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Abstract:
Stability under small nonlinear perturbations is proved for a class of linear quan-
tum dynamical systems, including the harmonic oscillator coupled to a free Bose
field and the infinite harmonic chrystal. The main tool is an estimate of Dyson’s
time-dependent perturbation series, based on a labeling of its terms by rooted
trees.



1. Introduction.

In recent years a renewed interest is noticeable in the ergodic theory of quantum systems
([BFS1, BFS2, JaP1, JaP2, Spo, ArH, GrM]). One possible approach proceeds by pertur-
bation of easily solvable models. Here we push this approach to an extreme for the case of
linear Bose systems, applying a technique which may well allow wider usage: summation
of the Dyson series by summing over rooted trees.

We consider a harmonic oscillator which together with its Bosonic environment forms a
mixing linear quantum dynamical system at temperature T ≥ 0. We perturb the oscilla-
tor’s harmonic potential by a bounded anharmonic term and study the dynamics of the
perturbed system. For T > 0 the non-commutative Radon-Nikodym theorem of A. Connes
[Con] says that the perturbed dynamics also possesses a thermal equilibrium state, which
is given by a vector in the same Hilbert space.

We give a sufficient condition for the unitary equivalence of the perturbed and the unper-
turbed dynamics, thereby considerably improving an earlier result by one of the authors
[Maa], which was later applied to Rayleigh scattering by H. Spohn [Spo].

At zero temperature the existence of a perturbed equilibrium state (i.e. a ground state) in
the same Hilbert space is difficult to establish. We give a few concrete sufficient conditions
for this case.

Our starting point is a finite positive measure ν on [0,∞) which characterises the linear
quantum dynamical system of oscillator and environment together. A sum of n ≥ 1 point
masses would correspond to an assembly of n− 1 (possibly coupled) harmonic oscillators
interacting with the central oscillator. We shall be interested in the case of an absolutely
continuous measure ν, as is needed for mixing behaviour of the system as a whole. This
corresponds to a Bose field as in [Maa1, Spo] or to an infinite assembly of harmonic
oscillators as in [FKM, FiL]. A few examples are mentioned in the appendix. For further
examples we refer to [LeM].

The measure ν canonically determines a triple (K, K, q), where K is a complex separable
Hilbert space, K a positive self-adjoint operator on K and q a vector in K:

K = L2([0,∞), ν); Kf(x) = xf(x), q(x) = 1. (1)

We may regard K as the phase space of a classical mechanical system with linear dynamics
St := eitK . The imaginary part of the inner product represents the symplectic form or
Poisson bracket. The vector q stands for the position of the central harmonic oscillator.
The triple (K, K, q) is alternatively characterised by the function

g : [0,∞) → R : t 7→
∫ ∞

0

sinxt ν(dx) = Im 〈q, eitKq〉 . (2)

which is expressed completely in classical mechanical terms.

The linear dynamical system (K, K, q) is quantised by associating in a real-linear way to
a vector f ∈ K a self-adjoint operator Φ(f) on some Hilbert space H with cyclic vector Ω
such that

〈Ω,Φ(f)Φ(h)Ω〉 =

{
1
2
〈f, h〉 for T = 0;

1
2〈f, coth (K/T )h〉 for T > 0.
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The position operator of our oscillator at time t then becomes

Qt := Φ(Stq) ,

so that g(t) = [Q0, Qt]. We shall denote Q0 by Q. If q ∈ Dom(K) we also have a
momentum operator

P := m
d

dt
Qt|t=0 = m

d

dt
Φ(Stq)|t=0 = mΦ(iKq) , (3)

where m denotes the mass of the oscillator.

We perturb the Hamiltonian of the quantised linear system by a term v(Q), where v :
R → R is a smooth bounded function, and we call the dynamical system stable for this
perturbation, if the perturbed and the unperturbed sytem are unitarily equivalent.

In Section 2 we recall a pair of ‘abstract’ sufficient conditions for stability: convergence of
the Dyson series (I) and existence of an invariant state (II). In Section 3, Theorems 4 and
5, these are translated into concrete sufficient conditions. Our main result is Theorem 4
on stability.

In previous papers on the stability problem as stated above ([Maa, Spo]) it was required
that g(t) = [Q0, Qt] decays exponentially. This is not typically the case, however: it
requires the measure ν to have a density whose odd extension to R is the imaginary part
of an analytic function on an infinite strip around the real axis. It can never hold for
measures of compact support, such as the spectral measure of a harmonic crystal. The
present improvement was inspired by work of one of us [BFM] which suggested that only
integrability of g would be needed. A closer investigation of the natural upper bound
for Dyson’s perturbation series revealed that its terms can be labeled by ‘indexed’ rooted
trees, and then ‘packed’ together into a sum over trees without indexation, thus reducing
the number of terms of order n from n! to a power of n. The recursive structure of the
space of all rooted trees allowed to identify the sum as the fixed point of a generating
function, as occurs in the classical Galton-Watson theory of branching processes [Har]. In
examples this fixed point can often be found explicitly. This summation over trees is set
forth in Section 4.
Our condition on v implies that the total binding potential 1

2
αQ2 + v(Q) is a convex

function of Q, but we do not believe that this is a necessary condition for stability. (Cf.
Lemma 8). In the simplest case, v(Q) = a cosλQ with a, λ > 0, our condition reads:

aλ2 ≤ 1

e ‖g‖ , (4)

and since (Lemma 7) α ‖g‖ ≥ 1, this implies that

d2

dx2

(
1
2αx

2 + v(x)
)

= α− aλ2 cosλx > 0 .

Shortly before this work was finished, we became aware of comparable results of Fidaleo
and Liverani [FiL], who could also prove stability on the basis of integrability of g. In the
simplest case mentioned above they give the following sufficient condition:

sup
n∈N

aλn

(n− 1)!
<

1

2 ‖g‖ .

– 2 –



This condition is considerably more restrictive (UITZOEKEN!) than (4) in particular for
large λ, since

sup
n∈N

λn

(n− 1)!
∼
√

λ

2π
eλ, (λ→ ∞).

A technical point which had to be addressed in Section 3 is the proper choice of the algebra
of operators for which the mixing property is to be formulated. The C*-algebra generated
by the Weyl operators is too small, since it is not stable for the perturbed dynamics.
(This point was overlooked in [Spo].) The von Neumann algebra on the other hand is in
general too large: at temperature 0 the mixing property fails. We chose here to use the
C*-algebra generated by all the integrals over the Weyl operators with respect to finite
complex measures on a linear subspace of K, and call it the integral Weyl algebra. The
need to employ this algebra was also recognised by Fidaleo and Liverani [FiL].

