)
∣∣
H = 1

4 (∆z)ε }
= min{ U(ϑ) | ϑ

∣∣
H = 1

4 (∆z)ε }

= Ũ
(

1
4 (∆z)ε

)
=

1
16

(∆z)2Ũ(ε) .

Dus als we k′ := 1
2 Ũ(ε) definiëren, geldt het eerste deel van de bewering. Het tweede deel verkrijgen we als

volgt. Zij ϑ(x, y) := xy/ab . Dan is ϑ
∣∣
H = ε . Dus is

2k′ = Ũ(ε) = min{ U(ϕ) | ϕ
∣∣
H = ε } ≤ U(ϑ) = D(1− σ) · 4

ab
= 2k0 .

ut
Voor een ‘standaard’ tafel (4ab ≈ 2m2 , dikte blad = d = 1cm, σ ≈ 0,3) is de waarde van k0 :

k0 ≈
2× 1011Nm2 · 10−6m3

2× 2m2
= 1

2 × 105Nm−1 ≈ 5kg-kracht/mm .

Dit is aanzienlijk minder dan de waarde van k die bij de indrukbaarheid van de poten behoort.
In het onderstaande zullen we zien dat k en k′ inderdaad vergelijkbare rollen spelen.

4. Een verbeterde stabiliteitsvoorwaarde

Opnieuw zoeken we het minimum van de energiefunctie, ditmaal zonder de conditie ∆z = 0 van een
vlak tafelblad, maar met een extra term 1

8k
′(∆z)2 in de functie zelf:

V (z) = 1
4W

4∑
j=1

zj + 1
2k

4∑
j=1

(Lj − zj)2 + 1
8k

′(∆z)2 .

We zoeken het minimum en kijken wanneer dit leidt tot zj ≤ Lj voor alle j :

0 =
∂V

∂zj
= 1

4W − k(Lj − zj) + 1
4k

′(∆z)εj . (8)

We kunnen dit ook schrijven als
k(Lj − zj) = 1

4W + 1
4k

′(∆z)εj . (9)

Door hierop de operatie ∆ te laten werken kunnen we ∆z elimineren:

k∆L− k∆z = k′∆z =⇒ ∆z =
k

k + k′
∆L .
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Terug-invullen in (9) levert dan:

k(Lj − zj) = 1
4W + 1

4

kk′

k + k′
(∆L)εj .

Dit is voor alle j positief dan en slechts dan als

|∆L| ≤
(

1
k

+
1
k′

)
W .

Deze tweede stabiliteitsvoorwaarde is veel gemakkelijker te vervullen dan de eerste. We zien uit dit resultaat
bovendien dat de indrukbaarheid van de poten en de soepelheid van het tafelblad een vergelijkbare rol spelen,
waarbij klaarblijkelijk de laatste in typische gevallen domineert.
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