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Abstract In certain situations the state of a quantum system, after transmission
through a quantum channel, can be perfectly restored. This can be done by “coding”
the state space of the system before transmission into a “protected” part of a larger
state space, and by applying a proper “decoding” map afterwards. By a version of the
Heisenberg Principle, which we prove, such a protected space must be “dark” in the
sense that no information leaks out during the transmission. We explain the role of
the Knill–Laflamme condition in relation to protection and darkness, and we analyze
several degrees of protection, whether related to error correction, or to state restaura-
tion after a measurement. Recent results on higher rank numerical ranges of operators
are used to construct examples. In particular, dark spaces are constructed for any map
of rank 2, for a biased permutations channel and for certain separable maps acting on
multipartite systems. Furthermore, error correction subspaces are provided for a class
of tri-unitary noise models.

Keywords Quantum error correction · Quantum operations · Protected spaces ·
Decoherence free subspaces

PACS 03.67.Pp · 03.65.Yz

K. Majgier · K. Życzkowski
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K. Życzkowski (B)
Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Al. Lotników 32/44, 02-668 Warszawa, Poland
e-mail: karol@tatry.if.uj.edu.pl

123



K. Majgier et al.

1 Introduction

We consider a quantum channel of finite dimension through which a quantum system
in some state is sent. The output consists of another quantum state, and possibly some
classical information. We are interested in the question to what extent the original
quantum state can be recovered from that state and that information. In particular, we
investigate if there are subspaces of the Hilbert space of the original system, on which
the state can be perfectly restored.

In the literature a hierarchy of such spaces, which we shall call protected subspaces
here, has been described. The strongest protection possible is provided in the case of
a “decoherence free subspace” [1–4]. In this case the channel acts on the subspace as
a isometric transformation. All we have to do in order to recover the state, is to rotate
it back.

The next strongest form of protection occurs when the channel acts on the subspace
as a random choice between isometries, whose image spaces are mutually orthogonal.
Then by measuring along a suitable partition of the output Hilbert space, it can be
inferred from the output state which isometry has occurred, so that it can be rotated
back. This situation is characterized by the well-known Knill–Laflamme criterion,
[5,6] and the protected subspace in this case is usually called an error correction
subspace.

The weakest form of protection is provided in yet a third situation, which was
encountered in the context of quantum trajectories and the purification tendency of
states along these paths [7]. In this case the deformation of the state is not caused
by some given external device, but by the experimenter himself, who is performing a
Kraus measurement [8]. Also in this case the “channel” acts as a random isometry, but
the image spaces need not be orthogonal. It is now the measurement outcome (not the
output state), that betrays to the experimenter which isometry has taken place. Using
this information, he is able to undo the deformation of the component of the state that
lies in the subspace considered.

It should be emphasized that the latter form of protection is far from a general error
correction procedure. The experimenter only repairs the damage that he himself has
incurred by his measurement.

Nevertheless, the above situations seem mathematically sufficiently similar to
deserve study under a common title.

In all these three cases the experimenter learns nothing during the recovery operation
about the component of the state inside our subspace. In this sense these subspaces can
be considered “dark”, and this darkness is essential for the protection of information.
Our main result (Theorem 3) is concerned with the equivalence between protection
and darkness, which is a consequence of Heisenberg’s principle that no information
on an unknown quantum state can be obtained without disturbing it (Corollary 2).

The question arises, for what channels protected subspaces are to be be found.
We consider several examples in their Kraus decompositions. In each decomposition,
we look for subspaces on which the channel acts as a multiple of an isometry, to be
called a homometry here. Obviously, every (Kraus) operator A acts homometrically
on a one-dimensional space Cψ ; its image CAψ is another one-dimensional space,
and the shrinking factor is

√〈 Aψ, Aψ 〉 = ‖Aψ‖. However, one-dimensional spaces
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are useless as coding spaces for quantum states. What we shall need, therefore, is the
recent theory of higher rank numerical ranges [9,10]. With the help of this we shall
be able to construct several examples.

The paper is organized as follows. A brief review of basic concepts including chan-
nels and instruments is presented in Sect. 2. We discuss Heisenberg’s principle in
Sect. 3. and prove our main Theorem, Theorem 3 in Sect. 4. In subsequent sections
we analyze different forms of protected subspaces and compare their properties. In
Sect. 5 we review the notion of higher rank numerical range and quote some results on
existence in the algebraic compression problem. Some examples of dark subspaces are
presented in Sect. 6, while an exemplary problem of finding an error correction code
for a specific model of tri-unitary noise acting on a 3 × K system is solved in Sect. 7.

2 Channels and instruments

Let H be a finite-dimensional complex Hilbert space, and let B(H) denote the space of
all linear operators on H. We consider H as the space of pure states of some quantum
system. By a quantum operation or channel on this system we mean a completely
positive map � : B(H) → B(H) mapping the identity operator 1 = 1H to itself.
The map � describes the operation “in the Heisenberg picture”, i.e. as an action on
observables. Its description “in the Schrödinger picture”, i.e. as an action on density
matrices ρ, is described by its adjoint �∗. The maps � and �∗ are related by

∀ρ∀X∈B(H) : tr
(
�∗(ρ)X

) = tr (ρ�(X)).

We note that the property �(1) = 1, which we require for �, is equivalent to trace
preservation by �∗:

tr
(
�∗(ρ)

) = tr
(
�∗(ρ) · 1) = tr (ρ ·�(1)) = tr(ρ · 1) = tr(ρ).

By Stinespring’s theorem, every channel � : B(H) → B(H) can be written as

�(X) = V †(X ⊗ 1M)V, (2.1)

where V is an isometry H → H⊗M for some auxiliary Hilbert spaceM. The minimal
dimension r of M admitting such a representation is called the Choi rank [11,12]
of �.

Any Stinespring representation of � naturally leads to a wider quantum operation

� : B(H)⊗ B(M) → B(H) : X ⊗ Y 
→ V †(X ⊗ Y )V, (2.2)

which can be interpreted (in the Heisenberg picture) as the result of coupling the
system to some ancilla having Hilbert space M.