The crucial estimate for Theorem 4 is proved in Section 4. Section 5 contains the proof of
Theorem 5. In Section 6 we give the measure ν for several simple linear dynamical systems
and indicate which of our conditions hold for them.

2. Stability of Quantum Dynamical Systems.
This Section provides the framework for the main results in Section 3. In a concise form
we present basically known facts from [Spo, Maa, FiL].

A quantum dynamical system is a triple (A, ω, αt), where A is a C*-algebra with unit,
ω a state on A, and (αt)t∈R a one-parameter group of *-automorphisms of A leaving
ω invariant. By the Gel’fand-Naimark-Segal construction the pair (A, ω) determines a
Hilbert space H, a unit vector Ω ∈ H, and a representation of A as an algebra of bounded
operators on H such that AΩ is dense in H and 〈Ω, AΩ〉 = ω(A) for all A ∈ A. In this
paper we shall identify the algebra A with this representation and require that t 7→ αt(A)
is strongly continuous for all A ∈ A.
The quantum dynamical system (A, ω, αt) is called mixing if for all unit vectors Ψ ∈ H
and all A ∈ A

lim
t→±∞

〈Ψ, αt(A)Ψ〉 = ω(A) . (5)

The dynamics (αt)t∈R determines a one-parameter group (Ut)t∈R of unitary operators on
H by the relation

UtAΩ = αt(A)Ω .

The generator H of this group, given by

Ut = eitH ,

is called the Hamiltonian of the quantum dynamical system.

Proposition 1. Let (A, ω, αt) be a mixing quantum dynamical system represented on a
Hilbert space H with cyclic vector Ω and Hamiltonian H. Let V = V ∗ ∈ A and let for all
t ∈ R

α̃t : B(H) → B(H) : A 7→ eit(H+V )Ae−it(H+V ) .
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Suppose that α̃t(A) ⊂ A for all t ∈ R and that the following two conditions are satisfied.

(I) For all A ∈ A,

∞∑

n=0

∫
· · ·
∫

0≤t1≤···≤tn

∥∥[α−tn
(V ), [· · · [α−t1(V ), A] · · ·]]

∥∥dt1dt2 · · ·dtn <∞ ; (6)

(II) There exists a unit vector Ω̃ ∈ H, cyclic for A, such that the state ω̃ : A 7→ 〈Ω̃, AΩ̃〉
is invariant under α̃t.

Then there exists a unitary operator Γ : H → H such that ΓΩ = Ω̃ and the Hamiltonian
H̃ of (A, ω̃, α̃t) satisfies:

H̃Γ = ΓH .

In particular (A, ω̃, α̃t) is a mixing quantum dynamical system unitarily equivalent to
(A, ω, αt).

Proof. For all A ∈ B(H) and t ≥ 0, αt(A) is given by the Dyson series [BrR]

α̃t(A) = αt(A)+
∞∑

n=1

in
∫ t

0

∫ tn

0

· · ·
∫ t2

0

αt

(
[α−tn

(V ), [α−tn−1
(V ), [· · · [α−t1(V ), A] · · ·]]]

)
dt1dt2 · · ·dtn ,

(7)
and for t ≤ 0 by a similar expression.
Condition (I) implies that for all A ∈ A the following limits exist in the norm topology:

γ(A) := lim
t→∞

α̃−t ◦ αt(A) and γ̃(A) := lim
t→∞

α−t ◦ α̃t(A) .

(In fact, for the existence of the first limit only the convergence of the n = 1 term in
(6) is required.) Since A is invariant for α̃t and norm-closed, the above limits define *-
homomorphisms γ, γ̃ : A → A. Then we have for all A,B ∈ A, in the weak operator
topology on A:

lim
t→∞

αt(A)α̃t(B) = ω(Aγ̃(B)) · 1 . (8)

Indeed, for any unit vector Ψ ∈ H and any ε > 0 we can choose t so large that

‖α−t ◦ α̃t(B) − γ̃(B)‖ < ε ,

and, by the mixing property also

|〈Ψ, αt(Aγ̃(B))Ψ〉 − ω(Aγ̃(B))| < ε .

It follows that

|〈Ψ, αt(A)α̃t(B)Ψ〉 − ω(Aγ̃(B))| ≤ |〈Ψ, αt(Aα−t ◦ α̃t(B))Ψ〉 − 〈Ψ, αt(Aγ̃(B))Ψ〉|
+ |〈Ψ, αt(Aγ̃(B))Ψ〉 − ω(Aγ̃(B))|

< ε ‖A‖ + ε ,
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which proves (8). Putting A = 1 we find that the dynamics α̃t eventually sends every
observable B ∈ A to its value in the state ω ◦ γ̃. By condition (II) this state is given by a

vector Ω̃ ∈ H: we have ω̃ = ω ◦ γ̃ and (A, ω̃, α̃t) is mixing. Now put

Γ0 : AΩ → AΩ̃ : AΩ 7→ γ(A)Ω̃ .

Then Γ0 is well-defined and isometric since, by the mixing property of (A, αt, ω):

‖γ(A)Ω̃‖2 = ω̃(γ(A)∗γ(A)) = ω̃(γ(A∗A)) = lim
t→∞

ω̃(α̃−t ◦ αt(A
∗A))

= lim
t→∞

ω̃(αt(A
∗A)) = ω(A∗A) = ‖AΩ‖2 .

Let Γ : H → H denote the isometric extension of Γ0 to AΩ = H. Clearly we have:

ΓΩ = Γ · 1Ω = γ(1)Ω̃ = Ω̃ .

Similarly we consider
Γ̃0 : AΩ̃ → AΩ : AΩ̃ 7→ γ̃(A)Ω .

Then Γ̃0 extends to an isometry Γ̃ : H → H by the mixing property of (A, ω̃, α̃t) and the

cyclic property of Ω̃.
Moreover, by (8) we have for all A,B ∈ A:

〈AΩ, Γ̃BΩ̃〉 = ω(A∗γ̃(B)) = lim
t→∞

ω̃(αt(A
∗)α̃t(B))

= lim
t→∞

ω̃(α̃−t ◦ αt(A
∗)B) = ω̃(γ(A∗)B)

= 〈γ(A)Ω̃, BΩ̃〉 = 〈ΓAΩ, BΩ̃〉 .

Since AΩ and AΩ̃ are dense in H, it follows that Γ̃ = Γ∗, and since both Γ and Γ̃ are
isometric H → H, they must be unitary and each other’s inverse. Finally, from the
intertwining relation

γ ◦ αt(A) = lim
s→∞

α̃−s ◦ αs+t(A) = lim
u→∞

α̃t−u ◦ αu(A) = α̃t ◦ γ(A)

it follows that for all A ∈ A,

ΓeitHAΩ = Γαt(A)Ω = γ ◦ αt(A)Ω̃ = α̃t ◦ γ(A)Ω̃ = eitH̃γ(A)Ω̃ = eitH̃ΓAΩ .

