
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 3189–3209 PII: S0305-4470(04)69576-X

Stochastic Schrödinger equations
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Abstract
A derivation of Belavkin’s stochastic Schrödinger equations is given using
quantum filtering theory. We study an open system in contact with its
environment, the electromagnetic field. Continuous observation of the field
yields information on the system: it is possible to keep track in real time of
the best estimate of the system’s quantum state given the observations made.
This estimate satisfies a stochastic Schrödinger equation, which can be derived
from the quantum stochastic differential equation for the interaction picture
evolution of system and field together. Throughout the paper we focus on the
basic example of resonance fluorescence.

PACS numbers: 03.65.Yz, 42.50.−p, 03.65.Ta

1. Introduction

It has long been recognized that continuous time measurements cannot be described by the
standard projection postulate of quantum mechanics. In the late 60s, beginning 70s, Davies
developed a theory for continuous time measurement [15] culminating in his book [16]. His
mathematical work became known to the quantum optics community through the paper with
Srinivas on photon counting [33].

The late 80s brought renewed interest to the theory of continuous time measurement. For
instance, the waiting time distribution of fluorescence photons of a two-level atom driven by
a laser was obtained by associating a continuous evolution with the atom in between photon
detections and jumps at the moments a photon is detected [11]. In this way every record of
photon detection times determines a trajectory in the state space of the atom. Averaging over
all possible detection records leads to the well-known description of the dissipative evolution
of the atom by a master equation. The advantage of the trajectory approach is the fact that an
initially pure state will remain pure along the whole trajectory. This allows for the use of state
vectors instead of density matrices, significantly speeding up computer simulations [12, 14,
18, 30].
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Infinitesimally, the quantum trajectories are solutions of a stochastic differential equation
with the measurement process as the noise term. The change in the state is given by the sum
of two terms: a deterministic one proportional to dt and a stochastic one proportional to the
number of detected photons dNt in the interval dt . For other schemes such as homodyne
detection, the corresponding stochastic differential equation is obtained as the diffusive limit
of photon counting where the jumps in the state space decrease in size but become increasingly
frequent [1, 12, 37]. In this limit the stochastic term in the differential equation is replaced by
a process with continuous paths.

The stochastic Schrödinger equations obtained in this way had been postulated before by
Gisin [17, 19, 20], in an attempt to generalize the customary unitary evolution in quantum
mechanics. The stochastic terms are seen as randomness originating from the measurement
process. However, in this approach the correspondence between the different quantum state
diffusion equations and the measurements that can be performed is not emphasized.

Another approach originated from the development of quantum stochastic calculus
[22, 31], generalizing the classical Itô table to quantum noises represented by creation and
annihilation operators (see section 6). Barchielli saw the relevance of this new calculus
for quantum optics [3]. Indeed, in the Markovian approximation the interaction between a
quantum system and the electromagnetic field is governed by a unitary solution of a quantum
stochastic differential equation in the sense of [22].

Belavkin [6] was the first to see the connection between quantum measurement theory
and classical filtering theory [24], in which one estimates a signal or system process when
observing a function of the signal in the presence of noise. This is done by deriving the filtering
equation which is a stochastic differential equation for the expectation value of the system
process conditioned on outcomes of the observation process. Belavkin extended the filtering
theory [8, 9] to allow for the quantum noises of [22]. Stochastic Schrödinger equations turn
out to be examples of the quantum filtering or the Belavkin equation [5, 7].

The aim of this paper is to give an elementary presentation of quantum filtering theory. We
construct the expectation of an observable conditioned on outcomes of a given measurement
process. The differential form of this conditional expectation is the stochastic Schrödinger
equation associated with the given measurement. At the heart of the derivation lies the Itô table
of quantum stochastic calculus enabling a fast computation of the equation. The procedure is
summarized in a small recipe in section 7.

To illustrate the theory we consequently focus on the basic example of resonance
fluorescence of a two-level atom for which we consider photon counting and homodyne
detection measurement schemes. The stochastic Schrödinger equations for these examples
are derived in two ways, once via the usual approach using quantum trajectories and a diffusive
limit, and once using quantum filtering theory. In this way we hope to emphasize how
conceptually different both methods are.

This paper is organized as follows. Sections 2 and 3 serve as an introduction to the guiding
example of this paper: resonance fluorescence of a two-level atom driven by a laser. In
section 2 we put the photon counting description of resonance fluorescence by Davies
[10, 11, 13] into the form of a stochastic differential equation driven by the counting process.
In section 3, we discuss the homodyne detection scheme as a diffusive limit of the photon
counting measurement, arriving at a stochastic differential equation driven by a diffusion
process. The equations of sections 2 and 3 will be rederived later in a more general way using
quantum filtering theory.

In section 4 we introduce the concept of conditional expectation in quantum mechanics by
first illustrating it with some simple, motivating examples. Section 5 describes the dissipative
evolution of the open system within the Markov approximation. The joint evolution of the
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system and its environment, the quantized electromagnetic field, is given by unitaries satisfying
a quantum stochastic differential equation. Given a measurement of some field observables it
is shown how to condition the state of the system on outcomes of the measurement using the
construction of section 4. Section 6 is a short review of quantum stochastic calculus and its
applications to open systems. Sections 5 and 6 describe dilation theory and quantum stochastic
calculus in a nutshell.

Section 7 contains the derivation of the quantum filtering equation, the stochastic
differential equation for the conditional expectation. This equation is the stochastic
Schrödinger equation for the given measurement. This part ends with a recipe for computing
stochastic Schrödinger equations for a large class of quantum systems and measurements. The
end of the paper connects to sections 2 and 3 by showing how the recipe works in our main
example.

2. The Davies process

We consider a two-level atom in interaction with the quantized electromagnetic field. The
state of the atom is described by a 2 × 2 density matrix ρ, i.e. ρ � 0, and Tr ρ = 1. Atom and
field together perform a unitary, thus reversible evolution, but by taking a partial trace over the
electromagnetic field we are left with an irreversible, dissipative evolution of the atom alone.
In the so-called Markov limit it is given by a norm continuous semigroup {Tt }t�0 of completely
positive maps. A central example discussed in this paper is resonance fluorescence. Here the
atom is driven by a laser on the forward channel, while in the side channel a photon counting
measurement is performed. For the time being we will suppress the oscillations of the laser
for reasons of simplicity. In this case the Lindblad generator of Tt , or Liouvillian L is given
by (cf [12]):

d

dt

∣∣∣∣
t=0

Tt (ρ) = L(ρ) = −i[H, ρ] + i
�

2
[V + V ∗, ρ] − 1

2
{V ∗V, ρ} + VρV ∗

where V =
(

0 0

1 0

)
(2.1)

H := ω0
2 σz is the Hamiltonian of the atom, and � is the Rabi frequency.

The master equation (2.1) can be unravelled in many ways depending on what photon
detection measurement is performed. By unravelling the master equation, we mean writing
L as the sum L + J , where J represents the instantaneous state change taking place when
detecting a photon, and L describes the smooth state variation in between these instants. The
unravelling for photon counting in the side channel is given by [12]

L(ρ) = −i[H, ρ] + i
�

2
[V + V ∗, ρ] − 1

2
{V ∗V, ρ} + (1 − |κs |2)VρV ∗

and

J (ρ) = |κs |2VρV ∗

with |κs |2 the decay rate into the side channel.
An outcome of the measurement over an arbitrary finite time interval [0, t) is the set of

times {t1, t2, . . . , tk} at which photons are detected in the side channel of the field. The number
of detected photons can be arbitrary, thus the space of outcomes is

�([0, t)) :=
∞⋃

n=0

�n([0, t)) =
∞⋃

n=0

{σ ⊂ [0, t); |σ | = n}
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also called the Guichardet space [21]. In order to describe the probability distribution of
the outcomes we need to make �([0, t)) into a measure space. Let us consider the space
of n-tuples [0, t)n with its Borel σ -algebra and the measure 1

n!λn, where λn is the Lebesgue
measure. Then the map

jn : [0, t)n � (t1, . . . , tn) → {t1, . . . , tn} ∈ �n([0, t))

induces the σ -algebra �n([0, t)) and the measure µn on �n([0, t)). We define now the measure
µ on �([0, t)) such that µ({∅}) = 1 and µ = µn on �n([0, t)). We will abbreviate �([0, t))

and �([0, t)) to �t and �t , respectively.
Davies was the first to show [16] (see also [10, 12]) that the unnormalized state of the

two-level atom at time t with initial state ρ, and conditioned on the outcome of the experiment
being in a set E ∈ �t , is given by

Mt [E](ρ) =
∫

E

Wt(ω)(ρ) dµ(ω)

where for ω = {t1, . . . , tk} ∈ �t with 0 � t1 � · · · � tk < t we have

Wt(ω)(ρ) := exp((t − tk)L)J . . .J exp((t2 − t1)L)J exp(t1L)(ρ).