Thus Stinespring’s representation (2.1) can be symbolically rendered as in Fig. 1.
In this picture, the cross stands for the substitution of 1M (in the Heisenberg picture,
reading from right to left), or the partial trace (in the Schrödinger picture, reading from
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Fig. 1 Stinespring’s dilation of � seen as coupling to an ancilla M

Fig. 2 The conjugate channel �C

left to right). Physically, it corresponds to throwing away, or just ignoring, the ancilla
after the interaction. In the picture, the fact that � is a compression, i.e. � = V † · V
for some isometry V , is symbolized by the triangular form of its box.

Now, by blocking the other exit in Fig. 1, we obtain the conjugate channel [13],
�C :

�C : B(M) → B(H) : Y 
→ �(1H ⊗ Y ) = V †(1H ⊗ Y )V .

See also Fig. 2.
The main message of this paper is the following. The conjugate channel can be

viewed as the flow of information into the environment. By Heisenberg’s Principle,
to be explained below, such a flow prohibits the faithful transmission of informa-
tion through the original channel �. In particular, if the information encoded in
some subspace of H is to be transmitted faithfully, nothing of it is visible from
the outside: protection implies darkness. The degree of protection (decoherence free,
strong or weak) is related to the degree of darkness, for which we shall define some
terminology.

Any orthonormal basis f = ( f1, . . . , fm) in M corresponds to a possible von
Neumann measurement �∗

f on the ancilla, which maps a density matrix ρ on M to
a probability distribution (〈 f1, ρ f1 〉 , 〈 f2, ρ f2 〉 , . . . , 〈 fm, ρ fm 〉) on {1, 2, . . . ,m}.
(Cf. Fig. 3.) In the Heisenberg picture this is the map from the algebra C

m with genera-
tors e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . ., em = (0, 0, . . . , 0, 1), to B(M),
given by

� f : ei 
→ | fi 〉〈 fi |.

In Fig. 3 the abelian algebra C
m is indicated by a straight line since it only carries

classical information. Quantum information is designated by a wavy line.

Fig. 3 Von Neumann measurement on M
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Let us now denote by I f the “partial inner product map”

H ⊗ M → H : ϕ ⊗ θ 
→ 〈 f, θ 〉ϕ,

and let us write

Ai := I fi V ∈ B(H).

Then since I †
fi

X I f j = X ⊗ | fi 〉〈 f j |, we obtain a decomposition of � along the basis
( fi )

m
i=1 as follows:

�(X) = �(X ⊗ 1M) =
m∑

i=1

� (X ⊗ | fi 〉〈 fi |) =
m∑

i=1

V † I †
fi

X I fi V =
m∑

i=1

A†
j X A j .

(2.3)

This is a Kraus decomposition of �. Combining the coupling to the ancilla with a
von Neumann measurement on the latter, we obtain an instrument in the language of
Davies and Lewis [14]:

� f : B(H)⊗ C
m → B(M) : X ⊗ ei 
→ V †(X ⊗ | fi 〉〈 fi |)V = A†

i X Ai . (2.4)

The isometric property of V is now expressed as

V †V =
m∑

i=1

A†
i Ai = 1. (2.5)

3 Heisenberg’s principle or observer effect

In quantum mechanics observables are represented as self-adjoint operators on a Hil-
bert space. When A and B are commuting operators, then they possess a common
complete orthonormal set of eigenvectors. Each of these eigenvectors ψ determines a
state which associates sharply determined values to both observables A and B.

But when A and B do not commute, such states may not exist. This important prop-
erty of quantum mechanics was first discussed by Heisenberg [15], and is called the
Heisenberg Uncertainty Principle. It was formulated by Robertson [16] in the form

σψ(A) · σψ(B) ≥ 1
2 | 〈ψ, (AB − B A)ψ 〉 |.

Here σψ(X) is the standard deviation of X in the distribution induced by ψ . Already
in the very same paper, Heisenberg introduced a second and very different principle,
which is sometimes designated as the “Observer Effect”, and which we shall call the
Heisenberg Principle here. Roughly speaking, it says that:
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if A and B do not commute,

a measurement of B perturbs the probability distribution of A. (3.1)

In the first half century of quantum mechanics, physicists, including Heisenberg him-
self, were satisfied with this formulation, and even considered it more or less identical
to the Uncertainty Principle above.

In recent years it was realized that in fact we have here two different principles.
Good quantitative formulations have been given of the Heisenberg Principle (for exam-
ple [17,18]). For the purpose of the present paper we are satisfied with a qualitative
(‘yes-or-no’) version.

Let us first note that the formulation of the principle needs sharpening. As it stands,
the condition is not needed: already in the trivial case that A = B measurement of
B changes the probability distribution of A. Indeed changing the probability distri-
bution of an observable is the very purpose of measurement! And also, when A and
B commute, but are correlated, then gaining information on B typically changes the
distribution of A. A characteristic property of quantum theory only arises if we require
that the outcome of the measurement of A is not used in the determination of the new
probability distribution of B. Even then, some states may go through unchanged.

Corrected for these observations, the Heisenberg Principle reads:

For noncommuting A and B we cannot avoid that,

for some initial states, a measurement of B changes the distribution of A

even if we ignore the outcome of the measurement. (3.2)

The contraposition of the statement turns out to be mathematically more tractible:

If the probability distribution of A is not altered in any initial state—

by us performing some measurement and ignoring its outcome—then

the object measured must commute with A. (3.3)

In this form it is sometimes called the ’nondemolition principle’.
Now let us make this statement precise. We start with a self-adjoint operator A

on H. Its distribution in the state ρ is determined by the numbers tr(ρg(A)) when g
runs through the functions on the spectrum of A. Then some quantum operation is
performed which on B(H) is described by a completely positive unit preserving map
�. We require that for all states ρ and all functions f

tr
(
�∗(ρ)g(A)

) = tr (ρg(A)) ,

which is equivalent to

�(g(A)) = g(A).
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I.e.: all elements of the *-algebra A consisting of functions of A are left invariant by
�. Let us denote the commutant of A by A′,

A′ = {X ∈ B(H) | ∀Y∈A : XY = Y X}. (3.4)

Now, the quantum operation� is due to a measurement, so it is actually of the form

�(X) = 	(X ⊗ 1),

where 	 : B(H) ⊗ C
m → B(H) is some instrument whose outcomes, labeled

1, 2, . . . ,m, in the state ρ have probabilities p1, p2, . . . , pm to occur, where

p j = tr
(
ρ	(1 ⊗ e j )

)
,

and where tr
(
ρ	(X ⊗ e j )

)
/p j is the expectation of X , conditioned on the outcome j .

