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Abstract

Starting point is a given semigroup of completely positive maps on the 2× 2
matrices. This semigroup describes the irreversible evolution of a decaying 2-
level atom. Using the integral-sum kernel approach [11] to quantum stochastic
calculus we couple the 2-level atom to an environment, which in our case will
be interpreted as the electromagnetic field. The irreversible time evolution of
the 2-level atom then stems from the reversible time evolution of atom and field
together. Mathematically speaking, we have constructed a Markov dilation [9]
of the semigroup.

The next step is to drive the atom by a laser and to count the photons emitted
into the field by the decaying 2-level atom. For every possible sequence of photon
counts we construct a map that gives the time evolution of the 2-level atom
inferred by that sequence. The family of maps that we obtain in this way forms
a so-called Davies process [4], [16]. In his book Davies describes the structure
of these processes, which brings us into the field of quantum trajectories [2].
Within our model we calculate the jump operators and we briefly describe the
resulting counting process.

1 Introduction

In this paper we want to illustrate that quantum stochastic calculus together with the
processes studied by Davies in his book [4], and explained in his paper with Srinivas
[16], form a suitable mathematically rigorous framework for doing quantum trajectory
theory [2]. As an example we consider here the case of resonance fluorescence.
Our starting point is a semigroup of transition operators {Tt}t≥0 on the algebra M2

of all 2× 2-matrices. This semigroup describes the irreversible evolution of a sponta-
neously decaying 2-level atom in the Heisenberg picture. By coupling the atom to a
quantum noise, we construct a stationary quantum Markov process having precisely
these transition operators. If we impose the requirements that the external noise be a
Bose field, and the quantum Markov process be minimal, then the latter is uniquely
determined. It is called the minimal Bose dilation of (M2, Tt, g) [10], where g is the
ground state of the 2-level atom.
Since this dilation is uniquely determined, any other reversible dynamical model which
couples (M2, Tt, g) to some Bose field necessarily contains this Bose dilation as a sub-
system. Therefore, without deriving our model from an explicit Schrödinger equation
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(by performing a Markovian limit) we may safely assume it to be a physically correct
way to describe the interaction of the 2-level atom with the electromagnetic field.
We will couple the 2-level atom to the electromagnetic field by using quantum stochas-
tic calculus [15], [14]. We use a version of quantum stochastic calculus based on
integral-sum kernels [11], [12], [14], which has the advantage that we have an explicit
construction for the solution of the quantum stochastic differential equation with
which we will describe the coupling of atom and field. Having this explicit construc-
tion in our hands is important for doing the actual calculations we encounter later
on.
To be able to discuss resonance fluorescence we have to use a dilation where we have
two channels in the electromagnetic field. On one of them we will put a laser state
to drive the 2-level atom. We will call this field the forward channel and the other
one the side channel. We will then count photons in both channels. We need the side
channel, because there we know that all detected photons are fluorescence photons.
In the forward channel a detected photon could just as well be coming directly from
the laser.
For every event that can occur in the photon counters we construct a map giving the
evolution of the 2-level atom inferred by that event. We will see that the family of
maps we obtain, fulfills the axioms for the processes discussed by Davies [4]. We have
constructed the Davies process of resonance fluorescence.
Using the structure theory for Davies processes [4] we can decompose the process into
its trajectories [2]. Within our model we calculate the expression for the jump oper-
ators and for the time evolution in between jumps. Note that a jump in the system
occurs the moment we detect a photon, since our knowledge concerning the system
changes.
Using the above apparatus we show that the resulting counting process in the side
channel is a so-called renewal process.

2 The dilation

Let M2, the algebra of 2×2-matrices, stand for the algebra of observables of a 2-level
atom. On this algebra we are given a (continuous) semigroup {Tt}t≥0 of completely
positive maps. This semigroup describes the, generally irreversible, evolution of the
2-level atom. Lindblad’s Theorem [13] then says that Tt = exp tL where L : M2 →M2

can be written as: for A ∈M2:

L(A) = i[H,A] +
k∑

j=1

V ∗j AVj −
1
2
{V ∗j Vj , A}, (1)

where the Vj and H are fixed 2 × 2-matrices, H being Hermitian. In this paper we
will restrict to the simpler case where H = 0 and there are just two V ′j s. This means
there is dissipation only into two channels, the forward channel described by Vf , and
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the side channel described by Vs. We choose Vf and Vs such that:

V =
(

0 0
1 0

)
, Vf = κfV, Vs = κsV, |κf |2 + |κs|2 = 1.