Furthermore, Pt
ρ[E] := Tr(Mt [E](ρ)) is the probability that the event E occurs if the initial

state is ρ. The family of probability measures
{
Pt

ρ

}
t�0 is consistent, i.e. Pt+s

ρ [E] = Pt
ρ[E] for

all E ∈ �t, s � 0, see [10], hence by Kolmogorov’s extension theorem it extends to a single
probability measure Pρ on the σ -algebra �∞, of the set �∞.

On the measure space (�∞, �∞, Pρ) we define the following random variables:

Nt : �∞ → N : ω �→ |ω ∩ [0, t)|
counting the number of photons detected in the side channel up to time t. The counting process
{Nt }t�0 has differential dNt := Nt+dt − Nt satisfying dNt(ω) = 1 if t ∈ ω and dNt(ω) = 0
otherwise. Therefore we have the following Itô rules: dNt dNt = dNt and dNt dt = 0,
(cf [1]).

To emphasize the fact that the evolution of the two-level atom is stochastic, we will regard
the normalized density matrix as a random variable {ρt

•}t�0 with values in the 2 × 2 density
matrices defined as follows:

ρt
• : �∞ → M2 : ω �→ ρt

ω := Wt(ω ∩ [0, t))(ρ)

Tr(Wt(ω ∩ [0, t))(ρ))
. (2.2)

The processes Nt and ρt
• are related through the stochastic differential equation dρt

• =
αt dt + βt dNt . Following [1] we will now determine the processes αt and βt by differentiating
(2.2). If t ∈ ω then dNt(ω) = 1, i.e. the differential dt is negligible compared to dNt = 1,
therefore

βt (ω) = ρt+dt
ω − ρt

ω = J
(
ρt

ω

)
Tr

(
J

(
ρt

ω

)) − ρt
ω. (2.3)

On the other hand, if t 
∈ ω then dNt(ω) = 0, i.e. dNt is negligible compared to dt . Therefore,
it is only the dt term that contributes

αt (ω) = d

ds

∣∣∣∣
s=t

exp((s − t)L)
(
ρt

ω

)
Tr

(
exp((s − t)L)

(
ρt

ω

))
= L

(
ρt

ω

) − ρt
ω

Tr
(
ρt

ω

)2 Tr
(
L
(
ρt

ω

)) = L
(
ρt

ω

)
+ Tr

(
J

(
ρt

ω

))
ρt

ω (2.4)
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where we used that Tr
(
L
(
ρt

ω

)) = −Tr
(
J

(
ρt

ω

))
, as a consequence of the fact that Tr(L(σ )) = 0

for all density matrices σ . Substituting (2.3) and (2.4) into dρt
• = αt dt + βt dNt , we get the

following stochastic Schrödinger equation for the state evolution of the two-level atom if we
are counting photons in the side channel (cf [1, 4, 13]):

dρt
• = L(ρt

•) dt +

(
J (ρt

•)
Tr(J (ρt•))

− ρt
•

)
(dNt − Tr(J (ρt

•)) dt). (2.5)

The differential dMt := dNt − Tr(J (ρt
•)) dt and the initial condition M0 = 0 define an

important process Mt called the innovating martingale, discussed in more detail in section 7.

3. Homodyne detection

We change the experimental set-up described in the previous section by introducing a local
oscillator, i.e. a one mode oscillator in a coherent state given by the normalized vector
in l2(N)

ψ(αt ) := exp

(−|αt |2
2

)(
1, αt ,

α2
t√
2
,

α3
t√
6
, . . .

)
(3.1)

for a certain αt ∈ C. We take αt = wt

ε
, where wt is a complex number with modulus |wt | = 1,

and ε > 0. The number ε is inversely proportional to the intensity of the oscillator. Later on
we will let the intensity go to infinity, i.e. ε → 0. The phase φt of the oscillator is represented
by wt = exp(iφt), with φt = φ0 + ωlot , where ωlo is the frequency of the oscillator.

The local oscillator is coupled to a channel in the electromagnetic field, the local oscillator
beam. The field is initially in the vacuum state. The local oscillator and the field are coupled
in such a way that every time a photon is detected in the beam, a jump on the local oscillator
occurs, given by the operation

Jlo(ρ) = AloρA∗
lo (3.2)

where Alo is the annihilation operator corresponding to the mode of the local oscillator. The
coherent state ψ(αt ) is an eigenstate of the jump operator Alo at eigenvalue αt .

Now we are ready to discuss the homodyne detection scheme. Instead of directly counting
photons in the side channel we first mix the side channel with the local oscillator beam with the
help of a fifty-fifty beam splitter. In one of the emerging beams a photon counting measurement
is performed. A detected photon can come from the atom through the side channel or from
the local oscillator via the local oscillator beam. Therefore, the jump operator on states σ of
the atom and the oscillator together, is the sum of the respective jump operators:

Ja⊗lo(σ ) = (κsV ⊗ I + I ⊗ Alo)σ (κ̄sV
∗ ⊗ I + I ⊗ A∗

lo).

An initial product state ρ ⊗ |ψ(αt )〉〈ψ(αt )| of the two-level atom and the local oscillator will
remain a product after the jump since ψ(αt ) is an eigenvector of the annihilation operator.
Tracing out the local oscillator yields the following jump operation for the atom in the
homodyne set-up:

Ja(ρ) = Trlo (Ja⊗lo(ρ ⊗ |ψ(αt )〉〈ψ(αt )|)) =
(
κsV +

wt

ε

)
ρ

(
κ̄ sV

∗ +
w̄t

ε

)
.

In the same way as in section 2, we can derive the following stochastic Schrödinger equation
for the state evolution of the two-level atom when counting photons after mixing the side
channel and the local oscillator beam [1, 13]:

dρt
• = L(ρt

•) dt +
1

ε

(
Ja(ρ

t
•)

Tr(Ja(ρt•))
− ρt

•

)
ε(dNt − Tr(Ja(ρ

t
•)) dt) (3.3)
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where the extra ε are introduced for future convenience. We will again use the abbreviation:
dMa

t = dNt − Tr(Ja(ρ
t
•)) dt for the innovating martingale (see section 7). In the homodyne

detection scheme the intensity of the local oscillator beam is taken extremely large, i.e. we
are interested in the limit ε → 0 [1, 12, 37]. Then the number of detected photons becomes
very large and it makes sense to scale and centre Nt , obtaining in this way the process with
differential dWε

t := ε dNt − dt/ε and Wε
0 = 0. We find the following Itô rules for dWε

t :

dWε
t dWε

t =
(

ε dNt − 1

ε
dt

) (
ε dNt − 1

ε
dt

)
= ε2 dNt = ε dWε

t + dt

dWε
t dt = 0.

In the limit ε → 0 this becomes dWt dWt = dt and dWt dt = 0, i.e. the process
Wt := limε→0 Wε

t is a diffusion. It is actually this scaled and centred process that is being
observed and not the individual photon counts Nt , see [12]. We pass now to the evaluation of
the limit of (3.3):

lim
ε→0

1

ε

(
Ja(ρ

t
•)

Tr(Ja(ρt•))
− ρt

•

)
= wt κ̄sρ

t
•V

∗ + w̄tκsVρt
• − Tr(wt κ̄sρ

t
•V

∗ + w̄tκsVρt
•)ρ

t
•.

This leads to the following stochastic Schrödinger equation for the homodyne detection scheme
[1, 4, 13, 37]

dρt
• = L(ρt

•) dt + (wt κ̄sρ
t
•V

∗ + w̄tκsVρt
• − Tr(wt κ̄sρ

t
•V

∗ + w̄tκsVρt
•)ρ

t
•) dMhd

t (3.4)

for all states ρ ∈ M2, where

dMhd
t := dWt − Tr(wt κ̄sρ

t
•V

∗ + w̄tκsVρt
•) dt. (3.5)

Let as(t) and ab(t) denote the annihilation operators for the side channel and the local oscillator
beam, respectively. They satisfy the canonical commutation relations

[ai(t), a
∗
j (r)] = δi,j δ(t − r) i, j ∈ {s, b}.

Smearing with a quadratically integrable function f gives

Ai(f ) =
∫

f (t)ai(t) dt i ∈ {s, b}.
By definition, the stochastic process {Nt }t�0 counting the number of detected photons has the
same law as the number operator �(t) up to time t for the beam on which the measurement is
performed. Formally we can write

�(t) =
∫ t

0
(a∗

s (r) ⊗ I + I ⊗ a∗
b (r))(as(r) ⊗ I + I ⊗ ab(r)) dr.