(This situation is comparable to, but more general than, that of � f in (2.4).) Here C
m

is the algebra of measurement outcomes. Generalizing to arbitrary A, we may now
formulate the Heisenberg Principle as follows.

Proposition 1 (Heisenberg Principle) Let H be a finite dimensional Hilbert space,
and B some finite dimensional *-algebra. Let A be a sub-*-algebra of B(H), and let
	 be a completely positive unit preserving map B(H)⊗B → B(H). Suppose that for
all A ∈ A we have

	(A ⊗ 1) = A.

Then for all B ∈ B

	(1 ⊗ B) ∈ A′.

Proof For any density matrix ρ on H, define the quadratic form Dρ on B(H)⊗ B by

Dρ(X,Y ) := trρ
(
	(X∗Y )−	(X)∗	(Y )

)
.

By the Cauchy–Schwartz inequality for the completely positive map	 this quadratic
form is positive semidefinite. By assumption we have for all A ∈ A:

Dρ(A ⊗ 1, A ⊗ 1) = trρ
(
	(A∗ A ⊗ 1)−	(A ⊗ 1)∗	(A ⊗ 1)

)

= trρ
(

A∗ A ⊗ 1 − (A ⊗ 1)∗(A ⊗ 1)
) = 0.

It then follows from the Cauchy–Schwartz inequality for Dρ itself that Dρ(A⊗1,1⊗
B) = 0 for all B ∈ B. But then

trρ (A	(1 ⊗ B)) = trρ (	(A ⊗ 1)	(1 ⊗ B)) = trρ (	 ((A ⊗ 1)(1 ⊗ B)))

= trρ (	 ((1 ⊗ B)(A ⊗ 1))) = trρ (	(1 ⊗ B)	(A ⊗ 1))

= trρ (	(1 ⊗ B)A) .
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Fig. 4 Heisenberg’s Principle as an implication between diagrams

Since this holds for all ρ, it follows that 	(1 ⊗ B) commutes with A. �
By taking A and B abelian, say A generated by some observable A, and B = C

m

as above, and by choosing for 	 some instrument giving information about B, we
obtain a statement of the type (3.3).

But there are other possible conclusions. We may choose A = B(H), so that
A′ = C · 1H. Then the Heisenberg principle says that, if we wish to make sure that
any possible state ρ on H be unchanged by our measurement, no information at all
concerning ρ can be gained. This is expressed by the following corollary and Fig. 4.

Corollary 2 In the situation of Proposition 1, if for all A ∈ B(H) we have

	(A ⊗ 1) = A,

then there is a positive normalized linear form α on B such that for all B ∈ B:

	(1 ⊗ B) = α(B) · 1H.

Indeed, the expectation of an outcome observable,

tr(	∗ρ)(1 ⊗ B) = tr(ρ	(1 ⊗ B)) = tr(ρ1H) · tr(αB) = tr(αB)

does not depend on ρ (see Fig. 4.)

4 Protection and darkness: the Knill–Laflamme condition

Let L be a complex Hilbert space of dimension smaller than that of H, and let C :
L → H be some isometry. The range of C is a subspace of H, isomorphic with L.
Let � : B(H) → B(L) denote the compression map

�(X) = C† XC.

Note that � is completely positive and identity-preserving. Compression maps are a
convenient way of describing subspaces of a Hilbert space in the language of opera-
tions. Note that the operation �∗ (in the Schödinger picture) embeds density matrices
on L into the range of C :
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�∗(ρ) = CρC†.

Physically, � is to be viewed as the “coding” operation.

Definition We say that � (or the subspace CL of H) is protected against a chan-
nel � : B(H) → B(H) if � ◦ � is right-invertible, i.e. if there exists a “decoding”
operation � : B(L) → B(H) such that

� ◦� ◦� = idB(L). (4.1)

By virtue of (2.1) we may picture this state of affairs as in Fig. 5.
The subspace will be called weakly protected against an instrument � f : B(H)⊗

C
m → B(H) if � ◦ � f is right-invertible, i.e. if there exists a decoding operation

� f : B(L) → B(H)⊗ C
m such that

� ◦� f ◦� f = idB(L). (4.2)

This is symbolically rendered in Fig. 6. The difference with Fig. 5 is that, in the case of
weak protection, it is allowed to use the measurement outcome in the decoding. In the
figure the classical information consisting of the measurement outcome, is symbolized
by a straight line.

The above notions concern protection of information. Now we consider its avail-
ability to the external world.

Definition Let � f : B(H) ⊗ C
m → B(H) denote a quantum measurement (instru-

ment) as described in (2.4). The subspace CL ⊂ H (or the compression operation
� = C† · C), will be called dark with respect to � f if for all i = 1, . . . ,m we have

� ◦� f (1 ⊗ ei ) ∈ C · 1L. (4.3)

This condition can be written in an equivalent form,

C† A†
i Ai C = λi · 1L for i = 1, . . . ,m. (4.4)

The subspace CL will be called completely dark for a channel � : B(H) → B(H) if
it is dark for all Kraus measurements � f obtained by choosing different orthonormal
bases in the ancilla space of some Stinespring dilation of �; i.e.

Fig. 5 Strong protection of � against �

Fig. 6 Weak protection of � against � f
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∀Y∈B(M) : � ◦�(1 ⊗ Y ) ∈ C · 1L. (4.5)

In terms of Kraus operators this is equivalent with the Knill–Laflamme condition:

C† A†
i A j C = αi, j · 1L for i, j = 1, . . . ,m. (4.6)

4.1 Interpretation

From (4.3) and (4.4) we see that, if the von Neumann measurement along f is per-
formed, the measurement outcome i has the same probability ρ

(
� ◦� f (1 ⊗ ei )

) =
ρ(C† A†

i Ai C) = λi , in all system states ρ, i.e. no information concerning the state ρ
can be read off from the f -measurement on the ancilla.