As Ω is cyclic for A,

ΓeitH = eitH̃Γ ,

and the result follows.

3. Stability of Linear Bose Dynamical Systems.
In this Section we shall apply Proposition 1 to the case of certain linear quantum dynamical
systems obeying canonical commutation relations. In Theorems 4 and 5 below we shall
give concrete sufficient conditions for the convergence of the Dyson series (condition (I) of
Prop. 1). and for the existence of an invariant state (condition (II)).
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3.1. The linear dynamical system.

Our starting point is a complex separable Hilbert space K, on which a positive self-adjoint
operator K is given with absolutely continuous spectrum, and from which a nonzero el-
ement q is singled out. The operator K determines a one-parameter group of unitary
operators

St := eitK .

By S = S(K, K, q) we shall denote the linear span of the vectors (Stq)t∈R. If S is dense
in K, the triple (K, K, q) is completely characterised by the measure ν on [0,∞) given by

〈q, Stq〉 =

∫ ∞

0

eixtν(dx) , (t ∈ R) . (9)

Let a ‘temperature’ T ≥ 0 be given. By DT = DT (K, K) we shall mean the whole space
K for T = 0, and for T > 0 the domain of K−1/2.

Definition. By the linear Bose dynamical system over (K, K) at temperature T ≥ 0
we mean a quadruple (H,W,Ω;H), where H is a complex separable Hilbert space, W a
strongly continuous map from DT to the unitary operators on H, Ω a unit vector in H
and H a self-adjoint operator on H such that the following conditions hold.

(i) For all f, g ∈ DT (K, K):

W (f)W (g) = e−
i
2
Im 〈f,g〉W (f + g) ;

(ii) for all f ∈ DT (K, K):

〈Ω,W (f)Ω〉 = e−
1
4
‖f‖2

T , where ‖f‖2
T :=

{
‖f‖2 if T = 0,
〈f, (coth (K/T ))f〉 if T > 0;

(iii) for all f ∈ DT (K, K):

eitHW (f)Ω = W
(
eitKf

)
Ω ;

(iv) The linear span of the vectors W (f)Ω, (f ∈ DT (K, K)) is dense in H.

The Bose dynamical system is determined up to unitary equivalence by the pair (K, K)
and the number T . For T > 0 the state ωT : A 7→ 〈Ω, AΩ〉 satisfies the KMS condition
with respect to the evolution αt : A 7→ eitHAe−itH on the von Neumann algebra NT =
NT (K, K) generated by the operators W (f), f ∈ DT , and for T = 0 the Hamiltonian H is
positive with ground state vector Ω. The temperature zero algebra N0(K, K) consists of
all bounded operators on H ([BrR]).

Let AT = AT (K, K, q) denote the C*-algebra generated by operators A(κ) of the form

A(κ) :=

∫

S
W (f)κ(df) ,

where κ is a finite complex measure on S(K, K, q). We call AT (K, K, q) the integral Weyl

algebra at temperature T over S(K, K, q).
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Lemma 2. The quantum dynamical system (AT (K, K, q), ωT , (αt)t∈R) is mixing for all
T ≥ 0. For T > 0 the mixing property extends to the von Neumann algebra NT (K, K).

Remark. The temperature zero quantum dynamical system (N0, ω0, αt) is not mixing.
Indeed, since N0 = B(H), it contains the projection operator PΩ := |Ω〉〈Ω|, which does
not move under αt:

αt(PΩ) = eitH |Ω〉〈Ω|e−itH = |Ω〉〈Ω| = PΩ .

For the same reason, Lemma 2 can only be true if PΩ /∈ A0 and PΩ /∈ NT for T > 0.
Indeed, PΩ ∈ A0 if and only if dim (K) <∞ ([vNe]). For T > 0 the vector Ω is separating
for NT , and since PΩΩ = Ω = 1Ω, the projection PΩ does not lie in NT .

Proof of Lemma 2. As K has absolutely continuous spectrum, we have by the Riemann-
Lebesgue lemma for all f, h ∈ K:

lim
t→±∞

〈f, eitKh〉 = 0 .

It follows that for all f, g, h ∈ DT :

ωT

(
W (f)W (Stg)W (h)

)
= exp

(
−1

4 (‖f‖2
T + ‖g‖2

T + ‖h‖2
T )

− 1
2(〈f, Stg〉T + 〈Stg, h〉T + 〈f, h〉T )

)

−→
t→±∞

ωT (W (f)W (h))ωT (W (g)) .

So we have
lim

t→±∞
〈Ψ1, αt(A)Ψ2〉 = 〈Ψ1,Ψ2〉ωT (A) (10)

for all Ψ1,Ψ2 in the linear span of the vectors W (f)Ω, f ∈ DT , and for A of the form
W (g), g ∈ DT . By cyclicity of Ω, (10) extends to all Ψ1,Ψ2 ∈ H, and by dominated
convergence to all A in the integral Weyl algebra. Putting Ψ2 = Ω we obtain

weak- lim
t→±∞

eitH = PΩ .

Now, choosing A′
1, A

′
2 in the commutant N ′

T , we find that (10) holds for Ψi := A′
iΩ and

A ∈ NT :

〈A′
1Ω, αt(A)A′

2Ω〉 = 〈(A′
2)

∗A′
1Ω, UtAΩ〉 −→

t→±∞
〈A′

1Ω, A
′
2Ω〉〈Ω, AΩ〉 .

For T > 0, Ω is cyclic for N ′
T as well as NT , therefore (NT , ω, αt) is mixing.

3.2. The nonlinear dynamical system.
We shall perturb the dynamics αt on B(H) by the bounded self-adjoint operator V ∈ AT

given by

V := v(Q) :=

∫ ∞

−∞
W (λq)µ(dλ) ,

where µ is a finite complex measure on R satisfying µ(−E) = µ(E) for all Borel subsets
E of R. By µ+ we denote the total variation measure of µ:

µ+(E) := sup
{ ∫

E

eiϑ(x)µ(dx)
∣∣ ϑ : E → R Borel measurable

}
.

We now proceed to check the conditions of Prop. 1 one by one.
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Lemma 3. AT (K, K, q) is invariant for α̃t : B(H) → B(H) : A 7→ eit(H+V )Ae−it(H+V ).

Proof. Let κ be a finite complex Borel measure on S(K, K, q). Using (7), α̃t(A(κ)) can be
written in the form

α̃t(A(κ)) = norm- lim
N→∞

N∑

n=0

∫

S
W (f)ρn,t(df) ,

where (ρn,t)n∈N,t∈R is a family of measures on S satisfying

ρn,t
+ (S) ≤ |t|n

n!
µ+(R)nκ+(S) .