The oscillator beam is at time t in the coherent state ψ
(

ft

ε

)
, where ft ∈ L2(R) is the function

r �→ wrχ[0,t](r). Since the state of the local oscillator beam is an eigenvector of the annihilation
operator ab(r)

ab(r)ψ

(
ft

ε

)
= wr

ε
ψ

(
ft

ε

)
we find

ε�(t) − t

ε
= ε�s(t) ⊗ I + ε

∫ t

0

(
wr

ε
a∗

s (r) +
w̄r

ε
as(r)

)
⊗ I +

|wr |2
ε2

dr − t

ε

= ε�s(t) ⊗ I + (A∗
s (ft ) + As(ft )) ⊗ I.

The operator Xφ(t) := A∗
s (ft ) + As(ft ) is called a field quadrature. We conclude that in the

limit ε → 0 the homodyne detection is a set-up for continuous time measurement of the field
quadratures Xφ(t) of the side channel (cf [12]).
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4. Conditional expectations

In the remainder of this paper we will derive the equations (2.5) and (3.4) in a different way. We
will develop a general way to derive Belavkin equations (or stochastic Schrödinger equations).
The counting experiment and the homodyne detection experiment, described in the previous
sections, serve as examples in this general framework. The method we describe here closely
follows Belavkin’s original paper on quantum filtering theory [9]. The construction below,
however, uses explicitly the decomposition of operators over the measurement results. In the
next section it will turn out that this is done most naturally in the interaction picture.

Let us recall the concept of conditional expectation from probability theory. Let (�,�, P)

be a probability space describing the ‘world’ and �′ ⊂ � a σ -algebra of events to which ‘we
have access’. A random variable f on (�,�, P) with E(|f |) < ∞ can be projected to its
conditional expectation E(f ) which is measurable with respect to �′ and satisfies∫

E

f dP =
∫

E

E(f ) dP

for all events E in �′. Our information about the state of that part of the world to which we
have access can be summarized in a probability distribution Q on �′. Then the predicted
expectation of f given this information is

∫
�
E(f ) dQ. We will extend this now to quantum

systems and measurements.
The guiding example is that of an n level atom described by the algebra B := Mn

undergoing a transformation given by a completely positive unit preserving map T : B → B
with the following Kraus decomposition T (X) = ∑

i∈� V ∗
i XVi . The elements of � can be

seen as the possible measurement outcomes. For any initial state ρ of B and measurement
result i ∈ �, the state after the measurement is given by

ρi = ViρV ∗
i /Tr(ViρV ∗

i )

and the probability distribution of the outcomes is p = ∑
i∈� piδi , where δi is the atomic

measure at i, and pi = Tr(ViρV ∗
i ), which without loss of generality can be assumed to be

strictly positive. We represent the measurement by an instrument, that is the completely
positive map with the following action on states

M : M∗
n → M∗

n ⊗ �1(�) : ρ �→
∑
i∈�

ρi ⊗ piδi . (4.1)

Let X ∈ B be an observable of the system. Its expectation after the measurement, given that
the result i ∈ � has been obtained, is Tr(ρiX). The function

E(X) : � → C : i �→ Tr(ρiX)

is the conditional expectation of X onto �∞(�). If q = ∑
qiδi is a probability distribution on

� then
∑

qiE(X)(i) represents the expectation of X on a statistical ensemble for which the
distribution of the measurement outcomes is q. We extend the conditional expectation to the
linear map

E : B ⊗ �∞(�) → �∞(�) ⊂ B ⊗ �∞(�)

such that for any element A : i �→ Ai in B ⊗ �∞(�) =∼ �∞(� → B) we have

E(A) : i �→ Tr(ρiAi).

This map has the following obvious properties: it is idempotent and has norm one. Moreover,
it is the unique linear map with these properties preserving the state M(ρ) on B ⊗ �∞(�).
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For this reason we will call E the conditional expectation with respect to M(ρ). Its dual can
be seen as an extension of probability distributions q ∈ �1(�) to states on B ⊗ �∞(�)

E∗ : q �→
∑
i∈�

ρi ⊗ qiδi .

Thus while the measurement (4.1) provides a state M(ρ) on B ⊗ �∞(�), the conditional
expectation with respect to M(ρ) extends probability distributions q ∈ �1(�) of outcomes, to
states on B ⊗ �∞(�), and in particular on B which represents the state after the measurement
given the outcomes distribution q.

With this example in mind we pass to a more general set-up which will be needed
in deriving the stochastic Schrödinger equations. Let A be a unital ∗-algebra of bounded
operators on a Hilbert space H whose self-adjoint elements represent the observables of a
quantum system. It is natural from the physical point of view to assume that A is strongly
closed, i.e. if {An}n�0 is a sequence of operators inA such that ‖Anψ‖ → ‖Aψ‖ for any vector
ψ in H and a fixed bounded operator A, then A ∈ A. From the mathematical point of view, this
leads to the rich theory of von Neumann algebras inspired initially by quantum mechanics, but
can as well be seen as the generalization of probability theory to the non-commutative world
of quantum mechanics. Indeed, the building blocks of quantum systems are matrix algebras,
while probability spaces can be encoded into their commutative algebra of bounded random
variables L∞(�,�, P) which appeared already in the example above. A state is described
by a density matrix in the first case or a probability distribution in the second, in general it is
a positive normalized linear functional ψ : A → C which is continuous with respect to the
weak *-topology, the natural topology on a von Neumann algebra seen as the dual of a Banach
space [23].

Definition 4.1. Let B be a von Neumann subalgebra of a von Neumann algebra A of operators
on a (separable) Hilbert space H. A conditional expectation of A onto B is a linear surjective
map E : A → B, such that

1. E2 = E (E is idempotent),
2. ∀A∈A : ‖E(A)‖ � ‖A‖ (E is normcontractive).

In [35] it has been shown that the conditions 1 and 2 are equivalent to E being an identity
preserving, completely positive map, and satisfying the module property

E(B1AB2) = B1E(A)B2 for all B1, B2 ∈ B and A ∈ A (4.2)

generalizing a similar property of conditional expectations in the classical probability theory
(cf [36]).

In analogy to the classical case we are particularly interested in the conditional expectation
which leaves a given state ρ on A invariant, i.e. ρ ◦ E = ρ. However, such a map does not
always exist, but if it exists then it is unique [34] and will be denoted Eρ . Using Eρ we can
extend states σ on B to states σ ◦ Eρ of A which should be interpreted as the updated state of
A after receiving the information (for instance, through a measurement) that the subsystem B
is in the state σ (cf [27]).

In the remainder of this section, we will construct the conditional expectation Eρ from
a von Neumann algebra A onto its centre C := {C ∈ A;AC = CA for all A ∈ A} leaving
a given state ρ on A invariant. The centre C is a commutative von Neumann algebra and is
therefore isomorphic to some L∞(�,�, P). In our guiding example the centre of B⊗ �∞(�)

is �∞(�). Later on (see section 6) this role will be played by the commutative algebra of the
observed process with � the space of all paths of measurement records.
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Theorem 4.2. There exists a unique conditional expectation Eρ : A → C which leaves the
state ρ on A invariant.

Proof. The proof is based on the central decomposition of A [23]. In our guiding example,
B ⊗ �∞(�) is isomorphic to ⊕i∈�Bi , where the Bi are copies of B. In general we can identify
the centre C with some L∞(�,�, P), where P corresponds to the restriction of ρ to C. We will
ignore for simplicity all issues related to measurability in the following constructions. The
Hilbert space H has a direct integral representation H = ∫ ⊕

�
HωP(dω) in the sense that there

exists a family of Hilbert spaces {Hω}ω∈� and for any ψ ∈ H there exists a map ω �→ ψω ∈ Hω

such that

〈ψ, φ〉 =
∫

�

〈ψω, φω〉P(dω).

The von Neumann algebra A has a central decomposition A = ∫ ⊕
�

AωP(dω) in the sense that
there exists a family {Aω}ω∈� of von Neumann algebras with trivial centre, or factors, and
for any A ∈ A there is a map ω �→ Aω ∈ Aω such that (Aψ)ω = Aωψω for all ψ ∈ H and
P-almost all ω ∈ �. The state ρ on A has a decomposition in states ρω on Aω such that for
any A ∈ A its expectation is obtained by integrating with respect to P the expectations of its
components Aω:

ρ(A) =
∫

�

ρω(Aω)P(dω). (4.3)

The map Eρ : A → C defined by

Eρ(A) : ω �→ ρω(Aω)

for all A ∈ A is the desired conditional expectation. One can easily verify that this map is
linear, identity preserving, completely positive (as a positive map onto a commutative von
Neumann algebra), and has the module property. Thus, Eρ is a conditional expectation and
leaves the state ρ invariant by (4.3). Uniqueness follows from [34]. �

It is helpful to think of the state ρ and an arbitrary operator A as maps ρ• : ω �→ ρω,
and, respectively, A• : ω �→ Aω. The conditional expectation Eρ(A) is the function
ρ•(A•) : ω �→ ρω(Aω).