Complete darkness (i.e. (4.5) or the equivalent Knill–Laflamme condition (4.6))
says that no information whatsoever concerning the input state reaches the ancilla.
Mathematically, the Knill–Laflamme condition says that the range of the conjugate
channel lies entirely in the center C · 1L of B(L). Let us emphasize again that if the
space C satisfies the conditions (4.6) for a map � represented by a particular set of
the Kraus operators {Ai }m

i=1, then C also satisfies them for any other set of Kraus

operators {Bi }m′
i=1, used to represent the same map �.

Note also that the set of conditions (4.6), which express complete darkness, natu-
rally defines a state α, on the ancilla by a relation

� ◦�(1 ⊗ Y ) = tr(αY ) · 1L. (4.7)

satisfied by any Y . This quantum state acting on an auxiliary system is called the error
correction matrix, since the density matrix αi j appears in Eq. 4.6. Observe that the
density operator α depends only on the map � and not on the concrete form of the
Kraus operators Ai , which represent the map and determine the matrix representation
αi j of α. Relations between matrix elements of the same state represented in two dif-
ferent basis are governed by the Schrödinger lemma [12], also called GHJW lemma
[19,20].

We are now going to prove the equivalence of protection and darkness. In the case of
strong protection and complete darkness this reproduces and puts into perspective the
result of Knill and Laflamme [6]. In that case, if the state α is pure, then the decoding
operation � can be realized by a unitary evolution, Hence the purity constraint for
the error correction matrix, α = α2, is the correct condition for a decoherence free
subspace [21]—see also the proof of Theorem 3. As a quantitative measure, which
characterizes to what extent a given protected space is close to a decoherence free
space, one can use the von Neumann entropy of this state, S = −Trα ln α. This code
entropy [22] is equal to zero if the protected space is decoherence free or if the infor-
mation lost can be recovered by a reversible unitary operation. Observe that the code
entropy S characterizes the map � and the code space C , but does not depend on the
particular Kraus form used to represent �.

In this way we have determined a hierarchy in the set of protected spaces. Every
decoherence free subspace belongs to the class of completely dark subspaces, which
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Fig. 7 Sketch of the hierarchy
of protected subspaces

correspond to error correction codes. In turn the completely dark subspaces form a
subset of the set of dark subspaces—see Fig. 7.

Theorem 3 (Equivalence of protection and darkness) Let H, M, and L be finite
dimensional Hilbert spaces. Let C : L → H and V : H → H ⊗ M be isometries,
and let�,� and� f be as defined in (2.1), (2.2) and (2.4). Then CL is weakly protected
against the instrument � f if and only if CL is dark for � f . It is strongly protected
against � if and only if it is completely dark for �.

Proof First assume that CL is strongly protected against �, i.e. (4.1) holds for some
decoding operation �. Let �(X) = �(X ⊗ 1) for some compression �. Define

	 : B(L)⊗ B(M) → B(L) : X ⊗ Y 
→ � ◦�(�(X)⊗ Y ).

Then 	(X ⊗ 1) = X for all X ∈ B(L), and by Corollary 2, since �(1) = 1,

� ◦�(1 ⊗ Y ) = 	(1 ⊗ Y ) ∈ C · 1.

So (4.5) holds, and CL is completely dark for �.
Conversely, suppose that CL is completely dark for�, and let α denote the density

matrix given by (4.7) Then we may diagonalize:

tr(αY ) =
m∑

i=1

ai 〈 fi ,Y fi 〉

for some orthonormal set ( fi )
m′
i=1 (with m′ ≤ m) of B(M) and positive numbers

a1, a2, . . . , am′ summing up to 1. Now let Ai := I fi V . Then for all ψ ∈ L:

〈
Ai Cψ, A j Cψ

〉 = 〈
I fi V Cψ, I f j V Cψ

〉

=
〈
ψ,C†V †(1 ⊗ | fi 〉〈 f j |)V Cψ

〉

= α(| fi 〉〈 f j |) · ‖ψ‖2

= aiδi j · ‖ψ‖2.
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So the ranges of Ai C and A j C are orthogonal for i �= j and Ai is homometric on CL.
Now define Di for i = 1, 2, . . . ,m′ on these orthogonal ranges by

Diϕ = 0 if ϕ ⊥ Range (Ai C), Di Ai Cψ = √
aiψ.

(Di “rotates back” the action of Ai C .) Let � denote the operation

�(Z) :=
m′∑

i=1

D†
i Z Di + ρ(Z)

⎛

⎝1H −
m′∑

j=1

D† D j

⎞

⎠.

for some arbitrary stateρ on B(L). (The term withρ is intended to ensure that�(1L) =
1H.) Then we have for all Z ∈ B(L):

� ◦� ◦�(Z) =
m′∑

j=1

m′∑

i=1

C† A†
j D†

i Z Di A j C

=
m′∑

j=1

m′∑

i=1

1

ai
C† A†

j Ai C ZC† A†
i A j C =

m′∑

i j=1

δi j ai Z = Z .

So CL is strongly protected against � by (4.1).
Now let us prove the equivalence between weak protection and darkness. Assume

that CL is weakly protected against � f , i.e. (4.2) holds for some � f : B(L) →
B(H)⊗ C

m , say� f (X) = ∑m
j=1�

j
f (X)⊗ e j . Define	 : B(H)⊗ C

m → B(H) by

	(X ⊗ g) :=
m∑

j=1

g( j)� ◦� f (�
j (X)⊗ e j ).

Then by (4.2), 	(X ⊗ 1) = X for all X ∈ B(L). Hence by Corollary 2,

� ◦� f (1 ⊗ ei ) = 	(1 ⊗ ei ) ∈ B(H)′ = C · 1L.

So (4.3) holds, and CL is dark for � f .
Conversely, assuming that CL is dark for � f , then AlC is homometric on L by

(4.4), and we may define Dl : H → L by

Dl AlCψ := √
λlψ if ψ ∈ L, Dlϕ = 0 if ϕ ⊥ Range (AlC).

(Briefly: Dl = C† A†
l /

√
λl if λl �= 0, zero otherwise.) Define the decoding operation

� f : B(L) → B(H)⊗ C
m by

� f (Z) :=
m⊕

l=1

(
D†

l Z Dl + (1H − D†
l Dl)ρ(Z)

)
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for some arbitrary state ρ on B(L). Then, for Z ∈ B(L):

� ◦� f ◦� f (Z) = � ◦� f

(
m∑

l=1

(
D†

l Z Dl + (1 − D†
l Dl)ρ(Z)

)
⊗ el

)

= C†V †

(
m∑

l=1

(
D†

l Z Dl + (1 − D†
l Dl)ρ(Z)

)
⊗ | fl〉〈 fl |

)

V C

=
m∑

l=1

C† A†
l D†

l Z Dl AlC =
m∑

l=1

1

λl
(C† A†

l AlC)Z(C
† A†

l AlC)

=
m∑

l=1

λl Z = Z .