This exactly gives the time evolution for spontaneous decay to the ground state of
the 2-level atom into two decay channels, where the decay rates are given by |κf |2
and |κs|2.
We want to see this irreversible evolution of the 2-level atom as stemming from a
reversible evolution of the atom coupled to, in this case, two decay channels in the
field. So let us first construct the algebra of observables for these fields. Let F be
the symmetric Fock space over the Hilbert space L2(R) of square integrable wave
functions on the real line, i.e. F := C ⊕

⊕∞
n=1 L

2(R)⊗sn. The electromagnetic field
is given by creation and annihilation operators on F , generating the algebra of all
bounded operators. We need two copies of this algebra, which we denote by Wf ,
the field which will be the forward channel, and Ws, the field which will be the side
channel.
The evolution over a time t of a free field is given by the second quantization of the
left shift, i.e. the second quantization of the operator on L2(R) which maps f(·) into
f(· + t). We denote the second quantization of this operator by St. This means
that in the Heisenberg picture we have an evolution on Wf ⊗ Ws mapping A into
(S∗t ⊗ S∗t )A(St ⊗ St)

(
= (S−t ⊗ S−t)A(St ⊗ St)

)
, also denoted by Ad[St ⊗ St](A).

The presence of the atom in the fields introduces a perturbation on the evolution of the
free fields. We let this perturbation be given by a certain family of unitary operators
{Ut}t∈R on C2⊗F⊗F , which will be specified later, that forms a cocycle with respect
to the shift St ⊗ St, i.e. for all t, s ∈ R : Ut+s = (S−s ⊗ S−s)Ut(Ss ⊗ Ss)Us. Given
this cocycle, we let the time evolution of the atom and the fields together be given
by the following one-parameter group {T̂t}t∈R (i.e. the evolution is now reversible) of
∗-automorphisms on M2 ⊗Wf ⊗Ws: for all A ∈M2 ⊗Wf ⊗Ws:

T̂t(A) =
{
U−1

t S−tAStUt if t ≥ 0
S−tU−tAU

−1
−t St if t < 0

,

The solution of the following quantum stochastic differential equation [8], [15] provides
us with a cocycle of unitaries with respect to the shift:

dUt = {VfdA
∗
f,t − V ∗f dAf,t + VsdA

∗
s,t − V ∗s dAs,t −

1
2
V ∗V dt}Ut, U0 = I. (2)

In the next section we will give an explicit construction for the solution Ut of this
equation. It can be shown ([8], [5], [11], [15]) that if the cocycle satisfies equation (2)
we have constructed a so-called quantum Markov dilation (M2⊗Wf⊗Ws, {T̂}t∈R, id⊗
φ⊗φ) of the quantum dynamical system (M2, {Tt}t≥0, g) [9], [10], where φ is the vector
state on Wf,s given by the vacuum vector. This means that the following dilation
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diagram commutes for all t ≥ 0 (and that the resulting quantum process is Markov):

M2
Tt−−−−→ M2

Id⊗I⊗I

y xId⊗φ⊗φ

M2 ⊗Wf ⊗Ws
T̂t−−−−→ M2 ⊗Wf ⊗Ws

(3)

i.e. for all A ∈M2 : Tt(A) =
(
Id⊗ φ⊗ φ

)(
T̂t(A⊗ I ⊗ I)

)
.

Let us here look briefly in the Schrödinger picture at the above diagram. If we start
with a state ρ of the 2-level atom (i.e. we are now in the upper right hand corner of
the diagram), then this state undergoes the following sequence of maps:

ρ(·) 7→ ρ
(
Id⊗ φ⊗ φ(·)

)
= ρ⊗ φ⊗ φ(·) 7→ ρ⊗ φ⊗ φ

(
T̂t(·)

)
7→

ρ⊗ φ⊗ φ
(
T̂t(· ⊗ I ⊗ I)

)
= TrFf⊗Fs

(
T̂t∗(ρ⊗ φ⊗ φ)

)
(·),

i.e. ρ maps to TrFf⊗Fs

(
T̂t∗(ρ⊗φ⊗φ)

)
. This means that ρ is first coupled to the two

fields both in the vacuum state, then they are time evolved together and then there
is a partial trace taken over the two fields.

3 Guichardet space and integral-sum kernels

Let us now turn to giving the explicit construction for the solution of equation (2).
For this we need the Guichardet space Ω [7] of R, which is the space of all finite
subsets of R, i.e. Ω :=

⋃
n∈N Ωn, where Ωn := {σ ⊂ R; |σ| = n}. Let us denote by

λn the Lebesgue measure on Rn. If, for n ∈ N, we let jn : Rn → Ωn denote the map
that maps an n-tuple (t1, t2, . . . , tn) into the set {t1, t2, . . . , tn}, then we can define a
measure µn on Ω by: µn(E) := 1

n!λn

(
j−1
n (E)

)
for all E in the sigma field Σn of Ωn

induced by jn and the Borel sigma field of Rn. Now we define a measure µ on Ω such
that µ({∅}) = 1 and µ = µn on Ωn. This means we have now turned the Guichardet
space into the measure space (Ω,Σ, µ).
The key to constructing the solution of equation (2) is to identify the symmetric Fock
space F with the space of all quadratically integrable functions on the Guichardet
space L2(Ω, µ). To see this identification note that L2(Ωn, µn) is, in the canonical
way, unitarily equivalent with the space of all quadratically integrable functions on Rn

invariant under permutations of coordinates, denoted L2
sym(Rn). It is now obvious

how to identify F = C⊕
⊕∞

n=1 L
2
sym(Rn) with L2(Ω, µ) = C⊕

⊕∞
n=1 L

2(Ωn, µn).
For every f ∈ L2(R) we define the exponential vector e(f) ∈ F in the following
way: e(f) := 1 ⊕ f ⊕ 1√