5. The dilation

Let B be the observable algebra of a given quantum system on the Hilbert space H. In the
case of resonance fluorescence B will be all 2 × 2 matrices M2, the algebra of observables
for the two-level atom. The irreversible evolution of the system in the Heisenberg picture is
given by the norm continuous semigroup {Tt }t�0 of completely positive maps Tt : B → B.
By Lindblad’s theorem [28] we have Tt = exp(tL) where the generator L : B → B has the
following action

L(X) = i[H,X] +
k∑

j=1

V ∗
j XVj − 1

2
{V ∗

j Vj ,X} (5.1)

where H and the Vj are fixed elements of B,H being self-adjoint.
We can see the irreversible evolution as stemming from a reversible evolution of the

system B coupled to an environment, which will be the electromagnetic field. We model a
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channel in the field by the bosonic or symmetric Fock space over the Hilbert space L2(R) of
square integrable wavefunctions on the real line, i.e.

F := C ⊕
∞⊕

n=1

L2(R)⊗sn.

The algebra generated by the field observables on F contains all bounded operators and we
denote it by W . For the dilation we will need k independent copies of this algebra W⊗k .

The free evolution of the field is given by the unitary group St , the second quantization of
the left shift s(t) on L2(R), i.e. s(t) : f �→ f (· + t). In the Heisenberg picture the evolution
on W is

W �→ S∗
t WSt := Ad[St ](W).

The atom and field together form a closed quantum system, thus their joint evolution is given
by a one-parameter group {T̂ t }t∈R of ∗-automorphisms on B ⊗ W⊗k:

X �→ Û ∗
t XÛ t := Ad[Û t ](X).

The group Û t is a perturbation of the free evolution without interaction. We describe this
perturbation by the family of unitaries Ut := S⊗k

−t Û t for all t ∈ R satisfying the cocycle
identity

Ut+s = S⊗k
−s UtS

⊗k
s Us for all t, s ∈ R.

The direct connection between the reduced evolution of the atom given by (5.1) and the cocycle
Ut is one of the important results of quantum stochastic calculus [22] which makes the object
of section 6. For the moment, we only mention that in the Markov limit, Ut is the solution of
the stochastic differential equation [22, 29, 31]

dUt = {
Vj dA∗

j (t) − V ∗
j dAj(t) − (

iH + 1
2V ∗

j Vj

)
dt

}
Ut U0 = 1 (5.2)

where the repeated index j is meant to be summed over. The quantum Markov dilation can
be summarized by the following diagram (see [25, 26]):

B Tt−−−→ B

Id⊗1⊗k

� �Id⊗φ⊗k

B ⊗ W⊗k T̂ t−−−→B ⊗ W⊗k

(5.3)

i.e. for all X ∈ B : Tt (X) = (Id⊗φ⊗k)(T̂ t (X ⊗1⊗k)), where φ is the vacuum state on W , and
1 is the identity operator in W . Any dilation of the semigroup Tt with Bose fields is unitarily
equivalent to the above one under certain minimal requirements. The diagram can also be
read in the Schrödinger picture if we reverse the arrows: start with a state ρ of the system B
in the upper right-hand corner, then this state undergoes the following sequence of maps:

ρ �→ ρ ⊗ φ⊗k �→ (ρ ⊗ φ⊗k) ◦ T̂ t = T̂ t∗(ρ ⊗ φ⊗k) �→ TrF⊗k (T̂ t∗(ρ ⊗ φ⊗k)).

This means that at t = 0, the atom in state ρ is coupled to the k channels in the vacuum state,
and after t seconds of unitary evolution we take the partial trace taken over the k channels.

We would now like to introduce the measurement process. It turns out that this can be
best described in the interaction picture, where we let the shift part of Û t = S⊗k

t Ut act on the
observables while the cocycle part acts on the states:

ρt (X) := ρ ⊗ φ⊗k(U ∗
t XUt) (5.4)

for all X ∈ B ⊗ W⊗k . It is well known that for the Bose field for arbitrary time t we can split
the noise algebra as a tensor product

W = W0) ⊗ W[0,t) ⊗ W[t
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with each term being the algebra generated by those fields over test functions with support in
the corresponding subspace of L2(R):

L2(R) = L2((−∞, 0)) ⊕ L2([0, t)) ⊕ L2([t,∞)).

Such a continuous tensor product structure is called a filtration and it is essential in the
development of quantum stochastic calculus reviewed in section 6. The observables which we
measure in an arbitrary time interval [0, t) form a commuting family of self-adjoint operators
{Ys}0�s�t whose spectral projections belong to the middle part of the tensor product W[0,t). In
the Davies process Ys = �(s), i.e. the number operator up to time s, while in the homodyne
case Ys = Xφ(s). Note that the part W0) will not play any significant role as it corresponds to
‘what happened before we started our experiment’.

Let Ct be the commutative von Neumann generated by the observed process up to
time t, {Ys}0�s�t (t � 0), seen as a subalgebra of B ⊗ W⊗k . By a theorem on von
Neumann algebras, Ct is equal to the double commutant of the observed process up to time t:
Ct = {Ys; 0 � s � t}′′, with the commutant S ′ of a subset S of B ⊗ W⊗k being defined by
S ′ := {X ∈ B ⊗ W⊗k;XS = SX ∀S ∈ S}. The algebras {Ct }t�0 form a growing family, that
is Cs ⊂ Ct for all s � t . Thus we can define the inductive limit C∞ := limt→∞ Ct , which is the
smallest von Neumann algebra containing all Ct . On the other hand for each t � 0, we have
a state on Ct given by the restriction of the state ρt of the whole system defined by (5.4). We
will show now that the states ρt for different times ‘agree with each other’.

Theorem 5.1. On the commutative algebra C∞ there exists a unique state ρ∞ which coincides
with ρt when restricted to Ct ⊂ C∞, for all t � 0. In particular there exists a measure
space (�,�, Pρ) such that (C∞, ρ∞) is isomorphic with L∞(�,�, Pρ) and a growing family
{�t }t�0 of σ -subalgebras of � such that (Ct , ρ

t ) =∼ L∞(�,�t , Pρ).

Proof. In the following, we will drop the extensive notation of tensoring identity operators
when representing operators in W[s,t) for all s, t ∈ R. Let X ∈ Cs , in particular X ∈ W⊗k

[0,s).

By (5.2), Ut ∈ B ⊗ W⊗k
[0,t), because coefficients of the stochastic differential equation lie in

B ⊗ W⊗k
[0,t). This implies that S⊗k

−s UtS
⊗k
s ∈ B ⊗ W⊗k

[s,t+s). Using the tensor product structure

of W⊗k , we see that W⊗k
[0,s) and B ⊗ W⊗k

[s,t+s) commute, and in particular X commutes with

S⊗k
−s UtS

⊗k
s . Then

ρt+s(X) = ρ0(U ∗
t+sXUt+s) = ρ0

(
U ∗

s

(
S⊗k

−s UtS
⊗k
s

)∗
XS⊗k

−s UtS
⊗k
s Us

)
= ρ0(U ∗

s XUs) = ρs(X). (5.5)

This implies that the limit state ρ∞ on C∞ with the desired properties exists, in analogy
with the Kolmogorov extension theorem for probability measures. As seen in the previous
section, (C∞, ρ∞) is isomorphic to L∞(�,�, Pρ) for some probability space (�,�, Pρ).
The subalgebras (Ct , ρ

t ) are isomorphic to L∞(�,�t , Pρ) for some growing family {�t }t�0

of σ -subalgebras of �. �

Remark. From spectral theory it follows that the measure space (�t ,�t ) coincides with the
joint spectrum of {Ys}s�t , i.e. �t is the set of all paths of the process up to time t. For the
example of the counting process, this means that �t is the Guichardet space of the interval
[0, t), which is the set of all sets of instants representing a ‘click’ of the photon counter, i.e. it
is the set of all paths of the counting process.