�

5 Compression problems and generalized numerical range

For a given channel � : B(H) → B(H) we are interested in the protected subspaces
of H. These are the subspaces on which the compressions of A†

i A j act as scalars. In
this section we review this compression problem.

Let T be an operator acting on a Hilbert space H of dimension n, say. For any
k ≥ 1, define the rank-k numerical range of T to be the subset of the complex plane
given by

�k(T ) =
{
λ ∈ C : C†T C = λ1 for some C : C

k → H
}
, (5.1)

The elements of�k(T ) can be called “compression-values” for T , as they are obtained
through compressions of T to a k-dimensional compression subspace. The case k = 1
yields the standard numerical range for operators [23]

�1(T ) = {〈ψ |Tψ〉 : |ψ〉 ∈ H , 〈ψ |ψ〉 = 1}. (5.2)

It is clear that

�1(T ) ⊇ �2(T ) ⊇ · · · ⊇ �n(T ). (5.3)

The sets �k(T ), k > 1, are called higher-rank numerical ranges [9,24]. For any
normal operator acting on Hn this is a compact subset of the complex plane. For
unitary operators this set is included inside every convex hull (co�), where � is an
arbitrary (n + 1 − k)-point subset (counting multiplicities) of the spectrum of T [9].
It was recently shown that for any normal operator the sets�k(T ) are convex [25,26]
while further properties of higher rank numerical range were investigated in [27–29].

The higher rank numerical range is easy to find for any Hermitian operator, T = T †

acting on an n-dimensional Hilbert space H. Let us quote here a useful result proved
in [9].
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(a) (b)

Fig. 8 Standard numerical range �1 and higher rank numerical range �2 for a Hermitian operator T of
size 4 and b non-degenerate unitary U ∈ U (4). Observe similarity in finding the weights a and b used to
construct superposition of states forming the subspace CL in both problems

Lemma 4 Let x1 ≤ x2 ≤ · · · ≤ xn denote the ordered spectrum (counting multi-
plicities) of a hermitian operator T . The rank-k numerical range of T is given by the
interval

�k(T ) = [xk, xn+1−k] , (5.4)

Note that the higher rank numerical range of a hermitian T is nonempty for any
k ≤ int[(n + 1)/2]. Let us demonstrate an explicit construction of a compression
to C

2 which solves Eq. 5.1 for a Hermitian matrix T of size n = 4. The latter’s
eigenvalue equation reads T |φi 〉 = xi |φi 〉. Choose any real λ ∈ �2(T ) = [x2, x3]. It
may be represented as a convex combination of two pairs of eigenvalues {x1, x3} and
{x2, x4}—see Fig. 8a. Writing

λ = (1 − a)x1 + ax3 = (1 − b)x2 + bx4 (5.5)

one obtains the weights

a = λ− x1

x3 − x1
=: sin2 θ1 and b = λ− x2

x4 − x2
=: sin2 θ2 (5.6)

which determine real phases θ1 and θ2. These phases allow us to define an isometry
C : C

2 → H by

C :
{

e1 
→ cos θ1|φ1〉 + sin θ1|φ3〉
e2 
→ cos θ2|φ2〉 + sin θ2|φ4〉 , (5.7)

Observe that
〈

e1,C†T Ce1

〉
= cos θ1x1〈φ1|ψ1〉 + sin θ1x3〈φ3|ψ1〉= (1 − a)x1 + ax3 = λ.

(5.8)

Similarly, we have
〈
e2,C†T Ce2

〉 = λ. Further, we also have
〈
e1,C†T Ce2

〉 = 0 =〈
e2,C†T Ce1

〉
. It follows that C†T C = 1, and the isometry (5.7) provides a solution
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of the compression problem (5.1) as claimed. Note that one can select another pairing
of eigenvalues, and the choice {x1, x4} and {x2, x3} allows us to get in this way another
subspace C ′L spanned by vectors obtained by a superposition of states |φ1〉 with |φ4〉
and |φ2〉 with |φ3〉, respectively.

For a given operator T one may try to solve its compression equation (5.1) and look
for its numerical range �k(T ). Alternatively, one may be interested in the following
simple compression problem: For a given operator T find all possible subspaces CL
of a fixed size k which satisfy (5.1).

Furthermore, it is natural to raise a more general, joint compression problem of
order M . For a given set of M operators {T1, . . . TM } acting on Hn find a subspace CL
of dimensionality k which solves simultaneously M compression problems:

C†TmC = λm1 for m = 1, . . . ,M. (5.9)

Note that all compression constants, λm ∈ �k(Tm), can be different, but the isometry
C needs to be the same.

6 Dark subspaces

In this section we provide several results concerning existence of darks spaces for
several classes of quantum maps.

6.1 Random external fields

Consider a noisy channel � given by

�U (X) =
r∑

i=1

qi U †
i XUi , (6.1)

where all operators Ui are unitary while positive weights qi sum up to unity. Such
maps are called random external fields [30] or random unitary channels. The standard
Kraus form (2.3) is obtained by setting Ai = √

qiUi .
In this Kraus decomposition the whole space, and hence every subspace, is dark.

This corresponds to the fact that the choice between the unitaries, which is made with
the probability distribution (q1, . . . , qr ), gives no information on the quantum state.
And indeed, knowledge of the “external field”, i.e. of the outcome i , permits us to
undo, by the inverse of Ui , the action of the channel.