Since for each t this is a summable sequence in n, α̃t(A(κ)) is a norm limit of Weyl integrals,
hence α̃t(A(κ)) ∈ AT (K, K, q). If A is any norm limit of Weyl integrals A(κn), n → ∞,
then again α̃t(A) ∈ AT since α̃t is a *-automorphism, hence norm-continuous.

Our main result is the following. Define

M : [0,∞) → [0,∞] : x 7→
∫ ∞

−∞
|λ|e|λ|xµ+(dλ) .

Theorem 4. Suppose that ‖g‖ :=
∫∞
0

|Im 〈q, Stq〉| dt <∞ , and that the equation

y = M(‖g‖ y) (11)

admits a solution y ≥ 0. Then condition (I) of Prop. 1 (convergence of the Dyson series)
is satisfied for the quantum dynamical system (AT (K, K, q), ωT , αt).

Proof. It suffices to prove convergence of the Dyson series (6) for

A := W (λ0St0q) ,

with some fixed t0 ∈ R and λ0 ∈ C. Now let g : [0,∞) → R be as in (2), and define

g̃(t) := 〈Stq, St0q〉 .

Let m̃k := |λ0|k and mk :=
∫∞
0

|λ|k+1µ+(dλ). By repeated use of the equality

[W (f),W (h)] = −2i sin( 1
2 Im 〈f, h〉)W (f + h) ,

– 8 –



we obtain

∞∑

n=0

∫
· · ·
∫

0≤t1≤···≤tn

∥∥[α−tn
(V ), [· · · [α−t1(V ), A] · · ·]]

∥∥dt1dt2 · · ·dtn

≤
∞∑

n=0

∫
· · ·
∫

0≤t1≤···≤tn

∫ ∞

−∞
· · ·
∫ ∞

−∞

∣∣∣∣∣∣

n∏

j=1

2 sin 1
2

(
j−1∑

c=0

Im 〈λjStj
q, λcStc

q〉
)∣∣∣∣∣∣

× µ+(dλ1) · · ·µ+(dλn)dt1dt2 · · ·dtn

≤
∞∑

n=0

0∑

c1=0

1∑

c2=0

2∑

c3=0

· · ·
n−1∑

cn=0

∫ ∞

−∞
· · ·
∫ ∞

−∞




n∏

j=1

|λjλcj
|


µ+(dλ1) · · ·µ+(dλn)

×
∫

· · ·
∫

0≤t1≤···≤tn




n∏

j=1

gcj
(tj − tcj

)


 dt1dt2 · · ·dtn ,

=
∞∑

n=0

0∑

c1=0

· · ·
n−1∑

cn=0

m̃dc(0)

n∏

j=1

mdc(j)

∫
· · ·
∫

0≤t1≤···≤tn




n∏

j=1

gcj
(tj − tcj

)


 dt1dt2 · · ·dtn ,

where g0 := |g̃| and gc = |g| for c 6= 0 and dc(j) is the number of those i ≤ n for which
ci = j. The r.h.s. is the sum Φ(m̃,m, g̃, g) of Section 4. It will be proved that it converges
if and only if the graph of M intersects the line x = ‖g‖ y.
Theorem 5. If one of the following three conditions holds:

(a) T > 0;
(b) K ≥ ε · 1 for some ε > 0;
(c) ‖v′‖∞ ·

∥∥K−1q
∥∥ ≤

√
2,

then there is a vector Ω̃ ∈ H such that ω̃ := 〈Ω̃, ·Ω̃〉 is invariant under α̃t.

Proof. For T > 0 the vector Ω̃ is provided by Araki’s time independent perturbation
theory of KMS states ([Ara, BrR]) or Connes’ cocycle theorem [Con]. In this case H̃ =
H + V − JV J , where J is the modular conjugation operator.
If T = 0 we may represent H as the L2 space of the Gaussian probability space indexed by
a real subspace of K containing q, such as L2

R
([0,∞), ν). It is known [Sim] that on such

a space the semigroup e−tH is positivity improving and hypercontractive, provided that
K ≥ ε ·1. Then we can apply Theorem XIII.49 from [ReS4] to the bounded multiplication

operator V = v(Q). The conclusion is that H + V has a ground state Ω̃.
If T = 0 and the spectrum of K has no gap above 0, we may approximate K by the
operators K + ε · 1, and show that under condition (c) the ground state found above

survives the limit ε ↓ 0. We postpone the proof to Section 5. The ground state Ω̃ of H+V
is invariant under α̃t. In this case H̃ = H + V − E · 1, where E is the eigenvalue of Ω̃
under H + V .

– 9 –



3.3. Interpretation and comments.

Given the structure (K, K, q) and the measure ν from (9), let us define

1

m
:= ‖K1/2q‖2 =

∫ ∞

0

xν(dx) . (12)

and
1

α
:= ‖K−1/2q‖2 =

∫ ∞

0

1

x
ν(dx) ; (13)

If any of these integrals diverges, we take the corresponding constant m or α to be 0.
If q ∈ K is to be interpreted as the position of a harmonic oscillator in some linear
environment, then the constants m and α must both be positive, since they play the role
of the ‘effective’ mass and spring constant of the oscillator respectively: suppose that the
momentum operator P exists (i.e. q ∈ Dom (K)). Then we should have according to (3),

〈q,Kq〉 = Im 〈q, iKq〉 = Im [Q,
1

m
P ] =

1

m
.

It is reasonable to persist in the interpretation of m as a mass even if P does not exist.
The interpretation of α is justified by the following lemma.

Lemma 6. Let (K, K, q) be as in (1) and let (H,W,Ω;H) be the associated linear Bose
dynamical system at temperature 0 with W (λq) = eiλQ. Then the number α ≥ 0 given by
(13) is the largest nonnegative number for which

∃c∈R : 1
2αQ

2 ≤ H + c · 1 . (14)

In physical terms, this lemma means that only those degrees of freedom can be forced to
take small values by keeping the total energy low, whose phase space vectors are in the
domain of K−1/2. This explains why temperature states can only be defined on the Weyl
algebra of DT = Dom(K−1/2). It also puts a natural restriction on ν.

Proof. For all f ∈ Dom (K1/2) we have by Cauchy-Schwarz,

|〈f, q〉|2 =

∣∣∣∣
∫ ∞

0

f(x)ν(dx)

∣∣∣∣
2

≤
(∫ ∞

0

1

x
|f(x)| · xν(dx)

)2

≤ 1

α
‖K1/2f‖2 .

So, if Eq denotes the orthogonal projection onto Cq, we have in the sense of quadratic
forms:

αEq ≤ K .