We define now At := C′
t for all t � 0, i.e. At is the commutant of Ct , then Ct is the centre of the

von Neumann algebra At . Note that the observable algebra of the atom B is contained in At .
By theorem 4.2 we can construct a family of conditional expectations

{
E t

ρt : At → Ct

}
t�0.
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For each t, E t
ρt depends on the state of the ‘world’ at that moment ρt , keeping this in mind we

will simply denote it by E t . An important property of E t is that ρ∞ ◦ E t = ρt ◦ E t = ρt , since
the range of E t is Ct and E t leaves ρt invariant.

For an element X ∈ At , E t (X) is an element in Ct , i.e. a function on �t . Its value at a
point ω ∈ �t , i.e. an outcome record up to time t, is the expectation value of X given the
observed path ω after t time units. We will use the notation E t (X) := ρt

•(X•) defined at
the end of section 4 to emphasize the fact that this is a function on �t . When restricted to
B⊗ Ct the conditional expectation is precisely of the type discussed in our guiding example in
section 4.

There exists no conditional expectation from B ⊗ W onto Ct since performing the
measurement has demolished the information about observables that do not commute with the
observed process [9]. We call At the algebra of observables that are not demolished [9] by
observing the process {Ys}0�s�t . This means that performing the experiment and ignoring the
outcomes gives the same time evolution on At as when no measurement was done.

From classical probability it follows that for all t � 0 there exists a unique conditional
expectation Et

ρ : C∞ → Ct that leaves the state ρ∞ invariant, i.e. ρ∞ ◦ Et
ρ = ρ∞. These

conditional expectations have the tower property, i.e. Es
ρ ◦ Et

ρ = Es
ρ for all t � s � 0, which

is often very useful in calculations. E0
ρ is the expectation with respect to Pρ , and will simply

be denoted Eρ . Note that the tower property for s = 0 is exactly the invariance of the state
ρ∞(= Eρ).

6. Quantum stochastic calculus

In this section we briefly discuss the quantum stochastic calculus developed by Hudson
and Parthasarathy [22]. For a detailed treatment of the subject we refer to [31] and
[29]. Let F(H) denote the symmetric (or bosonic) Fock space over the one particle space
H := Ck ⊗ L2(R+) = L2({1, 2, . . . , k} × R+). The space Ck describes the k channels we
identified in the electromagnetic field. As in the previous section we denote the algebra of
bounded operators on the one channel Fock space F(R+) by W , and on the k channels F(H)

by W⊗k .
For every f ∈ H we define the exponential vector e(f ) ∈ F(H) in the following way:

e(f ) := 1 ⊕
∞⊕

n=1

1√
n!

f ⊗n

which differs from the coherent vector by a normalization factor. The inner products of two
exponential vectors e(f ) and e(g) is 〈e(f ), e(g)〉 = exp(〈f, g〉). Note that the span of all
exponential vectors, denoted D, forms a dense subspace ofF(H). Let fj be the j th component
of f ∈ H for j = 1, 2, . . . , k. The annihilation operator Aj(t), creation operator A∗

j (t) and
number operator �ij (t) are defined on the domain D by

Aj(t)e(f ) = 〈χ[0,t], fj 〉e(f ) =
∫ t

0
fj (s) ds e(f )

〈e(g), A∗
j (t)e(f )〉 = 〈gj , χ[0,t]〉〈e(g), e(f )〉 =

∫ t

0
ḡj (s) ds exp(〈f, g〉)

〈e(g),�ij (t)e(f )〉 = 〈gi, χ[0,t]fj 〉〈e(g), e(f )〉 =
∫ t

0
ḡi(s)fj (s) ds exp(〈f, g〉).

The operator �ii(t) is the usual counting operator for the ith channel. Let us write
L2(R+) as direct sum L2([0, t]) ⊕ L2([t,∞)), then F(L2(R+)) is unitarily equivalent with
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F(L2([0, t])) ⊗ F(L2([t,∞))) through the identification e(f ) =∼ e(ft]) ⊗ e(f[t ), with
ft] = f χ[0,t] and f[t = f χ[t,∞). We will also use the notation f[s,t] for f χ[s,t] and omit
the tensor product signs between exponential vectors. The same procedure can be carried out
for all the k channels.

Let Mt be one of the processes Aj(t), A
∗
j (t) or �ij (t). The following factorizability

property [22, 31] makes the definition of stochastic integration against Mt possible

(Mt − Ms)e(f ) = e(fs]){(Mt − Ms)e(f[s,t])}e(f[t )

with (Mt − Ms)e(f[s,t]) ∈ F(Ck ⊗ L2([s, t])). We first define the stochastic integral for the
so-called simple operator processes with values in the atom and noise algebra B⊗W⊗k , where
B := Mn.

Definition 6.1. Let {Ls}0�s�t be an adapted (i.e. Ls ∈ B ⊗ Ws] for all 0 � s � t) simple
process with respect to the partition {s0 = 0, s1, . . . , sp = t} in the sense that Ls = Lsj

whenever sj � s < sj+1. Then the stochastic integral of L with respect to M on Cn ⊗ D is
given by [22, 31]:∫ t

0
Ls dMsf e(u) :=

p−1∑
j=0

(
Lsj

f e
(
usj ]

))((
Msj+1 − Msj

)
e
(
u[sj ,sj+1]

))
e
(
u[sj+1

)
.

By the usual approximation by simple processes we can extend the definition of the stochastic
integral to a large class of stochastically integrable processes [22, 31]. We simplify our
notation by writing dXt = Lt dMt for Xt = X0 +

∫ t

0 Ls dMs . Note that the definition of the
stochastic integral implies that the increments dMs lie in the future, i.e. dMs ∈ W[s . Another
consequence of the definition of the stochastic integral is that its expectation with respect
to the vacuum state φ is always 0 due to the fact that the increments dAj , dA∗

j , d�ij have
zero expectation values in the vacuum. This will often simplify calculations of expectations,
our strategy being that of trying to bring these increments to act on the vacuum state thus
eliminating a large number of differentials.

The following theorem of Hudson and Parthasarathy extends the Itô rule of classical
probability theory.

Theorem 6.2 (Quantum Itô rule [22, 31]). Let M1 and M2 be one of the processes Aj ,A
∗
j or

�ij . Then M1M2 is an adapted process satisfying the relation:

dM1M2 = M1 dM2 + M2 dM1 + dM1 dM2

where dM1 dM2 is given by the quantum Itô table:

dM1\ dM2 dA∗
i d�ij dAi

dA∗
k 0 0 0

d�kl δli dA∗
k δli d�kj 0

dAk δki dt δki dAj 0

Notation. The quantum Itô rule will be used for calculating differentials of products of Itô
integrals. Let {Zi}i=1,...,p be Itô integrals, then

d(Z1Z2 . . . Zp) =
∑

ν⊂{1,...,p}
ν 
=∅

[ν]

where the sum runs over all non-empty subsets of {1, . . . , p} and for any ν = {i1, . . . , ik}, the
term [ν] is the contribution to d(Z1Z2 . . . Zp) coming from differentiating only the terms with
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indices in the set {i1, . . . , ik} and preserving the order of the factors in the product. For example,
the differential d(Z1Z2Z3) contains terms of the type [2] = Z1(dZ2)Z3, [13] = (dZ1)Z2(dZ3)

and [123] = (dZ1)(dZ2)(dZ3).

Let Vj for j = 1, 2, . . . , k, and H be operators in B with H is self-adjoint. Let S be a
unitary operator on Cn ⊗ l2({1, 2, . . . , k}) with Sij = 〈i, Sj 〉 ∈ B the ‘matrix elements’ in the
basis {|i >: i = 1, . . . , k} of Ck . Then there exists a unique unitary solution for the following
quantum stochastic differential equation [22, 31]

dUt = {
Vj dA∗

j (t) + (Sij − δij ) d�ij (t) − V ∗
i Sij dAj(t) − (

iH + 1
2V ∗

j Vj

)
dt

}
Ut (6.1)

with initial condition U0 = 1, where again repeated indices have been summed. Equation (5.2),
providing the cocycle of unitaries perturbing the free evolution of the electromagnetic field, is
an example of such an equation. The terms d�ij in equation (6.1) describe direct scattering
between the channels in the electromagnetic field [2]. We have omitted this effect for the sake
of simplicity, i.e. we always take Sij = δij .

We can now check the claim made in section 5 that the dilation diagram 5.3 commutes. It
is easy to see that following the lower part of the diagram defines a semigroup on B. We have
to show it is generated by L. For all X ∈ B we have

d Id ⊗ φk(T̂ t (X ⊗ 1⊗k)) = Id ⊗ φk(dU ∗
t X ⊗ 1⊗kUt ).