6.2 Rank two quantum channels

Let us now analyze a rank two channel,

ρ′ = �2(ρ) = A1ρA†
1 + A2ρA†

2 , (6.2)
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Lemma 5 For any Kraus representation of any rank-two channel acting on a system
of size N there exist a dark subspace of dimension k = int[(N + 1)/2].
Proof We need to solve a joint compression problem (5.9) of order two, for two Her-
mitian operators T1 = A†

1 A1 and T2 = A†
2 A2. Due to Lemma 4 there exists a subspace

Pk of dimension k = int[(N + 1)/2] which solves the compression problem for the
Hermitian operator T1 of size N . It is also a solution of the compression problem for
the other operator, since the trace preserving condition implies T2 = 1 − T1. �

6.3 Biased permutation channel

Consider a quantum map acting on a system of arbitrary size n described by the Kraus
form (2.3). Let us assume that all Kraus operators are given by ‘biased permutations’

Ai = Pi

√
Di , i = 1, . . . , r. (6.3)

where Di is a diagonal matrix containing non-negative entries, and Pi denotes an
arbitrary permutation of the N -element set. Hence all elements of the POVM form
diagonal matrices,

Ti = A†
i Ai = √

Di P†
i Pi

√
Di = Di , (6.4)

in general not proportional to identity. Note that the Kraus operators defined in this
way need not to be Hermitian. To satisfy the trace preserving condition (2.5) we need
to assume that

∑r
i=1 Di = 1. Let us define an auxiliary rectangular matrix of size

r × N , namely Sim := (Di )mm ≥ 0. Then the above constraints for the matrices Di is
equivalent to the statement that S is stochastic, since the sum of all elements in each
column is equal to 1,

r∑

i=1

Sim = 1 for m = 1, . . . , N . (6.5)

A map described by Kraus operators fulfilling relations (6.3) and (6.5) will be called
a biased permutation channel.

We are going to construct a dark space for a wide class of such channels. For sim-
plicity assume that the size of the system is even, N = 2k. Let us additionally assume
that all elements in each row of B are ordered (increasingly or decreasingly) and that
the matrix S enjoys a symmetry relation,

Si,m + Si,n−m+1 = const =: κi for i = 1, . . . , r; m = 1, . . . , k = n/2. (6.6)

Then the numbers κi depend on the sum of all entries in each row, κi = 2
N

∑N
m=1 Sim .
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Lemma 6 Assume that a biased permutation channel acting on a system of size N =
2k possesses the symmetry relation (6.6). Then it has a dark space of dimension
k = n/2.

Proof We need to find a joint compression subspace for the set of r elements of POVM
given by diagonal matrices Di , with i = 1, . . . , r . Since these matrices commute, they
have the same set of eigenvectors, denoted by |vm〉, m = 1, . . . , N . Due to symmetry
relation (6.6) we know that the barycenter of each spectrum, λi = κi/2 belongs to
the higher rank numerical range, �k(Di ). Furthermore, this relation shows that (for
any i) the number λi can be represented as a sum of two eigenvalues of Di with the
same weights, λi = 1

2 (Di )mm + 1
2 (Di )m′m′ with m′ = n + 1 − m. By construction

this property holds for all operators Di , i = 1, . . . r . Hence the general construc-
tion of the higher order numerical range for Hermitian operators [10] implies that the
subspace

Ck :=
k∑

i=1

|ψi 〉〈ψi | where |ψi 〉 := 1√
2
(|vi 〉 + |v1−i+N 〉) (6.7)

fulfills the joint compression problem for all operators Ti = Di , i = 1, . . . r . Hence
this subspace is dark as advertised. �

To watch the above construction in action consider a three biased permutation chan-
nel acting on a two qubit system. Hence we set r = 3 and N = 4, and assume that
five real weights satisfy 0 < a < b < x/2 < 1/2 and 0 < c < d < x/2. They can be
used to define the channel by a stochastic matrix S

S =
⎛

⎝
a b x − b x − a
c d x − d x − c
a′ b′ b′′ a′′

⎞

⎠, (6.8)

where a′ = 1 − a − c, b′ = 1 − b − d, a′′ = 1 − 2x + a + c and b′′ = 1 − 2x + b + d.
Note that this matrix satisfies the symmetry condition (6.6), the elements in each
row are ordered, while mean weights in each row read λ1 = λ2 = x/2 and λ3 =
2(1 − x).

To complete the definition of the channel we need to specify three permutation
matrice of size four. For instance let us choose P1 = P(1,2,3,4), P2 = P(1,2),(3,4) and
P3 = P(1,4,3,2), where according to the standard notion, the subscripts contain the per-
mutation cycles. Then the biased permutation channel is defined by the three Kraus
operators
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A1 =

⎛

⎜⎜
⎝

0
√

b 0 0
0 0

√
x − b 0

0 0 0
√

x − a√
a 0 0 0

⎞

⎟⎟
⎠ , A2 =

⎛

⎜⎜
⎝

0
√

d 0 0√
c 0 0 0

0 0 0
√

x − c
0 0

√
x − d 0

⎞

⎟⎟
⎠ ,

A3 =

⎛

⎜⎜
⎝

0 0 0
√

a′′√
a′ 0 0 0

0
√

b′ 0 0
0 0

√
b′′ 0

⎞

⎟⎟
⎠ (6.9)

which satisfy the trace preserving condition (2.5).
Since the barycenter λi of the spectrum of the POVM element Ti = Di (given by

a row of matrix (6.8)), is placed symmetrically, in all three cases it can be represented
by a convex combination of pairs of eigenvalues with weights equal to 1/2. Thus we
define two pure states

|ψ1〉 := 1√
2
(|v1〉 + |v4〉) , |ψ2〉 := 1√

2
(|v2〉 + |v3〉) , (6.10)

and the two dimensional subspace spanned by them, C = |ψ1〉〈ψ1| + |ψ2〉〈ψ2|.
It is easy to verify that the subspace C satisfies C†T1C = λ11 = C†T2C while
C†T3C = λ31 so this space is dark. Note that the subspace CL cannot be used to
design an error correcting code since C† A†

1 A2C /∈ C · 1.

6.4 Composed systems and separable channels

Consider a bipartite system of size n = n A × nB . A quantum operation � acting on
this bipartite system is called local, if it has a tensor product structure,� = �A ⊗�B ,
where both maps �A and �B are completely positive and preserve the identity. If for
both individual operations, �A and �B , there exist protected subspaces Ck and Ql ,
respectively, then the product subspace Ck ⊗ Ql of size kl is also a protected subspace
for the composite map �A ⊗�B .