Now, at T = 0 we may take H to be the Fock space over K, and employ the well-known
second quantisation operator dΓ (not related to the Γ of Prop. 1). Cf. [Sim, Par]. We
find:

1
2αQ

2 ≤ 1
2α
(
Φ(q)2 + Φ(iq)2

)
= α

(
dΓ(Eq) + 1

2 · 1) ≤ dΓ(K) + 1
2α · 1 = H + 1

2α · 1 .
Conversely, suppose that for some α′ ≥ 0 we have 1

2α
′Q2 ≤ H + c · 1. For ε > 0, let fε be

given by

fε(x) := 1[ε,∞)(x) ·
1

x
.
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Then we have for all λ ∈ R, putting Ψ := W (iλfε)Ω,

〈Ψ, Q2Ψ〉 = − d2

ds2
ω0

(
W (−iλfε)W (sq)W (iλfε)

)
s=0

= − d2

ds2
exp
(

i
2λs〈q, fε〉 − 1

4s
2‖q‖2

)
s=0

= 1
2‖q‖2 + λ2〈q, fε〉2 .

On the other hand,

〈Ψ, HΨ〉 =
d

dt
ω0

(
W (−iλfε)W (iλStfε)

)
t=0

= −i d
dt

exp
(
−1

2λ
2‖fε‖2 + 1

2λ
2〈fε, Stfε〉

)
t=0

= 1
2λ

2〈fε, Kfε〉 .

So our assumption on α′ implies that α′〈q, fε〉2 ≤ 〈fε, Kfε〉 = 〈q, fε〉, i.e. for all ε > 0:

α′
∫ ∞

ε

1

x
ν(dx) ≤ 1 .

So α is the largest number with property (14).

Lemma 7. Let (K, K, q) be of standard form (1), and let g be given by (2). Then

lim
ε↓0

∫ ∞

0

e−εtg(t)dt =
1

α
.

In particular, 1
α ≤ ‖g‖.

Proof. By Fubini’s theorem we have for all ε > 0:
∫ ∞

0

e−εtg(t)dt =

∫ ∞

0

e−εt

(
Im

∫ ∞

0

eixtν(dx)

)
dt

=
1

2i

∫ ∞

0

e−εt

∫ ∞

0

(
eixt − e−ixt

)
ν(dx)dt

=

∫ ∞

0

(
1

2i

∫ ∞

0

(
e(−ε+ix)t − e(−ε−ix)t

)
dt

)
ν(dx)

=

∫ ∞

0

x

ε2 + x2
ν(dx) ,

from which the statement follows.

Lemma 8. If the condition (11) of Theorem 4 is satisfied, then the effective potential

1
2αQ

2 + v(Q)

is a strictly convex function of Q.

Proof. If v is constant, then the statement is trivially valid. If it is not, then
∫
|λ|µ+(dλ) >

0, so that M(0) > 0, y > 0 and on [0, ‖g‖ y) the function M is strictly convex and analytic.
It follows that

M ′(0) <
M(‖g‖ y) −M(0)

‖g‖ y =
y −M(0)

‖g‖ y <
1

‖g‖ .
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Therefore by Lemma 7 we have for all x ∈ R:

|v′′(x)| ≤
∫ ∞

0

|λ|2µ+(dλ) = M ′(0) <
1

‖g‖ ≤ α ,

so for all x:
d2

dx2

(
1
2
αx2 + v(x)

)
= α+ v′′(x) > 0 .

3.4. An example.

As a typical example let us choose a, λ > 0 and consider the perturbation

V = a cosλQ =

∫ ∞

−∞
W (λ′q)µ(dλ′) ,

where µ = µ+ = 1
2a(δλ + δ−λ). Then M(x) = aλeλx, so condition (11) of Theorem 4 reads

∃y≥0 : aλeλ‖g‖y = y .

This is equivalent with
∃u≥0 : aλ2 ‖g‖ = ue−u ,

i.e., since max
{
ue−u

∣∣ u ≥ 0
}

= 1/e,

aλ2 ≥ 1

e ‖g‖ ,

as announced in (4).
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4. The main estimate.
In this section we develop the estimate used in the proof of Theorem 4.

4.1. The result.
Let m0, m1, m2, · · · and m̃0, m̃1, m̃2, · · · be two sequences of nonnegative numbers, and g, g̃
two integrable functions [0,∞) → [0,∞). We consider the sum of integrals

Φ(m̃,m, g̃, g) :=
∞∑

n=0

0∑

c1=0

1∑

c2=0

2∑

c3=0

· · ·
n−1∑

cn=0

m̃dc(0)




n∏

j=1

mdc(j)




×
∫

· · ·
∫

0≤t1≤···≤tn




n∏

j=1

gcj
(tj − tcj

)


 dt1dt2 · · ·dtn,

(15)

where
dc(j) := #

{
i ∈ {1, 2, · · · , n}

∣∣ ci = j
}

and

gc :=

{
g̃ if c = 0,
g if c 6= 0.

Let the generating functions M, M̃ : [0,∞) → [0,∞] be defined by

M(x) :=
∞∑

k=0

mk

k!
xk and M̃(x) :=

∞∑

k=0

m̃k

k!
xk , (16)

and let ‖g‖ , ‖g̃‖ denote the integrals of g and g̃ respectively.

Theorem 9. The sum Φ(m̃,m, g̃, g) in (15) converges if and only if the equation

M(‖g‖y) = y (11)

allows a solution y for which M̃(‖g̃‖ y) <∞. If y is the least solution, then

Φ(m̃,m, g̃, g) = M̃(‖g̃‖ y) . (17)

y

x

M(x)

x = ||g|| y

Fig. 1: the main estimate.
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4.2. Some consequences.
1. In the special case that

m̃ = m, g̃ = g,

∞∑

k=0

mk

k!
= 1, and ‖g‖ :=

∫ ∞

0

g(t)dt = 1, (18)

this theorem allows the following interpretation. Consider the branching process where at
time 0 a single individual of some species is present. At a positive random time (having
probability density g) it splits into k new individuals with probability mk/k!. These in
their turn live for independent random times — again distributed according to g — and
produce independent offspring according to the same law mk/k!, et cetera. Then the sum
Φ(m,m, g, g) in (15) is the total probability measure carried by all possible finite family
trees, and is therefore equal to the probability that the progeny of the original individual
will eventually die out.
The content of Theorem 9 is then the central statement of Galton-Watson theory, namely
that the extinction probability of a branching process equals the lowest fixed point of the
generating function of the number of offspring per individual (E.g. [Har]).

In this Section we shall give an independent analytic proof of Theorem 9.
One reason for this effort is, that the interpretation of the right hand side of (15) as the
extinction probability of an age-dependent branching process is not immediate.
Another reason is that still a scaling argument would be needed to remove the normalisa-
tion restrictions in (18). (To remove the restrictions m̃ = m and g̃ = g we only have to
allow the first generation to have a different behaviour from its later descendents.)
A third reason is the possibility to generalise the result to distributions in more than one
dimension (in the language of Section 3: to a general Weyl integral V ).