Using the Itô rules we obtain

dU ∗
t X ⊗ 1⊗kUt = (dU ∗

t )X ⊗ 1⊗kUt + U ∗
t X ⊗ 1⊗k dUt + (dU ∗

t )X ⊗ 1⊗k dUt .

With the aid of the Itô table we can evaluate these terms. We are only interested in the dt

terms since the expectation with respect to the vacuum kills the other terms. Then we obtain:
d Id ⊗ φk(U ∗

t X ⊗ 1⊗kUt ) = Id ⊗ φk(U ∗
t L(X) ⊗ 1⊗kUt ) dt , proving the claim.

Now we return to the example of resonance fluorescence. Suppose the laser is off, then
we have spontaneous decay of the two-level atom into the field which is in the vacuum state.
For future convenience we already distinguish a forward and a side channel in the field, the
Liouvillian is then given by

L(X) = i[H,X] +
∑

σ=f,s

V ∗
σ XVσ − 1

2
{V ∗

σ Vσ ,X}

where

V =
(

0 0

1 0

)
Vf = κf V Vs = κsV |κf |2 + |κs |2 = 1

with |κf |2 and |κs |2 the decay rates into the forward and side channel, respectively.
The dilation of the quantum dynamical system (M2, {Tt = exp(tL)}t�0), is now given by

the closed system (M2 ⊗ Wf ⊗ Ws , {T̂ t }t∈R) with unitary cocycle given by

dUsd
t = {

Vf dA∗
f (t) − V ∗

f dAf (t) + Vs dA∗
s (t) − V ∗

s dAs(t) − (
iH + 1

2V ∗V
)

dt
}
Usd

t

Usd
0 = 1

where the superscript sd reminds us of the fact that the laser is off, i.e. we are considering
spontaneous decay. We can summarize this in the following dilation diagram

B Tt=exp(tL)−−−−−→ B

Id⊗1⊗1

� �Id⊗φ⊗φ

B ⊗ Wf ⊗ Ws

T̂ sd
t =Ad[Û sd

t ]−−−−−−−→B ⊗ Wf ⊗ Ws

where Û sd
t is given by St ⊗ StU

sd
t for t � 0.
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We change this setting by introducing a laser on the forward channel, i.e. the forward
channel is now in a coherent state (see (3.1) γh := 〈ψ(h), ·ψ(h)〉 for some h ∈ L2(R+). This
leads to the following dilation diagram

B
T h

t−−−→ B

Id⊗1⊗1

� �Id⊗γh⊗φ

B ⊗ Wf ⊗ Ws

T̂ sd
t =Ad[Û sd

t ]−−−−−−−→B ⊗ Wf ⊗ Ws

(6.2)

i.e. the evolution on B has changed and it is in general not a semigroup. Denote by W(h)

the unitary Weyl or displacement operator defined on D by W(h)ψ(f ) = exp(−2i Im〈h, f 〉)
ψ(f + h). Note that W(h)φ = W(h)ψ(0) = ψ(h), so that we can write

T h
t (X) = Id ⊗ γh ⊗ φ

(
Usd

t

∗
X ⊗ 1 ⊗ 1Usd

t

)
= Id ⊗ φ ⊗ φ

(
Wf (h)∗Usd

t

∗
X ⊗ 1 ⊗ 1Usd

t Wf (h)
)

= Id ⊗ φ ⊗ φ
(
Wf (ht])

∗Usd
t

∗
X ⊗ 1 ⊗ 1Usd

t Wf (ht])
)

where ht] := hχ[0,t] and Wf (h) := 1 ⊗ W(h)⊗ 1. Defining Ut := Usd
t Wf (ht]), together with

the stochastic differential equation for Wf (ht]) [31]

dWf (ht]) = {
h(t) dA∗

f (t) − h̄(t) dAf (t) − 1
2 |h(t)|2 dt

}
Wf (ht]) Wf (h0) = 1

and Itô rules leads to the following quantum stochastic differential equation for Ut :

dUt = {
(Vf + h(t)) dA∗

f (t) − (V ∗
f + h̄(t)) dAf (t) + Vs dA∗

s (t) − V ∗
s dAs(t)

− (
iH + 1

2

(|h(t)|2 + V ∗V + 2h(t)V ∗
f

))
dt

}
Ut U0 = 1.

Define Ṽf := Vf + h(t), Ṽs := Vs and H̃ := H + i 1
2 (h̄(t)Vf − h(t)V ∗

f ) then this reads

dUt =
∑

σ=f,s

{
Ṽσ dA∗

σ (t) − Ṽ ∗
σ dAσ − 1

2
(iH̃ + Ṽ ∗

σ Ṽσ ) dt

}
Ut U0 = 1. (6.3)

The time-dependent generator of the dissipative evolution in the presence of the laser on the
forward channel is

L(X) = i[H̃ ,X] +
∑

σ=f,s

Ṽ ∗
σ XṼσ − 1

2
{Ṽ ∗

σ Ṽσ , X}. (6.4)

Therefore, the diagram for resonance fluorescence (6.2) is equivalent to

B
T h

t−−−→ B

Id⊗1⊗1

� �Id⊗φ⊗φ

B ⊗ Wf ⊗ Ws

T̂ t=Ad[Û t ]−−−−−−−→B ⊗ Wf ⊗ Ws

where Û t is given by St ⊗ StUt for t � 0. For h(t) = −i�/κf , we find the master equation
for resonance fluorescence (2.1). From now on we will no longer suppress the oscillations of
the laser, i.e. we take h(t) = −i exp(iωt)�/κf . Then we find

L(X) = i[H,X] − i
�

2
[e−iωtV + eiωtV ∗, X] − 1

2
{V ∗V,X} + V ∗XV

note that the laser is resonant when ω = ω0.



3204 L Bouten et al

7. Belavkin’s stochastic Schrödinger equations

Now we are ready to derive a stochastic differential equation for the process E t (X). In the
next section, we will see that this equation leads to the stochastic Schrödinger equations (2.5)
and (3.4) that we already encountered in sections 2 and 3.

Definition 7.1. Let X be an element of B := Mn. Define the process
{
MX

t

}
t�0 in the algebra

C∞ =∼ L∞(�,�, Pρ), generated by the observed process {Yt }t�0 (see section 5) by

MX
t := E t (X) − E0(X) −

∫ t

0
E r (L(X)) dr

where L : B → B is the Liouvillian. In the following we suppress the superscript X in MX
t to

simplify our notation.

Note that from the above definition it is clear that Mt is an element of Ct for all t � 0.
The following theorem first appeared (in a more general form and with a different proof ) in
[9] and is at the heart of the quantum filtering theory. We prove it using the properties of
conditional expectations. For simplicity we have restricted to observing a process in the field
W⊗k . The theory can be extended to processes that are in B ⊗ W⊗k , transforming it into a
more interesting filtering theory. For the stochastic Schrödinger equations arising in quantum
optics our approach is general enough.

Theorem 7.2. The process {Mt }t�0 of definition 7.1 is a martingale with respect to the
filtration {�t }t�0 of � and the measure Pρ , i.e. for all t � s � 0 we have Es

ρ(Mt) = Ms .

Proof. From the module property of the conditional expectation it follows that Es
ρ(Mt) = Ms

for t � s � 0 is equivalent to Es
ρ(Mt − Ms) = 0 for t � s � 0. This means we have to prove

for all t � s � 0 and E ∈ �s :∫
E

Es
ρ(Mt − Ms)(ω)Pρ(dω) = 0

which, by the tower property, is equivalent to∫
E

(Mt − Ms)(ω)Pρ(dω) = 0 (7.1)

i.e. Eρ(χE(Mt − Ms)) = 0. Now using definition 7.1 and again the module property of the
conditional expectation we find, writing E also for the projection corresponding to χE

Eρ(χE(Mt − Ms)) = ρ∞
(
E t (X ⊗ E) − E s(X ⊗ E) −

∫ t

s

E r (L(X) ⊗ E) dr

)

= ρt (X ⊗ E) − ρs(X ⊗ E) −
∫ t

s

ρr (L(X) ⊗ E) dr.

This means we have to prove dρt (X ⊗ E) − ρt (L(X) ⊗ E) dt = 0, for all t � s. Note
that ρt (X ⊗ E) = ρ0(U ∗

t X ⊗ EUt) = ρ ⊗ φ⊗k(U ∗
t X ⊗ EUt). Therefore dρt (X ⊗ E) =

ρ ⊗ φ⊗k(d(U ∗
t X ⊗ EUt)). We will use the notation below theorem 6.2 with Z1 = U ∗

t and
Z2 = X ⊗ EUt . Using the quantum Itô table and the fact that only the dt terms survive after
taking a vacuum expectation, we find

dρ0(U ∗
t X ⊗ EUt) = ρ0([1]) + ρ0([2]) + ρ0([12])

where

ρ0([1]) + ρ0([2]) = ρ0(U ∗
t (i[H,X] ⊗ E − 1

2 {V ∗
j Vj ,X} ⊗ E)Ut) dt

ρ0([12]) = ρ0(U ∗
t (V ∗

j XVj ) ⊗ EUt) dt.