2
f⊗2 ⊕ 1√

6
f⊗3 ⊕ . . . . Note that the linear span of all ex-

ponential vectors forms a dense subspace of F . For every f ∈ L2(R) we define
the coherent vector ψ(f) to be the exponential vector of f normalised to unity, i.e.
ψ(f) = exp(− 1

2 ||f ||
2)e(f). Under the above identification of F with L2(Ω, µ), the

exponential vector (of an f ∈ L2(R)) e(f) is mapped into an element of L2(Ω, µ)
which we denote by π(f) and which is given by: π(f) : Ω → C : ω 7→

∏
s∈ω f(s),
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where the empty product
∏

s∈∅ f(s) is defined to be 1. We will often choose for f the
indicator function of a certain interval I ⊂ R, which we denote by χI . This is the
function which is 1 on I and 0 elsewhere.
We are now ready to start the construction of the solution Ut of equation (2). Define
the integral-sum kernel of Ut (name will become apparent in a minute) to be the map
ut that maps four disjoint finite subsets of R, σf , σs, τf , τs (where f and s stand for
”forward” and ”side”) to the following 2× 2-matrix, where we write σf ∪ σs ∪ τf ∪ τs
also as {t1, t2, . . . , tk} such that t1 < t2 < . . . < tk and k ∈ N:

ut(σf , σs, τf , τs) :=π(χ[0,t])(σf ∪ σs ∪ τf ∪ τs) exp(− t− tk
2

V ∗V )Vk×

exp(− tk − tk−1

2
V ∗V )Vk−1 . . . V1 exp(− t1

2
V ∗V ),

where

Vj =


Vf if tj ∈ σf

−V ∗f if tj ∈ τf
Vs if tj ∈ σs

−V ∗s if tj ∈ τs

.

Then we have the following theorem of Maassen, see [11], [12]:

Theorem 3.1: After identifying C2 ⊗ F ⊗ F with L2
C2(Ω × Ω, µ × µ), the space

of all square integrable functions on Ω × Ω with values in C2, the solution Ut :
L2

C2(Ω× Ω, µ× µ) → L2
C2(Ω× Ω, µ× µ) of equation (2) is given by:

(Utf)(ωf , ωs) =
∑

σf⊂ωf
σs⊂ωs

∫
Ω×Ω

ut(σf , σs, τf , τs)f
(
(ωf\σf ) ∪ τf , (ωs\σs) ∪ τs

)
dτfdτs.

Now we have an explicit expression for the time evolution T̂t = Ad[Ût], where Ût

is given by StUt if t ≥ 0 and U−1
−t St if t < 0. The family {Ût}t∈R forms a group of

unitary operators on C2 ⊗ F ⊗ F describing the time evolution of the 2-level atom
and the two fields together. Stone’s Theorem says that there must be a Hamiltonian
associated to this time evolution. This Hamiltonian has been calculated recently [6].

4 The Davies process

We now return to the situation in figure 3. We wish to make some changes in this
diagram and for this we need to introduce some more notation regarding Guichardet
spaces. Let I ⊂ R be an interval. Then the Guichardet space of I is the set Ω(I) =⋃∞

n=0 Ωn(I), where Ωn(I) = {σ ⊂ I; |σ| = n}. In a similar way as for Ω, which is
Ω(R), we can give these sets a measure structure: (Ω(I),Σ(I), µ). Given a subset E
of Ω(I) in the sigma field Σ(I), we can construct the projection MχE

: L2(Ω, µ) →
L2(Ω, µ) : f 7→ χEf .
Let I be [−t, 0), then the events in Σ

(
[−t, 0)

)
, which we abbreviate to Σt, are events
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in the output field of the atom up to time t. Remember that the evolution of a free
field was given by the left shift and that the atom is sitting in the origin. Since
the Guichardet space representation corresponds to the photon number picture, we
can give concrete interpretations to the subsets in Σt. For instance, the subsets
Ωn

(
[−t, 0)

)
, correspond to the events ”there are n photons in the output of the atom

into this field up to time t”.
Now back to the situation in figure 3. Suppose we have been observing the output
in the forward and side channel of the atom up to time t with two photon counters.
Then we are given two events Ef and Es in Σt. Since we know the outcome of the
measurements we have to change the time evolution of the 2-level atom, i.e. we have
to project onto the observed events (see also [1]). This is summarized in the following
figure:

M2
Et
0[Ef ,Es]−−−−−−→ M2

Id⊗χEf
⊗χEs

y xId⊗φ⊗φ

M2 ⊗Wf ⊗Ws
T̂t−−−−→ M2 ⊗Wf ⊗Ws

where we have suppressed the capital lettersM in the projections. The map Et
0[Ef , Es] :

M2 →M2 : A 7→ Id⊗ φ⊗ φ
(
T̂t(A⊗ χEf

⊗ χEs)
)

is the unnormalized time evolution
of the 2-level atom in the Heisenberg picture given that we see event Ef in the output
of the forward channel and event Es in the output of the side channel. If we are given
a state on M2, i.e. a 2×2 density matrix ρ, then the probability of seeing event Ef in
the forward channel and Es in the side channel after t seconds of observation is given
by: Pt

ρ[(Ef , Es)] = Tr
(
ρEt

0[Ef , Es](I)
)
.