2. In the case m̃k = mk = 1 (k ∈ N), ‖g‖ = ‖g̃‖ =: t, we have M(x) = ex, and Theorem 9
implies that the sum Φ(t) := Φ(m̃,m, g̃, g) satisfies

Φ(t) = etΦ(t) .

So, putting A(t) := tΦ(t) we find
A(t) = teA(t). (19)

A and Φ are known as the generating functions of the combinatorial species ‘rooted tree’
and ‘forest’ in the sense of Joyal [Joy, BLL]. A is the inverse of the function z 7→ ze−z ,
which can be found using Lagrange’s inversion formula. The result for Φ is then

Φ(t) =
∞∑

n=0

(n+ 1)n−1

n!
tn . (20)

In particular, the n-th term of the sum in (15) is (n+1)n−1‖g‖n/n!, and the sum converges
for ‖g‖ ≤ 1/e.
This case was studied by Botvich, Fayolle and Malyshev [BFM] in the context of network
theory. Theorem 9 is an improvement compared to the result in [BFM], where the n-th
term was estimated by (8‖g‖)n. In this special case it is only slightly better that the result
of [FiL] which gives for the n-th term the estimate

2ntn
√
ec

n log log n

log n , (c > e) .
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Note, however, that (17) and (20) are equalities, not estimates.

3. In [Maa] and [Spo] an estimate was used which required exponential decay of g(t) as
t→ ∞. Theorem 9 is an important improvement compared to this since exponential decay
is the exception rather than the rule.

4.3. Rooted trees.
According to the usual definition a rooted tree is a finite connected graph without cy-
cles and with one distinguished vertex. Here we prefer to use the following, equivalent
definition.
A rooted tree or arborescence is a pair (V, a), where V is a finite set, the set of vertices, and
a is a map V → V with the property that ak becomes eventually constant. The constant
is called the root, and we shall denote it by ⊙(a) or just ⊙. The least value of k for which
ak is constant is the height of the tree.

w

v

Fig.2: A rooted tree (v ≺ w).

Drawing an arrow from v to a(v) for each v ∈ V \ {⊙},
we obtain an oriented graph. The number n of arrows
will be called the order of the tree. Note that #(V ) =
n+1. The vertex set V is partially ordered in a natural
way: we say that v ≺ w if v = ak(w) for some k ∈ N.
We think of a(v) as the parent of v. By da(v) we denote
the number #a−1(v) of offspring of v. By V ∗ we shall
mean V \ {⊙}.

Arborescences (V, a) and (W, b) are considered isomorphic if there is a bijection f : V → W
such that b◦f = f ◦a. We denote the collection of all isomorphism classes of arborescences
of order n by An. We write A for

⋃
n∈N An.

Abusing notation we shall denote elements of A again by (V, a) or even just by a.
For a rooted tree (V, a) of order n we have the identity

∑

v∈V

da(v) = n. (21)

An automorphism of a ∈ A is an isomorphism a → a. We denote the group of all auto-
morphisms of a by aut (a). By an indexation of a rooted tree (V, a) of order n we mean an
order-preserving bijection ι : V → {0, 1, 2, . . . , n}. The set of all indexations of (V, a) will
be denoted by I(a). Note that for ι ∈ I(a) we always have i(⊙) = 0. Most rooted trees
have several indexations.

4.4. Proof of the main estimate.
The sum (15) contains a summation over functions c : {1, · · · , n} → {1, · · · , n} which are
decreasing in the sense that c(j) < j for all j. We shall call such maps climbers of order n.
Note that a climber is an arborescence with vertex set {0, 1, · · · , n} satisfying

i ≺ j =⇒ i ≤ j .
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We denote the set of all climbers of order n by Cn.
The sum over Cn occurring in (15) can be replaced by a sum over (indexed) rooted trees.

0

6

5

4

3

2

1

3 4

1

65 6 5

22

0 0

1

3 4

Fig. 3. A climber and two indexed rooted trees.

Lemma 10. Let F : Cn → R. Then

∑

c∈Cn

F (c) =
∑

a∈An

1

|aut (a)|
∑

ι∈I(a)

F (ι ◦ a ◦ ι−1) .

Proof. Choose a climber c of order n, and let (V, a) be its isomorphism class. We must
count the number of indexations ι of (V, a) which lead to the climber c. Now, a bijection
ι : V → {0, 1, · · · , n} enjoys this property iff the following conditions hold:
(i) v ≺ w =⇒ ι(v) ≤ ι(w) ;
(ii) c = ι ◦ a ◦ ι−1.
But (i) is implied by (ii) since the order is determined by the graph. So it suffices to count
the maps ι which satisfy (ii). Choosing V = {0, 1, · · · , n} and a = c we see that these are
just the automorphisms of a.

Now let

∆n :=
{
t = (t1, t2, · · · , tn) ∈ R

n
∣∣ 0 ≤ t1 ≤ · · · ≤ tn

}
.

The following lemma allows us to raplace the summation over I(a) together with the
integration over ∆n by an easy integral over [0,∞)n.

Lemma 11. (Packing Lemma). For any rooted tree (V, a) the map

ϑa : I(a) × ∆n −→ [0,∞)V ∗

: (ι, t) 7→ r, where rv := tι(v) − tι(a(v)),

is bijective up to a subset of [0,∞)V ∗

of measure zero, and has Jacobian 1 on each com-
ponent {ι} × ∆n.

Proof. Let n := #(V ∗), and choose a point r ∈ [0,∞)V ∗

. Allocate a ‘branching time’ sv

to each vertex v ∈ V by putting

sv :=
∑

w≺v

rw (with s⊙ := 0).
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If some of these values sv coincide, which happens only for a set of points r of measure 0,
then r is not in the range of ϑa. If they are all different, they determine by their order a
unique indexation ι of V :

sv ≤ sw ⇐⇒ ι(v) ≤ ι(w).

Putting tι(v) := sv we obtain t ∈ ∆n with the property that

ϑa(ι, t)v := tι(v) − tι(a(v)) = sv − sa(v) =
∑

w≺v

rw −
∑

w≺a(v)

rw = rv.

So r lies in the range of ϑa. Conversely, if r = ϑa(ι, t), we must have

tι(v) = rv + tι(a(v)) = · · · =
∑

w≺v

rw = sv.

And since t1 < t2 < t3 < · · · < tn, the indexation ι is uniquely determined by the order of
the ‘branching times’ sv, hence by r. So ϑa is injective.