This means dρt (X ⊗ E) = ρt (L(X) ⊗ E) dt , for all t � s, proving the theorem. �
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Note that in the proof of the above theorem we have used that the projection E ∈ Cs commutes
with the increments dAj(s), dA∗

j (s), ds and with the processes in front of the increments in
equation (5.2), i.e. Vj , V

∗
j , V ∗

j Vj and H. If the theory is extended to a more general filtering
theory [9], then these requirements become real restrictions on the process {Yt }t�0. If they are
satisfied the observed process {Yt }t�0 is said to be self non-demolition [9].

Definition 7.1 implies the following stochastic differential equation for the process E t (X)

dE t (X) = E t (L(X)) dt + dMt (7.2)

called the Belavkin equation. The only thing that remains to be done is linking the increment
dMt to the increment of the observed process dYt .

Let us assume that the observed process {Yt }t�0 satisfies a quantum stochastic differential
equation

dYt = αj (t) dA∗
j (t) + βij (t) d�ij (t) + α∗

j (t) dAj(t) + δ(t) dt

for some adapted stochastically integrable processes αj , βij and δ, such that αj (t), βij (t),

δ(t) ∈ W⊗k
t] for all t � 0, and β∗

ij = βji, δ = δ∗ since Yt is self-adjoint. Furthermore, since
the observed process {Yt }t�0 is commutative, we have [dYt , Ys] = 0 for all s � t , which
leads to

[αj (t), Ys] dA∗
j (t) + [βij (t), Ys] d�ij (t) + [α∗

j (t), Ys] dAj(t) + [δ(t), Ys] dt = 0 ⇒
[αj (t), Ys] = 0 [βij (t), Ys] = 0 [α∗

j (t), Ys] = 0 [δ(t), Ys] = 0

i.e. αj (t), βij (t), α
∗
j (t), δ(t) ∈ At . This enables us to define a process Ỹt by

dỸt = (αj (t) dA∗
j (t) − E t (V ∗

j αj (t)) dt) + (βij (t) d�ij (t) − E t (V ∗
i βij (t)Vj ) dt)

+ (α∗
j (t) dAj(t) − E t (α∗

j (t)Vj ) dt) Ỹ0 = 0 (7.3)

i.e. we have the following splitting of Yt :

Yt = Y0 + Ỹt +
∫ t

0
(E s(V ∗

j αj (s)) + E s(V ∗
i βij (s)Vj ) + E s(α∗

j (s)Vj ) + δ(s)) ds (7.4)

which in view of the following theorem is the semimartingale splitting of Yt . The process Ỹt

is called the innovating martingale of the observed process Yt .

Theorem 7.3. The process {Ỹt }t�0 is a martingale with respect to the filtration {�t }t�0 of �

and the measure Pρ , i.e. for all t � s � 0 we have Es
ρ(Ỹt ) = Ỹs .

Proof. We need to prove that for all t � s � 0 : Es
ρ(Ỹt − Ỹs) = 0. This means we have to

prove for all t � s � 0 and E ∈ �s :∫
E

Es
ρ(Ỹt − Ỹs)(ω)Pρ(dω) = 0 ⇐⇒

∫
E

(Ỹt − Ỹs)(ω)Pρ(dω) = 0

⇐⇒ Eρ

(
YtE − YsE −

∫ t

s

(E r (V ∗
j αj (r))E

+ E r (V ∗
i βij (r)Vj )E + E r (α∗

j (r)Vj )E + δ(r)E) dr

)
= 0

⇐⇒ ρt (YtE) − ρs(YsE) =
∫ t

s

ρr (E r (V ∗
j αj (r))E

+ E r (V ∗
i βij (r)Vj )E + E r (α∗

j (r)Vj )E + δ(r)E) dr.
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For t = s this is okay, so it remains to be shown that for all t � s � 0 and E ∈ �s :

dρt (YtE) = ρt (E t (V ∗
j αj (t))E + E t (V ∗

i βij (t)Vj )E + E t (α∗
j (t)Vj )E + δ(t)E) dt ⇐⇒

dρ0(U ∗
t YtEUt) = ρt (E t (V ∗

j αj (t))E + E t (V ∗
i βij (t)Vj )E + E t (α∗

j (t)Vj )E + δ(t)E) dt.

We define Z1(t) := U ∗
t , Z2(t) := YtE and Z3(t) := Ut then we find, using the notation below

theorem 6.2: dρ0(U ∗
t YtEUt) = ρ0([1] + [2] + [3] + [12] + [13] + [23] + [123]). Remember

ρ0 = ρ ⊗ φ⊗k , i.e. we are only interested in dt terms, since the vacuum kills all other terms.
The terms [1], [3] and [13] together make up the usual Lindblad term and since L(1) = 0
we do not have to consider them. Furthermore, term [2] contributes U ∗

t δ(t)EUt dt , term
[12] contributes U ∗

t V ∗
j αj (t)EUt dt , term [23] contributes U ∗

t α∗
j (t)VjEUt dt and term [123]

contributes U ∗
t V ∗

i βij (t)VjUt dt , therefore we get

dρ0(U ∗
t YtEUt) = ρ0(U ∗

t α∗
j (t)VjEUt + U ∗

t V ∗
i βij (t)VjUt + U ∗

t V ∗
j αj (t)EUt + U ∗

t δ(t)EUt) dt

= ρt (α∗
j (t)VjE + V ∗

i βij (t)Vj + V ∗
j αj (t)E + δ(t)E) dt

= ρt (E t (V ∗
j αj (t))E + E t (V ∗

i βij (t)Vj )E + E t (α∗
j (t)Vj )E + δ(t)E) dt

proving the theorem. �

Remark. In the probability literature, an adapted process which can be written as the sum of
a martingale and a finite variation process is called a semimartingale [32]. Theorems 7.2 and
7.3 show that Mt and Yt are semimartingales.

We now represent the martingale Mt from definition 7.1 as an integral over the innovating
martingale (cf [24]) by

dMt = ηt dỸt (7.5)

for some stochastically integrable process ηt , which together with equation (7.4) provides the
link between dMt and dYt . We are left with the problem of determining ηt , which we will
carry out in the next section for the examples of sections 2 and 3. Here we just give the recipe
for finding ηt .

Recipe. Define for all integrable adapted processes bt and ct a process Bt in C∞ by

dBt = bt dỸt + ct dt. (7.6)

These processes form a dense subalgebra of C∞. Now determine ηt from the fact that E t leaves
ρt invariant [9], i.e. for all Bt

ρt (E t (BtX)) = ρt (BtX).

From this it follows that for all Bt

dρ0(U ∗
t Bt (E t (X) − X)Ut) = 0. (7.7)

We evaluate the differential d(U ∗
t Bt (E t (X) − X)Ut) using the quantum Itô rules. Since

ρ0 = ρ ⊗ φ⊗k we can restrict to dt terms, since the others die on the vacuum. We will
use the notation below theorem 6.2 with Z1(t) = U ∗

t , Z2(t) = Bt, Z3(t) = E t (X) − X and
Z4(t) = Ut . The following lemma simplifies the calculation considerably.

Lemma 7.4. The sum of all terms in which Z2 is not differentiated has zero expectation:
ρ0([1] + [3] + [4] + [13] + [14] + [34] + [134]) = 0.

Proof. The dt terms of [3] are U ∗
t BtE t (L(X))Ut dt and −U ∗

t Btηt (E t (V ∗
j αj ) + E t (V ∗

i βijVj ) +
E t (α∗

j Vj ))Ut dt . Using the fact that E t leaves ρt invariant we see that the term
U ∗

t BtE t (L(X))Ut dt cancels against the dt terms of [1], [4] and [14], which make up the
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Lindblad generator L with a minus sign. The other term of [3] is cancelled in expectation
against the dt terms of [13], [34] and [134], since

ρ0([13]) = ρt (BtηtV
∗
j αj ) dt = ρt (E t (BtηtV

∗
j αj )) dt = ρt (BtηtE t (V ∗

j αj )) dt

ρ0([34]) = ρt (Btηtα
∗
j Vj ) dt = ρt (E t (Btηtα

∗
j Vj )) dt = ρt (BtηtE t (α∗

j Vj )) dt

ρ0([134]) = ρt (BtηtV
∗
i βijVj ) dt = ρt (E t (BtηtV

∗
i βijVj )) dt = ρt (BtηtE t (V ∗

i βijVj )) dt. �

Using equation (7.3), the fact that E t leaves ρt invariant and the module property, we find that
the term [2] has expectation zero as well

ρ0([2]) = ρt (bt dỸt (E t (X) − X))

= −ρt (btE t (V ∗
j αj (t) + α∗

j (t)Vj + V ∗
i βijVj )(E t (X) − X)) dt

= −ρt (btE t (V ∗
j αj (t) + α∗

j (t)Vj + V ∗
i βijVj )E t (E t (X) − X)) dt = 0.