The setting is still not complete for describing resonance fluorescence. Since we
are not driving the atom, both the forward and the side channel fields are in the
vacuum state, at most one photon can appear in the output. We change this by
putting on the forward channel a coherent state with amplitude z ∈ C, defined by:
γzt : W → C : A 7→ exp(−t|z|2)

〈
π(zχ[0,t]), Aπ(zχ[0,t])

〉
. Note that γ0 is the vacuum

state. Putting a coherent state on the forward channel mimics a laser driving the
atom. We have suppressed its oscillations for the sake of simplicity. Now we are
ready to do resonance fluorescence, i.e. the diagram has changed into:

M2
Et

z [Ef ,Es]−−−−−−→ M2

Id⊗χEf
⊗χEs

y xId⊗γzt⊗γ0

M2 ⊗Wf ⊗Ws
T̂t−−−−→ M2 ⊗Wf ⊗Ws

where the map Et
z[Ef , Es] : M2 → M2 is now defined by Et

z[Ef , Es](A) := Id ⊗
γzt ⊗ γ0

(
T̂t(A ⊗ χEf

⊗ χEs)
)
. It describes the unnormalized time evolution of the

laser-driven atom given that we see event Ef in the output of the forward channel
and event Es in the output of the side channel. Given a state ρ of the atom, the
probability of seeing event Ef in the forward channel and Es in the side channel after
t seconds of observation is now given by: Pt

ρ[(Ef , Es)] = Tr
(
ρEt

z[Ef , Es](I)
)
. To make
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the notation lighter we suppres the z in Et
z in the following.

Since L2(Ω,Σ, µ)⊗ L2(Ω,Σ, µ) is canonically isomorphic to L2(Ω× Ω,Σ⊗ Σ, µ× µ)
we can simplify our notation even a bit further. By identifying these spaces we
can write Et[Ef , Es] = Et[Ef × Es], where the righthandside is defined by: for all
E ∈ Σt ⊗ Σt, A ∈ M2, t ≥ 0 : Et[E](A) := Id ⊗ γzt,0

(
T̂t(A ⊗ χE)

)
, where γzt,0 is an

abbreviation for γzt
⊗ γ0. We will now study the properties of the family of maps we

defined.

Theorem 4.1: The family of maps {Et[E]}t≥0,E∈Σt⊗Σt
satisfies the axioms of a

Davies process, [4]:

1. For all t ≥ 0 and E ∈ Σt ⊗ Σt, Et[E] is completely positive.

2. For all t ≥ 0 and all countable collections of disjoint sets {En} in Σt ⊗ Σt

and for all A ∈M2 : Et
[⋃

nEn

]
(A) =

∑
n Et[En](A).

3. For all t ≥ 0 we have Et
[
Ω
(
[−t, 0)

)
× Ω

(
[−t, 0)

)]
(I) = I.

4. For all A ∈M2 : limt→0 Et
[
Ω
(
[−t, 0)

)
× Ω

(
[−t, 0)

)]
(A) = A.

5. For all t, s ≥ 0 and E ∈ Σs ⊗ Σs, F ∈ Σt ⊗ Σt and all A ∈M2 we have:
Et[F ] ◦ Es[E](A) = Es+t[F − s∪̃E](A),
where F − s ∈ Σ

(
[−t− s,−s)⊗ Σ

(
[−t− s,−s)

)
is given by:

F − s = {(ff − s, fs − s); (ff , fs) ∈ F )} and ∪̃ is defined by:
A∪̃B = {(ωf ∪ σf , ωs ∪ σs); (ωf , ωs) ∈ A, (σf , σs) ∈ B}.