Similar protected subspaces of the product form can be constructed for a wider
class of separable maps (see e.g. [12]),

ρ′ = �∗(ρ) =
r∑

i=1

(Ai ⊗ Bi )ρ(Ai ⊗ Bi )
†. (6.11)

Assume that a subspace Ck ∈ HNA is a solution of the joint compression problem
for the set of r operators A†

i Ai , while a subspace Ql ∈ HNB does the job for the set of

r operators B†
i Bi . It is then easy to see that the product subspace Ck ⊗ Ql of dimension

kl is a dark subspace for the separable map (6.11).
It is straightforward to extend lemmas 3 and 4 for separable maps acting on compos-

ite systems and apply them to construct protected subspaces with a product structure.
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On the other hand, if for certain problems such product code subspace do not exist,
one may still find a code subspace spanned by entangled states. Such a problem for
the tri-unitary model is solved in following section.

7 Unitary noise and error correction codes

In this section we are going to study multiunitary noise (6.1), also called random exter-
nal fields, and look for existence of error correction codes, i.e. completely protected
subspaces. In general the number r of unitary operators defining the channel can be
arbitrary but we will restrict our attention to the cases in which this number is small.

7.1 Bi-unitary noise model

The case in which r = 2, referred to as bi-unitary noise was recently analyzed in
[10,24]. Let us rewrite the dynamics in the form

ρ′ = �∗(ρ) = qV ρ
1 V †

1 + (1 − q)V2ρV †
2 . (7.1)

and assume that we deal with the system of two qubits. Then both unitary matrices V1
and V2 belong to U (4) while probability p belongs to [0, 1]. The problem of finding
the compression C for the above map is shown to be equivalent to the case

ρ′′ = �∗(ρ) = qρ + (1 − q)UρU † (7.2)

where U = V †
1 V2.

Thus the error correction matrix α of size two defined by eq. 4.7 reads

α =
(

q
√

q(1 − q)λ√
q(1 − q)λ∗ 1 − q

)
(7.3)

where λ is solution of the compression problem for U

C†UC = λ · 1. (7.4)

Thus to find the error correction space for the bi-unitary model it is sufficient to solve
the compression equation for a single operator U . A solution exists for any unitary U
[10], but for simplicity we will consider here the generic case if the spectrum of U
is not degenerated. Assume that the phases these unimodular numbers z1, . . . , z4 are
ordered and that |ψi 〉 denote the corresponding eigenvectors.

Let λ denote the intersection point between two chords of the unit circle, z1z3 and
z2z4; compare Fig. 8b. This point can be represented as a convex combination of each
pair of complex eigenvalues,

λ = (1 − a)z1 + az3 = (1 − b)z2 + bz4, (7.5)
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where the non-negative weights read

a = λ− z1

z3 − z1
=: sin2 θ1 and b = λ− z2

z4 − z2
=: sin2 θ2 (7.6)

and determine real phases θ1 and θ2. Note similarity with respect to the construc-
tion used in the Hermitian case, in which (5.5) represents a convex combination of
points on the real axis. In an analogy with the reasoning performed for a hermitian
T we define according to (5.7) an orthonormal pair of vectors |ψ1〉 and |ψ2〉 and
define the associated isometry C : e j 
→ ψ j . Since 〈Uψ1|ψ1〉 = λ = 〈Uψ2|ψ2〉 and
〈Uψ1|ψ2〉 = 0 = 〈Uψ2|ψ1〉 then CUC = λ1. Therefore λ belongs to �2(U ) as
claimed and the range of C provides the error correction code for the bi-unitray noise
(7.2) acting on a two-qubit system.

In the case of doubly degenerated spectrum of U the complex number λ is equal
to the degenerated eigenvalue, so its radius, |λ|, is equal to unity. In this case the
matrix α given in (4.6) represents a pure state, α = α2, so the two-dimensional sub-
space spanned by both eigenvectors corresponding to the degenerated eigenvalues is
decoherence free.

Bi-unitary noise model for higher dimensional systems was analyzed in [24]. It
was shown in this work that for a generic U of size N there exists a code subspace of
dimensionality k = int[(N + 2)/3]. This result implies that for a system of m qubits
and a generic U of size N = 2m there exists an error correction code supported on
m − 2 qubits. Furthermore, if N = dm and d ≥ 3, there exists a code supported on
m − 1 quantum systems of size d.

7.2 Tri-unitary noise model

Consider now a model of noise described by three unitary operations acting on a
bipartite, N = 2 × NB system,

ρ′ = �∗(ρ) = q1V1ρV †
1 + q2V2ρW †

2 + (1 − q1 − q2)V3ρV †
3 . (7.7)

Performing a unitary rotation in analogy to (7.2) we obtain an equivalent form

ρ′′ = �∗(ρ) = q1ρ + q2U1ρU †
1 + (1 − q1 − q2)U2ρU †

2 . (7.8)

The model is thus characterized by two unitary matrices of size N , namely U1 = V †
1 V2

and U2 = V †
1 V3. and two weights q1 and q2, which we assume to be positive with

their sum smaller than unity.
To find a simplest error correction code for this model one needs to find a two-

dimensional subspace, which forms a joint solution of three compression problems

⎧
⎨

⎩

C†U1C = λU11

C†U2C = λU21

C†WC = λW1

, (7.9)
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where W = U †
1 U2. Each of the above three problems may be solved using the notion

of the higher rank numerical range of a unitary matrix. However, for generic unitary
matrices U1 and U2 of size 4 the corresponding compression subspaces do differ. Thus
for a typical choice of the unitary matrices the tri-unitary noise model will not have
an error correction code, for which it is required that the subspace C solves all three
problems simultaneously.