Thus, only the terms containing no Bt nor ct can contribute non-trivially. This leads to an
equation allowing us to obtain an expression for ηt by solving

ρ0([12] + [23] + [24] + [123] + [124] + [234] + [1234]) = 0. (7.8)

Although this can be carried out in full generality, we will provide the solution only for our
main examples, the photon counting and homodyne detection experiments for a resonance
fluorescence setup, in the next section.

8. Examples

We now return to the example considered in section 2. We were considering a two-level
atom in interaction with the electromagnetic field. The interaction was given by a cocycle
Ut satisfying equation (6.3). The observed process is the number operator in the side
channel, i.e. Yt = �ss(t). Therefore dỸt = d�ss(t) − E t (V ∗

s Vs) dt . Recall now the notation
Z1(t) = U ∗

t , Z2(t) = Bt, Z3(t) = E t (X) − X and Z4(t) = Ut , their differentials are given by

dU ∗
t = U ∗

t

∑
σ=f,s

{
Ṽ ∗

σ dAσ (t) − Ṽσ dA∗
σ (t) − 1

2
(−iH̃ + Ṽ ∗

σ Ṽσ ) dt

}

dBt = bt d�ss(t) + (ct − btE t (V ∗
s Vs)) dt

d(E t (X) − X) = ηt d�ss(t) + (E t (L(X)) − ηtE t (V ∗
s Vs)) dt

dUt =
∑

σ=f,s

{
Ṽσ dA∗

σ (t) − Ṽ ∗
σ dAσ (t) − 1

2
(iH̃ + Ṽ ∗

σ Ṽσ ) dt

}
Ut .

Following the recipe of the previous section we now only have to determine the dt terms of
[12], [23], [24], [124], [123], [124] and [1234]. All of these terms are zero in expectation with
respect to ρ0, except for [124] and [1234]

ρ0([124]) = ρ0(U ∗
t btV

∗
s (E t (X) − X)VsUt ) dt

ρ0([1234]) = ρ0(U ∗
t btηtV

∗
s VsUt ) dt.

For all bt the sum of these terms has to be 0 in expectation, i.e.

∀bt : ρt (bt (V
∗
s (E t (X) − X)Vs + ηtV

∗
s Vs)) dt = 0 ⇐⇒

∀bt : ρt (E t (bt (V
∗
s (E t (X) − X)Vs + ηtV

∗
s Vs))) dt = 0 ⇐⇒

∀bt : ρt (bt (E t (X)E t (V ∗
s Vs) − E t (V ∗

s XVs) + ηtE t (V ∗
s Vs))) dt = 0 ⇐⇒

ηt = E t (V ∗
s XVs)

E t (V ∗
s Vs)

− E t (X).
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Substituting the expressions for ηt and Ỹt into equation (7.2), we obtain the Belavkin equation
for photon counting in the side channel

dE t (X) = E t (L(X)) dt +

(
E t (V ∗

s XVs)

E t (V ∗
s Vs)

− E t (X)

)
(d�ss(t) − E t (V ∗

s Vs) dt). (8.1)

Now recall that E t (X) = ρt
•(X•), i.e. it is the function �t → C : ω �→ ρt

ω(Xω). For all
X ∈ B = M2, the M2-valued function X• is the constant function ω �→ X. Therefore, for all
X in B, the Belavkin equation (8.1) is equivalent to

dρt
•(X) = ρt

•(L(X)) dt +

(
ρt

•(V
∗
s XVs)

ρt•(V ∗
s Vs)

− ρt
•(X)

)
(d�ss(t) − ρt

•(V
∗
s Vs) dt)

which is equivalent to the Belavkin equation of section 2, equation (2.5). In simulating the
above equation, we can take for Yt = �ss(t) the unique jump process with independent jumps
and rate ρt

•(V
∗
s Vs), since �ss(t) − ∫ t

0 ρr
•(V

∗
s Vs) dr has to be a martingale.

Let us now turn to the homodyne detection scheme which we already discussed in
section 3. The observed process is now Yt = Xφ(t) = A∗

s (ft ) + As(ft ) (see section 3 for
the definition of ft ). This means the innovating martingale Ỹt satisfies dỸt = eiφt dA∗

s (t) +
e−iφt dAs(t) − E t (eiφt V ∗

s + e−iφt Vs) dt , where φt = φ0 + ωlot with ωlo the frequency of
the local oscillator. Therefore, we find different differentials for Bt and E t (X) − X than
we had in the photon counting case

dBt = bt (e
iφt dA∗

s (t) + e−iφt dAs(t)) + (ct − btE t (eiφt V ∗
s + e−iφt Vs)) dt

d(E t (X) − X) = ηt (e
iφt dA∗

s (t) + e−iφt dAs(t)) + (E t (L(X)) − ηtE t (eiφt V ∗
s + e−iφt Vs)) dt.

Following the recipe of the previous section we now only have to determine the dt terms of
[12], [23], [24], [124], [123], [124] and [1234]. All of these terms are zero in expectation with
respect to ρ0, except for [12], [23] and [24]

ρ0([12]) = ρ0(U ∗
t eiφt V ∗

s bt (E t (X) − X)Ut) dt

ρ0([23]) = ρ0(U ∗
t btηtUt ) dt

ρ0([24]) = ρ0(U ∗
t bt (E t (X) − X) e−iφt VsUt ) dt.

For all bt the sum of these terms has to be 0 in expectation, i.e.

∀bt : ρt (bt (e
iφt V ∗

s (E t (X) − X) + (E t (X) − X) e−iφt Vs + ηt )) dt = 0 ⇐⇒
∀bt : ρt (E t (bt (e

iφt V ∗
s (E t (X) − X) + (E t (X) − X) e−iφt Vs + ηt ))) dt = 0 ⇐⇒

∀bt : ρt (bt (−E t (eiφt V ∗
s X + e−iφt XVs) + E t (eiφt V ∗

s + e−iφt Vs)E t (X) + ηt )) dt = 0 ⇐⇒
ηt = E t (eiφt V ∗

s X + e−iφt XVs) − E t (eiφt V ∗
s + e−iφt Vs)E t (X).

Substituting the expressions for ηt and Ỹt into equation (7.2), we obtain the Belavkin equation
for the homodyne detection scheme

dE t (X) = E t (L(X)) dt + (E t (eiφt V ∗
s X + e−iφt XVs) − E t (eiφt V ∗

s + e−iφt Vs)E t (X))

×(eiφt dA∗
s (t) + e−iφt dAs(t) − E t (eiφt V ∗

s + e−iφt Vs) dt). (8.2)

Now recall that E t (X) = ρt
•(X•), i.e. it is the function �t → C : ω �→ ρt

ω(Xω). For all
X ∈ B = M2, the M2-valued function X• is the constant function ω �→ X. Therefore, for all
X in B, the Belavkin equation (8.2) is equivalent to

dρt
•(X) = ρt

•(L(X)) dt + (ρt
•(e

iφt V ∗
s X + e−iφt XVs) − ρt

•(e
iφt V ∗

s + e−iφt Vs)ρ
t
•(X))

×(eiφt dA∗
s (t) + e−iφt dAs(t) − ρt

•(e
iφt V ∗

s + e−iφt Vs) dt)

which is equivalent to the Belavkin equation of section 3, equation (3.4). Since A∗
s (ft ) +

As(ft ) − ∫ t

0 ρr
•(e

iφr V ∗
s + e−iφr Vs) dr is a martingale with variance t on the space of the Wiener

process, it must be the Wiener process itself.
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Phys. 93 301–23
[23] Kadison R V and Ringrose J R 1986 Fundamentals of the Theory of Operator Algebras vol 2 (San Diego, CA:

Academic)
[24] Kallianpur G 1980 Stochastic Filtering Theory (Berlin: Springer)
[25] Kümmerer B 1982 A dilation theory for completely positive operators PhD thesis Eberhard-Karls-Universität,
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