Proof. The only point where there is really something to prove is point 5. Let us
first introduce some short notation which we shall only use in this proof. Let π(zt, 0)
denote π(zχ[0,t]) ⊗ π(0) and denote St ⊗ St just by St. Further we use the notation
σt(Us) for S−tUsSt. Then for all A ∈M2, s, t ≥ 0, E ∈ Σs ⊗ Σs and F ∈ Σt ⊗ Σt we
have:

Et[F ] ◦ Es[E](A)
exp(−(s+ t)|z|2)

= Et[F ]
(〈
π(zs, 0), T̂s(A⊗ χE)π(zs, 0)

〉)
exp(t|z|2) =〈

π(zt, 0), T̂t

(〈
π(zs, 0), T̂s(A⊗ χE)π(zs, 0)

〉
⊗ χF

)
π(zt, 0)

〉
=〈

π(zt, 0), U∗t
〈
π(zs, 0), T̂s(A⊗ χE)π(zs, 0)

〉
⊗ χF+tUtπ(zt, 0)

〉
=〈

π(zt, 0), U∗t
〈
S−tπ(zs, 0), S−tT̂s(A⊗ χE)StS−tπ(zs, 0)

〉
⊗ χF+tUtπ(zt, 0)

〉
=〈

π(zt, 0), U∗t
〈
S−tπ(zs, 0), σt(Us)∗A⊗ χE+t+sσt(Us)S−tπ(zs, 0)

〉
⊗ χF+tUtπ(zt, 0)

〉
.

Now we use the cocycle identity and the continuous tensor product structure of the
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symmetric Fock space to obtain:

Et[F ] ◦ Es[E](A)
exp(−(s+ t)|z|2)

=
〈
π(zt+s, 0), (σt(Us)Ut)∗A⊗ χF+t∪̃E+t+sσt(Us)Utπ(zt+s, 0)

〉
=〈

π(zt+s, 0), U∗t+sA⊗ χF+t∪̃E+t+sUt+sπ(zt+s, 0)
〉

=〈
π(zt+s, 0), T̂t+s(A⊗ χF−s∪̃E)π(zt+s, 0)

〉
=
Es+t[F − s∪̃E](A)
exp(−(s+ t)|z|2)

.

Define maps Yt : M2 → M2 : A 7→ Et
[
{(∅, ∅)}

]
(A). They represent the evolution

of the atom when it is observed that no photons entered the decay channels. Then
we have that for all t, s ≥ 0 : YtYs = Et

[
{(∅, ∅)}

]
◦ Es

[
{(∅, ∅)}

]
= Et+s

[
{(∅, ∅)} −

s∪̃{(∅, ∅)}
]

= Et+s
[
{(∅, ∅)}

]
= Yt+s, i.e. the family {Yt}t≥0 forms a semigroup.

Now observe that for A ∈M2 and t ≥ 0 we have:

Yt(A) = Et
[
({∅}, {∅})

]
(A) = Id⊗ γzt ⊗ γ0

(
T̂t(A⊗ χ{∅} ⊗ χ{∅})

)
=〈

π(zt)⊗ π(0), U∗t A⊗ χ{∅} ⊗ χ{∅}Utπ(zt)⊗ π(0)
〉
exp(−t|z|2) =(

Utπ(zt)⊗ π(0)
)∗(∅, ∅)A(Utπ(zt)⊗ π(0)

)
(∅, ∅) exp(−t|z|2).

If we define Bt : C2 → C2 : v 7→
(

exp(− 1
2 t|z|

2)
(
Utπ(zt)⊗π(0)

))
(∅, ∅)v, then we see,

using Theorem 3.1, that Bt is the following semigroup of contractions:

Bt = exp
(
− 1

2
(|z|2I2 + V ∗V + 2zV ∗f )t

)
, (4)

and for all A ∈M2 : Yt(A) = B∗tABt. We say that the Davies process Et is ideal, see
[4].
Furthermore Theorem 4.1 point 2, leads to:

Et
[
Ω[−t, 0)× Ω[−t, 0)\{(∅, ∅)}

]
(I) = I −B∗tBt.

If we use this and the expression for Bt (4), then we can do some estimations which
in the end lead to:

Et
[
Ω[−t, 0)× Ω[−t, 0)\{(∅, ∅)}

]
(I) ≤ tKI,

with K = (2|z|2|κf |2 + 1). This property can be summarized by saying that the
Davies process Et has bounded interaction rate, see [4].

5 Quantum trajectories

In the seventies Davies studied the structure of what we now call Davies processes
[4]. Let us first state his results, as far as relevant, in the context of the process we
are studying.
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Lemma 5.1: (Davies [4]) Given any ideal Davies process Et with bounded inter-
action rate, as defined in the previous section, we have existence of the following
limits:

Jf := lim
t↓0

1
t
Et
[
Ω1[−t, 0), {∅}

]
and Js := lim

t↓0

1
t
Et
[
{∅},Ω1[−t, 0)

]
.

These completely positive maps represent the action we have to apply on the 2-
level atom the moment we see one photon appear in the forward, respectively side
channel.They are the jump operations for these channels. We will explicitly calculate
these limits later on, but first we turn our attention to decomposing the Davies process
into its trajectories [2]. For this we need the following definition.

Definition 5.2: Let Yt : M2 → M2 be the maps from the previous section, i.e.
Yt = Et[{∅}, {∅}] and let Jf and Js be the maps from lemma 5.1. Let ωf and
ωs be disjoint elements of Ω[−t, 0) and denote ωf ∪ ωs also as {t1, . . . , tk} where
−t ≤ t1 < t2 < . . . < tk ≤ 0 for a k ∈ N. Then we define:

WY,Jf ,Js
(ωf , ωs) := Yt1+tJ t1Yt2−t1J t2 . . .J tkY−tk

,

where J ti denotes Js if ti ∈ ωs and Jf if ti ∈ ωf .