There exist several examples of two commuting matrices U1 and U2 of size N = 4,
such that they possess the same solution C of the compression problem. However, to
assure that it coincides with the solution of the same problem for W = U †

1 U2, we will
analyze an exemplary system of size n = 2 × 3. Consider two unitary matrices of a
tensor product form,

{
U1 = U †

A ⊗ UB

U2 = UA ⊗ UB
(7.10)

where

UA =
⎛

⎝
1 0 0
0 e−iα 0
0 0 eiα

⎞

⎠ and UB =
(

1 0
0 eiξ

)
. (7.11)

Observe that U1 and U2 do commute, so they share the same set of eigenvectors.
Assume that the phases satisfy α ∈ (π/2, π) and ξ ∈ (0,min{α, 2(π − α)}). Then
the ordered spectra of both matrices read

U1 = diag
{

1, eiξ , eiα, ei(α+ξ), e−iα, ei(ξ−α)} ,

U2 = diag
{

1, eiξ , e−iα, ei(ξ−α), eiα, ei(α+ξ)} , (7.12)

and differ only by the order of the eigenvalues. Both unitary matrices are repre-
sented in Fig. 9 in which zi , i = 1, . . . , 6 denote the ordered eigenvalues of U1 while
|ϕi 〉, i = 1, . . . , 6 are eigenvectors of this matrix. The same states form also the set
of eigenvectors of U2, but they correspond to other eigenvalues. Let z′

i denote the
ordered eigenvalues of U2. Then |ϕ3〉 corresponds to z′

3 = z5 while |ϕ5〉 corresponds
to z′

5 = z3.
The third of the unitaries also has also a tensor product form,

W = U †
1 U2 = (U †

A ⊗ UB)
†(UA ⊗ UB) = U 2

A ⊗ 12. (7.13)

Hence the spectrum of W , denoted by z′′
i , consists of three pairs of doubly degenerated

eigenvalues, W = diag
{

1, 1, e−2iα, e−2iα, e2iα, e2iα
}

, see Fig. 10.

Numerical range of rank two for matrices U1, U2 and W is shown in the pictured
as a gray region. Each point λ ∈ �2(U1) offers a subspace C2 which forms a solution
of the first of three equations (7.9). However, the other two equations restrict further
constraints for λ.
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(a) (b)

Fig. 9 Numerical range (gray space): a �2(U1); b �2(U2)

Fig. 10 Numerical range
�2(W ) is represented by
a dark triangle

To construct an error correction code for the tri-unitary noise model we are going
to follow the strategy used above for solving the compression problem: we split the
Hilbert space into a direct sum of two subspaces of size three, and try to construct a
single state in each subspace. More formally we define the subspace

C2 =
2∑

i=1

|ψi 〉〈ψi | (7.14)

where each state is obtained by a coherent superposition of three eigenstates of U1,

{ |ψ1〉 = √
a1|ϕ1〉 + √

a3|ϕ3〉 + √
a5|ϕ5〉

|ψ2〉 = √
a2|ϕ2〉 + √

a4|ϕ4〉 + √
a6|ϕ6〉 . (7.15)

Since the unitary operators Ui can be expressed as tensor product of diagonal matrices
(e.g. U2 = UA ⊗ UB), their joint set of eigenvectors consits of product pure states
only. On the other hand, the states |ψ1〉 and |ψ2〉 are by construction entangled.

The weights a1 are defined as a weights obtained by representing point λ by a con-
vex combination of the triples of eigenvalues. Since we wish to get a space C being a
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joint solution of all three equations (7.9), we are going to require that the same weights
ai can be used to form the compression value λ as a combination of both triples of
eigenvalues for each spectrum,

⎧
⎨

⎩

λU1 = a1z1 + a3z3 + a5z5 = a2z2 + a4z4 + a6z6
λU2 = a1z′

1 + a3z′
3 + a5z′

5 = a2z′
2 + a4z′

4 + a6z′
6

λW = a1z′′
1 + a3z′′

3 + a5z′′
5 = a2z′′

2 + a4z′′
4 + a6z′′

6

(7.16)

where zi , z′
i and z′′

i denote ordered spectra of U1, U2 and W , respectively. It is now

clear that for a generic choice of U1 and U2 (which implies W = U †
1 U2), such a

system has no solutions. However, if both diagonal matrices are of the special form
(7.12), there exists a solution of the problem. The weights ai satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = a2 = 1 + 1

−1 + cosα

a3 = a4 = 1

2 − 2 cosα

a5 = a6 = 1

2 − 2 cosα

(7.17)

and imply the following compression values

⎧
⎨

⎩

λU1 = 0
λU2 = 0
λW = −1 − 2 cosα

. (7.18)

Due to the symmetry of the problem the latter number λW is real.
Substituting the weights (7.17) into (7.15) we get an explicit form (7.14) of the

subspace C . It is now easy to check that this subspace satisfies simultaneously all
three equations (7.9) with compression values given by (7.18), hence it provides a two
dimensional error correction code for this noise model. This solution is correct for
any unitaries U1 and U2 having any set of eigenvectors |ϕi 〉, i = 1, . . . , 6 and spectra
given by (7.12) and parameterized by phases α and ξ .

The above construction can be generalized for a tri-unitary noise model acting on
larger system of size N = 3 × K [31]. An error correction code of size K exists in
this case, if matrices U1 and U2 have the tensor product form (7.10), where UA =
diag

{
1, eiα, e−iα

}
as before and UB = diag

{
1, eiξ2 , eiξ3 , . . . , eiξK

}
. The code sub-

space C= ∑K
i=1 |ψi 〉〈ψi | is then obtained in an analogous way, by representing the

Hilbert space as a direct product of K subspaces of dimension three each and construct-
ing each state |ψi 〉 as a coherent superposition of three eigenstates of U1 corresponding
to a triple of eigenvalues zl , zl+K and zl+2K for l = 1, . . . , K . Note that the code space
constructed here for the bipartite system does not have the tensor product structure,
since it is spanned by entangled states (7.15).
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8 Conclusions

This paper concerns finite dimensional instruments or Kraus measurements, acting
on a quantum system with Hilbert space H. We have proved a version of Heisenberg’s
Principle, which connects ‘darkness’ to ‘protection’ of a subspace L of H. ‘Darkness’
expresses the lack of visibility of the information contained in L from the measure-
ment outcome, and ‘protection’ the degree to which this information remains present
in the quantum system. Complete darkness corresponds to complete recoverability of
information as in error correction codes.

We have presented examples of darkness and protection: instruments arising from
random external fields, arbitrary rank 2 channels, and biased permutation channels.
Bi-unitary noise models were analyzed recently in regard to their error correction
properties in [10,24]. Here we have also considered tri-unitary noise. For a a certain
class of tri-unitary noise models acting on a 3 × K quantum system, we have explic-
itly constructed an error correction code of size K . Although this particular noise
model might be considered as not very realistic, we tend to believe that the technique
proposed can be applied to a broader class of quantum systems.
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