Finally, the map t 7→ ϑa(ι, t), for ι ∈ I(a) fixed can be written as a V ∗ × n-matrix (Mv,k),
which has 1’s at the positions (v, k), where ι(v) = k, (−1)’s at the positions (v, k) with
ι(a(v)) = k and 0’s everywhere else. We may put M in standard form by ordering the
points in V ∗ according to the indexation ι, thus putting all the 1’s on the diagonal.

2

0

1

543
1
2
3
4
5




1 0 0 0 0
0 1 0 0 0
0 −1 1 0 0
0 −1 0 1 0
−1 0 0 0 1




Figure 4. A indexed rooted tree (a, ι) with its matrix (Mv,k).

Then since ι(a(v)) < ι(v), all the (−1)’s end up below the diagonal. So det(M) equals 1
in this standard form, and ±1 in any other ordering of V ∗. The Jacobian | det(M)| of the
piecewise linear map ϑa equals 1 everywhere.

Lemma 12. The sum of integrals Φ(m̃,m, g̃, g) in (15) can be written as

Φ(m̃,m, g̃, g) =
∑

(V,a)∈A

‖g̃‖da(⊙) ‖g‖#(V ∗)−da(⊙)

|aut (a)| m̃da(⊙)

(
∏

v∈V ∗

mda(v)

)
.

Proof. In (15) Φ(m̃,m, g̃, g) is written as a sum over n of integrals over Cn ×∆n. First we
apply Lemma 10 to replace the sum over Cn by a sum over indexed rooted trees (a, ι). We
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obtain

Φ(m̃,m, g̃, g) =

∞∑

n=0

∑

(V,a)∈An

1

|aut (a)|

(
∏

v∈V

mda(v)

)

×
∑

ι∈I(a)

∫

∆n

(
∏

v∈V ∗

gι(v)(tι(v) − tι(a(v)))

)
dt.

Then we apply the Packing Lemma (Lemma 11) to replace the sum over ι and the inte-
gration over t by an integration over r:

Φ(m̃,m, g̃, g) =
∑

(V,a)∈A

1

|aut (a)|m̃da(⊙)

(
∏

v∈V ∗

mda(v)

)∫

[0,∞)V ∗

(
∏

v∈V ∗

gv(rv)

)
dr,

where gv := g̃ if v is the root, otherwise gv := g. The integral over r is now obvious, and
the Lemma is proved.

Now for m̃,m, g̃ and g fixed, let the weight w̃(a) of a rooted tree a, as in Lemma 12, be
given by

w̃(a) := ‖g̃‖da(⊙) ‖g‖#(V ∗)−da(⊙)
m̃da(⊙)

∏

v∈V ∗

mda(v).

By w(a) we shall denote the same weight, but with g̃ = g and m̃ = m.
Let A(h) with h ∈ N denote the set of all rooted trees of height ≤ h, and define

Φh(m̃,m, g̃, g) :=
∑

(V,a)∈A(h)

w̃(a)

|aut (a)| .

Lemma 13. For all pairs of sequences m̃,m of nonnegative numbers, all pairs of functions
g, g̃ : [0,∞) → [0,∞) and all h ∈ N, t ≥ 0,

Φh+1(m̃,m, g̃, g) = M̃(‖g̃‖Φh(m,m, g, g)),

where M and M̃ are the generating functions given in (16).

Proof. If a is a rooted tree of height at most h+1 and root degree da(⊙) = n, and we cut off
its root, then we are left with n rooted trees of height at most h. Therefore, the summation
over all (V, a) ∈ A(h+1) can be replaced by a sum over sequences α = (α(1), α(2), · · · , α(n))
of rooted trees in A(h), where such sequences are to be identified if they differ by a
permutation. So the summation goes over the set A

n/Sn of orbits

α̃ :=
{
α ◦ π

∣∣ π ∈ Sn

}

of sequences α ∈ A(h)n under Sn. With this correspondence we have

w̃(a) = m̃n ‖g̃‖n ·
n∏

j=1

w(α(j)),
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and

|aut (a)| = #(α̃) ·
n∏

j=1

|aut (α(j))|.

Now let N(α) := #
{
π ∈ Sn

∣∣ α ◦ π = α
}

denote the size of the stabilizer of α, (i.e.

N(α) =
∏l

k=1 nk! if α takes l different tree values n1, n2, · · · , nl times respectively.) Then

#(α̃) =
n!

N(α)
.

We calculate, starting from Lemma 12,

Φh+1(m̃,m, g̃, g) =
∑

(V,a)∈A(h+1)

w̃(a)

|aut (a)|

=
∞∑

n=0

m̃n ‖g̃‖n
∑

α̃∈A(h)n/Sn

1

#(α̃)

n∏

j=1

w(α(j))

|aut (α(j))|

=
∞∑

n=0

m̃n

n!
‖g̃‖n

∑

α̃∈A(h)n/Sn

N(α)
n∏

j=1

w(α(j))

|aut (α(j))|

=
∞∑

n=0

m̃n

n!
‖g̃‖n

∑

α∈A(h)n

n∏

j=1

w(α(j))

|aut (α(j))|

=
∞∑

n=0

m̃n

n!
‖g̃‖n


 ∑

(V,a)∈A(h)

w(a)

|aut (a)|




n

= M̃ (‖g̃‖Φh(m,m, g)) .

Proof of Theorem 9. First consider the case m̃ = m, g̃ = g. Let Mg denote the map

y 7→M(‖g‖ y).

By Lemma 13, and since Φ0(m, g) = m0 = Mg(0), we have for all n ≥ 1:

Φn−1(m, g) = M◦n
g (0).

Now let us call this number: yn. Then y1, y2, y3, · · · is a non-decreasing sequence in [0,∞],
tending to Φ(m, g) if the sum (15) converges, and to infinity otherwise.
Now suppose that (11) has a solution, i.e. Mg has a fixed point u ≥ 0. Then, since Mg is
non-decreasing, and since 0 ≤ u, we have for all n ≥ 1:

yn = M◦n
g (0) ≤M◦n

g (u) = u.

Being bounded above, the sequence converges to a limit y∞ ≤ u. As y∞ must be a fixed
point itself, it is the least such point.
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On the other hand, if (11) has no solution, the sequence y1, y2, y3, · · · can have no finite
limit, so it must tend to infinity. This proves the theorem in the case m̃ = m, g̃ = g.
In the general case, we define M̃g̃(y) := M̃(‖g̃‖ y), and consider the sequence z1, z2, · · ·,
where

zn := M̃g̃ ◦M◦n
g (0) .

Then by Lemma 13

Φ(m̃,m, g̃, g) = lim
h→∞

Φh(m̃,m, g̃, g) = lim
h→∞

M̃g̃ ◦M◦h
g (0)

= lim
h→∞

M̃g̃(yh) ,

and the theorem is proved.