Since Yt is the time evolution of the system when, both in the forward and the
side channels, no photons are detected and Jf and Js are the jump operations that
we have to apply when a photon in the corresponding channels appears, it is clear
that the string of maps Yt−t1J t1Yt1−t2J t2 . . .J tkYtk

represents the trajectory of an
observable A in M2 when we find the outcomes ωf in the forward and ωs in the side
channel during our counting experiment. The following theorem of Davies [4] shows
how to decompose the Davies process into its trajectories.

Theorem 5.3: (Davies [4]) Given any ideal Davies process Et with bounded inter-
action rate, as defined in the previous section, we have for all t ≥ 0, Ef , Es ∈ Σt and
A ∈M2:

Et[Ef , Es](A) =
∫

Ef×Es

WY,Jf ,Js(ωf , ωs)(A)dµ(ωf )dµ(ωs).

In the previous section we already found the expression for the time evolution in
between jumps: Yt. We now turn to the calculation of Jf and Js. For all A in M2

we have:

Jf (A) = lim
t↓0

1
t
Et
[
(Ω1[−t, 0), {∅})

]
(A) = lim

t↓0

∫ t

0
Ad
[
Utπ(z)⊗ π(0)({s}, ∅)

]
(A)ds

t exp(−t|z|2)
.
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Now look at Utπ(z)⊗ π(0)({s}, ∅), we find by using Theorem 3.1:

Utπ(z)⊗ π(0)({s}, ∅) =
∑

σ⊂{s}

∫
Ω

ut(σ, ∅, τ, ∅)z1−|σ|+|τ |dτ = zut(∅, ∅, ∅, ∅) +

z2

∫ t

0

ut(∅, ∅, {r}, ∅)dr + ut({s}, ∅, ∅, ∅) + z

∫ t

0

ut({s}, ∅, {r}, ∅)dr+

z2

∫ t

0

∫ r2

0

ut({s}, ∅, {r1, r2}, ∅)dr1dr2 =
(
z exp(− t

2 ) 2z2κf exp(− t
2 )− 2z2κf

κf exp(− s
2 ) z

)
.

Therefore we get, for all A ∈M2:

Jf (A) = lim
t↓0

∫ t

0
Ad
[
Utπ(z)⊗ π(0)({s}, ∅)

]
(A)ds

t exp(−t|z|2)
= Ad

[(
z 0
κf z

)]
(A) =

Ad[zI2 + Vf ](A).

Let us now turn to the calculation of Js. We find for all A ∈M2:

Js(A) = lim
t↓0

1
t
Et
[
({∅},Ω1[−t, 0))

]
(A) = lim

t↓0

∫ t

0
Ad
[
Utπ(z)⊗ π(0)(∅, {s})

]
(A)ds

t exp(−t|z|2)
.

Taking a closer look at Utπ(z)⊗ π(0)(∅, {s}), applying Theorem 3.1:

Utπ(z)⊗ π(0)(∅, {s}) =
∫

Ω

ut(∅, {s}, τ, ∅)z|τ |dτ = ut(∅, {s}, ∅, ∅) +

z

∫ t

0

ut(∅, {s}, {r}, ∅)dr + z2

∫ t

0

∫ r2

0

ut(∅, {s}, {r1, r2}, ∅)dr1dr2 =
(

0 0
κs exp(− s

2 ) 0

)
.

Therefore we get, for all A ∈M2:

Js(A) = lim
t↓0

∫ t

0
Ad
[
Utπ(z)⊗ π(0)(∅, {s})

]
(A)ds

t exp(−t|z|2)
= Ad

[(
0 0
κs 0

)]
(A) =

= Ad[Vs](A).

Since we are driving the atom with a laser now, the time evolution when we do not ob-
serve the side channel nor the forward channel is now given by T z

t := Et
[
Ω[−t, 0),Ω[−t, 0)

]
and no longer by Tt. We will now derive the Master equation for this new time evolu-
tion. For this we need the Dyson series: let L0 and J be maps from M2 →M2, then
for all t ≥ 0:

exp
(
t(L0 + J)

)
=
∫

Ω[−t,0)

exp
(
(ω1 + t)L0

)
J exp

(
(ω2 − ω1)L0

)
J . . . J exp(−ωkL0)dω,

where we have written ω as {ω1, . . . , ωk} with −t ≤ ω1 < . . . < ωk ≤ 0.
Now remember that {Yt}t≥0 is a semigroup so we can write Yt = exp(tL0). Then,
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using Theorem 5.3 and twice the Dyson series, we see that:

T z
t = Et

[
Ω[−t, 0),Ω[−t, 0)

]
=
∫

Ω[−t,0)×Ω[−t,0)

WY,Jf ,Js
(ωf , ωs)dωfdωs =

exp
(
t(L0 + Jf + Js)

)
.