5. Existence of the Ground State.

In this Section we shall prove part of Theorem 5: we shall show that condition (c) ensures
the existence of a ground state vector for H + V . Since the case T > 0 is already covered
by condition (a), we may assume here that T = 0, i.e. H is the Fock space over K, H is
the operator dΓ(K) and for all f ∈ K

Φ(f) =
a(f) + a(f)∗√

2
,

in the usual notation regarding Fock space (cf. for example [Sim]). Our main tool is the
‘photon number’ operator N := dΓ(1). Below we shall use the inequality [BFS1]:

‖a(f)ψ‖2 ≤ ‖f‖ · ‖N1/2ψ‖ , (22)

and the Lemma

Lemma 14. Let (fl)
∞
l=1 be a complete orthonormal basis for K with fl ∈ Dom(K).

Suppose that K ≥ ε · 1 for some ε > 0. Then we have for all ψ ∈ Dom(H1/2),

∞∑

l=1

〈a(K−1/2fl)ψ, a(K
1/2fl)ψ〉 = ‖N1/2ψ‖2 .

Proof. Cf. [ArH].

Lemma 15. Let Hn (n ∈ N) and H be selfadjoint operators on a Hilbert space H having
a common core D such that for all ψ ∈ D, Hnψ → Hψ as n→ ∞. Let ψn be a normalized
eigenvector of Hn with eigenvalue En, such that E = limn→∞En and the weak limit
limn→∞ ψn = ψ exists and is nonzero. Then ψ is an eigenvector of H with eigenvalue E.
In particular if ψn is the ground state of Hn, then ψ is the ground state of H.

Proof. Cf. [ArH]
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Theorem 16. Consider (K, K, q) as defined in Section 3, and let v : R → R be a bounded
differentiable function with derivative v′. Suppose that q ∈ Dom (K−1) and

‖v′‖∞ ·
∥∥K−1q

∥∥ <
√

2 .

Then dΓ(K) + v(Φ(q)) has a ground state.

Proof. For all ε > 0 Theorem 5, condition (b) yields the existence of a ground state vector
for dΓ(K + ε) + v(Φ(q)). By the weak compactness of the unit ball in H there exists a
sequence εn −→ 0 and a weakly convergent sequence ψn −→ ψ such that ψn is a ground
state vector for H̃n := (dΓ(K + εn) + v(Φ(q)). Lemma 15 will then ensure the existence

of the ground state for H̃ = dΓ(K) + v(Φ(q)), provided that ψ 6= 0.

Let En := inf spec H̃n. As H̃n −En ≥ 0 we have for all f ∈ KR ∩ Dom(K):

0 ≤ 〈a(f)ψn, (H̃n − En)a(f)ψn〉,

Then using (H̃n −En)ψn = 0, we get 〈a(f)ψn, [H̃n, a(f)]ψn〉 ≥ 0 and the commutator is

[dΓ(K + ε) + v(Φ(q)), a(f)] = −a((K + ε)f) + v′(Φ(q))[Φ(q), a(f)]

= −a((K + e)f) − 1√
2
v′(Φ(q))〈f, q〉.

We make the substitition f = (K + εn)−1/2fl, where (fl)
∞
l=1 is the orthonormal basis from

Lemma 14, and then we take the sum over all l:

∞∑

l=1

〈a((K + εn)−1/2fl)ψn, a((K + εn)1/2fl)ψn〉

≤ −
∞∑

l=1

1√
2
〈q, (K + εn)−1/2fl〉〈a((K + εn)−1/2fl)ψn, v

′(Φ(q))ψn〉 .

Using Lemma 14 for the l.h.s. of the inequality and Cauchy-Schwarz and (22) for the r.h.s.,
we obtain

‖N1/2ψn‖2 ≤ 1√
2

∣∣〈a((K + εn)−1/2q)ψn, v
′(Φ(q))ψn〉

∣∣

≤ 1√
2

∥∥(K + εn)−1q
∥∥ ·
∥∥∥N1/2ψn

∥∥∥ · ‖v′‖∞

≤ 1√
2
‖K−1q‖ · ‖N1/2ψn‖ · ‖v′‖∞ .

Now we have assumed that
∥∥N1/2ψn

∥∥ ≤ 1√
2

∥∥K−1q
∥∥ · ‖v′‖∞ < 1, say ‖N1/2ψn‖2 ≤ 1 − η

with η > 0. This implies in particular that |〈ψn,Ω〉|2 > η, where Ω is the ground state in
the absence of the perturbation. Finally by taking the limit n → ∞ we get the desired
result

|〈ψ,Ω〉| = lim
n→∞

|〈ψn,Ω〉| > η

i.e. ψ 6= 0.
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6. Examples.
In this section we list the measures ν associated to some simple linear quantum dynamical
systems. More are found in [LeM, Spo, FiL, FKM] and many other sources.

An oscillator in a simple harmonic chain with nearest neighbour interaction [vHe, FiL,
GrM] is described by

νchain(dx) =
2

πm0
· 1[a,b](x)

dx√
(x2 − a2)(b2 − x2)

.

a :=

√
α0

m0
, b :=

√
α0 + 4δ

m0
.

Here m0 is the mass of each of the oscillators, α0 the constant of the spring which ties
each oscillator to its rest position, and δ the constant of the springs connecting nearest
neighbours. Clearly, this model satiesfies condition (b) of Theorem (5), provided that
α0 > 0. It also satisfies the condition (11) of Theorem 4 for suitably smooth and small
perturbations v, but it never shows exponential decay of the commutator function g(t) =
Im [Q0, Qt].

The model for Rayleigh scattering treated in [Spo] is described by the measure

νRayleigh(dx) =
1

π

x2Im r(x)dx
(
(m0 + Re r(x))x2 − α0

)2
+ x2

(
Im r(x)

)2 ,

where again m0 and α0 are the mass and spring constant of a harmonic oscillator coupled
to the electromagnetic field. The coupling is taken in the dipole approximation, where the
oscillator is given a well-behaved charge density function ρ. The function r above is given
by

r(x) := lim
ε↓0

2

3

∫

R
3
|ρ̂(k)|2 d3k

‖k‖2 − x2 − iε
.

(Cf. [Spo], (B3) or [LeM].) This model satisfies condition (c) of Theorem (5). Typically g
drops off exponentially, so that the old condition on v can be used. This leads to extremely
small perturbations v.

The ancient model due to Horace Lamb [Lam], which obeys a Langevin equation, is ob-
tained by putting [Maa]

νLamb(dx) =
2ηxdx

(m0x2 − α0)2 + η2x2
,

where m0 and α0 are the mass and the spring constant of the oscillator, and η is a friction
coefficient. Also here exponential decay of the commutator function g occurs, but the
conditions of Theorem 5 are not satisfied for T = 0.
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