This means we get the following Master equation:

d

dt
T z

t = L0 + Jf + Js = −1
2
{V ∗V, · }+ [zV ∗ − zV, · ] + V ∗ · V, (5)

which is exactly the Master equation for resonance fluorescence (see [2]) if we take
z = −iΩ2 with Ω, the Rabi frequency, real.
In the quantum optics literature (see for instance [2]), usually there is no photon
counting measurement done in the forward channel, i.e. Ef = Ω[−t, 0). From here on
we will do the same, we define for all t ≥ 0 and Es ∈ Σt : Mt[Es] := Et

[
Ω[−t, 0), Es

]
.

In the following we will also suppress the index s on Es. Using the Dyson series and
Theorem 5.3 we find, for all t ≥ 0 and E ∈ Σt:

Mt[E] =
∫

E

WZ,Js
(ω)dµ(ω), (6)

where the time evolution in between side-channel-jumps Zt is given by Zt = exp
(
t(L0+

Jf )
)

and WZ,Js is defined in the obvious way analogous to Definition 5.2. Note that
we have found exactly the same jump operator and time evolution in between jumps
as in the usual quantum optics literature, see for instance [2], [3], i.e. we have suc-
ceeded in constructing the Davies process of resonance fluorescence with quantum
stochastic calculus.

6 A renewal process

We will now look briefly at some features of the process Mt we obtained. It is easily
seen from the fact that (Js)2 = 0 (i.e. g2(0) = 0) that the photons in the side channel
arrive anti-bunched : the probability to see two photons immediately after each other
is 0. We will now show that the photon counting process in the side channel is a
so-called renewal process.
We denote Σt := Σ[0, t) and, via a shift, we let events E in Σt correspond to events
E − t in the output sigma field Σt. This means that an element ω = {ω1, . . . , ωk} in
E ∈ Σt with 0 ≤ ω1 < . . . < ωk < t should be interpreted as seeing the first photon
appear in the side channel at time ω1, the second at time ω2 up to the k’th photon
at time ωk.
Given that we start the photon counting measurement in the initial state ρ, we define
on the sigma fields Σt (t ≥ 0) probability measures in the natural way: for E ∈
Σt : Pt

ρ[E] := Tr
(
ρMt[E − t](I)

)
. The family of sigma fields {Σt}t≥0 generates a
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sigma-field Σ∞ of Ω[0,∞). Using that T z
s (I) = I, see equation (5), we find for all

E ∈ Σt:

Pt+s
ρ [E] = Tr

(
ρMt+s

[(
E∪̃Ω[t, t+ s)

)
− (t+ s)

]
(I)
)

=

Tr
(
ρMt+s

[
E − (t+ s)∪̃Ω[−s, 0)

]
(I)
)

= Tr
(
ρMt[E − t]Ms

[
Ω[−s, 0)

]
(I)
)

=

Tr
(
ρMt[E − t]T z

t (I)
)

= Tr
(
ρMt[E − t](I)

)
= Pt

ρ[E],

so Pt+s
ρ [E] does not depend on s. Therefore the family {Pt

ρ}t≥0 on the sigma-fields
{Σt}t≥0 is consistent, hence by Kolmogorov’s extension theorem it extends to a single
probability measure Pρ on Σ∞.
In the following, when we write ω ∈ Ω[0,∞) as {ω1, ω2, . . .}, we imply that 0 ≤ ω1 <
ω2 < . . .. For j = 1, 2, . . . we define random variables:

Xj : Ω[0,∞) → R+
: ω = {ω1, ω2, . . .} 7→

{
ωj − ωj−1 if |ω| ≥ j
∞ else ,

where we take ω0 to be 0. These random variables give the time elapsed between
the (j − 1)th and jth detection of a photon. To prove that the counting process is a
(modified) renewal process we have to show that for i = 1, 2, . . . the random variables
Xi are independent and for i = 2, 3, . . . they are identically distributed. This means we
have to show that for i = 2, 3, . . . the distribution functions FXi

(x) := Pρ[Xi ≤ x] are
equal and for i, j = 1, 2, . . . the joint probability distribution function FXi,Xj

(x, y) :=
Pρ[Xi ≤ x ∧Xj ≤ y] factorizes: FXi,Xj (x, y) = FXi(x)FXj (y).
Let us first introduce some convenient notation. Note that, using equation (6), we
have for all E ∈ Σt:

Pρ[E] = Pt
ρ[E] = Tr

(
ρ

∫
E−t

WZ,Js
(ω)dµ(ω)(I)

)
=

Tr
(
ρ

∫
E

Zω1JsZω2−ω1Js . . .JsZt−ωk
(I)dµ(ω)

)
.

We will denote: x1 := ω1, x2 := ω2 − ω1, . . . , xk+1 := t− ωk, then we can write:

Pρ[E] =
∫

E

Tr
(
ρZx1JsZx2Js . . .JsZxk+1(I)

)
dµ(ω).

Let P denote the matrix
(

1 0
0 0

)
, then we have:

JsZxk+1(I) =
(
|κs|2

(
Zxk+1(I)

)
22

0
0 0

)
= |κs|2

(
Zxk+1(I)

)
22
P,

JsZxk
(P ) =

(
|κs|2

(
Zxk

(P )
)
22

0
0 0

)
= |κs|2

(
Zxk

(P )
)
22
P, . . . ,

JsZx2(P ) =
(
|κs|2

(
Zx2(P )

)
22

0
0 0

)
= |κs|2

(
Zx2(P )

)
22
P.
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Therefore, if we define z(x) := |κs|2
(
Zx(P )

)
22

, zlast(x) := |κs|2
(
Zx(I)

)
22

and zfirst(x) :=
Tr
(
ρZx(P )

)
, we can write (see also [3]):

Pρ[E] =
∫

E

zfirst(x1)
( k∏

l=2

z(xl)
)
zlast(xk+1)dµ(ω). (7)

We would like to stress that this formula is only valid for events E ∈ Σt and not for
all events in Σ∞.
For t ≥ 0 we introduce the following random variables:

Nt : Ω[0,∞) → N : ω 7→ |ω ∩ [0, t]|,

counting the number of photons appearing in the side channel up to time t. Since, for
strictly positive driving field strengths, i.e. |z| > 0, the eigenvalues of the generator
L0+Jf of the semigroup Zt all have strictly negative real parts, we have limt→∞ Zt =
0. Using this, formula (7) and the fact that the event [Nt = 0] is an element of Σt,
we obtain:

lim
t→∞

Pρ[Nt = 0] = lim
t→∞

zfirst(t) = 0.

Now suppose we have that limt→∞ Pρ[Nt ≤ n] = 0 for a certain n ∈ N. For s ≤ t
we use: Pρ[Nt ≤ n + 1] = Pρ[Nt ≤ n + 1|Ns ≤ n]Pρ[Ns ≤ n] + Pρ[Nt ≤ n + 1|Ns >
n]Pρ[Ns > n]. Therefore we have:

lim
t→∞

Pρ[Nt ≤ n+ 1] = lim
s→∞

lim
t→∞

Pρ[Nt ≤ n+ 1] =

lim
s→∞

lim
t→∞

(
Pρ[Nt ≤ n+ 1|Ns ≤ n]Pρ[Ns ≤ n] + Pρ[Nt ≤ n+ 1|Ns > n]Pρ[Ns > n]

)
=

lim
s→∞

lim
t→∞

Pt
ρ[Nt ≤ n+ 1|Ns > n] = lim

s→∞
lim

t→∞
zlast(t− s) = 0.

Now using induction, we get for n ∈ N:

lim
t→∞

Pρ[Nt ≤ n] = 0.

We are now ready to calculate the distribution functions FXi and FXi,Xj . The problem
is that for instance the event [Xi ≤ x] ∈ Σ∞ is not an element of Σt for a t ∈ R. We
solve this by conditioning on the event [Nt ≥ i] and taking the limit for t to infinity:

FXi
(x) = Pρ[Xi ≤ x] =

lim
t→∞

(
Pρ[Xi ≤ x|Nt ≥ i]Pρ[Nt ≥ i] + Pρ[Xi ≤ x|Nt < i]Pρ[Nt < i]

)
=

lim
t→∞

Pt
ρ[Xi ≤ x ∧Nt ≥ i].
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Now we use again formula (7) to obtain for i ≥ 2:

FXi(x) = lim
t→∞

∞∑
k=i

∫
Pk+1

l=1 xl=t
xi≤x

zfirst(x1)
( k∏

l=2

z(xl)
)
zlast(xk+1)dx1 . . . dxk+1 =

lim
t→∞

∫ x

0

z(xi)

( ∞∑
k=i

∫
P

l 6=i xl=t−xi

zfirst(x1)dx1

( k∏
l=2
l 6=i

z(xl)dxl

)
zlast(xk+1)dxk+1

)
dxi =

lim
t→∞

∫ x

0

z(xi)Pt−xi
ρ

[
Nt−xi

≥ i− 1
]
dxi.

Then we use dominated convergence to interchange the limit and the integral to
obtain:

FXi
(x) =

∫ x

0

z(x′)dx′.

When i = 1 we can repeat the whole calculation to find the same result when for z
we substitute zfirst. It is now obvious that for i = 2, 3, . . . the random variables Xi

are identically distributed.
In a similar fashion, only extracting two integrals now, we find that for i, j = 2, 3, . . . :
FXi,Xj

(x, y) =
∫ x

0

∫ y

0
z(x′)z(y′)dx′dy′. If i or j is 1 we again have to substitute zfirst

for z. It is now obvious that the random variables Xi and Xj are independent. We
conclude that the family of random variables {Xi}i=1,2,... is a (modified) renewal
process.
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